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University of Washington
Abstract

MICROCOERCIVITY AND BULK COERCIVITY
IN MULTIDOMAIN MATERIALS

by Song Xu

4
Chairperson of the Supervisory Committee: Professor Ronald T. Merrill

Geophysics Program

Theories are developed to calculate microcoercivity produced by the magnetoelastic
interaction between a domain wall and dislocations. The calculated microcoercivity is then
related to macroscopically measurable parameters for an ensemble of non-interacting, mul-

tidomain (MD) grains.

The microcoercivity calculation shows the following results: (1) the average stress
associated with a single straight dislocation can be approximately described by a step func-
tion in a magnetite grain whose size is larger than about 1 wm. The temperature depen-
dence of the microcoercivity, k., for a 180° wall is shown to be approximately linearly
dependent on Ay;1/M,, where Ay is the magnetostriction constant and M, is the saturation
magnetization. (2) the average microcoercivity, h,, associated with a large number of ran-
domly distributed dislocations is proportional to AWM, (0.5 < m £ 1), where w is the
wall thickness. (3) the microcoercivity for a sinusoidal stress is strongly dependent on the
stress wavelength; microcoercivity is maximum when the wavelength is roughly five times

the wall thickness.

Based on the model developed in the dissertation, a relationship is established

between microcoercivity and two measurable hysteresis parameters — saturation remanent




magnetizatiori, M,,, and bulk coercivity, H,, for an ensemble of identical MD grains. It is

shown that the temperature dependence of M,, and H, for an ensemble of MD grains, each

containing one dislocation, is proportional to hE/MS or X%lllME. In the other extreme,

when each grain in an ensemble contains a large number of randomly distributed disloca-

tions, the temperatur’é dependence of M, and H, is proportional to the average microcoer-
civity, sz or MW" M, (0.5 < m <1).

Comparison with experimental results of the temperature dependence of H, shows
that the H, data for small MD, synthetic magnetite are well fitted by the curve of A, /M.
However, the H, data for rock samples used by Hodych [1982, 1986] and for samples
containing crushed and unannealed magnetite are not in an agreement with the predicted
thermal variation of A,;;w™/Mj; instead, they follow a curve given by Ayy1/M,. A possible

interpretation for this is that magnetization changes in these grains are determined by non-

uniform magnetization rotation by large inhomogeneous internal stress.
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CHAPTER 1

INTRODUCTION

1.1 Review of Existing Theories for Multidomain Grains

}
What makés palacomagnetism so successful is the ability of magnetic minerals in

rocks to carry the stable remanence throughout a long geological time period. However,

the question left to rock magnetists to answer is how and why rocks can acquire and retain
such a stable remanence.

A major breakthrough in understanding the mechanism by which rocks can acquire

and retain a stable remanence was made by Neel [1949], who constructed a theory of ther-

mal remanent magnetization (TRM), acquired by a rock during its cooling in the presence

of a magnetic field, for small uniformly magnetized or single domain (SD) grains. The

theory explains, at least in a first order of approximation, the changes in the intensity of

TRM with inducing field, and most importantly the stability of TRM with respect to tem-

perature and an external field. With Neel’s SD theory, one could explain why TRM car-

ried by igneous rocks can be preserved over a long geological time period. However, as
Neel himself was aware, a large fraction of magnetic grains in rocks are in sizes that are
too large to be SD grains and yet they can carry very stable TRM. Therefore, Neel [1955]

later proposed a theory of TRM for large and non-uniformly magnetized or multidomain

(MD) grains. Unfortunately, his MD theory is not as successful as his SD theory. Particu-
larly for small MD grains containing only a small number of domains, there are severe
deficiencies between the theory and observations. Neel’s MD theory was later modified

and developed by several authors [Stacey, 1958; Everitt, 1962; Schmidt, 1973; Dunlop and



Waddington, 1975; Shcherbakov and Markov, 1982]. Basically, all of these authors attri-
buted the acquisition and the stability of remanence of a MD grain to domain wall motion,

and each theory developed has its own successfulness in certain aspects but deficiencies in

others.

Several mechanisms, other than domain wall motion, have been suggested to explain
the observed magnetic behaviors of small MD grains. Small MD grains are often found
experimentally to behave in many aspects similar to SD grains, and they were therefore
named, first by Stacey [1962], as pseudo-single-domain (PSD) grains. The suggested
mechanisms for PSD behaviors include the spin pinning by a screw dislocation
[Verhoogen, 1959]; the Barkhausen discreteness of a domain wall [Stacey, 1963]; surface
domains pinned by surface anisotropy and defects at surface [Stacey and Banerjee, 1974;
Banerjee, 1977], and domain wall moments [Dunlop, 1977]. Recently, by observing
domain structures of individual grains, Halgedahl and Fuller [1983] found that some small
MD grains could have SD structures in some remanent states but display MD structures in
demagnetization states, and they thus suggested the failure of domain wall nucleation as
the controlling mechanism of PSD behaviors. This mechanism explains qualitatively why a
MD grain can sometimes act as a SD grain. However, as the applicability of this mechan-
Ism may be limited only to MD grains with size slightly larger than SD grains, the prob-
lem associated with MD grains each containing at least one wall in remanent states is still
unsolved. In an attempt to provide an explanation to the stability of these grains, Moon
[1985] suggested a new mechanism called transdomain TRM. By realizing that a MD

_grain can have several local energy minimum (LEM) states and there is an activation

energy for a grain to transit from one LEM state to the other by nucleating (or denucleat-

ing) a domain wall, Moon [1985] suggested that the stability of a small MD grain might




_pe controlled by the activation energy associated with domain wall nucleation.
‘ Apparently, the observed high stability of small MD grains can be explained by this theory
‘only when the activation energy associated with domain wall motion is higher than that

associated with domain wall nucleation.

For all of these suggested PSD mechanisms, except for the nucleation controlled
mechanism suggested by Halgedahl and Fuller [1983], the motion of domain walls still
play, more or less, a role in determining the magnetic properties of PSD grains. For exam-
ple, to determine the bulk coercivity, one must take both the PSD moment (whatever it is)
and the MD moment resulting from domain wall motion into account. Since the bulk coer-
civity is the strength of the applied field at which the total moment is zero, even the PSD
moment is highly pinned, the bulk coercivity could be still small if the MD moment is
soft. In addition, there are suggestions [e.g. Schmidt, 1973; Merrill, 1981] that small MD
grains with only few domains might behave very differently from large MD grains and
thus contribute to observed PSD behaviors. Thus, giving an examination of the problems
with existing theories based on the model of domain wall motion and making necessary
improvement will help one get a better understanding not only of the large MD behaviors

but also of the small MD grains or PSD behaviors.

The motion of domain walls in a MD grain is determined by three factors: (1) the
external field, which tends to push walls such that the net magnetization along the field
direction increases; (2) the demagnetizing field, which pulls walls to reduce the net mag-
netization and thus often acts against the external field; and (3) the energy barriers ori-
ginating from the interaction between domain walls and defects. In the construction of a

MD theory, one often confronts two difficulties, being associated with the last two factors.




The demagnetizing field varies non-uniformly inside a MD grain. However, since
one is often interested in the behavior of a whole grain rather than an individual wall, a
mean field approximation is commonly used [e.g. Neel, 1955; Stacey, 1958, 1963] in

which the average demagnetizing field, H;, of a MD grain is written as
Hy=-NM ' 1.1

where M is the net magnetization of a grain and N is so-called demagnetizing factor. The
idea was borrowed from a SD grain in which the average demagnetizing field can be writ-
ten as — N M, (N in general is a second order tensor and M; is a vector), where M; is the
saturation magnetization and N is determined solely by the shape of a grain [e.g., Chika-
zumi, 1964]. An analogy was made to a MD grain by replacing M by M. The use of the
demagnetizing factor for MD grains was later questioned by Merrill [1977, 1981], who
argued that the demagnetizing factor used for a MD grain depends not only on the
geometry of a grain but also on its domain structure. Subsequently, calculations by Dunlop
[1983] and Xu and Merrill [1987a] for cubic MD grains with sheet domain structure
confirmed Merrill’s argument and showed that MD demagnetizing factors depend not only
on M but largely on the number of domains. Since the calculations show that the changes

in N with M for a given number of domains are relatively small, particularly in the region

of M « M,, eqn. 1.1 is often taken to be a first order approximation of the demagnetizing

field in a MD grain with a fixed number of domains. However, although eqn. 1.1 does
provide a first order approximation for the average demagnetizing field in a MD grain,
such an expression is not necessarily a good description for the demagnetizing fields acting
on individual walls in a small MD grain. In other words, the demagnetizing field in a

small MD grain may vary significantly from wall to wall. As an example, Moon and




errill [1986] calculated the screening effect of free walls on the moment associated with
pinned wall in a rectangular grain with a sheet domain structure. They found that the

ount of the moment being screened by free walls is different when a side wall is pinned

versus a middle wall. Their results indicate that there are different behaviors of demagnet-

izing fields for different pinned walls. Moreover, the expression given in egn. 1.1 may

tead to incorrect results. For example, consider a MD grain in which one wall is free to

move and all others are pinned. By using the demagnetizing factor approximation given

by eqn. 1.1, one would expect that at a zero external field the free wall would be subjected

to a demagnetizing field until it moved to a position where the net magnetization of the

_ grain were zero. This is incorrect conclusion because the free wall may partly, but not

completely, screen the moment associated with those pinned walls. The cause of this

problem is that eqn. 1.1 cannot distinguish two domain states that have different arrange-

ments of wall positions but have the same values of M. To overcome this nonuniqueness

problem, Shcherbakov and Markov [1982] attempted to use more than one demagnetizing

factor to describe the demagnetizing fields in different regions within a MD grain. How-

ever, these demagnetizing factors are hard to determine in practice, and the final results are

left with more adjustable parameters.

Another difficulty one often confronts in the construction of a MD theory is how to
model the energy barriers that impede domain wall motion. The origin of the energy bar-

riers is mainly due to the interaction between domain walls and defects. Apparently,

because of the variability of defect states and the complexity of interactions between

defects and domain walls, some simplifications are needed. For example, Neel [1955] in

his MD theory started with the relation




H-NM=H,
here H is the external field and H, represents an average wall pinning force produced by

;défects, Eqn. 1.2 is an empirical relationship, because it basically represents a portion of a
hysteresis 100p where M varies linearly with H. Although the observed hysteresis loops for

;

samples containing large MD grains do exhibit a large region where the linear relation

holds, the exact meaning of H, in eqn. 1.2 is not clear. Apparently, for a saturated hys-

teresis loop H, in eqn. 1.2 is the bulk coercivity. Yet, for a non-saturated hysteresis loop,

eqn. 1.2 may still be applicable in the region where M varies linearly with H but H, is no

longer the bulk coercivity. This implies that H, may be different for different magnetiza-

tion processes. Thus, for a particular magnetization process such as an acquisition of

TRM, it is not clear what value of H, in eqn. 1.2 should be used. The cause of this confu-

_sion is similar to the use of the average demagnetizing field. By writing H,, (or H, in the

case of the average demagnetizing field) as some sort of average without first examining

the behavior of individual walls, one often losses what the average stands for.

In MD TRM theories, one is more interested in the temperature dependence of H),
being often written as H, = CM{" [e.g., Everitt, 1962; Stacey, 1958; Dunlop and Wadding-

ton, 1975), where both C and m are constants independent of temperature, Merrill [1981]

later suggested that H, be expressed as a series expansion in M by arguing that H, might

be controlled by various types of interactions having different temperature dependences.

Apparently, two steps are needed to determine the value for m (either in a single term or

in a series); one must first understand the physical origin of domain wall pinning and then

find an appropriate average method for H,,.

An alternative approach in MD theories has often been used, in which the energy




rriers associated with domain walls are modeled with some simple functions, such as a

-usoidal function [e.g., Stacey, 1963; Schmidt, 1973] or a zig-zag function [e.g., Dunlop,

973], with both magnitude and wavelength adjustable. By doing this, one is often able to

tablish certain relationships between magnetic parameters. For example, Stacey [1963]
derived, by using a sinusoidal function, a relation between intrinsic initial susceptibility
and bulk coercivity for MD grains, in which the former is presumably related to the slope
at the bottom of the energy barriers while the latter to the maximum slope of the energy
barriers. Obviously, the establishment of such a relationship depends critically on the
shape of energy barriers used in the model. Moreover, the use of a simple function to
model the energy barriers is also found useful in considering the effect on magnetic pro-

: perties of thermal activations, which is expected to be important in acquisition of TRM at
k high temperature or in acquisition of a viscous magnetization over a long time period. In
those cases, the height of an energy barrier becomes more important than the slope. How-
ever, it is questionable how reasonable the modeling of these simple functions is, and
again one has to look at the physical origin of the energy barriers in order to give a

theoretical justification.

In short, to refine the existing MD theories, one needs to obtain a better understand-
ing of the interactions between defects and domain walls and then to find an appropriate

average method for both the demagnetizing field and H,, in a MD grain.

1.2 Defects and Their Effects on Domain Wall Pinning

Defects are in general classified, according to their dimensions, into point, line, sur-
face, and volume defects. Each of them can be further classified into various species. For

example, surface defects include grain boundaries, subgrain boundaries, planar precipitates,




cking faulis, twin boundaries, antiphase boundaries, and etc.. However, depending on
w a crystal is formed and treated, only certain types of defects may be present in a cry-
Defects that commonly exist in magnetic minerals with a single crystalline phase and

1at might pin domain walls are mainly: point defects (either vacancies or impurities),

dislocations, stacking faults, and pon-magnetic inclusions. The evidence and suggested

echanisms of domain wall pinning by these defects are discussed in the following.

Because of a relatively low activation energy, point defects are diffusive and there-
fore they can produce time-dependent changes in magnetic properties. For example, they
_may cause the magnetic aftereffect (the change in magnetization with time at a constant
_magnetic field), or disaccommodation (the change in initial susceptibility with time).
These phenomena are often interpreted as the result of a rearrangement through diffusion
: of point defects in a domain wall, resulting in either a shift of the minimum energy posi-
“tion of a wall (a cause of a magnetic aftereffect) or a reduction of domain wall energy (a
cause of disaccommodation). The time scale in which the effect of point defects can occur
s given by the characteristic diffusion time, 7, of the point defects, being determined by
| i=f 1exp(E/kT), where E is the activation energy and f = 103571 for magnetite [Kron-
muller et al, 1974]. For vacancies and impurities in magnetite, E is about 1.0eV [Walz et
al, 1979, 1982; Kronmuller et al, 1974], corresponding a diffusion time of 10% at room

temperature. Thus, the diffusion of point defects may not contribute greatly to long-term

time dependent behaviors.

