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University of Washington
Abstract
THE ORIGINS OF MAGNETIC DOMAINS IN TITANOMAGNETITES
by Jun Ye
Chairperson of the Supervisory Committee: Professor Ronald T. Merriil

Geophysics Program

The effects of macrostress on domain structures are investigated by using one dimen-
sional models in laminar and closure domain structures. It is found that for Ti-rich
titanomagnetite, domain structures are dependent on the magnitude and orientation of the
stress. When the stress is small (o<« 100Bar), the effects of macrostress is ignorable. When
0=100Bar, domain structures depend upon the orientation and the magnitude of the stress.
The number of domains can be more or less than those for the zero stress state. When the
stress is large (03100Bar), grains will have fewer number of domains than for the zero

stress state and they will exhibit simple domain patterns. For Ti-rich titanomagnetite, there

is an inconsistency between the number of domains predicted by theory and observed. It is

shown that this can be explained by high stress (1000 Bar) within the grains. Almost the
same value of stress is estimated to explain observed trans-domain processes in AMTM60.
In contrast, it is shown that for Ti-poor titanomagnetite (e.g. magnetite), macrostress does

not appear to have significant effects on domain structures.

External field, temperature, macrostress, defects, and the size and shape of a grain are
important factors for transdomain processes. Whether interior or exterior denucleation
occurs depends on the size and shape of a grain and the variations in the external magnetic
field. For Ti-rich titanomagnetite, large macrostress can stabilize the distribution in the

number of domains with varying temperature. For Ti-poor titanomagnetite, transdomain




processes are expected to be more common as temperature is changed than for Ti-rich
titanomagnetite. It is shown that defects can have both short range (as recognized before)
and long range effects on transdomain processes and domain wall movements in magnetic

grains.

The lengths of dislocations pinning domain walls are estimated through numerically

simulating observed transdomain processes. It is found that for Ti-rich titanomagnetite (e.g.
AMTM60), domain walls can be effectively pinned by a single dislocation. In contrast, this

seems unlikely in pure magnetite.

Renormalization group methods have been used to explained the wide range of local
energy domain states observed for TRM in titanomagnetite. It is shown that this wide distri-
bution cannot occur by classical transdomain processes. Instead, it appears to be associated
with thermal fluctuations within a degree below titanomagnetite’s Curie temperature. The
theory predicts that domain imaging can be very useful in practice to distinguish primary
TRM from some forms of secondary magnetizations (e.g. grain growth CRM), and can also
be used to determined if significant transdomain processes have occurred which is important

In appraising the quality of a sample in a paleomagnetic research.
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CHAPTER 1

INTRODUCTION

The fact that magnetic minerals in rocks carry stable magnetic remanence throughout
much of geological time allows geophysicists to determine the paleomagnetic field - its
direction and possibly its intensity. To understand the mechanism of how rocks acquire and

retain stable remanence is the prime interest of rock magnetists and the focus of this thesis.

The magnetic properties of rocks depend on the domain states of grains in magnetic
minerals. The foundations of remanent magnetization theory was developed by Neel (1949)
based on the assumption that the carriers of remanent magnetization are single domain
grains. Very large multi-domain (MD) grains, although containing more volume than that of
fine particles, have been shown experimentally not to be carriers of stable remanence (e.g.

O’Reilly, 1984).

However, small MD grains are often experimentally found to behave similar to SD
grains. Those grains therefore were called pseudo-single-domain (PSD) grains (Stacey,
1962). Since PSD grains have larger volumes relative to SD grains, the behavior of PSD
grains is very interesting to rock magnetists. Several mechanisms for PSD behaviors have
been suggested. These include the spin pinning by dislocations (Verhoogen, 1959); the Bar-
khausen discreteness of domain walls (Stacey, 1963); surface domains pinned by surface
anisotropy and defects (Stacey and Banerjee, 1974; Banerjee, 1977); domain wall move-
ments (Dunlop, 1977). All those mechanisms are based on the belief that PSD grains con-
tain multi-domain structures (although their behavior is similar with SD grains). However,
in the last decade, it was found that some small MD grains have SD structures in some

remanent states but have MD structures in other states (Halgedahl and Fuller, 1983). The

interpretation of this phenomenon is the local energy minimum (LEM) states theory given




by Moon and Merrill (1985). According to the theory, there is a set of local minimum

energy states as well as one absolute minimum energy (AEM) state for a grain. Since there
are energy barriers between the LEM states, a grain can be at different LEM states in
different times. For a small MD grain, SD can be one of its LEM states. Therefore it was
suggested that the failure of domain wall nucleation is the controlling mechanism for the

behavior of PSD grains (Halgedahl and Fuller, (1983); Moon (1985).

The domain structure and remanence problem is very complex. In particular, one
needs to consider the following factors. (1) What are the effects of having different types of
domain and domain walls? (2) What are the processes of domain nucleation and denuclea-
tion? (3) How do domain walls move? (4) What is the nature of the interactions of domain
walls with defects? (5) What are the effects of thermal variation on domain structures? (6)
What are the effects of a magnetic field and of applied stresses on domain structures?
Because these factors are interrelated, the problem is complicated. A full discussion of all

the above is far beyond the scope of this thesis. The main contents of this thesis are closely

related to three questions mentioned above. The questions addressed are related to the
effects of macrostresses on domain structures (chapter 3); to transdomain processes (chapter

4); and to the effects of thermal variation on domain structures (chapter 5).

1.1 The effects of Macrostress on Domain Structures

The domain Bitter pattern observation technique has been the most commonly used

experimental method in rock magnetism to investigate domain structures in large grains

(e.g. Soffel, 1971; Halgedahl, 1991). Other methods include the Kerr effect (e.g. Hoffmann,
et al; (1987), and Lorentz microscopy (e.g. Smith, (1980); and Morgan and Smith, (1981);
Heider and Hoffmann, (1992)). It is almost the rule rather than the exception that grains are

observed to have fewer domains than their theoretical predicted number. Although grains
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can be in their LEM states (Moon and Merrill, 1985), the domain numbers for a given size
grain are usually distributed in the lower end section of the LEM states range, and some

even exhibit fewer domains than allowed by present theory (e.g. Moon, 1991). There are at

least three possible explanations for the inconsistency between the predicted and observed

number of domains. They are (a): observational error, i.e. that the Bitter pattern observed
on the grains surface does not accurately represent the number of domains present; (b): the
surface structures may not be representative of the interior of the grain and (c): the theoreti-
cal calculations are inaccurate or(and) there is some fundamental misundgrstanding of

theoretical aspects of domain structures.

Although some domain walls could be miss-imaged by Bitter pattern techniqqe
(Newell, et al, 1993), the effect does not seem large enough to explain the discrepancy
between prediction and observation since the same discrepancy is observed in domain imag-
ing (instead of walls) by the magneto-optical Kerr effect (Worm, et al, 1991). Effects of the
interaction between the colloid particles and surface structures are not significant in this last

technique.

Some evidence indicates that the magnetic structures in the interior of grains may be
different from the surface structures. For example closure domains, which are sometimes
observed in magnetite (e.g. Heider, et al. 1988; Boyd, 1986; Boyd, et al., 1984), are cer-
tainly a kind of surface structure. In addition to closure domains, a thin layer may exist
beneath the surface of the grains, which has a very different structures from that of interior,
in order to decrease the magnetostatic energy (Ye and Merrill, 1991, see Appendix A). Both
structures exist on the surface that is perpendicular to magnetization direction of the main
domains. On the surface that is parallel to the main domains there seems to be no observa-
tional evidence or theoretical reason to have significant surface structures, because there are

no bound magnetic poles on those surfaces.




Although the number of domains observed depends on the orientation of magnetiza-
tion of the main domains with respect to the observation surface, one would expect to
observe a large number of domains, at least when the observation surface is perpendicular
to the magnetization. But the fact is that the number of domains observed is not close to
the upper limit of LEM states; it appears that there is roughly one order magnitude
difference between the number of domains obseryed and predicted (e.g. Moon, 1991,

Worm, et al, 1991).

Could the fact that the observed distribution of number of domains is displaced toward

the lower part of LEM states range calculated be explained by the failure of nucleation
and(or) denucleation of domain walis? This seems improbable: denucleation should seldom
happen because the activation energy between the LEM states are usually much higher than
thermal fluctuation energy characterized by kT (k: Boltzmann constant and T: absolute tem-
perature). This is discussed further in chapter 4, along with the conditions that must be
satisfied to allow domain denucleation to occur. In addition, the predicted number of
domains for AEM states is also much higher than that observed after AF demagnetized
(Halgedahl, 1991). Finally, it is worth noticing that denucleation processes are seldomly

observed.

In most previous theoretical considerations of domain structure, the magnetic energy
includes only magnetostatic energy, magnetocrystalline energy, and exchange energy. The
magnetoelastic energy, which includes the magnetostriction energy and elastic energy, was
thought to be negligible relative to the other three energies. But this seems unlikely in some
cases (e.g. Worm, et al, 1991). Defects within crystals (e.g. dislocations) generate strong
local stresses and can affect domain wall pinning (e.g. Xu and Merrill, 1989). However
there should be more domains in the crystal with microstress than that in a perfect sto-

chiometric crystal since in the imperfect crystal, domain walls cannot move freely to




minimize the magnetostatic energy. Moreover once a domain wall forms in an imperfect

crystal it is harder to denucleate if it is pinned by defects.

In addition to the stresses generated by defects, macrostress exists in crystals. The
sources of macrostress may be internal, due to magnetostriction, or external in origin, i.e.
transferred by the matrix that surrounds the crystal. The former can be caused by the mag-
netization itself while the latter can be introduced by thermal expansion, or by surface pol-
ishing. Macrostress will affect the domain states of the crystal through magnetoelastic -
energy. In chapter 3, I will show how macrostress affects the domain states by considering

specific closure domain and laminar domain models. It will be shown that the inconsistency

between theory and domain imaging results is primarily a result of the presence of macros-

fress.

1.2 Trans-Domain Processes

One of the major difficulties in creating a theory of remanent magnetization for multi-
domain grains is that there are typically a set of LEM states for a given crystal under fixed
conditions (Moon and Merrill, 1985). That is, a multi-domain grain can be in different
states at different times. To determine the remanent moment of an ensemble of grains one
needs to know not only what the LEM states are (including the number of domains, the
remanent magnetization, and the energy of them), but also the transitional processes
between them. The former is a static part of the problem and the latter is the dynamic part.
Kittel (1949) calculated the magnetic energy for simple domain structures with the assump-
tion of infinitely thin domain walls. In the last decade, more precise calculations have been
done using computers to allow for finite wall thickness (e.g., Moon and Merrill, 1984;
Enkin and Dunlop, 1987). Although most previous studies have focused on the static part of

the problem, trans-domain processes have been considered in a few instances (e.g. Moon




and Merrill, 1985). Brown (1963) analyzed the process of reversing the direction of magnet-
ization of a uniformly magnetized grain and found that the coercivity is much larger than
observed (Brown’s paradox). The cause of this inconsistency is that the initial magnetic
structure is not perfectly uniform, as was assumed by Brown. A nonuniformly magnetized

initial structure will result in a lower coercivity (Hartmann, 1987).

Moon and Merrill (1985) were the first to model transdomain processes. They
assumed a domain wall nucleated at a boundary of a grain and calculated the activation
energies between LEM states. We call this model the exterior nucleation (denucleation)

model and it is discussed further in chapter 4.

Recently, changes in domain states with temperature have been observed (Halgedahl,

1991). When a titanomagnetite grain was cooled from near its Curie temperature to room

temperature, domain wall denucleation was sometimes observed to occur. In the process of

this denucleation, two adjacent domain walls met in the interior of the grain and collapsed
to denucleate a domain. This observation, not predicted by theory, is referred to as interior

denucleation.

In chapter 4, we will compare the energy barriers between domain states for both inte-
rior and exterior nucleation (denucleation) models. The effects of an external field, grain

shape and temperature on trans-domain processes will be discussed there.

1.3 Application of Renormalization Group Methods to Domain Theory

It was observed that there is a much wider range of LEM states for TRM than that for
AF demagnetized states (Halgedahl, 1991). This phenomenon cannot be explained by classi-
cal trans-domain processes. Renormalization group theory related to critical point
phenomena will be used to explain the initial formation of domains in chapter 5. Some

applications of this theory to paleomagnetism will also be discussed, including the




stinguish some forms of secondary magnetizations from primary

suggestion of methods to

magnetization.
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CHAPTER 2

MAGNETIC ENERGIES IN DOMAINS AND DOMAIN WALLS

It is well known that domain structures are determined by minimizing the free energy.

Therefore in order to investigate domain structures theoretically one needs to know the

magnetic energies and their relationship to domain structures. This chapter briefly introduces

the magnetic energies which determine the magnetic domain structures. More detailed dis-

cussions of the relevant magnetic energies can be found in Brown (1963), Chikazumi

(1964), and Morrish (1965).

2.1 Magnetic Energies

For a magnetic material with finite volume, there are five kinds of magnetic energies.

