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Abstract

Investigations on the Role of Fluid During Granulite Facies
Metamorphism, Kigluaik Mountains, Seward Peninsula, Alaska

by Clifford Scott Todd

Chairperson of the Supervisory Committee: Professor Bernard W. Evans
Department of Geological Sciences

Flat-lying thick marble units acted as impermeable barriers to upward fluid flow

in amphibolite to granulite grade rocks of the Kigluaik Mountains, Seward Peninsula,

Alaska. The degree of impermeability can be related to the composition of the marble.

The margin of a thick pure dolomite marble chemically reacted with underlying

metasyenite to form a 2 cm thick border of calcite + forsterite. No fluid penetrated past

this reaction front. The high temperatures at which this process occurred (nearly 800°C)

allowed C and O isotopic interaction for an additional 2 cm by diffusion through the

solid dolomite. A second marble with a higher silica content underwent more

decarbonation, which enhanced porosity and lead to a greater extent of isotopic

interaction. An estimate of fluid flux across the bottom of this marble layer based on the

shape of the isotope profile is 1 cm3/cm2 directed down, out of the marble. At two other

marble-gneiss contacts, steep isotopic gradients exist, coincident with the lithologic

contacts, indicating very little cross-lithology fluid flux.

Fluid composition during metamorphism was locally controlled by lithology. At

a contact where an homogeneous Hbl-bearing gneiss lies above a marble, Hbl in the

gneiss reacted to form fine-grained granular Opx, Cpx, Pl and Kfs within 60 cm of the

marble. The Hbl-bearing and Hbl-free gneiss assemblages are related by Bt and Hbl




dehydration reactions. These reactions were driven by a reduction in HyO-activity due

to dilution with CO; from the marble. Water-activity calculations based on biotite

dehydration equilibria in the Hbl-free gneiss indicate a trend from 0.14 to 0.08 toward

the marble. Mineral assemblages confirm that the marble was a source of high XCO»

fluids. This example provides an indication of the limited role (60 cm) played by fluid

movement in controlling mineral parageneses in this terrane.

It is concluded that there was no pervasive infiltration of C-O-H fluid across the

thick, continuous, marble units of the amphibolite to granulite grade Kigluaik Group

during peak metamorphism. Movement of volatile species and isotopic interaction

between rocks during peak metamorphism was dominated by diffusive processes. No

evidence for channelized fluid pathways through the marble units during peak

metamorphism has been found. Therefore, heating of the terrane occurred by

conduction, not advection via a fluid.

In granulite grade rocks of the Kigluaik Mountains, no peak metamorphic fluids

survived as fluid inclusions. Retrograde CO»-rich fluids were trapped late in the

metamorphic cycle and have variable density around 0.5 g/cm3. In amphibolite grade

rocks, aqueous fluid inclusions may represent samples of near-peak metamorphic fluids.

Density of these inclusions varies from 0.9 to 0.8 g/cm3 with salinities less than 4 wt%

NaCl equivalent.
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Chapter 1: Introduction and background

Definition of Problem

This paper is presented as a contribution to the ongoing debate concerning the

role of fluid infiltration in deep-crustal granulite facies environments. In contrast to

greenschist and amphibolite grade regional metamorphic environments where numerous

recent phase equilibrium, reaction progress, and stable-isotope studies have

demonstrated major involvement of fluid advection (e.g., Rumble et al. 1982, Tracy et

al. 1983, Ferry 1984, 1986, Wickham and Taylor 1985, 1987, Hoisch 1991;

Chamberlain and Rumble 1988, 1989), conclusions regarding fluid composition and

fluxes during granulite-grade metamorphism appear to be in conflict (see Newton 1986).

In lower crustal environments, it seems necessary to document the specific

circumstances for each terrane (Peacock 1991); certainly, more case studies need to be

presented in order to establish generalized models for the lower crust.

In any crustal environment, fluids play potentially major roles in the transfer of

thermal energy (Brady 1988), as a catalyst (Rubie 1986), a medium of mass transfer

(Fyfe et al. 1978), and an important factor in rheology (Etheridge et al. 1984). At

deeper crustal levels, there are additional complexities related to the development and

possible migration of partial melts, to the release of fluids from crystallizing magmas,

and to the possible introduction of fluids from the upper mantle. While there is general

agreement that granulite facies rocks were mostly hotter and drier than those with high-

amphibolite facies parageneses, the role of the fluid phase during granulite grade

metamorphism remains the subject of continued discussion. The present work

concentrates on identifying and quantifying the composition, abundance and transport

characteristics of fluid in a well-exposed, amphibolite to granulite grade metamorphic
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terrane on the Seward Peninsula of Alaska. This is accomplished through the

investigation of mineral assemblages and mineral chemistry, stable isotope

geochemistry, and fluid inclusions.

Geologic Setting

Location

The Seward Peninsula is located in the western part of Alaska (figure 1.1), with

the Bering Sea to the north, Norton Sound to the South and the Bering Straights to the

west. The Peninsula is composed mostly of rolling hills covered by treeless tundra.

Mountain ranges are present in the inland portions of the peninsula which expose more

rugged terrain. The Kigluaik Mountains are one such range. Geologic exploration was

initiated on the Peninsula when placer gold deposits were discovered on the beach at the

town of Nome in 1897.

Previous Work

A good historical review of the geologic work done on the Seward Peninsula

was presented by Till (1980) and Till and Dumoulin (1992) , and is briefly summarized

here. Following the discovery of gold, the U.S. Geological Survey conducted several

reconnaissance surveys on the Seward Peninsula (Brooks et al. 1901, Collier 1902,

Collier et al. 1908, Smith 1908 1910, Moffit 1913). This lead to more focussed studies

on the occurrence of economic mineral deposits (Harrington 1919a b, Cathcart 1922,

Steidtmann and Cathcart 1922), continued mapping (Hummel 1962a b, Sainsbury et al.

1969 1972a b c d e £, Sainsbury 1969 1972, Miller et al. 1972, Hudson 1977,

Robinson and Stevens 1984) and geophysical surveys (Cady 1977, Barnes and Hudson

1977). More recent work concerning metamorphic petrogenesis on the peninsula has
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been initiated by groups from the University of Washington and the University of

Alaska (Till 1980, Pollock 1982, Sturnick 1984, Forbes et al. 1984, Thurston 1985,

Armstrong et al. 1986, Evans and Patrick 1987, Patrick 1987 1988, Lieberman 1988,

Patrick and Lieberman 1988, Patrick and Evans 1989, Buxton 1990, Evans et al. 1992,

Lieberman and Petrakakis 1992), with work also being conducted from Stanford

University (Miller et al. 1992a, Calvert 1992).

Current Understanding

Rocks of the Seward Peninsula of Alaska can be divided into four groups based

on their metamorphic grade (Pollock 1982): 1) low grade metasediments of the York

Mountains, 2) blueschist/greenschist facies metasediments and meta-igneous rocks of

the Nome Group, 3) amphibolite to granulite facies rocks (Kigluaik Group) of the

Kigluaik, Bendeleben and Darby Mountains, 4) unmetamorphosed Cretaceous or

younger sedimentary and igneous rocks (figure 1.1). The Nome Group is of

Cretaceous metamorphic age (Armstrong et al. 1986). The schists are believed to be

related to the high P/T rocks of the schist belt along the southern margin of the Brooks

Range (Hitzman et al. 1986; Patrick 1988; Gottschalk 1990). The protoliths of the

Nome Group were continental margin related carbonates, pelites, volcanics and

calcareous sediments of preCambrian (?) to Devonian age (Till et al. 1986, Buxton

1990). Together with later intrusive bodies, this package underwent subduction beneath

oceanic and island arc crust (Box 1985).

In three mountain ranges on the Seward Peninsula (Kigluaik, Darby and

Bendeleben), uplifts or structural arches expose Barrovian-style metamorphic complexes

formed by dynamo-thermal overprint on Nome Group schists (figure 1.1). The high

grade rocks of the Kigluaik Mountains, which are stratigraphically and structurally

continuous with the overlying Nome Group schists (figures 1.2, 1.3 and 1.4; also see




4

Patrick and Lieberman 1988), grade downward through biotite, staurolite, sillimanite,

and sillimanite + K-feldspar zones into orthopyroxene-bearing gneisses in the most

deeply exposed parts (Till 1980). The Kigluaik Group metasediments probably include

rocks at least as old as late Proterozoic (Armstrong et al. 1986). Timing of the peak of

high grade metamorphism is currently under investigation, but probably occurred

around 109-103 Ma (Armstrong et al. 1986, Lieberman and Van der Heyden personal

communication, J. Wright personal communication), with rapid cooling of the area

occurring around 85 Ma (Turner et al. 1979, Miller et al. 1992a b, Amato et al. 1992).

