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Abstract

A FINITE ELEMENT INVESTIGATION OF TOPOGRAPHIC VARIATION
AT MID-OCEAN RIDGES SPREADING AT THE SAME RATE

by Chris Eugene Zervas

fessor Brian T.R. Lewis

Chairperson of the Supervisory Committee: Pro
Geophysics Program

The Juan de Fuca ridge and the Gorda ridge are two spreading

centers located off the west coast of North America. Both are
spreading at the rate of 3 cm/yr, yet the Gorda ridge has a wide,
deep, axial valley and the Juan de Fuca ridge has a large axial peak.
A finite element program for two-dimensional, steady state, viscous
flow was used to determine the cause of spreading rate independent
topography. Viscoplastic rheology was used to represent the
behavior of the brittle lithosphere. The yield stress was the shear
failure criterion for slip on normal faults.

The asthenospheric viscosity was varied by several orders of
magnitude. Both Newtonian and non-Newtonian rheologies were
tested. The cold, brittle, hydrothermally cooled layer at the axis
was substantially thinned. Partial melting of the upwelling mantle
was modeled by lowering viscosities and densities beneath the ridge
axis. All models produced deep axial valleys. The results show that

ridge crest topography is determined by the state of stress in the
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Introduction

Oceanic lithosphere is formed at mid-ocean spreading centers
here hot mantle material rises and partially melts through
yressure release. A melted fraction separates to form the oceanic
rust. The material loses heat to the ocean and contracts as it
oves away from the spreading center. The high temperature of the

ipwelling material elevates the topography of the ocean bottom near

he spreading center. It has been observed that the ocean bottom

eepens away from the ridge axis as a function of the square root of
age where the age is zero at the axis. If the spreading rate is

onstant over time, the bathymetry increases as the square root of
distance from the axis.

However, this rule breaks down in the vicinity of the ridge

‘axis. Generally, slow spreading ridges (less than 2.5 cm/yr half
spreading rate) such as the Mid-Atlantic Ridge have a wide (15-20
_km), deep (1.5-3.0 km), axial valley (Macdonald, 1982). Fast
"Spreading ridges (greater than 4.5 cm/yr half spreading rate) such as
the East Pacific Rise have a distinct axial peak. Intermediate rate
tspreading centers have a small axial valley (50-200 m deep).
However, there are many exceptions. The Reykjanes Ridge, a section
of the Mid-Atlantic Ridge near the Icelandic hot spot, is spreading at
1 cm/yr but has a large axial peak. Therefore spreading rate alone

does not control ridge crest topography.




an Crustal Structure

The oceanic crust is typically 5 to 6 kilometers thick.
jeismically, the ocean crust can be divided into 3 layers (Turcotte

nd Schubert, 1982). Seismic velocities are low in the top kilometer

f the crust known as layer 1. Velocities increase rapidly with

pth in layer 2 which is about 1.5 kilometers thick. They increase
ess rapidly in the lower crust which is known as layer 3. The
ransition to upper mantle velocities of 7.5 to 8.5 km/sec may be
‘gradua! or sharp (Lewis, 1983; Orcutt, 1987).

The study of ophiolites has shed some light on the petrology of
the ocean crust. Ophiolites are believed to be sections of ocean
crust that have been obducted onto the continents (Gass, 1982).
Although there are large variations in the structure of ophiolites
(Lewis, 1983), the seismic layers have been associated with
specific structural units. The top layer is composed of marine
sediments and is associated with layer 1 (Figure 1). The next layer
consists of pillow basalts which have been extruded on the ocean
floor. Beneath the pillow basalts is the sheeted dike complex
composed of vertical basaltic dikes roughly one meter wide.
quether, the pillow basalts and the sheeted dikes form layer 2.
Layer 3 consists of isotropic gabbros at the top and layered gabbros
on the bottom. Gabbroic rocks are of the same composition as
basaltic rocks. However, they are coarser grained indicating a
slower rate of cooling. The gabbros are believed to have been

formed by the cooling of a crustal magma chamber. Accretion to the




f of the magma chamber is believed to produce the isotropic
bbros and deposition of crystals on the bottom of the magma

er is believed to produce the layered gabbros. Below the

amb
bros, across the petrologic Moho, tectonized peridotites are

ound. These are believed to be mantle rocks depleted of their

k saltic fraction. If water was present, these ultramafic rocks may
ve been serpentinizéd. Serpentinites have lower densities and

ismic velocities than peridotites. Some petrologic studies of

phiolites indicate that the crustal magma chamber is 10-20

ilometers wide and steady-state in time with periodic infusions of

resh magma.
Investigation of the ocean floor at spreading centers and deep-

_sea drilling confirm that the top of the ocean crust resembles layer
2 of the ophiolite section (Sempere and Macdonald, 1987). The

‘marine sediments are absent at the spreading center where basaltic
rocks are exposed at the surface. The deepest drilled hole, has a 570

_meter thick layer of pillow basalts and a 250 meter thick transition

_zone between pillows and dikes before ending in the sheeted dike

complex. However, it is unknown if the ophiolite complexes found on

land are representative of the crust being produced at mid-ocean

spreading centers. It has been argued that they may have originated
at back-arc spreading centers or only at fast spreading ridges (Gass,

1982, Lister, 1983).



Numerous seismic experiments have been conducted at mid-

ean ridge axes to determine their crustal structure (Macdonald,
gg2: 1983; Orcutt, 1987; Sempere and Macdonald, 1987). There is

ubstantial evidence of crustal magma chambers on some segments

¢ the East Pacific Rise. Seismic refraction experiments using

cean bottom seismometers have been used to find low velocity

ones under the ridge axis. A low velocity zone at 2-3 kilometers
below the ocean floor has been found at 9° N (Orcutt et al., 1976),
‘ 2o N (Lewis and Garmany, 1982), 21° N (Reid et al., 1977), and 22°
(McClain and Lewis, 1980).

e ridge axis are often attenuated beneath the East Pacific Rise

dicating the presence of partial melt. Riedesel et al. (1982) has

vestigated microearthquakes in a hydrothermal field at 21° N and

found a maximum depth of 2-3 kilometers, indicating the thickness

of the brittle layer at the axis. Similar microearthquake depths

were obtained by McClain and Lewis (1980) at 22° N. The half

spreading rate at these locations is 3 cm/yr. However, magma

chambers may not be present at all locations. Bratt and Solomon

(1984) found no attenuation of shear or compressional waves

propagating across the axis at 12° N indicating a narrow or

discontinuous magma chamber. Nearby at 13° N, Orcutt et al. (1984)

found a low velocity zone 1.5 kilometers deep and McClain et al.

(1985) constrained its width to less than 4 kilometers.

Shear waves from microearthquakes or explosions which cross



Seismic multichannel reflection profiles have also been used
locate magma chambers. Reflections from the top of a rock-

uid interface should be strong and phase shifted by 180°. Herron

al. (1980) found a magma chamber reflection at a depth of 1.5 to 2

ometers at 9.5° N. The magma chamber is asymmetric, with a

dth of 4 kilometers (Hale et al., 1982). A reflector at 400 meters

s been interpreted as the transition between the pillow basalts

d the sheeted dike layer (Herron et al., 1982). A multichannel
eflection profile between 9° N to 13° N along the strike of the East
acific Rise shows a strong, almost continuous reflector (Detrick et
I, 1987). Phase reversal suggests that it might be the roof of a
magma chamber. The reflector is limited to 2 kilometers from the
xis. Another magma chamber has been discovered on the Valu Fa
Ridge in the Lau back-arc basin in the South Pacific (Morton and
Sleep, 1985). Five profiles were made across the ridge axis. The
trong, polarity reversed reflector is 2-3 kilometers wide and 3.5
ilometers deep. The ridge spreads at 3.5 cm/yr.

In contrast, there is no evidence of a seismically detectable
rustal magma chamber on the Mid-Atlantic Ridge (Macdonald, 1982,
983; Orcutt, 1987; Sempere and Macdonald, 1987). No low velocity
ones have been discovered by seismic refraction. Shear waves from
microearthquakes or explosions are not attenuated and hypocenters
are located as deep as 10 kilometers below the ridge axis. Purdy and
;Detrick (1986) found normal mature oceanic crust along a 120
ilometer section of the Mid-Atlantic Ridge at 23° N using seismic

refraction. There was no evidence of a steady-state magma




amber. Toomey et al. (1985) recorded microearthquakes as deep

-.8 kilometers below the median valley at 23° N. Focal
:chanisms indicate a fault plane dipping at 30°. Huang et al.
) determined the focal mechanisms of earthquakes on the Mid-
lantic Ridge using teleseismically recorded data. The focal

nisms showed normal faulting on fault planes dipping 45°. The

entroid depths were at 1-3 kilometers and the fault planes could

«tend as deep as 6 kilometers. Huang et al. (1987) obtained similar

esults for earthquakes in the Indian Ocean.
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Gorda and the JDF ridges-Similarities and Differences

The Juan de Fuca ridge and the Gorda ridge are two isolated

eading centers off the west coast of North America (Figure 2).

y were once part of the East Pacific Rise but the intervening
ments to the south were subducted under the North American
‘aie (Atwater, 1970; Riddihough, 1984). The Pacific plate spreads
’ he west and the Juan de Fuca plate spreads to the east where it
ibducts beneath the continental North American plate. The two
jges are separated by the 360 kilometer fong Blanco transform
ult. The Juan de Fuca ridge and the northern Gorda ridge are both
yreading at the half rate of 3 cm/yr. The spreading rate of the
uthern Gorda ridge gradually decreases to 1 cm/yr at the
endocino transform fault. There is a hot spot, called Axial
eamount, near the mid-point of the Juan de Fuca ridge.

Topographically, the Juan de Fuca has a 0.5 kilometer high

dal peak along most of its length. In some places, a small, shallow

ial graben (roughly 1 kilometer wide and 100 meters deep) is seen
the peak. The Gorda ridge has a wide, deep, axial valley (about 15
lometers wide and 1.5 kilometers deep) along its entire length.

Bathymetric profiles of the southern Juan de Fuca and the northern

orda ridges are shown in Figure 3.
A number of seismic experiments have been conducted on both

idges to determine their seismic velocity structures. Seismic




J/ //(2 /} “ofraction experiments on the northern JDF, southern JDF, and

Jorthern Gorda ridges have shown that, at all three locations, the

rustal structure is essentially the same (McClain and Lewis, 1982;

: ~hnson, 1987: Jung, 1988). The seismic velocities and crustal

cknesses are similar to those commonly found in oceanic crust.
There is no detectable low velocity zone beneath the axis.
\ Although a crustal magma chamber may be too small to be
resolved by a refraction profile, a small amount of molten material
will have a strong attenuating effect on seismic shear waves.
Seismic waves crossing the East Pacific Rise are often significantly
attenuated (Lewis and Garmany, 1982). However, this effect does not
occur on the JDF or Gorda ridges (McClain and Lewis, 1982).
¢ Seismic reflection experiments have also been conducted
across and along the Juan de Fuca ridge crest in an effort to find
crustal magma chambers. Although a narrow magma chamber
reflection has been reported on the southern JDF at a depth of 2.5
kilometers (Morton, 1987), the evidence is ambiguous. Other deep
" tow reflection profiles have failed to show such reflectors (Denny,
1988).
A glance at a map of seismicity for the region off the west
- coast of North America shows that the Gorda ridge and the Blanco
| transform fault are very seismically active while the Juan de Fuca
ridge is almost aseismic (Figure 4). OBS experiments designed to
- measure low level microseismicity over a short period of time also
{ indicate a large difference in seismicity Ievéls. No earthquakes

- Were recorded on the northern JDF over the course of a 7 day




10

ment. All the events recorded on the southern JDF over an 8

seriod were from the nearby Blanco fracture zone. Seismic

waves crossing the ridge axis were not attenuated, suggesting

bsence of a crustal magma chamber. On the northern Gorda

, 40 earthquakes were locatable over a 8 day deployment

ﬁson, 1987). They were found in the axial valley at all depths in

6 km thick crust. No attenuation of seismic energy was observed

waves traveling nearly vertically from the lower crust to the

ivers, ruling out a crustal magma chamber. Similar results

, obtained on the Gorda ridge by other experiments (Solano-

rrego, 1984; Sverdrup, 1985).
Therefore, the crust at both the Juan de Fuca and the Gorda

ge crests are similar to normal ocean crust in thickness and

ismic velocity. Since the crust is formed from liquid magma

ich has solidified, there will be many thermal contraction cracks

med as the rock cools. Seawater will be able to penetrate the

st and will set up a convecting hydrothermal system (Lister,

74). This convective heat loss will keep the temperature of most

the crust at 0°C (Lewis, 1983). Any magma dike or intrusion is

pidly cooled (Lister, 1983). Therefore, it seems likely that the

use of the topographic variation between the Juan de Fuca and the

rda ridges may be found in the upper mantle.
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Theories about Ridge Crest Topography

Mid-ocean ridges are the result of the thermal contraction and

sidence of the lithosphere as it moves away from the spreading
¢ There are a number of models put forward to explain the

. features of ocean bottom topography.

mal Model

The simplest possible model is that of a column of material at

onstant temperature Tm suddenly emplaced at the spreading
ter (Turcotte and Schubert, 1982). It moves away from the

ading center at a constant velocity u, and loses heat only in the

tical direction. The ocean temperature is 0°C. The solution is
logous to that for the instantaneous heating or cooling of a semi-

The resulting temperature field is

Z u
T(X,Z) = Tm ert > V;)

ere the error function is an integral of the Gaussian function,

ite half-space.

erf(x) = 2 je'x'zdx'
0

\r
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x is the horizontal distance from

is the thermal diffusivity.

ridge axis and z is the depth measured from the ocean bottom.

ensity field can be calculated from the equation of state

p(x,2) = pm(1+a(Tm-T(x,2)))

re pm is the density of the material at Tm and a is the

metric coefficient of thermal expansion.