Dislocations are one of the most important defects that have strong interactions with
domain walls. Dislocations that intersect a surface of a crystal may be observed under the
microscope as etch pits. There are few direct demonstrations of domain wall pinning by

dislocations le.g., Soffel, 1970], and most of evidence is from indirect measurements. For




ample, Shive [1969a] showed that saturation remanent magnetization and bulk coercivity
nickel increase with increasing in strain and hence the density of dislocations introduced
cold-rolling. Lowrie and Fuller [1969] performed an annealing experiment on large sin-

stals of magnetite and found that the magnetic stability of the crystals changed with

e CIy
state of annealing. They stuggested that the observed changes after high temperature

ealing were associated with the changes in dislocation structures of the crystals. An

ealing experiment was also done by Smith and Merrill [1984] on small magnetite

rains with size from 2um to 150pm. They showed that the magnetic stability of these

agnetite grains decreased with annealing time at 650°C and suggested that it was disloca-

on arrays that caused the pinning of domain walls.

Dislocations are also diffusive, which is why high temperature annealing can reduce

e number of dislocations in a crystal. The activation energy associated with the diffusion

f dislocations may range from about 3eV to 6eV [e.g., Lowrie and Fuller, 1968, 1969],

varying from sample to sample. Because of the mobility of dislocations, the passage of a

domain wall near a dislocation can have two different results: either the wall is pinned and

then unpinned at the dislocation site with the position of the dislocation unchanged, or the

wall brings up and moves with the dislocation. Which one occurs is apparently dependent

_upon the interacting force between a wall and a dislocation and the force that pins a dislo-
cation. The evidence that dislocations can be moved through the interaction between a
kdislocation and magnetization was provided by Chebotkevich et al [1966], who showed
that some of the dislocations in an iron crystal changed their positions after applying a

_high magnetic field. However, no such evidence has so far been reported for magnetic

minerals. This could be due to either the interacting force is smaller and the pinning of

_dislocations is stronger in magnetic minerals than in iron, or more likely, the number of




ocations that can be moved is small and the resultant changes therefore are not observ-

The diffusional process of dislocations might cause time dependent changes in mag-

otic properties similar to one due to a rearrangement through diffusion of point defects

ide a wall. Since the activation energy of dislocations is much higher than that of point

efects, the effect of dislocation diffusion is expected to occur on a much longer time
ale.

It is generally believed that the interaction between a dislocation and a domain wall

1s controlled mainly by the magnetoelastic effect. The theoretical treatment of such an

teraction between a dislocation and a wall was first given by Vicena [1955]. The method

eveloped was later simplified [e.g., Seeger at al, 1964] and applied to multiple disloca-

tions [e.g., Trauble, 1966, 1969]. As predicated by theories [e.g., Trauble, 1969], the tem-

perature dependence of bulk coercivity, H,, for large single crystals is given as

where ) is the magnetostriction constant, w is the wall thickness which is often strongly
temperature dependent, and m has a value from 0.5 to 1 for randomly distributed disloca-
tions. Eqn. 1.3 is in good agreement with experimental measurements made on large single

‘crystals such as iron, nickel, and cobalt [e.g., Trauble, 1969]. Interestingly, as measure-

ments were made on rock samples containing MD grains of magnetite, Hodych [1982,

1986] found that the temperature dependence of bulk coercivity is better fitted by a simple
NMS than by eqn. 1.3. Hodych’s result is puzzling because one would intuitively think that
: changes in wall thickness with temperature should have an explicit effect on H,. Indeed it

was the consideration of this problem that motivated the work presented in this




rtation. It was soon realized, after a close examination of the theories developed by

or et al [1964] and Trauble [1966], that their theories of bulk coercivity, H, was

‘mly developed for bulk crystals. Yet, samples used by rock magnetists are different in
eral aspects from ones that the theories can be applied to. For example, rock samples

ain a small fraction ‘of magnetic grains with size varying from submicron to

en cont

eral tens of micron; therefore, instead of using a statistical average over all walls in a

e crystal, the average should be done over an ensemble of grains. As will be shown in

hapter 5, these two different average methods will actually yield two very different

There are a few direct observations showing that domain walls in magnetite are

sinned by stacking faults [Lapworth et al, 1971; Jakubovics, 1975]. Jakubovics [1975]

ggested that it was the modification in the exchange interactions in the neighborhood of

a stacking fault that gave rise to the pinning force of a domain wall. The suggestion is
ractive because if the modification is sufficiently large that the exchange coupling

ween two layers adjacent to a stacking fault becomes antiferromagnetic, then an instant

wall with infinitesimally thin thickness may be formed and the pinning of such a wall is
obviously very strong (a stacking fault in a real crystal may exist only in a part of wall

area and therefore the wall thickness in the fault region is still finite because of the

exchange coupling with the rest area of the wall). However, among a large number of

domain pattern observations on magnetic grains of magnetite and titanomagnetite, there are

no clear indications of either a sharp change in wall thickness or a very strong pinning of

a large section of a domain wall, implying that the existence of such an antiferromagnetic
coupling near a stacking fault in magnetic grains may be very rare. Possible structures of a

stacking fault in magnetite will be examined in Chapter 2. But, a detailed consideration of
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this problem will not be the main subject of this dissertation.

‘ Andtrler important type of defects that commonly exist in magnetic minerals is non-
magnetic inclusions. Domain wall pinning by such inclusions has been observed in
fitanomagnetite by Soffel [1970]. The interaction between a domain wall and a non-
magnetic inclusion is ﬁainly due to: (1) the reduction of wall volume; and (2) the accumu-
lation of magnetic poles around an inclusion [e.g., Craik and Tebble, 1965]. The coercivity
associated with randomly distributed inclusions with spherical shape was calculated by
Dijkstra and Wert [1950]. However, as Soffel [1970] estimated, the effect of an inclusion
on domain wall pinning becomes more important than that of a dislocation in magnetite
and titanomagnetite only when the size of an inclusion is larger than one micron or so.
Such large inclusions are occasionally observed in large titanomagnetite grains [Soffel,
1970]. However, as Soffel [1970] concluded, the existence of inclusions is often very rare,
particularly in small MD grains as is expected; therefore, non-magnetic inclusions might
play only a minor role in domain wall pinning as far as the average behavior of an ensem-

ble of grains is concerned.

1.3 Statement of Objectives

In this dissertation the theoretical investigation of the magnetic properties of MD
grains will be studied. Magnetite, a mineral that has been well studied in rock magnetism,
will be used throughout the calculations. The dissertation is basically divided into two
parts. The first part focuses on examination of how an individual wall behaves around
defects, mostly dislocations. The second part of this dissertation focuses on how to estab-

lish a relationship between the microscopic quantities associated with individual walls and

the macroscopically measurable parameters. A new method is developed to adequately
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CHAPTER 2

FUNDAMENTAL

Crystal Structure of Magnetite

Magnetite, Fe3O4, has a spinel structure of inverse type above the Vewrey transition
perature at 119K with a cell dimension a = 8.3944. Figure 2.1 shows a unit cell of a
el structure from Bloss [1971], which consists of 32 oxygen ions forming the face-
tered cubic (fcc) structure, 8 tetrahedral (A) sites, and 16 octahedral (B) sites. In a nor-
spinel structure, the A sites are occupied by divalent jons and the B sites by trivalent
ns. In an inverse spinel structure such as magnetite, the A sites are occupied by-trivalent
¢°") ions; then half of the B sites are occupied by divalent (Fe**) ions and the remaining

alf by trivalent (Fe>*) ions.

Dislocation structures in spinels resemble in some aspects ones in a fcc monoatomic

rystal, such as nickel. For instance, the most likely Burgers vectors in both spinel and

ckel are %<110>. (Hereafter, "[ 1" and "( )" denote respectively an individual crystalline

ction and plane, while "< >" and "{ }" denote respectively a group of directions and
anes of the same type.) However, because of the existence of interstitial cations in the
c lattice of oxygen ions, dislocation structures in Spinels are more complicated. Both
theoretical considerations and experimental examinations of dislocation structures in
inels have been made by a number of authors [e.g., Homstra, 1960, 1963; Lewis, 1966,

1968; Doukhan and Escaig, 1974], and some of their results are reviewed below.

The configuration of a dislocation can be described by the Burgers vector, b, and the

slocation line vector, 7. For a screw dislocation, the dislocation line lies along the




e — OCTAHEDRAL
SITE

‘igure 2.1. A unit cell of a spinel structure from Bloss [1971], which consists of 32 oxygen
ions forming a face-centered cubic structure, 8 tetrahedral (A) sites, and 16 octahedral
(B) sites. In an inverse spinel structure such as magnetite, the tetrahedral (A) sites are
occupied by trivalent ions, and half of the octahedral (B) sites are occupied by divalent
ions and the remaining half by trivalent ions.




on of the Burgers vector, that is, b and ¢ are co-linear. In contrast, the dislocation
or an edge dislocation lies in the direction perpendicular to the Burgers vector, and

ane defined by the dislocation line and the Burgers vector is the slip plane. As just

oned, the most likely Burgers vectors in spinels are —g—<110>, which are the shortest

ors that connect crystallogr@hically equivalent sites of oxygen ions in the spinel struc-

as can be seen from Figure 2.1. The slip planes in spinels are likely in the {110} and

} planes [e.g., Doukhan and Escaig, 1974]. Therefore, for an edge dislocation with

Burgers vector -(2-1-[110], the corresponding dislocation line vector, t, is either [001] (the

) slip plane) or [T12] (the (1T11) slip plane). Listed in Table 2.1 are three common

es of dislocations in the spinel structure with their Burgers vectors, b, slip planes, and

slocation line vectors, .

The dislocations listed in Table 2.1 are all perfect dislocations and they may dissoci-

e into partial dislocations. To illustrate this, let’s first look at the atomic planes in the

inel structure in the direction of the Burgers vector. The spinel structure shown in Figure
1 has three different atomic planes in the [110] direction, being stacked in a sequence of

- - gpq'pqpq’p - - - with the interplanar distance of aV2/8. The arrangements of ions in

ch plane are shown in Figure 2.2, where the spheres represent the oxygen ions, the solid

squares the tetrahedral (A) sites, and the solid triangles the octahedral (B) sites. Thus, the

displacement of a perfect dislocation with the Burgers vector -g-[llO] eventually involves

four subsequent atomic planes, as illustrated in Figure 2.3(a) for an edge dislocation,

where the upward direction can be either [170] or [1T1] respectively for the (110) and
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e 2.1. Three common types of perfect dislocations in magnetite.

Burgers Vector b

Slip Plane

Line Vector t

a ;
> [110]

(110)

[001]

a
> [110]

111

[112]

a
-5-[110]

(110) or (111)

[110]

o

-



[110] | [001]

Figure 2.2. The atomic arrangements in the planes ¢, p and ¢’ normal to [110] for the
spinel structure. The spheres are the sites of oxygen anion, the solid squares are the A
sites, and the solid triangles are the B sites. The directions of the lattices in these
planes are shown in the lower right; a dislocation may slip in a plane normal to [111]
or [110] and the corresponding line vector is [112] or [001].




dissociate into at least two partial dislocations, and the reactions involved, as sug-

by Doukhan and Escaig [1974], are

-‘2£[110] — %[110]+%[110] 2.1(a)

the (110) slip plane, and

£2’-[110] — %[12T]+%[211] 2.1(b)

the (111) slip plane. The reaction described by eqn. 2.1(a) results in two co-linear par-

dislocations and therefore the character (edge or screw) of the dislocation does not

ange after the dissociation. In contrast, the reaction described by eqn. 2.1(b) results in

o mixed partial dislocations, as the Burgers vectors of the resultant partial dislocations

> neither parallel nor perpendicular to their dislocation lines which are either in the [110]

rection for a perfect screw dislocation or in the [112] direction for a perfect edge dislo-

tion. The dislocation structure after the dissociation is schematically illustrated in Figure

3(b). It is seen from Figure 2.3(b) that the stacking sequence in the [110] direction after

e dissociation lying either above or below the slip plane is not altered. However, the

acking sequence across the slip plane lying between two partial dislocations is altered;

is can be seen in Figure 2.3(b) by noting that the g (or q") planes between two partial
slocations are changed to the ¢’ (or ¢) planes when they cross the slip plane. Conse-
ently, a stacking fault that lies in the slip plane and is bounded by two partial disloca-

ons, as indicated by the shaded area in the Figure 2.3(b), is created. Experimental exami-

tions of dislocation structures in spinels by Lewis [1966, -1968], Radford and Newey

967], and Doukhan and Escaig [1974] have revealed the dissociations into a pair of par-




[110] or [111]

tion of an edge dislocation into two par-

tial dislocations and a stacking fault indicated by the shaded area in the slip plane

(either (110) or (111) plane).

issoci

cvonsecassssscarssagsts O
./p

N, -
- o e - o'
Vp

aqpadpqpqdp 4PqdPAPQAP

‘- qpq'papq’p - - - . (b) illustrates a d

[T
o
Q
g
E
o
57
17}
<
g

-y
b5
3
<
S
7]
7]
g
a
Q
-yt
g
=
&
[72]
g
g
(=}
»
g
[}
g
Q
- Q
<
—
jon
7]
o -t
hel
[72]
=
g
Q
.
k>
(=]




was reported by Lewis [1966] to be 30027004 in MgALO,.

As the displacement associated with each partial dislocation shown in Figure 2.3(b)
ontains two subsequent atomic planes, a further dissociation, totally resulting in four
dislocations, was suggested by Homstra [1960] and Doukhan and Escaig [1974].

; N
reactions involved can be described as

a 41T + 21217 + 2217 + 21121
:2[110]——9 12[ ) 12[ 1 12[ ) 12[ ]

e continuing dissociation of eqn. 2.1(a), and

a a N d qnT

- Lr11] + =[112] + =[112] + —[121 .
2[11’0] — 6[2 ] 6[ ] 6[ ] 6[ ] 2.2(b)

he continuing dissociation of eqn. 2.1(b). After the dissociation three stacking faults
reated and each is bounded by two partial dislocations. However, these further disso-
ons into four partial dislocations were not found from experiments, and possible rea-

for this was discussed by Doukhan and Escaig [1974].

Discussed above is the static configurations of dislocations in spinels. Yet, these

0 cause the dislocation to move, as observed by Chebotkevich et al [1966]. However,
nsideration of this problem requires knowledges of both the dynamic properties of dislo-
ions and the interaction between magnetization and a dislocation. As the former is not a
‘ understood subject, particularly for dislocations in spinels, and the latter is the major
ject of the present work, the effect of the magnetization-dislocation interaction on the

tion of dislocations will not be investigated in this dissertation.




agnetic. Energies

The magnetic energies discussed below are the classical and phenomenological ener-

By classical it is meant that in use of these energies one assumes that the direction of
,:ﬁon magnetization, M, is a continuous function of position inside a crystal, while

magnitude of M, at eagh point is constant at given temperature. For magnetite,
480 emu‘cm'3 at room temperature, and the variation of M, with temperature is

in Figure 2.4, where the data points are taken from Pauthenet [1952]. A brief dis-

on of how the magnetic energies depend on the direction of M, is given below. More

eral books [e.g., Chikazumi, 1964; Morrish, 1965].

(a) Exchange Energy, E,. The exchange energy originates from the exchange interac-
of electron spins of neighboring ions, and it can be expressed in a classical approxi-

tion for a cubic crystal as

f~ E,=A j[(Va1)2 + (Voo)? + (Vog) dv

ere A is the exchange constant and o are the direction cosines of M, with respect to

ee cubic axes of the crystal.