They are exchange energy (E.), magnetocrystalline energy (E,), magnetoelastic energy

(E,..;), magnetostatic energy (E,), and external field energy (E;). The total magnetic energy

therefore equals:

E; = B +Eg+E, +E+E;

2.1.1 Exchange energy

The exchange energy originates from the exchange interaction between the electron

spins of neighboring atoms or ions. It can be expressed for a cubic crystal as

E,=A j (Vo) H Vo) +(Vais)?ldy 2.2)

where A is the exchange constant of the mineral and o, o, and o are the direction cosines

of magnetization. The integral is over the volume of the crystal.




2.1.2 Magnetocystalline Anisotropy Energy

With magnetic anisotropy, internal energy depends on the direction of spontaneous
magnetization. Since the magnetic anisotropy energy term possesses the crystal symmetry of
the material, it is defined as the magnetocrystalline anisotropy. Applying mechanical stress
to a material produces magnetostrictive anisotropy. An external magnetic field can also
introduce magnetic anisotropy though the interaction between the field and the magnetiza-
tion of the material. The magnetic anisotropy produced by stress and external fields are dis-

cussed in the following sections.

Magnetocrystalline anisotropy primarily originates from spin-orbit coupling. Magneto-

crystalline energy E, for uniaxial anisotropy crystal is
Ey = K, [sin’0dv (2.3)

with @ being the angle between magnetization and the easy direction of the crystal. For a

cubic crystal E, can be written in a first order approximation as
E. =K J(afm}+oc§oc§+oc§cxf)dv (2.4)

with K, being the magnetocrystalline constant and o, o, and o are the direction cosines of

magnetization with respect to [100], [010] and [001] axes of the crystal respectively. For

crystals with K,>0, the easiest directions are [100], [010] and [001] directions, while the

hardest directions are [111], [111], [111], and [111]. For K,<0, the easy directions become
[111], [T11], [111], and [111] while the hardest directions become [100], [010] and [001] as

for the cases of magnetite and titanomagnetite.

2.1.3 Magnetoelastic Energy

Magnetoelastic energy, E,.;, originates in the interaction between the atomic magnetic

moments. It is different from magnetocrystalline anisotropy energy in that the
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magnetoelastic energy is related to the deformation of the lattice. Therefore magnetoelastic
energy includes two parts: magnetostriction energy (£3) and elastic energy (E,;). The mag-

‘netostriction energy can be expressed as
3
Ej = *57»100_[(0110‘12 +63063+0330)dv *37»111J(0 12041 0 +0 230 03 +C 30430 )AV (2.5)

Where Ao and Ayj; are the magnetostriction constants along [100] and [111] respectively
and o;; are the components of a stress tensor. The elastic energy for cubic crystal (e.g. mag-

netite and titanomagnetite) is
1 1 ,
E, = J["Z‘C nlefi+ed e )+EC44(6 hredy+efs)te (e esntenesse es)ldv (2.6)

Where c¢,;, ¢4 and c4, are the elastic constants and e;; is strain tensor.

The magnetoelastic energy (E,. = E,+E,;) depends on whether the crystal is in the
magnetostriction state or the inverse magnetostriction state. The magnetostriction state is
defined és state in which the stress within the crystal is generated by the magnetostriction
effect itself. This stress can be determined by minimizing magnetoelastic energy with

respect to stress. That is, by using

aEmel

- 10 _
3, 0 i,j=1,2,3 2.7)

and the relationship between strain and stress we can get the stress with minimum magne-

toelastic energy, which is

1 .
o; = —(c—¢ 12)7»100[011'2—?] (i=1,2,3)

O = 3Caahi110; O @)

Substitute (2.8) and (2.9) into (2.5) and (2.6), we get
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3 9
Eper = EstEy = *Z(C 11—012)7szoo+Z[(C11—012)11200—%447»1211](0(12 of+ofarofod)  (2.10)

The first term on the right hand side of (2.10) is a constant which does not depend on the

direction of magnetization. The second term has a same dependence on ¢, o, and a5 as the

magnetocrystalline energy. Therefore the effect of magnetostriction is simply to replace K

in (2.4) by an effective anisotropy constant, K", given by

, 9
K/ = K1+Z[(Cn~c12)7\1200—20447»1211] 2.11)

When a crystal is subjected to stress generated by its surroundings or by internal

defects, the crystal is in an inverse magnetostriction state. In this case, the stresses sub-

jected by the lattice not only originate from the magnetostriction effect, but also from the

mechanical sources (e.g. defects). Therefore there is extra magnetoelastic energy which

includes the magnetostriction energy and the elastic energy caused by the mechanical stress.

These are given in (2.5) and (2.6) respectively. The total magnetocrystalline anisotropy

energy and magnetoelastic energy is given by the summation of (2.4) (with K; replaced by

K%, (2.5) and (2.6). However, for inverse magnetostriction case, the elastic energy gen-

erated by the mechanical stress (2.6) is not related with the magnetic structure of the cry-

stal. Therefore one does not need to consider it when the interest is only in magnetic

domain structures.

2.1.4 Magnetostatic Energy

Magnetostatic energy E;, or the demagnetization energy, originates from the interac-

tions between magnetic moments in the material and can be expressed in terms of the

demagnetizing field, H,:




B, == [Hy - dv

The demagnetizing field, A,, at a point 7 is

# =ty v ay
e e e

Therefore the magnetostatic energy is

1 pp’ , vp’ , 1 v’
E, = = || —/—dvdV' + || ——dsdV’ +— || ——dsds’
2 8 s g [ @19

where p=—V-M,(x,y,z) and p’=-V"M,(x’,y’ ,z’) are the volume charge densities, v="#, (x,y,z)
and v=a"M, (¥ ,y’,Z’) are the surface densities with # being the unit vector of the normal of
the surface. AZ is the saturation magnetization. 7=F(x,y,z) and 7=F'(x’,y’,7’) are the posi-
tions of integral elements. It is important to mention that because the integral limits in
(2.12) and (2.13) are same, they are not distinguished in (2.14); they are the volume of the

grain, V, and the surface of the grain, S.

2.1.5 External field energy

The external field energy E; can be expressed as
E; =—[A,, Mdv = -H,-M (2.15y

Where H,, is the external field. With the condition of A,, being constant within the whole

crystal, the second equality is valid, with the magnetic moment of the grain given by

M = jﬁsdv.

2.2 Anisotropy Energy in Domains and Domain Wall Energy

In this section, we will calculate the energies of domains and domain walls by using

the equations given above.




Closure Domain
Figure 2.1 A cubic grain with closure domain structure. Both main domains and clo-
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First we introduce the coordinate system. For magnetite and titanomagnetite, K,” is
less than zero, thus the [111] directions are easy directions of magnetization. For a grain as
shown in figure 2.1, we assume Z along [111], X along [I12], and ¥ along [110] (figure
2.1).

The are two kinds of domains, the main domains and the closure domains, in the grain
shown in figure 2.1. The main domains are those domains occupy the most volume of the
grain. Since the direction of magnetization in main domains is along £[111] directions, the

main domains have the lowest magnetic anisotropy energy. The closure domains, which are

located at the surface of the grain, reduce the magnetostatic energy of the crystal. The direc-

tions of magnetization in closure domains are taken to be along the +[111] directions.
Between the domains, there are three kinds of domain walls. They are 180°, 71° and 109°

Bloch walls.

We consider the anisotropy energies of domains and domain wall in two different
cases: the magnetostriction case and the inverse magnetostriction case. For the inverse mag-
netostriction case, magnetoelastic energy depends on the stress tensor (2.5). For simplicity
sake, the energies with only one simple stress state (uniaxial compression or extension
along [111]) will be calculated in this section. The effects of general stresses on domain

structures is discussed in next chapter. The stress tensor for an uniaxial stress along [111] is

(2.16)

Here T, is the magnitude of the uniaxial stress.

2.2.1 The energy of domains

For main domains, the magnetization is along +[111] directions. For the magnetostric-

tion case, the anisotropy energy density is (2.4).
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We begin our wall energy discussion by briefly reviewing classical domain wall

theory (e.g. Chikazumi, 1964). The assumption in determining the structure of a Bloch wall

is that the wall does not possess any volume magnetic bound poles, i.e. V-M,=0, where M,
is the saturation magnetization. This condition requires that the angle between the magneti-

zation and the normal to the wall plane is a constant for the whole wall.

The 180°, 71° and 109° Bloch walls can exist in cubic crystals with K,<0 if there is no

external macrostress. The angles between the magnetization and the normal to the wall

plane therefore are 90°, 35.5° and 54.5° respectively for the above three kinds of walls

(figure 2.2). In this case, the domain wall energy, e, , per unit area consists only of the

exchange and magnetic anisotropy energies, i.e.

ey = | [A sm2e(d¢/dx)2+ea]d,x (2.21)

where A is the exchange constant, 8 is the angle between the magnetization direction and
the normal of the wall plane. e, is the density of the anisotropy energy with respect to the
anisotropy energy of domain beside the wall. It follows from a variational treatment that,
for e, to have a minimum value, the exchange and anisotropy contributions to the energy
must be equal(Lilley, 1950). Therefore the variation of the direction of magnetization can be

determined by
(dx/d §)= AV %sinGe, 12

' And the wall energy therefore is

4
ey = [2eqdx = [2e,(dx/d §)d ¢ = 24 sind [e,*d ¢
o

Where ¢ is the azimuth angle of magnetization, and ¢, and ¢, are ¢ values of th

domains adjacent to the wall (for details, see Lilley, 1950).



180 wall

(a)

Figure 2.2 The magnetization vector rotation mode for (a) 180°% (b) 71° and (c) 109°
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2.28)

ewlgoo = 20040X(A |K1’|)1/2:2(A 'Kl,l)1/2

For inverse magnetostriction case, substitute (2.26) into (2.4) and (2.5) and subtract

(2.18). Then we get the anisotropy energy density at ¢(x):

e, =K/ %cos“dﬁ%sin%—% +%612k1115in2¢

And the wall energy therefore becomes

ewisoe = [A 1K I[(1+7)/3]1V2[(e+1) e~V 2sinh ! (e1/2))

with & = 7/(1+7), and 1 = 540 ,A;,1/IK |l (for details, see Lilley, 1950).

Energies for 71° and 109° walls

For 71° wall, the magnetization changes from [111] to [111] in the wall (figure 2.2b).

In order to derive the equations of wall energy, it is convenient to introduce another coordi-

nate system denoted as X'Y’Z’. As shown in figure 2.2b, X’ axis is along [001], ¥’ along

[110] and Z along [110]. The direction cosines of the magnetization at ¢ with respect to

X'Y'Z system are

sinfcosd

sinBsin¢

ay,

o, = cost

71°
2

with 6 equals . The transformation matrix between the X'Y’Z" system and [100], [010],

[001] system is



2 2
075 =7

Oy Oy Oy N 2.32)
Oloy  Ogy Oy | = |0 5
Olay  Olayr Olay 1 0 0

So we get the direction cosines of 1\711 with respect to [100], [010] and [001] as

il

o iz—-z-(cos 6+sin 6sind)

= %(cos 6—sin Bsind)

03 = sinBcosd

By using a similar derivation as used in 180° wall case, we get the wall energy per unit area

for 71° wall in both the magnetostriction case and the inverse magnetostriction case.

For the magnetostriction case, by using (2.33), (2.4), (2.17), and (2.23) the energy of

71° wall is given by

E——— e

180°
e, 710 = 24 "%sind d[ K 1’[sinzecoszecosz¢+sin4ecosz¢sin2¢+—‘11—cos4e+%sin49sin4¢ (2.34)

12

~—;—cosz(—)sinzesin2¢—%] dé

Since 9 = —7—21—, sin?0 = —;—, cosf = %’ we get

= .

=

180° 172

e A”zj K 1'(2c0s2¢+cos2¢sin2¢+:11-sin“¢—sin2¢—2) do (2.35)
00

wlle = _3_—@

By using (2.33), (2.4), (2.5), (2.18) and (2.23), we get the 71° wall energy for the

inverse magnetostriction case as




180°

12
¢,71==2A ""sinb d[

o

K ,’[sin*0cos?Bcos?+sin 4ecoszq>sin2q>+%cos“(%ri—sin‘*esin“tp

12
_—;-cos26sin268in2¢—%-]—37»u 1012 [\/fsinecosecosw-%—(cos Ze—sinzesinz(p)—l] do

With 6 = -7—;—, sin®0 = —31—, cos’0 = %’ we get

180°[ o »
2

K . 1. :
e, = 7_3—A 12 6[ —91—(200s2¢+cos2¢sm2¢+zsm4¢—sm2¢—2)

172
-7»111012(260s¢——;—sin2¢—2) 4o

For a 109° wall, the directions at the sides of the wall are [111] and [111] (figure 2.2¢).