Assuming that the material only contracts vertically, the

h of the ocean floor is

y

sins away from the ridge crest means that the water mass load on

ch column increases with distance from the axis. If Tm is high

ugh, the material has a viscosity which permits flow at depth.

ss will flow toward the ridge axis in order to establish isostasy.

en the ocean depth becomes

Pm KX
h(x) = 20Tm ———\| —
(x) m o o-ow \ 10

ere pw is the density of seawater. The ocean floor topography is

oportional to the square root of distance or of age, which is

stance divided by velocity. This relationship applies over most of
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However at about 60 to 80 million years,

rid's ocean basins.

ean floor gets shallower than predicted by the square root of

w (Parsons and Sclater, 1977).
McKenzie (1967) developed a model with a column of material

ced at the spreading center at a constant temperature Tm but

ining, by some unspecified means, a constant bottom boundary

e Tm at some depth L. The material moves away from the

eratur
axis at a constant velocity u. There is an analytic solution

_horizontal as well as vertical heat conduction;

Z
T(x,2) = Tm{1 - T+ Y Ansin(nrnz/L)exp(-anx/L)
n

2(-1)n+1 L
An =—£—n'nL—', an = R-VR2-n272, and R= L=

density field can now be calculated from the temperatures in

same way as before. Assuming isostasy at depth L, the

graphy can be calculated by keeping the mass load in each

umn constant as it moves away from the ridge axis. Now the

graphy approaches a limiting depth with age. However, near the

e axis the topography is essentially unchanged.

A major problem with both these models is that heat flow is

inite at the ridge axis where material at T=Tm comes in contact




‘eawater at T=0°C. Davis and Lister (1974) modified the

nzie model by specifying the local thermal balance condition

0T(0,2)
uT(0,z) - x————ax =UTm

he ridge axis boundary condition instead of T=Tm. This

ésents the intermittent propagation of magma through the cold

ndary layer at the axis. The only change in the solution is that

2(-1)n+1
" hr(1-an/2R)

e isotherms no longer converge at the surface. Although the heat

w is now more realistic, the topography again remains almost

A different method uses a solid-liquid phase boundary as the

ottom of the lithosphere and takes the latent heat of fusion into

count in the heat budget (Parker and Oldenburg, 1973; Oldenburg,

975). However, the temperature field and the topography are very

lose to the Davis and Lister model (Pearson and Lister, 1979).

The thermal models provide a good explanation for the age-
ependent variation in ocean floor depth but they break down within

few kilometers of the ridge axis. As stated earlier, mid-ocean

Spreading center topography can vary greatly at the ridge axis. A



known as steady state necking was presented by Tapponnier

ancheteau (1978) to account for axial valleys on slow

ng ridges. They argued that the thin layer of mechanical

h at the ridge axis is the most important factor controlling

morphology. This layer undergoes horizontal extension and

al contraction by normal faulting in the cold brittle part of the

near the surface and by viscous flow in the warmer, ductile

at depth. If the process is steady-state, the thickness of the

is maintained by volcanic eruptions at the ocean floor and

ctive cooling at depth.

One problem with the previous models is that the material

be flowing vertically not horizontally under the ridge axis.

er possible explanation for the variation in topography at the

crest is the response of the surface to the dynamics of fluid

i.e. the viscous head loss theory (Sleep, 1969). The upwelling

erial will have a higher temperature and lower density than the

unding material. The buoyancy force acting on this material

ng it up will be opposed by a viscous drag force. Lachenbruch

) has derived this force balance for a model in which fluid

up a narrow conduit and accretes to the walls at the same

' as the spreading velocity V. Assuming a uniform and

ympressible fluid in the conduit, the horizontal and vertical

cities and the pressures are




3uV
P(x,2) = pLoH - pgz + 57 [z(z-2H)+a2-x2]

. pL is the density of the lithosphere, H is the thickness of the

phere, a is the half-width of the conduit, p is the fluid density,

is the fluid viscosity. x is the horizontal distance from the

er of the conduit and z is the vertical distance from the bottom

conduit. The pressure at x=a and z=0 is set equal to the

ostatic pressure of the H kilometer thick lithosphere. The total

mal stress on the top of the conduit (z=H) is the sum of the

iatoric vertical stress and the pressure.

oW 9uV > 2 3uVH2
2u5;- P(x,H) = - 573(a%-x ) - pLgH + pgH + 53—

The normal stress can be converted to the pressure of the

ography supportable in seawater with




pL-P 3uV
= H - H2‘3 82-X2
h(x) p-pw  2a3(p-pw)g [ ( )]

st term is the isostatic level the fluid would rise to without

e forces. The second term is the drop of the conduit surface

o viscous drag. It is proportional to the fluid viscosity, the
Zding velocity, and the dimensions of the conduit. Since faster

Iﬁding ridges don't have deeper axial valleys, spreading velocity

cannot be the controlling factor. It is reasonable to suppose

viscosity variations could be responsible for axial topography.

if the other parameters remain the same, the viscous drag of a

viscosity fluid would depress the surface further than that of a

Let us assume that the conduit is 10 kilometers wide and 20

eters deep and the spreading rate is 3 cm/yr. Let the density

e lithosphere be 3.45 g/cm3 and the fluid density be 3.3 g/cm3.

e fluid has a viscosity of 1020 poise, then

h(x) = 1.3 - 2.02 + 0.25[1-(x/5)?]

re will be a 10 kilometer wide, 720 meter deep axial valley with

50 meter bulge in the center. However, if the viscosity is 1019

se, the viscous drag is only one tenth of the amount in the

vious case and the buoyancy force dominates. Then

h(x) = 1.3 - 0.20 + 0.025[1-(x/5)]




ere will be a 10 kilometer wide, 1100 meter high axial peak

nly a 25 meter bulge in the center.
Although axial valleys and axial peaks can be obtained with the

conduit model, some unrealistic simplifying assumptions
pe made about the physical properties and the flow field at the

The chosen dimensions of the conduit result in

axis.
The reason is that physical

listic topographic profiles.
erties such as temperature, density, and viscosity vary

uously with positidn near the ridge axis. To model sea floor
graphy more accurately, artificial constraints such as a narrow
uit or arbitrary assumptions of uniform fluid velocity should be

ed. Therefore, numerical rather than analytical solutions

Ild be found.




Numerical Modeling of Viscous Filow

" Many attempts have been made to model viscous flow in the
using numerical methods. A wide variety of different
.al models, rheologies, driving forces, and boundary conditions
_been considered by different investigators. Most modelers have
two-dimensional, rectangular boxes of varying dimensions to
| incompressible, steady-state, viscous flow in the mantle.
e model whole mantle convection while others assume layered
ection and only model the upper mantle. The conceptually
ler finite difference method has been used more often than the
complex finite element method (Torrance, 1979). However, an
rtant advantage of the finite element method is that the
ents can vary in size. This makes it possible to concentrate
points in areas of interest or areas where parameters change
ly with position.
Torrance and Turcotte (1971) used a finite difference
nique to model Newtonian flow in a 700 kilometer deep, surface
n layer with a temperature of 1420°K at the top and 2100°K at
bottom. They did not include the lithosphere because of its high
osity. Andrews (1972) studied viscous flow with a 1000 km X
km grid. Three layers were specified--an 80 kilometer thick,

viscosity lithosphere, an 80 kilometer thick, low viscosity

henosphere, and a 180 kilometer thick mesosphere. The mass and
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ntum equations were rewritten in terms of a stream function

d by the finite difference method. McKenzie et al. (1974)

olve
med a similar study on a 700 kilometer thick layer but used a

ant viscosity.

Using the same numerical method as Andrews, Houston and De

aecker (1975) considered a 2000 kilometer wide, 700

eter thick layer with a Newtonian temperature and pressure

ndent viscosity and a specified heat flow at the bottom
dary. Later, De Bremaecker (1977) used a variable grid spacing

assumed isostasy at the bottom of the grid to calculate surface

raphy for Newtonian and non-Newtonian viscosity. He found a

ilometer deep, 30 kilometer wide median valley at the axis.

Parmentier et al. (1976) used a non-Newtonian strain rate
ndent rheology which was independent of temperature and
sure to study convection in a closed cell with rigid isothermal

nd bottom boundaries. Using the finite difference method with a

m function formulation, they concluded that the temperature

pressure dependence of viscosity was more important than the
n rate dependence in determining flow structure. Parmentier
Turcotte (1978) studied flow beneath a rigid accreting

phere which thickens as the square root of age and moves at a

ified velocity. The bottom of the plate is the 1000°C isotherm

e the viscosity is 1022 poise. They found that the motion of the

sphere determines the mantle flow pattern. The calculated

ography is a function of the thermal contraction of the




d pressure variations at the base of the lithosphere. A narrow

ometer deep depression appears at the ridge axis which

with increasing plate velocity.
Kopitzke (1979) used the finite element method with a stream

n formulation to model a convection cell heated within and
elow. A Newtonian rheology with a maximum viscosity of 4 X
poise was specified. Flow in a shallow cell was compared to

a deep cell. Zones of weakness had to be introduced by

ity reductions in the top 100-130 kilometers at the spreading

and at the subduction zone. Schmeling and Jacoby (1981)

red Newtonian and non-Newtonian rheologies with a finite
nce stream function formulation in a 700 kilometer deep
. They also had to introduce zones of weakness at the spreading

er and the subduction zone by specifying a yield stress of 500

Al these studies modeled an entire convection cell in order to
viscous flow rates and patterns given various rheological laws
thermal conditions. Sleep and Rosendahl (1979) focused on

eling flow in the vicinity of the spreading center in order to

ict axial topography given a spreading rate. They used a finite

rence stream function formulation to model a slow spreading
ge (1 cm/yr), a fast spreading ridge (8 cm/yr), and a hot spot
(3 cm/yr). The spreading velocity was imposed as a boundary
ition.
The viscosity structure was based on a spreading rate

pendent thermal mode! which included the latent heat of fusion of




a (Sleep, 1975). The effect of hydrothermal circulation is

d. Four viscosity regions are distinguished: lithosphere,
osphere, crustal magma chamber, and axial intrusion zone.
hosphere is given a temperature and pressure dependent
nian viscosity with an upper limit of 1023 poise. The
osphere is assigned a viscosity of 1020 poise. A crustal
a chamber is given a viscosity of 1020 poise for the slow
ing ridge and a viscosity of 1017 or 1018 poise for the fast
ading and hot spot ridges. The magma chamber is at a depth of 4
ters and is only 1 kilometer wide at the slow spreading ridge.
fast spreading ridge, it is only 1 kilometer deep widening to
ometers wide at the Moho. A narrow, 1-2 kilometer wide,
trusion zone is introduced above the magma chamber in the
here. On some fast spreading and hot spot ridge models, the
_intrusion zone was assigned the same viscosity as the magma
ber. In other models, a viscoplastic rheology was used. A
plastic material behaves as a viscous fluid if the strain rate is
that the shear stress is less than a yield stress. If the strain
would result in a shear stress higher than the yield stress, the
al will yield plastically. On fast spreading ridges, yield
ses of 9 and 30 bars were used while on slow spreading ridges
| stresses of 180 and 240 bars were used. Axial valleys of the
shape and scale were produced for slow spreading ridges but
models for fast spreading ridges had curious side lobes and did

resemble the topographic profiles seen at such ridges.




