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University of Washington
Abstract
STRUCTURE AND DEFORMATION IN A PROPAGATING SURGE FRONT
by William Tad Pfeffer

Chairperson of the Supervisory Committee: Prof, C. F. Raymond
Geophysics Program

Detailed daily measurements of geometry and velocity made at the terminus of
Variegated Glacier, Alaska, during the latter part of the 1982/83 surge showed that thick
(= 100 m), rapidly sliding (= 30 m d™) ice entered thin (= 50 m) stationary ice, producing
high longitudinal strain rates (= -0.1 d™). The associated total strain reached a maximum
of -0.75 (logarithmic). Finite element calculations showed that horizontal velocities were
essentially constant with depth. Discrepancies between measured and calculated vertical
velocities indicate that volume was not conserved in the surge front, and that void forma-
tion caused an increase in glacier volume of about 12%. Calculated basal stresses show
anomalously high basal shear at the leading edge of the front, and anomalously low basal
shear in the central part of the front. Basal normal stresses are essentially overburden.
Simplified analytical modelling based on depth independent velocity and continuity pro-
vides simple estimates of finite strain versus depth and indicates that a front may propagate
through ice at a steady speed and with unchanged shape, provided variables such as initial
thickness and upstream velocity do not vary. The observed variations in shape and speed of

the front are consistent with changes in these variables.

A structural study made after the surge showed that macroscopic structures in the ter-
minus include recognizable primary layering, and two sets of foliation developed during



the surge: a transverse bubble foliation, which was well developed in all ice experiencing
compressive strains of more than about -0.1, and a pervasive set of longitudinal cracks and
associated bubble traces caused by transverse extension. C-axis fabrics in the ice affected
by the surge and containing the transverse foliation resemble fabrics seen in ice subjected
to plane strain compression near 0°C in other glaciers and experiments, and have symmetry
consistent with the transverse bubble foliation. Neither foliation is explained by passive
reorientation of preexisting inhomogeneities by large compressive strains, which is com-
monly supposed to be the cause of foliation in glacier ice. These foliations were developed
rapidly by high strain rate.
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CHAPTER 1
INTRODUCTION

1.1 Glacier Surges and Interesting Questions

What question does one first think to ask about surges? Probably the question is
"why?". Why does one region of the world contain surging glaciers and not another? Why,
within a region of surging glaciers, do some glaciers not surge? Why does a surge, once
started, not stop until it has so completely transformed the geometry of the glacier?
Another likely question is "how?". How is the rapid motion accomplished? How is the
surge initiated - in parts, or does the entire length of the glacier start surging at once? How

does it terminate?

Other questions come to mind. In an unknown territory such as glacier surging, the
questions of "why" and "how" are quickly displaced by the more fundamental question
"what?". What happened? Interpretation and explanation follow the establishment of a

foundation of facts: exploration and observation.

This dissertation is to a large degree concerned with "what". In particular, it
addresses the questions of what happened, kinematically, at the terminus of a glacier as the
ice there was activated by a surge, and what structures developed in the ice as a conse-
quence of the deformation. Some answers to the question "how" are provided as well,
since knowing what happened kinematically immediately gives some insight as to how

some structures developed.

These questions and answers will find some application outside of the immediate
topic of glacier surges. Deformation occurs and structure develops in all glaciers, and on a
larger spatial and longer time scale in geologic settings as well. The observations here have
relevance in a general sense, and in fact add information not readily obtainable on other
glaciers, for what must be inferred to have occurred over many years on a non-surging gla-
cier was observed here in the space of two weeks. The same consideration applies to geo-
logic problems as well, and the advantage presented by the short time scale of the surge is
even greater. Quite apart from any questions relating to surges, the events we describe here
serve as a comparatively accessible experiment in plane-strain deformation at high stress, in
which anyone with an interest in such things will probably discover something interesting.



1.2 Variegated Glacier, Alaska

Variegated Glacier is a small temperate glacier on the west slope of the St. Elias
Mountains of south east Alaska. It is approximately 20 km long, and descends from 1950
m to near sea level at Russell Fjord. The main channel of the glacier is about 1 km wide
and has a fairly uniform slope of about 5°. Two wider accumulation basins lie at its head,
and a wider lobe of ice forms its terminus. This wide lobe, referred to as the "terminus
region” throughout this dissertation, is about 3 km long and 2 km wide, and is for the most
part covered with a thick mantle of debris.

The glacier has a documented history of surge behavior which indicates that surges
occur in roughly 20 year intervals. Surges were observed or inferred during the periods
1905-1906, sometime between 1911 and 1933, sometime between 1942 and 1948, 1964-65,
and most recently January 1982 - July 1983.

Based on the periodicity of surges up to 1965, a surge sometime in the early 1980’s
was anticipated. A long-term project was started in 1973 to study Variegated Glacier in its
quiescent phase and gain an understanding of its behavior between surges, and to prepare
the necessary foundation of information for a thorough observation of the coming surge.
Participating in this project were personnel from the Universities of Washington and
Alaska and the California Institute of Technology. Bindschadler et al (1977) provide a
detailed picture of the geometry and motion of Variegated Glacier in its quiescent phase.
The changes which occurred in the glacier as it built up to its surge are described in a
pending paper (Evoluiion of Variegated Glacier Alaska, U.S.A., Prior to its Surge, Ray-
mond, C. F., and Harrison, W.D., manuscript submitted).

The surge of Variegated Glacier in 1982 and 1983 occurred in two phases, occupying
the winter and first part of the summer of each year. (Previous surges may well have
occurred in similar phases, but observations were too infrequent to tell this.) During the
period January 1982 to 26 June 1982, surge motion developed on the upper half of the gla-
cier, with velocities reaching 10 m d™, but the lower half remained unaffected. On 26 June
1982, the velocities dropped dramatically, and by late July had returned to pre-surge levels
(= 1-2 m d™). Velocities rose again in October 1982 and continued rising until maximum
rates of over 60 m d™ were reached in June 1983. The surge ended with a second abrupt

drop in velocities to non-surging rates on 5 July 1983. A general description of the



1982/83 surge is given in Kamb et al (1985).

During the second phase, following October 1982, the surge entered the lower half of
the glacier, propagating downglacier as a kinematic wave at an average speed of about 20
m d7\. As the wave, or "surge front", entered thinner ice, it created a dramatic topographic
step which, by the time it entered the terminus region, moved at about 40 m d™ and stood
above the old ice surface by a height nearly equal to the initial depth, A detailed descrip-
tion of the surge front is given by Raymond et al, (1987). Parts 2.1-2.4 of Chapter 2 are
excerpted from that paper.

The propagation of the surge front into the terminus region and the tectonic develop-
ments which accompanied it were among the more dramatic and unexpected aspects of the
surge. These developments are described in Chapter 2. It was realized that the substantial,
weli-documented deformation in the terminus region provided a rare opportunity to relate
englacial structures developed during the surge to stress and strain histories which are
much better known than is typically the case. Under ordinary circumstances, the strain
associated with structures in glacier termini has accumulated over very long periods of time
and direct observation of the deformation has not been possible. Strain histories have been
inferred in these cases by various methods. Hudleston (1977) estimated strains on the basis
of deformation of natural strain markers; Hooke and Hudleston (1980) and Hudleston and
Hooke (1980) calculated strains from finite element modelling of flow in which they
assumed a steady state flow and constant surface configuration; Hambrey et al (1980)
assumed steady state flow and calculated strains along paths which lay on the surface over
the length of a glacier.

These analyses of strain history have been made in efforts to discover, among other
things, how foliation originates in glaciers. The origin of foliation is a central topic in
structural glaciology; in recent years it has been shown (mostly by the above authors) that
in many cases foliation develops through accumulation of shear strains which rotate pre-
existing inhomogeneities of almost any initial orientation into the final foliation direction.
We show here, however, two categories of foliation which were developed in the absence
of shear strains. The foliations are, in fact, unrelated to finite strain altogether, being
apparently developed very rapidly in an orientation related to the state of stress at that
time.
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As well as occurring in a period of time short enough to be conveniently measured,
the deformation in the surge front developed at rates which may be more conveniently
simulated experimentally than ordinary glacier flow. Typical glacier strain rates are < 0.1
yr, while strain rates in the surge front were on the order of 0.1 d™! (in compression). The
time involved in the passage of the surge front was also short, with most of the deforma-
tion in a given parcel occurring in 7-10 days. Experiments conducted at these strain rates
and at such short time scales present problems peculiar to high stresses, but do not involve
long periods of time waiting for significant strains to develop. Crystallographic fabrics
were measured in ice from the terminus region with comparisons to future experimental
work in mind, and for comparison with measured finite strains and the state of stress dur-
ing the surge.

In no previous case has an episode of deformation such as the Variegated Glacier
surge been observed in its entirety and the details of deformation and motion measured.
Even in this case the relation between structures, fabrics, and strain is not entirely straight-
forward, owing principally to the lack of a structural and fabric survey before the surge,
and to the fact that only a part of the terminus region was observed in fine detail starting at
a time before the entry of the surge front (although ice unaffected by the 1982/83 surge
was available in 1985 and 1986 for comparison). Nevertheless, finite strains have been
calculated on a much firmer foundation of observation than has previously been the case,
and structures developed during the surge have generally been clearly distinguished from
those which existed before.

The progress of the surge on Variegated Glacier in 1982 and 1983 provided the first
detailed picture of the propagation of surge motion. Surveyed changes in surface geometry
showed the kinematic progress of the surge in the terminus region (Raymond et al, 1987),
while borehole inclinometry confirmed that the rapid motion of the surge is accomplished
almost entirely by basal sliding (Kamb et al, 1985). The distribution of interior and basal
stress is unknown, however, as well as whether basal sliding dominates the motion in the
surge front. Finite element modelling of the flow in the surge front has been done here to
address these problems.



1.3 Plan of the Dissertation
Four distinct topics are addressed in this dissertation. These are:

1) Observations of geometry and motion made during the passage of the surge
through the terminus region.

2) Englacial structures and crystallographic fabrics in the terminus region following

the surge.

3) Finite element calculations of internal and basal velocity and stress along a longi-

tudinal profile in the terminus region.
4) Simplified models of flow and surge front propagation.

The observations of geometry and motion at the surface, together with finite element
calculations of velocity and stress within the ice and at the base, provide a detailed picture
of the kinematic evolution of the front. The kinematics are of interest both as they relate
to questions of surge propagation and as an agent in the development of structures in the
ice during the surge. The englacial structures and crystallographic fabrics are examined
with the objective of understanding their origin in terms of the observed and calculated
kinematic history during the surge. The hypothetical models of flow in the surge front are
developed to distinguish features of propagation which are essential on the basis of such
simple rules as continuity, and which are compatible with the specific geometries at hand.

These four topics are presented in this sequence in Chapters 2 through 5. While each
topic has its own terminology, methods, and data, there is an intimate relation between the
four which is an essential part of their interpretation. This interconnection creates some
difficulty when discussing the separate topics. There is clearly a need to introduce each
topic one at a time, but pertinent facts frequently have to be brought in, often from topics
not yet presented. This results in a certain amount of cross-reference, and anticipation of
information not yet presented. This has been kept to a minimum, and the references to as
yet undefined information are made in a way which will hopefully leave to reader clear as
to what has been introduced and what has not.

Chapters 2 through 5 are each presented in a more or less autonomous fashion,
although the reader should have a pretty clear picture of their relationship by Chapter 5. In
Chapter 6, once all terms have been defined and results presented, we give a summary of
the pertinent events during the passage of the surge through the terminus region as



interpreted in the conclusions of the preceding chapters.
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CHAPTER 2
PASSAGE OF THE SURGE FRONT THROUGH THE TERMINUS REGION OF
VARIEGATED GLACIER, ALASKA

2.1 Introduction

Variegated Glacier, Alaska, surged between early January 1982 and 5 July 1983. A
broad description of the surge is given by Kamb et al. (1985). The surge motion started
in 1982 in the upper part of the glacier and the zone affected by the surge spread down
glacier. By mid-1983 the surge speed reached its maximum of up to 65 m d”!, and the
lower edge of the surging zone entered the nearly stagnant terminal lobe. This propagating
edge developed into a dramatic frontal zone expressed by a steep topographic ramp and a
sharp horizontal velocity jump. Within the frontal zone, upward vertical velocity, longitu-
dinal compressive strain rate, and stress were extremely high in comparison to normal gla-
cier flow conditions. Compressional tectonic processes developed unusual ice surface struc-
tures including thrust faults, buckle folds, and longitudinally oriented cracks.

2.2 Setting and Measurements

Figure 2.1 shows the terminal lobe of Variegated Glacier, the positions of surface
markers referenced in this paper, and the pre-surge and post-surge distribution of morainal
surface debris. The downglacier propagating surge began to affect the upglacier edge of
the photograph region in mid-May 1983 and propagated through it until 5 July, 1983, when
surge motion abruptly terminated over the full length of the glacier.

Before 20 June, 1983, markers were spaced about every 1/4 to 1/2 km. In order to
resolve more spatial detail in the propagating frontal zone, additional markers were placed
on June 20 and surveyed daily thereafter until July 18. The vertical section in Figure 2.2
shows the marker positions at various times in relation to the approximate bed determined
by seismic soundings (Bindschadler et al.,, 1977) and radio echo soundings (K.A. Echel-
meyer and H.F. Engelhardt, personal communication, 1983).

Most of the markers added on June 20, 1983, were small marked stones. These were
subject to displacement relative to ice particles from ablation, but the rates of several



centimeters per day were negligible in comparison to the surge-induced ice speeds. Coor-
dinates of the markers were determined by conventional survey techniques using theodolite
and electromagnetic distance ranging from the station GWM shown in Figure 2.1. This
station was on an ice-cored moraine 42 m above the ice surface at its upglacier edge.
Although this station was on the glacier, repeated surveying showed it to be essentially sta-
tionary and unaffected by the surging ice farther upglacier.

Because of the position of the survey station, the height of the topographic bulge, and
the isolation of marker positions by crevassing, many of the highest markers could not be
located as time progressed either because they were out of view or could not be reached

with reflectors.

To describe and analyze the results, the following symbols will be used: x is the
position on the westward running axis in the local Variegated Glacier Cartesian coordinate
system (Bindschadler et al., 1977), XP is the curve distance along the centerline measured
from the head, y is the elevation, u is the x component of velocity, v is the vertical com-
ponent of velocity, and u, is the horizontal component of velocity. On the terminal lobe
the centerline and flow directions run essentially to the west so in practice x and XP differ

by a near constant.

2.3 Evolution of Topography and Motion
2.3.1 Spatial Pattern

Figures 2.3a-2.3¢ show the detailed distributions of surface elevation and velocity.
The distribution of horizontal velocity u, (Figure 2.3b) defines three zones of dynamic
activity: a stagnant zone in which u, is relatively small (less than 0.1 m d!), a front zone
in which u, increases strongly with distance upglacier representing intense longitudinal
compression, and a surging zone in which u, is high (20 m d™! or more) and increases gra-
dually with distance upglacier. The same zones are apparent in the distributions of vertical
velocity v (Figure 2.3c). In the stagnant zone, v is slightly negative from ablation. In the
front zone, v is large (up to 7 m d™!) and upwardly consistent with the large longitudinal
compression. In the surge zone, v is downward, relatively space independent, and con-
sistent with ice motion approximately parallel to the glacier surface. The front zone is
displayed in the surface elevation profile as a steep topographic ramp (slope up to 15°
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averaged over 100 m) with an elevation change of 50 m or more (Figure 2.34). The width
of the front zone is about 0.4 km or roughly 10 times the pre-surge depth.

The angle of upward motion y (Figure 2.44) shows a peaked pattemn similar to that
for the vertical velocity v (Figure 2.3c). Comparison of Figures 2.3¢ and 2.4a shows that
the peak in y occurs approximately 100 m downglacier from the peak in v. Since
¥=tan"'(w/u,) and u, decreases strongly downglacier, this shift of the peak in y from the
peak in v is expected. The maximum value of v is in the range 30°-40°.

Peaked patterns also appear in distributions of longitudinal compressional strain rate
~(u/ox) (Figure 2.4b) and —hdw/ox (Figure 2.4c). The distribution of —-9wox was calculated
using optimal interpolation. Comparison of —ow/dx (Figure 2.4b) and —Adu/ox (Figure 2.4c)
shows that within the spatial resolution of the measurements, the peaks in —du/dx and
—houw/ox coincide. Apparently, —ou/dx is so strongly peaked that the variation in k4 is too
small to produce a noticeable shift of —hdu/ox. The peaks in —du/dx and —hdu/ox are shifted
downglacier from the peak in v, but not so far as the peak for y. The spatial distributions
of —ow/dx and —-how'ox show secondary peaks upglacier from the principal peak; this sub-
structure is not evident in the distributions for v. Maximum longitudinal compression rates
averaged over a day are about 0.075 d* to 0.15 d*. Comparable compression rates were
measured on a time scale shorter than a day using continuous recording strain meters, as
discussed in section 2.5.2.

If the upward motion v were accomplished by a depth-independent longitudinal
compression and corresponding vertical extension assuming incompressible, planar flow on
a flat bed, then the pattems of thickness times strain rate —(hdw/dx) (Figure 2.4c) and v (Fig-
ure 2.3c) should be the same. In fact, there is considerable similarity, but the peak in v is
displaced noticeably upglacier from the peak in —kowox. This is an interesting anomaly
which also appears in finite element calculations, and is discussed in Chapter 4.

The migration of the features of these various spatial patterns down the glacier
defines the propagation of the front zone. Figure 2.5 shows the position versus time of the
rise points in u (defined as that location where u rises above 0.5 m d!), v, and the lower
edge of the topographic front, which all closely coincide and define a sharp lower edge of
the front zone. Peaks in the patterns of y, ~dwdx, and v within the front zone are also
shown. These all propagate roughly in parallel with a speed of 40+3 m d* averaged over
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the interval June 20 to July 5, 1983. The upper edge of the front zone is transitional and
is less precisely defined but can be represented as the location where v and ¥y first reach 0.
The secondary peaks in —du/ox (Figure 2.4b) and —hdwox (Figure 2.4¢c) migrate more slowly
and are confined between XP 17.6 and 18.0 km. These features could possibly be tied
partly to irregularities in the bed topography not detected by the depth soundings.

2.3.2 Temporal Variation

Although the downglacier propagation of the surge front may be roughly described as
the migration of a fixed spatial pattern, this is not precise. Examination of Figures 2.3b,
2.3c and 2.4b show the curves for u, v, and -9wox tend to break up into four phases
defined by the time intervals 22-27 June, 28-30 June, 1-5 July, and after 6 July. From Fig-
ure 2.3b it is evident that this represents a time variation of velocity within the surging
zone, which affects the velocity pattern within the front zone (Figures 2.3 and 2.4) and its
rate of advance (Figure 2.5). This is also seen in Figure 2.6, which shows the variation of
velocity with time at fixed locations.

Possible explanations of the four phases are best described with reference to Figure
2.3b. The initial phase (22-27 June) is characterized by moderately high upstream veloci-
ties (=30 m d™!). At the transition from the initial phase to the second phase (27-28 June),
there is a large downglacier displacement of the profile. A possible explanation lies in the
presence of a locally steep step in the original surface topography at the leading edge of
the surge at this time, but more probably the cause is related to a speed-up experienced at
other parts of the glacier at the same time. Figure 2.6 shows a sustained interval of high
velocity at several sites on 27/28 June. Figure 9 of Kamb et al, 1985 shows a well-defined
water pressure maximum at the same time at XP = 9.5. The increased water pressure may
be expressed at the front not only by elevated velocities, but also by a more rapid advance
of the zone of sliding.