The magnitude of the exchange constant, A, depends directly on the strength of the
éhange interaction Qf two neighboring cations. Since the cations in a spinel form two
blattices, namely, the A sites and the B sites, there are basically three different exchange
teractions, whose strengths are represented respectively by the corresponding exchange

grals of J,p, J44, and Jpp. Furthermore, as two neighboring cations in a spinel are
parated by a large oxygen ion, the exchange interaction between two cations in a spinel

via non-magnetic oxygen ions, known as the the superexchange interaction. Figure 2.5
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ure 2.4. The variation with temperature of the saturation magnetization, M(T), normal-

1zed to the value at the absolute zero temperature. Data points are taken from Pauthenet
[1952]. The solid curve is an approximate fit to the data points.
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cally illustrates such a superexchange interaction in magnetite through the over-

the 2p electron orbitals of an oxygen ion and the 3d electron orbitals of two iron
The strength of the superexchange interaction is therefore expected to depend on the
ces and the angle of cation-anion-cation. The superexchange interaction is weakened
‘cation-anion separation becomes large or if the angle of cation-anion-cation deviates
180°, and the interaction is weakest when the angle is 90°. From both theoretical
erations of distances and the angles by Gorter [1954] and experimental measure-
ts such as given by Martin [1967], one finds that the intersublattice (A-B) interaction
redominant over the intrasublattice (A-A and B-B) interactions in spinel. This may also
n from the atomic arrangements shown in Figure 2.2, in which for a cation in the B
with a nearest neighboring cation in the A site in plane g or ¢’ both distances and
e are favorable for the superexchange, while for two cations within the A or B sites

er the angle, distance, or both are less favorable for the superexchange. By neglecting

and Jpp, the exchange constant, 4, is then given by

2 4plS4S
A= ZlaBoAcB
a

24

ere S , and Sy, are the average spins of the cations respectively in the A and B sites. For
gnetite, A = 1.22 x 10 %rg/cm [Moskowitz and Halgedahl, 1987; Heider and Williams,
8] at room temperature, and the variation of A with temperature follows approximately

M(T) [Heider and Williams, 1988].

(b) Magnetocrystalline Anisotropy Energy, E,: This energy describes the dependence
the internal magnetic energy on the directions of magnetization. E, for a cubic crystal

an be written on a first order approximation as
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= K [(0d0§ + ofod + o)) dV
: K is the magnetocrystalline constant. The room temperature value of K for mag-
is =1.36 X 10° erg'cm‘B, and its variation with temperature from 140 K (where
) to the Curie temperature (T, = 853 K) is shown in Figure 2.6, where the square
triangular data points are resfpectively from Syono [1965] and Fletcher and O’Reilly

1, and the solid curve is the approximate fit to the data points.

(c) Magnetoelastic Energy, E,: This energy results from the interaction between

or strain) and magnetization. E; for a cubic crystal is

=- ';'7“100_"[5110‘% + 605 + 63303] dV

- 37»111_[[0120‘10‘12 + Op30003 + G3,0304] dV

re 0 are the components of the stress field with respect to three cubic axes of the cry-
’ and Ay and Ay are the magnetostricion constants. For magnetite,

=—19x 107 and Ay =81 X 107 at room temperature [Syono, 1965; Klapel and
ve, 1974] and the variations of Ao and A;;; with temperature are shown in Figure 2.7,
re the circular, triangular and square data points are respectively from Bickford et al
55], Syono [1965], and Klapel and Shive [1974], and the solid lines are the approxi-

e fits to the data points.

The stress in eqn. 2.6 may be broadly classified into three types: macrostress, micros-
, and magnetostrictive stress. As the sources of macrostress and microstress will be
ussed in the section 2.5, magnetostrictive stress here is referred to the stress induced
' the magnetization of a crystal. For a given magnetic structure, o, magnetostrictive

S8 is determined by minimizing with respect to stress, G, the sum of the
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: The two boundaries of the slab are respectively at y=d/2 and y = — d/2 and the z

< is along the dislocation line. For a straight screw dislocation in the center of the slab,

e non-zero Stress components are Gy, and O, given by

o o B parisin ™ cocn
‘6”_21: ay[tan SlndeChd]

Oy = %1%—88; [tan‘lsin% csch-%]

r free surface boundary conditions [Eshelby, 1979] and

oot
T om 2+ y?

B
& 2t 2+

om eqn. 3.6 for welded boundary conditions. In both cases, G, are positive in the
gion of y < 0 and negative in the region of y > 0, and the average values, O, vanish. In
ontrast, G,, are positive in the region of x > 0 and negative in the region of x < 0. The
riations of G, (normalized to pb/d) with x/d and y/d for these two boundary conditions
e shown respectively in Figure 4.1a and 4.1b, where the solid and dashed curves
present respectively. the positive and negative values of Gy, and the numbers represent
e magnitudes. The average values, Gy,, over the wall plane can be easily obtained from

0s. 4.1a and 4.1b, given as
3
0, = %%ltan‘lcschE

I the free surface boundary condition and




 4.1. The two-dimensional variations of the stress field, Gy, associated with a screw
ocation in a slab with free surface boundaries in (a) and welded boundaries in (b),
re the solid and dashed lines represent respectively the positive and negative values
o), and the numbers represent the magnitudes of Oy, d/ub. The average values of Gy,
shown in (c) as a function of distance, x/d, from the dislocation, where the solid
rve corresponds to free surface boundaries and the dashed one to welded boundaries.
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¢ welded boundary condition, where [ is the length of the dislocation. Figure 4.1c
étes the variations of G, with the distance, x/d, from the dislocation, where the solid
for the free surface boundary gondition and the dashed line for the welded boundary

n. In both cases, the magnitude of the stress decreases with increasing distance
from the dislocation, and G,, — 0 as x — . However, when d goes to infinity, 5y,
in eqns. 4.1a and 4.1b becomes a step function with a magnitude of b/, a result

as been discussed in the last chapter.

For a screw dislocation with an offset, ¥, to the center of the slab, ), and G,, have
calculated for the free surface boundary condition by Ashelby [1979], and similarly
s for the welded boundary condition can be obtained simply by replacing y by y — y in
4.1b. In both cases, the divisions of regions with positive and negative values of G,

0, are still maintained in a similar way as for a centered dislocation. Thus, by averag-

ver y, Gy, > G, for a small offset. For a large offset, the stresses for the free surface

ndary condition become small and finally vanish when the dislocation moves to the
ndary. For the welded boundary condition, G,, can actually be smaller than G, when
dislocation is very close to the boundary. In the following, only a centered dislocation

onsidered.

No analytical solutions have been given for the stress field associated with an edge
ocation in a slab with free surface boundaries. However, by examining the stress of an
e dislocation in an infinitely large crystal or in a slab with welded boundaries, one
s that the variations of average stress components for an edge dislocation are similar to

s for a screw dislocation. In addition, the similarity in A, for a screw and an edge




ge grain has been seen from the results obtained in the previous chapter

onin alar
ns. 3.18 and 3.25). For simplicity and brevity,

the calculation given in the next

are only for screw dislocations.

rocoercivity Associated with a Screw Dislocation in a Slab

this section, the Stress solutions for a single dislocation are used to determine the

ge over which the boundary effect on ki is unimportant and therefore a Step func-

proximaﬁon can be used. Calculations are given only for 180° walls.

ing the same coordinate system as in example 2 of section 3.3, the stress associ-
ith a centered screw dislocation in a slab has only one non-zero component, Gy

tress components with respect to three

by eqns. 4.2a and 42b. By transforming the s

e cubic axes to ones in the wall coordinate system, one has

311 = -622 = 633 = 612 = 0 4.3

abetical subscripts are used, respectively, 10 denote quantities

and those in the wall coordinate system.

 with respect to three crystalline cubic axes
the direction cosines of magnetizations of a

ndingly, the transformation of
180° wall gives

1 .
— =.—-—-Sn . a = -
0 5 in¢ 3 cos¢ 44

y eqn. 2.25, one obtains

tuting eqns. 4.3 and 4.4 into the expression of E,, given b

o0
= = 3Moo j G,,(x) singcos¢ dx 45

—o0

ingcos¢ as a function of (x — xp)lw is given in eqn. 3.22.




0. 4.5 can be numerically integrated with T,(x) given by either eqns. 4.2a for the
ﬁndary condition or 4.2b for the welded boundary condition. The results for E,, as a
n of xow are plotted respectively in Figures 42a (free boundaries) and 4.2b
boundaries) for different values of w/d. Figures 4.2a and 4.2b show that unlike in
tely large crystal, the enérgy barrier produced by a dislocation in a crystal of finite
oes to zero as the distance between a wall and a dislocation goes t0 infinity, and as

':b thickness increases the energy barrier is more like one in an infinitely large cry-

Correspondingly, the microcoercivity, k., can be numerically calculated by using eqn.

th 0,,(x) given in eqns. 4.2a and 4.2b and the definition given in eqn. 3.3. The vari-
of h, with w/d obtained are shown in Figure 4.3, where the solid line is for free sﬁr—
boundaxies and the dashed line for welded boundaries. The K used in Figure 4.3 is
rocoercivity in an infinitely large material (d — =), as given by eqn. 3.25. Figure
hows that for a given dislocation and a given wall structure, the microcoercivity, A,
Eds on the thickness of the slab. However, one also sees that for a grain, say,
0 w, the correction to h, due to grain boundaries becomes very small (less than 15%
relded boundaries and less than 20% for free surface boundaries). For magnetite, the
thickness at room temperature is about 0.1um, and the corresponding grain size is
id 1pwn. Above 'that size, stress associated with a dislocation can be well approxi-
dasa step function. As the size decreases below 1jm, this approximation becomes
asing poorer. This is unfortunate since 1pum falls in the middle of the pseudo-single-
n (PSD) size range for magnetite grains. Nevertheless, for large PSD and MD grains
agnetite, a step function appears to be a good approximation to a stress associated

single dislocation.
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the wall thickness to the slab thickness, where the solid curve is for free surface boun-
; daries and the dashed one for welded boundaries.




crocoercivity Associated with a Dislocation Dipole

a large grain, microstress is likely to be produced by more than one dislocation.
first step, let us consider the microcoercivity associated with a dislocation dipole.
assume in the following calculations that we are in the region in which the stress

ated with a single dislocation can be approximated by a step function.

A stable configuration of a dislocation dipole is calculated by considering the
ting force between two dislocations. For two edge dislocations the stable

ation occurs when the Burgers vectors are at 45° to the plane containing two dislo-
, lines (e.g. Hull and Bacon, 1984]. In contrast, two screw dislocations do not have
le configuration, and they always repulse or attract each other depending on whether

Burgers vectors have the same or opposite signs.

For two edge dislocations lying along the z axis and the Burgers vectors in the y

tion, the components of the average stress can be written from eqn. 3.10 with

25 as

() = i%gl [ sign(x) % sign(x—c) | G, (%) = ‘}{3”(3‘)

fe ¢ is the spacing in the x direction (normal to the wall plane) between two disloca-
s, and the plus and minus represent a dipole with, respectively, the same and opposite
of the Burgers vectors. The transformations of the average stress and the direction

ines of magnetizations of a (110) 180° wall gives respectively

1| =8y = = Ojp = 2053 = — %— ubl[sign(x) £ sign(x — ©)]




stituting eqns. 4.7 and 4.8 into eqn. 2.25, one has

+oo

= pbi(A00 + 0.5A111) J [sign(x) £ sign(x — c)]~cos2¢ dx

cos’® as a function of (x — xp)/w is given by eqn. 3.15. By using eqn. 3.11, one

WbICh100 + o.sxm)[(sechli;'i + Zﬁsech%tanh%)

c- c- c-
+ (sechz——xg- + 2VZsech—=2 tanh a )]
w w w

aximizing eqn. 4.10 with respect to xo, one obtains h, as a function of ¢/w as shown
Figure 4.4, where A¢ is the microcoercivity associated with an edge dislocation in an
te large crystal, as given by egn. 3.18. The figure shows that for a dipole of a given
cing, ¢, h, increases with increasing in wall thickness for a dipole of the same sign
lid curve), while h, decreases with increasing in wall thickness for a dipole of the
posite sign (dashed curve). This result can be understood physically: as the wall thick-
s increases a dipole of the same sign acts increasingly more like a single dislocation
th a Burgers vector of 2b while a dipole of the opposite sign increasingly appears like
annihilated dislocation. Thus, in the extreme condition of c¢/w =0, h/he=2 for a
le of the same sign and h/hS = 0 for a dipole of the opposite sign. When ¢ > w, the

all essentially senses only one dislocation and therefore h/h; approaches unity.

The dislocation dipole model is also applicable to two partial dislocations being
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ation dipole of the same (solid curve) or opposite (dashed curve) sign, with the ratio,
‘/W. of the spacing between dislocations to the wall thickness.

.




ciated from a perfect dislocation, as was discussed in section 2.1. However, for a per-

édge dislocation with the Burgers vector —;‘-[Tm], the slip plane of the dislocation

cides with the wall plane, and therefore ¢ =0 for two resultant partial dislocations.
kequently, the microcoercivity is the same before and after the dissociation. For an
dislocation with the (111) slip plane, neither a perfect dislocation nor partial disloca-

will interact with a (110) 180° wall, and therefore s, = 0.

Microcoercivity Associated with More Dislocations

For a crystal containing more dislocations, one difficulty encountered in carrying out
culation of £, is that the distribution of dislocations is usually unknown. This problem
ddressed below by considering three extreme cases of dislocation distributions. For

licity and brevity, the calculations are made for screw dislocations.

Case 1: dislocations are distributed on top of each other in a plane parallel to the

. This example allows one to estimate the maximum microcoercivity from a disloca-
array. The resultant average stress field in this case is simply a step function whose
agnitude is the sum of individual stresses associated with each dislocation. Therefore,

r an array of n dislocations, k, = nhj, being independent of the wall thickness.

Case 2: dislocations are equally spaced in a plane perpendicular to the wall. This
iform distribution of dislocations is an example of a completely ordered dislocation

ydel. The resultant stress can be written in the wall coordinate system as

n-1
C,,(x) = b Y sign(x — ic)
2 3

ere ¢ is the spacing between dislocations, n is the total number of dislocations, and the




on of the first dislocation has been assumed to be at x = 0. The stress has a value of
J2 in the region of x< 0, and then stepwisely increases in the region of
< (n—1)c until it reaches a value of nbul/2 in the region of x = (n—1)c. In an analogy

gn. 3.21, E,, for this stress distribution is given as

I

n—1+°°
E,=-— 3 ubih11 Y, fsign(x — ic)-singcosd dx
2 =00

derivative of E,, in eqn. 4.12 with respect t0 x, can be obtained by using the expres-
of singcosd as a function of (x — xp)/w given by eqn. 3.22 and the result of eqn. 3.11,
ng

JE n-1 ic —x ic - ic —
—= = bulhi "5_‘,[2‘f2_sech2 0 _ sech il tanh x()]

e calculated microcoercivity, h,, as a function of ¢/w for various values of n is shown in
gure 4.5. One sees that A, has a very strong dependence on wall thickness. When w < c,
. wall essentially senses only one dislocation and therefore h /K, approach unity. In con-

st, when w > c, the wall senses all dislocations and therefore h/h; = n.