The Finite Element Method

The momentum equations governing viscous flow are very
The only forces are pressure gradients, viscous forces, and

y The inertial terms in the momentum equations are dropped

se they are negligible when the velocity is small and the

sity is high. Also, according to the Boussinesq approximation,

ompressibility of the fluid can be ignored if it undergoes

II* pressure changes. This will be true if its vertical motion is

than the scale height of the material. For the upper mantle the

e height is about 6500 km, so the conservation of mass equation

re u is velocity in the horizontal (x) direction and w is velocity

he vertical (z) direction. Density is retained in the momentum

ations however. The momentum equations are

P _Otx Iz
ax ~ ox T 9z




e P is pressure, p is density, and the tjj's are deviatoric

The stresses are given by

é are three unknowns to be solved for: the pressure and the two
yonents of velocity.
The equations will be solved by the Galerkin finite element
od (Juhlin, 1983). The finite elements are triangles consisting
x points, three at the vertices of the triangle and three at the
ints of each side. The value of a variable u anywhere in the
ent S is approximated by a number of linearly-independent basis

tions ¢j(x) where

N
u(x) = 2ujoj(x)
1

differential equation to be solved is F(u(x))=f(x), and if the

functions are used to approximate u(x), the error is




N
EN= F{ZUM - f(x)
1

approximation was perfect the error would be zero. Since the
s the unparameterized part of the solution, the error should be

onal to each basis function integrated over the element.

fd)iENda =0 fori=1,2,...,N
s

known as the Galerkin method. Using the Galerkin method on
ass and the momentum equations, the final integral equations
no derivatives of the pressure basis functions and only first
tives of the velocity basis functions. Therefore, the pressure
5 functions are linear, there are 3 of them, and the pressure is
ated only at the three vertices of the triangular element. The
ck:l'ty basis functions are quadratic, there are 6 of them, and the
ties are calculated at all six points of the triangular element.
On each boundary, the normal velocity or the normal stress and
ngential velocity or the shear stress must be fixed. The

| stress, if specified, is the sum of the pressure and the

oric normal stress.
The solution of the finite element prograrh consists of a
ty field, a pressure field, a strain rate field, a stress field,

final viscosity field if the rheology is not Newtonian. The




N
EN=F(zUj¢j]' f(x)
1

! .
he approximation was perfect the error would be zero. Since the
is the unparameterized part of the solution, the error should be

hogonal to each basis function integrated over the element.

j¢iENda =0 fori=12,...,N
s

is is known as the Galerkin method. Using the Galerkin method on
> mass and the momentum equations, the final integral equations
/e no derivatives of the pressure basis functions and only first
ives of the vélocity basis functions. Therefore, the pressure
unctions are linear, there are 3 of them, and the pressure is
ated only at the three vertices of the triangular element. The
y basis functions are quadratic, there are 6 of them, and the
locities are calculated at all six points of the triangular element.
. On each boundary, the normal velocity or the normal stress and
' tangential velocity or the shear stress must be fixed. The
rmal stress, if specified, is the sum of the pressure and the

viatoric normal stress.

The solution of the finite element program consists of a

city field, a pressure field, a strain rate field, a stress field,

d a final viscosity field if the rheology is not Newtonian. The
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field now reflects the thermal effects of contraction and

the dynamic forces responsible for the motion of the

»nce and
?]he sum of the pressure and the normal stress at the top of

‘; can be easily transformed into sea floor topography h(x),

122(x,L) - P(x,L) = - pwgd - (pm-pw)gh(x)

d is the ocean depth at the ridge axis, pw is the density of
er, and pm is the mantle density (Parmentier and Forsyth,

 The right hand side is simply the hydrostatic pressure of the

s an example, the solution for the narrow conduit model has
btained numerically. A constant density of 3.3 g/cm3 and a
The
of the lithosphere was chosen to be 3.45 g/cm3. The conduit
8 kilometers wide and 16 kilometers deep. Only the right half
conduit was modeled since symmetric spreading was assumed.
grid points were half a kilometer apart in the horizontal
n and two kilometers apart in the vertical direction.
ore, there were 81 points and 32 elements (Figure 5a). The
y boundary conditions were zero normal velocity on the left
he axis) and the top and 3 cm/yr normal velocity and zero
;kntial velocity on the right side. The normal stress was
ed on the bottom boundary and zero tangential stresses were

fied on the top, bottom and left sides.




he numerical results correspond closely to the analytic

_in the appendix to Lachenbruch (1973). Figure 5b shows the

’ﬁeld and Figure 6 shows the topography from both the

and the numerical solutions. The expected axial valley is

meters deep at the edge of the conduit shallowing to 1.0

ers deep at the axis. This shape is a result of using this

ar conduit geometry.

he ability of the finite element program to handle a varying
y field can be demonstrated with a solution for Couette
_A viscous fluid is constrained to move only in the horizontal
on by two rigid plates 1 kilometer apart. The bottom
ary is stationary, (u=0,w=0), and the top plate moves

ntally at u=3 cm/yr (w=0). If there are no pressure or density

nts in the fluid, the equation to be solved is
d du
dz (“ dz) =0

a constant, u is simply the linear function u=3z. If pis a
on of 1/z, the solution is a quadratic function of z. Since the

functions for velocity (u,w) are quadratic, the solution should
act.

Let the viscosity field be described by

1018
w(z) = 9z+1




velocity field should be

o

6 (9
uz) =77 '2'22 + 2z

element solution was obtained for a 1 kilometer

square grid
elements and 81 points.

The points were 0.125

kilometers
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Viscosity(P)

1.000E+18
1.000E+18
1.000E+18
1.000E+18
1.000E+18
1.000E+18
1.000E+18
1.000E+18
1.000E+18
4.706E+17
4.706E+17
4.706E+17
4.706E+17
4.706E+17
4.706E+17
4.706E+17
4.706E+17
4.706E+17
3.077E+17
3.077E+17
3.077E+17
3.077E+17
3.077E+17
‘3.077E+17
3.077E+17
3.077E+17
3.077E+17

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

u(cm/yr)

.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.106534091
.106534091
.106534091
.106534091
.106534091
.106534091
.106534091
.106534091
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

106534091
289772727
289772727
289772727
289772727
289772727
289772727
289772727
289772727
289772727

0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0

Finite Element Solution

u{cm/yr)

.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.106535682
.106535609
.106535197
.106535362
106535391
.106535451
.106535531
.106535608
.106535753
.289775275
.289775196
.289775604
.289775332
.289775186
.2897752789
.289775345
289774962
.289774027

0.
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000000
.000000279
.000000016
.000000064
.000000058
.000000031
.000000035
.000000135

o O O O O O O 0O o o o

[ T T T )
0O O O O o

w(cm/yr)

000000000

0.000000000
0.000000000
0.000000278
0.000000140
.000000074
.000000079
.000000061

-0.
-0.

0.

000000067
000000230
000000000
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Table 1 ntin

ement Solution for Couette Flow with a Viscosity Gradient

Finite Element Solution

Viscosity(P) u(cm/yr) u(cm/yr) w(cm/yr)

2.286E+17
2.286E+17
2.286E+17
2.286E+17
2.286E+17
2.286E+17
2.286E+17
2.286E+17
2.286E+17
1.818E+17
.818E+17
.818E+17
818E+17
.818E+17
.818E+17
.818E+17
.818E+17
.818E+17
.509E+17
.S509E+17
.509E+17
.509E+17
S509E+17
.509E+17
.509E+17
S509E+17
.509E+17

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.549715909
0.549715909
0.5497159089
0.5497159089
0.549715909
0.549715909
0.549715909
0.549715909
0.549715909
0.886363636
0.886363636
0.886363636
0.886363636
.886363636
.886363636
.886363636
.886363636
.886363636
.299715909
.299715909
.299715909
.299715909
.299715909
.299715909
.299715909
.299715909
.2899715809

~t eh eh d ek ed ek ek A OO O O O

0.549718947
0.549719706
0.549719997
0.549720056
0.549720111
0.549720175
0.549720284
0.549720424
0.549721164
0.886370559
0.886369540
0.886369333
0.886369317
0.886369558
0.886369486
0.886369635
0.886368903
0.886367753
1.299721570
.299722270
.299722582
.299722689
.299722848
.299722965
.299723149
.299722909
.299723447

B O S R ™ Y G " §

0.000000000
-0.000000251
-0.00000014593
-0.000000126
-0.000000087
-0.000000055
-0.000000004
-0.000000058

0.000000000

0.000000000

0.000000138
-0.000000256
-0.000000225
-0.000000176
-0.000000112
-0.000000101
-0.000000201

0.000000000

0.000000000
-0.000000305
-0.0000003¢%2
-0.000000425
-0.000000342
-0.000000226

0.000000031
-0.000000041

0.000000000
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ment Solution for Couette Flow with a Viscosity Gradient

(km) Viscosity(P)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.290E+17
.290E+17
.290E+17
.290E+17
.290E+17
.290E+17
.290E+17
.290E+17
.290E+17
A27E+17
127E+17
127E+17
A27E+17
A27E+17
A27E+17
A27E+17
127E+17
A27E+17
.000E+17
.000E+17
.000E+17
.000E+17
.000E+17
.000E+17
.000E+17
.000E+17
.000E+17

u(cm/yr)

.788772727
.789772727
.789772727
.789772727
.789772727
.789772727
.789772727
.788772727
1.789772727
2.3565340091
2.3565340091
2.356534091
2.356534091
2.356534091
2.3565340091
2.356534091
2.3565340091
2.3565340091
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000

—h ek bk e b amh = A

Finite Element Solution

u(cm/yr)

.789784720
.789784418
.789785171
.789784483
.789785052
.789784808
.789786153
.789783984
.789783218
.356542414
2.356541984
2.356541725
2.356541145
2.356540939
2.356540626
2.356539717
2.356540950
2.356541025
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000
3.000000000

N b wh eh b ad omd ed ad b

w(cm/yr)

0.000000000
.000000596
.000000626
.0000003689
.000000577
.000000263
.000000008
.000000505
0.000000000
0.000000000
.000000523
.000000236
.000000260
.000000392
.000000432
.000000062
.000000878
.000000000
.000000000
.000000000
.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000




Physical Conditions at the Ridge AXxis

finite element program for 2-dimensional, steady-state,
flow will be used to derive the dynamic response of the sea
;uhlin, 1983). Time-dependent elastic behavior of the

| is not considered. A rectangular mesh of grid points is

ied to represent a slab of material of thickness L, on one side

ﬁdge axis. Symmetric spreading is assumed. The elements

ht triangles consisting of six points, three at the vertices of

ngle and three at the midpoints of each side. Figure 7 shows
used for a 100 km X 100 km section of the upper mantle

a 5 km thick hydrothermally cooled crust. There are 775

; and 180 elements.

