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Abstract

SEISMIC EVENT DISCRIMINATION USING NEURAL NETWORKS:
A STUDY OF SHALLOW EVENTS NEAR KNOWN BLASTING SITES

by Sean F. Walden

Chairperson of the Supervisory Committee: Professor Stephen D. Malone
- Geophysics Program

Seismic event discrimination between natural earthquakes and explosions has
always been a difficult problem. Seismic signals are complicated, and several variables
influence signal propagation. With new pattern recognition tools, ciassifying events based
on signal characteristics can be easily automated. In this study a neural network is used to
classify 88 events in Northeastern Washington. Of these 88 events, 44 are earthquakes
and 44 are explosions. The events have depths of 0-10 km and coda duration magnitudes
of M =1.5-2.7. The signals from three seismic stations are analyzed for spectral contentin
both the P and S waves. For all three stations the neural network converges on a solution
for the spectral battem recognition problem. Testing the classification scheme of"ti'le neu-
ral network ‘by the leave-one-out method gave accuracy rates from 75% to 87%. When the
network was trained with half the available dataset then tested with the untrained events,
accuracy rates ranged from 75% to 90%. Varying the number of hidden units showed neg-
ligible difference in classification accuracy. Reasons for the success of the classification

scheme are not clear but I argue there are two possibilities based on observations of spec-

tral content. First, the explosions have dominant low frequency spectral energy in relation
to the earthquakes. Second, the explosions signals are more monochromatic when com-
pared to the earthquakes. A thorough sensitivity analysis should detect the spectral char-

acteristics responsible for the discrimination scheme’s success.
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Chapter 1
INTRODUCTION

History

With the introduction of the limited Nuclear Test Ban Treaty in 1965, considerable
research efforts have been made in the field of seismic source identification. To ascertain
whether countries were acting in accordance with the treaty, methods were developed to
discriminate nuclear explosions from earthquakes. These methods were based on
observed differences in seismic signals due to explosions versus seismic signals due to
earthquakes. These observed differences were summarized by Ives‘_ (1976): 1) earth-
quakes produce approximately equal amounts of compressional wave (?) and shear wave
(S) energy, while explosions produce more P wave energy, 2) earthquakes give positive
and negative first motions (double-couple source), and explosions give only positive first
motiohs, 3) earthquakes are ldcated 'deeper than explosions, and 4) wave train duration is
longer in earthquakes than explosions. Many ideas have been proposed to quantitatiﬂzély
measure the above signal qualities, however, no single method offers a confident glp_bal
discrimination scheme. As Ives mentions, discrimination based on these differencés is not
always available, especially for small magnitude events. While explosion signals do
exhibit more P wave energy than S wave energy, many earthquake signals fall under this
category as well. Also, the discrepancy between P and S wave energy is difficult to ana-
lyze for events of small magnitude due to the difficulty in identifying particular phases.
Determining polarity of first motion is often obscured by noise in the signé.l. Concerning
source location; events confidently located at a depth of 5 to 10 km can be’ identified as an
earthquake (Douglas, 1981). Hov;/ever, depth estimates of shallow focus events have a
large uncertainty (Pomeroy et. al., 1982). Many researchers have suggested using a com-
bination of discrimination methods and this prompted a comprehensive review of poten-

tial discriminators by Pomeroy et. al. (1982). Some of the indicators Pomeroy suggests

using are: 1) P wave polarity, 2) event depth, 3) amplitude ratios between different
_phases, 4) third moment of frequency, 5) spectral ratios in several phases and 6) frequen-
cies 6f spectral peaks. Each of these discriminants have been used with some success,
however, most tested only small data sets from single geographic regions.

Recently, research efforts in discrimination have involved pattern recognition;
results of many studies have found high success rates. In studying several seismic
datasets, Chen (1978), classified each set with an accuracy of 86-89% correct identifica-
tion. Chen also tested one dataset using older discrimination methods (spectral ratios and
third moment of frequency) and achieved only 72% correct classification. The pattern rec-
ognition techniques improved the accuracy by 15%. Other studies have found similar
classification successes using pattern recognition routines. In an analysis of 66 events
recorded by the NORESS array in N orway, Pulli (1990) used a neural network as a pattern
recognition routine. After training the network with 33 of the events, he was able to cor-
rectly classify 80% of the 33 untrained events. A similar study of 170 events in N mfch
America by Dowla et. al. (1990), achieved a correct recognition rate of 93%. Wh{il’é the
above classification tests were done in different geographic areas, all of the eventé were of
magnitude my, > 4.0. There has been some success in discriminating-large explosions
from earthquakes, as in the studies mentioned above, but the proglém becomes much more
difficult with smaller events, and "hidden" explosions. Hidden explosions may include
events maskéd in underground salt domes, or an explosion initiated during an earthquake
(Douglas, 1981). Tests still remain to understand how well these rnethod; work for
smaller events. The effectiveness of such methods on “"small" (coda duration maghitude

M, = 1.5-2.7) events will be examined in this study.




Seismic Discrimination In Washington State

To fully understand the tectonics of any region it is important to know which seis-
mic events are natural earthquakes. Washington state is a region of considerable shallow
tectonic activity mingled with explosions from active mining and construction operations.
Over the last twelve years there has been a considerable amount of blasting in Washington
State which has been recorded by the Washington Regional Seismic Network (WRSN). In
general, the shallow earthquakes are either located near the Cascade mountain range, or
near clustered regions in the Columbia Basin. However, their overall epicentral distribu-
tion is widespread. The majority of explosions are located in clusters around blasting
areés, but often times the epicentral location of the explosions overlap the locations of nat-
urally occurring earthquakes. A look at earthquake activity versus explosion activity can
be seen in Figure 1. These plots represent shallow events (depth = 0-10 km) of coda dura-
tion magnitude M, > 1.0 from 1980-1992. The overlapping of these two seismic event
types can misguide tectonic interpretation of the Pacific Northwest. In order to separate
these events we need to find distinguishing characteristics between their associatel;d'/sig-
nals. Many techniques have been proposed, and some involve time consuming or statisti-
cally weak methods. In the past, certain seismic events were suspected of being blasts due
to their location, time of occurrence and dominance of low freql;ency in the wavetréin.
The suspected blasts could then be confirmed by corresponding with local mining opera-
tions to find out precisely when blasting had occurred. The effectiveness of this method
relies on the accuracy and the experience of the proceséing analyst. A more desirable
technique of discrimination would involve automation of robust quantitative methods.
Neural networks can provide the means for accurate and quick‘decision making. In this
study I investigate the pétential of using neural networks for discriminating explosions

from neérby shallow earthquakes.

(b)
Figure 1. Geographical plot of (a) earthquake distribution and
(b) known and probable blast distribution. The time interval
18 1980-1992 for events of M > 1.0 and depths of 0-10 lan.