Similar cases were considered by Trauble [1969]. However, Trauble used a some-
at different definition of k., in which h, was given in terms of an average value of
E“/axo)% Although this implies that there will not be a direct comparison between his
d our estimates of h,, both estimates show a strong dependence of h, on the wall thick-

for a given distribution of dislocations.

Case 3: dislocations are randomly distributed in a plane perpendicular to the wall. By

ndomly, we mean the positions as well as the signs of the Burgers vectors of disloca-

NS are random variables. The stress in this case can be written as
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) = 2'2% iBi sign(x — x) 4.14
=1

1C

Burgers vector of the i dislocation. Similar to eqn. 4.13, one has

x; is the position of the i’ dislocation, and B; = 1 or —1 depending on the sign of

n-1 A —
._a.._E.y- = bulllll Z ‘3;[2‘1—2_586'}12 ai
oxo =0

x.—— x.—-
0 _ sech ‘wxotanh i~ %o

w

dx, in this case is a random number determined by the distributions of B; and x;.

The statistical average value of 10E,/dxol is of most interest because it provides a
sure of h,. Suppose that the probability for a dislocation to have a positive and a
ative Burgers vector is the same and that all dislocations are in the region of
x < D. (Note D in this case is the dimension in the x direction of the grain while d

before refers to the width of the grain in the y direction.) By using the central limit

rem, one finds that the random number of Z, given by

Xi— X X
— sech
w

; [2‘f_2—sech2

[}

X; — X,
Y= [_1'2[ (2\/§sech2—'———ﬂ — sech
D w

= 3.364 /i
D

ere D — x5, x> w (i.e. the wall is not close to the edges of the grain) has been




.4 in the second step. Since the average value of Z? is unity, the statistical average
ed g y g

E,Joxol obtained by equating eqn. 4.16 to unity is

ally, the microcoercivity, A, is

. 168)»111bul —n!.l;-
*—Ms, VD

; result predicts that the microcoercivity increases with the square root of the wall
kness. Note that the h, used here is a statistical representation of the average force that
all encounters, which is slightly different from one defined by eqn. 3.3.

Trauble [1966] considered a similar problem to the above in which he allowed the

an dislocation length to vary, and he found a temperature dependence of h, given by

i )»(WT)UZ
=
s

ere 7 is the mean dislocation length parallel to the wall. By considering two extreme

es in which 7 is independent on w and T «< w, Trauble [1966] obtained respectively

¢ results are consistent with our analysis, in which / was held constant.

] Microcoercivity Associated with a General Stress Field

Microstress in a real grain will be generally more complicated than those we have
nsidered for a variety of reasons, such as deviations from the step function stress

proximation used for a single dislocation, contributions from defects other than




caiions. To gain some insight into a more general problem, we expand the average

S Gyz(x) into a Fourier series
5,0 = SAexp( D
¥z - L,

n E,, can be written as

o0
X;i— X X
E,= M1y j exp(g-nf- i)-(2\/§sech2—i-——o- — sech
k —oo Ly w

changing the variable & = (x — xo)/w and making use of the identities

400

an
jcosax sech®x dx = an csch—
2

2

400

Jsinax sechx tanhx dx = ar sech-‘—zzlc—

e obtains

oE, Ay 21xg °w ew
kA 11} N2IF(EY Y — i
3 - %A@XP( L D[2V2F( - ) — iG( L, )

here the functions, F({) and G({), are given by
F() = Cesch(®) and G = (sech(})
eir variations as a function of w/L, are very similar and are shown in Figure 4.6.

One sees from Figure 4.6 that the stress field behaves like a narrow-band-pass filter
2 domain wall. Figure 4.6 also shows that JE, /dx, has a very strong non-linear depen-
dence on the wall thickness. As expected based on the physical insight given in section

1, stress with small or large wavelengths (relative to the wall thickness) have very little
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ct on the wall pinning. Consequently, walls are preferentially pinned by stress
esented by a very narrow range of wavelengths. The maximum pinning of a wall is
uced by a stress with a wavelength about five times of the wall thickness (more pre-

ly 5.15w for F and 4.78w for G) as shown by the peaks of F and G in Figure 4.6.
Note that A, in eqn. 4.21 areéfree parameters and must be given before h. can be cal-

ted. As an example, consider a single sinusoidal stress with constant amplitude. This

Jows one to describe oE,/oxy by a single term in eqn. 4.21, given as

. 2MlAd
¢ omSM

L

2
BFAEEY + GX(
L,

LWy
k

this case, because of the strong nonlinear dependences of F and G on w, h, is very

ongly affected by any changes in w.

It should be pointed out that the shown strong dependence of the slope of the energy
rrier on the wavelength of the stress field is only one of the factors that determine the
gnitude of k.. It would be a misleading to think that for a given stress field, &, should

ecrease with increasing wall thickness as shown by the descending part of the curves in
igure 4.6. Indeed, this appears to be contradictory to the result of 4, for an array of uni-
mly or randomly distributed dislocations obtained in section 4.4, which show an
ncrease of h, with increasing wall thickness. To resolve this apparent contradiction one
eeds to note that the amplitude of the stress as well as its wavelength need to be simul-
taneously considered. In the case of a random distribution of dislocations, the characteristic
:“ avelength, L,, of the stress can be taken as D/n. When w > L, the above filter theory
pproach indicates that A, should decrease with increasing wall thickness. However, note

hat statistically speaking, the number of dislocations inside a domain wall also increases




increasing wall thickness. Consequently, the amplitude of the stress (e.g. Ag in eqn.
increases which tends to increase h, as the wall thickness increases. Both these fac-
ust be carefully modeled in an actual situation to determine the dependence of A, on

thickness.

Discussions

The stress associated with a single dislocation can be modeled in "large" grains as a
function, and the resultant microcoercivity is linearly proportional to A/M;. The result

ection 4.2 indicates that in the case of cubic magnetite, "large" translates to a linear

_ Unfortunately, many "large" grains contain more than one dislocation and therefore
above result is not strictly applicable. Indeed, the microcoercivity has been shown to
usually dependent on domain wall thickness. However, when more than one dislocation
nvolved, this dependence exhibits a very complex behavior and varies considerably
pending on the distribution of the dislocations in a sample. Typically, without detailed
kwledge of the number and configuration of the dislocations, one cannot even uniquely
ermine the general trend of the changes in microcoercivity with wall thickness, and

’eral explicit examples of this are given in sections 4.3 and 4.4.

In a temperature range in which the change in the wall thickness, w, is not large, the

nperature dependence of 4 can be expressed in the first order of approximation as

B o 2"

s

4.23

ere m is a constant. m vanishes for the single dislocation case or the case when disloca-

ions are piled on top of each other, and m = 1/2 for a random distribution of dislocations




the constant dislocation lengths. In some cases m can even be negative, as evidenced

re 4.4 for a dislocation dipole of opposite sign. This is also reflected in the filter

re of stress pinning: an increase in wall thickness away from its maximum pinning

kness (roughly 1/5 of the stress wavelength, as shown in the last section) results in a
-ase in microcoercivity. Finally ité should be pointed out that eqn. 4.23 is an approxi-
on and is possible to construct models using the filter approach that indicate h, cannot

xpressed in a single power term of w in a given temperature range.

_ Microstress is even more difficult to model in small grains, for which the boundary
ditions becomes critical, and in large grains when they contain a variety of defects. In
h grains, we have used an approach by expanding stress in a Fourier series and shown
stress acts as a narrow-band-pass pinning filter of domain walls. A sinusoidal stress

a wavelength that is roughly five times the wall thickness will have maximum pin-

g effect. Note also that this result indicates that the often-used arbitrary simple
usoidal representation of a stress field or an energy barrier of a domain wall inappropri-
y models the temperature dependence of the defect-magnetic interaction. Another
portant consequent of this finding is that for fixed locations of defects, the most
ective pinning site (which is defined as the site where the maximum slope of an energy
arrier occurs) usually changes with temperature as the domain wall thickness changes.
iously, this change in a MD grain will also be affected by the magnetostatic energy of
grain. The manner in which such effects combine and are manifested in macroscopic

rameters will be discussed in next two chapters.




CHAPTER §

A MODEL RELATING MICROCOERCIVITY
TO MACROSCOPIC PARAMETERS

Model Assumptions

In order to compare the theoretical result of microcoercivity with experimental data,
must establish a relationship between microcoercivity and macroscopically measurable

eters. A model is presented here that enables us to establish such a relationship.

In the model, we assume that the only process of magnetization changes in MD
ains is rigid wall displacement. Magnetizations in MD grains may also be changed by
gnetization rotation. However, for small external fields and near room temperature,
anges in magnetizations in MD grains of magnetite are predominately determined by

displacement, because there are high energy barriers associated with magnetization

tion. For instance, when uniform magnetization rotation occurs, the microcoercivity
sociated with the magnetocrystalline anisotropy energy is 2IKIIM, [e.g., Stacey and Ben-
ee, 1974]; for magnetite at room temperature the value of 2IKIM, is 550 Oe, which is
uch larger than the microcoercivity associated with wall displacement for magnetite

ains larger than 1 wm, as was shown in the chapter 3. At high temperatures where Kl

creases to small values, both wall displacerﬂent and magnetization rotation may play a

le even at small fields. However, the problem actually becomes much more complicated
high temperatures, since walls may not be rigid. Nevertheless, we limit the present work

the region where the rigid wall displacement is a predominate magnetic process.




Depending on the shape of a grain, it is possible that the area of a rigid wall may

ge when the wall moves. For example, the area of a planer wall in a spherical grain
reases (or decreases) as it moves towards (or away) from the center of the grain. This
duces an additional force to wall motion since it is energetically preferable for walls
have small area. However, when 4n ensemble of MD grains or a large grain with many
s is considered, some walls may increase while some may decrease their areas during
ir motion, and on average the effect resulting from changes in wall area is probably not
portant. In the present model, the area of a wall during its motion is kept constant by
ng rectangular grains with sheet domain structures separated by planer walls. Figure 5.1
ustrates a cubic grain with linear dimension d, where infinitesimally thin 180° walls have
en used and x; is the distance of #h wall from the left edge of the cube. Other advan-
es of using rectangular grains with such a domain structure are that the computation of
he magnetostatic energy of the individual grains is accessible using formula developed by

odes and Rowlands [1954], and that many theoretical calculations have been carried out

ased on such a domain structure (e.g., Amar, 1958, Dunlop, 1983, Moon and Merrill,

85, 1986, Xu and Merrill, 1987a]. Therefore, we can make use their results in our cal-
ations.
Because magnetite has cubic crystal structure, a magnetite grain may have a domain
cture consisting of non-180° walls. Two simplified examples are shown in Figure 5.2,
where 90° walls have been used. Since the energy of a 90° wall is approximately half of
at of a 180° wall, the number of domains in a grain with a structure shown in Figure
2(a) could be about twice of that in the same grain with 180° walls when both are at the
bsolute energy minimum (AEM) state. However, from domain pattern observations of

agnetite and titanomagnetite [e.g., Soffel, 1971, Halgedahl and Fuller, 1983, Heider et al,
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gure 5.1. A cubic grain with linear dimension d that has sheeted domains and
infinitesimally thin 180° walls, where x; is the distance of i* wall from the left edge
of the cube.
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Figure 5.2. Two sheeted domain structures with 90° walls.



g], one often observes fewer domains than that predicated by theory based on the

in structure consisting of 180° walls [e.g., Moon, 1985, Moon and Merrill, 1985,

skowitz and Halgedahl, 1987]. This implies that if the domain structure illustrated in

ire 5.2(a) exists, there will be a larger deficiency between experiment and theory,
h in turn suggests that this structure is probably energetically unfavorable relative to
tructure shown in Figure 5.1. For the domain structure illustrated in Figure 5.2(b),

h the magnetostatic energy and wall energy are reduced by about half compared with
structure shown in Figure 5.1. Thus, at the AEM state, the number of domains in a
with a structure shown in Figure 5.2(b) is expected to be almost the same as that in
grain of the same size but consisting of 180° walls. What structure a grain actually has
determined mainly by the crystallographic orientation of the grain. For example, if the
, and bottom surfaces of a cubic grain of magnetite are normal to <111>, one would
pect the grain to have a domain structure with 180° walls; in contrast, if two side sur-
es of a grain are normal to <100>, the grain is very likely to have a domain structure
own in Figure 5.2(b). Our calculations in the following sections will be made only for

ains with 180° walls, but they can be easily extended to grains with non-180° walls.

The motion of domain walls inside the grain shown in Figure 5.1 is controlled by
ee fields: the external field, the demagnetizing field resulting from the magnetic poles at
e grain surfaces, and the pinning field (microcoercivity) resulting from the interaction
tween a wall and defects. The complications in theoretical calculations of the magnetic
operties of MD grains are associated with the complex behavior of demagnetizing field

d microcoercivity. We first consider microcoercivity.

In the present model, two extreme cases for microcoercivity are considered. One is

e microcoercivity, h,, associated with a single dislocation, and the other is the average




rocoercivity, h,, associated with an array of randomly distributed dislocations; the
nalytical expressions for h, and h, for these two cases are given respectively in egns. 3.18
4 3.25. The k. associated with a single dislocation is applicable for grains each having

s than one dislocation; that is, for grains with pd2 < 1, where p is the dislocation den-

ity and d is the grain size. On the other hand, the &, associated with an array of randomly

istributed dislocations is applicable to grains for which the number of dislocations is
uch larger than the number of walls, n,, in each grain; that is, grains with pd* > n,,.
is condition is approximated by pd2 > 10n,. Both theoretical and experimental results
.g., Amar, 1958, Moon and Merrill, 1985, Moskowitz and Halgedahl, 1987, Soffel,
1971] have shown that the number of domains in a grain depends on the square root of
orain size. Moon and Merrill’s [1985] calculation shows that a 1 pm cubic grain of mag-
etite should have at least 3 domains. Thus, by taking n,, = 2vd, with d in units of pm, for
Lmagnetite, the condition pd2 > 10n,, becomes pd3/2 > 20. Consequently, we can define two
ain sizes of d;=1Np and dy= 0/p)*3, p being in units of w2, Then, the two
_extreme cases we just discussed are applicable respectively for grains with d < d; and
d 2 d,, and hereafter they are referred respectively as grains with a low and high defect
oncentration. These two size ranges as a function of dislocation density, p, are shown in
Figure 5.3. As an example, the dislocation density for hydrothermally grown magnetite
crystals is reported to be about 108cm™2 [e.g., Heider et al, 1987], and therefore grains

smaller than 10 wn fall into the low defect concentration region.