The top of the grid represents the ocean floor. Assuming
thermal circulation extends to the base of the crust, the

rature is 0°C to a depth of 5 kilometers. A temperature field
ecified for the mantle. The Davis and Lister temperature field
spreading velocity of 3 cm/yr, a diffusivity of 0.0085 cm2/sec,
 bottom boundary temperature of 1200°C is shown in Figure 8a.
From the temperature field, the density field of the mantle can

Iculated as




p(x,2) = pm(1+a(Tm-T(x,2)))

o is the density at Tm and o is the coefficient of thermal
n. Figure 8b shows the density field corresponding to the
ure field in Figure 8a if @=0.00004 and pm=3.3 g/cm3. The

assumed to have a uniform density of 3.0 g/cm3.

hermal Topography and Pressure

- it is assumed that all the volume contraction occurs in the

direction, a layer of unit thickness at the axis will contract

a(T(0,2)-T(x,2))
1+a(Tm-T(x,2))

T(0,z) is the temperature at the ridge axis. By adding up the

tions of all layers below a point, the subsidence of the point
rmined. However, if isostasy is assumed at the bottom

ry, each point must subside further in response to the ocean

This additional subsidence is

Pw

ht(x
Pm-Pw (%)

pw is the density of seawater and ht(x) is the subsidence at

rface due to thermal contraction alone. Total subsidence at
urface is




L
_pm (a(T(0.2)-T(x,2)_
= om-pw J 1+a(Tm-T(x,2) "
0

yw the pressure at each point in the mantle can be calculated

L

P(x.2) = pwg(d+h(x)) + pegc + [p(0,2)gdz
Z

is the ocean depth at the ridge axis, ¢ is the thickness of

st and p¢ is the density of the crust. Figure Sa is a plot of the

ce between the pressure at a point and the pressure at the
xis at the same level. This horizontal pressure gradient is

ge push force, one of the tectonic driving forces.

hermally activated viscous creep processes in solid rock can
ar or non-linear (Turcotte and Schubert, 1982). Diffusion
_is the diffusion of atoms through crystals (Herring-Nabarro
»‘or along crystal boundaries (Coble creep). For diffusion
strain rate is linearly proportional to stress. The material
s as a Newtonian fluid and the constant of proportionality is
iscosity. Dislocation creep is the movement of dislocations in

'stal lattice structure. For dislocation creep, the strain rate is




.onal to a power of the stress. The material behaves as a

ywtonian or power-law fluid. The effective viscosity is

dependent.
ccording to experimental results for basalts and peridotites,

ain rate is proportional to the cube of the stress. However,

experiments are performed for strain rates many orders of

are extrapolated to lower strain rates. Therefore, it is not

by what mechanism the mantle deforms.

If a stress is imposed on a rock, it will deform according to

w law that results in the highest strain rate. Alternatively,
sing a strain rate on a rock will cause it to deform according to
iow law resulting in the smallest stress. In Figure 10, Turcotte
Schubert (1982) compare two creep laws for dry olivine, the

common mineral in the mantle.
¢ = 3000e-E/RT ¢ = (4.2 X 109) o3 e E/RT

e o is in megapascals (1 MPa=10 bars), ¢ is in sec'l, E=523

ole, and R is the ideal gas constant. The first law was obtained
diffusive flow theory with several assumptions made in

sing parameter values. The second law is based on experiments
ucted at laboratory strain rates. Power law creep is the

erred process above 0.027 MPa (0.27 bars) while Newtonian flow

preferred below this transition stress. Furthermore, given a




rate, a rock will undergo dislocation creep at a low
éture and diffusion creep at a higher temperature.
-rom theoretical considerations (Turcotte and Schubert,

Newtonian viscosity will be pressure and temperature

Eent according to the following equation,

T E*+PV*
h=2B, P RT

By, E*,V*, and R are constants (Schubert et al.,, 1976, 1978).

called the activation energy, V* is called the activation

. and R is the ideal gas constant. The values for olivine are

024 cm s °K/g, E*=95 kcal/mole, and V*=10 cm3/mole. As

rature decreases, viscosity increases exponentially. Between

and 0°C, viscosity increases by over 60 orders of magnitude.
’nge of viscosities must be limited to prevent matrix

ity problems in the solution algorithm. Therefore all

es greater than a cutoff viscosity are set equal to the
viscosity. The cutoff viscosity must be chosen so that
s of high viscosity move as a solid block. Figure 9b is the

ity field derived from the temperature field in Figure 8a with

ff viscosity of 1025 poise. The temperature, density,

ntal pressure gradient and Newtonian viscosity fields for
00°C and Tm=1400°C are displayed in Figures 11-14.
When the rheology is Newtonian (linear), the viscosity depends

N temperature and pressure and the input viscosity field is




solve the Galerkin integral equations directly. |f the

is non-Newtonian (non-linear), the viscosity is also stress

T 1 E*+PV*
H=5%B,3n-1 P RT

= tijtij is the stress invariant and n is the power of the

aw fluid (Schubert et al, 1976). For olivine, n=3 and

5 X 10-13 cm3 s5 °K/g3. The viscosity can be rewritten to be

ij is the strain rate invariant. Now the viscosity is

dent on temperature, pressure, and strain rate. The Newtonian
ity field is used in the first calculation of the velocity, from
the strain rates are obtained. Then, a new non-Newtonian
ity field is derived to be used in recalculating the velocity

The iterations are continued until the viscosity field is

re =1hle 2 | jre Of]
Using a temperature dependent viscosity with the strain rates

sary near the ridge axis can lead to unrealistically high




This occurs because the temperature is low and the
is large near the surface. A viscoplastic rheology can
this problem. A viscoplastic material will behave as a
fluid if the stress invariant X is less than a yield stress
nd Rosendahl, 1979). Whenever, the strain rate is high
for s to exceed the yield stress, the material undergoes a
which reduces stress. The most likely candidate is brittle
at low temperatures and pressures and plastic creep at high
tures and pressures. This can be incorporated into the
m for Newtonian rheology by lowering the viscosity at the
s where T exceeds the yield stress. The velocity field is

ated using the new viscosity field and a new stress field is

ed. If the stress at any position still exceeds the yield stress,

osity is again lowered at that point and the process is
d until all stresses are below the yield stress.
‘;Brace and Kohlistedt (1980) have combined the rheological laws

ctional strength, viscous creep and plastic creep with a

Deviatoric stresses are calculated as a function of depth for
law and the law giving the lowest stress at each depth
minates. Rock which can undergo brittle fracture is assumed

‘already faulted, so the Byerlee frictional strength law is

on < 2 kbars




T = 600 + 0.6 on Cn > 2 kbars

s the shear stress and on is the effective normal stress.

on=¢5n-Pp
is the total normal stress and Pp is the pore pressure of

The equations can be rewritten in terms of the maximum

| effective stress o1,
v =0.4 o1 o1 < 5.5 kbars
© =034 01 +340 61 > 5.5 kbars
the region is under horizontal deviatoric tension the
um principal stress is simply the lithostatic pressure.
ing hydrostatic pore pressure,
o1 = pgz - Pp = (p-pw)gz
rock density is 3 g/cm3, the gradient in o1 is 200 bars/km and

Tt = 80z Z < 27.5km

1 = 68z + 340 zZ>27.5km
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nd Kohlstedt (1980) used a non-Newtonian viscous flow law
at low stresses (t<1 kbar) and a Dorn plasticity law for
t high stresses (1>1 kbar).
y combining these laws on a stress versus depth plot and

g the law giving the lowest stress at each depth, one obtains

n and sedimentary basin formation (Sawyer, 1985;
an and England, 1986) and transition depths between brittle

tile behavior in the Basin and Range region (Smith and Bruhn,

e brittle yield stress for depths of less than 27.5 kilometers
used. This prevents stresses in the mantle from building up
obar, so the Dorn plasticity law is not needed. Therefore,
racture at low temperatures and pressures occurs in the
ere and Newtonian or non-Newtonian viscous flow occurs in

The actual yield stress to be used in the finite

is
t = 10 bars + 80z

e, for a yield stress of zero at the ocean bottom, the viscosity

ve to be lowered to zero.

he yield stress of the brittle lithosphere cannot be less than

km unless the pore pressure of water is greater than

atic pressure or the coefficient of friction in the Byerlee




ess than 0.85. These possibilities are unlikely to occur at
én ridges. The pervasive fissuring of the crust near the
is and the existence of hydrothermal circulation make it
that the pore pressure can exceed hydrostatic pressures.
frictional strength of fault gouge minerals is one of the
explanations for low shear stresses on the San Andreas
chenbruch and Sass, 1980). However, the San Andreas fault
n active for several million years and has had several
kilometers of cumulative displacement. The normal faults
ding centers do not have large enough displacements in the

eriod in which they are active to form a low strength fault

The ridge push force is a gravitational body force due to the

al pressure gradient arising from the elevation of the ridge
é‘lative to older parts of the plate. The horizontal pressure
nt shown in Figure 9a must be opposed by an equal force or

plate will accelerate. There are a number of locations

he opposing forces can be imposed. Frictional and viscous
nce at transform faults, viscous drag on the bottom of the
here, frictional resistance from the overriding plate at the

ion zone, and viscous drag on the subducting slab can all
e plate motion.

t is known from intraplate earthquake focal mechanisms, that

f the world's oceanic lithosphere is under deviatoric
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| compression (Sykes and Sbar, 1973). Lister (1975) has
_an expression for the buildup of horizontal compressive

a cooling and contracting oceanic plate described by

yd u
T(x,2) = Tm erf(-z- \/a

are negligible resisting stresses at the transform faults,

oF  gpmaTmk

1=
ox u

F is the summed normal force per unit length parallel to the

 a vertical plane through the lithosphere, and 1 is the shear

on the bottom of the lithosphere. If the shear stress on the

oF
of the plate is small, then 5;:13.85 bars using Tm=1200°C,

g/cm3, 0.=0.00004, x=0.0085 cmZ2/s, and u=3 cm/yr. If the

, oF
ric stress at the axis is assumed to be zero, 5;'can be

ed from the axis to any point on the plate and divided by the

ss of the lithosphere at that point to get the average

tal compressive stress. At 100 kilometers from the axis the
phere is about 15 kilometers thick assuming no hydrothermal
T, so the horizontal compressive stress will be about 90 bars.

0 determine what boundary conditions to use at 100

ers, deviatoric stresses were calculated using the finite

t program for the Tm=1200°C density field (Figure 8b) and
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n viscosity field (Figure 9b). Shear stresses were set to
n all boundaries. Horizontal velocity on the left (axis)
ry and vertical velocity on the top boundary were set to zero.
rmal stress on the bottom boundary was lithostatic. The
stress imposed at 100 kilometers was the lithostatic stress
lumn under the axis. This stress is enough to oppose the ridge
rce and support the ridge. Figure 15a shows the deviatoric
stresses at all the points of the grid in Figure 7. The lengths
portional to the magnitudes. Deviatoric compressive
s are perpendicular to the tensile stresses. Deviatoric
s are near zero at the axis building up to about 60 bars of
tal compressive stress at the right boundary. This is less
e compressive stress derived previously because a 5
er thick, 0°C crust has been added to the top of the mantie.
here is no reason to assume that the stresses at the axis are
tic (no deviatoric stresses). Focal mechanisms of
uakes at ridge crests indicate that horizontal tensile stresses
sent (Huang et al., 1986, 1987). If the boundary condition
d on the right side is changed to the lithostatic stress at 100

ers, the tensile stress plot (Figure 15b) shows horizontal

ric tension from the axis out to 100 kilometers. Beyond 100

ers there would be horizontal deviatoric compression.

here is no reason to suppose that 100 kilometers from the
IS the point where horizontal tensile stresses change to
énta! compressive stresses. There is no way of knowing what

al stresses to impose on the right boundary in the lithosphere.
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the horizontal velocity of the plate at 100 kilometers from

must be the spreading rate and this can be used as a

e boundary conditions to be used can now be stated. Shear

are set to zero on the bottom and on the right and left

At the left (axis) boundary, the horizontal velocity is set to
‘ce symmetric spreading is assumed. Isostasy is assumed at
tom boundary, so the normal stress is lithostatic. On the

e, lithostatic normal stress can be assumed where the

ty is low. However, since the state of stress in the

ere is unlikely to be lithostatic, a horizontal velocity of 3
is imposed where viscosity is high (greater than 1025 poise).
top boundary, the vertical velocity is set to zero. The
tal velocity is set to 3 cm/yr at first, in order to obtain the
rates needed to calculate the non-Newtonian and/or
astic viscosity fields. For succeeding iterations, the shear
at the surface is set to zero. It was observed that after the
eration, the changes to the viscosity field were negligible,
r a non-Newtonian or a viscoplastic rheology was used. The
presented in the next chapter are the results after the

d iteration.
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Results of Numerical Modeling

Asthenospheric Viscosity

he first runs of the finite element program were carried out

ture, could produce both axial peaks and axial valleys.

ng Tm by 100°C lowers the viscosity of the asthenosphere by

_an order of magnitude. This will reduce viscous forces in

venosphere by an order of magnitude. According to the

head loss theory (Sleep, 1969; Lachenbruch, 1973), the depth
axial valley should be an order of magnitude smaller.

he results of the finite element modeling consist of a

field, a stress field, a strain rate field, a viscosity field,

opographic profile. Figure 16a shows the velocity field for

0°C with a Newtonian viscosity. At the top, the horizontal

at the surface is plotted. The surface approaches the

he appearance of what resembles a convection cell in the
ght corner is solely a consequence of imposing zero shear
at the bottom and at the right side and the nearly square

ons of the box. Since the viscosity is low in that corner it

minuscule effect on the topography. Figure 16b is a close-up




gure 17a shows the magnitudes and directions of the

ic tensile stress at all points. Deviatoric compressive
. are perpendicular to the tensile stresses and have the same
The lithosphere is clearly visible as a thickening

des.
er with stress increasing with depth to a maximum at the

lay
ductile transition boundary. Below, in the asthenosphere,
alls off rapidly to negligible values. The tensile stresses
rizontal all the way to the right boundary at 100 kilometers

Figure 17b is a close-up of the stress field in the top

“igure 18a is a contour plot of the logarithm of the strain rate
nt in the upper half of the box. This and the following contour
have a vertical exaggeration to better display the lithosphere.
borresponds to a strain rate of 10-14 g1 Figure 18b is a

ir plot of the logarithm of the viscosity in poise. Viscosities
been lowered in the lithosphere so the stresses will not exceed
eld stress. The lithosphere behaves‘ as a perfectly plastic
ather than as a viscous fluid. The viscosities in the

::;here have no physical significance since the lithosphere

ms by brittle faulting. Viscosities in the asthenosphere are
nged.