The direction cosines of the magnetization in the wall in X’Y'Z" coordinate system are

o, = cosO
0, = sinfsing
oy = sinBcos¢

with ¢ = 122

and ¢ from 0° to 180°. Using (2.32), the direction cosines in [100], [010] and
[001] system are given by

—\lzzsine(cas O+sin §)

—\gz—sine(cos o—sin ¢)

03 = cosO

Following the same procedure as for 180° wall, we then get the energy for 109° wall in

magnetostriction case as
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180° 12
e, 1000 = 24 Y2sin0 J K 1’(coszesin26+11—sin49(00s 2p—sin 2(1))2——;—] dé (2.40)

09°

Since for 109° wall 6 = , sin’0 = = | cos’ = %, we get

2
3

180°
e, 100 = \/ ?L;AW | [Kl'[(cos2¢—sin2¢)2—1]] 1/2d¢ (2.41)
&

While for inverse magnetostriction case, we have

180°
e, 1000 = 2A 750 j K 1’(cos293in26+%Sm“e(cos%—sinzq))z-é—]
00

172

—37»111012[stmecosecosm%sinze(cosz—sin2¢)—1] do

with 6 = lozi, sin% = % ,cos% = %, we get

180° ’ 172

K
€, 1000 = \/ gA 12 j L [(cos?p—sin?$) 1]\, ;,615(cos 20—sin2p+2cos o-3)| do (2.43)
OO

9




CHAPTER 3

EFFECTS OF MACROSTRESSES ON DOMAIN STRUCTURES

By macrostress, we mean that the stress has a much longer wave length for its spatial
variation than the crystal size being considered. Therefore stress is uniform throughout the
whole crystal. Without macrostresses, the closure domain pattern is usually the lowest
energy state since closure domains on the grain surface effectively reduce the magnetostatic
energy of the crystal. But if a crystal is subject to macrostresses, the energy of closure
domains and the energy of domain walls will change with the stress. In this chapter, we
investigate the domain structure variation with the magnitude of macrostresses though
energy calculations for closure domain state and laminar domain state for magnetite and
Ti-rich titanomagnetite (Ti, ssFe, 4404, also referred as TMS56). Also we show that high mag-
nitude macrostresses cause far fewer domains in a given size crystal than that predicted by
theory that neglects stress. In section 3.4, we estimate the magnitude of macrostresses for

an Aluminium-magnesium Ti-rich titanomagnetite (Al, Mgo1TiqsFe,,04) grain in which

trans-domain processes have been observed.

3.1 The Model

3.1.1 Domain Structure

Consider a magnetic crystal (e.g., magnetite or titanomagnetite) with a cubic shape
and linear size D. The domain structures are assumed to be two dimensional with N main
domains and 2(N-1) closure domains (figure 3.1). The magnetizations in main domains are
along £[111] axes of the crystal while in closure domains the magnetizations are along

+[111] directions and separated by 71° and 109° Bloch walls from the main domains.

For simplicity sake, it is assumed that domain walls are infinite thin (more discussion




-
-

Closure Domain

.

Main Domain

o
.

ul
RS

=

.

.
.

o
=

-

L ey
e
L

.

.

L

.

-

e

o
2

.

A A

0
710 wall 109° wall 1807 wall

.

.

-

.

Figure 3.1 The closure domain model. D, and D,, are the closure domain width and

the main domain domain width.




27

qbout this assumption will be given in the next section). If we denote the widths of the

main and closure domains on X-Y surface as D,, and D, respectively, we have

D = (N-1)(D,,+D,) (3.1)

Let us define parameter 1 being the percent of surface area covered by the closure domains

on the X-Y plane. n as an indicator of the size of closure domains will be determined by an

energy minimization process. With the infinitely thin wall assumption, 7 is given by

This gives

¢ 1)) .M
D, = —-———(N__l)D and D, = (N_I)D (3.3)

When n=1, the closure domains cover the whole surface of the grain; when 1n=0, no closure

domains exist and the grain has a laminar domain structure.

The magnetic charge pole densities at the surface of the closure domains are

s

M, M
M, cosT1° = 5 and M, cos109° = — 3

. While the densities on the surface of main domains

are M, .

It is easy to get the volume of the closure domains (V,.,;) and the areas of 180°, 7 1°

and 109° walls from the geometry in figure 3.1. They are

N in(719D3

1 2
2 (N-D

A, 1500 = [N—1-nsin(71°)]D?

A, 710 = 211C08




° |

A, 109 = 2nsin
3.1.2 Infinitely Thin Wall Assumption

For uniaxial anisotropy crystal, the width of 180° Bloch wall is given by (e.g., Chika-

zumi, 1964)

Here K, is uniaxial magnetocrystalline anisotropy constant.
For cubic crystal, the wall width can be expressed by (3.5) approximately by using an
equivalent unaxial magnetocrystalline constant given by :
K, =-K,

for the magnetostriction case and

9
K, = ‘K'1+30127Lm

for the inverse magnetostriction case with the stress tensor given by (2.16).

By using (3.5) and (3.6) for magnetite and TMS6 (constants given in table 3.1), we

get the wall widths as 0.09um and 0.07um respectively for the magnetostriction case.

Because w is much smaller than the domain sizes (a few microns) considered in this thesis,

we ignore the wall width when we calculate the magnetostatic energy, i.e., we assume that
the domain walls are infinitely thin. Of course, we still obtain the total wall energy with

finite width walls (see chapter 2).

For the inverse magnetostriction case, the value of K, depends on the stress o;,. In the

majority of this chapter, we assume ©,,>0, i.e., the stress is an extensional stress. When
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Table 3.1 The magnetic variables for magnetite and TMS56 at room temperature

(T,=300°K) and at 1 arm .

Variable Magnetite References

480x10°A /m 139x10%A/m (O,(3)

L17x107/m  031x107 /m

-1.36x10%7/m3  —0.70x10%J/m?

170x107¢

9.7x10°N/m?  6.5x10'°N /m2 3)

References are (1), Moskowitz and Halgedahl (1987); (2) Syono (1965) and (3) Car-
michael (1982)
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0,50, one gets a larger K, for the inverse magnetostriction case (3.7) relative to the magne-
tostriction case (3.6). Therefore the wall width for the inverse magnetostriction case is
smaller than that for the magnetostriction case and infinitely thin wall assumption is still
valid. The effects of more genergl stresses (including the case for o,,<0) will be discussed

priefly in section 3.3.

3.1.3 Magnetic Energies

By using the infinitely thin wall assumption, all the magnetic charge poles are located

at the two x-y surfaces of the grain (figure 3.1). The magnetic pole density is +M, on the

M, )
domain surfaces and i-3— on the surfaces of closure domains. Rhodes and Rowlands

(1954) have developed a method which can be used to calculate the magnetostatic energy in

our model. The magnetostatic energy is
E, = [ (N,OM/D? (3.8)

with f(N,n) being a function of number of domains (N) and the parameter n. n is defined
as the amount of coverage of closure domains on the grain surface. f (N,n) can be numeri-

cally calculated by using the methods given by Rhodes and Rowlands (1954).

The total magnetic energy is the summation of closure domain energy, domain wall

energy, and magnetostatic energy and can be expressed as
E; = Estey Vegte, 130:Ay 1807T€w 7104w 71784 109°Ay 109° (3.9)

The volume of the closure domains and the area of the domain walls are given by (3.4). For
the magnetostriction case, the values of e, e,1305 €yw71- and e, 00» are given by (2.19),
(2.28), (2.35) and (2.41) respectively. For inverse magnetostriction case, they were given by

(2.20), (2.30), (2.37) and (2.43).
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For a given value oy, (being zero for magnetostriction case) we can get the domain

structure characterized by N and n by minimizing the total magnetic energy (3.9). The vari-

ation of N and n with the stress magnitude provide us with the information on the effects

of macrostress on domain structures.

3.2 The Macrostress Effects on Domain Structure for a Specific Stress State

We will mainly consider the stress effects for TMS6 (titanomagnetite TigssFe,440.4).

Using magnetic constants for TM56 given in table 3.1, the reduced total magnetic energy,

_%3 is calculated for different ¢;, (0 to 100MPa), N (1 to 60), n (0 to 1) and D (1 to
200pwm). For a given D and o;;, N and n are determined by minimumizing the reduced
total energy. In this section, we investigate the effects of the stress on the number of

domains (V) and on the domain pattern (characterized by n).

3.2.1 Domain pattern changes with stress

Because the magnetostriction anisotropy energy within closure domains is proportional
to the magnitude of stress (oy;) (2.20) , larger stress reduces the volume of the closure
domains. Figure 3.2 is an example for a 20 micron grain. It shows that when o, =0,
N = 1. This means that the total covered closure domain structures is energetical favored. In
contrast, when oy, =90MPa, n =0, ie. there are no closure domains and the laminar
domain structure is energetically favored. Although the existence of closure domains can
reduce magnetostatic energy, it causes more magnetic anisotropy as well. As a result, the
volume of closure domains is the largest (n=1) for the magnetostriction case and decreases
with increasing stress. Domain pattern, therefore, changes from fully closure domain pat-

tern to a more "laminar-like" pattern,
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32,2 Changes in the number of domains with stress

For a given size grain, not only the domain pattern but also the number of domains

are affected by macrostresses. As an example shown in figure 3.3 for a 20 micron grain, the

aumber of domains of AEM states depends on the magnitude of the stress. When the exter-

nal stress is small( less than 20MPa), the number of domains increases with stress increas-
ing. In contrast, when the stress 1s large, the number of domains decreases with stress
increasing. This phenomena can be qualitatively explained as follows. The volume of clo-
sure domains decreases with stress increasing as discussed in section 3.2‘1._ This would
cause more magnetostatic energy. Consequently, when the stress is small, there will be
more domains (and domain walls) within the grain (to reduce the magnetostatic energy).
But when the stress is large, a state with fewer domains will be energetically favored since
domain wall energy (per wall area) increases with stress. Consequently, depending on the
stress state, a grain could have more or fewer number of domains than that for the zero

__external stress state.

 32.3 Comparing Theory to Observed Data

The data points shown in figure 3.4 are the number of domains observed for
titanomagnetite (TMS55) at various grain sizes (Soffel, 1971). The three curves in figure 3.4
are theoretical results. They are: 1) the AEM state for laminar domain structures for the
Ze10 external stress case; 2) the AEM states for closure domain structure (n=1) with no

_ external stress; and (3) the AEM states for a large externally applied stress (o1, = 100MPa).

In the case of no external stress, the predicted number of laminar domains for AEM
states is much greater than observed. However, as discussed in the last section , closure
; domain structures are energetically favored for small stress. Nevertheless, even the closure

domain structure model is inadequate as shown,
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Figure 3.3 The number of domains for AEM states changes with stress for D=20umn
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Figure 3.4 The numbers of domains varies with grain sizes for Ti-rich titanomagnetite

(TMS55). Observation data are from Soffel (1971).
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Since the domain state shown in figure 4.12 is a stable state at room temperature, the

total magnetic energy of the state should be minimum and any change in the domain state

| JE
would result in higher energy. This means one should expect a—xt =0 for A, B, and C resi-

oE
dual domains. But we get a_xt being larger than zero for all three residual domains when

we use (4.30) for the gradient of total energy (table 4.1). The non-zero values in table 4.1
are not caused by errors in the calculations because: (1) all the values in table 4.1 are larger

than zero (while for calculation errors, both negative and positive values expected) and (2)

b JE, 3E,
%}?f- values have the same order of magnitude as e and 5 (not shown) (note for cal-
0x
. aEt aEw aEm .
culation errors, at least one order of magnitude smaller S than ™ and o is

‘expected since its true value should be zero).

oE
The positive values of a—xt in table 4.1 indicate that domain A, B, and C should con-

tinue to denucleate since the total energy decreases with x decreasing. This apparent con-
tradiction can be explained if defects stop the denucleation process by pinning walls. This
implies that the wall energies for domains A, B and C are different from the usual wall
energies. Let ¢’, denote the wall energy (per unit area) of residual domain walls, and L,,

denote the wall length for a residual domain wall. Then, the wall energy is:

E, = E,o+Ey, = E,o+D; [ €',dl = Eyo+&5 Ly, D, 4.32)
L

™

Where E,, is the energy of the residual domain wall being considered, and E,, is the
energy of the other walls, which does not vary with x. The integral in (4.32) is over the
residual domain wall and &% is the average value of e’, for the whole wall. The gradient

Of total energy with respect to x therefore is:




ecidual domain wall and the regular wall energy. By requiring (4.33) to be zero at the

oL, oL,
eference (observed) state and comparing (4.33) to (4.30) (also notice that S and

equal to the negative of the values in table 4.1 for residual domain A, B, and C. E; is the
magnetic energy associated with the defects. The gradient of E, therefore can be considered
the wall pinning force associated with the defects. In general, the sources of Ey will vary
epending on the type of the defects. For example, E; will be associated with magnetoelas-
energy if the defects are dislocations, since dislocations generate a stress field within the
rain. In contrast, E; will be a combination of magnetostatic energy, exchange energy and

isotropy energy if the defects are volume defects (e.g. a cavity).

JE :
Contributions to the domain wall pinning force (—f) come from two parts. The first

art comes from the spatial variation of the average wall energy density (wall energy per
nit area) and is given by the first term of (4.34), while the second part comes from the

ariation of the wall area and is given by the second term of (4.34).