The microcoercivity in grains with an intermediate defect concentration (i.e.
d < d<dpy) is difficult to model, as one sees from the results shown in the preceding
chapter. However, it is expected that the results obtained for grains with low and high

defect concentrations will provide upper and lower limits to those for grains with
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Figure 5.3. Size ranges of cubic magnetite grains with low and high defect concentra-
tions as a function of dislocation density.
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d<dh-

.We further assume that the pinning of a wall by a single dislocation in grains with a

defect concentration can be considered to have an infinitesimal pinning distance; that
it can be mathematically described by a S-function with the magnitude of h.. Since the
teraction distance between a wall ar;d a dislocation is on the order of the wall thickness,
a5 is see from Figure 3.2, the use of a §-function to describe the pinning of a wall by a

slocation is a good approximation only when grain size, d, is much larger than w. A dis-

ion is given at the end of this chapter referring to what it is meant by "much larger’.

As a summary, the assumptions used in the model are:
(1) cubic grains with sheet domains separated by infinitesimal thin 180° walls;
(2) a random distribution of dislocations;

(3) an infinitesimal interaction distance between a wall and a single dislocation;

Another important assumption regarding to the simplification of the demagnetizing

eld in a MD grain is discussed in the following section.

Linear Approximation of the Demagnetizing Field

As discussed in the chapter 2, the magnetostatic energy, E,, of a crystal is attributed

the volume and surface magnetic pole densities, given respectively by, p, = V-M, and

s = M7, 7 being the normal to the crystal surface. For the domain structure illustrated in
igure 5.1, p, = 0, and p, varies from +M; (or — ) in one domain to —M; (or +M,) in the
other at the top and bottom surfaces. Consequently, the magnetostatic energy, E,,, is deter-
mined by specifying all wall positions within a grain. Obviously, there exist some equili-

brium wall positions at which E, of the grain reaches a minimum value, and any




Jacements of walls from ‘their equilibrium positions will cause an increase"m E,, and
ce produce 2 demagnetizing field that tends to pull the displaced walls back to their

ginal positions Of force the other walls 1o MOVe.

The demagnetizing field in a MD grain is non-linear; that is, it is not linearly depen-

nat on wall displacement, A, from its équilibrium position. In an attempt to simplify the
blem, a so-called demagnetizing factor approximation is commonly used, in which the
agnetizing field, Hy, in a MD grain is approximated by Hy=NM, where N is the
agnetizing factor and M is the net magnetization of the grain. Memill [1977, 1981]
ed that N for MD grains must depend on the domain configuration. Subsequent calcu-
lt'ions [e.g., Dunlop, 1983, Xu and Merrill, 1987a] for cubic grains with the domain struc-
shown in Figure 5.1 indicated that N was 2 slowly varying function of M for a given

umber of domains in small MD grains.

The approach of taking N to be a constant for a MD grain with a fixed number of
domains is often considered as a first order approximation of the demagnetizing field. This

by following Xu and Merrill [1987a], by expanding En, of the grain in terms

dE 1 &E
E, M) = E M, + |— M= M+ —\|—5 M—-My*+ 5.1
( oMo + |0t M=Mo( 0+ 5 TR M=Mo( o

where M, may be conveniently taken t0 be a reference state at which dE/dM = 0. There-

re, by neglecting high order terms in eqn. 5.1, and taking the derivative of E, with

respect to M, one obtains the average demagnetizing field, Hj, given by




(dZE,,,/sz)M=M0 has been used.

ere N=

VThe use of eqgns. 5.1 or 5.2 may sometimes lead to incorrect results. For example,

might conclude from eqn. 5.2 that no matter how many walls are pinned and where

are pinned inside a grain, M should be equal to M, as long as there is one wall that is

This can be mathemaﬁcalfy shown as follows by considering a grain with

e to moOve.

he domain structure shown in Figure 5.1. Suppose that the k™ wall is free, and the rest of

e walls in the grain are strongly pinned and the moment associated with these pinned

alls is M,,. Then the magnetization, M, of the grain can be readily written as

M=My+M,+ M (1) (x — x40) 53

where X — Xio is the displacement, normalized t0 the length of the grain, of the K" wall

from the reference state, which is here taken to be the absolute energy minimum state (for

such a reference state My = 0 for a cubic grain with even number of domains [e.g., Moon

and Merrill, 1985]). Substituting eqn. 5.3 into eqn. 5.1 and neglecting higher order terms

Ve

Ep = En(Mp) + N ~ Mo?

= E, My + —;-N [Mp + 2M (-1 e - xko)]2

The equilibrium position of the K% wall can be found by equating the derivative of E,

with respect to x; to zero, which gives

M, + IM (1Y, — x40) = O 55

From eqns. 5.3 and 5.5, one obtains M = Mg at the equilibrium state, a result that is obvi-

ously incorrect, as evidenced by Moon and Merrill’s [1986] calculation showing that the




?'1 M HV=0 i€ FW 59
X

ing the linear approximation given by eqn. 57 and assuming, for simplicity, that 2y
ocked walls are at X = Xk0» that is, yx = 0, eqn. 5.9 then becomes

1 H .
‘ZAijyj—-(—l)‘“—M—-=O ., ie FW

s

e — 1

—— 5.11
iT pyM? 0x0%;

i represents the strength of the demagnetizing field acting on the f" wall associated with
1e displacement of the i* wall. The solution of eqn. 5.10 gives the equilibrium positions

f free walls at a field H

_H s cytlap je FW
Ms ie FW

vhere Afjl is the inverse of Aj;. Substituting the solution for y; into eqn. 5.8 yields

M=My+2H % (-1)"A7 513
ijeFW

l)"”jAZj1 in eqn. 5.13 depends on the total number of walls and the

nw « .
number of blocked walls. In the above case, the inverse of 23, (—1)"'JA,Tj1 is referred as the
ij=1

demagnetizing factor, N, (strictly speaking, this is the demagnetizing factor at M = My, see

Xu and Merrill [1987a]). The variation of N with the number of walls, n,,, for a cubic
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Figures 5.5 to 5.7 show the comparisons between the hysteresis curves obtained
specﬁvely from the linear approximation (the dashed curves) and from the numerical
ethod using the formulae developed by Rhodes and Rowlands [1954] (the solid curves)
or 2- and 3.domains. The linear approximation works well when MIM, < 0.5. For larger

grains with more walls, the linear approximation is expected to work better.

i3

Finally, it should be pointed out that the linear approximation of the demagnetizing

field given by eqn- 57 coincides with the demagnetizing factor approximation for 2-

omain grains, for which A; has only one element, Ay, and N = 1/(2A,;). However, the
near approximation is often more useful and powerful when one deals with grains having

more domains, as is illustrated in the section 5.5.

5.3 Saturation Remanent Magnetization and Bulk Coercivity of 2.Domain Grains

Saturation remanent magnetization, M,,, defined as the remanence carried by a previ-
ously magnetically saturated sample, and bulk coercivity, H,, defined as the strength of the
applied field that reduces the magnetization 1o Ze€r0 of a previously magnetically saturated
_sample, are two important hysteresis parameters. For example, the temperature dependence
of H, is often used to deduce the dominant energy terms that control the magnetic
behaviors of a sample [€.8.» Morrish and Watt, 1958, Hodych, 1982, 1986, Dunlop, 1987,
Worm and Market, 1987b]. Furthermore, the magnitudes of M, /M, and H, are crude indi-
cators of whether a sample contains mainly SD or MD grains [€.g., Parry, 1965, Day ¢t al,
1977, Hartstra, 1982, Dunlop, 1986]. In this section, We derive a theoretical relationship

between microcoercivity, he and these two hysteresis parameters for an ensemble of ident-

: ical, non-interacting 2-domain grains.
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The demagnetizing field inside a 2-domain grain has a simple form, given by 2yNM,,
y peing the wall displacement from the center of the grain. Three cases with different

defect concentrations are considered below.

(1) My, and H, of 2-domain grains each containing one defect:

i

Assume that the location, ¥, of a defect relative to the grain center normalized to the
grain size is a random variable obeying the distribution function

1 —12<y<1n2

— 1
=7 o otherwise 5.17

The pinning and unpinning of a wall by a defect at v, and the corresponding change in M

with H of a 2-domain grain can be considered as follows. Suppose that the grain is ini-

tially saturated by a large external field, H. As H decreases, the wall moves towards the

grain center, and the change in the magnetization, M, along H is given by
M = 2yMcos0 = Hcos20/N for y >y (i.e., before the wall hits the defect), where 0 is the
angle between H and the magnetization of the grain. The wall hits the defect and is pinned
when it moves to y = Y. The wall remains pinned if 2NMY — Hcos® < h,, and correspond-
ingly M is unchanged (isothermal condition). At Hcos® — 2NMJy = h,, the wall is

unpinned, producing a jump in M. As H is further decreased, M varies as M = Hcos’6/N.

From the above analysis, it is clear that at a given field H, the magnetization, M, of a
grain is dependent on the location, 7, of the defect. Only in grains with Y satisfying the

condition

HCOSG HCOSG + hc
oo — < =
2NM, <Y= 2NM, Ymax 518

min

will walls be pinned, and otherwise walls will be at Ymin- Consequently, the magnetization,




a5 a function of H for individual grains with different values of Y is given by

Z‘YMSCOSB ‘ Ymin <y < Ymax

= 5.19
MH. V) Hcos*6/N otherwise

The total magnetization, <M>, of an ensemble of grains as a function of H can then be

obtained by averaging M(H, 7) in eqn.s5.19 over v, giving

2 U2

M> = t{) ! M(H, ) fy) sind do ay
-172

/2 Ymin 702V max w212

= { { %cose sin yd® + l[ [ 2vM cos sin® dvdd + t[) f %cose sind dyd®
~1/2 YVinax

Veain

where a random distribution of the grain’s orientation from O 10 /2 has been used, and
eqns. 5.17 and 5.19 have been substituted in the second step. The first and third terms in
the second step of eqn. 5.20 represent the contribution of magnetizations from the grains
with walls being not pinned, while the second term represents the contribution from the
grains with walls being pinned in Ymin < Y £ Ymax- BY carrying out the integration in eqn.
5.20, one has

H
<M>=—+
IN 521

Eqn. 5.21 shows that <M> varies linearly with H. Finally, the bulk coercivity, H,, and

saturation remanent magnetization, Mg, of the ensemble can be easily obtained from €qn.
521 as

302

TV 5.22
SNM,

H, = 3NM, =

Thus, we show that both He and M,, for _domain grains with 2 low defect concentration




epend on the square of the microcoercivity, h.. The factor of 3 in front of NM,, in eqn.

92 is a result of the average over the random orientation of grains in the ensemble.

Intuitively, one might have expected the bulk coercivity, H, to be linearly propor-

tional to the microcoercivity, k., contrary to eqf. 5.22. The physical insight as t0 why H,

and M,, depend on the square of h. is as follows. Note that the strength of A, in grains

with a low defect concentration determines not only the maximum displacement, Ymax» ofa
wall but also the number, m,, of grains in which walls are effectively pinned. One would
expect that both Ypax and m, are proportional to A, with the linear approximation of the
demagnetizing field and the assumption of a random distribution of defects in grains.
Finally, <M> > MpYmax * .

(2) M, and H_ of 2-domain grains each containing m defects:

Assume that each grain in an ensemble contains m randomly distributed defects in
the plane perpendicular to the wall plane, and that each defect serves as an independent
pinning site whose pinning can be described by a d-function with magnitude of k. Then,
when the external field is reduced to H, the wall position, y, of a previously magnetically
saturated 2-domain grain must fall in Ymin £ Y S Ymax: where Ymin and Ymax have been given
in eqn. 5.18. Obviously, 2 wall will be pinned at Y With Ymin < Y € Ymax if and only if there
is one defect at y but there are no defects in the region from ¥ 10 Ymax: Since the probabil-
ity that there is one defect in the region from Yy to y + dy is mdy and the probability that at
the same time there are no defects in the region from Y 10 Ymax 18 (1 = Ymax + H™L, the
probability, fiY)dy, that a wall is pinned in y to Y+ dy is m(1 = Ymax + V™ Y. On the
other hand, walls are at Yp;, i grains with no defects at all in the region from Ypin 0 Ymax

_of which the probability is (1 = Ymax + Vi) - Consequently, the total magnetization, <M>,




as a function of the external field, H, for an ensemble of grains, before averaging over the

grain’s orientation, 6, is

Vmax

<M> = 2'ymi,,Mscos6(1 — Ynax T Ymin) 2Mcos0 j mY(1 = Ymax t+ y)"‘“ dy 523
Yemin

The first and second terms in eqn. 5.23 represent the contributions from, respectively,
grains with walls being not pinned and grains with pinned walls. By carrying out the

integration in eqn. 523 and averaging over 9, one obtains

hc m+1 ]

———

2NM,

which may be rewritten as

H, = 3NM, = 3NM‘”§C" D fe_y
¢ =3NMy =T £ ONM

(m+ D!

where C . =
T im+ 1= D)

_ Obviously, when m = 1, there is only one term in the sum-

mation in eqn. 5.26, and the result coincides with that given in the previous case (e.g.

eqn. 5.22).

Several interesting results can be seen through eqns. 524 1o 5.26. First at all, one
finds that <M> changes linearly with H and a relation of H, = 3NMy still holds for the
ensemble of grains each containing more than one defect. Secondly, when m is large, the
_ magnitude of the last term in eqn. 5.25 is small; therefore, one has approximately

 H.=3NM,, = 3hJ2. This shows that H, (and M) is linearly proportional to k. when the




qumber of defects in each grain is large. Thirdly, it can be easily shown that the magni-
tude of the last term in eqn. 575 decreases with increasing value in m for hJ2NM, < 1.
This implies that H, for an ensemble of grains each containing m randomly distributed
defects 18 bounded by the corresponding yalues for grains each containing one defect and

_ for ones each containing a large number of defects.

(3) Mg and H. of 2-domain grains each containing a large number of defects:

When the number of defects in each grain is large, they are very likely to behave
interactively in pinning a wall. In a case that these defects are randomly distributed in a
grain, they produce a statistically fluctuating pinning force 10 2 wall. For instance, We

_have shown in the chapter 4 that for an array of randomly distributed dislocations, the pin-
ning force at a given point inside a grain obeys the normally distribution and the mean
value, h,, of microcoercivity has been given by eqn. 4.17. However, how 1o find the
equilibrium wall position as 2 function of the external field, H, when the number of
defects in a grain is large, is actually a very complicated problem. A rigorous statistical
treatment of this problem was attempted by Trauble [1966]. What is given below is a more
descriptive method to illustrate how h, can be related to H, and M,, for 7-domain grains

with a large number of defects.

Consider an ensemble of 2-domain grains each containing 2 large number of ran-
domly distributed defects. The mean value of microcoercivity 18 denoted by h,. At a given
external field, H, one expects domain walls to be distributed around the mean position,

<y>, according 10




Hcosd + h
At e

if the distribution of y around <y> were symmetrical, one then would simply

= J;2<y>Mscose sinb do

h,
However, the actual distribution of y about <y> 18 expected to be nonsymmetrical, mainly
because of the nonsymmetrical demagnetizing field around <y>. However, when the
number of defects in each grain becomes large, the error introduced in <M> given by eqn.
5.28 due to the nonsymmetrical distribution of y is expected to be small and therefore eqn.