The second phase (28-30 June) persists through 30 June, with the velocity at the
upglacier end of the region diminishing slightly over the period. The transition from the
second to third phase involves a distinct drop in velocity levels without a significant
change in the shape of the velocity profile. This is associated with a glacier-wide slow-
down and a discharge maximum at the outlet stream (Kamb, et al (1985)). Finally, the ter-
mination of the surge marks the transition to the fourth, post-surge velocity phase.
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Velocities in the fourth phases drop dramatically on 5/6 July at the termination of the
surge, and continue to fall throughout the remainder of the survey period, approaching
stagnation by 9 July.

The same pattern is visible at a fixed point. For example, at XP 18.1 km (Figure 2.6),

u rapidly rose from an initial value close to zero to a surge value of about 20 m d! as the

surge front reached and passed by this location. If the surge velocity had remained con-
stant, « would then have gradually increased with time as this location occupied places
farther into the surge zone. Instead, this idealized pattern is masked by the period of rela-
tively high surge velocity from June 28 to 30 and relatively low surge velocity from July 1
to 5. At all positions the time variation of velocity represents a combination of activation
of the stagnant ice by the migration of the front zone and time variations in the surge
speed farther upglacier.

2.4 Evolution of Surface Morphology
2.4.1 Tectonic Zones

Distinct zones of tectonic activity on the ice surface are associated with the front
zone, and these migrate with the advancing front (Figure 2.5). These zones are relevant to

the production of structures in the ice as discussed in Chapter 3.

At the lower edge of the front and extending approximately 100 m below the boun-
dary of noticeable topographic or motion disturbance was a zone of distinctly audible
microcracking. In this zone one could hear a pervasive and continuous emission of high-
frequency noises similar to the noises when cellophane is crinkled. These noises were
clearly distinct from the hissing and popping of out-gassing pressurized air bubbles fre-
quently audible in ablation areas of glaciers and also distinct from the characteristic
“‘ping”’ sound of an opening crevasse. No obvious surface features such as extended
cracks were evident in this zone. However, finite element calculations presented in
Chapter 4 suggest that the development of surface-parallel tensile fractures were responsi-
ble for these sounds.

Above the microcracking zone was a zone of prominent surface buckling features.

These were formed by exfoliation of ice slabs on surface-parallel fractures (possibly pro-
duced during the microcracking events) and upward buckling of the slab. Surface-parallel
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widths ranged from -10"m to -10m. Thicknesses ranged from -102m to -3 m.
There was a consistent relationship between the surface width and thickness. The buckling
would first develop as a gentle arch, In many cases this would progress with continued
compression to a vertical standing isoclinal fold with parallel limbs and fractured hinge
forming a vertical fence sometimes more than 4 m high running transverse to the flow
direction. Also evident in this zone of buckling was the opening of iongitudinal cracks per-
pendicular to the transverse running fold axes of the buckles. In this zone one heard occa-
sional fracture events lasting up to a minute during which a sequence of *‘tearing sounds’’
appeared to propagate in various directions under areas more than 100 m in dimension and

*‘ice quaking’’ could be sensed.

Above the front zone, active surface buckling was absent. Longitudinal cracks con-
tinued to widen into crevasses, and differential horizontal and vertical motions occurred
across many of these crevasses. Such motions were indicated by vertical offsets of the
former ice surface, relative displacement of ice structures, or development of scroll-like
rolls of snow or ice by shearing of bridges. The longitudinally oriented plates of ice
between the crevasses experienced differential tilting, buckling about vertical fold axes and
disruption by secondary crevasses running oblique to the first longitudinal crevasses.
Selected crevasses broadened into longitudinal chasms sometimes exceeding 30 m in width,
In this zone, various cracking, creaking, and impact noises were common. Occasional
episodes of rumbling seemed to come from deep within the glacier with no visible surface
effects to account for them. At least some of these noises came from massive collapses
into the chasms described above. Such collapses contributed to the broadening of the
chasms and the development of irregular floors by partial filling with ice blocks.

This description of tectonic activity applies to the front at the centerline as it pro-
pagated from about XP = 17 km to XP = 18.5 km. The front was not nearly as dramatic
when it was upglacier from XP = 17 km: the slope of the topographic ramp was Iess,
microcracking was not noticeable at its toe, and surface buckling features did not form.
The differences may be related to the small pre-surge ice depth below XP = 17 km (Figure
2.2), as discussed in a later section. This is also indicated by the occurrence of microcrack-
ing and buckling in the thin ice along the south margin of the terminal lobe (Figure 2.1) as
the surging ice spread sideways. Active thrusting also occurred along this margin where
the pre-surge ice was apparently very thin (W.B. Kamb and M. Sharp, personal
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communication, 1983). A possible mechanism for the thrusting and reasons why it did not
develop in the surveyed region are discussed in Chapter 4.

2.4.2 Structural Pattern at Termination of the Surge

At the termination of the surge the ice surface at any location had been modified by
the processes described above to an extent dependent on how far the surge front had pro-
gressed past it. Ablation also modified the surface morphology. Starting from the stagnant
zone and proceeding upglacier, one would come to a sharp break in slope. Proceeding up
the slope, one would find surface buckles of increasing sharpness and amplitude. Approxi-
mately half way up the slope (XP = 18.1 km) these buckles had thicknesses of several
meters and were of sufficient amplitude that their steeply sloping, downglacier limbs
impeded upglacier progress on foot. At about this location, longitudinal crevasses were
also sufficiently wide and closely spaced to make sideways progress difficult. Near the top
of the slope (XP = 18.0 km) and about 0.4 km above, the principal surface features were
rubble fields of slab like pieces of ice from collapsed surface buckle folds formed earlier as
the surge front passed. Through this zone, longitudinal crevasses widened upglacier. Above
about 1.5 km from the surge edge (XP = 17 km), buckle folds never formed, and the sur-
face was free of rubble. Longitudinal crevasses were more numerous and wider, and the
longitudinal ice plates between them were often buckled. Above this location, longitudinal
chasms and obliquely running crevasses made upward progress on foot impractical.

The distribution of the above described features was nonuniform. The surface profile
of the surge front was not smooth but showed a *‘wrinkling’’ and ‘‘dimpling’’ correlated
with preexisting surface irregularities usually associated with differing moraine cover thick-
ness and composition. These irregularities presumably arose by differential ablation prior
to the surge and were amplified by deformation during the surge. The apparent wave in
the surface profile at XP = 18.0 km (Figures 2.2 and 2.3a) is an example. Other smaller-
scale topography was not resolved by the spatial sampling of the surveys but was apparent
in sequential aerial photography from July 28, 1982, June 18, 1983, and August 28, 1983,
Such wrinkles often ran southwest to northeast oblique to the flow direction and axis of
compression aligned nearly east to west. The longitudinal crevasses and buckle folds
tended to form preferentially on the downglacier side or on the topographic highs with con-
sistent orientation parallel and perpendicular, respectively, to the flow direction independent
of the trend of the topographic ridge.
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2.5 Finite Strain in the Terminus Region

Calculations of longitudinal strain have been made by two independent methods in
the terminus region during the passage of the surge front. One method uses strain rates
derived from the surveyed velocities presented in section 2.3, while the other method is
based on direct measurements of tilt and strain by automatic recording tiltmeters and short
(1 m) baseline strain meters. These latter data are part of a set of measurements which pro-
duced strain and tilt rate data for the entire lower glacier between February and June 1983.
The results of this larger project will be presented elsewhere.

The strain rates presented here are regarded as principle compressional strain rates, In
both methods the strain rates were calculated along baselines oriented very nearly in the
direction of flow, but a small cross-component of flow was found to exist at all sites once
the site had entered the fast-moving surge zone (where strain rates were comparatively
low). At the time of maximum compressive strain rate, however, the cross-component of

velocity was negligible, and the effect on finite strain is therefore not considered.
2.5.1 Strain Rate Based on Interpolated Survey Data
Method of calculation

The longitudinal distributions of velocity presented in section 2.3 (Figure 2.3b) were
smoothed by interpolation of data measured at points separated by about 50 m on the gla-
cier. Profiles of longitudinal strain rate were taken from the slope of the resulting curves
to produce Figure 2.4b. The history of strain rate for a given point fixed in the ice can be
calculated from Figures 2.3b and 2.4b by reading the strain rate from Figure 2.4b for a
given day, and then moving to the next day’s position by reading the appropriate velocity
from Figure 2.3b. This can be done either forward or backward in time. In the strain his-
tories presented here, the final position of the point is used to start, so that histories can be
calculated for seven specific sites examined after the surge. These are labeled A through H
and are located on Figure 2.1a. The relation between strain history and structures at these
sites will be discussed in Chapter 3.

Finite strains can be calculated for each strain rate record simply by summing the
daily strains, provided that the strain is always coaxial, i.e. that the direction of principle
compressive strain does not change its orientation relative to the measurement baseline.

The cross-components of velocity mentioned above would affect this assumption, but again
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they are negligible during the arrival of the surge front when most of the straining occurs.
The resulting finite strain is a logarithmic strain, being calculated on a baseline which
changes with time according to the strain. This is an appropriate strain to use for large
displacements. All of the strains calculated from the various sources presented here are log-
arithmic.

Data and discussion

The calculated strain rate and accumulating finite strain for the seven sites over the
interval 21 June - 5 July is shown in Figure 2.7. Only two sites - F and G - near the final
position of the front were surveyed during the entire interval between the arrival of the
surge front and the termination of the surge on § July. The five sites above F and G were
already involved in the surge on 21 June when surveying was started. No site on the
profile was surveyed for long enough to capture both the characteristic arrival of the front,
as seen in F and G, and the tail of lower but still significant strain rate as seen at the upper
sites. A comparison of the sequence of sites gives a picture of the typical strain history at

any one location, however.

Before the arrival of the front, a typical site shows no longitudinal straining, although
some very low level strain rate may be present, as will be seen in the automatic strain
recordings to be described later. The arrival of the front produces a dramatic rise in
compressive strain rate to reach the maximum levels measured ( typically -0.08 to -0.10 d!
) within one day of the onset. This rise may involve an intermediate phase of compression
at a lower level, as seen at G, but such a phase is not always present. A rapid onset of
high compressive strain rate at a site corresponds in the profiles of velocity to a narrow
concave-up leading zone. Similarly, an intermediate phase of compression corresponds to a
slower rise in velocity resulting in a broader concave-up leading zone. The spacing of data
points in the velocity profiles also influences the calculated shape, however. The onset of
compression at F is shown as a smooth rise to high levels, but in the automatic records of
strain we will see that the onset of compression can be very sudden indeed. When meas-
ured on a shorter baseline, compression may rise from near zero to high levels in the space
of a few hours,

Compression at the highest level is maintained for about one day, and is terminated
by a pronounced drop to levels about half of the maximum value. Thereafter, the
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compressive strain rate drops in stages, with short episodes of higher compression, until,
as seen at site A, the strain rate drops essentially to zero. The drop to zero strain rate
occurs not because the ice is stagnant again, but because it is being carried in the central
part of the surge zone. The velocity at site A at the time when strain rates dropped to zero
was about 30 m d1.

The total strain accumulated at any site between the arrival of the front and the end
of the surge is known from direct measurement only for sites F and G. These are -0.625
and -0.221, respectively. The sites further upglacier are missing the initial phase of max-
imum compression which occurred before surveying began. By assuming that the missing
phases at the various sites are of approximately the same magnitude as those present at
other sites, a rough composite estimate can be made using sites F,E, and B, which puts the
total strain at -1.1 for this part of the glacier. The assumption that missing phases of the
strain rate pattem may be combined is justifiable only over short distances, where the surge
front passed without substantial changes in its geometry or velocity. The three sites used
to make this estimate are within 600 meters of each other, in a region of uniform slope and
thickness.

The magnitudes of strain rate and total strain at the surge front can be understood in
a general way in terms of the thickness and velocity change across the front. A simple
hypothetical model is developed along these lines in Chapter 5, but for the present purpose,
we need only identify the velocity u, and the thickness h; below the surge front, the velo-
city u;, and thickness h; at the top of the surge front, and the longitudinal length L of the
front. Assuming that the horizontal component of velocity is independent of depth (calcu-
lations in Chapter 4 show that this is justified), and that the glacier is a parallel-sided slab
except in the front zone, the average strain rate across the front is

Uy — Uy
L

2.1)
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The total longitudinal strain across the front zone can be found through the vertical exten-
sion of a column of ice which starts at the base of the front at thickness h, and ends at
thickness h; at the top. Continuity of the column requires that

thx = hle.

where Ax and Ax" are the longitudinal dimension of the column before and after its passage
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through the front. From this one finds the ratio of the thicknesses, and the total strain E:
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The logarithmic strain is more appropriate for the present purpose; it is

E;= lnE 2.2)
h

The predictions of equations 2.1 and 2.2 can be tested against the measurements
presented in Figure 2.7. At the time of passage of the front past F, u,~u; = ~22 md™!, while
h; =78 m, h, =40 m, and L = 365 m. The measured average strain rate in the 9 day period
(26 June to 5 June) recorded at F was -0.069 d”!, while equation 2.1 predicts an average
strain rate of -0.060 d™. The measured finite strain (logarithmic) in the same interval was
-0.626, while equation 2.2 predicts -0.668. This agreement is moderately good, and shows
that the observed strain rate and finite strain can be accounted for approximately in this

region by a simple model of flow through the front.

Earlier, as the surge front propagated down from the higher reaches of the glacier, the
surge front had a less distinct topographic character. The distance L between the upper and

lower limits of the surge zone was greater ( 2 km above the terminus region, L = 900 m ),
h.

and the front height was smaller relative to the total ice thickness, making Tz closer to 1.
1

Equations 2.1 and 2.2 show that, in the idealized geometry described above, this results in
a reduction in the predicted strair rate and total strain across the front. This was observed,
but it is difficult to apply the simple theory to long reaches on the upper glacier, where it
is unrealistic to make the assumption that the glacier is a parallel-sided slab.

Figure 2.8 shows strain rates calculated from survey data at 3 widely spaced sites in
the upglacier part of the terminus region. Figure 2.8a shows strain rate calculated on an
(initially) 530 m baseline whose downglacier end lay at site BX (Figure 2.1a). Figure 2.8b
shows strain rate calculated on an (initially) 500 m baseline whose upglacier end lay at site
BX. Strain rates were calculated by dividing the current velocity difference by the current
baseline, with velocities averaged over approximately 24 hours.
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Once again, when calculated on 500 m baselines, strain rates show a slower onset of
the initial compressive phase than the 50 m baseline data shown in Figure 2.7. The rise to
maximum levels occurs over a period of 12 days on the baseline just above BX, and over a
period of 11 days on the baseline below BX. The initiation of the rise occurs 9 days later
on the downglacier baseline. The finite strain measured above BX was -0.596, and below
BX was -0.730.

2.5.2 Strain Rate Based on Automatic Short Baseline Measurements
Method of calculation

Longitudinal strain was measured by short baseline strain meters at two locations in
the terminus region during the passage of the front. One site (BX in Figure 2.1a), located
approximately 45 m northeast of site B at the end of the surge, operated between 6 and 12
June, 1983. A lower site (DX) was located about 40 m southwest of site D and operated
between 14 and 29 June. During these periods the change in length of a baseline was
automatically measured and recorded, every 30 minutes at BX and continuously at DX.

Changes in baseline were measured by an LVDT transducer mechanically coupled to
two aluminum piers set about 2 m deep in the ice. The initial length of the baseline was
1.5 m at BX and 1.4 m at DX. Neither the piers nor the strain meters were buried in snow
to maintain a constant temperature. This would have been impractical at these sites since
the snow cover had melted away, and was not critical to the accuracy of the measurements
because the strain rates were so high. The piers were not actively frozen into the ice. This
was generally not a problem because the longitudinal compression kept the piers gripped
firmly in place. In brief episodes at both sites, however, the piers were forced up out of
their holes, or twisted around a vertical axis, causing artifact extensions which were meas-

ured and removed in the data reduction.

The displacement data were recorded on chart recorders. Strain rates were calculated
by dividing the recorded changes in length by the 30 minute intervals at BX, and by
measuring the slope of the continuous record at DX. Total logarithmic strains were deter-
mined by integrating the calculated strain rates. (This is valid when the strain being
integrated is coaxial.) At both sites, the pier spacing was measured manually at regular
intervals, and the finite strain determined in this way was compared to the recorded strain
data. This provided a verification of the automatic record at DX. At BX, ambiguities in the
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periodically recorded data caused an uncertainty as to the magnitude of the total strain, and
the manual measurements were used to scale the automatic data. Because of the high strain
rates and large total strains, manual measurements of pier spacings were sufficiently accu-
rate to be used as data together with the automatic recordings.

Data and discussion

The record of strain rate at BX is shown in Figure 2.9a, and the record at DX is
shown in Figure 2.9b. The record at DX is most complete and shows the following pat-
temn of strain rate: a very compressive initial phase, 24 hours or more in length, terminated
by a sudden drop to a level about half that of the maximum phase, and then a series of
lower level compressive events lasting a day or less, generally terminated by sudden drops
to near zero or extensile strain rates. On a 15 minute or finer time scale the strain rate is

erratic, showing rapid variations of about 20-30 % of average values.

The strain rate record at site BX starts 8§ days after the arrival of the surge front at
the site, so the compressive phase at the start of the record does not correspond to the first
arrival of the surge. The high strain rate at 8 - 9 June ( = -0.08 d*) is the maximum value
measured at this site, however. The strain rate at BX should be compared to the strain rate
records shown in Figure 2.8. The strain meter at BX was located at the common point of
the two baselines used in the calculation of Figure 2.8a and 2.8b. While the time of onset
of the three records is spread over 9 days, all show a significant drop in compression on 9
June, constituting in all three records the termination of the phase of maximum compres-
sion. Of particular interest is the excursion into tension (to +0.1 d™! at BX) shown in Fig-
ures 2.9a and 2.8a. These were measured by completely independent means, and represent
a real tension event. This occurred during a significant glacier-wide slowdown on 9 June
(see Kamb et al, 1985, Fig. 5) and is probably a consequence of the slowdown, rather than
a typical feature of the strain rate pattern, to be expected at any other site. Two more
compression events follow the termination of the maximum compression phase, one
between midday on 10 June and midday on 11 June and the second from early on 12 June
to the end of the record. These events show elevated but variable compression (up to
-0.06 d°!, with average rates of about -0.02 d™!). Both events are initiated by a rapid rise.

Measurements at site DX (Figure 2.9b) were started before the arrival of the surge

front, and the onset of compression (on 16 June) is very clear. Prior to the onset of
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compression, the record shows a very weak but variable strain rate, mostly in extension at
0.001-0.002 d™. A stronger extension event occurs two days before the onset of compres-
sion, during which the strain rate briefly reaches 0.01 d™. Temperature effects may be the
source of the strain rate at these low levels, although higher sites in comparable cir-
cumstances showed much more stable near-zero strain rates before the onset of compres-
sion. Strain rates in the maximum compressive phase reached = -0.13 d™!, and were ter-
minated by a drop on 17 June, followed by a series of lower level compressive events. The
very sharp termination of maximum compression such as occurred on 9 June at BX is
absent, as anticipated, and while the drop on 17 June is a distinct reduction from the max-
imum levels, another drop on 19 June reduces strain rates nearly to the level observed
before the arrival of the front.