In the most deeply exposed portion of the Kigluaik Mountains, maximum

metamorphic conditions of approximately 800°C and 8 kbar (Licberman 1988;

Lieberman and Petrakakis 1992) were followed by decompression, as indicated by

mineral replacements and petrogenetic grid considerations (Ky — Sil; Rt — IIm; Bt +

Sil — Crd; Grt — Opx + PI; abbreviations in table 1.1). P-T conditions in the isograd

region are as follows (Lieberman 1988): Sta 550°C 4 kbar, Sil 660°C 4.5 kbar, Sil+Kfs
725°C 5.5 kbar.

Description of Lithologic Units

An explanation of lithologies found in the Kigluaik Mountains is presented here

(figure 1.4). Additional information can be found in Till (1980), Pollock (1982),

Sturnick (1984), Lieberman (1988) and Calvert (1992).

Pelite above the Thompson Creek Orthogneiss (4th pelite)

A series of isograds occur within this unit (figures 1.2, 1.3 and 1.4). By

increasing grade they are: Bt, Sta, Sil and Sil+Kfs. All isograds are parallel to lithologic

layering. The first occurrence of biotite and staurolite is probably controlled by the bulk

composition of the rock. The Bt isograd typically is at the boundary between a graphitic
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quartzite and a biotite schist. The Sta isograd occupies the boundary between the biotite

schist (which contains no Al-rich minerals) and a pelitic schist. In contrast, the Sil

isograd is controlled by mineral reactions in which the outer portions of garnets reacted

to form fine grained mats of sillimanite (Lieberman 1988). The Sil+Kfs isograd is

controlled by the reaction:
Ms + Qtz — Sil + Kfs + HyO (1)

and occurs at the base of the unit, near the Thompson Creek orthogneiss (Till 1980). In

the staurolite zone, peak metamorphic mineral assemblages include: Grt + Bt + Sta + Ms

+ Qtz, Bt + Sta + Ky + Ms + Qtz, and Bt + Ky + Crd + Ms + Qtz (figure 1.5).

Upgrade of the Sil isograd the assemblage may be: Bt + Sta + Sil + Ms + Qtz or Grt +

Bt + Sil + Qtz + Ms. Plagioclase and graphite are commonly present in all assemblages.

Calculated water activities are around unity (Lieberman 1988). A compilation of mineral

assemblage information from Kigluaik pelites can be found in Appendix I.

Pelites below the Thompson Creek Orthogneiss (1st, 2nd and 3rd pelites)

The typical peak metamorphic mineral assemblage in a pelitic schist is: Grt + Bt

+ Sil + P1 + Kfs + Qtz + IIm * Graph. In rare cases, graphite constitutes 80% of the

rock. Calculated activities of HyO are about 0.5 (Lieberman 1988). Figure 1.6 shows

the effect of increasing grade on mineral compositions in the AFM assemblage Grt + Bt

+ Sil. The shift toward more Mg-rich compositions is driven by the continuous

reaction:

Sil + Bt + Qtz — Grt + Kfs + HO. (2)

In many samples from the 1st pelite, kyanite occurs as inclusions in gamnet

whereas sillimanite occurs in the matrix of the rock. Also, rutile commonly occurs as

inclusions within garnet, but not in the matrix, where ilmenite is usually present. Both
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of these relationships indicate a history of higher pressures prior to peak metamorphism

via the respective reactions:

Ky — Sil, 3)

and:

Grt + Rt — Sil + Qtz + IIm. 4)

In Kigluaik pelites it is not uncommon for small amounts of cordierite to occur
along the biotite and sillimanite foliation, indicating retrograde decompression
manifested by the continuous reaction:

Bt + Sil + Qtz — Crd + Kfs + HyO + melt. (5)
This reaction can be local in extent and garet may not have participated in the reaction
leading to some of the spuriously high temperatures obtained by the Grt-Bt Fe-Mg
exchange thermometer obtained in the Kigluaik mountains by Lieberman (1988).

Staurolite is found as inclusions within garnet in pelites from all stratigraphic
levels, although it is not found as a matrix mineral beyond the Sil+Kfs isograd. Some
of these staurolites are accompanied by hercynite, a breakdown product of staurolite in
the absence of quartz. These staurolites were stabilized to higher temperatures both by
being separated from other reactants (Qtz + Ms) by a mantle of gamet, and by a higher
Zn content (up to 7% Zn end member). The spinel found with staurolite inclusions also

has an elevated Zn content (~10% Zn end member).

Marbles

Pure dolomitic marbles are very coarse grained (up to 0.5 cm) and may be
bluish-gray in color. Calcitic marbles tend to be whiter and finer grained (around 0.1
cm). Marbles are generally granoblastic with weak foliation defined by oriented micas,
when present. Since there are very few marble layers in the isograd area, most marbles

sampled are from approximately the same grade. By 800°C the buffer capacity of
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marbles is nearly exhausted (figure 1.7). The peak metamorphic mineral assemblage is

determined by the bulk composition of the rock. Most marble mineral assemblages can

be described by the bold compatibility triangle in figure 1.7. Fluid compositions

associated with marbles are discussed in chapter 3.

Metaperidotite

A metaperidotite unit occurs low in the stratigraphy (figure 1.4). This unit is

distinctive in the field because of its orange color when weathered. It varies from about

3 mto 50 m thick. In places the metaperidotite unit is massive, and the foliation,

defined by flattened discs of Opx, is concordant with the layering in nearby lithologies.

In other places the metaperidotite unit is boudinaged with pegmatite or, rarely, marble

filling the interstices of the jumbled, rounded blocks of metaperidotite. These blocks are

typically several centimeters to one meter in diameter. The mineral assemblage in the

metaperidotite is Fo + Opx + Cpx + Spl + Phl £ Prg + Grt remnants. A thorough

investigation of the metaperidotite unit was done by Lieberman (1988). Associated with

the metaperidotite, though not universally present, is a mafic gneiss. The assemblage is:

Opx + Cpx + P1 + Ilm + Hbl + Bt + Grt.

Below the Peridotite (0th pelite)

The lowest part of the exposed stratigraphy in the Kigluaik Mountains is

dominated by fine-grained felsic, intermediate and calcareous gneiss, with minor

marble. These rocks are compositionally layered on a scale as small as centimeters. A

common assemblage in calcareous gneiss is: Cpx + Pl + Qtz £ Tnt. In the few marbles

sampled, the assemblage is: Cal + Fo + Dol & Spl £ Phl. The assemblage observed in

felsic compositions is: Grt + Bi + Qtz + Pl + Kfs + IIm + Opx. Figure 1.8 depicts the

mineral chemistry of one Opx-bearing lithology along with a sillimanite-bearing
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assemblage from the 1st pelite on an AFM projection. Since tie lines do not cross, the

difference in assemblage may be due to a difference in bulk composition rather than in

temperature.

Post-metamorphic Igneous rocks

Crosscutting pegmatite dikes are common. Where these are in contact with

marble layers, skarn assemblages (including wollastonite, grossular and vesuvianite)

may occur. In several localities at the base of the main marble, graphite deposits have

developed in vugs within the pegmatites and along joints. This graphite occurrence may

be related to mixing of reduced vein fluids with oxidized marble fluids (Rumble and

Hoering 1986). Mafic dikes occur, but are less common. Unfoliated Cretaceous

plutonic bodies are found throughout the Kigluaiks.
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Following the convention in Kretz (1983)

Table 1.1: Abbreviations used in text.

mineral names are capitalized, whereas mineral component names are not.

Mineral name abbreviations

Aln allanite CapFeAl»Si30120H with rare earth elements added

And

andalusite
apatite
biotite
calcite
clinohumite
clinopyroxene
cordierite
diopside
dolomite
forsterite
graphite
garnet
hornblende
ilmenite
K-feldspar
kyanite
muscovite
orthopyroxene
phlogopite
plagioclase
pargasite
quartz
rutile
sillimanite
spinel
staurolite
titanite
tremolite

zircon

Al»SiOs

Cas(PO4)30H
K(Mg,Fe)3A1513010(0OH);
CaCO3

MgoSis(OH)2
Ca(Mg,Fe)Si,Og
(Mg.Fe)2Al4815018 » nH0,CO2
CaMgSirOg

CaMg(CO3)2

MgsSiOy

C
(Ca,Mg,Fe,Mn)3ALSi301,

(Na,K)q.1Caz(Mg,Fe,Al)5(Si,Al)g022(0OH);

FeTiO3

KAISi3Og

AlSiO5
KALAISi3010(0H)2
(Mg,Fe)SiO3
KMgj3AlSi3010(0H)2
CaAl»SipOg - NaAlSizOg
NaCap(Mg,Fe)sAl1Si7022(0OH);
SiOy