Chapter 2
DATA

This study focused on a region of shallow seismicity. Deep events which are con-
fidently located are obviously néturally occurring earthquakes, so the real problems with
discrimination are found at shallow depths. An area near Lake Chelan in Northeastern
Washington was chosen because it is near known blasting locations which also have shal-
low earthquakes. The majority of blasts were recorded from two projects. One group of
explosions is the result of a state highway project from Chelan to Hugo. The second group
of explosions is related to a project at Cannon Mine. A distribution of the blasts and earth-
quakes can be found in Figures 1.4, Information on each event can be found in Table 6. >It
should be noted that the events originally cataloged as blasts could have been misclassi-
fied. While the processing seismic analyst tries to confirm suspected blasts with the
project officials, blasts are sometimes cataloged based on strong blast-like characteristics.
The characteristics may include calculated event depth, event location, time of occurrence
(most blasts océur during the daytime), and a monochromatic nature of the recordfzd sig-
nal. If a blast was initiated during the nighttime hours, the analyst may have assﬁmed the
event to be an earthquake and cataloged the event incorrectly. If an earthquake located |
very shallow it may have been cataloged as a blast. This potential for error in the catalog
should be recognized when judging the accuracy of neural network classification based on

agreement with previous analyst classifications.

Cbserving the distribution of events, there are two distinct clusters of blasting
locations which are separated by a looser cluster of earthquakes. With this distribution I
hope to avoid discriminating differences in the seismic signals due to path effects from
source to receiver. Also, any common characteristics in local source geology at the two
blasting sites would be expected in the earthquake dataset as well, so this would not be a

factor in separating the blasts from the earthquakes. The earthquake cluster separates the
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Figure 2. Geographical plot of (a) earthquakes and (b) explosions recorded at station ETT.
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two regions, so the gross distinctions in seismic signals should be prifnarﬂy based on
source rﬁe‘chanism and source depth.

The data consist of 44 known explosions and 44 earthquakes. The calculated mag-
nitudes of the events range from M, = 1.5-2.8 and their calculated depths range from 0-10
km. Most of the selected events had previous picks for the P (compressional) phase. Only
events with strong P arrivals were used. Detectable S (shear) phases were not a consider-
ation in choosing the dataset because predicted S (shear wave) arrivals were used to ana-
lyze the waveforms. The primary goal in choosing the events was to use data recorded at
a single seismic station to distinguish eérthquake signals from explosion signals. Another
motivating factor in selecting data was based on the coverage by the seismic network.
Ideally, one event would have data recorded at several stations which could then be classi-
fied as an earthquake or a blast by each station. The classification by a single station could
then be cross referenced with classifications by other stations recording the event. The
number of stations used in this study was limited to three stationsf.

Due to the sparse number of seismic stations in the studied region, data fog, tfxe cur-
rent study were originally limited to using eight stations in the WRSN. However, poor
signal to noise ratios restricted the number of potential stations used in the area. There
were eight potential stations to be used but the lack of several wéll recorded events at ﬁife
stations disqouraged their use in the discrimination analysis. This left only three possible
stations to classify a single event (ETT, WAT,WEN). Not all selected events were recorded
at each of these three stations. In some cases only one station was avaiiable due to poor
signal quality at the other stations. Whenever possible, I tried to use at least two of the
three stations, allowing for cross referencing of event discrimination. The number of

events used at each station are given in Tablel.

Table 1: Number of Events Used at Seismic Stations

Station Station Number of Number Total
Station Latitude Longitude umber o of Known | Number of
" . Earthquakes i
%% %" Explosions Events
ETT 47,39,18 120,17,36 39 23 62
WAT 47,41,55 119,57,15 28 27 55
WEN 47,31,46.2 120,11,39 29 25 54

All data used in this research were provided by the Washington Regional Seismic

Network (WRSN) operated by the Geophysics Program at the University of Washington

(Station distribution can be seen in Figure 5). This network consists of approximately

120 short-period, vertical-component seismic stations. As of 1980, the signals from these

stations are telemetered to the seismic laboratory at the University of Washington. A trig-

gering algorithm is used to determine when an event has occurred and this activates the

computer to digitally record data at 100 samples/second at each station. The triggg:ﬁng

algorithm uses a short-time-average to long-time-average (STA / LTA) ratio. The

recorded waveforms are then analyzed for phase arrival times. The arrival times are then

used to determine event location and focal mechanism.

Problems éhoosing data

v

Many of the blasts were not well recorded by the seismic network. Due to their

limited size (M, =1.5-2.8) and the distribution of seismometers, there were usually only a

few waveforms that could be used for each event in developing a discrimination scheme.

This constrained the possible number of stations to be used in analyzing the waveform.

Also station geology often has a dominating effect on the character of the signal.

These recording site characteristics are clearly seen in the power spectrum of the detected
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signal. However, if single stations are used as discriminators the local station response
will affect the blasts and earthquakes similarly. Therefore, expected differences in the

waveforms should be primarily due to the source.

Using Spectrél Analysis
A detected seismic signal is assumed to be a time domain convolution of the seis-

mic source effects S(t), the path effect P(t), the receiving site effects R(t), and the instru-

ment response I(t).

vV, (1) =5(8) X P, (1) XR(8) x1,()

In the frequency domain, this expression becomes:

V,(0) = S(w)P, (0) R (@), (o)

In this study only single stations are used for discrimination. Therefore, the site effects
and instrument response are the same for all events. Thus, they will not be a factor for dif-
ferences found in recorded seismic signals. The differences in path effects should be
small because the events and stations are tightly located in the same geological region.
However, with varying source to receiver distances, signals can experience differences
due to frequency dependent attenuation. I expect this factor will be small because the
group of events are clustered in a small region south of Lake Chelan. This minimization
of path effects, site effects and instrument response, leaves source effects as the primary
distinguishing characteristic for the detected seismic signal.

The idea for using spectral analysis involves source properties in the blasts. Due to
differences in source characteristics, certain frequencies are expected to be enhanced in

explosiohs that are not necessarily prevalent in earthquakes. Primary source distinctions
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are the event depth and the rupture mechanism in explosions. One identifying feature of
the source in some blasting procedures is the ripple-firing technique. Ripple-firing pro-

duces several dominant frequencies in the spectra at integral periods of the blasting inter

val (Baumgardt,1988; Smith, 1989; Day, 1991). While this characteristic is useful for
"ripple-fired" explosions there are many single explosions which do not share this feature.
In order to- distinguish both ripple-fired and single explosions from naturally occurring
earthquakes a discrimination routine is needed to generalize common features shared by
these two blast types.

Another technique for analyzing source distinctions involves spectral shapes for
different phases in the seismic signal. While the shape may depend on the event magni-
tude and regional geology, the discriminant has given promising results for events in the
western United States (Bennet, 1986; Taylor et. al., 1988). Analyzing Nevada Test Site
explosions and surrounding earthquakes of magnitude m=3.0-4.5, Taylor achieved mis-
classification rates from 4% to 33% using single stations as discriminators. The spf,ctral
ratio used by Taylor was (1-2 Hz)/(6-8 Hz) for the seismic phases Py, Py, and Lg.',,The suc-
cess of spectral ratios in the western U.S. was the motivation for using spectral shapes to

quantify characteristics in the recorded seismic signals.

Spectral Analysis of Data

I analyzed the spectral content of the P and the S phases. These are the\ only phases
consistently observed from the small events used in this study. Many of the blasts did not
have distinct S waves. This feature is often used to aid in discrimination methods. There-
fore this information is useful to send to the neural network. In order to isolate common

similarities and differences in the source, I used a 2 second window of the P arrival and a 4

second window of the predicted S arrival. Some events were close to stations, so in order

to isolate the P coda I was limited to using only the first 2 seconds. The predicted S arrival

14

was estimated using a relative velocity rétio of Vp/Vs=1.73. This usually gavé an esti-

mated S wave arrival that was slightly before the observed S arrival, but no earlier than 0.5

seconds.