The lower level compression following 19 June has a very complex structure, but
includes four distinct "relaxation events" of reduced compression with their own charac-
teristic structure. These are the 19 June drop, and three more on 21,22, and 23 June. All
are started by a very brief drop to a low compressive level, and immediate return to to
nearly the pre-existing level, and then a gradual decline to lower levels for the duration of
the interlude. Strain rate rises sharply again at the end of the interlude to start the next
compressive phase. A similar structure is visible in the record at BX. There, the tension
event of 9 June, which terminates the maximum compressive phase, is itself terminated by

a compression spike, which in tumn subsides to lower compressive levels.

Sudden drops in strain rate might be caused by fault motion in the region near the
strain meter site. Thrust or reverse faulting, occurring in response to longitudinal compres-
sion, will result in longitudinal shortening over baselines crossing the fault, and cause a
temporary reduction in longitudinal stress and strain rate. If the reduction of stress is large
enough, some elastic strain may be released adjacent to the fault, and a short episode of
extension like the 9 June event at BX could be recorded over baselines which are also
adjacent to the fault.

The relaxation events at DX follow a diumal pattern, with the initiating drops in
compression occurring in early evening, and the interval of low strain rate lasting through
the night. Another reduction of compression also occurs on the night 20 June as well, but
does not have the sharp character of the events already mentioned. This periodicity may
be an instrumental effect, or the result of pier melting, but the strain rate fluctuations may
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be closely controlled by some diumnally cyclic process such as englacial water flux. The
discharge at the terminus stream at the time of these events was not strongly periodic,
however (see Kamb et al, 1985 Figure 10). This brief correspondence between strain rate
variations and time of day does not provide strong evidence that there is some diurnal con-
trol of short-baseline strain rate. The suggestion is plausible, however, and should be kept

in mind when interpreting related measurements.

2.5.3 Synthesis of Estimates of Finite Strain in the Terminus Region

The total finite strain accumulated in the terminus region during the surge estimated
from these different sources of data are compared on a longitudinal profile of longitudinal
compressive strain in Figure 2.10.

* The data in Figure 2.10 come from the three sources described above. First, the
integrated strain rates presented in the preceding section cover most of the terminus region,
and are a reliable measure of strain for the period 21 June - 5 July. Since points on the ter-
minus profile above XP = 18.0 were already activated by the surge on 21 June, the strain
profile above XP = 18.0 does not represent the total strain accumulated during the passage

of the surge.

The second source is the short-baseline strain meter data. Direct measurements of pier
spacing are a more reliable source of total strain information than integrated strain rates,
since gaps in the strain rate data can add up to large errors in the accumulated strain. The
integrated strain rate at site DX is included for comparison. It is 17% less than the strain
determined by the pier spacing. Pier spacing measurements should be an accurate measure
of total strain, given the large finite strains developed at these sites (-0.391 at DX and
-0.467 at BX), and assuming that the strain meter baseline was coaxial with the principle
compressive strain. The accumulated strain at a strain meter is not necessarily the same as
the strain averaged over a larger region, however, if the strain is not longitudinally homo-
geneous, For example, fault motion like that discussed in connection with the relaxation
events in the strain meter records would appear as an increment of compression over a
long baseline crossing the fault, but would not appear or would possibly appear as exten-
sion at a short baseline strain meter on one side of the fault. Consequently, while pier
spacing measurements are a good measure of local finite strain, they will not necessarily



22

agrec with other equally good measurements made over longer baselines.

The third source of finite strain data comes indirectly from surveyed thickness
differences before and after the surge at points fixed in the ice. The thickness change
gives the depth-averaged vertical strain, which, assuming incompressibility and plane
strain, equals the negative of the depth-averaged horizontal (longitudinal) strain. This in
tumn is the longitudinal strain at the surface if the flow does not vary with depth. (This is
shown to be a good assumption in Chapter 4.) Longitudinal finite strains are estimated
from thickness changes using the terminus profile data between XP = 17.4 and XP = 18.5
and using more widely spaced lower glacier survey data between XP = 16.9 and XP =
18.0. The coverage from the two sources overlaps, but they can be expected to agree only
at the very end of the overlap at XP = 18.0, since above this point, the terminus profile
strains are incomplete. This shows in the figure as a marked drop in the terminus profile
strain between XP = 18.1 and XP = 18.0.

A source of error in the estimates of longitudinal strain from measurements of verti-
cal thickness change arises if not all the vertical motion is due to straining of the ice. This
problem is dealt with in Chapter 4. For the present purpose, we will simply use the results
found in that chapter, namely, that approximately 12% of the thickness change caused by
the surge occurs as the result of an increase in void space. Accordingly, the longitudinal
strain based on thickness change is plotted both at face value, and with the final thickness
reduced by 12%. Near the final position of the front, the figure of 12% becomes less accu-
rate because the thickness change across the front is not fully developed. This can be seen
in Figure 2.10, where the plotted values based on integrated strain rates and those based on
thickness change agree more closely below XP = 18.2. The strain based on reduced thick-
ness changes is not plotted all the way to the end of the profile, and presumably becomes
Iess reliable as the downglacier end is approached.

The solid curve through the estimated values in Figure 2.10 is the best choice for a
longitudinal profile of finite strain. In picking the curve, the most reliable estimates have
been given greater weight. In the upper end of the profile, the estimates based on the com-

plete thickness change modified for a 12% excess thickening are used, while at the max-

imum strain, a mean of the various closely spaced values is used. Below the maximum, the
integrations of terminus profile strain rate are accurate, and are chosen over the thickness
change estimates.
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The maximum compressive strain developed in the terminus region during the surge
appears in the thinnest ice which passed all the way through the surge zone. The maximum
value is -0.75, which in terms of Lagrangian strain, corresponds to a 53% shortening.
Downglacier from this maximum, the total strain diminishes rapidly in ice lying nearer to
the final position of the surge front. Moving upglacier from the maximum, the total strain
diminishes despite the fact that the estimates in this region include the entire episode of
strain starting from the arrival of the surge front. Evidently, the total strain involved in the
passage of the front is less in thicker ice. This make sense qualitatively if the mechanism
of advance of the surge front involves a thickening of ice until some threshold stress is
reached. If the threshold stress involved is independent of the initial thickness, then the
thickness change involved will be less in already thick ice, and the total strain will accord-
ingly be reduced. Variations in velocity also contribute to the profile of finite strain. If the
velocity of ice entering the front zone is increasing with time, the total strain involved in
the passage of the front will increase with time as well. An episode of rising velocity will
appear in the profile of finite strain as an increasingly steep gradient such as that between
XP = 174 and XP = 18.0. Targets near the position of the surge front between 15 and 20
June, when the steepest part of the profile of finite strain developed (between XP = 17.4
and XP = 18.0) experiehced maximum velocities at this time.
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Figure 2.1. a) Terminus region of Variegated Glacier, showing location of reference

markers.



Figure 2.1 (continued). b) Lower glacier and tenminus region of Variegated Glacier
on 18 June, 1983. Solid circles show positions of survey markers on 20 June, 1983. Open
circles indicate markers no Ionger surviving on 28 August photo. Figure 2.1 (continued).
¢) Lower glacier and terminus region of Variegated Glacier on 28 August, 1983. Solid cir-
cles show positions of visible survey markers on 18 July, 1983.
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Figure 2.7 Calculated strain rate and accumulated finite strain at sites A through G on
terminus profile,
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CHAPTER 3
ENGLACIAL STRUCTURES FOLLOWING THE SURGE

3.1 Introduction

Following the 1982/83 surge of Variegated Glacier, an unusual opportunity arose to
investigate englacial structures in a setting'where a major part of the deformation history
which produced the structures was known. A detailed observation was made in 1983 of
the progress of the surge through the terminus region, as described in Chapter 2, including
velocity profiles and tectonic developments. No detailed structural mapping had been done
in this region prior to the surge, but the presurge state of the glacier was known in a gen-
eral way from high resolution aerial photography taken at intervals between 1965 (at the
end of the previous surge) and 1983, and from miscellaneous observations made by people
working in and passing through the terminus region. Most important, the 1982/83 surge
stopped short of the termination of the 1964/65 surge, leaving a zone several hundred
meters wide in which the ice is still in its initial, pre-1983 surge state. Finally, annual sur-
veys in the terminus region between 1973 and 1982 show that the ice remained nearly
motionless during this interval,

The primary objective of a study of the structures in the terminus region is the
discovery of a spatial pattern of evolution of structure associated with the surge motion.
Structures found at each longitudinal position in the terminus region can be associated with
the observed deformation history of ice found at that point. Estimates of finite strain
developed in the surge front have been established, and it remains to compare them to the
corresponding structures to develop both a relation between structure and deformation, and
a sequence of intermediate stages leading to the final relationship.

The structural survey of the terminus region was undertaken in 1985 and 1986. The
general strategy was to study in detail a zone corresponding to the terminus profile which
provided the elevation and velocity data presented in Chapter 2, and to extend the survey
to other parts of the terminus region by traverses taken out from the main study area.
Another structural survey, conducted in 1986 and 1987 by workers from Cambridge
University, will supply information on the whole glacier below the equilibrium line,

Two general categories of structure were studied, and the field work progressed along
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two independent but related lines. First, a detailed survey and mapping was conducted of
various structures: layering, foliation, folding, and faulting. This was done much like a
traditional bedrock mapping project in structural geology. Second, optic axis fabrics were
measured at sites along a profile through the map region. These two parts of the structural
survey are presented separately, and their relationship is considered in a general discussion.

3.2 Presurge Conditions

Figure 2.1b, taken in July 1982, shows the condition of the glacier surface in the ter-
minus region before the surge had entered the lower glacier. The area of interest lies on
the upglacier side of the large white moraine (site of survey station GWM in Figure 2.1b),
and extends up through the area of looped moraine structures into the narrower channel of
the lower glacier (XP = 15.0). Not all of this area was mapped, but by July 1983, ice ini-
tially lying in this area had been compressed into the map region as discussed in Chapter 2
(Figure 2.1b and 2.1c).

There is a substantial change in the appearance of the glacier surface, evident in Fig-
ure 2.1b, which occurs at the position where the narrow lower glacier channel spreads out
into the terminus region (XP = 16.0). Above this position, the ice is clean, with persistent
and coherent longitudinal structures. Below, the structures are amorphous, fuzzy, and the
ice is to a much greater extent buried in debris. There are also large looped structures visi-
ble on the south side of the terminus region. Horizontal velocities of 5 cm day™ or less
were observed in the terminus region prior to the surge during surveys conducted annually
between 1973 and 1982. The vertical surface velocities associated with ablation were
greater. Aerial photographs taken in 1974, however, show a slightly different picture of
the terminus region (Figure 3.1): the same layout of structure is evident, but is more shar-
ply defined and continuous. The fuzzy, broken appearance in 1982 is evidently the work
of ablation, which redistributed debris in a more uniform blanket across the surface. The
sequence of photographs taken between 1965 and 1983 suggest a kind of cycle of clarity in
the surface expression of structures. In the years immediately following a surge, the rem-
nants of the chaotic topography during the surge obscure the large view of structures, as
was the case between 1983 and the present. Midway between surges, as in 1974, the redis-
tribution of debris has stabilized somewhat. The structures and topography stand out most
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clearly at this time. As the next 'surge approaches, continued ablation and redistribution of
debris act to diffuse the small-scale pattems of topography and debris. This results in the
loss of clarity evident between 1974 and 1982. Above the terminus region there has
always been less debris and less local topography (as well as more downglacier flow), so

the same cycle is not so evident there.

The uniform and thick (in places more than 1 m) debris cover in the lower terminus
region before the surge prevented any casual observation of small-scale structures. Some
large scale structures are visible in the 1974 photographs, however, which were covered by
debris in 1982 but which were exposed again during the surveys of 1985 and 1986.

At the upglacier margin of GWM is a zone approximately 200 m wide which the
1982/83 surge did not enter (compare Figure 2.1c and Figure 2.2). The ice in this zone is
composed of large (2-5 cm) interlocking crystals with varying degrees of bubble content, A
strong horizontal foliation exists in ice at the very foot of GWM on the upglacier side, but
weakens as it is traced upglacier. This will be described in greater detail in the following

section.

Below GWM, ice has lain stagnant and covered with a very thick debris layer (up to
several m thick) since the 1964/65 surge. Large collapse and settlement features are present
in areas where old subglacial drainage systems are melting out. In many places, the ice
below the debris cover is very large grained (10-15 cm) and almost entirely bubble-free.
In other locations near GWM, strong subhorizontal bubble foliation is found. The attitude
of the foliation is very irregular and it appears to have been deformed as the ice has flowed
under the influence of small local topography. Flow into depressions and old crevasses, for

example, causes the foliation to dip into the center of flow from all sides.

3.3 General Postsurge Conditions

In 1985, for the first time since the 1982/83 surge, the surface of the lower glacier
and terminus region (below XP = 10.0) was easily accessible everywhere. A great deal of
surface relief was still present, but only in the form of longitudinally elongated rounded
hills approximately 10 m high and 100 m long. This topography appears to be the remnant
of the ridge-and-chasm topography which existed at the end of the surge. The orientations
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of the elongated hills and valleys matches those at the end of the surge; also, brecciated
rock and ice debris are often found in the valleys, presumably the remains of the debris
that filled the chasms during the surge. Prior to the surge, ice within about 1 km of GWM
had a heavy mantle of debris; during and for a year after the surge, this debris cover was
broken up by the displacement of the ice, but has since been redistributed through debris
slides and ablation of the ice underneath. Upglacier from this debris-mantled area the ice
surface is clear of debris (as of 1986), except for the north margin and a very distinct

tongue of black debris extending downglacier from the margin at station MM (Figure

2.1¢).

Undemeath the debris cover, the ice throughout the terminus region is generally
clean, with only occasional stones or dirt clumps appearing in excavations or visible within
the ice. Exceptions to this are thin layers of debris associated with two of the categories of
penetrative structures - the P and S, classes - to be defined in section 3.4.1. The ice is
composed of large, elongated interlocking crystals, roughly 2 cm by 10 cm with tortuous,
branching arms. No fine ice was found in the survey region within the limits of the
1982/83 surge. Some small layers of fine ice were found outside the survey region at two
marginal sites, one at the upglacier foot of GWM in horizontally foliated ice just outside
the limit of the 1982/83 surge, and another along the south margin in similarly foliated ice
which was activated during the 1982/83 surge, but probably not subjected to much defor-

mation.

Ablation reduced surface elevations substantially in the interval between July 1983
and July 1986 (Figure 3.2). Reductions in elevation range from 40 m at the upglacier end
of the survey region to 10 m in the central part, to 30 m at the very bottom of the region.
About 25 m of ablation would be expected in this area in 3 years. The greater change at
the upglacier end was due to the very rough ridge-and-chasm topography in 1983, resulting
in very rapid ablation there. Also, settlement at depth occurred after the surge in this
region, as discussed in Chapter 4. At the downglacier end, the excess ablation was due to
a change in surface drainage patterns: the low point in the 1986 profile marks the course of
a new stream running transversely across the upglacier foot of GWM. Both GWM and the
downglacier end of the survey region have experienced oversteepening and debris sloughs
since 1983. In the central part of the survey region where ablation was a minimum, the
survey profiles run through a deep east-west trending notch (formed by adjacent presurge
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topography) and run through very thick debris cover. These may have sheltered the ice in
this part of the profile and reduced ablation.

The main question raised by the comparison of these profiles is what the relationship
is between the activity observed at the 1983 surface and the structures observed at the 1986
surface. This question is answered in detail in Chapter 4. For the present purpose it is
sufficient to summarize the result presented there: the flow in the terminus region was
almost completely independent of depth. Horizontal velocities at the bed of the glacier
were very nearly the same as at the surface, and patterns of velocity and strain over time
are essentially the same at all depths. This greatly simplifies the problem of relating obser-
vations in 1983 and 1986, and in subsequent discussions pertinent data such as strain rates,
taken in 1983, will be regarded as directly applicable to the structures observed in 1986.
Those phenomena of 1983 which pertained strictly to the surface at that time, e.g. buckle
folds, are obviously excluded from this assumption. By 1986 all evidence of buckle folds
and other such surficial tectonic developments had vanished.

3.4 Planar Structures in the Terminus Region

Structural mapping was concentrated in a strip roughly 1200 m long and 50 m wide
laid out in the area of the terminus profile discussed in Chapter 2 (Figure 2.1a). Reference
markers were set out and surveyed by theodolite and electronic distance measurements
within this strip, and provided topographic information and reference points for placing
individual measurement sites on base maps. Several traverses were made to extend the
mapping out from the main grid. These were made laterally to the north and south, and
also in the upglacier direction. Site measurements were made with a brunton compass, and
site locations were placed on base maps by estimating their position relative to nearby
reference markers. The entire map region was photographed, and many individual measure-
ment sites were photographed in detail.
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3.4.1 Classification of Structural Types

A naming scheme has been developed to define and distinguish the types of structure
and also to clarify their genetic relationship. Four sets of foliation are defined, and labeled
S S1» Sz, and S, Additionally, two fault or fracture-like structures are present, named Py,
and P;. The spatial relationship of the structures is shown schematically in Figure 3.3.

S, is a ubiquitous, subhorizontal, wavy or undulatory layering, formed of bubble den-
sity variations and debris horizons (Figure 3.4a). Individual layers are typically 10-20 cm
thick. The wavy character of the foliation is defined by fold axes running across the gla-
cier, i.e. an exposure running longitudinally shows the wavy pattem, but an exposure run-
ning across the glacier appears straight. This is shown in Figure 3.3. This relationship is
reversed above the terminus region, where folding is about axes running longitudinally. S,
is cut by all the other planar structures observed, and is folded wherever folding of any
structure is present. In some locations in the terminus region, S, steepens abruptly and
emerges at dips of about 20° - 30° (Figure 3.4b).

S; is a bubble foliation set in vertical planes striking transverse to the direction of
flow (Figure 3.5). This foliation is not well developed by comparison with classic examples
of foliation (e.g. Allen, et al (1960)) and does not have a continuous laminated structure,
although such well-developed foliation was seen in other parts of the glacier. Rather, S,
consists of flat clusters of bubbles approximately 20 cm in the transverse direction and 2
cm in the longitudinal direction, or an axial ratio in the horizontal plane of 1:10. Many
closely spaced clusters of this shape set in otherwise clear ice produce an easily recog-
nized, orientable foliation. The foliation is difficult to photograph, however, since without
any continuous traces of laminae running along the surface, one needs binocular vision to
see the foliation clearly. For the same reason, it was impossible to measure individual
folia. The axial dimensions of 20 cm to 2 ¢cm are an estimate, and were confirmed by an
identical estimate made independently (W. Lawson, personal communication).

S, is a pervasive set of hairline cracks, dipping vertically and striking in the longitudi-
nal direction (Figure 3.5). Frequently fine bubble trains surround and extend from the ends
of the cracks, and sometimes appear alone without a crack. In addition to the hairline
cracks, small crevasses exist in the S, orientation, usually occurring‘ in longitudinally
elongated fields about 10 m in length (Figure 3.6). These crevasses are as wide as 10 cm
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and up to about 3 m long. They were usually full of water when observed, but when
probed were about as deep as they were long. They are not new crevasses (i.e. post-surge),
being obviously affected by ablation as much as any other feature on the surface.

A set of subhorizontal foliation, S, (Figure 3.7), appears at the very downglacier edge
of the survey area, and continues downglacier a short distance past GWM. This is a very
well-developed laminated foliation and is in ice very near the base of the glacier. The folia-
tion consists of thin (< 1 cm) sharply defined layers of milky ice separated by thinner
bands of less bubbly ice, and in one instance, layers of fine ice (grain size = 1 mm).