Figure 19b is a contour plot of the logarithm of the stress

ant in bars. 1.0 corresponds to a stress of 10 bars; 2.0

ponds to a stress of 100 bars. The band of highly stressed

phere is evident. Below, in the asthenosphere, stresses fall

10 bars.
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igure 19a4 shows two topographic profiles. The solid line is
ctatic thermal topography derived solely from the
ature field and the assumption of isostasy at the bottom

ry. The triangles are the finite element dynamic topography

d from
1ZZ(X’L) - P(X!L) =- prd - (Pm'Pw)gh(X)

Ee normal stresses at the surface. The axial valley is 30

ers wide and 2 kilometers deep.

he grid used in the finite element calculation has a

tration of points near the surface at the axis. The points
oncentrated where the viscosity and density fields vary

with position. However, if the grid is still too coarse, the
might be inaccurate. To test whether a finite element grid
§nough, the number of points are doubled in both directions.
esults obtained with the fine grid are the same as the results
e coarse grid, the coarse grid is adequate to cover the

ns of the parameters with position. The number of points of

1 in Figure 7 was doubled in both directions. The parameters

,=i1200°C with Newtonian viscosity were used to calculate a

The topography from the fine grid (Figure 20a) is the same
‘itopography from the coarse grid (Figure 19a) so accurate
1S can be obtained with the grid in Figure 7.
‘khe next four figures show the results for Tm=1300°C with

lan viscosity. The velocity field (Figure 21) is very similar
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elocity field for Tm=1200°C. The tensile stresses (Figure
e also very similar although the lithosphere is slightly thinner
ght boundary. The contour plot (Figure 24b) shows that the
f highly stressed lithosphere is slightly smaller and thinner.
tresses in the asthenosphere fall below 1 bar, an order of
e less than for Tn=1200°C. The topographic profile (Figure
hows a 30 kilometer wide, 1.8 kilometer deep axial valley.

_only 200 meters shallower than the axial valley for

igures 25-28 display the results for Tm=1400°C with
an viscosity. The velocity fields (Figure 25) are in contrast
shown previously. The asthenosphere flows faster than the

elocity. This is because the higher temperature and lower
ty in the asthenosphere allows it to move in response to the
horizontal pressure gradient in the asthenosphere. However,
sile stresses (Figure 26) in the lithosphere are quite similar
e for the previous two cases. The stress contour plot (Figure
hows that the plate is slightly thinner at 100 kilometers and
tom boundary is slightly flatter than before. The topographic
(Figure 28a) shows a 30 kilometer wide, 1.5 kilometer deep
alley which is only 300 meters shallower than for

00°C.

hese results show that lowering the asthenospheric viscosity

order of magnitude does not reduce the depth of the axial

by a comparable factor. This contradicts the viscous head

eory for ridge axis topography (Lachenbruch, 1973). By
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at the tensile stress plots, it can be seen that the stresses

, pwelling asthenosphere are several orders of magnitude

. than the stresses in the lithosphere. Viscous forces in the
ésphere make a negligible contribution to ridge crest

aphy.

"his conclusion is in agreement with Phipps Morgan et al.
_who derived temperature fields for realistic upwelling

y fields. They found no thermal structure that resembled the
_conduit postulated for the viscous head loss model. In fact,
mperature fields they derived were not substantially different
he temperature fields obtained using the simplifying

ption of uniform horizontal velocity (McKenzie, 1967; Parker
'Idénburg, 1973; Davis and Lister, 1974)

‘he tensile stress fields support the steady state necking

for ridge crest topography (Tapponnier and Francheteau,

The axial valley is produced by the horizontally tensile

s in the brittle lithosphere. Isostasy imposed at the bottom
jary and zero shear stress imposed at both sides, require that
ge be in overall isostatic equilibrium. The depth of the axial
 below the thermal topography is compensated by uplift of the
ders on either side of the axis as seen in the topographic

s (Figures 19a, 24a, and 28a).

Another result of Phipps Morgan et al. (1987) is useful in
reting the topographic variation as a function of Ty. They
ated the shape of the upper surface of a perfectly plastic plate

nstant thickness with an indentation of Gaussian shape on the
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The amplitude of the indentation was small compared to the
ckness. The strength of the plate was considered to be

nal to its thickness. The results show that the amplitude
opography is proportional to both the strength of the plate

amplitude of the Gaussian indentation on the bottom

though the bottom boundary of the lithosphere does not have
ian shape and its variation is not small compared to the plate
s, the physical situation is analogous to the idealized
of Phipps Morgan et al. (1987). The thickness of the
ere at the axis does not change significantly between
0°C and Tm=1400°C. Therefore, the strength of the
ere is almost unchanged. However, the isotherms for
00°C are flatter than the isotherms for Tm=1200°C. The
ere thickens less rapidly with distance for Tm=1400°C--i.e.
entation" is smaller. There is slightly less stress

tration at the axis and therefore the axial valley is slightly

wer. |If the isotherms were completely flat there would be no

concentration at the axis and there would be no axial valley.

ytonian Rheolog
The next step is to investigate the effect of using non-

nian rather than Newtonian rheology. Figure 29 shows the
ewtonian viscosity for Tm=1200°C before the viscoplastic
tresses are imposed. Since non-Newtonian viscosity for n=3

ersely proportional to the square of the stress invariant, the




es are lowered in regions of high stress. The effect is to
_thin the lithosphere and to make the bottom boundary
_flatter. The reason it doesn't have a greater effect is

o of the dominance of the temperature term in the

tial. Figures 30-33 show the results for a non-Newtonian

jy with Tm=1200°C. The velocity fields are very similar to
shown before for Newtonian rheology. The tensile stresses

' 31) show that the lithosphere is slightly thinner and the
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tle-ductile transition is only 1.0-1.5 kilometers deep at the

gures 45-46 show the results for Tm=1300°C with
an rheology. The horizontal surface velocity approaches 3
at a distance of 5 kilometers from the axis. The tensile
plot shows that the tensile stress is horizontal out to a
of 80 kilometers from the axis. The brittle layer is
ly thin at the axis. The topography shows a 12 kilometer
1 1 kilometer deep axial valley.
The number of points was doubled in both directions for the
Figure 44 to test whether it was fine enough to give accurate
The solution was calculated for Tm=1300°C with Newtonian
ty. The topography from the fine grid (Figure 20b) is very
o the topography from the coarse grid (Figure 48a). Therefore
d in Figure 44 can be used to obtain accurate solutions.
The results for Tm=1400°C with Newtonian viscosity are
in Figures 49-52. Again, viscosity is low enough in the
nosphere to permit it to flow faster than the lithosphere. The
stresses are horizontal out to a distance of 40 kilometers
the axis where the deviatoric stress is small. Beyond 40
ters, the tensile stress becomes vertical and the

ressional stress is horizontal. This is seen in Figure 52b where

jion of low deviatoric stress in the lithosphere separates

s of horizontal tension towards the axis and horizontal
ession away from the axis. The axial valley is 8 kilometers

and 0.7 kilometers deep.
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oser to the surface near the axis. This leads to a greater
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ngth reduction caused by the thinner brittle layer at the
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iigure 43. Stress field and topography for Tm=1400°C with non-

‘fewtonian rheology and a cooled crustal layer.
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Jure 57.  Stress field and topography for Tm=1300°C with non-
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ure 52. Stress field and topography for Tm=1400°C with non-
ewtonian rheology and without a cooled crustal layer.
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The Effects of Partial Melting

In the previous chapter, the viscous flow of solid rock in the
mantle was considered. However, pressure release of the upwelling
antle will cause some components of the rock to undergo a solid to
uid phase change. A melted fraction of mantle rock will
accumulate in the interstitial spaces between crystals (Waff, 1986).
y‘» is melted fraction must be transported to the crust where it
solidifies to form either basalts or gabbros depending on cooling
nxes. The transport mechanism is not known. Several hypotheses
for melt transport have been put forward (Shaw, 1980; Spera, 1980).
Jne mechanism is the porous flow of melt through the solid matrix.
As mantle rock melts through pressure release, the melt in the
interstitial spaces becomes interconnected. The buoyancy of the
and pressure gradients in the mantle will drive the melt

oward the surface at the axis where melt may accumulate in a
magma chamber. A second hypothesis is that a fracturing

echanism could transport concentrations of melt through the solid
The melt is driven by the same forces that would drive
0rous flow. A third hypothesis is that the presence of melt reduces
density and viscosity of the surrounding matrix and a partially
Nelted region rises as a diapir. As it rises, more of the mantle rock

Vil melt and fractionate and eventually the diapir may become
;mpletely liquid.
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it is likely that all three transport mechanisms take place at
come point in the process of transferring melt from its melting

el to the crust. However, it is not known which process
minates at any level or in what order they may take place. The
dth of the melt transport zone and the velocity of melt transport
are also unknown. Furthermore, very little is known about the

shysical properties of partially molten rock.

;mulatino Partial Melting in the Mantle

; Since there are so many unknown facts about the presence and
movement of partial melt in the mantle it would be impossible to
ccurately model the effect of partial melt on viscous flow. Instead
Mish to investigate whether partial melt in the mantle can have
any effect on ridge crest topography. The viscous head loss theory
I ridge crest topography is based on the assumption that all the
vertical motion of the mantle takes place in a narrow conduit. The
elocity fields shown in the previous chapter all have wide regions
of upwelling beneath the ridge. If the buoyancy of melt was the only
force driving melt to the surface, magma would be expected to
Xtrude in a wide zone on both sides of the axis. However, volcanic
Xtrusion is limited to a very narrow zone (less than 2 kilometers
lide at the East Pacific Rise) at the axis (Macdonald, 1982).
gradients driving porous flow in the mantle have been
Ostulated as one way to concentrate melt at the axis (Phipps
forgan and Forsyth, in press). The alternative is that the width of

'€ Upwelling zone is much narrower than in the previous models.
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The narrowing of the upwelling zone is to be simulated in a rather

arbitrary way.

The percentage of melt present at a point will be a function of
2 number of factors. First, the temperature must be greater than the
g]idus of the mantle. The solidus is dependent on the pressure and,
consequently, the depth at the point. The percentage of melt will be
proportional to the amount by which the temperature exceeds the
{talidus temperature. Furthermore, a volume of rock that has
undergone a larger vertical motion and therefore a greater pressure
release will have a larger fraction of melt than a volume which
hasn't undergone as much vertical motion.

These effects will be simulated in the following manner.