Below is the procedure used for analyzing spectra:

1) Each trace was reviewed to determine the accuracy of any previous first arrival
pick. The first 2 seconds of the P phase and 4 seconds of the S phase were then

windowed.

2) The data were filtered with a 2 pole butterworth filter with corner frequencies of
0.5 and 25.0 Hz. |

3) After filtering, Fhe data was tapered with a 5% Hamming window and an
auto-correlation was performed.

4) The P phase auto-correlation was zero padded to 512 points and the S phase
auto-correlation was zero padded to 1024 points.

5) The FFT was then computed and divided by the number of data points used
to give the power spectra of the P and S phases (Weiner-Khintchine Th_efélrem;
Karl,1989) |

6) Spectra were normalized by dividing the mean value from 1-11Hz with an
arbitrary value of 100. The normalization factor was c\alculated as
norm = (spectral mean of 1 to 11Hz)/100.

7) The spectra was then scaled by log10, and the average values in 2 Hz bins
were fed into the neural network. There were five 2 Hz bins from 1 Hz to 11 Hz
for both‘ the P and S spectra, giving a total of 10 inputs to the neural network for
each station-event pair. The spectral average is taken for 2 Hz bins to smooth
the spectral esﬁmate. This way we reduce the effect of strong anomalous peaks

and get a more general representation of the power spectra.
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Example spectral plots are displayed in Figures 6 & 7. Figure 6 shows the P and S spectra
for all three stations. Notice the similarity between stations ETT and WAT, while the
majority of energy at WEN is at much lower frequency (~2 Hz). Stations ETT and WAT
do have spectral peaks at about 2 Hz but they are not nearly as monochromatic. I expect
this low frequency energy ié related to the site effects of the recording station WEN. The
peak in energy at 3-4 Hz for stations ETT and WAT~ is a source effect, but may be masked
at WEN due to the enhanced peak at 2 Hz from the site effects. For the earthquakes there
is an obvious shift in spectral energy toward higher frequencies at all stations (Figure 7).
To gain some insight on the gross spectral shape, I have plotted a sum of the P and
S spectra for earthquakes and explosions for all three stations (Figures 8, 9, 10). The char-
acteristic peaks due to ripple-firing can be seen in both the P and S spectra at stations ETT
and WAT (Figures 8(c,d) and 9(c,d)). These are the peaks at approximately 2 Hz and 4 Hz
in both the P and the S spectra. Observing these "average" spectral plots it appears there is
a definite trend for the explosions to have more low frequency energy. However, this plot
can be misleading. When comparing the spectra from both blasting sites, there i/s/éllea'r
disparity in the spectral peaks (Figure 11). This plot illustratés the distinctions between
two blast sources recorded at station WAT. With so much variation in spectral énergy
among explosions the possibility of finding a single spectral ratio to discriminate these
two explosion types from earthquakes is remote. This disparity in location of the spectral
peak for the explosions appears discouraging. However, the explosions arev obgerved to be
more monochromatic (composed of a single freqﬁency) than the earthquakes (Figure 12).

This characteristic provides valuable information to a neural network.
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detected at station WEN. (a) Average P wave spectrum for earthquakes.
(b) Average S wave spectrum for earthquakes. (c) Average P wave épectrum
for explosions. (d) Average S wave spectrum for explosions.
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Chapter 3
e NEURAL NETWORKS

Using neural networks as a pattern recognition tool

Neural networks have proven to be effective tools in pattern recognition. The
motivation is to make several comparisons of the data that could not feasibly be made by
regular statistical techniques. The network is trained to develop weight_s_us'mg a set of
well understood data. Then these weights can be used to categorize unresolved data. A
problem with this technique is that the process is, in many ways a black box, and the evo-
lution of the weights is not always clear. Statistically, the confidence in the classification

schemes are high and this is the primary justification for using them.

The back-propagation method

This is a training procedure that presents the network with an input vector, and a
target vector. The input vector contains characteristics of the data, while the target vector
determines the classification group of the data. Initially_ the network randomly weights
components of the input vector, maps to an output vector, and compares with the gi/ven tar-
get vector. This is commonly called the "feed-forward phase". If there is a difference
between the output vector and the target vector, the weights are changed to minimize this
difference. The new weights are then "b'ack-propag‘ated“ to the beginning of the algorithm
and the forward mapping continues. When there is no difference between the output value
and the target value, no changes are made to the weights and the network has found a solu-
tion for that input vector. The process of adjusting the weights is governed by an algo-
rithm called the delta rule, and this is the backbone of the back-propagation scheme. . A

more detailed description of the process is given below.
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The following is a summary of previous studies (Rummelhart, 1988; Leighton,
1991; Maren;, 1990; Lippman, 1987). Each component of the input vector is initially

given some random weight, and the net sum is fed to the hidden unit j,

i
where sum; is the sum of the weighted input and w;; are the weights for the i component

of the input vector going to the jth hidden unit. The hidden unit j then maps the sum with

a nonlinear transfer function, £, to produce the following activation value:

aj =f(sumj). (2)

The typical transfer function used is the sigmoidal or logistic activation function, -

_ 1 X
%= Msum, (3)
l+e J
which has a derivative,
aaj ,
asum, - aj(l —aj) (4)

where 1 is a constant factor called the learning rate in equation ( 3). Various theoretical
curves of th¢ sigmoidal function and its derivative can be found for various values of the
learning factor 1, as seen in Figure 13. Notice that the above derivative reaches a maxi-
mum for g; = 0.5 and a minimum when a;=0or 1. Because the weight change is propor-
tional to the derivative, the weights will be changed most for output units whose derivative

is near the central peak. This is thought to contribute to the stability of the system (Rum-
melhart, 1988). |
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Figure 13. (a) The sigmoldal transfer function (b) Derivative of the slgmoidal transfer function
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An illustration of this first mapping to an activation value can be seen below:

Input Layer
"1
Transfer Function f
w
: A
w

MZ
Cxw Z B —B a
l

Hidden Unit j
Diagram 1. Mapping phase for single neuron (hidden unit)

After the each neuron in the hidden layer maps the weighted input to a different activation
value, all the activation values are in turn weighted and then sent to each unit in the output.

layer. The new weighted activation sum is given by the following expression

N

J
Here sum,, represents the weighted sum of the activation values from all hidden units

going to output unit k. The number N is the number of hidden units in the hidderi/ layer.

The output unit then takes this sum and performs a nonlinear mapping of its own.
Hidden Layer

wl
Transfer Function f

W2

‘DM\"Z‘“‘“ -

. J ki J >
arad

wN Output Unitk

Diagfam 2. Mapping phase for single output unit

The entire process so far can be illustrated in the following diagram.
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Input Units
Wi Hidden Units

Diagram 3. Complete mapping process by neural network

Now the output o,,, is compared to the target value, #,,. If their difference does not

lie within the tolerance, the weights are adjusted. The rule for changing the weights in the

back-propagation routine is the delta rule and is given by the following expression: -

Awkj =N, -0, )f (sumy) aj. (6)

Here A is the change made to weight wy;, 1 is the learning rate, and S is the derivative of

the transfer function with respect to sumy. This change is passed back to each pre-existing -

’

weight in front of the output unit, which can be seen below.