There is another class of named structural features in the terminus region, but these
are not as well defined, either in orientation or proposed origin, as the S class. These, the P
features, are extensive single planes, usually containing a fine dirt horizon (Figure 3.8).
Large-grained clear ice lenses also appear at the P interface, typically about 1 ¢cm or less in
thickness with C-axes in the clear ice oriented perpendicular to the P surface. The P’s
strike roughly transverse to the flow direction, are somewhat convex downglacier, and can
extend several hundred meters along their strike., They always dip upglacier, but seem to
fall very approximately into two sets: those roughly parallel to, or extending up out of, Sy;
and another set dipping between 60° and 90°. These are designated the P, and P, respec-
tively. The P, is also distinguished by occasional thick layers of debris, including cobbles
up to about 5 cm. P; on occasion contains small stones (< 1 ¢m), but is more typically
marked only by fine dirt. The majority of P fall into the P, set. Neither the attitudes of
the P’s nor the location or grouping in map view shows any of the consistency or
classifiability of the S class. Representatives have been recorded where present, but they
appear to be independent of the S structures. There is evidence of displacement on certain
P features, but no unequivocal indicators of the direction and magnitude of displacement
could be found.

The P features are given a separate name from the S class to emphasize the important
differences between them and the members of S: they are not penetrative, in the sense that
they are isolated planar structures even at the map scale; and they are structures which
were developed as a consequence of deformation (unlike Sg), but probably at some earlier
time and at some other place than their position in 1986, and as such are not direct pro-
ducts of the surge.



3.4.2 Interpretation
Integrated picture of the penetrative structures

The distribution and representative orientations of S; and S, are shown in Figure 3.9
(map pocket). So appears throughout the map region, so it is not included in the figure.
The outcrop edges follow the surface contours, since S, is essentially horizontal, Table 3.1
lists the coordinates of the reference markers shown on the map, in the coordinate system
described in Bindschadler et al (1977).

Table 3.1
Site  X-coordinate  Y-coordinate
A 15011.3 2961.9
B 15268.4 3026.9
C 15409.6 3055.5
D 15599.4 2994.0
E 15767.7 2893.6
F 15929.8 2798.3
G 16061.7 2740.0
H 16185.6 2669.2

In the most general terms, we believe that S, is original depositional layering, S; and
S, are products of the 1982/83 surge, and S, is produced by base-parallel shear over times
much longer than any one surge. The category of P, we believe to be structures - probably
closed transverse crevasses - created somewhere higher on the glacier and transported into
the terminus region with little accompanying deformation. P, may have the same source,
but its orientation relative to S, is hard to reconcile with an initially vertical orientation.

More probably, Py are unusually prominent angular unconformities in S,.

An understanding of the unusual character of the flow in Variegated Glacier over the
course of a surge cycle is fundamental to this interpretation. Before proceeding to a
detailed discussion, it should be brought to mind that the main feature of surging flow -
rapid sliding with little deformation in the main body of the glacier - causes ice and the
structures in it to be transported large distances downglacier with very little of the shearing
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deformation associated with structures seen in the termini of non-surging glaciers. A simple
calculation using the typical surge displacement and non-surge velocities (= 150 m yr™!) on
Variegated Glacier together with the length of the glacier and the duration of the surge
cycle shows that a structure formed in the central part of the glacier will be carried further
by surging motion in 1 year of the 20 year surge cycle than by ordinary motion during the
remaining 19 years. About 3 surge cycles are required to carry ice from the central part of
the glacier to the terminus. Accordingly, ice flows in a quiescent mode for a total of about
57 years and in a surging mode for about 3 years in its course from midglacier to terminus.
During the surging mode, shearing strains are confined to narrow bands at the base and at
the margins (see, for example, photographs in Kamb et al, 1985). The bulk of the glacier is
moving at high velocity with only small strains of any kind developing, except at the surge
front, where high longitudinal compression develops in plane strain. In the intervening
non-surge years, sliding velocities still develop which are moderate to high by non-surge
standards (Evolution of Variegated Glacier, Alaska, U.S.A., Prior to its Surge. C.F. Ray-
mond and W.D. Harrison. manuscript submitted.) so base-parallel shear is low relative to
non-sliding glaciers. Quiescent marginal shear strains are are on the order of 0.05 yr!
(Bindschadler et al, 1977) on the lower reach of the glacier, but structures developed here
are obliterated in the shear zones developed during the surge.

At the upglacier end of the survey region only Sy, Py, and P; are evident, The ice
here and and at points upglacier is uniformly bubbly and has a milky appearance. The bub-
ble density variations which define S, are absent. (Far above the terminus region, various
foliations appear, but these are separated from the foliation in the terminus region by a gap
of about 1 km.) The small cracks which define S, are present, but not in the abundance
found further downglacier. Relatively large local topography helps to bring out S, and P,
since these are more noticeable in steep exposures, especially those facing transverse to the
direction of flow. So is fairly uniform in layer thickness, usually being 5-10 cm. No
dramatic exceptions to this appeared anywhere. Small-scale (10-20 cm) fold-like features
appear regularly in S, with axial planes oriented transversely. These are probably the result
of amplification of pre-existing irregularities by longitudinal compression rather than buck-
ling. It was noted (W. Lawson and M. Sharp, personal communication) that along the mar-
gin above the terminus region similar fold-like features appear with their axial planes
oriented longitudinally, This was seen below a zone of longitudinal extension at XP =
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10.0, and passive amplification by lateral compression again offers an explanation con-
sistent with the direction of principal strain.

The occurrence of P appears to be most frequent in the upper part of the terminus
region, but this may be due to the absence of debris cover here. The P features are large
but widely (several hundred meters apart) and irregularly spaced, so they are likely to be
missed if they are sought by sampling through excavations in debris.

Moving downglacier into the central part of the survey region, S, and P persist, S,
appears, and S, becomes more abundant and consistent in orientation. The orientation of
S, is somewhat scattered in the upper end of the survey region, but is confined within
about 10° of the flow direction. By the middle part of the survey region, strikes are quite
consistent locally, with some variation occurring in organized pattems. S, dies out several
hundred meters above the final position of the surge front. Finite element calculations indi-
cate that maximum stress levels were reached within the front itself, so evidently some
activity within the zone above the front ramp is involved in the formation of of S,, or else
it would have been traceable all the way to the front. Altematively, the heavy debris cover
in the lowest part of the terminus region may simply obscure S,, which is not as com-
pletely pervasive as §; and could therefore be missed. Sampling in the debris cover was
sufficiently dense, however, that the relative absence of S, definitely represents some

marked decrease in its occurrence.

S abpears pervasively in the upper survey region as soon as the bubble content
becomes sufficiently variable for a bubble-density foliation to exist. It persists throughout
the middle and lower survey region until part way down the topographic ramp of the surge
front. The visibility of S, varies somewhat where it exists, but tends to intensify somewhat
in the downglacier direction, and is traceable virtually anywhere one looks until its disap-
pearance at the surge front. In the debris-covered part of the terminus where S, becomes
scarce, S, is still present in all sites excavated. About half way down the topographic ramp,
S, vanishes over a zone about 5 m wide and running transversely across the front. Its pres-
ence on one side of this zone and absence on the other was verified by an especially dense

sampling of sites.

In exposures cut by the drainage stream running transversely across the upglacier foot
of GWM, the very distinct horizontal S, foliation is obvious. S, can be traced back
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upglacier several hundred meters from the stream exposures to the zone where S; disap-
pears. S, persists with a progressive weakening of the intensity of foliation, but still easily
traceable upglacier in continuous exposures in a stream cut, until it vanishes abruptly at the
downglacier edge of the zone. Within the zone itself, a very vague organization of bubble
density is present. Amorphous, ropey structures are discemible, but have no planar struc-
ture. S, can also be seen in exposures on GWM and near GWM on the downglacier side,
but is not generally present in the old ice outsidle GWM. -

Origin of structures

So

S, is evidently the earliest generation of structure present in the terminus region, for
any deformation or displacement observed invariably involved S,. This fact, the ubiquitous
occurrence of S, its subhorizontal orientation, the continuity of its layers, commonly
occurring debris layers, and the aforementioned fact that structures can be carried long dis-
tances downglacier by the surge motion with little deformation, lead us to the conclusion
that S, is primary depositional layering.

S2

The orientation and consistency of S, suggest that these features formed in response
to transverse lateral extension or longitudinal compression, or both, in the surge front. It
was between the upper and middle parts of the survey region that the surge front
developed a really well defined topographic ramp, and this may be an expression of the
same large-scale organization of stress that produced the change in consistency of the S,
strikes. S, cracks were observed on 2 July 1983, in an orientation perpendicular to the
observed local direction of extension rate (Raymond et al, 1987). Moreover, the time of
maximum extension rate occurred after the time of maximum compression rate, and after a
change in the principal stress directions. Unlike most interpretations of foliation, S, is
unrelated in orientation to the finite strain in the locality. Rather, it was created by a tran-
sient orientation of maximum extension rate which caused the rapid development of a per-

vasive set of cracks and crack-related features.
Sy

The S, foliation appears to be the product of large shear strain parallel to the bed (the
C-axis fabric measured at this site supports this, as will be discussed in section 3.5).
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Additionally, the glacier is less than 40 m thick at this site, so the ice exposed at the sur-
face now was very near the bottom of much thicker ice in the past. It is reasonable to con-
clude that ice so near the bed of the glacier was included in the narrow zone of intense
basal shear during one or very possibly several surges in the past, or has been in constant
shear strain at very low levels during quiescent phases. The presence of S, on GWM
requires additional consideration, for the locations here are at considerably higher eleva-
tions than at the upglacier foot of GWM where S, is so well developed. Some complexity
in the flow may have existed at GWM during the 1964/65 surge, for photographs taken in
1965 show a significant shift in crevasse pattems at this position. S, may have provided an
original inhomogeneity for S,, but it is hard to see how S, could be formed simply by vert-
ical compression of Sy, for may characteristic features of S, (as well as features typically
found with Sp) which one would expect to be preserved by compression, are absent. These
features include, most notably, dirt horizons in S, and P features.

The relationship between the present distributions of S, and S, is unclear. No evi-
dence of S, was found in the region where S; is present, but it may be present and
obscured by debris cover. The general impression while working in the region was that S,
is absent, which would be consistent with the idea that S, is formed as the consequence of
large shear strains. The best conclusion to make with the information at hand is that S, is
the product of large base-parallel shear strains, in which S, may have served as a primary
inhomogeneity, or may have been obliterated.- A large area of ice in the region of S, would
have to be cleaned of debris and a more detailed survey made to further resolve this issue.

S,

The appearance of the amorphous bubble distribution in the transition zone between
S, and S, might lead one to conclude that S, is being destroyed by some process which
simultaneously produces §; as the zone moves downglacier. The transition from weak S,
at the downglacier edge of the zone to the amorphous structure within the zone is gradual
and continuous, while the transition from amorphous to distinct S, at the upglacier edge is
quite rapid, but nonetheless smooth. Some process, presumably deformation within the
moving surge front, has evidently converted unfoliated ice, and possibly horizontally foli-
ated ice, into ice having a vertical transverse foliation. Referring back to Figure 3.2, it can
be seen that before the surge, the transition zone lay in a rather flat portion of the terminus
region, undistinguished by any special topographic feature. The 1964/65 surge extended
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past this point. In short, the only event or feature of significance associated with the loca-
tion of the transition zone is that it coincides with the final position of the 1982/83 surge
front. It could be established unequivocally that S, is the direct product of the passage of
the 1982/83 surge if a survey conducted before the surge showed no signs of S;, but this
was not done. Nevertheless, the disappearance of S; at the front argues strongly that S, is a
product of the 1982/83 surge. The progressive weakening of S, moving upglacier from the
foot of GWM is probably independent of action within the transition zone, and only
reflects exposure of ice closer to the bed at the downglacier end of the survey region. It is
possible that the postulated conversion of S, to S; could not have happened to the most
well-developed S, observed.

Hooke and Hudleston (1978) consider foliation to be a product of passive deforma-
tion of some existing inhomogeneity, rather than the result of bubble migration in the ice.
If deformation is to be the source of S;, however, the strains measured in the terminus
region should be comparable to the strain required to produce the anisotropy of the bubble
distributions in S;.

The initial state of the ice is not precisely known. The S, foliation on the downglacier
side of the §,/S, transition is probably not typical of the initial state, for S, appears
throughout the terminus region above the surge front, while S, is evidently limited to ice
near the bed of the glacier. The S, layering is a better choice for the initial state of the ice,
but there are no good examples of this in its pre-surge condition. The best choice for a
representative of the initial condition is the ice in the transition zone between S, and S,
where no foliation is present, but only a patchy, inhomogeneous distribution of bubbles.
This also agrees with the appearance of isolated sites upglacier where S; was absent: bub-
bles were present, not uniformly distributed through the ice, but in scattered patches with
no particular elongation.

If the §, foliation is to be created from isotropic patches of bubbles, the compressive
strain required to produce the observed horizontal axial ratio of 1:10 in the resulting folia
is -2.3 (logarithmic), assuming plane strain in a vertical longitudinal plane without volume
change. This is much more strain than was observed in the surge front, where the max-
imum compression was -0.75. The longitudinal strain required to produce a 1:10 axial ratio
in a horizontal plane can be reduced by assuming other modes of strain: in uniaxial
compression a strain of -1.53 is required, and in horizontal plane strain only -1.15 is
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required. These are still not consistent with the measured strains, and in any case are not
plausible modes of deformation given that only very small lateral extensions were
observed. Furthermore, the very sharp zone where S§; disappears is not located in the
region of the terminus where the maximum strain is calculated to have developed (at XP =
18.0). It is 400 m downglacier from this, at a point more closely associated with the
furthest downglacier extent of the high stress at the leading edge of the surge front.

If we reject the possibility that bubble migration is involved in the formation of §,,
we are left with the possibilities that the estimated axial ratio of 1:10 is incorrect, or that
the initial state of the ice was not isotropic. It must be emphasized that the estimated axial
ratio is very approximate, although it was reached independently by two observers. The
discrepancy in strain cannot be simply ascribed to faulty estimates, however, since the
maximum observed strain of -0.75 would produce an axial ratio of only 1:2.1, which is
entirely outside the range of possible ratios, as is evident even in the photographs of §;
(e.g. Figure 3.5). In connection with the visibility of S;, we note that since the principle
extension direction was vertical, the bubble anisotropy of S, should be much more pro-
nounced in vertical exposures. Such exposures were occasionally found, and S, was quite
clear in them, but such exposures were generally very small and tended to be weathered.
Horizontal exposures of §; were predominant because ideal viewing conditions were
created by washing away pools of mud from flat surfaces, which left a very smooth,
unweathered surface.

If the initial condition of the ice was not isotropic, then either the ice was visibly foli-
ated, and no areas of foliated ice are left outside the limits of the 1982/83 surge, or the
bubble distribution was anisotropic in transverse planes, but not to an extent which resulted
in visible foliation. This latter case is especially probable given the tenuous character of the
final state of S,. It is possible that a longitudinal extension of the same magnitude as the
measured compression in the terminus region might be sufficient to render S, essentially
invisible. This is a difficult assertion to test quantitatively, since it is so dependent on the
perception of patterns in three dimensions.

The remaining consideration in explaining the origin is S, is the possibility that bub-
ble migration is involved. Bubble migration is not well understood, but has been observed
under conditions similar to those in the surge front, Kamb (1972) observed bubble migra-
tion under biaxial compression at 6.4 bars at 0°C. He did not discuss this observation in
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that paper. What stands out in the present situation is that the S, foliation (if not already
present) was evidently produced very rapidly during the advance of the surge front, and
that its downglacier limit corresponds to the final position position of the front but not to
the point at which the finite strain was sufficient to produce it by deforming initially
equidimensional bubble clusters.

The final point to be addressed involving S, is the question of whether it can be
expected to persist from one surge to the next, or whether by some mechanism it weakens
in the interim. Annealing may occur in the interval between surges, bubble diffusion may
be significant, and spreading of the ice during the stagnant phase may contribute a small
amount of extension. No firm conclusion can be reached about the extent to which S; may
deteriorate between surges, but some change cannot be ruled out. If S; does persist
between surges, then the question arises as to where previous generations of §,; are. If S;
can persist between surges, then the possibility is open that finite strain accumulated over
several surges has produced the observed foliation. This does not explain the abrupt disap-
pearance of S, at the edge of the most recent surge, however.

P

The various features in the P category are quite distinct from the other planar features
found in the terminus region, but we do not have a definite origin assigned to them. They
are Jarger and more continuous than the other steeply dipping features found in the region,
and are particularly distinctive because of the dirt or debris layer typically found along
them. This ranges from a thin ( < 1 cm) lens of clear ice discolored by fine dirt on P, and
P, to layers of mud and cobbles up to about 5 cm on some P;. The P’s are not easily visi-
ble in aerial photography taken since 1983 owing to the chaotic surface, but similar
features are visible in the 1974 photographs. The P’s evidently extend quite deep in the
glacier, and persist after ablation has removed the smaller obscuring features near the sur-
face. They will ’probably become visible again in about 10 years.

There are three main questions to be answered relating to the P category. First, what
kind of structure are they? Possibilities include closed crevasse traces, old ablation sur-
faces, and faults. Second, is P locally formed or is it carried into the terminus region from
above? Finally, is fault motion along P involved in the deformation during the surge?
This is a possibility whether P originates as faults or whether P surfaces have a separate
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origin and become activated as faults during surge activity.

‘The P category probably originates upglacier and is carried into the terminus region.
Two separate origins are proposed for P; and Py. In neither case does fault motion seem to
be a realistic origin, for very large displacements (corresponding to the distance along the
slip plane to the bed) would be required to entrain the quantities of debris observed.
Nowhere on the glacier, either during the surge or before, was faulting of sufficient magni-
tude observed. The remaining possibility is for debris to be introduced from above when
the P are open surfaces. We propose that P, are formed from transverse crevasses and that
P, are formed from ablation surfaces exposed above the equilibrium line. P; debris layers
are limited to fine dirt and occasionally small stones, while P, debris layers can be several
centimeters thick and contain cobbles up to about 5 cm. This is consistent with the kind of
debris that could be expected to accumulate on the steep walls of a crevasse (for P;) as
opposed to a more or less level surface (for P, ). It should be noted that large amounts of
debris accumulate on Variegated Glacier from rockfall and debris slides from the valley
walls, so the accumulation of thick debris horizons on surfaces briefly exposed in the accu-
mulation zone is quite possible.

A further reason for supposing that P; originates as transverse crevasses in some
upglacier location is the dip orientations observed. These are not vertical, and hence cannot
have been crevasses in their present orientation, but do have a dip consistent with a small
amount of rotation by vertical shear during the passage from their original position to their
final position at the terminus. A logical source for the transverse crevasses is in the icefall
at XP = 10.0, although other sites are possible.

If P, are old ablation surfaces, then the designation "Pg" is a spurious class, and these
features properly belong to S;. However, they stand out strikingly against S, in the ter-
minus region. A closer examination of some particularly clear examples of Py suggests that
the apparent cross-cutting relationship of P, and S, is in fact an angular unconformity in S,
in which the surface of unconformity is debris-laden (Figure 3.10). The designation P, has
been retained because of the possibility of fault displacement along these surfaces during

surge motion.

The final consideration regarding the question of local or remote origin of P is the
deformation of P observed in many locations: both P, and P, exhibit the same folding seen
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in 8,, indicating that the P features have been in place at least as far back as some of the
strain events that produced the folding.