TiOp

ADSiOs

MgALO4
Fe4Al18517.5044(OH)4
CaTiSiOs
CagMgs5Sig022(OH)2
ZrSiOq




Table 1.1 continued
Mineral component abbreviations

biotite ann annite KFe3Al1Si3019(OH),

phl phlogopite KMg3A1Si3019(OH),
feldspar  ab albite NaAlSi3Og

An anorthite CaAl»SinOg

kfs K-feldspar KAISizOg
garnet alm almandine Fe3ALSi3012

grs grossular CazAl3Si3012

prp pyrope Mg3AlSi3012
pyroxene di diopside CaMgSixOg

en enstatite MgSiO3

fs ferrosilite FeSiO3

hd hedenbergite CaFeSiyOg

Fluid species
H,O water, or the supercritical equivalent

60,) carbon dioxide, or the supercritical equivalent

CHy methane, or the supercritical equivalent

Nj nitrogen gas, or the supercritical equivalent

hydrogen gas, or the supercritical equivalent

temperature of final melting of solid

Th temperature of homogenization to one phase

o error associated with stable isotope measurement
0] porosity

D effective diffusion coefficient

Dfuid diffusion coefficient of element in fluid

pf density of fluid

Ps density of solid

K4 wt% element in solid/wt% element in fluid

Co isotopic composition at edge of marble

isotopic composition of unaltered marble
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Location map Seward Peninsula, Alaska. K.M. Kigluaik Mtns., B.M.
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Quaternary deposits. Modified from Patrick (1987).
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Figure 1.2 Lithologic map, Grand Central Valley area, Kigluaik Mtns. : ”‘f . Orthogneiss
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Location of outcrops discussed in chapters 2 and 3: A, AB89-41; B, AB89-
61; C, AB90-13; D, AB90-27. Lithologic contacts south of Thompson
Creek from Lieberman (personal communication).
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Figure 1.4:  Stratigraphic section, Grand Central Valley area. . ~~ Marble
D as in Figure 1.2. — Syenitic orthogneiss Main Marble
—Marble
— Quartzofeldspathic gneiss
™~ Marble
~ Quartzofeldspathic gneiss
™ Pelite-dominated metasediment
(1st pelite)
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Sillimanite

1st pelite

2nd pelite

Biotite

-

Ist pelite OS-56; 2nd pelite

AFM projection, Sil+Kfs zone pelites.
OS-43; 4th pelite OS-91. Mineral compositions taken from Lieberman (1988).

Figure 1.6

Shaded mineral compositions are schematic.

o
- -
.




Temperature (C)

0.4 0.6
Mole fraction CO2 8000 b

Figure 1.7  T-XCO, diagram, Kigluaik marbles. Calculated for the system Ca-
Mg-Al-Si-C-O-H projected from calcite. Most peak metamorphic mineral
assemblages sampled can be characterized by the bold compatibility triangle.
Reaction stoichiometries are as follows:

(A) Di+2 COy =2Qtz + Dol

(B) HyO+3COy+5Di =3Cal +2Qtz+Tr
© COy +Wo =Cal +Qtz

D) 4 Cal+2Fo+2COy =3Dol +Di

E) 2 CO2 + Spl+Di+2 Cal =An+2Dol
(F) 7 CO2+ Tr+ 3 Cal =5Dol + 8 Qtz + HO
G) H)O+COy+Dol+4Di =3 Cal + Tr
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AFM projection, granulite grade pelites.

Opx-bearing AB90-19.5; Sil-

bearing OS-56. Shaded mineral compositions are schematic.




Chapter 2: Fluid-rock interaction at marble-gneiss contacts

Introduction

Stable isotopes have been used to constrain the fluid histories of metamorphic
rocks (see review in Valley 1986). For the last several decades this has been limited to
"box model” fluid-rock interaction and effects due to devolatilization. Recent work has
applied the mathematical framework of fluid flow through porous media to constrain the
flux of fluid through lithologic layers employing stable isotopes as tracers (Baumgartner
and Rumble 1988, Bickle and McKenzie 1987, Bickle and Baker 1990a b, Blattner and
Lassey 1989). The present work concentrates on using these techniques to quantify and
identify the mode of cross-lithology transport of fluid in a well-exposed, amphibolite to
granulite grade metamorphic terrane on the Seward Peninsula of Alaska. Here, thick,
regionally extensive, flat-lying marble horizons, alternating with metasedimentary and
meta-igneous rock types, provide an opportunity to investigate the role of lithology in

determining the regional scale of fluid migration.

Analytical procedures

Microprobe analyses of minerals were carried out on a JEOL 733 Superprobe at
the University of Washington, Department of Geological Sciences. Stable isotope
analyses were carried out on a Finnigan Mat Delta E spectrometer at Department of
Geosciences, New Mexico Tech, Socorro, NM. Methods used in collecting and
normalizing the data, along with the data, are listed in appendices 2 and 3, respectively.

All thermodynamic calculations were carried out using GeQcalc software
(Berman et al. 1987, Lieberman, pers. com.) using the data base of Berman (1988).
Provisional data on annite and hedenbergite were also used (Berman, pers. com.) along

with data on clinohumite (Rice 1980). Activities of end member mineral components
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were calculated by GeOcalc software using the following models: garnet, Berman
(1990); feldspars, Fuhrman and Lindsley (1988); biotite, McMullin et al. (1992); calcite
in equilibrium with dolomite (Skippen 1974); and ideal multi-site activity models for

spinel, forsterite, pyroxenes and clinohumite.

Descriptive and Analytical Data

Closely-spaced samples were collected on five traverses across contacts between
the main marble and gneiss units. Sampling was perpendicular to layering, as much as
possible. The samples were studied petrographically and subsequently analyzed for
oxygen and carbon isotopes. These profiles yielded isotopic gradients sufficiently
straight-forward to allow interpretations of fluid transport to be drawn, and have sample

numbers AB89-41, AB89-61, AB90-13, AB89-62 and AB90-27 (Appendix 3).

AB89-41

At this contact (A in figures 1.2 and 1.4), a ~100 m thick, dolomitic marble
subhorizontally overlies a ~15 m thick metasyenite/metamonzonite unit. The mineral
assemblage in the metasyenite is: Hbl + Bt + Cpx + Pl + Kfs + Ilm * Grt with abundant
and large accessory Ap, Zm arid Aln; Qtz is not present. The metasyenite is
granoblastic, coarse-grained and moderately well foliated; it displays minor lithologic
layering on the scale of meters. Whole-rock chemical analyses of three metasyenite
samples are listed in table 2.1. Except at the contact (see below), the marble above the
contact is homogeneous on the scale of cm; it is very coarse-grained (~0.5 cm) and
composed of more than 90% Dol with minor Cal + Fo + Phl + Graph + Spl + Chu +
Cpx. However, the lowermost 1.9 ¢cm of the marble unit consists of more than 90%
calcite + forsterite, with minor Dol + Spl + Phl + Graph (table 2.2). Calcite displays
exsolution plates and rods of dolomite. Calcite-dolomite thermometry on a reintegrated

Cal yields T ~650°C indicating that some whole-grain exsolution of Dol out of the Cal
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occurred during retrogressive cooling, a common process in high grade marbles (Essene
1982). Mineral compositions are listed in Appendix 2.

The §'%0 composition of feldspar in the metasyenite ranges from 9.9 to 14.9%o.
The marble far from the metasyenite retains sedimentary values of 23.0%o 5180 and -
0.5%0 8'3C. The calcite-forsterite zone is characterized by O and C isotopic values of
13.0%o and -2.0%eo, respectively. The transition in isotopic composition occurs within
the dolomite marble over a distance of little more than 2 ¢cm from the Cal+Fo zone

(figures 2.1 and 2.2).

AB89-61

This is another flat-lying contact with marble overlying gneiss (B in figures 1.2
and 1.4). In this case the gneiss is a quartzofeldspathic rock consisting of equal
amounts of Bt + Qtz + Pl with lesser amounts of Grt + Cpx + Kfs with accessory Ap
and Tnt. The marble is compositionally variable on the scale of cm. Most samples
consist of Cal, Dol, Cpx and Phl and, in addition, variable combinations of Fo, Spl, P1
and (late) Tr. There is generally much more Cal than Dol; silicates constitute 15-40% of
the rock. Calcite displays exsolution lamellae and rods of dolomite.

Quartz 580 values are around 16%o, comparable to the composition of quartz

near the base of this stratigraphic unit (figure 2.3). 8180 of Cal varies in a regular

fashion from 24.3%o at about 7 m from the gneiss to 16.2%o at 2 cm from the contact.