5.28 gives a good approximation in describing how <M> varies with H for the ensemble

of grains. Correspondingly, H, and M,, are respectively given from eqn. 5.28 as
3 —
H.=3NM, = -2-hc

Eqn. 5.29 shows that both H, and M,, are linearly proportional to k..

To compare our result with that given by Trauble [1966], we may use h. given in
eqn. 4.17 for a random distribution of screw dislocations. By taking n = pDS, /I in eqn.
4.17 (where p is the dislocation density, D the dimension of a grain in the direction nor-
mal to the wall, S, the wall area, and [ the length of a dislocation parallel to the wall

plane) and substituting into eqn. 5.29, one obtains




120

2.57\.111b}l le 12 5.30
= 3NM,, = .
I,{c M M; ( Sw )
The result of H¢ given by Trauble [1966] (e.g. his eqn. 8.18) is
3 d 12 ME le 12
= (—1n— )
H, (2 2W) M, ( Sw) ) 5.31

The numerical factor of %m—% in H, in eqn. 5.31 will have a value of 2.4 for d=Sum

and w = 0.1m (the value of this factor changes little when other values of d and w of
our result is in an agreement with

interest are used because of the logarithm); therefore,

Trauble’s.

5.4 AF Demagnetization of IRM of 2-Domain Grains

The purpose of this section is: (1) to illustrate how the -domain model with low
defect concentration can be applied to calculate other macroscopic parameters of interest;

(2) to gain a better understanding of alternating field (AF) demagnetization behaviors of

MD grains.

AF demagnetization is one of two most commonly used magnetic "cleaning” tech-
niques (the other is thermal demagnetization) in palacomagnetic investigation. One of the

important applications of AF demagnetization Curves of a sample is the so-called Lowrie

and Fuller test [Lowrie and Fuller, 1971]. The test provides a useful method for

palacomagnetists 10 distinguish whether the main carriers of remanent magnetization in 2

rock sample are SD or MD grains. To perform the test, one compares normalized AF

demagnetization curves of TRM’s acquired by a sample in different inducing fields. If the

TRM decreases with increasing strength of the

stability against AF demagnetization of

the opposite occurs, it is referred as

inducing field, it is referred as SD behavior; while if




MD behavior. In practice, TRM is sometimes substituted by ARM (anhysteretic remanent
magnetizaﬁon) in order to avoid possible chemical changes during heating in the acquisi-

tion of TRM [e.g., Johnson et al, 19751.

Except for PSD grains that may exhibit SD or MD behaviors, depending on the

strength of the inducing fields, in the Lowrie and Fuller test [e.g., Levi and Merrill, 1978,

 Bailey and Dunlop, 1983], experiments done for true SD and MD grains have demon-
strated the trends of changes in stability against AF demagnetization as predicated by the
Lowrie and Fuller test [Lowrie and Fuller, 1971, Dunlop et al, 1973, Johnson et al, 1975,
Bailey and Dunlop, 1983, Dunlop, 1983]. However, it has never been fully understood
from the theoretical point of view why the Lowrie and Fuller test works. Interestingly,
Schmidt [1973] constructed a 2-domain TRM model in which the pinning of a wall is
modeled by sinusoidally varying energy barriers with a constant amplitude. Subsequently,
Schmidt [1976] argued, based on the result of his model, that MD grains should display a

SD behavior in the Lowrie and Fuller test.

A full representation of how TRM varies with the strength of an inducing field and
its stability with respect t0 AD demagnetization for 2.domain grains used by Schmidt
[1973] is rather lengthy. For the illustrative purpose, we consider the case of isothermal
remanent magnetization (IRM) and its stability with respect to AF demagnetization. Intui-
tively, one would expect that the stability against AF demagnetization of IRM carried by
MD grains increases with increasing strength of the inducing field. However, for a 2-
domain grain with sinusoidally varying energy barriers of constant amplitude used by
Schmidt [1973, 1976], the higher an inducing field is, the further a wall is pinned upon the
removal of the inducing field. Consequently, the acquired IRM is less stable with respect

to AF demagnetization, contrary o one’s intuition.




model we presented above with 2 low defect concentration exhibits the

AF 'demagnetization behaviors of IRM. To see

The -domain
cquisition of

same this, let us consider the 2
RM and its main grains each contain-
ty and simplicity, W€ as

one defect. For brevi
parallel to the IRM inducing field, H: thatis, 8 =

AF demagnetization curve for an ensemble of 2-do
sume that the magnetizations of the grains

ing

are always 0 for all grains. Suppose that
grains are initially at the demagnetized"‘state (i.e., walls are in the center of grains) and are
then magnetized by a field, H. Upon the removal of H, the remanent magnetizaﬁon, M,, of
h.. When H = h,, walls in grains with the defect

obviously zero if H<
while walls in the other

NM, will be pinned at ¥

the ensemble is
grains will

positions; 0<ysSH- hol2
return to their original positions. The corresponding remanent magnetization is given by

_ (3
M, = t{) WM =~ h < H <2h

t be pinned at a distance Y > Ymax = hJ2NM; at the remanent state.

Obviously, walls canno
gnetization,

semble will acquire a saturation remanent ma;

when H 2 2he the en
M,as 2 function of the strength of

Therefore,
= MVax = H2AN*M. Consequently,

My given by M,

an inducing field, H, is given by

0
MHE=| —Zy
’ AN*M;

h2
-——;——- H = 2h,
AN“M;
Let us now consider the AF demagnetization of

ing an alternating field, H, walls originally at ¥ > (he -

M, acquired in H 2 h,. After apply-

f)2NM, will be unpinned. But



 pote that the furthest wall in the grains prior to AF demagnetization is at (H - h)2NM;.
 Thus, if A < 2h.— H, there will be no walls in ¥ > (he — F)/2NM,, and consequently M, is
unchanged. In the other extreme, if H = h,, grains in the ensemble are completely demag-
netized and M, vanishes. For 2h,— H<H < ho My = (he = 1)/AN*M, after AF demagneti-

sation. Consequently, the normalized M, as functions of H and H is given as

0<H<2h,-H

2h,—H<H<h,

H=h,

The AF demagnetization curves of M,(H, H)/M,(H, 0) with different inducing field, Hih,,
are illustrated in Figure 5.8, where the curve with H/h, =2 corresponds to the AF demag-
netization of M. Figure 5.8 shows that the stability of M, decreases with increasing

strength of the inducing field.

What is not considered in both models is the fact that a higher inducing field will be
more likely to bring walls to the places where the pinning forces are stronger, and there-
fore the stability of the remanence is higher. The effect of the demagnetizing field and the
selectivity of walls to the pinning sites with different microcoercivity must be simultane-

ously considered in determining AF demagnetizing curves for MD grains.

To see how this latter effect can change our above result, let us consider an ensemble
of 2-domain grains in which the magnitude of microcoercivity has a distribution, given by
g(h,) for 0 < h. < hem where h,, is the maximum microcoercivity in the ensemble. For
such an ensemble, M, induced in 2 field H can be found by averaging M, in eqn. 532

over the distribution of k¢, which gives
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HR2 H
nz

M = ); < —g(h) dh. + H[z H —hy"

L g(hy) dh. H<2hem 5.34

AN*M

when H > 2hcm M, = M. For simplicity, assume that h, has an random distribution with
g(h) = Vhgy for 0 h, < hp Then the integration of eqn. 5.34 yields

H3

— H<2h
48h,N"M o

MH) =

For H > 2hp H in €qn- 5.35 should be replaced by 2h¢m-

To consider the changes in M, after AF demagnetization with a peak field H, one
may divided grains, according to the magnitude of Ae into three groups. The first group
consists of grains with h, < H, the second with HS h. < (H + /2, and the third with
h, 2 H+ f)/2. One sees from eqn. 5.33 that, after the AF demagnetization, M, of the first

. group is entirely destroyed, M, of the second group is reduced to (A - hc)2/4N2Ms, and M,
of the third group has no change. Consequently, the remanent magnetization of the ensem-

ble after AF demagnetization is

@V (g1 py? dh, H (g p)? dh,
—_— 7 7 —_—
4N M s hcm (H+ﬁ)/2 4N M s hcm

M,H, )=

__H-H
48N2h M

Finally, the normalized AF demagnetization curves are given from eqns. 5.35 and 5.36 by

MHED _ A

_ 3
MH, 0) " 5.3

By replacing H in eqn. 5.37 by 2hp. ODC obtains the AF demagnetization curve of Mg,.

Eqn. 5.37 shows that M, decays with a power of 3 and is completely demagnetized at




f=H. The normalized AF demagnetization curves with different values of H are illus-
trated in Figure 5.9 which show that the stability of M, of the ensemble NOW increases
with increasing strength of the inducing field, being just opposite t0 that shown in Figure

5.8.

The above result reveals the importance of the distribution of h, in determining AF
demagnetizaﬁon behaviors of MD grains. If h.is narrowly distributed, the only effect of a
higher inducing field is to activate walls to be further from their equilibrium positions, and
the resultant remanence becomes less stable. In contrast, if h has 2 wide spectrum, upon
the removal of an inducing field, H, only the portion of walls with microcoercivity less
than H will be pinned at the remanent state. This implies that a higher inducing field will
‘on average result in a stronger pinning of walls, and consequently the remanence is more
stable. Although this has been proved 10 be true for the case of IRM of an ensemble of 2-
domain grains each containing one defect, the physical insight emerged is useful in consid-

ering other interesting cases.

It should be pointed out that the result of AF demagnetization curves given by edn.

5.37 is not intended to compare with experimental data which often show that AF demag-
netization curves of M,, for MD grains decay exponentially, rather than by a power-1aw,
with A [e.g., Dunlop, 1983]. Actually, the obtained result of AF demagnetization curves is
very sensitive 10 the distribution of h, in an ensemble. We used a random distribution of
h. in the derivation of eqn. 5.37. One could casily imagine that an exponentially distri-

buted h, would correspondingly produce an exponential decay of M, with H.
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5.5 Extension to Grains Having More Than 2 Domains
‘The results obtained in the last two sections for 2-domain grains can be extended 10
ing mOIe than 2 domains. The calculations involved for grains with a large
undoubtedly much more complicated. As an illustration, W€ give in

main struc-

pumber of domains are
and M, for MD grains with a do

ga simplified calculation of H,

the followin
ture shown in Figure 5. L Somé relations are established simply through physical insights
rather than strict mathematical proof. A more complete calculation of this problem will be

carried out by the author in the future.

First consider an ensemble of MD grains each con ining one defect and let ¥ be the
normalized distance of the defect from the reference position of its nearest wall. Again for
simplicitys the orientation of grains is ignored, 1.6 magnetizations in domains in these
grains ar¢ all along the applied field, H. The change in M with H in each grain is illus-
ar approximation of the demagnetizing

and the parameters shown in Figure 5.10 are given in

trated in Figure 5.10, where We have used the line

field. The explanations of the curve
the following. Starting with 3 large applied field and then reducing the field, the grain
until one of

behaves like an ideal grain and M varies linearly with H with a slope of 1/N,
the walls hits a defect. Let Hp denote the strength of the magnetic field when one of the
walls inside the grain hits a defect. M at this point is approximately equal to 2n, Mg, Nw

being the number of walls in the grain. Thus

5.38

H, = 2mWNMs
and M still varies

defect will be pinned at ¥»

As H further decreases, the wall that hits the
(because changes in magnetization with

is pinned). Correspond-

linearly with H, but with a smaller slope of 1/Ny

H are expected 10 be smaller when one of the walls in the grain

ingly, M as a fanction of H 18
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. . - M with an external field, H, of a MD grain with one
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M =200M; + f][— 5.39
1

where O iS referred as the screening factor. Note that 2YM; is the moment associated with
the pinned wall and this moment is reduced by a factor of o at H =0 because of the

screening effect associated with the other free walls in the grain. (o = MI2YM; Was called

the reduced moment by Moon and Merrill [1986].) The wall is unpinned at H = H,, given

5.40

The reasoning behind eqn. 5.40 is as follows. Note that H, would equal H,, if e = 0 and
that H, should be proportional w0 h,. o in eqn. 5.40 accounts for the fact that the pinning
of a wall will actually be stronger in a grain with more domains because of the screening
effect (see Figure 5.4). Finally, after the wall is unpinned, i.€., H < H,, the grain behaves
again like an ideal grain. Since M must be continuous at H = H,, equating eqn- 5.39 to

H/N and then substituting Hy in ean- 538 for H yields the useful relationship of

As a summary, the variation of M of the grain with H is given as

H>H,= 2n,YNM;

he
Hb.<.H<Hb-——&'

HZHb——&—

zlm z|x z |

Note that Ny > N in eqn. 5.42. The magnetization, <M>, of the ensemble can be found by




averaging M given in eqgn. 5.42 over Y from -1/(2n,) 10 1/(2n,,). (This assumes that the

1ocaﬁon of a defect is randomly distributed inside 2 grain). Doing this gives

hc
H2n NM, H+— Y20 NM, 12n,

<M> =y j -H-dy+ n, j (ﬂ-— + 20yM)dY + N '[ _I_I.dy 543
-12n,, wnanm, N1 N

£

(H+—(-:-)/2n,,NM,

Integrating eqn. 5.43 and using eqn- 5.41 yield
5.44

Consequently, the saturation remanent magnetization, M,,, and bulk coercivity, H, are
readily given as

K2

H,=NMg= 7" 5.45
Aon, JNM;

In a comparison with H, and My, given by eqn. 5.22 for an ensemble of 2-domain grains
each containing one defect, one finds that the only modification for grains with a large
number of domains is the factor, Q- Note that from the definition of o, O/ = 1 for 2-
domain grains. In this limit, eqn. 5.45 is reduced to eqn- 572, (except for a numerical fac-
tor which originates from the fact that eqn.- 5.44 was not averaged over the grain’s orienta-

tion).