In the following, we assume the pinning forces originate from dislocations and we use

: oFE
e values of —é—xi for residual domain A, B and C to estimate the magnitude of the defects.

First we review some theoretical calculations for the magnetic energy associated with
slocations. The details of the derivation of most of the equations given below can be

und in Xu and Merrill (1989) and Xu (1989).
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Suppose an edge dislocation (with b as its Burgers vector and [ as its length) exists in
an infinitely large grain, under the rigid wall assumption (meaning that domain wall struc-
ture is not affected by the dislocation), the extra wall energy (for a 180° Bloch wall) associ-

ted with the dislocation is:
AE, = —%—pblw O\.n1+0.5?\,100)(taﬂh%4—2‘]—2—560}1%) (4.35)

Where p is the shear modulus, w is the wall thickness, Ayy; and Aygo are the magnetostric-
tion constants in [111] and [100] directions respectively, and x is the distance from the wall
center to the dislocation. The gradient of the energy with respect to x therefore is (assuming

that the wall area does not change):

0AE,,
ox

2 X X = X
= 'g‘ubl ()\,111+0.5)\,100)Sech";}—(‘“Sech';+2'\/2taﬂh';)
For a screw dislocation, (4.35) becomes

AE,, = pblw xm(sech—fv——zﬁmm%)

and (4.36) becomes

JAE,,
0x

= —ubl ?»111sech}—(tanh3—+2\f'2'sech—x—) | (4.38)
w w w

Notice that (4.35) and (4.37) are the magnetic energy of the entire wall associated
with the dislocation. So in the case we are considering, D, L., Ae, = AE, . Also notice that

4.36) and (4.38) were derived assuming that the wall area does not change. Therefore we

dAe,, AE,,
ve Derw——é—;c-— equal to = in (4.36) and (4.38). Then for an edge dislocation, we can




88

w 0L, (4.39)

2 X X 5 X X = X
_Z N1 1+0.5A h=(— 2124 2tanh =)— s Ly
3 bl (11+0.5M00) | Sec w( sechw+ w) (tanhw+2\/2sechw ) T o

or a screw dislocation, (4.34) becomes

JE, x X = X X x. w 9L,
= = Wbl Aqq, |—sech oy (tanh - +2\2sech = H(sech " —2V2tanh ” )Zw——-éx— (4.40)

39) and (4.40) explicitly show that the spatial gradient of the energy associated with the
slocation is related to the magnitude of the dislocation (characterized by b/) and the dis-
ince between the all center and the dislocation x. Since we only have the value of A, for

TM60 (see, table 3.2), we will use Ajq; = Ao = A, as an approximation in subsequent

alculations. The wall width of the sample is about 0.17uwm in stripe domain structures

Moskowitz etc., 1988). By using (4.39) and (4.40), we can get trade off curves for the
agnitude of the dislocation (bl) versus the distance the dislocation is from the wall center.
igure 4.13 shows such trade off curves for an edge dislocation and a screw dislocation for

idual domain A.

From figure 4.13, one can clearly see that a dislocation with magnitude of bl larger
n a minimum value will pin the domain wall at certain point x. Therefore the calculation

ove gives the minimum value of bl for a dislocation that could pin the wall. For a single
ge or a screw dislocation, the magnitude of the Burgers vector is izg—a with g being the

ice constant of the crystal (see, e.g. Xu, 1989). Since there is no data of a for AMTM60
nple, the value for TM60, which is a=8.485R, is used(O'Reilly, 1984). This gives
6.0A. Then from the minimum values of bl for residual domains A, B, and C, we get the

mum possible values of dislocation lengths (/) for edge and screw dislocations, and
se are given in table 4.2. From table 4.2, one can see that the minimum length of the
location is about the same in magnitude as the grain size (about 40wn) for an edge dislo-

ton and roughly half of the grain size for a screw dislocation. This indicates that a single
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T

12

T

Figure 4.13 x/w and b/ (in units of m?) trade-off curve for domain A. The solid line is

an edge dislocation and the dashed line is for a screw dislocation.
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Table 4.2 The minimum lengths of dislocations, ! (in wm), for residual domains A, B,

<
L
i
.

.

edge dislocation

screw dislocation

-

-




dislocation could be responsible for pinning the domain wall and that a dislocation (espe-
jally an edge dislocation) with a small length relative to the grain size, it could not

éctively pin the domain wall.
4.7.3 The General Domain Wall Pinning Force from Defects

In general, domain wall pinning force from defects originates from two effects. The

€y

st is the spatial gradient of the extra wall energy (per unit wall area), i.e. ot and the

oS,
cond is the spatial gradient of the area of th pinning wall (noted as S,,), i.e. TR Thus

e spatial gradient of the extra energy associated with defects (domain wall pinning force)

aEd aAew _.__aSw
=S, +Ae
ox

4.41
ox Yoox ( )

1 special cases, the wall area, S, does not vary spatially and therefore the second term in
4.41) vanishes. However, in general one has to consider the contribution of the second
erm. In particular, the area of the wall surrounding a domain will change when nucleation
r denucleation occurs. Therefore the second term in (4.41) is required here. Obviously, the

ative magnitudes of the two term in (4.41) depend on the type of the defects and the

geometry of the wall, and it is not the goﬁl of this thesis to delineate all special cases. In
: . . A .
e later part of this section, we will show the effect the e term has in the examples of

¢ residual domains A, B, and C.

o . as,, L.,
From (4.34), the area of the pinning wall is S, = D,L, and e Dz—a-x——, for con-

nt D,. The first term in (4.39) comes from the contribution of the gradient of Ae,, and the
cond term comes from the contribution of the variation in wall area. Figure 4,14 com-

ares the effects of the two terms on the trade-off between bl and x/w for the domain A
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Figure 4.14 x/w and bl (in units of m?) trade-off curve for domain A with an edge

slocation. The solid line comes from figure 4.14. The short dashed line was calculated

Ae,,

term in (4.39). The long dashed line was calculated using only the




case with an edge dislocation. Figure 4.14 shows that when the distance between the dislo-

dAe,,

ation and the wall is small (x<5w), the o

term dominates the shape of the trade-off

as,,
urve, while when the distance is large, the S term dominates. This illustrates that when

is small, most of the domain pinning force is from the variation in wall energy density
., wall energy per unit area); in contrast, when x is large the pinning force is dominated
y the variation in wall area. Therefore there are two kinds of wall pinning forces: one acts
ver short distances and originates from the variation in wall energy density and the other
cts over long distances and is caused by the variation in wall area. It is also worth men-
ioning that the short range pinning force is more effective than the long range one when x

s small (x<6w). This becomes clear when one notices that to generate the same value of

oE
inning force (—af— in (4.39)), the length of dislocation (I) required is much lower if x is

mall than that if x is large.

.8 Conclusions

A one dimensional model has been used in investigating exterior and interior denu-
leation processes. For large grains (D >1um), if there is no external field, the exterior denu-
leation process has a lower energy barrier than that for interior denucleation. Transdomain

rocesses are improbable for a defect free grain at a constant temperature in a zero external

External field, temperature, macrostresses, defects, and grain shape are important fac-
ors for transdomain processes. Whether interior or exterior denucleation occurs depends on
the grain shape and variations in the external magnetic field. For Ti-rich titanomagnetite,
drger macrostress stabilized the distribution in the number of domains with varying tem-

Perature. For samples with low macrostress, transdomain processes are more likely during
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changes in temperature because domain wall energy changes much faster with temperature
than does magnetostatic energy. For Ti-poor titanomagnetite, transdomain processes are
more likely to occur relative to Ti-rich titanomagnetite with varying temperature (even with
large macrostresses). Defects affect transdomain processes in two different ways. First,
defects can pin domain walls (as recognized before). This effect is a short range effect.
Second, defects (e.g. dislocations) alter the domain wall energy density and therefore they
affect transdomain processes (note that transdomain processes must be accompanied by a

change in domain wall area). This effect is a long range effect.

Through numerically simulating three observed domain denucleation processes, the
lengths of dislocations were estimated. The results indicate that for Ti-rich titanomagnetite
(e.g. AMTMG60), it is possible that a single dislocation pins a domain wall. For Ti-poor
titanomagnetite, because magnetocrystalline anisotropy plays a more important role in

domain structure, a much longer dislocation line seems required to pin a domain wall. The

length is so long that in this case a single dislocation may not be the source of domain wall

pinning.




CHAPTER 5

APPLICATION OF RENORMALIZATION METHODS TO PREDICT DOMAIN
STRUCTURES

In this chapter, we will first discuss some recent results from domain pattern observa-

tion and show that the results cannot be explained by current domain theory. Renormaliza-

tion group theory will be introduced to explain the results. In the later part of this chapter,

ome applications of the theory will be discussed.

1 Observation Results

Halgedahl (1991) observed the number of domains at room temperature for TRM in
three AMTMG60 grain samples (after cooling the samples from Curie temperature in a weak
xternal field of 0.420¢) and after AF demagnetization. By repeating the same procedure
everal times, a range in the number of domains for each sample was obtained. As shown

n figure 5.1, 5.2, 5.3, for three AMTM60 grains with different grain sizes, the ranges of

observed number of domains for TRM (with H,,=0.420¢) are much wider than that after
AF demagnetization. Since in the process of AF demagnetization, the magnitude of external
acting field is gradually reduced, it is reasonable to believe that the distribution of domains
after AF demagnetization is centered on the AEM state of the crystal. For the three sam-
ples, the AEM states are all about five domains. The number of domains for TRM is in a

broader range (relative to the AF case) centered about the AEM state.

3.2 The Failure to Explain the Results by Applying Current Domain Theory

In this section, we investigate the observational results of Halgedahl using current

domain theory. We show that the distributions in the number of domains observed at room

emperature for TRM are actually determined at temperatures near the Curie temperature at
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Figure 52 The observed number of domains given by Halgedahl (1991) for a

AMTMS60 grain. (a): the numbers of domains observed for TRM; (b): the numbers of

domains observed after AF demagnetization.
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which classical domains are not yet formed.

52 1 The Possibility of Trans-Domain Processes

First we will show that the observed distributions of number of domains for TRM are
not the equilibrium distribution of the samples. For the sample shown in figure 5.3, we can
estimate the energy of each state with number of domains being 1,2,..,9. We have chosen
the grain shown in figure 5.3 as an example of energy estimation because the grain has
roughly equal dimensions and some of the equations in chapter 4 can be used. As an
approximation, we consider a grain with cubic shape and laminar domain structure. The

total magnetic energy of a state with N domains is: (see, 4.23)
E, = N-1e, D%f,, (N)M,’D> 5.1

The first term is the magnetostatic energy and the second term is the domain wall energy.
f.(N) is given in figure 4.9. With e, = 1.1x107J/m? (table 3.4) and D=20um (the average
value of the grain’s length and width), the total magnetic energy of each domain state is
shown in figure 5.4. Note that the energy differences between the states is about 10737 to
102, Note that the external field energy is not included in (5.1), because of its relatively
small value (the maximum value of external field energy is H,.M,D?® which is about
2x107%J for H,,=0.420¢). For comparison, the thermal fluctuation energy (kT) at room tem-
perature is about 4.x10721J. Since the energies in LEM states are very high with respect to
the AEM state, the grain has a small chance to be in any LEM state if the equilibrium state
18 reached. Therefore the observed wide range in number of domains indicates the grain is
not in equilibrium at room temperature. In fact, it was reported that the number of domains

observed in each cooling process only rarely changed during cooling the samples from the

Curie temperature to room temperature (Halgedahl, 1991).
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5.2.2 Corkscrew Domain Structure

Since the observed distributions of number of domains is not caused by trans-domain
_ processes, logically one would think that there is a relative high temperature at which the
grain is in its equilibrium. The possible equilibrium states for a grain varies with tempera-
wures. By gradually cooling, the activation energies between the states increase and the grain
is locked into one of these possible states. There is a possibility that a grain can be locked
_into any of the high temperature LEM states available to the grain. Therefore one might
observe a range of domains at room temperature. This possibility will be tested by examin-

ng the probabilities associated with occupying different high temperature LEM states.

Xu and Merrill (1990) and Shcherbakov ef al. {1991) have shown that domain wall
widths increases with temperature until adjacent wall "touch." The domain wall structure
then becomes continuous throughout the grain. Calculations by Argyle and Dunlop (1984),
who used the Amar type wall (laminar domain wall), showed similar results. Moon (1991)
used a corkscrew domain structure to describe the magnetic structures at high temperatures.

The corkscrew structure model is as follows (for detail, see Moon (1991).

For corkscrew structures, domains and walls are continuous, i.e. there are no classical
domains or walls. If the direction of magnetization is within a y—z plane and the angle

_ between the magnetization and z axis is ¢, the corkscrew structure can be expressed as
&(x) = sn(x/D, )+0o

Where D, is the grain length in the x direction, s is a parameter which determines how
many times the magnetization rotates through = radians within the length of the grain, and

0 iS ¢ at x=0.