-
7

Hidden Layer
W, - —
Transfer Function f
w
: A
==
a - P B 0

“Weight Adjustment
Diagram 4. Back-propagation phase for outpﬁt unit &

Then the changes in these weights are passed back through the hidden layer to adjust the
initial input vector weights. Then the feedforward phase is once again performed.
This process of adjusting the weights continues until the network has found a set of

weights which map each input vector to its desired output within a given tolerance. The
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adjustment of the weights in the back-propagation algorithm is equivalent to a minimiza-
tion of the error between the output vector and the desired target vector. The error is de-

fined as the least mean squared error and is given by the following expression:
e NAEISE. (7)
B 22 m m)
m

This is the error for the k™ output unit in terms of the target value, t,, and the output value,
0., As is discussed in Appendix A, weights are adjusted based on the idea that change in

a particular weight should be proportional to the contribution of that weight on the total

error (E).

Awy o (8)

The weight adjustment process can be illustrated hypothetically through a diagram given
by Maren (1990).

A
: o
;5‘ En . ow
/—\ E
\ n+1
//
" fe-
wmmL mlnG Wn+1 Wn

Diagram 5. Hlustration of error minimization with respect to weight w
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The above diagram illustrates the possible problems with minimizing the error in the neu-
ral netwbrk. If the error is not near a local minimum, it may converge to the global mini-
mum. Unfortunately there is a possibility that the error will converge on a local minimum.
However, if the local minimum still provides an adequate set of solution weights for the
pattern recognition problem, the fact that it is not a global minimum in the error is not a

practical concern.

Neural Network Configuration

The network used in this study is multi-layered with a back-propagation learning
algorithm. There are three layers in the network; the input layer, the hidden layer, and
the output layer. The input layer has 10 units, the hidden layer has 20 units, and the out-
pﬁt layer has two units. See Figure 14 for a display of the network configuration. The in-
put layer consists of 10 numbers which represent 2 Hz wide frequency bins from 1-11 Hz
for the P and S spectra. The spectral averages are then scaled by the logarithm to con-
strain the variation of the spectral values. Values an order of magnitude or more‘,ff'cv)m
the mean value can drastically affect the weighting scheme of the neural network and can
prevent convergence toward a stable solution. A diagram of the inputs and the network

1

is shown below.

P wave spectra (1-11 Hz) S wave spectra (1-11 Hz)
[ I R

Log Power Spectrum

1 2 3 4 35 6 T 8 9 10
Bin Number

Diagram 6. Representation of input vector presented to the Neural Network
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Neural Network Configuration

output1 output 2

] Output Layer

Single Hidden Unit

OOoOoOooOooopoooooooadot
~ Hidden Layer

¢

e
/

0] DDDD ],
Input Layer

Figure 14. This is a neural network with 3 layers. There Is an input layer with 10 units,
a hidden layer with 20 units, and an output layer with 2 units.

Lines represent inputs being weighted, sumed, and sentto a single
neuron or hidden unit. The neuron then maps the weighted sum to
two output values.
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A weighted sum of these inputs is then fed into the hidden layer where they are mapped
by a nonlinear transfer function. The output is compared to the desired target vector and
the weights are édjusted. The process continues until the output and the target value
agree to within some specified tolerance.

When the network learns to distinguish patterns in the training dataset, it has
found a set of weights which map each input vector to its desired output within a given
tolerance. Thus, the network has converged on a solution to the recognition problem.
These solution weights can then be used to classify events not involved in the learning

process. This process is illustrated below in Diagram 7.

Input Layer
NG
@) ‘ blast
k Hidden Layer Output Layer ©, D
DW 4 xiwﬁ | Z ajwkj
' quake
[} (1, 0)

Wn

Diagram 7. Example of classifying data vector after converging on solution

Chapter 4
RESULTS

Accuracy of Classification by Single Station

In order to establish some degree of confidence in the solution weights we need
some way to test the variability of convergence. One way to do this is to use a method
called the leave-one-out method (Lachenbruch and Mickey, 1968). In this process the
training dataset is deleted by one event and learning occﬁrs with one fewer data vector.
After the nétwdrk converges the deleted event is tested with the solution weights to see
how it maps without being involved in the learning scheme. This niethod avoids forcing
the network to map the event as an earthquake or blast during lear{ning, allowing the
event to freely map afterward with the group it shares the most similarities.

After mapping each event with solution weights derived by the leave-one-out
method the events were classified as either an earthquake or blast. Earthquakes map to
(1,0) and blasts map to (0,1). Events which were thought to be blasts and then mapped
positively as an‘earthquake were considered incorrect classifications. Events which
mapped exactly between the two groups were classified as unknown. For examp’ile, a
mapping of (.55,.45) would be classified as unknown. The two previous output values
are dependent so the value of the first output distinctly classifies the data vector. There-
fore if ouputl was higher than .55, or lower than .45, the event would be considered clas-
sified or misclassified, depending on its original target.

In a test of three stations (ETT, WEN, and WAT) by the leave-one-out method,
the results were drastically different. ETT had a correct classification rate of 81%, while
WAT and WEN had accuracies of 72% and 87% respectively. The main reason for the
high performance at WEN is due to the relative ease in di_stinguishing a péttern for the

data. Most of the blasts used for station WEN occurred in the same location, so their

spectra were extremely similar. The results of testing by station can be seen in
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Figure 15. Above are the resuits of event classification after training the neural network
There are three different datasets represented; (a) events recorded at ET1
(b) events recorded at WAT, and (c) events recorded at WEN. The earthquakes

Figure 16. Above are the results of testing event classification with the leave-one-out method.
After training the neural network with one less event, the solution weights were
then used to classify the left out event. Each plot represents several tests, one
for each event recorded at the particular station. For example, there were 62 events
recorded at station ETT, éo (a) represents 62 tests. Similarly, (b) represents 55 test
for events recorded at WAT, and (c) represents 54 tests of events recorded at WEN.

should map to an output 1 value of 1.0, and the explosions should map to an

- outpht 1 value of 0.0. As seen above the two events types are well separated
' with only a few ambiguous classifications between 0 and 1.
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Table 2.

Plots of the data mapping can be seen in Figures 15-16. Figures 15(a,b,c) show
plots of the data mapping after all events are included in the learning process. It is clear
~ to see that all events are separated but not so distinctly at station WAT. In some sense
these events are being forced to lie in either the blast or earthquake group due to the
learning process. Therefore it is interesting to see what happens to the mapping of data
when they are no 10ng¢r included in the learning process. These mappings can be seen
separately for ETT,WAT, WEN in Figures 16(a,b,c). Here we gain a better perspective
for the "natural” classification of the event. Obviously there are some misclassified
events and this was expressed quantitatively Table2.

Another way to test classification accuracy is to use half of the available dataset
for training and the other half for testing. Unfortunately the solution may be less "glo-
bal" because much fewer events are used to develop the solution weights. Testing the
three station by this method did not change the classification accuracy. Classification
rates for stations ETT, WAT, and WEN were 80%, 75%, and 90% respectively. I/,)’eéails

on this test are given in Table 5.