The screening factor, & is in general dependent on the grain’s shape, the domain
structure, and the fraction of pinned walls. In the particular case we considered above, &
is dependent on the number of domains in 2 grain, and can be calculated from the

corresponding matrix, A;; (se€ section 5.2).




al calculations [e.g- Moskowitz and Halgedahl, 19871 and experimental

et al, 1988] have

Both theoretic
(e.g. Heider shown that domain structures of magnetic grains
545 is also temperature

evidences
temperature. This implies that Oty used in eqn.
dependent, which

change with

dependent. For the p

is weakly temperature
gnificantly changed
varying function

resent, let us assume that oty
means that either the number of domains in grains is not si in the tem-
perature range of interest or the factor, Ol itself is a slowly of the
7 anned in the future; i.6.,

ation of this assumption is pl
itly calculated.)

number of domains. (A close examin
the variation of o with the number of domains in a grain will be explic
Consequently the temperature dependences of H, and M given in eqn- 5.45 are propor-

1M, a result {hat is the s

Consider now the other extreme Case that each

ame as that for n-domain grains.

mble contains a large

tional t0
grain in an ense
s that the posi-

an analogy 10 the case of 2-domain grains, on¢ expect
und the mean positions, <y

number of defects. In
are distributed aro

tions, ¥i» of it walls in individual grains
the demagnetizing field, <y> can be determined by

Under the linear approximation of
5.45

_H-h

- 1‘+1_____..—C—=() =1,2, """

VAR N

where F, is the mean value of the microcoercivity- The negative sign id front of h, occurs

because h always works against H. Solving eqn. 5.45 for <y7 gives
5.46

H-h"
<y]> = ________E_Z(_l)l*-lAlfjl
M; =

Again, when the number of defects in each grain is large, the nonsymmeuical distributions
s negligible. Therefore, the magnetization, <M>, of the ensemble from

of y; around <y i

eqn. 5.8 is




contains a large number of defects is H, linearly proportional 1o the microcoercivity. This
provides one of possible explanations of why Neel’s MD theory works better for large
MD grains than for small MD grains. From ouf analysis, the ngmall" and “large" grains
may be interpreted as grains with low and high defect concentrations, and the correspond-
ing grain gize ranges, i the case /of dislocations, ar¢ illustrated in Figure 5.3. Another pos-
sible reason why Neel’s theory works better for large grains involves changes in nuclea-
tion and denucleation of domain walls in small MD grains. In such cases, the demagnetiz-
ing factors can change signiﬁcantly (e.g., €€ Figure 5.4). As small MD grains appear to
be the same a8 large PSD grains, the transition size from PSD 10 MD grains can be
approximately taken to be the mid-value of d; and d,, shown in Figure 5.3. This gives the
transition sizes of 4 um 10 15 wm for magnetite grains with dislocation densities varying
from 10 cm 2 10 108 cn 2, which are compatible with the sizes that are commonly

observed [€.g. Parry, 1965, Dickson at al, 1966, Worm and Markert, 19870b].

The temperature dependences of H, for grains with low and high defect concentra-

tions are estimated to be respectively

K _
H_ = —M_— and H, h, 5.50
s

In the cases of dislocations, the microcoercivity, hes associated with 2 single dislocation

and the average MiCrocoercivity, he associated with an array of randomly distributed dislo-
cations were obtained in the chapter 4 10 be proportional respectively to MM, and WM.

Thus, the temperature dependences of H, given in eqn. 5.50 become
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o< — and H,>< —
He= "2 M;
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CHAPTER 6

COMPARISONS BETWEEN THEORETICAL
AND EXPERIMENTAL RESULTS

6.1 Theoretical Results of Thenﬁal variation of Bulk Coercivity

various theories have been developed in attempting to predict the thermal variation
of bulk coercivity, He, in MD grains, and their results are briefly reviewed in the follow-
ing.

(1) Domain wall motion impeded by randomly distributed dislocations through the
magnetoelastic effect. As was shown in the previous chapter, the temperature dependence
of H, for MD magnetite js proportional to A2,,/M3 for grains with 2 Jow defect concentra-

tion and MW M 05<sms 1.0 ) for grains with a high defect concentration.

(2) Domain wall motion impeded by randomly distributed non-magnetic inclusions
with sizes much smaller than wall thickness. When the interaction between a wall and
inclusions is caused by wall volume reduction, Dijkstra and Wert (1950} and Trauble
[1966] predict that H_1is proportional 10 ew/(mes), where e, is the wall energy per unit
area and its temperature dependence 18 in a proportion t0 VAIKl. When the interaction
between a wall and inclusions is caused by the effect of the stray field produced by the
magnetic poles around an inclusion, Dijkstra and Wert [1950] predict that H, is propor-

tional to M/w*>.

(3) Domain wall motion impeded by non-magnetic inclusions with sizes larger than
wall thickness. The temperature dependence of H, is predicted by Dijkstra and Wert

[1950] to be proportional t0 e, /M.




(4) Domain wall motion impeded by the surface domain structure. An illustrative
example of a crystal with surface domain structures taken from Martin [1957] is shown in
Figure 6.1. The reduction of the magnetostatic energy of the crystal by forming surface

domain structures is at the expense of the increase in the wall energy. By doing this, how-

ever, the total energy of the crygtal can be reduced [Martin, 1957]. When the defect den-

sity is relatively low in the crystal, the motion of main 180° walls is impeded mainly by
changes in the wall area hence the wall energy associated with the surface structures.
Accordingly, the temperature dependence of H, is expected 10 follow e,/M, [Bilger and

Trauble, 1965].

(5) Non-uniform magnetization rotations impeded by inhomogeneous internal stress.
The temperature dependences of H, were observed to be proportional 10 MM, for
deformed single crystals of iron and nickel in a temperature range where IoMKI > 1, ©
being the magnitude of internal stress [Bilger and Trauble, 1965; Trauble, 1966). This
observed temperature dependence of H, is interpreted [e.8. Trauble, 1966] by suggesting
that magnetization changes in these crystals are mainly determined by non-uniform mag-
netization rotation impeded by inhomogeneous internal stresses. No adequate theory, how-
ever, was developed. As an illustration, we here consider a simplified example: a one-
dimensional ramp-up Stress whose magnitude changes from —c to © across the ramp. The
magnetic anisotropy induced by this ramp-up Stress has then the property that the easy axis
on one side of the ramp is the hard axis on the other side. Thus, when IoAMKl > 15 i.e., the
magnetic anisotropy induced by the stress is predominant relative to the magnetocrystalline
anisotropy, a 90° wall is expected to form at the ramp. Because of the different directions
of the easy axes in two adjacent domains, the pinning of the wall could be extremely

strong. Consequently, magnetization changes could occur only through magnetization
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Figure 6.1. A crystal that has surface domain structures. The magnetostatic energy of the
crystal is reduced at the expense of an increase in the wall energy associated with sur-
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rotation, and H, would thus be expected to be proportional to MM, in an analogy to the

case of SD grains.

The above theoretical results of thermal yariation of H, ar¢ summarized in Table 6.1.

6.2 Comparison with Experimental Results for MD Magnetite

We have gathered the experimental data of temperature dependence of H, in MD
magnetite from four groups of workers, and the comparisons of their experimental results

with the theories summarized in Table 6.1 are presented below.

(1) The temperature dependences of bulk coercivity, H,, and saturation remanent
magnetization, M,,, Were measured by Heider et al [1987] for a sample containing
hydrothermally grown magnetite crystals with a mean size of 12 Wm. The dislocation den-
sity, p» of hydrothermally grown magnetite crystals was reported [Heider et al, 1987] to be
about 2.9 X 10° cm™2, and thus the number of dislocations in each 12 um grain is on aver-
age about four. According 1o the theory developed in the previous chapter, one expects the
temperature dependences of both H, and M, to be close to that of A2,,/M3, if magoetiza-
tion changes in these grains are determined mainly by domain wall motion impeded by
dislocations through the magnetoelastic effect. The normalized data of H, (open squares)
and M,, (open circles) from Heider et al [1987] are replotted in Figure 6.2. In the figure,
the dashed curves labeled from 1 to g are respectively the normalized temperature depen-
dences of H; predicted by the yarious theories summarized in Table 6.1, where the thermal
variation of the wall thickness, Ws is computed from eqn. 3.19 and that of the wall energy,
e, per unit area is computed from &, Ajw. Tt is seen from Figure 6.2 that H, and My, of
the sample have almost the same temperature dependence and that the data points are on

overall in an agreement with the curve of ?»%ulMi’, both being predicted by our theory.




Table 6.1. Temperature dependences of bulk coercivity,
for MD magnetite.

Mechanism of Bulk
Coercivity, Hc

wall motion impeded by ran-
domly distributed dislocations
through  the magnetoelastic
effect.

wall motion impeded through
wall volume reduction by ran-
domly distributed, small non-
magnetic inclusions.

Wwall motion impeded by ran-
domly distributed, small non-
magnetic incluions through the
effect of the stray field.

Wwall motion impeded by large
non-magnetic inclusions.

Wall motion impeded by the
surface domain structure.

Non-uniform magnetization 10~
tation impeded by inhomo-
genous internal Stress.

Predicted Temperature
Dependence of H,

140

H, predicted by various theories

Reference

Dijkstra and Wert
(19501, Trauble
(1966].

Dijkstra and Wert
[1950].

Bilger and Trauble
[1965].

Suggested by Bilger
and Trauble {19651,
and Trauble [1966]. A
simplified theory i
given in section 6.1.
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Yet, the data points below 550K seem t0 be fitted better by e,/M; than A2,/M3. This

might be caused by some of the grains in the sample in which walls are impeded by large

inclusions as suggested by Heider et al [1987], or by surface domain Structures (e.g., see

Table 6.1).

(2) Magnetite grains were iprepared by the glass-ceramic method [Worm and Mark-

ert, 1987a}, and the temperature dependence of H, was measured by Worm [unpublished]

on a sample with the mean grain size of about 4 wm. The room temperature value of H, of

the sample is about 40 Oe [Worm and Markert, 1987b]. This value falls between the

value for hydrothermally grown magnetite and that for crushed and annealed magnetite

with similar grain sizes, the former being about 10 Oe [Heider et al, 1987] and the latter
about 80 Oe [e.g. Parry, 1965]. The different values of H, for these samples with similar

grain sizes may be reasonably assumed to be caused by different internal stress states Or

different dislocation densities. Then, since the dislocation density, p, for hydrothermally

grown magnetite is about 10° cm™® and p for crushed and annealed magnetite probably

does not exceed 10% cm™2, an order of magnitude estimate of p for the Worm’s sample is

around 10’ cmi~2. Accordingly, the average number of dislocations in each 4 pm grain is

about one to two; i.., the grains fall into the low defect concentration range. Conse-

quently, the temperature dependence of H, of the sample is expected t0 follow Ad/M2.

The normalized H, data by Worm [unpublished] are plotted in Figure 6.2 with the solid

squares. One sees that these data points are in a good agreement with the curve of

A2,/M3, as is expected.

(3) Morrish and Wwatt [1958] made three samples of crushed MD magnetite grains

with the respective mean sizes of 2.7 um, 16.6 pm, and 65.0 pm, and the temperature

ples were measured in a temperature range from about

dependences of H, of the three sam




these samples are

om temperature values of H, for

about 160 Oe (2.7 pm), 60 Oe (16.6 pm), and 30 Oe (65.0 um), being typical

80K to room temperature. The 1o

respectively

for crushed and unannealed magnetite grains of similar sizes [e.g. Day et al, 1977].

Because of the high H, values, the grains in these samples are presumed to have a high

- 10° cmi™), and they thus fall into the high defect concentration

dislocation density (say,

range. Consequently, one would expect the temperature dependence of H, for these sam-

ples to follow MuW"M, (0.5 < m < 1), as predicted by the theory based on the model of

domain wall motion impeded by randomly distributed dislocations (see Table 6.1). To the

contrary, however, Hodych [1982] found that the H, data by Morrish and Watt [1958]

above the Vewrey transition temperature (120K) are linearly dependent on AM,. To show

this, the normalized H, data by Morrish and Watt [1958] are plotted in Figure 6.3, where

the square, circular, and triangular data points correspond respectively to the samples with

grain sizes of 2.7 um, 16.5 pm and 65.0 pm. One sees from Figure 6.3 that these data are

well fitted on overall by the curve of AM1/Ms.

(4) Hodych [1982, 1986] used eleven rock samples containing MD magnetite grains

and one artificial sample of crushed magnetite grains with sizes about 210-250 pm, and

these samples are measured in a temperature range

the temperature dependences of H, for

from about 100K to room temperature. The variations of H, with temperature for

Hodych’s [1982, 1986] samples are very similar to those for crushed magnetite samples by

Morrish and Watt [1958]. The normalized H, data above ~120K for these 12 samples by

Hodych [1982, 1986] are plotted in Figure 6.4. Although there are some scattering of the

data shown in Figure 6.4, the overall trend of the H, data by Hodych [1982, 1986] are

seen to follow the curve of A1/M;.
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Based on his data and Morrish and watt’s, Hodych (1982, 1986] claims that bulk

magnetoelastically controlled by internal stress. In the

coercivity in MD magnetite grains is

¢ discuss the possible expl

following section, W anations to this observed MM dependence

of H, in MD magnetite.

6.3 Interpretation for Observed A/Ms Dependence of H

mpt 10 explain the observed MM dependence of bulk coercivity, H, in

Qur early atte

MD magnetite was 10 use the result obtained in the section 4.5. We showed in that section
that the magnitude of microcoercivity, Ae depends strongly on the ratio of the wall thick-
For a sinusoidally

elength, L, of internal stress (e.g., S€€ Figure 4.6).

ness, w, 10 the wav

L, the microcoercivity, he associated

varying stress with magnitude, G, and wavelength,

with a 180° wall was shown (e.g., eqn. 422) to be

A
he = —A-;-s- ﬂ%) 6.1

where the variation of the function, f, with w/L is similar o the curves shown in Figure

(~0.2) and then

aches an optimum value

4.6; it first increases with wiL tll w/L re
decreases. Based on this result, one might think that if internal Stresses have a wide spec-

average microcoercivity, h,, over many walls might be
he

trum of different wavelengths, the
cause when wall thickness, w, changes,

independent of wall thickness. This follows be
increases for some walls but decreases for others, and consequently the average microcoer-

used by Xu and Merrill

be wall thickness independent. This idea was actually

civity might

the observed MM; dependence of H by Hodych [1982, 1986].

[1987b] to argue for

when the distri-

erage MiCrOCOEICIVity. h,, could be determined only

Obviously, the av

avelength of internal stress in @ MD grain are kKnown. To

butions of both magnitude and W




give rise 0 Microcoercivity that on

examine what types of internal stress distributions may

¢ independent of wall thi
6.1. Thus, the average mil

ociated with each indivi-

ckness, we assume that h. ass

average 1
CIOCORICIVitY, He» ™Y be written as

dual wall is given by eqn.
6.2

=X [fof) gD do dL
s

(o, L) 1s the distribution ﬁ;nction of magnitude, G and wavelength, L, of the inter-

immediately sees from eqn. 6.2 that the dependence (or lack of depen-

is significantly affe

where g

stribution

nal stress. One
cted by choice of the di

dence) of K on wall thickness, W»

function, g(o, L).

Eqn. 6.2 can be rewritten, by integrating once over O, as
6.3

R=22 [ a0 4L

M
distribution of

s and gD represents the

erage magnitude of stres
ais an empirically determined

gth, L. For simplicity, suppose gy(L) = L%, where

wavelen;
changing the variable of

where © 18 the av

g =wiL in eqn- 6.3, one has

constant. Then, by
64

_ 1
= 20 [ 10 8® &

s

nce of ke in this case is approximately given by w1 M,

s, the temperature depende

Thu
o 1/L is T, independent of w.