Following Moon (1991), the total magnetic energies of a cubic grain (including
€xchange energy, magnetic anisotropy energy, external field energy and magnetostatic

energy) with corkscrew structure is




E, = E.+E, +E, +E,,

1 sin{sm) sin(sw/2)
= Am2s?D——K 2 ——=D*-M_H —_—
n’s > cos (2bo) s s Hex €O Q) G2

+2M2D3/s
Where A is the exchange constant, M, is the saturation magnetization, H,, is the external

field and K is the uniaxial anisotropy constant, given by
i, 3
K=|K1 |+EG}\4111

with o being the uniaxial stress along the [111] direction (z axis).

By using the constants given in table 3.2 and the stress value in table 3.4 (the average
stress value 170MPa was used), we can calculate the magnetic energy for the grain at high
temperature. Since we are considering the temperature at which the grain reaches its thermal

_equilibrium state, we calculate the energy at 74.5°C, a half of degree below the observed
Curie temperature of 75°C. The total magnetic energy for a 20um cubic grain at 74.5°C is
shown in figure 5.5. According to Moon (1991), parameter s is related to the number of
domains (N) at room temperature and is given by N=s+0.5, providing transdomain
processes are ignorable. From figure 5.5, it is clear that the energy differences between the
states with different number of domains are about 107YJ in magnitude. If we assume the
grain is in its equilibrium state, then we can calculate the probability of the grain having N

domains, which is

Py = éexp (~En/KT)

=N hax
Q=Y exp(-E;/kT) : (5.6)

i=1
Where N_,. is the possible maximum number of domains. Suppose the AEM state of the

grain has N, domains. We then have
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Figure 5.5 The total magnetic energies versus the number of domains for a 20um

cubic AMTMG60 grain obtained by using a corkscrew model at 74.5°C.
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Py
;N_o = exp [—(EN—ENO)/kT] (5.7)
—17 PN .
By using Eny—Ey,~107'J=2000kT at T=75°C, for we get 7 = exp (-2000) for T=75°C. This

Ng

means that only N, domains should be observed at equilibrium. Therefore the number of

domains observed at room temperature is actually determined at even higher temperatures!
Yet there is no doubt that classical domain theory is not applicable at these high tempera-
tures since anisotropy energies are negligible at temperatures close to the Curie‘ tempera-
tures. Therefore a new theory must be developed to explain the broad distribution of LEM

states observed at room temperature for TRM. temperature.

_ 5.3 The Model of Applying Renormalization Group Theory

The Curie temperature, T, is a second order phase transition point for ferromagnetic

and ferrimagnetic materials. Such materials exhibit spontaneous magnetization below 7, in
the absence of an external magnetic field because of the exchange interaction. These materi-
als do not have any spontaneous magnetization above 7T, where they exhibit paramagnetic

behavior.

The phase transition between the ferromagnetic (or ferrimagnetic) state and the non-

magnetic state is known as a "continuous", or a second order, phase transition because the
magnetization goes continuously and smoothly to zero and there is no latent heat which has

to be supplied. The two phases never coexist at the same temperature.

From the discussion in the last section, the distribution of the number of domains for
TRM appears to be determined primarily at high temperature, i.e., a fraction of a degree

below T,. To test this idea we use techniques similar to those used in renormalization group

theory. The advantage of using such techniques is that we do not need to know the detailed

nature of the magnetic structure in the temperature range where the temperatures are too.
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high for classical domain structures to exist. Readers not familiar with this theory are

referred to the readable account by Bruce and Wallace (1989). The material presented there

is hereafter assumed to be background material for this thesis.

To apply the theory, we divide a grain (D,xD,xD,) into NxMXL cubic clusters in
three dimensions with the grid size d=D,/N=D,/M=D,/L (figure 5.6). For simplicity, each
small cubic block is assumed to have an uniform magnetization along either +Z or -Z

directions. This model can be called a renormalized Ising model. At a temperature close to

the Curie temperature, it is reasonable to assume that the clusters with magnetization along

+7 and -Z are randomly distributed in the grain since the thermal fluctuation energy dom-
inates all the other magnetic energies (i.e., exchange energy, magnetostatic energy, external
ﬁeld energy and magnetic anisotropy energy). As the temperature decreases, the magnetic
moments of the clusters will reorganize approaching states commonly observed to have
classical domains and walls. In the next section, we will use a method similar to the renor-
malization group theory to investigate how the state with randomly distributed clusters

would transfer to states with ’domain-like’ structures.

5.4 The Evolution of Cluster Structures

As well as using renormalization group method, our discussion about the evolution of
cluster structures is based on related magnetic energies since at any temperature a system

prefers to be in lower energy states.

5.4.1 The magnetic energies

As discussed in chapter 2, the total magnetic energy includes exchange energy, mag-
netic anisotropy energy (i.e., magnetocrystalline energy and magnetoelastic energy), magne-

tostatic energy and external field energy. For AMTM60, the exchange energy is




Figure 5.6 Three dimensional renormalized Ising model. The grain is separated to

NxMxL grids. Black grids have magnetization along +Z. White grids have magnetization

along -Z.
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proportional to the exchange constant A which has a temperature dependence that goes as
‘ M magnetocrystalline energy is proportional to K Jo<M%; magnetoelastic energy is pro-
portional to A, <M>5, magnetostatic energy is proportional to M2 while external field
energy is proportional to M; (table 3.2). For simplicity, at high temperature close to the
: Curie point, we ignore the magnetocrystalline energy and magnetoelastic energy because
' they decrease quickly with temperature relative to the other three energies. Although we
will not deal with magnetic anisotropy energy hereafter, we still assume that the magnetic

moment in each cluster is either along +Z or ~Z.

Now let us discuss some features of exchange energy, magnetostatic energy and exter-
nal field energy. Exchange energy originates from the exchange coupling of adjacent spins
and is related to spatial gradients of the magnetization (2.2). Therefore if the magnetization
in‘ one cluster is along +Z (or -Z), the magnetic moments in the adjacent clusters have a

tendency to be along +Z (or -2).

Magnetostatic energy originates from the magnetic interactions between the magnetic
moments. As shown in figure 5.7, if a cluster has a magnetic moment along +Z, the mag-
netic moments of clusters which locate along Z axis have a tendency to align along +7 axis
while the magnetic moments of clusters which locate on X-Y plane have a tendency to

align -Z.

If an external magnetic field, along +Z for instance, acts on a grain, the magnetic

moments of all clusters have a tendency to align ‘parallel to the field since this gives rise to

_the lowest energy state.

5.4.2 The Initial State of The Cluster Structure

We will consider two cases for a system (a grain): one with an external field and the

_ Other without an external field.
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109

For the case without the external field, a cluster has an equal probability to have its

magnetization along +Z or -Z. If we denote the probabilities to have the magnetization

along +7 and -Z as pyand p_ réspectively, we have
p+=p-=05 (5.8)

For the case with external field H,, along +Z (for simplicity, this is the only field
direction considered), clusters have more chance to have magnetic moments along +Z than
along -7, ie., pop_. We define a bias rate, b, as that part of p, which is more than 0.5.

That means

p.=05+b , and p_=0.5-b (5.9)

The bias rate, b, is caused by H,, and related to other parameters such as the volume
of the cluster. More discussion of this will be given later. For the case without an external

field, b is zero.

5.4.3 The First Step of Renormalization

In the following, we discuss the evolution of clusters and the formation of ’domain-
like’ structures. We use ideas similar to those used in the renormalization group method,
ie., the averaging out of fluctuations in steps. During each step fluctuations are averaged
over a certain space scale. This continues until the fluctuations on all scales averaged out
and a macro-quantity is obtained. We average out the magnetization in all clusters of the

grain by three steps. In each step, we average the magnetization of clusters along one

dimension.

In the first step, we average the magnetizations of clusters along the Z axis. Either the
exchange energy or the magnetostatic energy would prefer that all the clusters have the

same direction of magnetization along Z axis.. Therefore it is obvious that the two states for
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which all the clusters along the Z axis have the same polarity of magnetization (+1 or 1)
are the lowest energy states. Thus, for each column along the Z axis, there is a unique
polarity, +1 or —1. To determined whether the magnetization is along +Z or -Z, we use the
following rule. If initially there are more clusters with +1 magnetization than that those
with —1 in the column, then the polarity of the entire column is set to +1 (and vice versa).

This is obviously a reasonable rule since it means that the polarity of the column is deter-

mined by the majority. For the case when an external field is present, we have p, > p_.

Then in general there are more columns with positive polarity than with negative polarity in

the total MxN columns. In order to avoid the case where there are equal numbers of (+)
and (-) clusters in one column and then the polarity of the column cannot be determined by

the rule, the total number of clusters in each column, L, is required to be an odd number.

The probability of having (+) magnetization in each column is:

L=z . L
P+= Y Ciplp” (5.10)
i=0

And p’_= 1-p’,. After renormalized the magnetization in each column, we get two dimen-
sional MxN clusters with probabilities of (+) and (-) polarities given above. For the case of

no external flied, p’, =p’_=0.5.

5.4.4 The Second Step of Renormalization

In the second step, we renormalize the polarities of the clusters along the Y axis.
Although this step of renormalization is artificial, the following discussion gives some phy-

sical reasons for it.

It is convenient to use figure 5.8 to explain our concern. Suppose there are two adja-
cent clusters with the same polarity (+). The exchange interaction acts to align the magneti-

Zation of the adjacent cluster to be along (+). The clusters along the line formed by the two




Figure 5.8 The figure illustrates that for the case in which two (or more) grids have
formed one line, if exchange energy converts another grid to join this cluster, the grid along
the line will change its polarity. Case A has a lower mutual magnetostatic energy between

grid (1) and grid (3) than that for case B, because of the larger distance between (1) and (3

’) (eventhough the other parts of the total energy is the same for two cases).
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clusters with (+) polarity have a higher probability to change (or retain) their polarity to (+)
pecause of the magnetostatic energy. This tendency increases when more clusters along one
line have same polarity. Therefore there is a tendency for clusters of the same polarity to
align along lines. Based on this, and because we compare our results to laminar domain

structures, the second step of renormalization will be along the Y axis.

Because the polarity of a column depends on the polarities of the clusters within this
column as well as the polarities of the neighbor columns, we will use the following rule to
determine the polarity of each column along Y axis. Let denote § as the summation of the
magnetic moments along a column. The rule is: if § is larger than or equal to a critical
value S,, then the column has (+) polarity; in contrast, if S is less than or equal to -5, then
the column has (-) polarity; if —S, < § < §,, then the polarity of the column is considered to
be neutral and denoted as (0). The polarity of those (0) columns will be determined in the

next step of renormalization. S, is a adjusting parameter and will be discussed later.

Since there are M clusters in a column along the ¥ axis, S has M+1 possible values.
They are M, —(M -2), ..., M-2, M . If the summation of magnetic moments in a column is §,
there are (M—-S)?2 clusters with () polarity in the column and (M+S)2 cluster with (+)
polarity. If we denote the number of (-) clusters in a column as j and j, = (M-S,)/2 as the
number of (-) clusters at S§=S,, it is easy to calculate the probabilities for each column

being (+), (-) or (0). Theses are:

jc . . .
Po=>Chpl pi
j=0

M . . .
P.= Y Clpiph
j=M-j,




M—j-1
Po= Y Clpip¥
j=i

where p’, and p’_ are given by (5.10).

For the case of no external filed, since p’, = p’_= 0.5, we have

e :
P,=P_= EI{—;ZC,{,, Py=1-2P, (5.12)
Jj=0

After this step of renormalization, we obtain a one dimensional cluster structure along the X
axis with N clusters. The clusters have (+), () and (0) polarities with probabilities given by

(5.11) and (5.12).

5.4.5 The Third Step of Renormalization

In this step of renormalization, we convert (0) clusters to (+) and (-) regions. Figure
5.9 shows an example of one dimensional clusters with (+), (-) and (0) polarities. There are
three kinds of positions of (0) clusters. They are: (1) (0) clusters are between (+) clusters;
(2) (0) clusters are between () clusters and (3) (0) clusters is between (+) clusters and (=)
clusters. For (1) or (2), we will change the polarity of (0) clusters to (+) or (-) respectively
(to lower the exchange energy). For case (3), (0) clusters have an equal probability to be (+)
or (-). We arbitrarily choose them to have the same sign of polarity as their left non—(O;
neighbor. Based on this rule, we can obtain a grain structure separated into (+) and (-)
regions (we will call them "predomains"). Fér a grain with i+1 predomains, there are i

boundaries associated across which the polarity changes. Let us call those boundaries

"prewalls" (they are not classical domain walls).

In the following, we will calculate the probability for i prewalls. The number of
walls could vary from 0 to N-1. There are N—1 possible positions for those prewalls. They

are 1,2, .., N-1. Let us consider the case when the grain has i prewalls. There are Ch—y




Figure 5.9 This figure illustrates the third

forms. The wall positions are at ky, &y, ..., ki-1. ki
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step of renormalization: how i predomains

=N. Black is (+); white is (-); gray is (0).
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ways to put the prewalls in the grain. Suppose the i walls are at k;, (j=1, ..., i) (figure 5.9).