Evidence of displacement on P, is plentiful. Many cross-cutting markers are displaced
across Py features, although in no case could a magnitude and net direction of displacement
be determined. Displacements of individual markers along traces of P were typically 10 cm
or less, with some rarer displacements up to 50 cm. As has been mentioned, no large fault
displacements of any kind were observed during the surge; however, displacements of
several centimeters could easily have occurred without being noticed. If the displacements
on P, occurred in association with the surge motion in the terminus region, only reverse
faulting (hanging wall moving up) would have been consistent with the existing stresses.
However, both reverse and normal displacements  appeared in markers along traces (some-
times both on the same trace, indicating a component of slip normal to the trace surface).
Furthermore, displacements of either sense can occur during formation and closure of the

crevasses that may be the source of P;.

No cross-cutting relation could be found that indicated positively that motion on a P
surface occurred in its present position (for example, displacement of S; or S, by P). At
one site, Py appears to have undergone a small (5 cm) displacement following the folding
that affects both P and S, (Figure 3.11). Displacements on P, are harder to establish since
potential markers (mainly Sy) are nearly parallel to the potential slip planes. Our conclusion
is that displacement has definitely occurred on P, and possibly on Pg, and that it has possi-
bly occurred as fault displacement on the surfaces after their closure. The displacement
may have occurred when the P features were at or near their present positions, but no dis-
placements of a substantial magnitude occurred. In another part of the terminus region,
thrust faults developed at the leading edge in very thin ice and underwent displacements of
a few meters. These are important parts of the deformation in that part of the glacier, and
may be the ultimate development of the narrowing, steepening surge front as it enters
thinner ice. In the part of the terminus region considered here, however, the observed
spacing of faults and the probable displacements on them does not account for a significant
amount of deformation. The magnitude of longitudinal shortening due to fault displacement
may be estimated by taking the typical fault spacing to be 100 m, the typical fault displace-
ment (in dip slip) to be 0.1 m, and the typical dip angle to be 75°. This results in a longi-
tudinal shortening of = 2x10%, several orders of magnitude smaller than the observed
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compressive strain. The possible component of motion during the surge by faulting is
therefore small enough that it may be neglected in models of flow. This is an important
consideration in the finite element calculations presented in Chapter 4.

Evoiution of structures

In the preceding sections we have presented the categories of structure defined in the
terminus region, described their occurrence and interelation on the glacier, and presented
what we believe to be the most probable origin of these structures. We now proceed to
describe what we believe to be their temporal evolution. This is done in light of the facts
presented in this chapter and the preceding one, but including knowledge of information
not yet presented. A final, fully comprehensive discussion can be undertaken only when
these latter topics have been dealt with. It is useful, however, to summarize matters at this
point with a picture of the evolution of the structures based primarily on the information

already in hand.

Immediately before the passage of the surge into the terminus region, the condition of
the ice must be compatible with what is known about conditions in 1982, and must be rea-
sonably derivable from post-surge conditions as seen in 1986. The glacier surface immedi-
ately before the surge was deeply buried (on the order of 100 m) in the glacier at the end
of the previous surge. Ablation in the intervening years has exposed the presurge surface,
and diffusive processes may have been at work to alter some structural
characteristics such as bubble distributions. The large-scale structures - S, and P - were
certainly present, probably in a state indistinguishable in essential details from their state
immediately after a surge. S, probably persists in a thin layer at the bed everywhere in the
terminus region. S, cracks may be absent, having never developed at the depth which even-

nally hecomes the presurge surface, Alternatively, S, may have developed but is no longer
present, due to a combination of diffusive and healing processes, and the fact that even if
originally present, open cracks cannot survive at depth for any length of time after a surge.
In support of this conclusion is the fact that only one longitudinal crack set was found,
instead of a fresh set superimposed on an older set with some different orientation. The
possibility that the new and old sets might have exactly the same orientation is extremely
remote. A final possibility is that the old set of S, is reactivated in the new surge, in spite
of what may be a less than optimal orientation. This possibility also seems remote, how-
ever, since so many of the S, features are fine hairline cracks and bubble traces which
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seem too ephemeral to be the surviving product of years of diffusion and recrystalization
between surges.

The possible changes in §, following a surge were considered in the previous section.
The best conclusion that can be made for the present purpose is that the transverse foliation
might be expected to persist between surges with varying degrees of recognizability.

With this initial condition in mind, we can now visualize the entrance of the surge
front into the terminus region. No structural changes involving accumulated strain occur
before the front, although we will see in Chapter 4 that fractures related to the buckle folds
described in Chapter 2 may be forming here. As ice meets the downglacier edge of the
front, it experiences a sudden onset of longitudinal compression rate, and a rapid displace-
- ment both in the downglacier and vertical directions. These events are clear in the measure-
ments presented in Chapter 2. The times of maximum longitudinal compression rate and
maximum lateral extension rate do not necessarily coincide, nor are their orientations
necessarily perpendicular (Raymond et al, 1987). S, cracks form at the time of maximum

lateral extension rate.

Longitudinal compression was observed to be much larger than lateral extension
(Raymond et al, 1987), and throughout the passage of the surge front, the dominant defor-
mation is plane strain compression with the principal compression in the longitudinal direc-
tion and the principal extension in the vertical direction. In response to the compression,
buckle folds develop near the surface, warping surface layers of ice up into the folds
described in Chapter 2.

The longitudinal compression amplifies irregularities in planar structures with any
component of strike in the longitudinal direction: in particular, the S, and P structures. If
individual P structures are mechanically weaker in shear across their surface than the sur-
rounding ice, then longitudinal compressive stress may initiate faulting on the surface.
From the evidence of displacement seen on Py, this may have happened, but nothing indi-
cates that large displacements occurred. Fault motion, if any, was an incidental aspect of
the overall picture of the deformation in this part of the surge front.

After the surge, the sequence of structural developments associated with the surge
front is visible in the appropriate locations along the final position of the front. Above the
front, S, cracks have developed into crevasses which énlarge and coalesce into chasms with
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distance upglacier. S, and P are distributed throughout the terminus region according to
their displacements from initial positions before the surge.

3.5 Crystallographic Fabrics in the Terminus Region

The previous sections of this chapter have addressed the spatial inhomogeneity of ice
in the teminus region. Here we will consider the anisotropy of the ice on a small scale.
During the 1985 and 1986 structural surveys, samples from a series of sites along the ter-
minus profile were collected and analyzed for optic (c) axis orientations. The results of
these analyses are presented here, with a discussion of the relationship between the c-axis
fabrics and the stress and strain during the surge.

3.5.1 Method

Since no facilities existed for storage or transportation of ice, all handling and meas-
urements were conducted immediately after collecting samples. Once thin sections were
prepared, measurements had to be made quickly, for the ambient temperature was typically
about 10°C and sections lasted only about 10 minutes, The rapid melting tumed out to be
less of a problem than anticipated because the grain sizes in the thin sections were large
(typically = 2 cm). This meant that the thin sections 2-3 mm thick were still usable, and
could be measured quickly since only 10 grains or so were present.

At each site, a clean, level ice surface was prepared by cutting below debris and the
surface weathering zone with a chain saw. The excavated site was usually a single strip
about 1 m wide and 3 m long. Oriented sections were cut from the sirip at 20-30 cm inter-
vals to ensure that single crystals did not appear in more than one section. The excavated
samples were cut about 5 cm thick to allow for melting during the interval before prepar-
ing thin sections.

Thin sections were prepared at a central measurement site by first cutting the section
down to 1 cm thick with a "sven" type hand saw, then melting the section on a hot plate
until a workable thickness was achieved. The thin section was then fixed in a plexiglass
sample holder with wire grips, and placed in a conventional Rigsby universal stage. Avail-
able daylight was used to illuminate the stage. Measurements, refraction corrections, and
scatter diagrams were made by the standard method described in Langway (1958).
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The contoured data presented here were calculated by a computer program based on
the Kamb method for statistically analyzing orientation data (Kamb, 1959). The plotted
contours are increments of standard deviation (¢) away from a random distribution.
Regions of the contour diagrams with population densities greater than twice the expected
number for a random distribution are interpreted to be significantly overpopulated (M.
Brandon, written communication).

3.5.2 Crystallographic Fabrics

The ice throughout the terminus profile was uniformly coarse-grained, with crystal
diameters in thin sections typically = 2 cm. Bubble content varied between low and
moderate. Figure 3.12 shows the typical bubble content in what is referred to here as
coarse bubbly ice. Figure 3.13 is a sketch showing the typical grain structure in thin sec-
tion.

C-axis orientations, both as scatterplots and as contour diagrams, are shown in Figure
3.14 for a profile of 10 sites in the terminus region. The data are plotted in lower hemi-
sphere equal area projections. Site AA lies at the upglacier extreme of the profile, above
the map region of Figure 3.9, and about 600 m above site A. Sites A through H lie along
the map region in Figure 3.9, and site GWM is located at the top of the moraine GWM.

Ice in the terminus region was stagnant and at 0°C for most of the time between the
end of the surge in 1983 and the collection and analysis of fabrics in 1985 and 1986.
Rigsby (1960) showed that recrystallization can occur very rapidly at 0°C, and that a well
developed fabric can be completely annealed to a new random fabric in the space of a
month, The fabrics in Figure 3.14 are evidently not random, and surprisingly, even ice
taken from below the final position of the surge front (sites G,H, and GWM) shows evi-
dence of a fabric despite the absence of deformation since 1965. It seems probable, how-
ever, that some dispersion of maxima has occurred since 1983 and that the fabrics shown
may have been stronger immediately following the surge.

In connection with Rigsby’s observations on recrystallization, it should be noted that
his striking example of recrystallization of a natural fabric from glacier ice in Greenland
started from very fine grained ice with about 300 grains appearing in a 3-inch diameter thin
section. This would have provided many grain boundaries along which new crystals could



58

grow and may have caused much more rapid recrystallization than would be observed in a
coarse grained specimen.

A consistent pattern appears in Figure 3.14 in the sequence of sites from AA to F.
All show a broad elongated maximum, or double maximum, pointing approximately in the
direction of principal compression and having only a slight dip in the upglacier or down-
glacier direction. The principal compression direction is designated on individual fabric
plots by an arrow on the equator point parallel to the principal compression direction. At
sites G and H below F, a pronounced change takes place in the orientations. Maxima
become more diffuse, and more importantly, take on a nearly vertical orientation. These
sites lie on the downglacier side of the Sy/S, transition, in the region where the horizontal
S, foliation exists. The intensity of S, is moderate at G and very strong at H. The fabric
has followed the same pattern as the foliation in this region, changing its orientation 90° in
parallel with the poles to the foliation. The contour diagrams at sites G and H faintly sug-
gest multiple maximum (possibly 3-pole) orientations. A moderately sﬁong fabric returns at
site GWM, with the single c-axis maximum lying very close to the pole to the S, foliation.
Note that S, is not flat-lying here; this is the result of the deformation associated with flow
into local depressions that was described in section 3.2. The statistical validity of the c-
axis maxima is evident in the contour diagrams, where the center of the maxima are seen
to lie between 9 and 15 o above a random distribution. The double maxima at sites C,D.E,
and F, and the multiple maxima at G and H are somewhat less certain, for the weaker
maxima at each site stand only 3¢ above the area separating them from the main maxima.
This is above the defined criterion of 2¢ for significance, but not by the margin seen in the
main maxima. An examination of the scatterplots for these sites does not always reveal
convincing secondary maxima. It is questionable whether the orientation of the maxima
can be specified very precisely. The maxima are broad, and if the multiple maxima are
regarded as one diffuse maximum, the orientation becomes even less definite. An eigen-
value decomposition of the orientation distributions would provide principal directions of a
best fit ellipsoid to the data, but this technique is inappropriate for distributions with less
than orthorhombic symmetry. The best characterization of the fabrics between sites AA
and F is that they are elongated, possibly double maximum patterns oriented approximately

in the principal compression direction.
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The relation between the orientation of the c-axis maxima and the direction of princi-
pal compression is striking when compared to the fabrics presented by Kamb (1972) for
uniaxial compression and pure shear at 0°C. Kamb deformed ice at 0°C in an apparatus
designed to impose plane strain, but pressure melting of the sample resulted in a strain
more nearly resembling uniaxial compression. Ice taken from the base of an icefall at Blue
Glacier, Washington had been deformed in a state closer to pure shear, although some
extension in the intermediate strain direction is known to have occurred (C.F. Raymond,
personal communication). The state of stress at the surge front is very nearly pure shear,
being plane strain with the principal compression direction horizontal, principal extension
direction vertical, and only small amounts of extension in the lateral direction. In his
experiments and on Blue Glacier, Kamb found small circle fabrics approximately centered
on the direction of principal compression (Kamb 1972, Figure 17). The small circles were
incomplete, and appeared rather as two maxima lying adjacent to the principal compression
direction. The strength of the maxima at sites AA through F lie intermediate between
Kamb’s maxima, being stronger than Kamb’s experimentally produced fabric (at 4-6% per
1% area vs 3% per 1% area) and weaker than the maxima at Blue Glacier (4-6% vs 8%). It
should be recalled, however, that some dispersion may have occurred between the end of
the surge in 1983 and the collection of samples in 1985 and 1986.

The finite strain in Kamb’s experimentally produced fabric (-0.37 logarithmic) was
less than the probable total strain in the terminus region. The strain in the Blue Glacier
sample was unknown, but a strain rate of about 0.3 yr! (logarithmic) was measured over 1
year. The grain size in the experimentally deformed sample was initially small (0.5-0.9 mm
diameter), and grew to larger sizes, but still substantially smaller than what was observed
in the terminus region. The Blue Glacier ice type was described only as coarse bubbly, but

was probably similar in grain size to the ice in the terminus region.

No clear correspondence exists between the orientation of §; and S, and the fabric
maxima, beyond the fact that S, is more nearly parallel to the flow direction than perpen-
dicular, and vice versa for S;. This is persistent with the proposed origins for S, and S,
presented in section 3.4, where it was suggested that neither feature formed in response to
the total compressive strain,

The orientation and pattern of fabric maxima at sites AA through F indicate that

some complex maximum or maxima developed roughly coaxially with the direction of
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principal compression. The fabrics are similar to Kamb’s fabrics for compression at 0°C,
and give support to the notion that these fabrics are typically associated with pure shear.
The fabrics in Figure 3.14 are not all as clear as Kamb’s, but if one were to be chosen
(e.g. site C) for comparison with Kamb’s one example from a glacier, the similarity would
be very satisfactory. The consistency in orientation between the principal compression
direction and the mid-point of the elongated maximum at sites AA through F is variable,

but is close enough to provide evidence of a connection.

Below the §,/S, transition, sites G and H show what may be a multiple (possibly 3-
pole) maximum oriented vertically. This fabric resembles those seen at Blue Glacier
(Kamb, 1959) in coarse ice subjected to large magnitudes of simple shear, although the
" classic "diamond" pattern is not evident here. The resemblance includes the fact that the
maxima are centered on the pole to foliation, and appears to confirm Rigsby’s suggestion
(communicated in Kamb, 1959) that the multiple maximum fabric is more typically com-
posed of 3 maxima. The weakness of the fabrics at G and H is not unexpected; in fact,
given the length of time this ice has been stagnant, these fabrics are surprisingly strong.
At GWM, the maximum is still somewhat elongated, but more nearly resembles a single
maximum than at most of the other sites. This is in ice with a strong S, foliation. The pair-
ing of a single maximum fabric with a strong foliation resembles the situation described by
Hudleston (1977), in which a zone of intense shear strain developed a strong single max-
imum fabric, flanked by double maximum fabrics in adjacent ice subjected to smaller
amounts of shear. It is not clear why the ice at GWM should have a substantially stronger
fabric than G and H, for GWM is located in ice well above the bed of the glacier. The
differences between these sites may be due to differences in their strain histories during the
1964/65 surge, although such distinctions are difficult to separate now from annealing

effects that may have occurred since that time.

In summary, c-axis fabrics developed in ice above the §,/S; transition which are con-
sistent with other fabrics developed in pure shear at 0°C. These are broad single, possibly
double, maxima oriented at or near the principal compression direction, which in the ter-
minus region is roughly horizontal and in the flow direction (and perpendicular to S,).
Below the §,/S; transition, there is an abrupt change in the fabric type to nearly vertical
maxima. These are either broad (or diffused) or multiple maxima and may be the product

of shear in the S, planes.
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Figure 3.3. Schematic of structural elements defined in terminus region



Figure 3.4. a) Primary layering S,. b) S, showing steeply dipping area.
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Figure 3.5. Typical exposure showing §; (parallel to ruler) and S, (perpendicular to
ruler). Ruler is 15 cm long.



Figure 3.6. Crevasses with S, orientation.
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Figure 3.7. Subhorizontal foliation S, exposed in stream cut at downglacier end of
terminus region.



Figure 3.8. Cluster of typical P, structures.



Figure 3.10. Cross-cutting Py, Po, and S,. P, steeply dipping, rises left to right; P,
gently dipping, rises left to right; S, steeply dipping, rises right to left. Po can be seen cut-
ting S, near the upper right corner of the picture.
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Figure 3.11. Displacement in fold in P,.
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Figure 3.12. Thick section of coarse bubbly ice.
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Figure 3.15. Schematic of relation between orientation of c-axis maxima and macros-

copic structures in the terminus region.
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CHAPTER 4
MODELING OF FLOW IN THE PROPAGATING SURGE FRONT

4.1 Introduction

The purpose of this chapter is to present the results of modeling of flow in the ter-
minus region of Variegated Glacier during the passage of the surge front. Models of flow
in a longitudinal section have been made using simple analytic theory and also by using
finite element calculations. The objectives of the modeling fall into three categories. First,
we want to know the velocity distribution at the bed that will produce the velocity distri-
bution observed at the surface for the given geometry and boundary conditions. This objec-
tive is addressed here. Second, we want to know what basic kinematic elements define the
flow in the front. This is addressed in Chapter 5. Third, we need accurate calculations of
strain rate and finite strain to use in connection with studies of c-axis fabrics and tectonic
structures developed in the terminus region during the surge. This objective has been
treated in Chapter 2. The modeling provides a better understanding of factors controlling
the shape and speed of the advance of the surge into the stagnant terminus, and stresses

associated with the motion.

4.2 Model Design
4.2.1 Modeling Strategy

We have developed a modeling strategy that leads from the calculations of flow made
for specific geometries to the generalizations about propagation which are our final goal.
The first step in this strategy is to calculate in a reliable way the velocity at depth along a
flow line, based on the observed geometry and surface velocity for a representative sample
of days, during the passage of the surge through the terminus region. The second step is to
construct the simplest possible model which can reproduce the essential features of the
flow in the finite element calculations. As will be seen, this simple model is based on con-
tinuity alone, and dynamics are absent. The third step is to construct an hybrid of the
preceding two models. Here we attempt to reproduce phenomena which can be explained
in terms of the simple model, but we perform the calculations by the finite element method
so that dynamics are included. The third model behaves in a way which is explicable in the
simple terms of the second model, but has the realistic structure of the first. Its results can
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be compared directly to the results based on observations during the surge.
4.2.2 Finite Element Program
Raymond (1978) describes a finite element method used to calculate flow in plane

strain for an incompressible non-linear viscous medium. That method is the one used here,
with the addition of certain facilities to make the calculations more accurate over a wider
range of strain rates, to resolve pressure instabilities, and to more accurately calculate

stresses.

Briefly, the method is applied to a longitudinal flow plane subdivided into quadrila-
teral 4-node elements, each of which is further subdivided into 4 subtriangles with a com-
mon vertex and implicit node at the element center. Within each subtriangle, the velocity
varies linearly and the strain rate is constant. Incompressibility is imposed as an additional
constraint. Nodal velocities depend on the element viscosities, which in turn depend on the
effective strain rates, so an iterative algorithm is used to calculate velocities for the current
step based on strain rates from the previous step. Boundary conditions may be either
imposed stress, imposed velocity, or some combination of the two. The solution yields
nodal velocities, element stresses, strain rates and pressures. Nodal forces are calculated on
parts of the boundary where velocity boundary conditions were applied. These are con-
verted to boundary stresses.