Obviously, only when g1
The above analysis indicates that one can actually have a wide variety of wall thick-
ness dependency on hes depending on the given stress distribution inside a MD grain.
£ stress distributions lead to an average microcoer-

y a very limited number O

civity that is independent of the wall thickness. Thus,

Moreover, onl
although one could argue that the




grains in Morrish and Watt’s [1958] and Hodych'’s [1982, 1986] samples

stresses in MD
being presumably

ally have the distributions such that bulk coercivity,

may coincident
related directly to h., is independent of wall thickness, this seems to be unsatisfactory
because of the large number of independent samples used in these studies.

s from

Additional evidence of temperature dependence of bulk coercivity, H,, come

experimental results for single crystals of iron and nickel, which, like magnetite, are also
cubic. The observed temperature dependence of H, for deformed crystals of iron and
nickel [Bilger and Trauble, 1965; Trauble, 1966) is that H¢ first increases with increasing
temperature as WM, (m=1 is found for iron and 0.5sm<1 for nickel), as predicted

by the theory (see Table 6.1), and it then decreases as MM It was suggested [e.8. ‘Trau-
ranges observed correspond to the region of oMKl < 1

ble, 1966] that the two temperature

nd that of oMKl < 1 for H, to be the half of the

e WM,. By taking ©

for H, o= AWM 2
tensional stress used previously t© deform the nickel crystal, the estimate of the transition
temperature given by loMKl = 1 was found by Trauble [1966] to be in a good agreement
with the observed transition temperature (at which H, reaches maximum) for the deformed

nickel crystal.
al stresses arc

A similar estimate is obtained for magnetite by assuming the intern

Gy associated with a single dislocation is O; = ublr

produced by dislocations. The Stress,
on. Thus the average

the distance from the dislocati
proximately .

[e.g. Hull and Bacon, 1984], where r is
stress, O, in a grain containing n randomly distributed dislocations can be ap

\nbp/d = bp.\fb_, where d is the grain ave

dimension and where we h

be taken to be 0 =
used a dislocation density relation of p = nd*. This gives loMKl = |bu)»\/E/Kl. By taking
m! for magnetite and using the temperature

n#mﬂb=59xm4c

=97 x 10" dynic




respectively in Figures 2.6 and 2.7, the variations of

dependences of Ay and K shown

icA/K! with temperature arc shown by the solid curves in Figure 6.5, where the numbers

on the curves are the values of the dislocation density in units of cm~2. Thus, if the

mechanism of H, in magnetite resembles that in deformed iron and nickel, one would

m Figure 6.5 that the temperature dependence of H, for MD magnetite with a

higher than 10° ¢cm2) depends linearly on MM, over the

expect fro

high dislocation density (say,

entire temperature range.

The above estimate is valid for grains with a large number of dislocations. For grains

with only few dislocations, the average stress, O, inside a grain may be approximately

taken to be bp/d. Accordingly, the temperature dependence of IGM/K1 for Worm’s sample

with grain size of 4 wm is plotted by the dashed curve in Figure 6.5. One sees from Figure

6.5 that oMKl < 1 in a large temperature range for 4 wm magnetite. Because the average

stress of a dislocation is inversely proportional to the grain dimension, d, the value of

IGMK] is three times smaller for Heider et al’s [1987] sample than for Worm’s sample.

It should be pointed out that because of the uncertainties in the distribution and

configuration of dislocations in magnetite grains, the above estimate should be considered

only as a "rule of thumb" method. What we can conclude from above discussion is that in

magnetite grains with a low defect (dislocation) concentration the magnetic anisotropy 1s

likely to be determihed mainly by the magnetocrystalline anisotropy rather than that

induced by stress associated with dislocations. Consequently, the temperature dependence

of H, for these grains is proportional to x%u/Mi, as was shown in Figure 6.2. In contrast,

for magnetite grains with large internal stress, the anisotropy induced by stress may be

dominant, resulting in a MM dependence of H,, as was observed for the deformed crystals

this is what has occurred in the samples of Morrish and

of iron and nickel. Very likely,
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watt [1958] and Hodych [1982, 1986]. The high room temperature values of H, for their

samples is good evidence of large internal stresses in their magnetite samples.

To explain the observed A/M, dependence of H, in deformed single crystals of iron

and nickel with oMKl > 1, Bilger and Trauble [1965] and Trauble [1966] suggested that

the dominant magnetization process in these crystals is non-uniform magnetization rotation

impeded by inhomogeneous Stress. A simplified example has been given in the first section

of this chapter (case 5) 10 illustrate how inhomogeneous Stress inside a MD grain can give

rise to a strongly pinned wall and consequently the magnetization changes can occur only

through magnetization rotation. However, it must be realized that the situation in a real

grain is much more complex than that we assumed in the example. For instance, even

when I6N/K! > 1, the anisotropy induced by inhomogeneous internal stress may not dom-

inate over the whole grain; i.e., the magnetization directions in some regions could still be

controlled by the magnetocrystalline anisotropy. In this case, the problems of wall forma-

tions and the corresponding magnetization changes in the grain must be more carefully

considered.

6.4 Magnitude Problem of H, for Small MD Magnetite

between bulk coercivity, H and microcoercivity, k., has

An explicit relationship

been derived in the chapter 5 for MD grains each containing one defect, given by

3pn2
H,= —— 6.5

8NM,

(.e., eqn. 5.22). With the use of A o< Mn/M; for a single dislocation, the temperature

dependence of H, given by eqn. 6.5 has been shown in Figure 6.2 to be in a good agree-

ment with the experimental data for small MD, synthetic magnetite grains. However, a



problem exists when eqn. 6.5 is compared with the observed magnitude of H, for the same
magnetite grains.

The room temperature values of H, for 12 um hydrothermally grown magnetite by
Heider et al [1987] and 4 pm magnetite prepared by the glass-ceramic method by Worm
and Markert [1987b] are measured to be respectively about 10 Oe and 38 QOe. For a com-
parison, we use h. associated with a 180° wall and a straight screw dislocation in cubic
magnetite. This gives k. = 141.7/d Oe, where d is the grain size in units of pm (see Table
3.1). Substituting A, into eqn. 6.5 and taking N = 2 (for a cubic grain with 2 to 4 domains)
and M, =480 emulcm®  yields respectively H= 0.05 Oe for 12 wm grains and
H, = 0.5 Oe for 4 wn grains. This represents a discrepancy of two orders of magnitude
compared with the experimental values. Even when H, in eqn. 6.5 is multiplied by the
number of dislocations (i.e., taking the first term in eqn. 6.5) in each grain as was
estimated for these two samples in the second section of this chapter, a discrepancy of a

factor of 50 between the theoretical and experimental values still exists.

Since the expression of H, in eqn. 6.5 involves only the microcoercivity, k., and the
demagnetizing field, NM,, a underestimate of h, or an overestimate of N could cause this

discrepancy. These possibilities are discussed further in the following.

(1) underestimate of A.. The microcoercivity, k., produced by a dislocation is com-
puted in the chapter 3 by assuming that a wall is rigid; i.e., the wall structure is unchanged
when it is subjected to the stress associated with a dislocation. If this rigid wall constraint
is relaxed, one expects that magnetization directions inside a wall will readjust as it moves
to the site of a dislocation, so that the total wall energy becomes lower than that of a rigid

wall. This implies that the height of an energy barrier produced by a dislocation that pins a




wall becomes higher; consequently, h is larger. However, the justification we made in the
chapter 2 for the use of the rigid wall assumption indicates that the deviation of magneti-
zation directions caused by the magnetoelastic effect of a dislocation in magnetite is actu-
ally not large at room temperature. Thus, it seems to be impossible that the total wall
energy could by lowered by more than a factor of 2 when a wall is not constrained to be
rigid. Therefore, the increase in A is probably less than a factor of 2, and this by itself is

unable to resolve the magnitude problem.

(2) overestimate of the demagnetizing factor N. The values of N are usually calcu-
lated as a function of domain number in a cubic grain with a sheet domain structure le.g.,
Dunlop, 1983; Xu and Merrill, 1987a]. We suspect the values of N thus calculated and
shown in Figure 5.4 have been overestimated. Obviously, since N is proportional to the
magnetostatic energy, E,, of a grain (e.g., see Xu and Merrill [1987a]), any reduction in
E,, can lower the value of N. For a cubic grain with a sheet domain structure, as shown in
Figure 5.1, Ep, of the grain can be reduced by developing closure domains or some other
surface structures. Both of these have been observed in domain image experiments [e.g.,
Moskowitz et al, 1988; Heider et al, 1988]. It should be pointed out that 2 reduction in E,,
may also help explain why less domains are often observed in magnetic grains than

expected from calculations based on cubic grains with sheet domain structures.

The above discussion shows that the discrepancy in the magnitude of H, may result

partly form a underestimate of H, and an overestimate of N in our model. However, even

when using reasonable corrections for H,, the discrepancy remains. Although there are
other assumptions used in deriving the expression of H, in eqn. 6.5, none of them appears

severe enough to resolve the magnitude problem. On the other hand, this magnitude




problem might be resolved if there exist true PSD regions in MD grains, i.e., regions that
behave similar to SD grains. This problem will not be considered further here but it will

be a goal of future work by the author.

6.5 Summary

The temperature dependence of H, observed for small MD, synthetic magnetite is in

an agreement with the theory we developed in the previous chapter, indicating that H. is
controlled by the domain wall motion that is impeded by internal stresses associated with
dislocations. In contrast, the temperature dependence of H, for rock samples by Hodych
[1982, 1986] and crushed magnetite follow a MM, dependence. We suggest that this MM,
dependency of H, is a result of large intemal stresses in these grains. A possible explana-
tion for this is that the magnetic anisotropy induced by large inhomogeneous internal
stresses are dominant relative to the magnetocrystalline anisotropy (i.e., loMKl > 1). Thus,
walls in these grains may be strongly pinned by the mechanism we suggested in the first
section. Consequently, H, is determined mainly by non-uniform magnetization rotation

impeded by inhomogeneous internal stresses.

The H, data we have in hands do not show a Ay w™M; (0.5<m= 1) dependence,
as predicted by the theory for MD magnetite with a high defect concentration. A test of
this dependence may rely on the measurement of H, as a function of temperature for MD

grains with moderate internal stress.

Although our theory appears to be successful in explaining the temperature depen-
dence of H, in small MD magnetite grains with a low dislocation density, a comparison of
the magnitude of H. between the theory and experiment shows discrepancy. This

discrepancy is likely not caused by the assumptions used in our model. Instead, we suspect
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CHAPTER 7

CONCLUSION

7.1 Summary of Results

In this dissertation, a model is developed to establish a relationship between micro-
coercivity and macroscopically measurable parameters in MD grains. One of the important
steps used in the construction of the model is the linear approximation of the demagnetiz-
ing field inside a MD grain. Unlike the commonly used demagnetizing factor approxima-
tion which gives a linear description of the average demagnetizing field of a whole grain,
the linearization in our model is made to each individual wall in a MD grain, and it thus
provides a more informative method t0 study the demagnetizing field effect on magnetic
behaviors of MD grains. Our analyses indicate that the use of the demagnetizing factor
approximation in MD theories appears to be adequate for grains each containing a large
number of pinning sites relative to the number of walls. However, it is inadequate for MD
grains each containing only few pinning Sites. This provides one of the reasons why

Neel’s MD theory works well for large MD grains but is inadequate for small MD grains.

We assume in the model that magnetization changes in MD grains are determined

mainly by the motion of rigid walls. The model is applied to the problem of relating

microcoercivity, fe 10 two important hysteresis parameters: bulk coercivity, He and

saturation remanent magnetization, M,,. Particular attention is drawn 10 the temperature
dependence of these two parameters. Contrary to previously used intuition, our results
show that the temperature dependence of H, in MD grains is in general not linearly pro-

portional to the microcoercivity, hes associated with each defect. Instead, H is shown to be




proportional t0 h4M, for an ensemble of MD grains each containing one defect. In the

other extreme, when each grain in an ensemble contains a large number of randomly dis-

wributed defects, H, is proportional to the average MiCroCOeICivity, h,. In this extreme, h,is

usually wall thickness dependent.

The calculation of microcoercivity was carried out by considering the magnetoelastic

interaction between a rigid wall and internal stress in magnetite. The following important

results were obtained. (1) the average Stress associated with a single straight dislocation

can be approximately described by a step function in a magnetite grain whose size 1S

larger than about 1 um. Consequently, the temperature dependence of the microcoercivity,

h., for a 180° wall is approximately linearly dependent on M1/M;. (2) the average micro-

coercivity, R associated with an array of randomly distributed dislocations is proportional

o AW M 05<ms ), where m = 0.5 occurs when the mean dislocation length in

the wall plane is constant and m = 1 occurs when it is proportional to wall thickness. (3)

the microcoercivity, He for a sinusoidal stress is strongly dependent on the stress

wavelength; h, is maximum when the wavelength is roughly five times the wall thickness.

When the above results of microcoercivity and bulk coercivity were combined, we

obtained the following temperature dependence of H.: H; < X%H/ME’ for MD magnetite

grains each containing one dislocation and H = MW" M, (05 < m< 1) for grains con-

taining a large number of dislocations. H, for MD magnetite with a moderate number of

dislocations is likely to fall between these two €Xtremes.

Comparison with experimental results of the temperature dependence of H, shows

that the H, data for small MD, synthetic magnetite are well fitted by the curve of X%H/Mg

as expected. However, the H, data for rock samples used by Hodych [1982, 1986] and




for artificial samples containing crushed and unannealed magnetite are not in agreement

with -the predicted thermal variation of AWM, 0.5<sm< 1); instead, they follow the

curve of A;q,/M; as was shown early by Hodych [1982, 1986]. This is probably caused by

large internal stresses in these grains in which the stress induced anisotropy dominates the

magnetocrystalline anisotropy. An attractive interpretation for this is that magnetization

changes in these grains are determined mainly by non-uniform magnetization rotation

impeded by inhomogeneous internal stress.

7.2 Suggestions for Further Work

(1) extension of calculations. The calculations of H, and M,, given in the section 5.5

need to be done for MD grains each containing one defect and having more than 2

domains. By completing these calculations, one will be able to obtain a better understand-

ing of the screening effect in MD grains and to gain a useful insight of grain size depen-

dence of H, and M. With the model we established, calculations can also be extended to

relate microcoercivity to other macroscopically measurable parameters of interest.

(2) expansion of H, data. The available H, data for MD magnetite do not show a

predicted Ay W"/M; (0.5 £ m< 1) dependency on H,. However, we suspect that this

dependency may be observed in MD magnetite with moderate internal stress. Apparently,

the experimental test of this relies on measurement of thermal variation of H, with the use

of suitable MD magnetite samples. The H, data thus obtained will undoubtedly provide a

useful constraint on the viable mechanisms of H, in MD magnetite.
(3) better understanding of MM, dependence of H.. The observed A/M, dependence
of H. in MD magnetite is probably caused, as was suggested above, by large internal

stresses. However, it is far from clear what mechanism controls the magnetic behavior of




a MD grain in which the anisotropy induced by inhomogeneous internal stress is predom-

inant, and it thus leaves open a large research area for the future. We should also mention

that the stress dominant anisotropy is actually more apparent in Ti-rich titanomagnetite

mainly because of its low value of K relative to that in magnetite. In addition, many
domain pattern observations have been carried out on Ti-rich titanomagnetite [e.g., Soffel,
1977; Metcalf and Fuller, 1986; Halgedahl, 1987, 1988; Moskowitz et al, 1988]. Undoubt-
edly, the examination of these domain patterns can give valuable information about the

mechanism of stress controlled magnetic behavior.
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