Then the probability there are i prewalls and they are at k;, (j=1, ..., N-1) is:

P, (- P

Kk -1

Pepyok; = [(1— pI - PSI] P_(1-P) 7Lopoa-p) T (5.13)

kgmk =1

kyk 1

Py (1= PN

+ [(1— po - Pg‘] P, (1-P) P_(1-Py)

The two terms in (5.13) is related to the sign of the first predomain (figure 5.9). The
first term is the probability the first predomain is (+) and the second term is the probability
the first predomain is (-). The first factor in the first term is the probability there are no =)
clusters in the first k; clusters and all k; clusters are not all (0). The second factor, P_,
arises because the k, th cluster has to be (). The third factor reflects there are no (+)
between the (k+1)th cluster and the (k,—~1)th cluster, etc. The signs in the last factors of the
two terms depend on whether i is an odd or an even number. If i is odd, the lower sign

should be used; if i is even, the upper sign should be used.

When there is an external field acting on the grain, P, #P_ (see 5.11). For even i (i22),
(5.13) can be rewritten as
P, 5[ P

L
2 k, Lk ,
P — [I 1— 1_ 1] _ m _ m
ko k; =P, —p. (A-P )y '- Py Q- PY" (1- P))

¢ {a-po- P a-p o - poy]

with m and m’ given by

in in
m = Yk —kojo), m =2 (kajr — ko) (5.15)
=

i=

where k;,; = N.

For odd i (i>3), (5.13) can be written as
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( (=12 ( N (E+1)2 N
P _|-E £- [(1— P = Poi|(1= Py (1= P 5.16
L P - P, W= Po JU= Py ~ (5.16)

. r P+ YE+V20 P N (i—l)/z[(1_ , )k . Pk; (1—.— , )m(l— , )m’
|- P [1- P, * o) B *
with m and m” given by

(+1y2 -0

m= Y (kyj—kyj1), m = Y, (kyju—kyj) (5.17)

j=l1 j=1
For both even i and odd i cases, it is easy to prove the relation between m and m’ is

m+m =N -k, (5.18)

According to (5.14) and (5.16), Py .k, depends on i, m, k, only and does not depend

on ky, .., k;. For i even, the permutation of ko, ..., k; for constants m and m’ given by
(5.15) is Ci%'xCi*}. For i odd, m and m’ are given by (5.17) and the permutation of
kg o ki 18 CE2xCHEP? (see, Appendix C). For even i, since k; can choose any integer
from 1 to N—i and the possible values of m are the integers from i/2 to N—k~i/2 (see

(5.15) and ( 5.17), we can obtain the probability of i+1 domains as:

N—i N—k=in2
Pia=2 X Pr .k (5.19)
k=1 m=if2

By using (5.14) and (5.18), we get

p. \2( p_ Yawui Nz ' \
Pm=[1 },] [1 P] Y X GH G [[(1— P Pol] (1-pPy"  (520)
T -] k=1 om=in

N—k —m

oo s (ae b B ae ) by

For odd i, the possible values of m are integers from (i+1)/2 to N—k,—(i-1)/2 (see

(5.17) and (5.18). The probability to have i+1 predomains in the grain is




Noi N—k=(i-1)2
Pin=3 X P .y (5.21)

k=l m=(i+1)2

By using (5.16) and (5.18), we get

N—i N—k=(i=1)2

P=Y X GRS (5.22)

k=l m=(i+1)2

Py
- P_ - P,

N—k —m

@i-12 i+1)2
P“ kl kl m
(1-P) =Py |(1- PY" (- P)

i+1)2

P

P, -
- P,

1-P

N~k —m

(=12 .
[<1~ pyI- Po‘]a— Py"(1- P,

For a single predomain (i.e. i=0), P; obviously can be expressed as

Pi=(1-P W +(1-P_ )N -P§

For the two predomain case (i.e. i=1), based on (5.13), we find P, is:

N-1 P o _ _
Py=34| 1 [(1_p+)k1_ Pg‘](l— PO [(1—1)_)“— P’SI]<1~P+>” Y (5.24)
k=1 - +

For the case without an external field, P, = P_. Therefore (5.13) can be written as

k
Py (!

1-P,

(5.25)

Pk = 2PL(1- PV |1 -

This means that Py, .k, is only dependent on i and k. Since k; is the position of first

prewall from the left and there are i—1 prewalls on right side of k;, k, has N—i possible
values which are 1, 2, ..., N~i. For k; = j (1<j<N-i), there are N—j—1 possible prewall posi-
tions on the right side of k;. Therefore the total number of ways to put the other i-1
prewalls in the N—j-1 possible positions is CyZ;. The probability of having i+l

predomains then is




Py =2PL (1- POV 3Ci54 |1 -

j=1
Where P, and P, are given by (5.12).

In particular, the probability of a single predomain for the case with no external field

is (see (5.23):

P=2(1-PY-PY (5.27)

After the third step of renormalization, the grain is separated into i+1 (i=0, .., N-1)
regions which have uniform magnetization along either +Z or -Z. We call these regions as
"predomains”. Presumably the magnetic domain structures observed at lower temperatures
are developed from these predomains. If transdomain processes are essentially negligible (as
observed by Halgedahl (1991), then each "predomain” at high temperature will presumably
develop into one classical magnetic domain at low temperature. This means that ’the number
of predomains at high temperatures is identical to the number of classical domains at low
temperatures. Therefore (5.20), (5.22), (5.23), (5.24), (5.26) and (5.27) give the probabilities

different domain structures will be observed at low temperature for a given size grain.

5.5 Results and Discussion

Based on the formulas developed in last section, the distributions in number of
domains depends on the three parameters (i.e., grid size d, bias rate b and a critical value

S.). Further discussion of these parameters is needed.

5.5.1 The Ranges of Parameters

The range of grid size, d, is very wide. The lowest limit of 4 is certainly the dimen-
sion of the unit cell of the mineral. The unit cell dimension is about 8.5& for TM60

(O’Reilly, 1984) and this is used as an excellent approximation for AMTMG60 since Al and
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Mg are minor constituents. Because the maximum grid size should be significantly less than

domain wall width at room temperature, a reasonable upper limit of 0.05pm is taken.

The bias rate, b, is actually related to gird size, d. If there is no external field, a clus-
ter has equal chance to be (+) or (-). It is the external field that provides the preference for

one of the two directions. That is the external field energy is the only energy difference

petween (+) and (-) clusters. Therefore we can calculate the bias rate for certain value of

external field by using Boltzmann statistics. Since we assumed that initially, the system is in

thermal equilibrium, we have

po= e[Hom i), p= Lexp(-Hooo, (k] (5.28)
Where Q is the partition function which equals exp (Ho, vM; (T)/KT )+exp (~Hex yM (T)/KT), H,,

is the external field and v = d° is the volume of the clusters. The bias rate, b, therefore

equals (see 5.9)

exp [ZHex vM, (T kT]

0.5 (5.29)

b =
1+exp [2Ha M, (T)/kT]

By using the temperature dependence of M, shown in table 3.2, b can be calculated
for a given field at a given temperature. The variation of b verse 4 is shown in figure 5.10

for H=0.420e (which is the field during the experiments, see section 5.1) and T=74°C. For

a given value of d, depending on temperature, b can be chosen as any value from 0 (when

T—T,) to the value at the line (when T=74°C) in figure 5.10.

The critical value S, is an artificial parameter which is used to adjust the distribution
of number of domains to fit observational data. Therefore the choice of S, will be con-

sidered in a later Qiscussion on the distribution of the number of domains.

5.5.2 The Results for Zero Bias Rate
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Figure 5.10 The relationship between d and b. The line is for 74°C. The higher the

temperature, the lower the value of b.
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Let us first look at the distributions of number of domains for a given size grain at

zero bias rate. This is the case for zero external field and the limiting case when T—T,

(since M;—0 when T—T,).

Consider a grain with size 20x20x20 wn®, when we choose the grid size corresponding

to the minimum limit (10>wn), the maximum limit (5.x107wn) and a medium value (e.g.

2x10%um), the grain is separated into 20000x20000x20000, 400x400x400 and
1000x1000x1000 grids respectively. For each of these grid sizes, by using (5.26) and (5.27)
with an appropriate value of S,, the number of domains has a similar range to that observed
(see figure 5.3, 5.11, 5.12 and 5.13). Figure 5.11, 5.12 and 5.13 also show that once
appropriate values of S, are chosen, the distributions in the number of domains for different
gird sizes can be very similar. This similarity indicates that our model is not very sensitive
to the grid size. In other words, although we do not have enough information to estimate
the grid size precisely, the renormalization group method used can still yield good estimates

for distributions of the number of domains.

5.5.3 The Results with a Bias

Since the choice of grid size only slightly affects the distribution in the number of
domains, we will discuss the effects of an external field for only one gird size (e.g.
2.x1072um). In order to compare the results with observational data, let us consider the case
in which H = 0.420e (used in Halgedahl’s experiments). Depending on the temperature, the
possible range for the bias is from b=0 (at T—T,) to 2.4x107* (at T=74°C). By using the
same value of S, used for the zero external field case, the distributions in the number of
domains for a 20x20x20 pm grain are shown in figure 5.14. Figure 5.14 indicates that there
are two kinds of effects the external field has on the distribution. These are: (1) external

field could shift the range of distribution to a lower number of domains; and (2) external
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Figure 5.11 The distribution in the number of domains for 20wn grains with grid size

Hm and S =48. There are 400x400x400 grid cubes in the grains.
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field increases the probability of having an odd number of domains. The first effect is illus-
trated by noticing that only a single domain would be observed if the external field were
sufficiently large. The second effect occurs because on the average states with an odd
number of domains could carry more remanent magnetization than states with even number

of domains.

Taking 74°C for the lowest temperature for which the model is applicable,
b =24x10™* is an upper limit for the bias for H = 0.420e. The higher the temperature, the
smaller the bias, and the less the effects of the external field have on the distribution.

Therefore the curve for »=2.4x107* in figure 5.14 provides an upper limit for the effects of

the field. To make a more accurate estimate of the effects of the external field, another

curve with b=1.x10"* (i.e. at T=74.8°C) is shown in figure 5.14. For this higher temperature,
the distribution of number of domains is closer to the distribution with »=0. For comparison
sake, when T=74°C, P, and P, (the summations of probabilities of all odd number
domains and even number of domains) equal 83% and 17% respectively. While for

T=74.8°C, P,;; = 60% and P,,,,=40%.

According to figure 5.1, 52 and 5.3, an odd number of domains was observed 33
times while an even number of domains was observed 25 times (ie. P,;,;=57% and
P,..n =43%). Although there is a difference between the odd and even number of domains
observed, the difference is not quite significant statistically. However, this small difference
suggests that the cluster structure occurs very close to 7, (within 1°C or even 0.1°C-0.2°C
below T,). This follows since for lower temperature, the bias rate would be high enough to

create much much larger differences between the odd and even number of domains.

In summary, although the external field can affect the distribution in the number of
domains theoretically, the effects appear not be large enough to be easily observed when the

magnitude of the field is small (e.g., in the order of the earth field). On the another hand, if
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the external field is large enough, the effects of the external field on the distribution in
number of domains should be observable. Then one should observe a smaller number of
domains than that for H,,=0 case and more incidences when an odd number of domains is
observed. Of course, on occasion transdomain processes at lower temperatures can occur
and when this happens the distribution will be altered. More experiments are required to test

the above suggestions.

5.6 Applications

In the previous sections, renormalization group theory was used to explain the wide

distribution in the number of domains for TRM. Based on the theory, the distributions in

the number of domains for TRM is determined within a fraction of a degree below the
Curie temperature of the material. In this section, two possible applications of the theory on

rock magnetism will be discussed.

5.6.1 Transdomain Processes

Although transdomain processes are not common during experiments, they are quite
possible during geological time under certain circumstances. As discussed in chapter 4, the
variations in the external field, in the temperatures, and in the shape of a grain are the fac-
tors that can affect transdomain processes. The magnetic changes outside the sample can
also lead to transdomain processes. For example, the macrostresses which a magnetic grain
is subjected to may be variable during geological time. As we have seen the macrostresses
is an important factor on magnetic anisotropy (chapter 3). Therefore a change in macros-
tress may cause transdomain processes. Since domain walls are believed to be pinned by
defects and those defects may be mobile, transdomain processes may also be caused by the

movement of defects. If transdomain processes occur, they probably result in producing
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Figure 5.15 Transdomain processes change the range in the number of domains of the
original TRM. The expected final range is either narrower or the same as the original range.
The short dashed line gives the range in the number of domains for original TRM; the long
dashed line gives the range in the number of domains for LEM states; the solid line gives

the range in the number of domains after transdomain processes.
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secondary remanent magnetization in the sample, e.g, secondary VRM. Reheating a sample
to a higher temperature with an external field different from the original one is yet another
possible mechanism leading to transdomain processes. This means that some secondary

TRM could be caused by transdomain processes.

If many grains in a rock have undergone transdomain processes, the sample should
not be used for investigating the paleomagnetic field. Because of this, it is desirable to

determine whether the magnetic grains have undergone significant transdomain processes.