AB90-13

At this locality (Cin figures 1.2 and 1.4), a flat-lying calcitic marble is overlain
by a thick unit of relatively homogeneous Hbl-bearing quartzofeldspathic gneiss. The
gneiss is coarse-grained and displays a moderate foliation defined by oriented mafic
minerals. Except within 60 cm of the underlying marble, the assemblage in the gneiss is

Hbl + Qtz + P1 + Bt with accessory Ap + Zm + Aln + Ilm. Within 60 cm of the marble
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Hbl is no longer present; instead, the assemblage is: Cpx + Opx + Kfs £ Grt. Both
pyroxenes are fine grained (0.1 mm diameter) and granular. Garnet is embayed and in
places surrounded by Pl + Opx symplectite. In the two-pyroxene zone, large
plagioclase crystals are antiperthitic. In a narrow transition zone Hbl, Cpx and Opx
coexist. Details regarding the mineralogical relationships at this outcrop are covered in
chapter 3. The marble is coarse-grained and granoblastic and contains varying amounts

of Phl, Cpx, Scp or PI, Kfs and late Tr.

Figure 2.4 shows 5'%0 analyses of calcite in the marble and quartz, hornblende

and biotite in the gneiss. Calcite away from the gneiss retains sedimentary values of
§'80 and 53 C. Within 50 cm of the gneiss, 5180 values of Cal are slightly lowered.

In the hornblende zone quartz, hornblende and biotite display constant §'%0 values of
15, 12 and 8%o respectively. In the two-pyroxene zone quartz values increase slightly to
16.0%0; biotite has a variable isotope composition increasing from 7.0 to 12.0%o
towards the contact with marble, which may be attributed to late alteration due to the

ease with which biotite resets (Schwarcz et al. 1970).

AB89-62 and AB90-27

Both of these outcrops are at the base of the Main Marble unit (D in figures 1.2
and 1.4) within 0.5 km of each other. At this horizon, calcitic marble overlies mixed
metasedimentary rocks. The metasedimentary rocks consist of graphitic pelite (Qtz + Bt
+ Pl + Sil + Graph + Grt  Kfs), biotite schist (Qtz + Bt + Pl = Graph + Kfs), and
calesilicate (Cal + Cpx + Ttn + Pl + Qtz + Scp + Graph) alternating in layers ranging in
thicknesses from a few cm to m. The assemblage in the marble is Cal + Dol + Fo + Phl
* Graph; there is some variability in relative proportions of the minerals. Figure 2.5
compiles data from both outcrops and shows the 5180 composition of Cal in marble and

Qtz in schist as a function of perpendicular distance from the base of the marble (note
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that the quartz values represented in the figure have been lowered by 0.33%0 so as to
represent calcite which would have been in equilibrium with the quartz at 800°C
(Clayton et al. 1989)). The interior of the marble unit retains sedimentary values of
22.6%o and 1s 1sotopically quite homogeneous. Within about 5 m of the contact, 5'%0 is
lowered more than 3.5%o. The isotopic composition of the quartzofeldspathic rocks is

somewhat variable, with 830 ranging from 19.0 to 20.2%o.

Interpretation of Data

Baumgartner and Rumble (1988) showed that a change in isotopic composition
of a rock caused by diffusive and infiltrative processes results, as time progresses, in
distinctive patterns on plots of 513C vs §1%0. Diffusion-dominated processes produce a
relatively straight-line diagonal trend on plots of 813C vs 6180, relatively independent of
the XCO; of the fluid. Processes involving advection of material via an H70-CO3 fluid
show curved or box-like patterns on plots of 53¢ vs §1%0. Additional complexities can
arise if local equilibrium is not maintained (Blattner and Lassey 1989), but, during the

time-scale of regional metamorphism, local equilibrium may be assumed. The interior

parts of main marble layers in all outcrops show 580 in the mid to low 21.4 t0 24.3

and 8'3C approximately zero (figure 2.6), appropriate for unaltered high grade marbles
(Valley 1986). The convergence of stable isotope ratios from all marble horizons to
these values lends support to the conclusion that the interior of marble layers have not
been changed since their formation. Both carbon and OXygen isotope compositions are
low near contacts with other lithologies. The oxygen isotope composition of fluid in
equilibrium with the adjoining lithologies can be presumed to have been somewhere
between ~9%o (igneous) and ~17%o (pelitic). The marbles show varying amounts of
oxygen isotope exchange with such a fluid. Unfortunately, the carbon isotope

composition of the interacting fluid is less constrained. The linear variation of 830 and
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513 C suggests principally diffusive interaction rather than combined diffusive-advective
interaction between the main marble units and their adjoining lithologies. The oxygen
isotope composition toward which marble margins trend is controlled by the

composition of the adjacent lithology. In the cases where the adjacent lithology is

clearly sedimentary (AB89-62, AB90-27), 5130 is lowered less than in the case where

the adjacent lithology is clearly igneous (AB89-41). Infiltration of an external pervasive
fluid would have homogenized isotopic compositions in gneissic units. But gneisses
retain the protolith signature of oxygen isotopic composition indicating that a pervasive

fluid did not homogenize the isotopic composition of the rocks.

AB89-41

The uniform, SiO2-poor mineralogic composition of the marble beyond the thin
Cal+Fo zone at this contact suggests that the Cal+Fo zone was formed by chemical
interaction between the metadolomite and the metasyenite. By influx of silica, calcite
and forsterite can be produced from dolomite by the reaction:

2 Dol + Si03 (dissolved) — 2 Cal + Fo + 2 COs. (1)
The growth of the Cal+Fo zone through the introduction of SiO; is strongly supported
by the results of modal analyses; calcite and forsterite are present almost exactly in the
required molar ratio 2:1 (table 2.2). In reaction (1), SiO» is added to the metadolomite
via a fluid and the activity of silica is necessarily less than 1 (quartz standard state).
Depending on silica activity, reaction (1) is not stable under all fluid compositions
(figure 2.7). The reaction from dolomite to calcite + forsterite could have been driven
by an increase in silica activity and/or a decrease in CO» activity, presumably by dilution
with HyO (or CH4?). Reaction (1) is univariant at constant P and T and puts limits on
either aSiOy or aCO,. Since about 15 wt% silica was added to the metadolomite to form

forsterite and because aSiO; in the syenite was much greater than aSiO» in the
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metadolomite (see below), it is reasonable to infer that the reaction was not only

accompanied by SiO3 influx, but actually driven by an increase in aSiO,. The proposed

path followed by fluid in the Cal+Fo zone is indicated on the diagram. The
metadolomite started at a low value of aSiOj, in equilibrium with Fo, Cal and Chu.

With an increase in silica activity, COy was produced, increasing the activity of COs.

The fluid was buffered along the reaction curve until the fluid was pure COy. The
system remained at these conditions until all the Dol was exhausted by reaction with
silica. Then aSiO; could increase into the Cal+Fo field. The activity of SiO; never
reached the diopside-forming reaction (except in one late cross-cutting vein).

Although the metasyenite was undersaturated in silica (no quartz is present in the

gneiss), the phases present in the rock define a silica activity. As long as the silica

activity was higher in the metasyenite than in the metadolomite, silica would move down

its chemical potential gradient from the gneiss into the marble. The silica activity in the

metasyenite can be defined by the reaction:

3an+3di=prp+2 grs + 3 SiOy )

and the equivalent Fe end member reaction:

3an+3 hd =alm + 2 grs + 3 SiO». 3)

These reactions are shown in P-T space in figure 2.8, adjusted for the mineral

compositions in a sample 33 c¢m from the contact. The intersection of reactions (2) and

(3) defines a Grt-Cpx Fe-Mg exchange equilibration temperature, 825°C, which agrees

satisfactorily with previous estimates from this area (Lieberman 1988; Lieberman and

Petrakakis 1992). For pressures of 7.5 to 8 kbar, the silica activity is about 0.8; this is

higher than in any Dol-bearing assemblage (see fi gure 2.7). Therefore silica would

move from the gneiss into the marble. Even though all the silica in reaction (1) was

added to the system via a fluid, there was still an 8% volume decrease of solids, due to a
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density increase and loss of CO;. Therefore, the reaction was not inhibited by volume
constraints.