ﬂl‘ irst, a velocity field is calculated using the parameters obtained
fi%bm the Davis and Lister temperature model. The solidus Ts is

approximated by a linear depth dependence,
Ts(z) = 1100°C + 3.33 z

where z is the depth in kilometers (Phipps Morgan and Forsyth,

1988). The temperature at every point will be increased by the
amount by which the temperature exceeds the solidus multiplied by
the ratio of the vertical velocity at that point to the maximum
vertical velocity. The purpose is not to imply that the temperature
is greater in these regions but to obtain lowered viscosity in regions
Of partial melting. The viscosity of basaltic melt at 1200°C is 100

10 1000 poise (Delaney and Pollard, 1982). Even a small amount of




artial melting will yield orders of magnitude reductions in

iscosity. The new viscosity field is calculated using

T E‘+PV*
h=28, P RT

;{m B1=0.0024 cm s °K/g, E*=95 kcal/mole, and V*=10 ecm3/mole,
rom which a new velocity field is derived. This process can be
‘eated several times to get low viscosities under the axis where

he upwelling is fastest.

owering Q

In the following examples, the starting temperature field was
he Davis and Lister field for Tm=1300°C. There is no

(drothermally cooled crust and Newtonian viscosity fields are used
‘f'i‘ all the subsequent solutions. Figure 63a shows the temperature
n'i’;‘ after three iterations and Figure 63b shows the corresponding
cosity field. The density field used was the density field for

‘ =1300°C without partial melt (Figure 11b). The viscosity falls
elow 1016 poise, 5 to 10 kilometers beneath the axis.
-'j The results from using this viscosity field in the finite
program are shown in Figures 64-67. These figures should
: compared to Figures 45-48 where Tm=1300°C but viscosities are
Ot lowered. The horizontal velocity at the surface reaches the
eading rate of 3 cm/yr at a distance of 4 kilometers from the

Xis similar to the surface velocity in Figure 45a. There is now a
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"arrow region of rapid upwelling under the axis. This narrowing is
seen in Figure 64b. The maximum vertical velocity is 37.5
cmlyr. The tensile stress plots (Figures 65 and 67b) show

al tension out to 40 kilometers from the axis. Beyond 40

horizont
kilometers, there is horizontal compression. The highly stressed
ayer is noticably thinner at the axis. The strain rate under the axis
I:,'ceeds 10-12 sec-1.(Figure 66a). The axial valley is 8 kilometers
wide and 1.0 kilometers deep. This is only 100 meters shallower
u} the axial valley in Figure 48a.

' Although partial melting of the upwelling mantle may have a
‘gnificant effect on the viscosity under the axis and may cause the
upwelling to form a narrow, fast-moving jet, it has little effect on
ui‘f}q topography. Viscosities, and therefore stresses, are already low
in the mantle and lowering them further has no effect on stresses in

he overlying brittle layer.

osity and Densi

~ Another effect of partial melting in the mantle is a reduction
n density. The density of basaltic melt at 1200°C is 2.6-2.7 g/cm3.
Even a small percentage of partial melt can make a significant
difference in density. An increased buoyancy force beneath the axis
due to an accumulation of low density material may offset the
forces responsible for the axial valley. |f the buoyancy force is
arge enough, it may cancel the other forces and result in an axial

%eak since the isostatic thermal topography will be more elevated at
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= axis than for the case without partial melt. The densities are

alculated using
p(x,2) = pm(1+a(Tm-T(x,2)))

,ere was no attempt to correlate a specific viscosity to a specific
rnsity or percentage of melt. The same iterative procedure
escribed before was used to raise temperatures in rapidly

jpwelling regions except that now both the viscosities and the
densities are lowered on each iteration.

Figure 68a shows the temperature field after two iterations
Figure 68b shows the density field. The 3.275 g/cm3 contour in
he density field would correspond to 4% melt if the density of melt
2.7 g/lcm3. Lower densities below the ridge axis result in a
tronger ridge push force as seen in Figure 69a. The horizontal
pressure gradient is about twice as large as for the case without
artial melt (Figure 12a). The viscosity (Figure 69b) falls below
017 poise from 5 to 15 kilometers beneath the axis.

~ The results obtained using the density and viscosity fields in
& 68b and 69b are shown in Figures 70-73. The surface
elocity approaches the spreading rate at 4 kilometers from the
Xis. The upwelling narrows down to a fast-moving jet. The
laximum vertical velocity is 1.37 m/yr. The tensile stress plots
.'.° horizontal tension changing to horizontal compression at 15
llometers from the axis. The strain rate is highest in the fastest

art of the jet. However, the topographic profile again has an 8
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kilometer wide, 1.0 kilometer deep axial valley. Notice that the
;ostatic thermal topography has a much sharper peak than before
.,e to the partial melt concentrated below the axis.

The buoyancy of the low density partial melt beneath the axis
l.oes not reduce the depth of the axial valley. The effect of the
puoyancy force is not limited to the axial valley but is diffused over
a wider region by the strength of the brittle layer. Therefore, both

the axial valley and the shoulders are uplifted by partial melting.

Lowering Yield
Thus far, a number of different factors have been tested to
Letermine if they can produce both axial peaks and axial valleys. All
the results have produced axial valleys of more than 400 meters
depth. The strong brittle layer at the axis is under enough' tensile
stress to cause deep axial valleys. To produce an axial peak, the
tensile stress at the axis must be much lower than the depth
dependent shear failure criterion. Figures 74-77 show the results
obtained when a yield stress of 40 bars is imposed at all depths.
The density and viscosity fields in Figures 68b and 69b are used.
fhe velocity field is indistinguishable from those in Figure 70. The
tensile stress plots show that horizontal tension changes to
horizontal compression at 8 kilometers from the axis. The axial
valley has been reduced to a width of 4 kilometers and a depth of
250 meters. The results when the yield stress is reduced to 20 bars
z*: all depths are displayed in Figures 78-81. Horizontal tension

changes to horizontal compression at 5 kilometers from the axis.
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The axial valley is now only 4 kilometers wide and 100 meters deep.

Figures 82-85 show the results when the yield stress is only 10

pars at all depths. The region of horizonta! tension is limited to 3

cilometers on either side of the axis. The axial valley is almost
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8
b KM

re §7. Stress field and topography for Tm=1300°C with
tonian rheology, lowered viscosities, and without a cooled
fustal layer.
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Figure 71.

rheology, lowered viscosities and densities, and without a cooled
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a

Bire 73, Stress field and topography for Tm=1300°C with
Wionian rheology, lowered viscosities and densities, and without
Cooled crustal layer.
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Figure 77. Stress field and topography for Tm=1300°C with
Newtonian rheology, lowered viscosities and densities, and without
a Cooled crustal layer. Yield stress is 40 bars.
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iri‘gure 81. Stress field and topography for Tm=1300°C with

YeWtonian rheology, lowered viscosities and densities, and without
d Cooled crustal layer. Yield stress is 20 bars.
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Figure 85. Stress field and topography for Tm=1300°C with
- Newtonian rheology, lowered viscosities and densities, and without
‘2 cooled crustal layer. Yield stress is 10 bars.




Discussion

The results obtained from finite element numerical modeling

show that deep axial valleys are produced when the brittle
lithosphere at the ridge axis is at the yield criterion for shear
failure on pre-existing faults. A number of parameters were varied
in an attempt to obtain an axial peak at the ridge axis. The
temperature of the asthenosphere was raised. Non-Newtonian
rheology was used. The thickness of the brittle layer was
substantially reduced. The effect of partial melting of the mantle
was simulated by lowering viscosities and lowering densities
beneath the axis. In all models, the axial valley was deeper than 400
meters. Since the yield stress for shear failure is 80 bars per
kilometer depth, even a 1 kilometer thick brittle layer is strong
enough to produce an axial valley. To produce an axial peak, the
horizontally tensile stress in the lithosphere at the axis cannot
exceed 10 to 20 bars. The numerical modeling results are

summarized in Table 2.

State of Stress

It must be concluded therefore, that stresses at the axis of the
Juan de Fuca ridge are much lower than the shear failure criterion
for brittle rock. This conclusion is strongly supported by the

absence of seismicity at the Juan de Fuca ridge as seen in Figure 4.
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In contrast, the abundant seismicity at the Gorda ridge confirms
that the lithosphere at its axis is near the shear failure yield
stress. h

The state of stress at the Juan de Fuca and Gorda ridges is
depicted in Figure 86. Topographic profiles are shown at the top of
each figure. On the lower right, the deepening of the brittle-ductile

transition away from the axis is shown, assuming a hydrothermally

cooled crust at each ridge axis. Horizontal stresses are shown for

various distances from the axis. On the lower left, the horizontal

tensile stresses at the axis (x=0) are plotted versus depth.

At the Gorda ridge (Figure 86a), the tensile stress at the axis
increases linearly with depth in the lithosphere (80 bars/km) and
falls off rapidly in the asthenosphere. There are large horizontally
tensile stresses at the axis. Stresses become horizontally
compressive far from the axis. At the Juan de Fuca ridge (Figure
86b), horizontal tensile stresses are very weak at the axis (less
than 10 bars). Stresses become compressive a short distance from
the axis.

The transition from tensile to compressional stress due to |
different yield stresses at the axis is not expected to explain “
intraplate seismicity. The tensile stresses are near the shear |
failure criterion only at the ridge axis. Tensile stresses will drop fi |
below shear failure levels away from the axis as the plate gets
thicker. Shear failure will not occur until compressive stresses L
- become large enough to cause slip on a thrust fault. This would

~ Occur a long way from the axis since the compressive strength of
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rock (400 bars/km of depth assuming hydrostatic pore pressure) is
much greater than the tensile strength.

Studies of oceanic intraplate seismicity (Bergman and
Solomon, 1984; Wiens and Stein, 1984) show a mixture of normal,
strike slip, and thrust faulting in young oceanic lithosphere. Older
oceanic lithosphere tends to show predominantly thrust faulting.
There is no evidence for a transition from normal to thrust
earthquake mechanisms at any specific age. The compression axes
or tension axes in focal mechanism solutions do not line up with the
spreading direction. Normal faulting tends to occur near the bottom
- of the plate. Thrust faulting occurs near the surface with strike
slip faulting at intermediate levels. Seismicity in young oceanic
crust is probably caused by differential thermoelastic cooling, a

phenomenon not considered in this investigation.

Yield Stresses

The Byerlee frictional strength laws were obtained from
laboratory experiments on already fractured rock over a range of
normal stresses from 30 bars to 17 kilobars (Brace and Kohlstedt,
1980). These laws can be depicted on a graph of shear stress 1
versus normal stress o as shown in Figure 87. The line is known as
the Coulomb failure envelope. Because the rock is already fractured,
- the line passes through the origin. Any circle centered on the ¢ axis
~ is known as a Mohr circle and represents the stresses in the solid on

~ any plane. The two intersections with the o axis are at the

- Maximum and minimum principal stresses o1 and o3. If the circle is
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tangent to the Coulomb failure envelope, the point of tangency
represents the normal stress ¢ and sheai. stress t© on the failure
plane. The angle 2a is twice the angle a between the maximum
principal stress and the normal to the failure plane.

If the rock is unfractured, the Coulomb failure envelope will

have the form
T=1+0tan ¢

where ¢ is called the angle of internal friction (Shaw, 1980). As
shown in Figure 88a, the line does not pass through the origin. 1o is
called the cohesive strength and is the shear stress required to
fracture the rock on a plane with zero normal stress. K=to/tan ¢ is
known as the tensile strength and is the point at which the Coulomb
failure envelope crosses the o axis.

According to the Griffith theory of fracture (Shaw, 1980), the
failure envelope near o=0 departs from a straight line. The Griffith

failure envelope is a parabola
12 - 4Ko - 4K2 = 0

near the origin (Figure 88b). The cohesive strength is equal to 2K
and the tensile strength is equal to K. The Griffith failure envelope
can be divided into four sections by the points A, B, and C in Figure
88b. If the point of tangency of a Mohr circle is to the right of C,

shear failure occurs and both principal stresses o1 and o3 are
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compressive. If the tangent point is between B and C, shear failure

occurs but the minimum principal stress o3 is tensile. If the
tangent point is between A and B, extensional shear fracture occurs
in which the displacement has both a shear and an extensional
component. If A is the tangent point, then pure extensional fracture
occurs on a plane perpendicular to o3=-K, the minimum principal
stress. All Mohr circles with radii less than 2K will be tangent to
the Griffith failure envelope at A.

Consider a small pocket of melt in a solid matrix. The fluid
pressure in the melt will be the average of the principal stresses
(o1 + 03)/2. The normal stresses in the Mohr circle diagrams are the
effective stresses--pore pressure has been subtracted. Therefore,
there is a limit to the stresses in the matrix imposed by the
presence of melt at lithostatic pressures. At that limit o1=K, 63=-K,
and extensional fracture occurs.