If we consider an ensemble of magnetic grains with the same size, transdomain

processes will make the final range in the number of domains narroWer than that original
(i.e. the range for the original TRM) (figure 5.15). Therefore by observing the distribution
of number of domains for same size grains, one can tell whether significant transdomain
processes have happened. Experimentally, the inspection could be done by comparing the
distributions of number of domains for a sample in its NRM state and after a heating cycle
(heating above T, and then cooling back to room temperature). If the range in the number
of domains for the NRM state is the same as that after the heating cycle, then the sample
has not undergone significant transdomain processes; in contrast, if the former is much nar-
rower than the latter, then significant transdomain processes have occurred and the sample

may not be useful for paleomagnetic studies.

5.6.2 Distinguishing Secondary Grain Growth CRM from Primary TRM

There are two main kinds of CRMs which are grain growth CRM (or authigenous)
and CRM resulting from altering one magnetic mineral to another. Grain growth CRM is
defined as the remanent magnetization a grain obtained during its growth in a magnetic

field. Only grain growth CRM is considered here.

Consider two ensembles of grains with the same grain size, ensemble A and ensemble
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B. Ensemble A is the reference ensemble and is assumed not to have changed its grain size
since obtaining a primary TRM. undergone any transdomain processes. In contrast, the
grains in ensemble B have acquired a grain growth CRM. Because the grains were smaller
when the domain states were initially established, we would expect that the distribution in
the number of domains for ensemble B is narrower than that for ensemble A. In addition,
the range of domains for ensemble B should be smaller than that for ensemble A. Assuming
few or no transdomain processes have occurred, we can distinguish grain growth CRM
from TRM by observing the distributions in the number of domains for the two ensembles.
Even if there were transdomain processes in ensemble B, a narrower range of number of
domains is still expected (as discussed above). Experimentally, the distribution in the
number of domains for ensemble A can be obtained by heating the sample above Curie

temperature and then cooling back to room temperature within an external field roughly

equal to earth field. The distribution of domains can be compared to the initial distribution

observed before heating.

The above is an example of how to distinguish one form of secondary magnetization
from primary magnetization. Additional work is needed to see if similar principle apply to

other forms of secondary magnetizations.

5.7 Conclusions

The observational results given by Halgedahl (1991) in the distribution of number of
domains for TRM in AMTMG60 samples, cannot be explained by current domain theory.
Investigations indicate that the relative wide ranges of number of domains observed could
not be caused by low temperature transdomain processes or by the transitions between
corkscrew structures. Therefore the distribution in the number of domains for TRM is

believed to be determined by its initial states at temperatures within a degree below Curie
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temperature of the sample. By using a renormalization, we could explain the observed dis-
tributions. Although some parameters used in the model can not be well determined at this

stage, our results appear not to be significantly affected by these uncertainties.

If an external field is large enough, it should affect the distribution in the number of
domains. Possible effects of an external field on the distribution in the number domains
include: (1) narrower range than that for no external field; (2) a shift toward fewer number
of domains; and (3) an increase in the ratio of odd number of domains than an even number
of domains. Based on the observational results given by Halgedahl (1991), for AMTMG0,
an external field with a magnitude of the order of the earth’s field does not appear to
significantly affect the distribution in the number of domains. Additional data on the distri-

bution in the number of domains for larger external field are needed.

Based on the wide range of number of domains for TRM and the fact that essentially
any transdomain processes at low temperature will reduce the distribution in the number of
domains relative to that of the original TRM, our theory may prove useful in paleomagne-
tism. In particular, by observing the distribution in the number of domains for a sample,
one can: (1) determine if significant transdomain processes occurred during geological time

and (2) determine whether the sample has acquired a secondary grain growth CRM since its

formation.




CHAPTER 6

DISCUSSION

The conclusions of this thesis are given at the end of the individual chapters and in
the abstract. Therefore the entire conclusions will not be repeated here. Instead some pro-

jects that are extensions of this thesis and which deserve further research are discussed.

The effects of macrostress on domain structures have been discussed in chapter 3. One
of the major results of this work is that there appears to be a high magnitude macrostress in
Ti-rich titanomagnetite samples and this macrostress reduces the number of domains. How-
ever, the origins of this stress are not clear. Probably it is caused by differences in the ther-
mal expansion of the magnetic material and the surrounding matrix or by surface polishing.
Clearly, more experimental work and some quantitative calculations are needed to test these
possibilities.
The inconsistency between observation and theory for the distribution in the number
of domains in magnetite has not been solved. Macrostress does not seem to play important
role in the domain structures in magnetite as in titanomagnetite with large amounts of
ulvospinel in solid solution. Although observational errors have been suggested as one of
the possible reasons for this inconsistency, more experimental work is needed to test this
possibility. Furthermore, surface structure as suggested by Ye and Merrill (1991) is also a

possible cause of observational errors. This possibility needs further study.

Simple one dimensional models haven been used in chapter 4 to investigate
transdomain processes. The models can be consider as a first order approximation for large
grains (i.e. domain size is much large than domain wall widths, w). For small grains, espe-
cially for grains in which the domain size and w are comparable, more sophisticated models

are needed for the investigation of transdomain processes.
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The theory developed in chapter 4 predicts that whether interior or exterior denuclea-
tions occurs depends on the external field. Although the mechanism involved must be
operating to some extent, the magnitude of the effect needs further experimental study. It is
found in chapter 4 that dislocations may also affect transdomain processes. In addition
dislocations can also impede walls and the first estimates of the magnitude of this effect that
combine theory with domain imaging were made in chapter 4. More careful modeling and
some experimental work are needed to test these ideas. Moreover, since there are interac-
tions between defects (dislocations) and domain walls, theoretical work is needed to investi-
gate the relationship between domain wall movement and defects movement. The theory in
chapter 4 also predicts that during temperature changes, transdomain processes are unlikely
for Ti-rich titanomagnetite (TM60) but are likely for Ti-poor titanomagnetite (e.g. mag-
netite). Obviously, more observations of domain structures for Ti-rich and Ti-poor

titanomagnetite are needed.

As shown in chapter 5, for Ti-rich titanomagnetite, the distribution in the number of
domains seems to be primarily determined at temperatures very close to T,. More experi-
mental evidence is certainly needed to support test this theory. We also need to estimate the
possible observational errors (caused by surface polishing, etc.) before comparing the theory

to observational results. External magnetic field may affect the distribution in the number of

domain distributions as suggested in chapter 5. Domain structure observations with varying

external field strength during cooling are needed.

It is suggested in chapter S that domain structure observations may be a good tool in
distinguishing the primary TRM from secondary magnetizations. But experimental and
theoretical work are needed in investigating the differences quantitatively. For example, a
grain growth CRM can be modeling by considering transdomain processes as the grain

grows. Mineral alteration CRM is certainly needed to be treated theoretically, since the
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number of domains in an authigenically derived grain may be substantially different on the

a\}erage from a diagenically altered grain.

In conclusion, some of the most important studies to be carried out in the future
involve using new experiments to test some of the models given in this thesis. In addition it
is important to combine theory with experiment to make rock magnetism more useful to

paleomagnetists.
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APPENDIX A

DIFFERENCES BETWEEN MAGNETIC DOMAIN IMAGING OBSERVATIONS
AND THEORY




A quasi-two-dimensional model is developed
10 calculate domain structures in magnetite grains contain-
ing two 10 20 domains. The calculation shows that
“domains” do mnot consist of uniformly magnetized
_ regions, consistent with the conclusions previously carried
out on sub-micron grains, but that they become more uni-
formly magnetized for grains containing several domains,
consistent  with domain imaging results. In spite of
_ improvement over previous calculations, there remains a

significant  difference between the number of domains

observed and calculated.

Abstract.

Introduction

Domain observation [e.g., Soffel, 1971; Halgedahl and
Fuller, 1983; S. Halgedahl, submitted, 1990} and theory
{e.g., Moon and Mermiil, 1984, 1985; Enkin and Dunlop,
1987] converged during the last decade during which it
was recognized there is often more than one domain state
aceessible to a grain at a given temperafure and pressure.
Although further convergence was expected when this
one-dimensional theory was extended to three dimensions,
suich convergence did not occur. There are at least two
major differences between domain theory and observa-
tions. The first is that the calculated number of domains
for 'a given grain is usually significantly larger than
observed using Bitter patterns (e.g. S. Halgedahl, submit-
ted, 1990) and the second is that three-dimensional
numerical modeling of small magnetite grains indicates far
more complex structure than expected from observation
[e.g. Williams and Dunlop, 1989]. In this paper we argue
that the differences between theory and observation are
not as serious as sometimes perceived in the second case
cited above and may partially reflect the fact that three-
dimensional theory is carried out on submicron grains,
whereas observations are carried out on much larger
grains. Unfortunately the first problem stated above
rermains unsolved. During the writing of this paper one of
us (R. T. M.) received for review a manuscript that
amrives at similar conclusions based on three-dimensional
calculations carried out on a supercomputer for submicron
magnetite grains (W. Williams and D. Dunlop, submitted,
1991). In contrast, our calculations involve quasi-two-
dimensional calculations for far larger grains. Neither
sudy is definitive, but together they are persuasive that
we are on the correct path to eventually reconcile theory
and observation.

Copyright 1991 by the American Geophysical Union.
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DIFFERENCES BETWEEN MAGNETIC DOMAIN
IMAGING OBSERVATIONS

AND THEORY
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Calculation of the Magnetic Energy
in Quasi-Two-Dimcnsional Models

energy E, in a magnetic grain is the
sum of the exchange energy E.. the magnetocrystalline
energy Ey, the magnetoelastic energy E. and the magne-
tostrictive energy. Because the latter energy depends on
the type and distribution of defects, it is often ignored in
domain structure calculations. This gives

E =Ee + Ex+ En ey

and a solution is sought that minimizes this energy.
However, even with the use of supercomputers, three-
dimensional calculations require certain additional assump-
tions and are presently impractical for grain sizes that are
used in domain imaging techniques [e.g., Williams and
Dunlop, 1989]. One result seems to be common for all
previous micromagnetic  calculations made on small
grains: domains are not regions of uniform magnetiza-
tion, and transitions to domain wall structures occur {e.g.
Stapper, 1969; Moon and Mermill, 1984; Enkin and Dun-
lop, 1987; and Williams and Dunlop, 1989}.

In the following calculations we assume that there is a
surface layer in which the spin structure can differ from
the underlying domain. For computational simplicity this
surface layer is assumed to pbe uniformly thick. Although
micromagnetic calculations on small grains indicate this is
not the case, this assumption is an improvement over pre-
vious calculations involving larger grains, in which
domains are assumed to be uniformly magnetized. The
directions of the spins within the surface layer (with
thickness of 8), are assumed to satisfy

The total magnetic

@)

z
az)=09 |1 B
where a(z) is the angle of the moment at position z and
the z axis, taken to be perpendicular to the surface, and
ag is the angle of the magnetic moments of the layer
closest to the surface. The moments in the interior of the
domain are along the z axis (Figure 1). For domains
exhibiting the opposite magnetization it is mathematically
convenient to measure o Wwith respect 10 the —z axis.
Domain walls are assumed to be 180° Bloch wails in
which the spins lic in the y — 2 plane and are described
by 8,(x), the angle with respect to the z axis

6,(x ==

Z( ) dw
where d,, is the domain wall thickness. For grains con-
taining many domains, d,, may be approximated as a con-
stant. These assumptions require that there is also a sur-
face layer within the domain walls to minimize exchange
energy. In this domain wall surface layer the moments

&)
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Fig. 1. The direction of magnetization within the surface
layer of a domain and a domain wall. The surface layer
thickness & and the surface turning angle o, are the
variables determined in the calculations.

are assumed to lie along a cone for a given z. The cone
axis is in the x direction and the angle the moments make
with respect to the x axis is taken to be

8,(z) = % - az) @)

Note that this implies the cone angle is a function of z.
The angle of the component of the moment in the y-z
plane with respect to the z axis is given by equation (3)
(Figure 1). Because of the assumptions made, we refer to
these calculations as a quasi-two-dimensional model.