The data indicate extensive stable isotope interaction between the Cal+Fo zone
and the metasyenite. Rayleigh distillation during decarbonation according to reaction (1)
can account for the carbon isotope depletion, and some, but not all, of the observed
oxygen isotope depletion (figure 2.9). The remaining oxygen isotope depletion can be
attributed to interaction with the gneiss. The vehicle of such interaction can be ascribed
toa fluid. The composition of this fluid can be examined using mineral equilibria. The
HpO activity in the syenite as defined by biotite dehydration reactions was about 0.2
(figure 2.10). At these high temperatures, fluids mix almost ideally, so, if a fluid was
present, XH>O = 0.2. The other constituents of the fluid would presumably have been
either COp or CHyg. However, the carbon isotopic composition of the Cal+Fo zone was
not changed beyond that attributed to Rayleigh distillation. Therefore, it is unlikely that

any upward infiltrating fluid was carbon-bearing, except in the unlikely case that the

§13¢ composition of the fluid was in exact equilibrium with the calcite of the Cal+Fo

zone. A more reasonable interpretation is that the pore spaces of the metasyenite were
unsaturated in fluid and that isotopic interaction between the metasyenite and the Cal+Fo
zone occurred through the CO that was forced downwards, away from the Cal+Fo
reaction front. In a similar manner, silica was transported from the metasyenite to the
Cal+Fo reaction front by diffusion against the flow of CO9 evolving from the reaction.
Unfortunately, little is known about the diffusion rate of silica in C-O-H fluids of any
composition. Silica has a very low solubility in CO; fluid (Walther and Orville 1983).
This may have been the cause of the very limited (2 cm) extent of silica influx into the
metadolomite. A flux of less than 1 g SiOy/cm? from the gneiss into the marble

occurred during the course of the entire metamorphic cycle.
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The metadolomite at 2-4 cm from the syenite contact contains 99% carbonate +

graphite (table 2.2). Therefore, the depletion of 5'%0 and 6"°C in this zone could not be

the result of devolatilization. The isotopic change most likely occurred by advective-

diffusive transport. Since the Cal+Fo zone shows, within error, no gradient in 8180 or

813C, it is assumed that interaction with the metasyenite kept the isotopic composition of

calcite in the Cal+Fo zone at 13%o and -2.2%o, respectively. The equations developed

by Bickle and McKenzie (1987) for one-dimensional, combined advective-diffusive

transport can be employed to quantitatively estimate the extent of fluid advection up into

(or away from) the metadolomite. A moving reference frame is adopted here, where the

origin is set at the interface between the Dol zone and the Cal+Fo zone; the positive

direction is up. In this convention, as the Cal+Fo reaction progresses into the

metadolomite the rock body is moving down with respect to the coordinate system, and

hence has a negative velocity. The fits to the §180 and 5'°C data (figure 2.2) were

determined by minimizing the quantity Y((p-x)/c)? (Bickle and Baker 1990a); p is the

predicted value of isotope composition, x is the measured value and 6 is the error of the

measurement. For this data set, the best fit is obtained when downward directed

velocity is used. The isotopic composition of Cal was adjusted to represent Dol in

equilibrium with the measured Cal at 800°C; 0.2 was added to 8180 values of Cal

(Sheppard and Schwarcz 1970; Northrop and Clayton 1966), and 0.33 was added to

813C values of Cal (Sheppard and Schwarcz 1970).

Equation (26) from Bickle and McKenzie (1987) calculates the change in

isotopic composition in terms of the Peclet number, non-dimensional time, composition

at the boundary (Cp), and the original composition of the lithology (Cy). The Peclet

number is defined as woL/D, and is a measure of the relative importance of advection

vs. diffusion in transporting the material; w is the vertical velocity of the fluid, L is a
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characteristic length scale, D is the effective diffusion coefficient of the isotope, and ¢ is
porosity. For transport by a fluid in a porous medium D is taken as ¢Dyig. Dpyid is
assumed to be 108 m25'1, independent of temperature (Rubie 1986; Bickle and

McKenzie 1987). Non-dimensional time is approximately (Dt/ Lz)(pf/ ps Kg); tis

time, pf is the density of the fluid (~1 g/em3 at 800°C, 8 kbar), ps is the density of the

solid (~2.8 g/cm3), and Kg is the solid-fluid partition coefficient (0.55, Cartwright and

Valley 1991). For this outcrop, Cy=-1.9, Ci=-0.3 for 813C; Co=13.2, C=23.2 for

51%0; L=1 m.

The fits to the data are listed in table 2.3. The fact that a downward directed
velocity best fits the data indicates that the Cal+Fo reaction encroached into the
metadolomite faster than O and C advected into the metadolomite. The fit for non-
dimensional time can be rearranged to yield an estimate of porosity (Bickle and Baker
1990a). For time scales >1 Ma the derived porosities are around 101 or less,
questionably low to have sustained transport of stable isotopes over millions of years.
A more likely possibility is that no fluid was present in the dolomite zone and that
isotope transport occurred by lattice diffusion through the Dol crystals. In this case the
(pf/ ps Kq) term of non-dimensional time is unity. For the same time scale as above,
the derived diffusion coefficients for oxygen and carbon 1sotopes in Dol must be <3 X
108 m?s T and <1 x 10718 mzs'l, respectively. These estimates agree very well with

those measured on Dol by Anderson (1972) under dry conditions at 800°C. The

presence of fluid is known to enhance crystalline diffusion rates (Sharp 1991).

Measurements of oxygen diffusion rates in calcite increase 2 to 3 orders of magnitude
under vapor saturated compared to dry conditions (Anderson 1969: Kronenberg et al.
1984). The fact that diffusion rates in the dolomite zone were no more than lO'18 mzs'1

further supports the conclusion that there was no fluid present in the dolomite zone.
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Similar arguments were used by Baker (1990) to imply the absence of grain-boundary
fluids for extended time periods during the metamorphism of lower crustal rock in the
Ivrea Zone, Italy.

Bickle and Baker (1990a) showed that an estimate of time-integrated flux can be
calculated from the derived values of Peclet number and non-dimensional time. For this
outcrop, where no fluid is present, flux represents the downward movement of the
metadolomite towards the Cal+Fo reaction boundary, or can be thought of as the amount
of dolomite that reacted to form Cal+Fo. The measured thickness of the Cal+Fo zone is
1.9 cm. Accounting for the 8% volume loss of the reaction, 2.0 ¢cm of metadolomite

have been converted to Cal+Fo. The flux calculations derived from oxygen and carbon

isotope data are 0.0065 and 0.0026 m’ /mz, respectively, or 0.65 and 0.26 cm of

metadolomite consumed; these estimates are consistent within an order of magnitude of

the observed 2.0 cm metadolomite consumed,

AB89-61

At outcrop AB89-61 the zone of isotopic lowering in the marble is more than
two orders of magnitude wider than at AB89-41 (compare figures 2.2 and 2.3). Since
pressure, temperature and time of metamorphism were the same for both outcrops,
clearly there must have been a significant difference in fluid conditions between the two.
In order to fit an infiltration model to the data as previously described, 0.33 was
subtracted from the measured quartz values of 8180 to represent calcite that would have
been in equilibrium with the quartz at 800°C (Clayton et al. 1989). For this outcrop the
pinned boundary equation of Bickle and Baker (1990a) is used, with the boundary fixed
at the marble-gneiss contact. For this outcrop, L=1000 m, Co=15.8, Ci=24.1. The
results of the fit are given in table 2.3 and shown in figure 2.3. As with AB89-41, the

best fit is obtained when a downward directed velocity is used. The boundary at this
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outcrop is not moving relative to the rock body, therefore the parameter fits indicate
downward movement of fluid. The quantity of fluid calculated as the time integrated
flux is -.0085 m3/mZ2, i.e. about 1 cm of fluid per cm2 was forced out the bottom of the
marble. The porosity estimate for a time scale >1 Ma is < 5.4 X 10-6. If the interior
part of a thick marble layer is essentially impermeable, then it is not unreasonable to
conclude that any fluid generated internally near the bottom of the marble would be

forced down, out of the marble.

AB90-13

At this outcrop there are indications of interaction on both sides of the lithologic
contact. Analysis by singular value decomposition (Fisher 1989) indicates that the two
pyroxene zone was formed by dehydration of the amphibole-bearing gneiss (more
details in chapter 3). Since no significant pressure or temperature gradients could have
existed during this process, the reaction must have been driven by a change in fluid
composition to lower aHO, presumably by dilution with CO; from the underlying
marble. The length-scale of this fluid interaction into the gneiss is 60 cm. The inflection
point in the steep stable isotope gradient between gneiss and marble occurs at the
lithologic contact. This observation indicates that transport was dominated by diffusion,

otherwise this inflection point would have been moved into the downstream rock by the

advecting fluid (Ganor et al. 1989). The oxygen isotope length-scale of interaction in

the marble is about 50 cm. Since length-scales of interaction are almost identical on both
sides of the boundary, transport dominated by diffusion, not advection, is indicated

(Bickle and McKenzie 1987).

AB89-62 and AB90-27
The lithologic variation at this stratigraphic level (base of the main marble) is

more extensive in the vicinity of the marble contact than at other outcrops described
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here, making modeling of isotopic variation more complex. However, the interior of the

marble unit retains sedimentary 5130 and §13¢ compositions, indicating little interaction

with external fluids. As at AB90-13, a steep isotopic gradient exists at the lithologic

boundary, indicating a diffusion-dominated transport process at the lower contact of the

marble. The extent of isotopic depletion in the marble is similar to that at AB89-61.