Accuracy of Cross-Classification

Chqosing events recorded at more than one station allows for cross-classifica-
tion. Cross-classification is simply checking the classification of the event using data
from different recording sites. Because I used the data from a single station \to classify |
an event, each station recording the event should have a separate classification. There
were 88 events used in the study, however only 65 events were recorded at more than
one station. To test the baccuracy of cross-classifying an event I looked at a "majority
rules" scheme. This scheme requires 2 of 3 possible classiﬁéations to agree with the pre-

vious classification before an event can be considered correctly classified. The previous
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classification is the categorization by the processing seismic analyst, so there is some po-
tential for misclassification. To address this potential error in the previous categoriza-
tions, I also test the "self-consistency"” of the neural network classification. The "self-

consistency" test allows for classifications which agree in a majority rules sense, but dis-

agree with the previous cat;gorization, to be considered correct. Testing the 65 events
by the "majority rules" scheme gave a correct claésiﬁcation rate of 70%. Testing by a
"self-consistent” majority rules scheme had a 75% correct classification. Comparing
these two rates suggests that there are not many misclassified events in the original cata-

log. The complete neural network event classification catalog can be seen in Table 6.

The explosion classification is indicated by an X and the earthquake classification is indi-

cated by a Q. Original cliassiﬁcationsvare\ indicated by the first two spaces in the first col-

umn. Explosions are indicated with the letters AX and the earthquakes are indicated by

the letter A followed by a space.

Another interesting point is raised for events recorded at all three stations. While

there are only 16 of these events, 15 agree with the "known" catalogin a ”majority rules”

o
i e

sense. This is a correct classification of 94%. The high classification rate for these well-

i ripn
"

covered events suggests two things. First, these events were originally cataloged correct-

ly. Second, the discrimination routine is more accurate when the event is well recorded.
To assure that the event is well recorded there should be a high density seismic array
near potential blasting areas. This would definitely improve the discrimination accuracy

of the neural network.

Optimizing Network Performance
In the previous neural network there were 20 units in the hidden layer. There is
some question as to whether this is the optimum number of hidden layers and the opti-

mum number of hidden units. Researchers in the past have investigated the optimum
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number of hidden layers and the optimum number of units in the hidden layer for a given
discrimination problem. Cybenko(1989) shows that one hidden layer is sufficient to com-
pute arbitrary ‘decisiOn boundaries for the classification problem. Choosing the right
number of hidden units in the layer is a more difficult problem. If we choose too few hid-
den units, the network may have problem converging on a solution. The introduction of
more hidden units allows for more versatility in the initial random weighting scheme. In-
creasing the versatility increases our chances of converging on a stable solution. Howev-
er, reducing the number of hidden units reduces the computational time needed for
training. While there have been formulas put forth to determine the correct number of
hidden units, choosing the optimum number is still based on empirical results. Past re-
searchers have simply compared the classification problem on several configurations of
networks to test the change in accuracy. Ihave chosen to follow this approach for the
seismic discrimination problem. In Tables 2,3;4 are results of training and testing the
data with the leave-one-out method. In Table 2 the results are obtained from a netw’ork
with 20 hidden units. In Table 3, 10 hidden units are used and in Table 4, 1 hidd?/n"unit
is used. For events detected at station ETT the neural network with 20 hidden units is no-
ticeably more accurate. Between the networks with 1 and 10 hidden units there is no ap-
preciable difference in the classification accuracy. Other researchers have usually found
that increasing the number of hidden units can improve the classification accuracy, al-
though sométimes the improvement is only a few percent at best. Because the‘ computa-
tion times can be rather extensive when increasing the number of hidden }Jnits I did not
investigate trying more than 20 hidden units. Testing the data by the leave-one-out meth-
od involves about 60 tests»for each station, so any marginal increase in accuracy did not

seem worth the cornputation time.

Chapter 5
DISCUSSION

Comparing performance with Linear Network

While linear networks are less flexible for pattern recognition problems, they do
have an advantage over the nonlinear network since they operate in a strict gradient de-
scent algorithm. This ensures the solution will converge to the global minimum in the to-
tal error. One problem with the nonlinear network is that the solution may converge to a
local minimum in the total error. This may not be a consideration if the derived weights
still provide an accurate means of separating blasts and earthquakes. However, it would
be nice to see how the weights developed by a similar linearknctut/ork compare to those
developed by the nonlinear net.

By using a similar linear network ( 1 Input layer, 1 Output layer), the network
was only able to converge on a solution for data recor\ded at station WEN. Obviously the
flexibility of the nonlinear mapping allowed for better- event separation at each station.
Comparing Inputs

One obvious question is what distinguishing characteristics were used in the sepa-
ration algorithm. In previous studies, P/S spectral ratios proved to be decent discrimina-
tors (Taylor et.al., 1988). This led to a test of these P/S ratios. I took P/S ratios of 1 Hz
frequency bins from 1-11 Hz. In each case the network did not converge, and I conclud-
ed that this was not a distinguiShing characteristic. Rather the spectral shape is believed

to be the discriminator for the events used in this study.
The lack of differentiation in P/S wave spectral content for blasts and ‘earthquakes
is characteristic for Washington. In 1990 Baumguardt et. al, found that spectral shapes

for individual phases are a better discriminant than relative P-wave to S-wave energy in

orogenic regions such as the Western United States.




Aiding Solution Convergence

To increase the likelihood of finding meaningful solutions, the network should ideaily be
presented with as much training data as possible. Large learning sets will also provide
more consistent discrimination when there is some variability in the inputs.

However, some training data were not easvily mapped to their desired output and this pre-
vented the network from converging on a solution. In reaching the solution weights, the
learning process had to be "helped" in one case. When presented with learning data from
station ETT, the network did not converge upon a solution in a reasonable amount of

time, so the test data were decreased. The reason for this is that some of the "outliers"

were not enabling the network to converge within the specified tolerance. To remove the

outliers there are a few methods at our disposal. One can either look at the raw data fed
to the neural net and delete the obvious outliers or go back to the power spectra itself to
find differences. At first one can be liberal with throwing out the suspected "outliers".
The goal is to get the network to converge on a solution with a smaller set of data. Once
a solution is achieved, the network can be propagated in the for\;vard mode on th/g:- 'e:ntire
set of data. The output mapping of each input vector should be a good indicato; as to
how well the solution weights work for that given input vector. If the output is close to
the desired output, the input shares similarities with the training set. If the output for a
given input vector is far from a desired output, it would appear to have little in common
with the training set and would be considered an outlier. Using this method we can maxi-
mize the number of events with similarities to achieve the solution weights. \

The outliers could exist for a variety of reasons. For example, oﬁtliers could
have anomalous spectra due to a strong high frequency spectral peaks away from the 1-
11 Hz interval. This could put the charaéteristic spectral peaks from the source well into
the side-bands. The strong ‘high-frequency peaks may have been influenced by the depth

of the event or by the close proximity of the event and the station. If the station is near
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the event origin, the high frequency portion of the seismic signal is not significantly at-
tenuated and can lead to strong high frequency peaks in the spectral estimate. Also the
effect of noise may have been particularly strong on the signal. Another reason for outli-
ers has to do with single event location versus the ldcation of other data used in fhe learn-
ing process; If the event lies in an area where there are not many nearby events, the
spectra may be different due to path effects as well as source effects. Also there is the
possibility that the event was originally misclassified by the seismic analyst. There can
be other reasons for outliers and I will investigate general properties of the misclassified

t

events later on in this chapter.