4.2.3 Rheology

Ice rheology in the finite element program is governed by Glen’s law, with a
modification used at low stress. At low stresses (where strain rates approach zero), Glen’s
law dictates that ice becomes very stiff; in the limit of zero effective strain rate, the
stiffness (effective viscosity) becomes infinite. Because of the high velocity gradients
applied as boundary conditions at the bed, high stresses are transmitted longitudinally
downglacier from the surge front to the stiff motionless ice below the front. This causes
numerical difficulties which we resolved by adopting a transitional linear/non-linear law
which dictates a linear viscous flow at low stresses and a Glen’s law flow at high stresses.
This transitional law has the form

NoB
n= oa
MoE* + B

where ny is a parameter: it is the value of effective viscosity at which the linear and non-
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linear components act in equal proportion. Corresponding to the transition viscosity is the
transition stress T, where ny = B(4t§)™. In these calculations we have used 1, = 0.05 MPa

(0.5 bars). The exponent o.= 1-1/n and B = %—A""‘.

4.2.4 Grid Geometry

The grid geometries for the terminus region models are based on survey data during
the surge (Raymond et al, 1987) for the surface profile, and seismic (Bindschadler et al,
1977) and radio echo sounding data (K.A. Echelmeyer and H.F. Engelhardt, personal com-
munication, 1983) for the bed profile. The bed in the terminus region is very nearly a uni-
form slope, so a straight line was passed through the available bed elevations to produce a
straight bed with a down glacier slope of 0.04. At the surface, the raw elevation data were
filtered to remove small scale roughness. The upglacier and down glacier ends of the sec-
tion were truncated with vertical boundaries.

Extensive experiments early in the modeling work showed that a very smooth grid
geometry was needed to obtain acceptable convergence when dealing with high velocity
gradients on the boundary. Similarly, the element spacing within the grid must be very
smooth, with concentrations of elements placed at the areas of high velocity gradients. All
the grids were composed of 210 nodes and 174 elements, with the elements arranged in 29
vertical columns each 7 elements deep.

4.2.5 Boundary Conditions

The finite element grids have been made long enough to extend well into the surging
zone of the glacier at the upstream end, and well into the stagnant zone below. At the
upstream end, the surface velocity was measured to be of the order of 30 m 4™, of which
only a small fraction could be the result of internal deformation. (No direct confirmation of
this assumption is available for the terminus region, but borehole inclinometry on the upper
glacier as reported in Kamb et al (1985), fig. 6, shows that for one site, 97 % of the sur-
face displacement was the result of basal sliding.) Therefore the velocity at the bed at the
upstream end is very nearly the value at the surface, and the upstream end velocity boun-
dary condition can be plug flow at the value measured at the surface. The effect of some
reduction in velocity at depth was investigated but was found to be negligible. At the
downstream end, the surface velocity is zero, and the velocity at depth can be assumed to
be zero as well.
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Only the velocity at the bed remains to be specified. No direct information is avail-
able to dictate a choice here, but this velocity boundary condition is effectively the only
variable remaining in the problem. The geometry and rheology are specified, the boundary
conditions at the ends of the region are fixed, and while the surface is free, acceptable cal-
culated velocities there are constrained by data. What remains is to assign a reasonable dis-
tribution of velocity at the bed and perform the calculation. If the calculated velocity at the
surface does not match the observed velocity, the chosen bed velocity is rejected and

another choice is made.
4.2.6 Scheme for Matching Surface Velocity

Central to the first step in the modeling strategy described above is the assumption
that a good match between calculated and observed velocities at the surface means that the
basal velocity distribution is correct. This assumption needs clarification on three points.

First, we again emphasize that the rheology of the ice is regarded as known. There is,
of course, uncertainty about the appropriate values of A and n to be used in Glen's flow
law, and even whether this type of flow law is the best choice for a constitutive relation-
ship. There is also a question of whether the flow in the surge front can be adequately
represented by a continuum model, or whether fractures and fault displacements must be
included. This has been discussed in Chapter 3, and will be discussed again later in this
chapter. We have performed tests on the effect of varying A and n; these are discussed in
the next section. We will say in advance, however, that the effect on the flow pattern is
small. In fact, it will be seen when simpler models of flow are discussed that continuity
relations alone adequately describe the phenomena observed, and that dynamics play only a
minor role.

The second point to be clarified is the question of whether the bed velocity distribu-
tion chosen is the only distribution that will reproduce the observed surface velocity. Our
experience in finding appropriate velocity distributions has shown convincingly that there
are no obscure choices of bed velocity which will produce a reasonable looking surface
velocity. All the models represent situations where longitudinal gradients dominate vertical
gradients, and there is consequently a strong coupling between basal ice and surface ice
directly above. As a result, all the large features of the flow at depth are expressed at the
surface.
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Finally, while the large features of the basal distribution of velocity are unique, the
fine details are not, and we make no claims about the small scale character of the velocity
at depth. To the extent that small scale variations in bed velocity have no expression at the
surface, we claim that such variations are not significant to the flow of the glacier on a
large scale. Balise (1987) presents a detailed analysis of the surface expression of velocity
variations occurring at the bed. Such small variations at the bed are of major significance
when considering the detailed nature of basal sliding, but this is not the focus of the
present work. Our results here will have application only on a larger scale, i.e., on length
scales comparable to the width of the front zone.

There are two components of velocity (horizontal and vertical) to be matched at the
surface, but only one component free at the bed (parallel to the bed). Velocity components
perpendicular to the bed could arise from basal melting or development of cavities, but we
have not allowed these, nor have we adjusted the position of the bed in an attempt to pro-
duce a better fit of velocities at the surface. Since the horizontal component of the velocity
is the main component (approximately five times the vertical component), only the agree-
ment between the horizontal component of the calculated and measured velocity at the sur-
face is considered. No attempt is made to match the vertical component, and in fact,
discrepancies develop. The discrepancies are significant, and have an interesting interpreta-

tion, as will be seen in section 4.3.2.
4.2.7 Sensitivity Tests
Rheology

Ice rheology is governed at higher stresses by Glen’s law, in which we have specified
A=0.148 bars™yr"! and n=42 (Glen, 1955). These are laboratory-derived values and are
higher than would be appropriate for typical glacier flow, but they are consistent with high
strain rates of the surge front, and with the flow in the active regions of the glacier before
the surge (Raymond and Harrison, 1987). The specific values of the parameters A and n do
not critically affect the results derived below provided that they lie within a reasonable
range of values defined by experiments and field results for temperate ice.

The sensitivity of solutions to changes in the chosen values for the rheological param-
eters A and n was evaluated by recalculating solutions for the 21 June grid using identical
boundary condition and new values for A and n: n reduced by 10%, and A increased by a
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factor of 1.5 (corresponding to a reduction of B = -;-A“”‘ by 10%). The result was indistin-

guishable in the general pattern of velocity from the solution using unperturbed values.
This insensitivity to specific values of the rheological parameters is not surprising, since
the large velocity gradients in the boundary conditions put such large kinematic constraints
on the flow that the solutions are largely dominated by continuity.

Choice of grid

The fact that a carefully smoothed grid was necessary to obtain good convergence has
already been mentioned. The production of a smooth grid from raw survey data involves
two steps. First, the raw surface profile is smoothed, using a rectangular ("boxcar") filter
whose width is proportional to the local ice depth. A filter width of three times the ice
depth provided sufficient smoothness for the finite element calculations to converge given
the chosen element density, and preserved surface topography above what was felt to be an
appropriate length scale. Second, the columns of elements were spaced to match the gra-
dients along the flow plane. These could be spaced in accordance with the gradients of
velocity or thickness; experiments showed that spacing according to the velocity gradient

produced superior convergence.
End boundary conditions

Both velocity and stress boundary conditions were tried at the vertical upstream and
downstream boundaries. Since velocities were measured on the glacier, velocity boundary
conditions were much easier to make, but stress boundary conditions were tried in an effort
to solve the pressure instability problems discussed below. Velocity boundary conditions
were eventually chosen for the ends of the grid.

The rational for assigning vertical distributions of velocity at the ends has been dis-
cussed. The choice of zero velocity at the stagnant downstream end is clear. At the
upstream end, there is no predetermined constraint on velocity at the bed; however, it
quickly became clear in the first trials that the strong vertical coupling present throughout
the section required that the bed and surface velocities be very nearly the same. Velocity
differences of about 5% between surface and bed were admissible, but did not produce
significantly different results than plug flow. The final choice for the upstream end boun-
dary condition for all grids was to set the horizontal velocity at all depths equal to the
measured horizontal component at the surface, and to vary the vertical component linearly
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between its measured value at the surface and the value at the bed dictated by flow parallel
to the boundary.

Pressure instability

Finite element models of incompressible flow frequently develop inaccurate pressure
solutions which arise from non-physical, or "spurious" pressure modes which satisfy the
boundary conditions of the problem and which appear superposed with the true, physical
pressure solution. Sani et al (1981) discuss the nature of this problem and its solution,

The common spurious pressure mode is an element-to-element oscillation around a
mean value which is the true element pressure. The oscillation pattern is like a checker-
board in which the red squares represent elements with anomalously high pressures and the
black squares represent elements with anomalously low pressures (this is called the check-
erboard or CB mode). The CB mode is admissible because it satisfies force balance on
individual elements. Since the material is incompressible, the pressure field has very little
effect on the velocity field, and the calculated velocities are reliable in spite of the pres-
sures. Deviatoric stresses, however, do show some instability connected with the pressure

oscillation, and non-deviatoric stresses will contain all the error present in the pressures.

The CB mode is eliminated first by arranging the grid and boundary conditions to
minimize its development, and second by smoothing the resulting pressures to eliminate the
CB mode to the extent that it has developed. The smoothing process is described in Sani et
al (1981), and has been shown to produce pressures which converge to the true pressure
solution exactly for the case where the finite element grid is uniform and rectangular. The
same smoothing process applied to irregular grids still produces pressure ficlds which are
acceptably accurate. All the pressure fields shown here have been smoothed by this pro-
cess.
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4.3 Calculations Based on Front Data
4.3.1 Representative Days

In Chapter 1 the evolution of the front velocity profiles between 21 June 1983 and
the end of the surge was presented. Finite element models have been made for eight
representative days spread throughout the 16 day interval between 21 June and 6 July.
These were all similar in essential details. Presented here are five of the eight days, one for
each of the four phases of flow through the terminus region and one for the beginning of
the period. These days are 21, 25, and 29 June, and 4 and 6 July. Figures 4.1 - 4.5 show
for each day the velocity and stress distribution on the finite element grid, The match
between measured and calculated surface velocity (two components) and distributions of
basal stress (normal and shear).

4.3.2 Pattern of Velocity
The pattern of velocity at depth (part (a) of Figures 4.1 - 4.5) in all cases shows

minimal shearing deformation. The absence of intemnal shearing deformation can be seen
more graphically in Figure 4.6, which is the finite element grid for 25 June in which
selected nodal coordinates have been traced from their initial position to their position after
24 hours. Intemal deformation has caused a vertical extension of these lines, but has not
produced substantial bed-parallel simple shear. The models for all days shared this charac-
teristic.

The vertical velocity distribution with depth follows the pattern required by column-
wise continuity, varying more or less linearly between the values at the bed and the sur-
face. The diminution of the velocity magnitudes as the front is approached is controlled by
the basal boundary condition. The coupling between bed and surface is most obvious in
this part of the grid. In order to bring the surface velocities down to zero in a way dictated
by the measurements, the basal velocity had to be reduced in the same way.

Sections ¢ and d of Figures 4.1 - 4.5 show the calculated and measured surface velo-
cities (horizontal (c) and vertical (d) components). All distributions of horizontal velocity
components show good agreement between calculated and measured values. This agree-
ment was the criterion for validity of the calculated distribution, and was generally found
after only two or three trials, The distributions of vertical velocity components, however,
show substantial disagreement with the measurements. In all cases, the calculated vertical
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velocity at the steepest part of the front is less than the measured vertical velocity. Further-
more, a secondary peak that appears in the the calculations is absent in the measurements.
On the upglacier side of the vertical velocity peak, another discrepancy appears on most
days, in which the calculated velocity is approximately 1 m d™! higher than the measure-

ments. This occurs in the surging zone, where longitudinal strain rates are low, and plug .

flow dominates. The surface velocity vectors are oriented parallel to the bed, and uncer-
tainties in bed slope result in discrepancies in vertical velocity. The difference between the
measured and calculated vertical velocities corresponds to an error in bed slope of about
1.5°, well within the limits to which the bed slope is known. Note that this error does not
reduce the discrepancy at the peak in vertical velocity, but rather increases it.

Various explanations of the peak vertical velocity anomaly at the front have been
considered. The inclusion of lateral straining across the flow plane would affect these
results, but since the small lateral straining observed was extensile, the effect would only
be an increase in the anomaly. Errors in the elevation of the bed are another possibility, but
an error on the order of 20 % would be required to explain the difference. Errors of this
magnitude are unlikely in the bed data. If the bed slope were wrong, the vertical velocity
would be affected, as discussed above, but it would be affected most at the region of max-
imum horizontal velocity, rather than at the region of maximum compression where the
ﬁpward anomaly appears. Finally, there is the fact that the main peak of the anomaly
moves with the front. This is difficult to explain in terms of errors fixed in the geometry.
More likely, some form of deformation not accounted for in the model was acting during
the surge. Note, however, that this unknown deformation does not conserve volume (since
the model does). We propose that the vertical velocity anomaly is caused by the develop-
ment of cavities within the glacier whose growth causes a vertical swelling of the ice. A
rough estimate of the amount of swelling, or excess thickening, was made by assuming
that a given days vertical velocity profile represents a steady state profile which propagates
downglacier at the speed of the surge front (approximately 40 m d™!). The excess thicken-
ing can be calculated by integrating the excess vertical veloCity (Vmeasured = Vealcutated) 8 the
profile propagates past a fixed point at 40 m d™’. The result of this calculation is an excess
thickening of approximately 14 m, or 11 % of the thickness. Finally, between the end of
the surge in July 1983 and August 1984, the glacier surface was observed to drop by about
12 %, which is consistent with the closure of cavities following the end of the surge.
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In addition to assuming that the bed elevation is adequately determined in reaching
this conclusion, it has also been assumed that the profile propagates in a steady state, at a
known speed, and that the horizontal component of the calculated velocity matches the
observations exactly. None of these are precisely true, and deviations from these assumed
conditions create uncertainty in the calculation of the excess thickness. For these reasons,
the conclusions should not be taken as an accurate calculation of the quantity of void space
created, but rather as evidence that volume was not conserved in the observed geometry
changes, and that the magnitude of the volume change is consistent with other evidence

suggesting void space as the cause.
4.3.3 Pattern of Stress

Internal deviatoric stresses are shown in part (b) of Figures 4.1 - 4.5. This shows
principle deviatoric stress directions and magnitudes of the finite element grids. Directions
of tensile stress are depicted by vectors with arrowheads. The patterns are characterized
principally by large stresses (typically as great as 3.5 bars in the front zone), brought about
by transmission of stress longitudinally through the high compression in the front. The
stress directions in the front zone are very nearly parallel and perpendicular to the bed,
reflecting the principle directions of strain. Below the front the stress directions rotate
clockwise near the base, following the pattern associated with more typical shear deforma-
tion. In the early days of the interval (represented here by 21, 25, and 29 June), a large
zone of stagnant ice extends to the downstream end of the grid; in this zone stresses are
somewhat irregular in magnitude and orientation. This is a numerical artifact of incomplete
convergence which has resisted removal. The large range of stresses in the grid result in a
large range of residuals between iterations; the magnitudes of the residuals in the stagnant
zone are very small when compared to the residuals in the front zone which control the
numerical convergence. Consequently, the residuals in the front zone can be reduced to a
level which achieves' acceptable convergence while the residuals in the stagnant zone
remain variable. The grids for 4 and 6 July do not include a stagnant zone and do not
have this problem. On all grids, however, there are end effects associated with the boun-
dary conditions at the vertical ends of the grid. These appear as anomalous rotations of the
principle stresses at the ends of the grid (especially noticeable on 21 and 29 June). These
anomalies are the strongest effect that the ad hoc choice of end boundary conditions has

on the solutions; they do not, however, extend into the front zone where accuracy is most
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needed.

Figure 4.7 shows the distribution of basal normal ( o, ) and shear ( <, ) stress on 22
June for two states: the normal surging state as presented so far, and a "stalled" state in
which the calculation is performed with the same geometry, but with no slip at the bed.
This distribution is expected if the surge were to terminate suddenly on this date as it did
on 5 July. A comparison of the two states shows the stress redistribution associated with
the surge motion. The shear stress has been smoothed in the driven case to remove oscil-

latory errors connected with the pressure instability.

Whether the surge zone is in rapid motion or not, there is a substantial jump in 1,
across the front from near zero values downglacier to 0.16-0.18 MPa (1.6-1.8 bars) or
more upglacier. Above the front, 7, is consistent with the stress level where surge motion
initiated ( Evolution of Variegated Glacier, Alaska, U.S.A., Prior to its Surge, C.F. Ray-

mond and W.D. Harrison, manuscript submitted).

During the surge motion the distribution of 7, through the front shows a low beneath
the upglacier part of the front and a high beneath the downglacier part. This pattem is
explained by the strong compression in the central part of the front and the resulting stress
redistribution. The strong compression is absent in the *‘stalled’’ case, and the distribution
of 1, more closely fits what would be expected from standard considerations using depth

and surface slope.

The basal velocity distribution found for the surge motion decreases monotonically
through the front (Figure 4.7a). Comparison with 7, implies that beneath the upper part of
the front there is rapid sliding at a relatively low 7,, but beneath the lower part of the front
the opposite relationship exists. Consequently, there is a rapid downglacier transition from
a zone of easy ‘‘lubricated’’ to one of difficult ‘‘locked’’ sliding.

The compressive normal stress (o;,) on the bed shows a simple pattern. During the
surge motion the strong iongitudinal stress gradients and the corresponding longitudinal
gradient in 7, described above should affect o,. Such an effect is apparent by comparison
to the stalled case, but proportionally, the differences are not large. The small differences
can be explained in terms of the vertical force balance equation in the form

06,,/0y = ~p;g + 0T, /0x €))
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which shows that o, (approximately -c,, evaluated at the bed) is increased above the
weight of the overlying ice where dt,/ox is positive. For example, consider the area near
XP = 17.9 km with depth of about 60 m (Figure 2.3a). During surge motion dt,/ox =
+3x10™* MPa m™ (Figure 4.7d), which integrated over depth predicts o, to be 2x102 MPa
(0.2 bar) larger than overburden. For the stalled case, dt,/dx is much smaller, and o is
very close to the overburden stress of 0.55 MPa (5.5 bars).

4.4 Fractures

While the finite element method used here cannot treat fractures, we can use the
information found about stresses to identify regions of tensile stress, and thereby in a gen-
eral way where and in what orientation tensile fractures might develop. This has been
done to discover possible fracture sites resulting from two sources. First, true stresses are
calculated from the deviatoric stresses and the smoothed pressure fields. These produce
some regions of tensile stress on certain days, which can be interpreted in a way consistent
with fractures which must be involved with the development of the buckle folds described
in Chapter 1. Second, the same stresses are reconsidered with the additional effect of pres-
surized water within the glacier (hydrofracture).

Possible fracture orientations (perpendicular to the direction of tensile stress) are plot-
ted for 21 June (Figure 4.8), 25 June (Figure 4.9), and 29 June (Figure 4.10), while
hydrofractures for 21 June are shown in Figure 4.11.