Conclusions

The steep isotopic gradients found at all lithologic contacts described in this

chapter preclude the infiltration of large quantities of fluid across the main marble,
otherwise the isotopic step in composition would have been propagated into the
downstream lithology (Ganor et al. 1989). The main marble acted as an effective
aquitard to cross lithology fluid flow, as has been found for marbles in other terranes
(Rye et al. 1976, Nabelek et al. 1984, Ferry 1989). The gradient is so steep at AB89-41
that a pervasive, interconnected fluid must never have been present. The 1sotopic
interaction between lithologic layers is dominated by diffusive processes. The amount
of this diffusive interaction is related to the bulk composition of the marble. Pure
carbonate marbles underwent little devolatilization, and therefore developed no porosity
through which interaction could have occurred. Impure marbles underwent
devolatilization reactions during the development of silicate minerals such as diopside
and forsterite. This lead to the development of interconnected porosity, allowing
isotopic interaction via a fluid. The implications of this study are that fluid was only
present in marbles during transient devolatilization events. In addition, the lack of
1sotopic homogeneity between different gneissic units indicates that large amounts of

fluid have not interacted with these layers.
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Table 2.1 Whole-rock composition of metasyenites

-

.

- AB90-3.1

. AB90-40.2 AB90-40.3
. Si02 5375 5666 5594
TiO; 0.89 0.40 0.26
AlO3 18.88 18.56 17.08
; Cr203 0.02 0.03 0.02
. Fe,03 7.65 7.60 9.27

|

- MnO 0.11 0.24 0.50

.
.

.
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=
.

.

.

. MgO 2.00 1.01 1.00

ﬁ . CaO 4.44 3.31 3.56

T mo 0.17 0.04 0.03

.

; SrO 0.09 0.03 0.03

- NayO 3.40 3.51 1.94
. 6.83 7.51 8.42
. 1 1 1
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-» ~ 0.29 0.32 0.22
. Sum 99.52 100.22 99.27

-
.

v

o

-
-
-

.
-

.

S
.

- .
.

L
L



.
L

o
¢

\‘.“;33\;

33
Table 2.2 Modal analyses of marbles

. Cal Dol
AB89-41 Mole%

. Cal+Fo 65.1 5.9 28.8 0.
- Dol 5.8 90.4 0.0 0.

- -

.
P
.

Fo Chu Spl Phl Graph Di points

0 0.2 0 0 0.0 3193
1 0.5 3 9

0. 0.
0. 2. 0.0 3340

.

; AB89-61 Approximate Area%

-

%%g 2.5 75 25
. 9 75 5 25
. 11 55 10 35
- 15 65 5 10 20
33 5 90 5
41 55 20 20 5
53 80 20
71 60 5 35
94 65 10 20 5
102 50 10 30 10
. 107 60 10 5 10 15
. 135 100

0

s 366 50 35 5 5 S
. 671 85

.
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Table 2.3 Fit parameters for stable isotope gradients

Co

Cr Pec t' L(m)

.

.
.

.

AB89-41 180 13.2 23.2 66 9.9X 105 1

AB89-41 13C -1.9 -0.3 62 42X 103 1

.
-
.

AB89-61 180 1.1X10°

.
-

.

-

-

.

-

_

-
o
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. Figure 2.1  Stable isotope composition, AB89-41 marble. ~Metasyenite contact is at

- 0.0 cm; note logarithmic scale for horizontal axis.
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Fit through oxygen isotope data, AB89-61.  Qtz values have been
adjusted to represent Cal in equilibrium with the measured Qtz values at 800°C.




-

L
gg\*\’\«

L
L
e

L
.

N

.

.

.

S
.

-

.

RN

-

.

37

AB90-13

=
.
.

-

.

.

Hbl-bearing gneiss

5
-200

-

-

-

.

.
.

.

-

e
.

o

L

-

.

-

-
-

-

.

.

1150 -100

?g V Stable isotope data, AB90-13.

5 0 50
centimeters

100 150 200



-

aaan

.

-

.
-

,,«,

.
-~

:

o

t%?%ﬁ:@ev o

.

-

.

.

.

-

L

.

38

AB89-62 and AB90-27

23

- A
1 Schist A [Marble

221

A AB90-27 calcite
B AB89-62 calcite
O ABB89-62 adjusted gtz

500 1000 1500 2000
centimeters

Figure 2.5 Stable isotope data, AB89-62 and AB90-27.  Qtz values have been

adjusted to represent Cal in equilibrium with the measured Qtz values at 800°C.
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Figure 2.7 Log aSiO3 vs. log aCO9, AB89-41 marble.  Thick line shows
proposed buffering path followed by fluid in Cal+Fo zone. See text for details.
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Figure 2.8 Activity of SiO2, AB89-41 metasyenite. Equilibria involving Grt,
Cpx, Pl for a sample 33 cm below the marble. The vertical line represents the
reaction: alm + 3 di = prp + 3 hd. The intersection near 8000 bars is obtained when

aSiOy is set to 0.8. The large dots show the location of the intersection at other
values of silica activity.



Figure 2.9  813Cvs. 8180, AB89-41.  Thick line shows the path followed by

calcite during the reaction 2Dol + SiO5 = 2Cal + Fo + 2CO, following the method of
Rumble (1982). For calculation, Dol starts at -0.2%o 813C and 23%o 8180, SiO, is
12%o0 8180. Fractionation factors taken from Sheppard and Schwarcz (1970) and

Northrop and Clayton (1966). Tick marks indicate 10% reaction toward
completion.
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Figure 2.10  T-aHO, AB89-41 metasyenite.
equilibria involving Grt, Cpx, Bt, P and Kfs indicating H,O activity ~0.2. Qtzis
not involved in any reaction. It can be noted that reactions D, E,F,Gand K are
prograde hydration reactions.

H,O

prp +3 hd =alm + 3 di
2H)O+3prp+2kfs+6hd +3 grs =2 ann + 6 an + 9 di
2HO +3prp+2kfs +3 grs =6 an + 3 di + 2 phl
2ann+6an+3 hd =2 HyO + 2 kfs + 3 grs + 3 alm
2ann+6an+3di=2HyO +prp+2kfs + 3 grs + 2 alm
6 an+3 hd +2 phl=2Hy0 + 2 prp + 2 kfs + 3 grs + alm
6an+9hd+2phl=2HyO +2kfs + 3 grs + 6di + 3 alm
phl+3 hd =ann + 3 di
2H20+3prp+2kfs+3grs+ann=6an+3hd+3phl
prp + ann = alm + phl
3ann+6an+3di=2HyO +2kfs +phl + 3 grs + 3 alm

Diagram calculated at 8 kbar for




Chapter 3: Localized fluid-controlled granulite grade assemblage

Introduction

One of the characteristic changes in mineral paragenesis from amphibolite to
granulite grade metamorphic rocks is the disappearance or decline of hornblende
coincident with the appearance of orthopyroxene alongside clinopyroxene in mafic
rocks. Where this occurs, it has in many cases been ascribed to a reduction in HyO
activity due to dilution with CO7 (Touret 1985, Hansen 1984, Bradshaw 1989, Harris
and Bickle 1989, Santosh et al. 1990, Pattison 1991). Among possible sources of CO,
is one that has received little attention, namely CO; evolved from carbonate
metasediments (Glassley 1983, Glassley et al. 1989). This is because many granulite
terranes contain little carbonate material. In this chapter I present a field example which
clearly shows the association of a CO2-evolving marble and localized progress of
amphibolite to granulite dehydration reactions. It is a local phenomenon superimposed
on the temperature rise which is responsible for the regional granulite facies assemblages

found in the Kigluaik Mountains.

Outcrop Description

The lowermost member of the main marble unit consists mostly of a calcite and
forsterite dominated marble, but has some variability, especially towards the top, where
itis a calcite-diopside marble. It is overlain by a 100 m thick unit of relatively
homogeneous Hbl-bearing quartzofeldspathic gneiss. Detailed sampling of the marble-
gneiss contact has revealed that the lowermost 60 cm of the gneiss, instead of containing
homblende, contains orthopyroxene and clinopyroxene (figure 3.1). The outcrop
described in this paper is located in the north wall of the east cirque of Mount Osborn (C

in figure 2.1).
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Diopside and phlogopite are the major silicate phases in the coarse- grained (0.5
mm) granoblastic marble near the gneiss contact; plagioclase, scapolite and orthoclase

are also present in small quantities. Dolomite is rare or absent, and when present is fine

grained and interstitial which suggests it may represent exsolution from calcite upon

cooling. Late tremolite formed at the expense of diopside in some samples. The gneiss
is coarse-grained (0.5 mm) and displays a moderate foliation defined by oriented mafic
minerals. The typical gneiss is composed of 35% plagioclase, 30% hornblende, 20%
quartz, 15% biotite (figure 3.1) and accessory apatite, zircon, allanite. Its homogeneity
on the outcrop scale suggests that the protolith might have been an igneous rock.
Within 60 cm of the underlying marble, hornblende is no longer present.
Instead the gneiss contains 40% feldspar (mostly plagioclase), 25% quartz, 20% biotite
and 15% pyroxenes, with ilmenite as an additional accessory phase. In one sample (17
cm from the marble), garnet is present and clinopyroxene is absent. Both pyroxenes are
fine grained (0.1 mm diameter) and granular and do not clearly form pseudomorphs
after Hbl (mineral abbreviations in table 1.1). Garnet is embayed and in some cases is
surrounded by P1 + Opx symplectite. Plagioclase crystals display a ran ge of grain sizes
from 0.1 to 1.0 mm; some of the large crystals are antiperthitic. In a narrow transition

zone Hbl, Cpx and Opx coexist.