Understanding Event Classification

In the past researchers have found explosions (Mb < 4.5) in the western U.S. to be.
rich in low spectral energy relative to earthquakes. Using spectral ratios (1-2 Hz/6-3 Hz).
Talyor et. al. (1988) found that explosions have a higher ratio than do earthquakes. He
concludes thét, for events in this magnitude range, the explosions have more enegg’§ at low
frequencies than do the earthquakes. Taylor explains one possibility for this disparity is a
depth dependent effect due to variations in the depth-dependent attenuation factor, Q(z).
He hypothesizes that if earthquake sources were located in a hi‘gh Q medium and explo-
sion sources in a low Q medium, the earthquakes would have more high frequency energy.
Modeling the observed spectral differences, he explained the experimental results with a
two layer model of different Q values. The model consists of a top layer of 2 km with a Q
of 10 and a bottom layer of 8 km with a Q value of 100. Taylor also recognized potential
differences due to source mechanism but he did not explain how the mechanism exhibits
the observed spectral d;ifferences.

In this study, a concern for understanding the reasons for event discrimination

leads to analysis of the distribution of event magnitude and event depth. To consider the
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possibility of event magnitude or event depth as a factor in the discrimination routine,
one can plot a histogram of magnitudes/depths for earthquékes and blasts. A display of
magnitude distribution and depth distribution for the events recorded at stations ETT,
WAT, and WEN can be seen in Figures (17a,b,c). In each case there is little evidence for
magnitude being an important factor in the discrimination routine. Plots of depth distri-
bution for events recorded at each station can be seen in the Figures (18a,b,c). Initially a
case might be made for distinctions in the depth distribution between blasts and earth-
quakés. However with a closer look at blast depth there are some events which are obvi-
ously too deep to be accurate depth locations. These errors in depth locations can be
explained by the close proximity of the source and the recording station or by the rela-
tively few stations used m the location algorithm. For events of magnitude M C=1.5¥_2.8 _
this can often be a problem because they do not have enough energy to be strongly de-
tected at many stations. Due to questionable depth location in these cases, it is obvious -
that depth alone should not be 2 distinguishing characteristic for discriminating events.
This lack of disparity between earthquakes and blasts is the reasbn to look for di/s.tiﬁct in-
dicators in the signal. |

I chose to quantify the signal in terms of the frequency content. The frequency
éontent is illustrated by estimating the power spectrum of the time series. By stacking
the spectra for explosions ahd earthquakes we can geta feel for the gross overall charac-
teristics of the explosions versus the earthquakes (Figures 8-10). In looking at the spec-
tra for all three stations there is an obvious trg:nd for thé explosions to have more energy
in the low frequencies relative to the earthquakes. So from the stacked épectra it is rea-
sonable to expect the neural network probably uses this characteristic to make its discrim-
ination scheme. However, when we look at explosions from each blasting site at one
station, there is an apparent/ disagreement with the overall observations (Figufe 11). The

mining blast spectrum (Figure 11b) follows the trend of the stacked spectra, with a con-
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centration low frequency energy, while the road blast spectrum has a concentration of
high frequency energy. At first this may seem discouraging but on closer examination
with the other explosions and earthquakes, there seems to be another consistent differ-
ence between the two event types. The explosion’s signal appears to be monochromatic.
(Figure 12b), while the eanhquake’s_signal is comprised of several frequencies (Figure
12a). Thus, I believe this must also be a factor in the weighting scheme.

My argument for how the events are classified should be tested. In order to gain
any quantitative insight about the spectral components responsible for the difference
between earthquakes and explosions, a sensitivity analysis shoula be done on the dataset

with the neural network. In this study I have not done the sensitivity analysis problem but

L outline the procedure in the following section.

Sensitivity Analysis

In reaching a solution to the discrimination problem, the neural network finds pét—
terns in the explosion dataset that differ from the earthéuake dataset. The relatii?ély
sharp spectral peaks of the explosions, (Figure 12), is expected to be the basis for classifi-
cation. To test this theory, a sensitivity analysis should be done. Sensitivity analysis
with a neural network involves finding the gradient of the network output with respect to
a given input in the data vector. That is to say we need to find how much the output map-

ping of the neural network is influenced by changing a particular input of the data vec-

tor. An illustration can be seen below in Diagram 7.
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Diagram 7. Testing Sensitivity to xj ata Single Neuron

For a small change in the first input of the data vector, x1, there will be an associated

change to the output by the neural net. After testing the sensitivity of each input in the

data vector, the gradient can be estimated for each neuron (i.e. there are 20 neurons in the )

hidden layer). If the gradient for a single input is similar at each neuron, the solution is
thought to be stable with respect to that input. If the gradient of the input varies wildly
from neuron to neuron, the input is not stable with respect to the solution (J. Hwang, per-
sonal communication). The inputs with stable gradients should be the essential fz}c'/tors in

the discrimination scheme.

The gradient is derived in Appendix B, and is given by the following expression

\

%0, N %a; :
é}; = f (sumy) lekj'éfx_; (9)
j=

Here o,,, is the output of the k™ hidden unit or neuron, x;is the if input of the data vec-
tor, f is the derivative of the sigmoidal transfer function, sumy is the K weighted sum of
the data vector, wy; is the weight of the i input going to the k1 hidden unit, and a;, is the

activation value of the pth hidden unit. The above expression can then be used to quanti-
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tatively determine the inputs most important in developing the discrimination routine be-

tween earthquakes and explosions.

Understanding Misclassified Events

To understand why some events were possibly misclassified by the neural network,
I have plotted the locations of these earthquakes and explosions (Figure 19). Events mis-
classified by any of the three stations are included in the prévioﬁs figure. In Figure 19a
there are three earthquakes which clearly lie outside the main earthquake cluster. There is -
one just north of the cluster and two northeast of the cluster. It is not surprising that these
three earthquakes may have been improperly classified because they are so isolated. The
signals from these events could be influenced by path effects which are quite different
from path effects for earthquakes occurring near the central cluster. In order confidently |
classify an earthquake not involved in the learning process, it should be located near the
majority of earthquakes used in the training dataset. |

While misclassification of the three outlying eérthquakes is easily explgiﬁéd due to
their isolation, there are several other misclassified earthquakes which occur in the main
data cluster. If we look at Figure 19b, there are also several misclassified explosions in
tight clusters around the blasting sites. In order to understand why these events may have

been misclassified, I first tried to find some correlation of event magnitude or event depth

(Table 6). The misclassified events have varying magnitudes and depths, s@ I looked for

~ indicators in the power spectra.