Figure 89 from Shaw (1980) shows the tensile stress K as a
function of the volume fraction composed of crystals. The figure is
based on both data and theoretical considerations. Although the
uncertainty is large, even with a small amount of melt the tensile
strength or yield strength is quite small. Therefore partially melted
regions, with the melt under lithostatic pressures, cannot sustain

large deviatoric stresses.

M iriection info Ol

One of the characteristic features of the oceanic crust, the

sheeted dike complex, must have been formed by pure extensional
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fracture. A dike begins at the roof of a magma reservoir and
propagates vertically towards the surface. The plane in which a dike
propagates will be normal to the minimum principal stress {Pollard,
1973) which is horizontal at the ridge axis. However, the dike is not
propagating through a partially melted region but through the cold,
prittle lithosphere. From Figure 89, the yield stress could be
between 1 and 100 bars.

The amount of tensile stress that can build up in brittle rock
above a magma reservoir, before crack propagation occurs, is
dependent on the fracture toughness or critical stress intensity
factor for the rock. The critical stress intensity factor K¢
quantifies the concentration of stress at the tip of a crack at which
the crack becomes unstable and propagates. For a fluid-filled edge

crack in a half plane (Paris and Sih, 1964)

K
1.12\ =L

p-o3
where p is the pressure in the crack, o3 is the regional normal
stress on the crack, and L is the crack length. The pressure in the
magma at the crack entrance will be equal to the overburden

pressure o1 (Figure 90). Therefore, near the entrance

K

6{-03=21=""Tr=
1.12VnL
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where 1 is the maximum shear stress. From experiments on rocks,

the critical stress intensity factor is between 0.5 and 5.0 MNm-3/2

(Spence and Turcotte, 1985). For Kc=1 MNm-3/2 and a deviatoric

stress of 10 bars, any crack with a length greater than 6.3
centimeters is unstable and will propagate. For larger deviatoric
stresses, even smaller cracks are unstable. Therefore the fracture
toughness of rock is very low and if a small crack can be supplied
with magma it will propagate.

Suppose an inviscid magma is entering a vertical crack in a
gravitational field. As the crack lengthens, the overpressure at the
tip of the crack increases due to the lower density of the magma
relative to the rock. At a distance h from the entrance of the dike,
the overpressure will be c1-03+(p-pm)gh where p is the rock density
and pm is the magma density (Figure 90). If p-pm=0.4 gm/cm3, the
overpressure at the tip of a magma filled dike will increase by 40
bars/km. This increasing overpressure will accelerate crack

propagation. Therefore, resistance to propagation by the solid rock

is negligible. To quote Pollard (1973):

The important point is that sheet intrusions have a
tremendous mechanical advantage over the host rock by
virtue of their own geometry and that of the ubiquitous
microscopic flaws in the host rock, and therefore they
will propagate at very small values of (p-o3). For a
brittle host rock the problem is not the initiation of

propagation, but why sheet intrusions ever stop




propagating. A drop in magma pressure due to a deficient
supply, crystallization, and/or changing rheological
properties is apparently the parameter which inhibits

propagation.

Therefore, the probability of dike emplacement is dependent on the

viscosity of the magma entering the crack and on the magma
overpressure which drives the flow.
The average velocity of two-dimensional Poiseuille flow in a

channel of half width a is

a2dp
V=3p dz

where p is the viscosity of the fluid and %% is the pressure gradient

driving the flow. If a conduit is opened up between a magma
reservoir and the ocean floor, the driving pressure gradient would be
(p-pm)g=40 bars/km. For a 1 meter wide conduit, magma with a
viscosity of 1000 poise would have a velocity of 3.3 m/sec. This is
slightly higher than the propagation rate of sheet intrusions
determined from seismicity studies in Hawaii and Iceland (Delaney
and Pollard, 1982).

When the dike propagates into cold rock, it is in danger of
slowing down and freezing through the loss of heat to the walls. The

dike must propagate fast enough to keep this from happening. A
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solidified boundary layer grows inward from both walls while the

magma is flowing and eventually chokes off magma flow.

Delaney and Pollard (1982) have developed a model for the

solidification of flowing magma in a conduit of thickness T. The i

magma is an incompressible Newtonian fluid with density p, I |

viscosity u, conductivity k, heat capacity Cy, and thermal diffusivity

=k/pCy. The Reynolds number and the Prandtl number of the magma

are

C

where V is the initial fluid velocity. A non-dimensionalized solution

is obtained for the velocities in the dike and the temperatures in

both the dike and wall rock. Laminar flow is assumed.

1) an isothermal

The dike is divided into three regions:

flowing core, 2) a thermal boundary layer across which the

temperature falls from the isothermal core temperature to half that

value, and 3) a solidified magma layer frozen to the wall. A

solidification temperature 6g is defined in the thermal boundary

layer to separate flowing magma from stagnant magma. Its location

is a function of the temperature dependent magma viscosity and the

initial temperature difference between the core of the dike and the

wall rock 6;-6y. A solution is obtained using the non-

dimensionalized variables
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y z xt R
T/2' RePr(1/2)’ (1/2)2° 2% 6w

where y is the distance from the wall, z is the downstream position, }

t is time, 8 is temperature, 8; is the initial magma temperature, and

oy is the wall rock temperature. Figure 91 shows the position of the

solidification surface with time and the volumetric flow rate Q for

different downstream positions.

To redimensionalize the solution, the magma density is p=2.6

g/cm3, the thermal diffusivity is k=0.0085 cm2/s, and the thickness

is T=1 m. The initial velocity is estimated to be 1 m/s based on

observations of fissure eruptions in Hawaii and lceland (Delaney and

Pollard, 1982). If u=1000 poise, the Prandtl number is 4.5 x 104 and

the Reynolds number is 13. If p=100 poise, the Prandtl number is 4.5

x 105 and the Reynolds number is 130. The flow is laminar if

Re<1000. If the magma temperature is 1200°C and the wall rock is

initially at 0°C, the non-dimensional solidification temperature 6s

is estimated to be 0.95 (Delaney and Pollard, 1982).

The times and distances obtained using the above parameters

are shown in Figure 91. It can be seen that after nine hours, the

solidification surface at 300 meters from the entrance is 75% of the

way to the center of the dike. As the solidification surface moves

inward, the flow is constricted. Since the velocity in a channel is

proportional to the square of the half thickness and the volumetric

flow rate is proportional to the cube of the half thickness, both V

and Q will drop quickly. Figure 91b shows that the flow at 3
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kilometers from the entrance is almost completely choked off after

only 5 hours. This is much less than the time it takes to freeze

solid a 1 meter wide static dike. Since magma solidification can

choke off flow in a dike in only 5 hours, the dike must have been

formed in a fraction of that time.

Observations of fissure eruptions in Hawaii and lceland

(Delaney and Pollard, 1982) support the conclusion that the freezing

magma quickly chokes off flow in a dike. As an example, for the

Kilauea ki eruption in 1959, six en echelon fissures opened in 30

minutes. After 1.5 hours, the fissures reached their maximum

length with a curtain of fire" at each fissure. After 2 hours, the

curtain of fire broke up into 1 or 2 vents along each fissure. At 8

hours, only 1 or 2 vents were erupting along the whole system and at

24 hours, only a single vent was still active.

Magma Supply

If dike injection is the mechanism that keeps horizontally

tensile stresses from building up at the axis, magma supply is the

most important factor controlling ridge axis topography. The magma

must have a viscosity low enough to be able to flow up the dike and

make it propagate fast enough to keep from freezing. There must a

large enough reservoir of low viscosity magma available to be able

to emplace a dike whenever the tensile stresses build up. Every

time a dike is injected into the crust, the tensile stresses aré

partially relaxed.
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The axial valley at the Gorda ridge implies that a steady-state
magma chamber does not exist there. The large tensile stresses
required for the axial valley would be quickly relaxed by dike
injection. Magma must be delivered to the Gorda ridge axis
intermittently.

The axial peak at the Juan de Fuca ridge suggests one of three
possibilities: 1) there is a steady-state magma chamber present in
the mantle; 2) there are small, discontinuous, steady-state magma

chambers in the crust supplying long segments of the ridge; or 3)

magma is supplied often enbugh to keep tensile stresses from

building up but without forming a steady-state magma chamber. If
there is a steady-state magma chamber, tensile stresses will build
up gradually due to tectonic forces or suddenly whenever there is a
fresh infusion of magma into the magma chamber. Stresses in the
brittle crust could even become slightly compressive in between
spreading episodes. This may happen due to the cooling and
contraction of the magma chamber in between spreading episodes.
Stresses may not become tensile again until there is a fresh
infusion of magma. There is no evidence of reverse faulting at ridge
axes, but it would take a huge buildup of compressive stresses (400
bars/km of depth) for such an earthquake to occur.

If there is a long enough period without replenishment of the
magma chamber, it will freeze. Then, due to tectonic forces,
compressive stress at the axis will be gradually reduced to zero

before becoming tensile. At this point, a new magma chamber must
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be emplaced and extrusion must occur to prevent the formation of an
axial valley.

The difference in magma supply to the Gorda and Juan de Fuca
ridges need not be large. In fact, since the crust has roughly the
same thickness at both ridges, there cannot be a large difference in
magma supply. A small magma undersupply to the Gorda ridge, over
a long period of time, would allow tensile stresses in the crust to
build up, forming an axial valley. Alternatively, a small magma
oversupply to the Juan de Fuca ridge, over a long period of time,
would relax tensile stresses in the crust and build an axial peak. An
analogy can be made to two identical funnels which allow the same
amount of fluid to flow out the bottom. Fluid is intermittently
added to one funnel at a rate slightly higher than the outflow rate
and to the other at a rate slightly lower than the outflow rate. One
funnel will gradually fill with the fluid while the other remains
empty.

If there is a difference (albeit small) in the magma supply
rates to the Gorda and Juan de Fuca ridges, there must be some
difference in the upper mantle beneath the ridges. The upper mantle
beneath the Juan de Fuca ridge could be slightly warmer than the
upper mantle beneath the Gorda ridge, thus producing more magma.
Or, the basaltic melt component may be slightly higher beneath the
Juan de Fuca ridge. The proximity of the hot spot at the mid-point of
the ridge may also increase the magma supply at the Juan de Fuca
ridge. Hot spot upwélling is believed to originate from deep in the

mantle (Burke and Wilson, 1976). The pressure release effect would
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be greater and‘ a larger proportion of melt could be produced. The
absence of an axial valley on the Reykjanes ridge, which is adjacent
to the Icelandic hot spot, may be an analogous situation (Vogt and
Johnson, 1975).

Another possibility is suggested by the fact that spreading
centers are not stationary with time, but migrate with respect to
the lower mantle (i.e. the hot spot frame of reference). The Pacific
plate is moving to the northwest at 5.5 cm/yr and the Juan de Fuca
plate is moving to the northeast at 2.5 cm/yr (Figure 92) (Davis and
Karsten, 1986). Therefore, the Juan de Fuca ridge is moving to the
north-northwest at 3.0 cm/yr relative to the lower mantle. The
component of motion normal to the ridge axis is 2.0 cm/yr.

Davis and Karsten (1986) suggested that the abundance of
seamounts on the Pacific plate west of the Juan de Fuca ridge and
the near absence of seamounts on the Juan de Fuca plate, can be
explained by ridge migration. They postulate that the mantle has
small heterogeneities with solidus temperatures 20-50°C lower
than the normal peridotite solidus. As the mantle upwells, the
heterogeneities can melt at a higher pressure and deeper depth than
the surrounding mantle. The lowered density of the heterogeneity
will result in a stronger buoyancy force driving it toward the
surface earlier than the still solid peridotite.

The lower mantle moves horizontally at a rate an order of
magnitude less than the velocities of the plates, as indicated by
relative motions of the hot spots. If the lower mantle is assumed to

be horizontally stationary, the vertical velocity required to supply a




161

migrating spreading center can be calculated. Davis and Karsten

(1986) calculated this ascent velocity for the Juan de Fuca ridge

versus the distance to the ridge or, equivalently, time before or
after the crossing of the ridge over a certain point (Figure 93). It is
obvious that the ascent velocity is much greater in advance of the
ridge axis under the Pacific plate. If a partially melted
heterogeneity segregates from the peridotite matrix, and rises to
the surface faster than the ascent velocity it will reach the surface
before the ridge axis on the Pacific plate. If the seamounts are the
result of the heterogeneities reaching the surface, almost all the
seamounts are emplaced on the Pacific plate. After the ridge axis
passes over, the ascent velocity drops substantially and most of the
heterogeneities have been swept from the mantle. Therefore,
seamounts are rare on the Juan de Fuca plate.