The exchange energy is given by

En=A | [(Val)z + (Voo)? + (Va3)2]dv 5)
v

where A is the exchange constant and taken to be
129 x 107! I/m for magnetite at room temperature
[Moskowitz and Halgedahl, 1987], and o are the direc-
tion cosines with respect to the i axis. An analytical
expression for E,, can be obtained for the quasi-two-
dimensional model that depends on the number of
domains n, the thickness of the surface layer 3, grain size
D (linear dimension of cube), and . (Details of calcu-
lations used in this paper but omitted for brevity’s sake
can be obtained from the first author.) E, is found to be

‘sin2a0

2o ofr®6

2
E,, = AD 2a§%+(n—1)-;‘— D- |1-
W

The magnetocrystalline anisotropy energy E, is approxi-
mated by

143
Ec= | [Kx(afag +afaf + w}a})]dv 7
v

where the room temperature value for magnetite’s K
anisoropy constant is taken to be -1.36 x 10* I/m°
[Syono, 1965]. The z axis is taken to lie along the [111]
direction of magnetite, and the y axis is taken to lie along
the [011] direction. The magnetocrystalline anisotropy
can also be analytically calculated for the quasi-two-
dimensional model and is found to be

E, = K,D [Z(D—(n—l)dw) 86, (o) + 2(n-1)3d,, fr(ctg)  (8)

7
+ 557 (=DD-28)d,,

where fi(cty) and fy(0g) are given by

S A U (5 U S
filog) = ) + o |28 sin2ctg + 384 sindoy C)

1 s 2 1 4 : 4
_— - —(] - -
+ N sin“ol 2 __18( cos oy — sin‘oy)

< IS U I HVNU
fa(og) = 56 " o 51231n2a0+ 165”10‘0 (10)

7 . 3 1 . 2
- ——SinQHCos + ——sindoty +
ACOS™ Oy o) 93n

128 128

The first term in (8) is the magnetocrystalline energy from
the surface layer in the domain, the second term is that
due to the surface layer in the wall, and the last is due to
the remainder of the wall.

Unlike previous one-dimensional calculations on large
grains, ‘‘bound magnetic charge’” now is present in the
interior of the domain. The magnetostatic energy is

(1~cos*ay)

=L —22 _qvavi+ [ [ —224sqv’
E, ) “[{[ '?_?,'dVdV +"s’\'£ I‘r’—-?’ldeV an

w1 =2 _asds’
2 35 IP=-7’I

where p= —V-Ms(x,y,z) and p'= —VNis(x’,y’,z') are thé
volume  charge  densities, c = i-Ms(x,y,z) and
o'= i-ﬂs(x’,y’,z') are the surface charge densities with Z
being the unit vector in the z direction, and ﬁs is the
magnetization of magnetite taken to be 480x10°A/m.
P=P(xy,2) and T'=7’ (x"y,z) are the positions of
integral elements. V is the volume of the grain, S is its
surface area, and r is the distance between the designated
bound charges. To evaluate the first and second terms of
(11), the surface layer was divided into a series of
discrete sublayers within which the magnetization is
assumed to be uniform. Convergence can be tested by
repeating the calculations for an increased number of sub-
layers. A numerical method modified somewhat from that
used by Rhodes and Rowlands [1954] was used to obtain
E,. For simplicity, we use a constant wall thickness
(0.08 pum) throughout our calculation and the wall posi-
tions have been chosen to let the total energy be
minimum in a given number of domains.




Resuits

Figure 2 shows how the reduced energy (total magnetic
energy in equation (1) normalized by 2VI2) varies as a
function of o for a cubic magnetite grain with linear
dimension of 1 ym. The different curves are for different
possible local energy minimum (LEM) states [Moon and
Merrill, 1985], ranging from two-domain to ten-domain
grains. The energies in the figure are chosen to be the
minimum ones for different thicknesses of surface layers,
and the dependences of the energy on thickness of surface
layer (for o = 90°%) will be discussed later. Calculations
have also been carried out on a variety of grain sizes up
to 10 pm (20 domains; not shown). In all cases (for any
grain size and any given number of domains) &ty = 90° is
the minimum energy state, indicating that strictly uni-
formly magnetized domains of magnetite probably do not
exist, even for large grains.

Figure 3 shows the relative thickness of the surface
layer (the ratio of the surface layer to grain size) as a

Reduced energy as a function
of surface turning angle

domain number
—f— 2

—— 3

4
5
6
7
8
9

30

Surface turning angle

Fig. 2. The reduced energy {energy in equation 1 nor-
malized by 2VI?) is shown as a function of surface
turning angle o for lum grain containing from 2 to 10
domains. V is the volume of the grain, and J is the
saturation magnetization of magnetite at room tempera-
ture (480x10°A/m). The energies are chosen to be the
minimum one for different thicknesses of surface layer.
In addition E, for an uniformly magnetized grain is set
to zero because we are interest in the relative energies in
this figure.

Relative thickness of surface iayer
as a function of number of domains

grain size
——— 1 micron

—e— 10 micron

D\D\D\«;

0.0+ T T
0 8 12 16 20
Number of domains

Relative thickness of surface layer

Fig. 3. Curves for the relative thickness of the surface
layer versus the number of domain are given for cubic
magnetite grains of 1 um and 10 um (linear dimension).
The curve for 1 um grain has been truncated because
the grain can not contain more than 12 domains.

variation of number of domains for magnetite grains with
grain sizes 1 pum and 10 um with the surface turning
angle being fixed at minimum energy state (g = 90°).
This illustrates that the deviation from the classical
uniformly-magnetized domain state decreases with both
grain size and number of domains. That is, although
there probably are not completely uniformly-magnetized
domains in magnetite, the uniformly magnetized domain
state may be a very good approximation in large grains.

Table 1 gives the number of domains in an absolute, or
global, energy minimum (GEM) state as a function of
grain size. A comparison with those found by Moon and
Merrill [1985] is also given. As expected, the number of
GEM states (and the range of LEM states) is shifted to
fewer domains for a given grain size. Calculations for
the uniform domain structure were made by choosing sur-
face turning angle og = 0. Exchange constant A, aniso-
tropy constant K;, and saturation magnetization M, are
chosen for rmagnetite to be: A= 1.29%1071/m,
K, = ~1.36x10*)/m?, and M, = 480x10°A/m.

TABLE 1. The number of domains in GEM states
for a given grain size.

grain size (micron) n (uniform) n (non-uniform)
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9
10
12
13
14
14
15
16
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Conclusions

The calculations given in this paper are for simplistic
domain structures that model deviatdon from the non-
uniformly magnetized state with a non-uniformly magnet-
ized surface layer. That these structures are not com-
pletely accurate is clearly evident when one compares
them to more precisely calculated structures in submicron
grains {e.g., Williams and Dunlop, 1989]. Nevertheless,
these structures are preferable to the uniformly-magnetized
domain structures usually assumed for large grains. In
particular, one can use this modeling procedure to deter-
mine changes in the complexity of domain structure as a
function of grain size in large grains.

Based on three-dimensional micromagnetic calculations
on: submicron grains, Williams and Dunlop (submitted,
1991) have suggested that the variation in magnetic
structure decreases somewhat with increase in grain size,
all other factors held constant. In this paper we have
reported the results from quasi-two-dimensional calcula-
tions made for cubic anisotropy "magnetite" cubes with
linear dimensions that vary from 1 pm to 10 pm. Our
results show that deviations from uniformly-magnetized
domains probably always exist, but the deviations are
small for grains containing many domains. Moreover,
fewer domains are expected for a given grain volume than
previously  calculated.  These results reduce the
differences between domain imaging observation and
theory. Nevertheless one outstanding difference remains:
in: spite of the additional magnetic structure considered in
this paper, the number of domains remains significantly
smaller than calculated.

Acknowledgments. Song Xu made several helpful
suggestions during the early stages of this study. Reviews
by Sue Halgedahl, Song Xu, and an anonymous person
helped to improve this paper. Funding for this research
was provided by the National Science Foundation.

References

Enkin, R. J. and D. J. Dunlop, A micromagnetic study of
pseudo-single-domain remanence in magnetite, J. Geo-
phys. Res., 92, 12726, 1987.

Halgedahl, S. L. and M. Fuller, The dependence of mag-
netic domain structure upon magnetization state with
emphasis upon nucleation as a mechanism for pseudo-
single domain behavior, J. Geophys. Res., 88, 6505,
1983.

Moon, T. S. and R. T. Merrill, The magnetic moments of
non-uniformly magnetized grains, Phys. Earth Planet.
Inter., 34, 186, 1984.

Moon, T. S. and R. T. Merrill, Nucleation theory and
domain states in multidomain magnetic material, Phys.
Earth Planer. Inter., 37, 214, 1985.

Moskowitz, B. M. and S. L. Halgedahl, Theoretical tem-
perature and grain-size dependence of domain state in
x=0.6 titanomagnetite, J. Geophys. Res., 92, 10667,
1987.

Rhodes, P., and G. Rowlands, Demagnetizing energies of
uniformly magnetized rectangular blocks, Proc. Leeds
Philo. Liter. Soc., Soc. Sect., 6, 191, 1954.

Soffel, H. C., The single domain-multidomain transition in
intermediate titanomagnetite, J. Geophys. Res., 37, 451,
1971.

Stapper, C. H., Micromagnetic solution for ferromagnetic
sphere, J. Appl. Phys., 40, 798, 1969.

Syono, Y., Magnetocrystalline anisotropy and magnetos-
triction of Fe;04—Fe,TiO4 series with special applica-
tion to rock magnetism, J. Geophys. Res., 4, 71, 1965.

Williams, W. and D. J. Dunlop, Three-dimensional
micromagnetic modeling of ferromagnetic domain struc-
ture, Nature, 337, 634, 1989.

J. Ye and R. Merrill, Geophysics Program, AK-50,
University of Washington, Seattle, WA 98195.

(Received June 6, 1990;
revised October 10, 1990;
accepted November 15, 1990.)




APPENDIX B

IMPROVED EVALUATION OF INTEGRALS RELATED TO MAGNETOSTATIC
ENERGIES

The following integral is needed in the calculation of potential energy between two

three dimensional rectangular bodies (uniformly charged):

aad bbcc
dxdx'dydy’dzdz
I = Bl
—'"a-—Jz’z'Jh‘L'—c—'[’ [(E+x =x)++y =) HL+2 —2)11"? ®BD

By using :

The integral, (B1), becomes

2 2 2
r = [jjjjjlai ) (B4)

dudv du )’d dudvd (du)*(av)?
B IR I

More general, integrals like |f (d;)z ] > 2

m_[(—dﬂ-);—;—iﬂ and Ujﬂ—@‘j(—?—ﬁ@ are needed for calculating the potential energy for one,

two or three dimensional bodies. Although the formulas of these integrals were given by
Wright (1930), their application produced incorrect results (Rhodes and Rowlands, 1954).

The integrals are




f%u— = log (u+P)+C
2
| id;:% = ulog (u+P)-P+C

H—dfv = vlog (u+P y+ulog (v+P +wtan ™" lV£+C
uy

1

J ,[ J (du )Y2av

P = uvlog (u+P y+uwtan™

%%(u 2-wd)log (v+P )~—;—vP +C

dudvaw _ 1o uP
,m = > wvlog(u+P)+2utan - +C

u,yw

u (v*=whlog (u+P )+%v (u*~wdlog (v +P )+uvwran™ Z—f+%w2P

(du)Xdv)®? 1
=%—=3

1,3
“Lpsic
<SP

2
] @‘)}M = uwwlog (u+pP )+%(uzw—%w3)10g (v+P )+—;-(MZV—%V3)log (Ww+P)

1 P 1 4 VvP 1 WP
+—dtan 2 =y 2tan ! = an

6 wy 2 uw 2 qu

(@duw)Xav)dw _ 1 22 1 r
[I[IJ-=—57 = 5w Bv’-wilog u+Py+—<vw Qu’-w?log (v+P)

P
+2—14-(6u W2yt vHlog (w+P )+—é—uv 3tan™! %+%uv Stan™! %—E—+—;—uvw tan™! ﬁm—)-

+—1—1—2—Pw 3——21?(u ZvHPw+C

Uﬂﬂw = %Z(6M2V2—u4—v4)wlog (P+W)+-é-2u3than‘1 _1‘_57

(B10)




1 4 2 2.2
+602(u 3uvH+C

The problem not seen by Wright arises from the discontinuity in the tan™ term in B7

S

at u=0 and v=0. To avoid the discontinuity, we redefine the main value range of tan™ as

SR

I

5 as previously used). The redefinition is also needed for the

from 0 to = (instead of —% to

tan” term in B8, B9, B10, B11, B12 and B13 because they are calculated using B7.
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APPENDIX C

PERMUTATION CALCULATION

The permutation of k,, . . ., k; which satisfy

in in
m =Y (ko —kyj_y), m = Y (kojur = koj)
=1

j=l
can be calculated as follows. Define x and «” as
KjEij_ij‘l s K,j Eij—l—ij (C2)

permutation of k, ..., k; satisfying (Cl) equals the permutation of

., Kin, K, ..., X satisfying

i2
m = ZKJ
=1

i/2
m =3 (C4)
j=1
Since ¥ and ¥’ are independent of each other, the permutation considered equals the product

of the permutations of «s (satisfying (C3) and of «’s (satisfying (C4).

The permutation of «s satisfying (C3) is equal to the total possible ways to separate m
identical members into i/2 groups. To calculate the permutation, let us imagine the total m
members form one line. There aré total m—1 boundaries between the members. If we
choose i/2-1 boundaries from these m-1 boundaries, then the m members have been
separated into i/2 groups. One way of separating members into i/2 groups corresponds to
one (and only one) way of choosing i/2-1 boundaries. The total possible ways to choose
i/2-1 boundaries from m—1 available boundaries are C//?;', which is also equal to the per-

mutation associated with separating m members into i/2 groups. Therefore the permutation




of ky, . .., k; satisfying (C1) is C//%7' xCiA4 .
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