By looking at the P and S spectra for misclassified waveforms at station WAT they

vconsistently deviate from the expected general spectral properties. The misclassified

earthquake signals are monochromatic and the misclassified explosion signals are com-

prised of several frequencies (Figure 20). In short this means the signals of misclassified

earthquakes are more explosion-like and the signals of misclassified explosions are more
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earthquake-like. It is very possible that these events were actually misclassified when cat-
aloged. by the seismic analys't. The neural network may not have misclassified these
events at all. Unfortunately with the imperfect catalog, the exact accuracy of the neural
network is not well determined. However, the accuracy rates calculated in this study do

determine a lower limit for correct classification by the neural network.

Chapter 6 ‘
CONCLUSIONS

In this study neural networks provide the ability to discriminate smaller seisnﬁc
events (M= 1.5-2.8) with a reasonable degree of confidence. The ability to consistently
discriminate earthquakes from explosions relies on spectral differences in the twd source
types. Searching for a global discrimination scheme based on the location of spectral
peaks of the signal is a difficult problem. As shown by the spectral plots at different blast-

ing locations (Figure 12), the explosion’s spectral source characteristics can vary drasti-

.cally. However, the explosions do exhibit a concentration of low frequency energy in their

spectra and a consistent monochromatic nature in their signals. | I believe these two dis-
tinctions are the primary reasons for event classification. The lower limit of classification -
accuracy varied from 75% to 89%. This result was based on a previous catalog with
potential classification errors. Even this lower limit in accuracy is good when considering
the difficulties in classifying small events. The accuracy is especially impressive when

considering that the classification is based on a single seismic trace.
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APPENDIX A: Derivation of the Delta Rule (Rumelhart,1988)

Weights are adjusted based on the idea that ché.nge in a particular weight should be

proportional to the contribution of that weight on the total error (E). For the output layer,

By e~ (10)

Where the total error associated with the given input/output pair is

E= %;um_om)z (11)

The above derivative, g%, can be decomposed into two parts using the chain rule
kj

O0E _ OF 9

owy;  dsum, dw,

sum, | (12)
Where the first term on the right hand side represents the change in error as a function of )
the change in the net input, and the second term represents the effect of changing a partic-
ular weight on the net input.

From equation (5) the second partial derivative can be written for the output layer as

2 sum, = a, (13)

j
awkj

To evaluate the first partial derivative we again decompose with the chain rule

dF 3E do, ‘
dsum,  do,, Osum, (14)
Now using the definition of the error, equation (10), the first factor can be written as
oE ‘
a—om""(t"'_o"‘) | | (15)
Using equation (2) the second term on the right hand side is just
do,,
dsum, = (sumy) (16)

which is simply the derivative of the transfer function for the K unit,
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We have now developed the weight changing scheme

Awy; =1 (t, - 0,)f (sumy)a; (17)

Or as is often written in shorthand notation

Ay = 18,0, (18)
Where 7 is the learning rate, which dictates the amount of change in the weights. The
above expression is only for the output layer. The error for the previous hidden layers is

determined by back-propagating the error in the ouput layer and is given by the general

expression

5}. = f (sum) ;5kwkj (19)

After recursively determining the error we eventually get back to the input layer and the
weights for the input data are adjusted. (See Rummelhart, 1988 for a more thoropgh dis-
cussion). | | "
If the léaming rate is too high (Equation 17), high frequency perturbations in the
training set can keep the network from converging. However, if the learning rate is too
low, the time for convergence will be very long. To avoid this problem one can introduce
a momentﬁm term that allows for high learning rates and effectively filters out the high
frequency oscillations in the data set. The momentum factor is a way of srgoothing the

learning by using previous changes in the weights. This concept is seen in the following

expression for the new weight change

Awy (n+1) = nd,a;+ KAwy; (n) (20)

Here the « is a constant called the momentum factor.”

APPENDIX B: Derivation of the Sensitivity Gradient

The derivation of the sensitivity gradient follows from the derivation of the delta
rule. The gradient of the network output, o,, with respect to a given input, x; must be cal-
culated recursively in a layer by layer process. There are three layers in the neural net-
work used in this study: the input layer (layer 0), the hidden layer (layer 1) and the
output layer (layer 2). I will derive the gradient of the activation of the hidden layer
with respect to a given change in the input layer and will then quote the general result for
all layers.

First, the change in the actiyation of the hidden layer, aaj, with respect to a

change in a single component from the input layer, X;, can be written as the product of

two new derivatives.

Now the activation a; is given by the following expression.

a; = f(sumj)

So the derivative of a; with respect to sum; is simply

Baj
= f (sum))

asumj

Similarly, the weighted sum, sum;, is given by

n
sum; = ijixi

i=1

RN
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so the derivative of sum; with respect to x; is just

=—SUm; = wy

Multiplying the two partial derivatives yields a simple expression for the sensitivity gra-

dient for the hidden layer

a]
5— j'(sum)

The above result is the sensitivity for the activation of hidden unit j with respect to input

..In order to estimate the change in the final output of the neural network the above re-
sults must propagate through the next layer (i.e., the output layer). This gives the follow—

ing expression for the gradient at the next layer

do,, da;
3— = f (sumy) Zwk] ax.

1

This is the change in the network output with a change in a given input. Here sum, is
the weighted sum of the activations from the hidden layer to the K unit in the ouput lay-
er. The number N is the number of hidden units in the hidden layer. See Hwang (1991)

or Kuhn (1992) for a more general expression and detailed applications.
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Table 2: Results of Leave One Out Method for Network with 20 Hidden Units

sion | MO0 | Cuoios | G | Untesises |
ETT 39/23 50 10 2 31
WAT 27/28 40 14 1 73
WEN 25/29 47 7 0 87

Table 3: Results of Leave-One-Out Method for Network with 10 Hidden Units

No. Events

Stion | gy | Clasied | Clasied | Undesided | TR
ETT 39/23 45 16 ] =
| WAT 27/28 41 12 '2 75
WEN 25/29 48 6 0 29

Table 4: Results of Leave-One-Out Method for Network withl Hidden Unit

Saion | Noms | Comety | ol | g | A
ETT. 39/23 45 16 1 73
WAT 27/28 41 12 '2 75
WEN 25/29 48 6 0 89
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- Table 5: Results of Testing Groups of Unlearned Data

Number of ~Incorrectly
. Number of .
. Events in Correctly Classified Accuracy
Station . Test Events i :
Training (X/Q) - Classified and %
(X/Q) Undecided
ETT 19/23 20/10 24 6 80
WAT 17/18 10/10 15 5 75
WEN 15/19 10/10 18 2 90