Tensile stresses form where deviatoric tensile stresses become greater in magnitude
than the pressure. For this reason, potential cracks do not appear at depth (where overbur-
den stresses increase the pressure), nor do they occur in the front zone where pressures are
anomalously high due to ‘the longitudinal compression. Near the surface just downglacief
from the leading edge of the surge front, however, pressures are slightly positive (compres-
sion being negative) due to the upward traction exerted on the upglacier end of this region
by the rapidly rising ice in the surge front. The vertical component of deviatoric stress is
positive (tensile), with the consequence that non-deviatoric vertical tensile stresses develop,
oriented vertically and consistent with fractures occurring parallel to the surface at near-
surface depths. The region where these tensile stresses develop corresponds to the part of
the glacier where audible microcracking was observed (as discussed in Chapter 1). If
surface-parallel tensile cracks were the source of the microcracking, an unresolved question
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would be answered; namely, that the microcracking occurred below the surge front, indicat-
ing some state of high stress despite the fact that no substantial longitudinal strain or velo-
city was being recorded at the time.

The element size used in the finite element grids is not small enough relative to the
probable scale length of the vertical variation of stresses to insure an adequate representa-
tion of stress variations, so the magnitude and orientations of stresses plotted in Figures 4.8
- 4,11 cannot be taken literally as predictions of exactly where and in what orientations
tensile cracks might appear. The significant variations in tensile stress occur between the
surface, where the stress must be zero, and the depth at which the overburden pressure
exceeds the value of tensile deviatoric stresses. For the 21 June grid, this depth occurs
within the second element below the surface, comresponding to a depth on the order of 10
m, On the glacier, however, surface parallel cracks were observed regularly within 10 cm
of the surface. Element sizes would have to be much smaller than those used to properly
evaluate the location, magnitude, and orientation of tensile stresses. Nevertheless, the cal-
culations are evidence that tensile stresses develop near the surface in this part of the gla-
cier, and that the stress orientations are approximately perpendicular to the surface. It is
possible that the microcracking heard on the glacier was produced during the development
of surface-parallel tensile cracks, and that these cracks provided the surfaces of separation
on which the buckle folds formed during the subsequent compression in the surge front. It
is possible, however for surface-parallel fractures such as those observed to develop in the
absence of macroscopic tensile stress. Geological field studies and experiments have shown
many cases where surface-parallel fractures developed in response to surface-parallel
compression. In this connection, however, we note again that strain rate measurements

indicated that no such compression existed at the time of the microcracking.

The hydrofractures presented in Figure 4.11 are also speculative, since they involve
some assumption about the distribution of water pressure through the glacier. This is a very
uncertain proposition since the relationships between conduit size, discharge, and pressure
are not well known in any case, and are especially speculative in the case of surge front.
Humphrey (1987) has given some theoretical examples of water pressure drops through
surge fronts, however. The general shape of his calculated pressure field has been adopted
here to diminish a pieziometric height from an independently determined value at the top
of the front zone to zero at the top of the stagnant zone. The pieziometric height at points
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‘above the front zone is determined by maintaining a chosen effective pressure
(Doverburden — Pwaier) 8t the bed, adjusting the pieziometric height according to the local ice
depth.

The occurrence of hydrofractures for 21 June is shown in Figure 4.11. An effective
pressure of 0.3 Mpa (3 bars) was chosen initially, determined by the effective pressure cal-
culated for the water level data of Kamb et al (1985), Fig. 9. A 3 bar effective pressure
produced no change in tensile stresses from those already seen, however. Lower values of
effective pressure were then tried to determine what value of water pressure is necessary to
produce hydrofracture, and where it will occur. Only effective pressures which are approxi-
mately zero have any substantial effect. This can be understood in terms of the same fac-
tors which control the simple tensile cracks. Below the surge front, water pressure is
always zero (atmospheric), so hydrofracture can play no role there, while within and above
the surge front, high element pressures - generally above overburden - dominate the water
pressure, which is constrained to be at or below the overburden pressure (water pressures

locally above overburden are possible, but are not considered here).

When the effective stress is lowered sufficiently, an interesting pattern of hydrofrac-
ture develops. An array of fractures appear in Figure 4.11 for O bars effective pressure
which extends from near the zone of simple tensile cracks down and back to the bed.
While the orientation of the cracks does not lie in a direction appropriate for thrust fault-
ing, the path of the array of cracks does. These cracks may define a zone which under the
right circumstances will develop into a thrust fault. For a surge front in thinner ice, the
overburden pressures would be smaller, and if in fact water pressures are determined by
conditions upglacier from the front zone (and are accordingly not constrained by local
overburden), the conditions to permit thrust faulting might be achieved. In fact, thrusts
were observed in a part of the terminus region outside the study area. These developed in
ice substantially thinner than that presented here, they appeared at the downglacier edge of
the front zone, and in several instances had pressurized water gushing from the fault.
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FIGURE 4.1. Finite element velocity and stress solutions for 21 June. a) Velocity
vectors b) Principle deviatoric stress vectors. Vectors with arrowheads denote tensile stress;
those without denote compressive stress. Vector magnitudes measured from origin of vec-
fors to tip.
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FIGURE 4.2. Finite element velocity and stress solutions for 25 June. a) Velocity
vectors b) Principle deviatoric stress vectors. Vectors with arrowheads denote tensile stress;
those without denote compressive stress. Vector magnitudes measured from origin of vec-
tors to tip.



*STUSIINSEIW
WO pue Paje[nores $0BLNS 18 AIO0[IA JO JUSUodwOod [BIMIOA (P "SIUSIAMSEIW WOIJ pue
paremored 9oeuNs 18 A100[PA Jo jusuodwiod Teuozuoy (9 (panunuod) 'y TANOI

(z01 x w) ssuels|p

2-

pesnsesw i
~—) [)

|
ol

]
0¢

|
"0b Ot

(,-p w) AoojeA

(.-p w) Ayoojen



-1 95

vertical exaggeration 4:1

10 20 bars
b

T3

+ +

.+' ‘)L_]L

N

Lty ++.+i+:+’.

VR e

—

vertical exaggeration 4:1

FIGURE 4.3. Finite element velocity and stress solutions for 29 June. a) Velocity
vectors b) Principle deviatoric stress vectors. Vectors with arrowheads denote tensile stress;
those without denote compressive stress. Vector magnitudes measured from origin of vec-

tors to tip.
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FIGURE 4.4, Finite element velocity and stress solutions for 4 July. a) Velocity vec-
tors b) Principle deviatoric stress vectors. Vectors with arrowheads denote tensile stress;
those without denote compressive stress. Vector magnitudes measured from origin of vec-
tors to tip.
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FIGURE 4.5. Finite element velocity and stress solutions for 6 July. a) Velocity vec-
tors b) Principle deviatoric stress vectors. Vectors with arrowheads denote tensile stress;
those without denote compressive stress. Vector magnitudes measured from origin of
vectors to tip.
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Figure 4.6 Finite element grid for 25 June showing displacement and deformation by

25 June velocity field.
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Figure 4.7. Calculated distributions for 22 June of (a) horizontal velocity at surface u,
and bed u;, (b) longitudinal strain rate —ow/dx and angle of upward movement vy at surface,
(c) thickness times strain rate —~howox and vertical velocity v at surface, and (d) shear stress
and normal stress at the bed. In figure 4.7d dashed curves show the stress distribution for
the stalled case.
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Figure 4.8. Location of tensile stresses on 21 June. Vector orientations represent
crack orientations perpendicular to tensile stress. Lengths of vectors proportional to tensile
stress magnitude according to scale.
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Figure 4.9. Location of tensile stresses on 25 June. Vector orientations represent
crack orientations perpendicular to tensile stress. Lengths of vectors proportional to tensile
stress magnitude according to scale.
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Figure 4.10. Location of tensile stresses on 29 June. Vector orientations represent
crack orientations perpendicular to tensile stress. Lengths of vectors proportional to tensile
stress magnitude according to scale.
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Figure 4.11. (Hydmﬂacturé) Location of tensile stresses on 21 June with O bar
effective pressure at bed. Vector orientations represent crack orientations perpendicular to
tensile stress. Lengths of vectors proportional to tensile stress magnitude according to
scale.



CHAPTER 5
A SIMPLIFIED SURGE FRONT MODEL

5.1 Introduction

In this chapter we will be concemed with characterizing the behavior of the surge
front in the most simple terms. In Chapter 2 the observed motion and behavior of the
surge front were described, and in Chapter 4 the observations were supplemented by calcu-
lations of velocity and stress at depth. These observations and calculations dealt with a
fairly complicated geometry which changed substantially with time. In order to identify the
basic physical processes which control the advance of the front, we would ultimately like
to develop a picture of the surge front motion in which the details of any particular
geometry are removed. We would also like to proceed from a model in which the motion
is measured to one in which the motion is predicted. As an intermediate step, we will pos-
tulate a simple form of propagation for the front, and investigate the requirements to pro-
duce the motion in terms of physics or boundary conditions.

The hypothetical model will be presented in two forms. In section 5.2, an analytic
model is described in which a simple internal velocity distribution is assumed, thus avoid-
ing the need to deal with the rheology of the ice. This is the simplest model possible
which allows the propagating motion of the front to be analyzed. In section 5.3, the same
geometrical problem is treated using finite element calculations in place of the assumed
internal flow. This model allows us to determine whether the simple model’s results ade-

quately reflect the behavior of the true non-linear rheology.

5.2 An Analytic Model of the Front

The analytic model is based on the geometry depicted in Figure 5.1. The glacier in
the vicinity of the surge front is composed of two horizontal parallel-sided slabs, one above
the surge front (x < x;) with thickness A, and the other below the front (x > x,) with thick-
ness ki, < h. The topographic ramp of the front joins the two. The geometry of the ramp,
h(x), x, < x<x, is unspecified beyond being continuous in x. The front is assumed to
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propagate at speed w without changing its shape (h = h(x-wr)). This simple form of propa-
gation is assumed both here and in the finite element model in section 5.2, The purpose of
this assumption is both to see if the flow pattern is consistent with observations, and if it
is, to allow the velocity which results to stand for any future time. If this is the case, then
particle paths, histories of strain rates and total strains can be determined by integrating
backwards in time along streamlines in the single velocity field. For the analytic model
only, we assume that the horizontal velocity component is independent of depth.

A simple global continuity equation for the region x; < x <x, in Figure 5.1 provides a
relationship between the geometry, ice velocity, and wave velocity:
lllhl = u2h2 + W(h1 - hz) (5.1)
In this discussion we will consider the special case when u, =0, so that the relationship
reduces to

h
w=u1h1

The objective of the analytic model is to calculate the distribution of velocity
u(x), v(x) required to propagate the front forward at speed w with its shape unchanged,
given the front geometry A(x). The analysis is simpler in the coordinate system (' = x-wt, ¥)
moving in the horizontal direction at speed w. x and x* are horizontal and positive in the
downglacier direction, and y is vertical upward with O at the base. The propagating front
is stationary in this frame, and particles move in the negative x’ direction.

When the horizontal velocity is assumed to be independent of depth, columnwise

continuity reduces to the form:
WHhx)=C 52)

where C is a constant. Here, «’ is the horizontal velocity in the moving coordinate system
and h is the thickness of the ice. This is the general solution to the differential equation

d ., _
dx,(uh)—O

The thickness and velocity at x’, provide the most useful boundary conditions for equation
5.2. For ¥ 2 x5, u=0 (this is not required, but is true if the ice below the surge front is
stationary), so #’ = —w. From this we get
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—th =C
so the horizontal component of velocity in the moving coordinate system is

W) = e
WE) = wis 53)

The vertical velocity is related to the horizontal velocity by the incompressibility condition
(in the form particular to the assumption of depth-independent horizontal velocity):

) =i L)

dh(x)ldx’
h(x))

Equations 5.3 and 5.4 are the components of velocity at the surface which will cause the

= —th (5 .4)

surge front to propagate forward with its shape unchanged. The horizontal velocity at
depth is given by Equation 5.3 for «’(x), and

Vi y) =5 2E
for the vertical component. Streamlines follow the surface for particles initially on the sur-
face, and follow parallel paths with the vertical coordinate scaled by y/h, for particles ini-

tially at height y above the bed at X’ = x’,.

Particle paths must be determined to calculate velocity and strain histories for indivi-
dual particles. Only the x coordinate of the position need be calculated, for the vertical
coordinate for any point in the future is determined by its initial value and future x coordi-
nate. We shall only be concemed with particle paths on the surface. The velocity

W(xX) = dx'ldt

can be integrated to give the time as a function of position:
’} dy

t—ty= |—==
,{ou'(l/)

?
-1

— | h(x"dx' 5.5
e Jo ) (55)
This function can be tabulated to provide a list of (t,x) pairs. It would be more convenient
to be able to write a function x'(?) for a particle, but this is not easy in general because
w'(x) is not an explicit function of ¢,
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Strain rate can be written as a function of x”;

ou’ d 1 ohiox’
o= = +Wh2h—2(x;)—

Foi —whzyi(;,)— = (5.6)
To get strain rate as a function of time, the table of (¥,f) pairs from equation 5.4 is inverted
to provide tabulated x'(f) at chosen points x* (unequally spaced ¢). Equation 5.6 is evaluated
at the tabulated x” and the resulting (Ju’/dx’, 1) pairs are tabulated. Finite strain is calculated
by summing strain rates over the appropriate time intervals. (As in previous calculations,

the strain is coaxial.)
Analytic model results: Sinusoidal front

The analytic model was tested first with a sine-shaped topographic ramp. This was
represented by

—  Ah .
K= - ThSln(XTL—(x'—f)) Xy <X <Xy

where b= (b + hp)/2, Ah=(hy ~ hy), T = (¥; +x)/2, and Ax’ = (¥, - %;). The problem is
normalized by choosing the scale length h, =1 and the scale velocity w = 1. The propor-
tions of the topographic ramp in the terminus region varied during the surge, but a typical
shape can be defined by choosing &, = 2.5 and Ax = 5.5.

Figures 5.2a-5.2d show, respectively, the particle path, horizontal velocity, vertical
velocity, and strain rate for a parcel of ice which is on the surface at the downglacier edge
of the front at time ¢ =0.

The particle path (Figure 5.2a) shows the elapsed time t in normalized units as a
function of the normalized position x’, starting at ¥’ = 5.5 (at the base of the surge front) at
t=0 and ending at x’=0 (at the top of the surge front) at t=9.6. The travel time is
defined to be the time required for a parcel of ice to traverse this path. At a normalized
speed of w = 1, the front travels 9.6 distance units in 9.6 time units, or 1.75 times the the
front width Ax = 5.5. The particle, on the other hand, has traveled the same distance as the
front less Ax, since it ends up at the top of the front, and so has traveled only 4.1 units.
The average velocity of the particle passing through the front is thus 0.42w

To give the normalized units an interpretation appropriate to the size and speed of the
front in the terminus region, we set s, =45m, and w=40 m d”'. The elapsed time for the
particle to travel to the top of the front is then 9.6hyw = 10.8 d. During this time the front
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has traveled 9.6k, = 432 m, while the particle has traveled 185 m, at an average speed of
17.1 md™. The observed travel time was typically 6-8 days.

The velocity of the particle moving up through the surge front is shown in Figure
5.2b. The acceleration of the particle rises rapidly to its maximum value. The continuous
shape of the surface geometry causes ow/dt also to be continuous in slope at t=0. As the
particle approaches the upglacier end of the front zone, the velocity levels off to its final
value of 0.6w. In the glacier units given above, this is 24 m d™'. The form of »’(f) is qualita-
tively what was observed in the surge front (Figure 1.3b), and the maximum speed is con-
sistent with observations and with equation 5.1, which for A, = 2.5k, reduces to u’ = 0.6w.

The vertical velocity (Figure 5.2¢) is derived directly from #’(x’) and A(x") as given by
equation 5.4, and shows the expected features: v(¥) is a maximum where di/dx, scaled by
the inverse of A(x), reaches a maximum. This also is consistent with observations.

Finally, strain rate (Figure 5.2d) shows a pattern which contains the essential large
scale features of the strain rate data of Figures 2.9a and 2.9b. The onset of straining is
rapid, culminating in a maximum of ¢,, = -0.204 (normalized units). The total strain accu-
mulated as the particle passes through the surge front is E =-0.9159 (logarithmic, dimen-
sionless). The maximum strain rate converted to glacier units using the time unit 45 m/40
md™ = 1.125 d is thus -0.204/1.125 = -0.18 d™*. The total strain is somewhat larger than
the maximum estimated finite strain (-0.87), and the maximum strain rate is approximately

twice any observed rate.

The predictions of the simple model are generally in semi-quantitative agreement with
the observed behavior of the surge front. To a certain extent, this is by design; the total
strain, for instance, being controlled by thickness change, was effectively set initially by
the choice of geometry. The travel time of the particle depends directly on Ax, once w is
specified. A shorter Ax would result in a travel time closer to the observations but would
increase the maximum value of the strain rate, already at the upper limit of observations.
There is a certain amount of latitude in the acceptable choices of hy/h, and Axh, when set-
ting up the normalized model, for these ratios varied during the progress of the surge
through the terminus region. Better agreement could be arranged between the model and
observations through other equally acceptable choices of geometry. Changes in the ratios
will not simultaneously resolve discrepancies in travel time and maximum strain rate, since
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one or the other will be forced further out of agreement by any change. This problem is
evidently related to the chosen shape of the front h(x), and will be treated in the next

model.
Composite data front

We now move away from the assumed sinusoidal topography of the front and adopt
instead a smoothed and normalized composite of all the measured front profiles between 21
June and 5 July (Figure 5.3). The base elevation has been subtracted from the profiles, so
the composite is a thickness profile on a horizontal bed at y = 0.

The model calculations proceed exactly as in the previous case, except that A(x) is
tabulated rather than supplied by a formula. The interpretation of the results is complicated
by the fact that the surface is sloped everywhere, so the downglacier and upglacier limits
of the front zone (corresponding to h, and k) are not precisely defined. The front zone is
approximately the steepest region of the profile, and is thus defined to be the region
between x” = 3.9 and x"=-3.5 (normalized units in which 4, = 1) in Figure 5.3a, so Ax =
74.

Figure 5.4a shows the particle path through the complete section. The total travel
time is 62.6, while the travel time through the front zone is 13.7. The appropriate glacier
units are ki, =40 m and w =40 md™, so the time unit is 1 day. During the passage of the
particle through the front zone, the front has moved 13.7w = 548 m, while the particle has
moved 548 - Ax = 252 m at an average speed of 18.4 md™, or 0.46w. Compared to the
sine-front model, the travel time is longer (by 27%), owing largely to a larger Ax (by
20%). The longer Ax in the composite model is the result of including the early days of the
period (21 June and immediately thereafter), when the front had a more elongated profile
than the 3x5.5 ratio chosen for the sine model. The average speed and ratio of average

velocity to wave speed are comparable, however.

The horizontal velocity (Figure 5.4b) shows the same pattern seen in the previous
model, except that here, the velocity profile extends over the entire topographic profile,
rather than being restricted to the front zone. In the glacier units defined above, the max-
imum horizontal velocity (0.71) is 28.4 mday™, or 0.7lw. The vertical velocity (Figure
5.4c) also follows the expected pattern, rising to a maximum of 0.07 = 4.28 md™! in the
front zone. A small inflection appears in the vertical velocity peak at ¢ = 3.75. This is the
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result of flow over a small inflection in the topography near x” = 6.0,

The strain rate (Figure 5.4d) shows the same pattern as seen in Figure 5.2d, except
for the addition of a secondary peak arising from the same source as the inflection in the
vertical velocity. The maximum compressive value attained is -0.71 d, and the total strain
through the surge front is -0.61. The total strain through the entire section is -1.24.