Schouten et al. (1987) have defined the mantle consumption
ratio to be the ratio of the full spreading rate to the ridge normal
component of the migration velocity. This ratio gives an estimate of
the thickness of mantle material which is removed when a migrating
ridge passes over a point. If the mantle consumption ratio is 2, the
trailing plate is stationary and the ridge normal migration velocity
is half the full spreading rate. As the ridge axis passes over a point,
the thickness of mantle material removed to form both lithospheres
of thickness L would be 2L. If the mantle consumption ratio is very
large, the migration velocity is very small relative to the full
'spreading rate and a very thick layer of the mantle is dredged up to

form both lithospheres.




Figure 94 shows streamlines in the ridge axis frame of
reference for mantle consumption ratios of 3, 6, and 16. When the
mantle consumption ratio is low, the asymmetry in the ascent rates
is more pronounced. The mantle consumption ratio of the Juan de
Fuca and the northern Gorda ridges is (2 x 3 cm/yr)/2 cm/yr = 3.

When a layer of the mantle is being removed, deeper mantle
upwells to take its place. Some melting may take place, segregate
from the matrix and be transported to the surface. A depleted
residual would be left behind which is not incorporated into either
plate. If another spreading center happened to migrate over the
same spot, it would be entraining mantle material which had already
been partially depleted of both heterogeneities and normal mid-
ocean ridge basalts. There would be a small magma deficiency at
the axis.

If the migration velocity of the Juan de Fuca ridge (3 cm/yr to
the north-northwest) has been constant in the past, then 15 to 20
million years ago, the Juan de Fuca was spreading over the same
region of the mantle where the Gorda ridge is today. To check this,
the poles of rotation calculated by Riddihough (1984) for the Juan de
Fuca plate relative to the hot spot frame of reference were used to
retrace the track of the Juan de Fuca ridge. The magnetic record
preserved on the Juan de Fuca plate limits the accurate
determination of the poles of rotation to the past 7 million years.
The spreading rate and direction, migration rate and direction,

mantle consumption ratio and angle between spreading and migration

directions were calculated for two points on the Juan de Fuca ridge
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(Table 3). The positions of the points for the past 7 million years
are plotted in Figure 95. According to Riddihough {1984), the
Explorer plate was detached from the Juan de Fuca plate and the
Sovanco fracture zone was formed about 4 million years ago. Before
that the Juan de Fuca ridge extended further to the north. It seems
very likely that in the past the Juan de Fuca ridge was located at the
present position of the Gorda ridge. The Juan de Fuca ridge has
migrated about 500 kilometers since then. If the deep mantle moves
an order of magnitude slower than the plates, it cannot have
traveled more than 50 kilometers in that time. Therefore, the Juan
de Fuca ridge could have partially depleted the mantle under the

present day Gorda ridge.
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Figure 87. Byerlee's frictional strength law. Maximum shear stress
1 (bars) as a function of normal stress ¢ (bars) on a fault.
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Figure 88. a) Coulomb failure envelope and Mohr circle. b) Griffith
failure envelope and a range of Mohr circles. (Shaw, 1980)
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Figure 93. Ascent velocity for the Pacific plate (west) and the Juan

de Fuca plate (east) versus distance to ridge and time before or
after the ridge crosses a fixed point (Davis and Karsten, 1986).
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Figure 94. Streamlines in the frame of reference of a migrating
ridge for mantle consumption ratios of 3, 6, and 16. Streamlines are
labeled with starting depth below lithosphere of thickness L on left
side. Vertical (ascent) velocities in asthenospheric frame of
reference are also shown. Arrow on bottom shows velocity of
asthenosphere relative to ridge axis. (Schouten et al., 1987).
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Conclusion

The purpose of this investigation was to determine the cause

of the topographic difference between the Juan de Fuca and the

Gorda ridges. The similarity in crustal structure at both ridge axes

suggested that the variation in topography is caused by some
difference in the upper mantle. The viscous head loss theory of
ridge axis topography (Sleep, 1969; Lachenbruch, 1973) is often used
to explain topographic variation at spreading centers. Parmentier
and Forsyth (1985) used viscous head loss in a narrow conduit to
explain the deepening of axial valleys toward fracture zones. It
seemed plausible that spreading rate independent topographic
variation could be caused by a difference in upper mantle viscosity
below the Juan de Fuca and Gorda ridges. An order of magnitude
difference in viscosity would change the viscous drag forces in the
mantle and, consequently, the depth of an axial valley by an order of
magnitude. The thermally activated creep laws for olivine indicate
that a 100°C temperature difference would result in an order of
magnitude difference in viscosity.

A finite element program for two-dimensional, steady state,
viscous flow was used to calculate the dynamic topography at the
spreading center in order to test which parameters, when varied,
could reproduce both topographic profiles. A specified temperature

field was used to obtain the density and viscosity fields. The cold,
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brittle lithosphere at the axis deforms by faulting rather than by
viscous flow. A viscoplastic rheology was used to represent this
type of behavior. Wherever high strain rates would make the
stresses exceed a specified yield stress, the viscosity was lowered.
The yield stress was the limit imposed on tectonic stresses by
shear failure on normal faults. This limit was determined to be 80
bars/km of depth.

In the first models, the temperature of the asthenosphere was
varied by several hundred degrees. All models produced deep axial
valleys despite the order of magnitude changes in the viscosity of
the asthenosphere. The stresses in the asthenosphere due to the
upwelling of the mantle were too weak to have any effect on the
dynamic topography. The stress fields indicated that the largest
stresses were horizontal tensile stresses in the brittie lithosphere.

These results support the steady state necking theory of ridge axis

topography (Tapbonnier and Francheteau, 1978) over the viscous head

loss model. The viscosity of the mantle is only important in
determining the location of the bottom boundary of the lithosphere--
the brittle-ductile transition.

Next, non-Newtonian stress-dependent rheology was tested.
The resulting stress fields were very similar to those produced
using Newtonian viscosity since the exponential temperature
dependence is more important than the stress dependence in the
power law viscosity equation. Although axial valleys were
shallower, an axial peak could not be produced. Then, the thickness

of the hydrothermally cooled crust was reduced to test whether an
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axial peak could be produced with a thinner, and therefore weaker,
brittle lithosphere at the axis. When the hydrothermally cooled
layer was completely removed, the lithosphere was only 1.0 to 1.5
kilometers thick at the axis. Although the axial valley was
shallower, the lithosphere was still too strong to produce an axial
peak.

The effect of partial melting in the mantle was investigated
by lowering viscosities and densities beneath the axis. When only

viscosities were lowered, the upwelling was concentrated into a

narrow fast-moving jet resembling the narrow conduit postulated in

the viscous head loss theory. However, this had no effect on the
surface topography. Then, both viscosities and densities were
simultaneously lowered under the axis. The lowered densities
elevate the level of the isostatic thermal topography at the axis.
This buoyancy force might be expected to offset the forces creating
the axial valley. However, the results show that the buoyancy effect
is distributed over a wider area by the strength of the brittle
lithosphere. Both the axial valley and the shoulders are elevated by
lowered densities in the mantle but the depth of the valley remains
the same.

All the models tested using the brittle shear failure criterion
as the yield stress had axial valleys greater than 400 meters in
depth. To obtain an axial peak, the tensile stress in the brittle
lithosphere must be much lower than the shear failure limit. This
conclusion is supported by the contrast between the absence of

seismic activity at the Juan de Fuca ridge and the abundant
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seismicity at the Gorda ridge. To obtain an axial valley less than
100 meters deep, the tensile yield stress must be reduced to 10-20
bars for all depths.

The injection of magma into dikes was put forward as an
explanation for the low yield stresses necessary for an axial peak.
The sheeted dike complex in the ocean crust is formed by
extensional failure caused by a propagating, magma-filled crack.
The tensile stress in the lithosphere necessary to permit dike
propagation was shown to be very small. The probability of dike
emplacement is dependent on the availability of low viscosity
magma.

Ridge crest topography is determined by the state of stress in
the lithosphere, not by the viscous flow of the asthenosphere. The
deepening of the brittie-ductile transition away from the axis and
the thickness of the cooled brittle layer at the axis are the rhost
important factors if the lithosphere at the axis is at the shear
failure criterion. Magma chambers are emplaced intermittently and
can only partially relax the tensile stress at the axis. The
topography in this case will be an axial valley. However, the
presence of a steady-state magma chamber or the frequent delivery
of magma to the ridge axis can keep tensile stresses in the crust
from approaching the shear failure criterion. Then, an axial peak can
be sustained. Therefore, the amount of partial melting of the
upwelling mantle has an important effect on ridge crest topography,
not through its effect on the density or viscosity of the

asthenosphere, but through its effect on the stress state in the




brittle crust. Any seismicity at an axial peak will have low
magnitudes and be of volcanic rather than tectonic origin. Stresses
could become compressive at the axis between spreading episodes.

The difference in topography at the Juan de Fuca and the Gorda

ridges is due to a greater supply of magma to the Juan de Fuca ridge.

The difference in magma supply cannot be large since the crustal
thickness is about the same at both ridge crests. A small magma
deficit at the Gorda ridge, over a long period, could form the axial
valley or a small magma surplus at the Juan de Fuca ridge, over a
long period, could build the axial peak.

There must be some reason for this difference in magma
supply. Both ridges are migrating to the north-northwest with
respect to the hot spot reference frame. The spreading center
entrains material from below the leading (Pacific) plate. The Juan
de Fuca ridge may have simply reached a warmer part of the lower
mantle or a region with heterogeneities which melt at lower than
normal temperatures. The Juan de Fuca ridge has also just reached
the position of the Axial Seamount hot spot. This may increase the
availability of melt at the Juan de Fuca ridge.

Another possibility is that the upper mantle under the Gorda
ridge is cooler than normal due to its proximity to the thick, cool,
North American continental crust. The subducting Juan de Fuca plate
could add to the effect by further cooling the upper mantle in its
vicinity. However, this hypothesis is less likely since the Gorda

ridge also is moving to the west and entrains material from under
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the Pacific plate. This material should not be affected by the cooler
temperatures beneath North America.

A more likely explanation is that the Gorda ridge is spreading
over the same section of the lower mantle that the Juan de Fuca
ridge passed over 15 to 20 million years ago. The Juan de Fuca ridge

could have partially depleted the area of some early melting

heterogeneities or normal mid-ocean ridge basalt. Since the lower

mantle moves an order of magnitude slower than the plates, the
Gorda ridge is now spreading over this same region.

Although the results of this investigation lead to the
conclusion that the Juan de Fuca ridge has a magma supply available
whenever tensile stresses at the axis build up to 10 to 20 bars,
there is little evidence for a shallow, wide, crustal magma chamber.
However, seismic reflection and refraction methods do not probe
deeply into the lower crust or upper mantle. The magma chamber
reflector found on the Valu Fa Ridge in the Lau back-arc basin was
3.5 kilometers deep. There could be a steady-state magma chamber
even deeper under the Juan de Fuca ridge. Alternatively, there may
be small, discontinuous crustal magma chambers along the Juan de
Fuca axis that supply magma to long segments of the ridge. Another
possibility is that magma chambers are rarely present but magma is
supplied to the ridge often enough to prevent tensile stresses from
forming an axial valley. The period between eruptive episodes may
be long if the stresses at the axis become compressive after a

spreading episode.
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In many discussions of plate tectonic driving forces, the ridge
push force is represented as a boundary force acting on a plate along
the ridge crest. The ridge push force is actually a body force caused
by the thickening of the lithosphere and deepening of the ocean floor
with age. In fact, the force at a ridge crest boundary is more likely
to resist plate motion. The frictional forces on normal faults in a
tensional environment opposes the ridge push body force. |If there is
an axial peak at the ridge crest, this interplate resistance force will
be negligible. However, when there is an axial valley at the ridge
crest, the interplate resistance force should be considered in any
discussion of lithospheric stress. Although smaller than the major
plate driving forces, it can put the plate in horizontal tension for

several hundred kilometers from the spreading center.
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