Mineral Compositions
The following section describes the compositions of minerals in selected samples
from the Hbl-bearing gneiss, Hbl-free gneiss, and the transition between the two.

Mineral compositions are listed in appendix 2.

Hornblende
The amphibole in the Hbl-bearing gneiss is green and pleochroic (X pale green,

Y green, Z dark brown-green). Its composition falls in the range of ferroan pargasitic
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hornblende, bordering on ferroan ferri-pargasitic hornblende (names from Leake, 1978);
amounts of exchange components are (Thompson 1982a, Dymek 1983): Xy Mg.1Siq
AlAD = 1.13, Xeq (D.15i.1 NaAl) = 0.54, Xyjsp1 (Al MgTi) = 0.17, Xap (Ca.1AL;

NaSi) = 0.10. No compositional zoning is observed within individual grains, and there

is little inter-sample variation (figure 3.2). In a sample from the transition zone, the

amphibole composition is more variable and less aluminous than that of the Hbl-bearing

gneiss, ranging through edenitic hornblende to magnesio-homblende (figure 3.2); Xy =

0.77, Xed = 0.25, Xijspt = 0.07, Xap = 0.12. In one sample from the Hbl-free gneiss

(15 cm from the marble) a small brown amphibole grain was found. Itis not an

inclusion, but occurs between a quartz and feldspar grain. The composition of this

amphibole overlaps with that of the Hbl-bearing gneiss when plotted on figure 3.2, but

differs significantly in Ti content (see appendix 2); Xy = 1.13, Xeq = 0.55, Xtispl =

0.42, Xap = 0.16. The appropriate name is titanian ferroan pargasitic hornblende.

Feldspars

In the Hbl-bearing gneiss plagioclase is not zoned, but varies from Angp to Anyg
from sample to sample. The orthoclase component is always less than 3% and no
antiperthite is visible microscopically. In the Hbl-free gneiss feldspar compositions are
more complex, with plagioclase ranging in composition from An48 to An76 (figure
3.3). The gap in feldspar composition from Ansg to Anes is an artifact of sampling.
Orthoclase component remains below 3%. None of the more anorthitic feldspars are
antiperthitic and they are commonly no more than 0.1 mm in diameter. They are
typically found in a mass of biotite and pyroxene grains. Some large (1 mm) more
albitic plagioclase grains are antiperthitic.

In the Hbl-free gneiss Kfs is present in three forms: (i) as rims separating quartz

from plagioclase (figure 3.4a); (ii) as separate grains; (iii) in antiperthite (figure 3.4b, c,
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d). Only large plagioclase grains, but not all of them, are antiperthitic. The host

composition is usually about Ansy, slightly more anorthitic than Pl in the Hbl-bearing

gneiss. The Kfs guest composition is ~Orgp-Abg-Any. Results of two-feldspar

thermometry on host and guest compositions using MTHERM3 (Fuhrman and Lindsley

1988) yield T=~600"C, indicating that the host and lamellae reequilibrated upon cooling.

A microprobe linescan across several Kfs guests within a P1 host shows no consistent

enrichment or depletion of plagioclase components adjacent to the Kfs blebs (figure

3.5). Anincrease in anorthite component approaching a Kfs bleb has been taken to

indicate formation of antiperthite from a previously homogeneous feldspar (Kay, 1977).

However, the spacing of Kfs lamellae in the present case (~20 um) may be too small to

manifest the build-up. The reintegrated composition of one typical antiperthite grain

(25% Or, 34% Ab, 41% An; figures 3.4d and 3.6) lies well within the two-feldspar

field at 800°C. This indicates that antiperthite formation was not caused by exsolution

from a previously homogeneous feldspar, but must have occurred by some sort of

replacement process (e.g. Griffin 1968). The geometry of some Kfs blebs within

plagioclases, such as figure 3.4d, rules out Kfs growth along cracks, fractures or

cleavages.

Other Mafic Minerals

Biotite Mg# varies from sample to sample from 0.53 to 0.65 in an unsystematic

way. In vector component notation (Thompson, 1982a; Dymek, 1983) Xk remains

constant at about 0.25 as does Xy (K.1Al.1 ASi) at about 0.05, but Xiispt and Xdioct

(Mg_3 AlpQ) increase somewhat from the Hbl-bearing gneiss to the Hbl-free gneiss

(0.20 t0 0.41 and 0.10 to 0.25, respectively). Xiispl and Xdioct are highly positively

correlated among the 6 analyses, suggesting that the Ti substitution occurring in these
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biotites may be Mg., Tild. Fluorine contents are low and show no variation with
distance from the marble.
Mineral analyses of pyroxenes and garnet are listed in appendix 2. The low Ca
content of Opx from 18 cm is due to the fact that it does not coexist with Cpx; instead,

garnet is present. The garnet composition is: Xyim = 0.55, Xprp = 0.25, Xgps = 0.05,

Xgrs = 0.15. For the two samples analyzed where Opx and Cpx coexist, the two-

pyroxene solvus thermometer (Lindsley 1983) yields approximately 800°C, in
agreement with previous estimates from the field area (Lieberman 1988, Lieberman and

Petrakakis 1992).

Mineral reactions

The two mineral assemblages present in the gneiss, Hbl + Ansg + Qtz + Bt and
Opx + Cpx + (up to) An7g + Qtz + Kfs + Bt, could be the result of similar
environmental conditions (P, T, aH,O) affecting slightly different bulk rock
compositions, or the metamorphism of the same bulk composition under differing
environmental conditions. In order to distinguish between these two possibilities
(Greenwood, 1967) the mineral assemblages were analyzed by matrix methods.

The programs written by Fisher (1989) utilizing singular value decomposition
were employed in order to look for possible reaction relationships between the two
assemblages. The sample from 86 cm represents the Hbl-bearing assemblage, whereas
the 15 cm sample represents the Hbl-free assemblage with the exception of biotite. A
single composition of biotite was used in the analysis.

The data input and output for the analysis are listed in table 3.1. Tlmenite is a
minor phase and has not been quantitatively analyzed; it is listed as a pure Fe-
endmember component. Although An7g is the most extreme composition found in the

thin section analyzed, more anorthitic plagioclase may exist. In order to account for the
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anorthitic plagioclase in the Hbl-free gneiss, end-member anorthite is listed as a phase.
Orthoclase is also listed as the pure end-member phase. As recommended by Fisher, Si
and H were omitted from the calculation because they can be balanced later by quartz
and water. Goodness of fit as evaluated by examining the ratio {(data minus model) /
error}, ideally less than one, is acceptably small in most cases. Although 11 (19%) of
the residuals are greater than one, seven of them are minor components in the mineral

and therefore not critical.

Two reaction relationships were found among the minerals present in the two

assemblages (table 3.1). Since the most obvious feature of this outcrop is the
appearance of pyroxenes, the equations were normalized to produce one mole of Opx.

Quartz and H>O stoichiometries were calculated using the original mineral compositions.

Discussion
Reaction (B) listed in table 3.1 is consistent with modal changes at this outcrop.
It consumes Bt, Hbl and Qtz and produces feldspars and both pyroxenes. In contrast,
reaction (A) consumes Cpx and anorthite component and produces Hbl along with Opx!
However, these reactions can be linearly combined in order to isolate a reaction that
consumes Hbl and one that consumes Bt. These are:
Hbl + 1.96 Qtz =
1.22 Cpx + 1.47 Opx + 1.01 Ane3 + 0.26 Kfs + 0.26 Ilm + HyO (D)
Bt+2.59 Qtz + 0.18 Cpx =
1.32 Opx + 0.16 Angg + 0.93 Kfs + 0.20 Ilm + HO. 2)
For each reaction, the two plagioclases have been combined and expressed as the
appropriate intermediate plagioclase. Cast in these terms the reactions are recognizable
as a Hbl breakdown reaction (1) and a biotite breakdown reaction (2). These reactions

are depicted graphically in figure 3.7, a form of reaction space (Thompson 1982b). The
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horizontal and vertical axes represent reaction (1) and (2), respectively. The tick marks

indicate progress of the reactions as written per liter of rock. For the measured modal
amounts of minerals in the Hbl-bearing gneiss, eventually a reactant will be exhausted

for either reaction. These limits are shown by the dashed lines and labeled with the

mineral which is exhausted. The light lines represent the direction of reaction progress
that neither produces nor consumes the mineral which labels the line. The plus and

minus signs indicate whether the mineral is produced or consumed if the direction of
reaction falls to one side or the other of the line.