The composite model has produced patterns of velocity and strain rate similar to the
observed pattern and to the pattem calculated for the sine-front model, and the magnitudes
of strain rate and finite strain are now within the limits of observations. The travel time
still exceeds observed time, but as was discussed earlier, this quantity is directly related to
Ax, and Ax is large in the composite model owing to the contribution of the early days data.
The overall shape of the strain rate pattern results from the presence of a topographic ramp
joining the downglacier and upglacier reaches of the glacier profile. The shape of the strain
rate in its small features results from the specific shape of the front. More importantly, the
magnitude of the maximum strain rate is sensitive to the details of the shape. Total strain is
completely determined by the total thickness change (given the simple flow assumption),
and travel time is controlled primarily by Ax.

On the basis of the two models presented here, it appears that the surge front propa-
gation in the terminus region (as depicted by its behavior at the surface) proceeded in a
way compatible with the two following assumptions: 1) The motion preserved the shape of
the front zone in a steady state, displacing it downglacier at a constant rate w. 2) The hor-
izontal (or bed-parallel) component of the flow did not vary with depth. The preservation
of the front shape is applied in these models as a constraint, but may have been only coin-
cidental in the terminus region of the glacier, and was in any case only approximately
satisfied. What the real constraints are on the front shape is a more complex matter, involv-
ing subtle interactions between front geometry, internal deformation at the base, basal
hydrology, and basal sliding. Without going into such details we can do no better at
present than to observe that the assumption of a steady state gives fairly satisfactory
results, and simplifies considerably the task of calculating strain rates and finite strains.

The assumption of depth-independent horizontal velocity is also a convenient assump-

tion for the present models, and has been justified by the finite element analyses of Chapter
4. This assumption may be further justified, however, by returning to a finite element
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model, in which the non-linear rheology of ice is re-introduced.

5.3 A Finite Element Model of the Steady State Front

For the steady state problem, 2 finite element grid (Figure 5.5a) is formed based on
the geometry of the composite front presented in the last section. The calculations proceed
exactly as described in Chapter 4, and the results are presented in the same form.

The velocity solutions in Chapter 4 were obtained by adjusting the basal velocities to
produce surface velocities which match the observations. In the present case, the basal
velocities have been adjusted to produce a match at the surface with the steady state velo-
city profile prescribed by equation 5.3. As in previous calculations, a match is attempted
only in the horizontal component, since there are not enough degrees of freedom in the
boundary conditions to satisfy both the horizontal and vertical components. The velocity
solution is shown in Figure 5.5b. In general pattern, the velocity solution resembles the
solutions of Chapter 4, bearing in mind that the model region corresponds only to the area
above the stagnant zone (stationary ice) in the Chapter 4 solutions. The resemblance is
also close between the model and the velocity field on 6 July, after the termination of the
surge. Despite the fact that the 6 July velocities were much lower (5 m d! maximum) than
surging velocities, the velocity was still high by normal standards, and the flow was still
dominated by basal sliding.

Deviatoric stresses (Figure 5.5c) again show the typical pattern, with principle
stresses greatest in the front zone, oriented nearly parallel and perpendicular to the bed at
the leading edge of the front and rotating to positions indicative of higher basal shear in
the central part of the front zone. As with the other finite element solutions, the stresses
have slightly anomalous orientations near the bed at the upglacier end in response to small
errors in the end boundary conditions. Adjusting the boundary velocity at the upglacier end
to allow a very small amount of shear deformation in the elements near the base would
improve the stress orientations here, but would not affect the stresses in the front zone or
have any substantial effect on the velocity field.

Figure 5.6a shows the match between the bed-parallel component of the calculated
and hypothetical velocities. Over most of the profile the calculated and hypothetical veloci-
ties match or are within a few per cent of each other. The maximum mismatch is about
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15% near the midpoint of the front zone; the shape is essentially identical, however, and
the mismatch is insignificant in terms of its effects on the pattern of strain which will be
derived from the velocity distribution. The match was achieved by the procedure described
in Chapter 4. Also included is the velocity applied at the base. The bed-normal component
(Figure 5.6b) shows generally good agreement. Deviations at the ends are another conse-
quence of end boundary conditions. At the maximum (=3 md™), a discrepancy exists,
with the calculated velocity being 0.78 md™ less than the hypothetical velocity. This
difference can be explained by noting that at the same place, the calculated bed-paraliel
velocity is slightly higher than the velocity required for a steady state. Continuity forces a
reduction in the bed-normal component, which, having a smaller magnitude, shows a larger
proportional change.

While local differences between the hypothetical and calculated bed-normal velocity
can be explained in terms of corresponding differences in the bed-parallel component, it
will be noted that the pattern of velocity discrepancy over the length of the model region is
similar to that found in Chapter 4, from which it was inferred that volume was not con-
served in the glacier. Such a conclusion makes no sense in the present case, since both the
hypothetical and finite element models conserve volume by definition. The discrepancy
here is to be interpreted in a different way, because different assumptions were made in
constructing these models. In the present case, both sources of velocity profiles (hypotheti-
cal and finite element models) conserve volume, but only one is precisely steady state (the
hypothetical model). In Chapter 4, both sources (measurements and finite element model)
were assumed to be steady state, but only one (the finite element model) was known to
conserve volume. A final thickness difference between two volume conserving models, one
steady state and one not, simply indicates that the non-steady state model produces a
different final thickness. Two steady state models, however, each with the same upstream
thickness, must maintain that thickness, and a net difference in vertical velocity (integrated
over the model length) is interpreted as a failure to conserve volume on the part of the

model not constrained to do so.

It is plain from the agreement in the bed-parallel component, which carries the bulk
of the flux, that the hypothetical flow regime for a steady state front, based on the depth
independent bed-parallel velocity and a steady state profile, is an adequate approximation to
the results of the finite element calculation with a realistic non-linear rheology and a
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reasonable basal velocity distribution.

5.4 Summary

The objectives of this chapter have been to investigate the propagating motion of the
surge front without becoming involved in the details of a particular geometry, and to create
a simple picture of the flow in the surge front in which the essential details of the deforma-
tion are present. We have looked at the motion of the front in two geometrically simple
forms, a sinusoidal front and a smoothed composite of the observed fronts, and found that
the basic features of the observed flow are still present. Evidently the propagation of the
surge was not strongly influenced by obscure geometric effects peculiar to the actual shape
of the glacier terminus. As for the simple picture of deformation, we have found here, as
we did in Chapter 4, that when viewed on the large scale, the bed-parallel flow is indeed
essentially independent of depth, and the propagation of the front and the straining of the
ice which passes through it can be understood in terms of that simple flow and the con-
tinuity equation. We say that this is true "on the large scale", for there is certainly a very
complicated kind of deformation occurring in a narrow zone at the bed in the surge front.
We have avoided dealing with this zone by simply invoking a distribution of basal velocity
which meets our needs. It also has not influenced the structures observed at the surface.

This unaddressed deformation at the bed is related to the second major assumption
made in these models: that the front propagates with its shape unchanged. We have seen
that this is an adequate assumption, for a velocity distribution which preserves the front
shape also produces sequences of velocity and strain in time which agree in general points
of shape and magnitude with observations. We see that the shape of the surge front did
change slightly with time, but we can also see that the front was entering stagnant ice
whose geometry was not perfectly uniform. Our conclusion is that the front changed shape
as it moved only to the extent that it was entering variable initial topography. Since the
front propagated at a more or less constant shape and speed, we conclude that the zone of
sliding moved downglaciér at a comparably steady rate, and that its location was controlled
primarily by the local front geometry.

The hypothetical model shows that the front can be propagated forward by a realistic
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velocity field which satisfies the continuity conditicn (equation 5.2). Finite element calcula-
tions show that the observed deformation, which necessarily includes a zone of complex
deformation at the base, is compatible with the simple large-scale picture of flow adopted
in the hypothetical model. Because of the simple flow pattern, finite strains can be
evaluated without complex numerical calculations. In the absence of variations in quanti-
ties which are boundary conditions for equation 5.2, the advance of the leading edge of the
sliding is controlled by deformation in the front zone. Evidently it is possible, at least
when viewed on a kinematic level, for the advance to occur in a steady-state, self-
perpetuating fashion.
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Figure 5.1 Schematic of idealized surge front geometry.
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Figure 5.5. a) Finite element grid for composite surge front.
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Figure 5.5 (continued). b) Velocity vectors. c¢) Principle deviatoric stress vectors.
Vectors with arrowheads denote tensile stress; those without denote compressive stress.
Vector magnitudes measured from origin of vectors to tip.
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CHAPTER 6
" SUMMARY AND SYNTHESIS

6.1 Introduction

In the preceding chapters we have presented a detailed ané.lysis and interpretation of
observations made at Variegated Glacier during and after its surge, which pertain to the
kinematics of deformation in the terminus region and the structures which were developed
there as a result of the deformation. Here we give a summary interpretation of the observa-
tions and their interpretations (6.2), followed by a recapitulation of the major conclusions
of this work.

6.2 Descriptive Summary

Initially, the ice in the terminus region is composed of interlocked coarse grains; bub-
ble content is moderate, with small (= 10 cm) regions of clear ice. A moderate to strong
subhorizontal foliation (S,) formed of bubble density variations appears in thin ice lying
beyond the limit of the 1982/83 surge. Appearing with the foliation is a weak multiple-
maximum crystallographic c-axis fabric with the maxima oriented in a cluster around the
vertical direction. Neither this foliation nor this fabric appear in ice affected by the surge.
In ice throughout the terminus region, primary depositional layering (So) is present in a
subhorizontal orientation with very little shear deformation. The ice is 50-100 m in thick-

ness, and is essentially stationary prior to the surge.

A kinematic wave of rapidly increasing horizontal and vertical velocity, called the
surge front zone, approaches the stationary ice at approximately 40 m d”!. A column of ice
standing in advance of the front zone is subjected to the following events during its arrival
and passage:

Once within a 200-300 m width of the leading edge of the front zone, the column
develops vertical tensile stresses in near-surface layers due to the longitudinal gradient in
vertical velocity. The stresses create surface-parallel fractures.

The leading edge of the surge front arrives, defined by a rapid (< 1 d) onset of high

(>1md™) horizontal velocity. The column is now in a region of high longitudinal
compression (= -0.1 d*) and rapidly increasing horizontal and vertical velocity. The
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horizontal velocity is essentially constant over the depth of the column, with 95% or more
of the velocity at the surface being the result of basal sliding. The horizontal velocity rises
monotonically to 20-30 m d! at the upglacier end of the front zone, and maintains the high
velocity in the surging ice behind. The vertical velocity rises to a maximum (=5 m d™!) in
the middle of the front zone, then diminishes (1-2 m d™*) near the upglacier end of the
front zone. The vertical velocity at its maximum is greater than can be explained by con-
tinuity of ice and the longitudinal strain rate. The development of some kind of void space
within the glacier is evidently responsible for the excess velocity.

Longitudinal strain rate drops from its maximum initial level to reduced but still high
= -0.05 d!) levels in the middle of the front zone. This is punctuated by sudden
(< 15 minutes) drops of strain rate to low or even extensile rates, followed by a slower
(12-24 h) retum to moderate levels.

Basal shear stress varies along the front zone in a way which balances the gradient of
longitudinal stress indicated by strain rate: at the leading edge of the front the basal shear
stress rises rapidly to a high level (= 1.5 bars), and drops in the middle of the front zone to
very low levels (= 0.5 bars). In the surging zone, stress levels return to normal Chigher)

levels as determined by T, = pghsina.

Shortly after entering the front, the ice column develops a foliation (S;) oriented in
vertical planes approximately transverse to the flow direction. This occurs in a region of
high compressive stress (5-8 bars), but before substantial compressive strain has developed
(<-0.1, all strains given as logarithmic). Higher in the front zone, the longitudinal stress
diminishes, and the transverse deviatoric stress passes through an extensile maximum. The
transverse extension causes a longitudinally oriented vertical crack set (S,) to develop. The
cracks and accompanying bubble trains are not necessarily oriented perpendicular to the
transverse foliation, because principle stress directions may reorient during the interval

between the longitudinal and transverse stress maxima.

Finite strains during the surge accumulate in pure shear with the principle compres-
sion oriented paralle]l to the flow direction and the principle extension oriented vertically.
The total strain is determined by the total thickness change and initial thickness. Since the
total thickness change diminishes with increasing initial thickness, the total strain increases
in thinner ice lying nearer to the terminus. Strain in the terminus region attains a maximum



129

value of -0.75 at a point =~ 500 m behind the final position of the surge front. The strain
diminishes smoothly to zero beyond this point since ice within the final position of the
front zone has passed through only a fraction of the compressive regime of the front.

Crystallographic c-axis fabrics develop in the ice affected by the surge which are
compatible with other fabrics seen in ice subjected to pure shear deformation. The strength
of the fabric is fairly constant over the length of the terminus region, indicating that the
strength of the present fabrics are not directly related to the finite strain. There may have
been a closer correspondence immediately after the surge, which has been subsequently
altered by annealing.

6.3 New Developments

The observations and analyses we have presented include some phenomena which
have not been reported before, and some which are known but are not firmly established.
Our conclusions include some new notions regarding deformation in the surge front, and
some questions for which we can offer no complete answer, but which stand as challeng;
ing puzzles for future work. Here we recapitulate the most significant of the new observa-
tions and ideas.

So: Primary layering

Primary depositional layering (S,) was observed throughout the terminus region in a
state deformed by moderate, small-scale (= 10 cm) folding, but nonetheless distinctly
recognizable. On non-surging glaciers, primary layering is ordinarily obliterated or
transformed to other structures by the time it re-emerges at the terminus. Its presence here
is a unique consequence of the "rafting" motion of ice during the surge phase, in which
shear deformation is confined to narrow zones at the bed and margins, causing the bulk of
the ice in the glacier channel to be moved downglacier with very little deformation. This
unusual pattern of flow was also found in finite element calculations, which showed that
the observed surface velocities during the surge were compatible with calculated internal
velocities in which the horizontal component is essentially constant over the depth of the
glacier. A predominant primary layering in the terminus region will be characteristic of
other surging glaciers where this kind of plug flow dominates the overall pattern of defor-
mation during a surge cycle.
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S;. Transverse foliation

The transverse foliation at the surge front was developed in a state of plane strain
deformation, and is not simply the result of the passive deformation of pre-existing inho-
mogeneities. The foliation appears in the surge front at a point before substantial longitudi-
nal compressive strain has developed; its appearance does coincide with the zone of highest
compressive stress (3-5 bars). The strength of S; upglacier from the front is essentially con-
stant. No correspondence is seen between foliation intensity and the longitudinal variation
in calculated finite strain. Evidently some mechanism of bubble transport or production
within the ice has acted to create the conditions for a redistribution of bubbles within a
very short time (a few days) and in the absence of compressive strains large enough to
produce the observed foliation anisotropy from initially uniform clusters of bubbles. The
mechanism is unknown, and its discovery will depend on a closer analysis of the nature of
the bubble density change across the zone over which S, appears, as well as experimental
work.

S,: Longitudinal fracture foliation

Again, a foliation is developed in a short period of time by a mechanism unrelated to
finite strain. In this case the formation of the foliation was observed and is known to be the
result of transverse extension. The orientation of the foliation is unusual, striking approxi-
mately parallel to the direction of principle compression. This kind of penetrative structure
has not been described or recognized in ice, nor is it recognized in rocks by structural
geologists, although it is somewhat akin to sheeting and jointing structures.

Crystallographic fabrics

C-axis fabrics were measured which show broad single maxima or weakly developed
double maxima oriented approximately adjacent to or coaxially with the direction of princi-
ple compression. The fabric appears simultaneously with the appearance of S, near the top
of the final position of the surge front. This fabric is compatible with fabrics created exper-
imentally and observed in glaciers under comparable stress conditions. An unusual aspect
of the fabric is that, like S,, there is no correspondence between the minor variations in
fabric intensity and the calculated finite strain along the terminus profile. The fabric is
essentially fully developed as soon as it appears near the upglacier limit of the surge front.
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Below the final position of the surge front, fabrics with weakly defined multiple max-
ima are present, with the maxima centered on the poles to a subhorizontal foliation. These
fabrics are not strong, but resemble classic 4-pole, or "diamond" fabrics. The unusual
aspect of this fabric is that it is present in ice which has been mostly at 0°C and has under-
gone no substantial deformation in 22 years since 1965. Annealing to a random pattern, as
observed by Rigsby (1960) to have occurred in the space of one month, has evidently not
occurred here. Annealling may have been inhibited by the comparatively large grain size of

the ice.
Fractures and faulting

Fractures and faults, whose role in internal deformation in glaciers is not well under-
stood, have appeared in two roles in the propagation of the surge front. First, there is abun-
dant evidence of small reverse fault motions along old crevasse planes during the surge,
both in displacements of cross-fault markers and in strain rate signals which indicate sud-
den releases of stress. The faults, however, did not significantly affect the large scale pat-
tern of deformation. The other appearance is as the fractures which formed the planes of
separation along which transverse surface buckle folds formed in compression at the surge
front. Finite element modelling indicates that the velocity field at the leading edge of the
front may have provided a source for near-surface tensile stresses which could have formed
these fractures.

Excess vertical velocity

Measured vertical velocities at the surge front were greater than those indicated by
simple considerations of continuity, or by more complete finite element calculations. The
excess velocity accumulated as an excess thickness of about 12% at the end of the surge.
Conservation of volume is a fundamental assumption in the analysis of ice flow, and it has
not been satisfied here. This may be a phenomenon restricted to glacier surges, although it
may also be characteristic of other flow regimes with the same principle features - sliding,
significant longitudinal stress gradients, and high water pressure - acting at lower levels.
The creation of some kind of englacial void space is the most plausible source of the
excess thickness, and one which is compatible with the observed settlement of the glacier
surface following the surge. The creation of such a substantial quantity of void space is an
important consideration in efforts to understand the englacial hydraulic system.
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Distributions of basal stress and velocity

Longitudinal gradients of velocity result in gradients of stress which alter the patterns
of basal shear and normal stress from distributions predicted on the basis of depth and sur-
face slope. Anomalously high shear stresses occur at the base of the front zone, and
anomalously low shear stresses appear near the top. Basal normal stresses also vary
through the front, but with a much smaller magnitude of dynamically induced variation
than seen in the shear stress. Calculated basal sliding velocities are high in the region of
low shear stress in the front, and low in the region of high shear stress, indicating a transi-
tion from "easy" (rapid) sliding in a "lubricated" (low shear stress) region, to "hard" (slow)
sliding in a region of high shear stress. The relation between sliding velocity and basal
shear stress is consistent with the theory that basal water pressure controls rapid sliding.
This was demonstrated clearly on the upper glacier, and is evidently the case at the surge
front as well. Also of note is the fact that the basal shear stress does not vary monotoni-
cally within the front, but passes through a local minimum. Evidently, local conditions -
the local geometry in particular - play an important role in determining the stress.

Hypothetical surge front

A simple continuity-based model of the surge front indicates that if boundary condi-
tions are constant - in particular, if the ice encountered by the front is of constant thickness
and if the upstream velocity is constant - then the front can propagate at a prescribed rate
with its shape unchanged. This behavior is largely confirmed by events, for the changes
which were observed in the shape of the actual surge front can be understood in terms of
changes in initial thickness and glacier-wide changes in velocity. The implication of the
model is that in the absence of external changes, the advance of rapid motion is controlled

by conditions within the front zone, and that this advance can proceed in a steady, self-

perpetuating way.
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