A e ———

Table 6: Neural Network Classification Catalog
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yrmodaymin | Latide | Longitude ?ﬁgﬁ‘ Mag. | ETT | WAT | WEN
AX8105081901 | 47N3738 | 119W5404 | 170 | 2.2 Q
AX8402002328 | 47N5012 | 119W5874 | 002 |19 |X |X
AXS8403071745 | 47N5006 | 119W5880 | 027 |19 |Q |X
AX8403212018 | 47N5096 | 119W5846 | 022 |21 |X |Q
AX8405161608 | 47N5001 | 119W5818 | 033 |24 |X
AXS406061748 | 47N5031 | 119WS5905 | 036 | 2.1 X
AX8406151454 | 47N5083 | 119W5830 | 050 |20 |X
AX8407101517 | 47N5087 | 119W5840 | 038 |21 |X
AX8410031837 | 47N2403 | 120W2026 | 050 |22 |X |X |X
AXB410060030 | 47N2406 | 120W2022 | 081 |20 |X |X | X
AX8410070025 | 47N2411 | 120W2000 | 039 |20 |X |X |X
AX8410182359 | 47N2364 | 120W2094 | 071 |23 |Q |X |X
AX8410240020 | 47N2342 | 120W2099 042 |22 |Q |Q |X
AX8410262209 | 47N2395 | 120W2163 | 040 |17 |X |X |X
AX8410300105 | 47N2355 | 120W2072 | 055 |23 |X | X
AX8411142157 | 47N5062 | 119W5795 | 054 | 1.5 Q
AXS411162007 | 47N5086 | 119Ws835 |004 |18 |X |X
AXB411191652 | 4TN4910 | 119WS943 | 003 |18 |X
AX8411202316 | 4TN2377 | 120W2078 | 084 |20 |X |X |X
AX8411262324 | 4TN2354 | 120W2069 |356 |17 |X . |X
AX8412012113 | 47N2387 | 120W2122 | 099 |19 |X |X
AXS412121647 | 47N4899 | 119W5922 032 |16 |X

[ AX8412280013 | 47N2383 | 120W2097 |045 |15 |X |X |X
AX8501032211 | 47N2370 | 120W2098 | 0.59 |15 |X X
AX8505182258 | 4TN2348 | 120W2028 | 039 |21 |X X
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Depth

ETT

yr,mo,day,hr,min | Latitude | Longitude (km) Mag. WAT | WEN
AX8505202350 47N2379 | 120W2084 | 0.52 23 X X
AX8505221825 | 47N2361 | 120W2075 | 0.48 22 | X | X
AX8505251821 | 47N2381 | 120w2028 | 045 2.1 Q X
AX8505281810 | 47N2401. | 120W2099 | 0.67 23 1Q X
AX8505291812 | 47N2407 | 120W2071 | 3.53 21 | X X
AX8505301811 | 47N2446 | 120W2097 | 6.64 1.6 1 Q X
AX8505311817 | 47N2396 | 120W2136 | 0.64 1.6 | X X X
AX8506041819 | 47N2429 | 120W2152" | 5.56 1.5 |? Q
AX85062023OO 47N2411 | 120W2158 | 0.65 19 X X
AX8506241805 | 47N2417 | 120W2074 | 0.39 | 16 | X X
AX8506252253 | 47TN2436 | 120W2126 | 0.36 18 | X X
AX8506262250 4TN2457 120W2181 | 2.51 1.8 Q X X
AX8510052352 47N4914 | 119W5951 | 0.02 1.8 X Q
AX8510160011 | 47N4914 | 119W5920 | 0.52 18 |X Q
AX8510242345 | 47N4935 | 119W5914 | 0.02 1.6 X
AX8511022027 | 47N4933 | 119W5951 0.02 1.5 | X X
AX8511050052 | 47TN4961 | 119W5928 | 0.04 17 | X X X
AX8511090243 | 47N4920 | 119W5923 | 0.55 1.5 | X Q
AX8511200002 | 47N4911 | 119W5937 | 0.03 23 1 X ? Q
A 8112210246 47N4941 | 119W3719 | 3.61 2.2 X

A 8202180327 47N3984 | 119W4470 | 080 |28 Q.

A 8202181354 47N3947 | 119W4454 | 0.78 1.5 1 Q |Q
A 8205080706 47N3219 | 119W4350 | 11.01 | 1.5 Q

A 8210140853 47N4288 | 120W1151 | 3.87 2.4 Q
A 8210182043 47N5480 | 120w0298 | 0.02 |23 X

A 8211052039 47N4579 | 120W0508 | 0.52 19 1Q X
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yrmodayhrmin | Latitude | Longitude I?Eﬁg‘ Mag. | ETT | WAT | WEN

A 8212240015 | 47N4088 | 120W0722 |352 |21 |Q |Q AQ

A 8301280635 | 47N4552 | 120W0327 | 053 |25 |Q

A 8304061207 | 47N4505 | 120W0092 |438 |22 |X

A8309140002 | 47N4297 | 120W1630 |448 |25 |Q

A8401221732 | 47N3760 | 120W2240 | 152 |13 Q |0

A 8401291120 | 47N3778 | 120W2188 | 3.88 | 2.3 Q |a

A 8402280229 | 47N4078 | 120W1656 | 7.34 | 1.9 Q |Q

A 8403181326 | 47N3474 | 120W1984 |9.690 |21 |Q |Q

A 8403250102 | 47N3908 | 120W0882 | 052 |22 [Q |Q

A 8404111042 | 47N4466 | 120W0127 |530 |20 |Q

A 8407160004 | 47N3851 | 120W1175 | 0.63 | 2.0 Q

A 8400131447 | 47N3931 | 120W1010 | 005 |2.1 x |qQ

A 8409230702 | 47N3917 | 120W1358 |2.34 | 2.1 Q

A 8410160024 | 47N4403 | 120W1213 | 068 |16 |Q )

A 8412071036 | 474344 | 120w0a38 | 621 |15 |Q | Q

A8502110950 | 47N3988 | 120W0749 |0.16 |22 Q

A 8503070909 | 47N3955 | 120W1003 | 053 |19 [? |Q |Q
A 8503281146 | 4TNe01Z | 120w2266 | 249 | L8 Q |Q

ABS06010750 | 47N4045 | 120Wise4 (372 |17 [Q |Q

A 8506172259 | 47N4375 | 120W0290 |4.07 |22 |Q X

A 8506242207 | 4TNA575 | 119ws283 | 968 |17 |X | Q

A 8507160248 | 47N3975 | 120W1421 | 054 | L5 Q |Q

A 8507281945 | 47N4367 | 120W1960 | 666 |21 |Q |Q |Q

A 8507300407 | 47N4067 | 120w0837 [381 |23 [Q |Q |Q

A 8508280353 | 47N3995 | 120W1778 |2.68 | 2.1 Q |Q

A 8509080035 | 47N4912 | 119W5901 |050 |16 |X |X




63

yrmo,day,hrmin | Latitude | Longitude ?ﬁiﬁl Mag. | ETT | WAT | WEN
A 8500200014 | 47N4058 | 120W1190 | 0.63 | 2.1 X |Q
8500262244 | 47N4910 | 119W5961 |051 |16 | X X
3500301645 | 47N4332 | 120W0816 | 509 |18 |Q X |Q

A 8510070237 | 47N4254 | 120W1923 | 459 | 1.5 Q |X

A 8510101006 | 47N4495 | 120W1593 | 7.04 | 3.2 Q

A 8510111527 | 47N5515 | 119W3416 | 0.54 | 2.1 Q |X
8510300338 | 47N4293 | 120W0324 | 557 |18 |Q Q

A 8511201117 | 47N4207 | 120W1619 |7.66 |22 |Q Q
8512021333 | 47N4023 | 120W1958 | 435 |17 Q

A 8708081332 | 47N3894 | 120W1484 | 051 |22 Q |Q

A 8700271418 | 47N4379 | 120W 270 | 2.68 | 2.0 Q |Q
A3711200452 | 47N4128 | 120W1223 | 071 |20 Q |Q J
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