Modal composition data constrain the direction of reaction progress to be

dominated by reaction (1), sub-horizontal to the right in figure 3.7. Biotite is abundant
in the Hbl-free gneiss. Therefore the reaction direction must reach the limit of
hornblende well below the point where the limit of biotite and the limit of hornblende

intersect. The lower limit of reaction direction comes from the Kfs line; Kfs component

has been produced in the Hbl-free gneiss. This circumstance even allows for the

possibility that the biotite reaction ran backwards, producing biotite from Kfs and Opx.

A combination of reaction (1) and (2), dominated by (1) adequately explains all
the mineralogic differences between the Hbl-bearing and Hbl-free gneiss: Hbl is
exhausted; Cpx, Opx, Kfs and An component are produced. The fact that these reaction
relationships exist between the minerals in the two assemblages indicates that the
assemblages must have equilibrated under different environmental conditions, and their
differences cannot be attributed solely to variations in bulk composition (Greenwood,
1967). Since, during regional metamorphism a temperature or pressure gradient cannot
be maintained over just 60 cm, the only environmental condition left is fluid

composition.



Fluid Composition
Both (1) and (2) are dehydration reactions, and therefore could have been driven
by a decrease in water activity. Dilution with COj, presumably from the underlying
marble, is a mechanism capable of lowering water activities. This idea can be tested by
examining fluid composition in the gneiss as a function of distance from the marble.
Figure 3.8 is an isobaric T-aH0 diagram for equilibrium among the components:

phl +3 Qtz = 3 en + Kfs + HyO 3)
for three different rocks in the Hbl-free gneiss. The three lines are labeled with distance
in cm from the contact with marble. At 800°C, the calculated water activity decreases
from 0.24 at 61 cm t0 0.20 at 15 cm, indicating a trend toward more HyO-poor
conditions near the marble. The absolute value of the calculated aHO could change by
choosing different solid solution models for the phases involved or different P or T
conditions, but the trend toward more water-poor conditions is still valid.

The mineral assemblage in the marble indicates that it could be a source of high
XCO, fluid. Figure 3.9 is an isobaric T-XCO; diagram appropriate for bulk
compositions of marbles like this one, namely relatively high in K and Al. This diagram
is projected from calcite and anorthite in the KCMASCH system. For bulk
compositions that lie near the Di-Phl tie line, fluid composition was probably buffered
along the path shown (Greenwood 1975). For a marble originally composed of Cal +

Dol + Qtz + Ms at some arbitrary low value of XCOa, the first reaction encountered

upon heating was:

5 Dol + 8 Qtz + H)O — Tr + 3 Cal + 7 CO». 4)

As temperature rose, fluid composition buffered to invariant point (I). At this point, the

net mineral reaction which proceeded (Rice and Ferry 1982) at XCO, = 0.4 was:



09D0l +23Ms+1.2Tr—

Cal + 5.1 Qtz + 2.3 An + 2.3 Phl + 0.8 CO; + 1.2 H,O. (5)
Since the only tremolite in the marble was produced while buffering along reaction (4),
tremolite was most likely the first reactant exhausted (Rice and Ferry 1982). Upon
further heating, fluid composition buffered along:

Dol + Ms + 2 Qtz + HyO — Cal + Phl + CO» (6)

until invariant point (II) was reached. With additional heat, Kfs appeared and Ms was

exhausted by the net reaction at XCO; = 0.55:
3 Dol + 16 Cal + 38 Qtz + 19 Ms —

19 An + 18 Kfs + Phl + 18 HO + 22 CO,. a

As heating continued, fluid composition buffered to invariant point (III) along:

3 Dol + Kfs + HO — 3 Cal + Phl + 3 CO;. (8)

At invariant point (III) the net reaction was:

16 Qtz + 3 Phl + 9 Cal — 8 Di + Dol + 3 Kfs + 3 HyO + 7 CO». ®

Depending on bulk composition, either quartz or phlogopite was exhausted. In the

marble from this locality, quartz was exhausted, leading to continued buffering along

reaction (8) as temperature rose until Dol or Kfs was exhausted. The resulting

assemblage is Cal + Di + Phl + An + (Kfs or Dol).

Much of the marble unit well below this outcrop consists of Cal + Dol + Fo +

Phl £ Spl. Fluid in marbles of this bulk composition are buffered to hi gh XCO; along

reactions such as:

Dol +2 Qtz — Di + 2COy (10)
2 Dol + An — 2 Cal + Di + Spl + 2 CO» an

3Dol+Di—4Cal+2Fo+2COy

(12)
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(reactions A, E and D, respectively, in figure 1.7). Therefore, the observed mineral
assemblages indicate that this marble was a viable source of CO»-rich fluids with which
to dilute fluids in the overlying gneiss. It is interesting to note that high XCO, fluids

from marbles were only possible if fluid composition was internally buffered. If the

equilibrium pore fluid composition was dominated by an infiltrating fluid, the bulk of

reaction progress would have produced the observed mineral assemblages in the

presence of fluids of much lower CO; content.

Conclusions

The change from amphibolite to granulite facies paragenesis at this outcrop is not
a manifestation of a difference in bulk composition, but a consequence of a difference in
pore fluid composition during metamorphism. The difference in fluid composition was
caused by CO evolved from the underlying marble. Mineral assemblages in the marble
are consistent with the marble being a source of CO;-rich fluids. The decrease in HoO
activity of fluid in the gneiss drove dehydration reactions which consumed hornblende
and quartz * biotite, and produced orthopyroxene, clinopyroxene, anorthite-rich
plagioclase, orthoclase (sometimes as antiperthite) and ilmenite. This reaction was
restricted to within 60 cm of the marble, indicating the limited role of fluid movement in
controlling mineral parageneses in this terrane. Since no graphite was precipitated
during the introduction of CO»-rich fluids, oxygen fugacity during metamorphism must
have been above graphite stability (Lamb and Valley 1985). Pervasive influx of HyO-
rich fluids into the marbles can be ruled out because this would have lead to marble-
derived fluids that were more HyO-rich than the observed aH>0=0.2 in the gneiss.
Pervasive influx of CO»-rich fluids into the gneissic units can be ruled out because the

dehydrated mineral assemblage is spatially associated with the marble.




Table 3.1 Singular value decomposition
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Hbl Pl Bt IIm Opx Cpx ___An Kfs
Si 6.465 2.544 2789 0 1.957 1945 2 3
Ti 0.183 0 0.235 1 0.003 0.006 0 0
Al 2014 1456 1.289 0 0.035 0.069 2 1
Fe 2.197 O 1.205 1 0.900 0.341 0O 0
Mn 0.052 O 0.012 0 0.016 0.007 0 0
Mg 2282 0 1.349 0 1.058 0.728 0 0
Ca 1.806 0462 0.000 0 0.031 0.884 1 0
Na 0.386 0.511 0.009 0 0.001 0.020 0 0
K 0285 0014 0956 0 0 0 0 1
H 2 0 2 0 0 0 0 0

estimated errors

Ti 0.050
Al 0.100
Fe 0.100
Mn 0.010
Mg 0.100
Ca 0.100
Na 0.020
K 0.020

0.005
0.080
0.005
0.005
0.005
0.080
0.080
0.010

0.070
0.070
0.070
0.010
0.070
0.010
0.005
0.050

0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005

0.005
0.010
0.100
0.010
0.100
0.008
0.005
0.005

0.005
0.010
0.050
0.010
0.070
0.050
0.010
0.005

0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005

0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005

Model matrix

i 0.261
Al 2.035
Fe 2.032
Mn 0.036
Mg 2.422
Ca 1.768
Na 0.378
K 0.273

-0.004
1.455
0.008
0.001

-0.007
0.464
0.511
0.015

0.208
1.278
1.295
0.019
1.276
0.019
0.014
0.929

1.000
0.000
1.000
0.000
0.000
-0.000
-0.000
-0.000

0.007
0.036
0.891
0.016
1.065
0.029
0.001
-0.001

-0.008
0.065
0.371
0.010
0.703
0.891
0.021
0.002

-0.000
2.000
0.000
0.000

-0.000
1.000
0.000
0.000

0.003
1.001
-0.005
-0.000
0.005
-0.001
-0.000
1.000

(Data-Model)/error

T -1.57 076 039 -0.02 -0.81 284 0.04 -0.52
Al -021 0.01 0.5 -0.01 -0.11 037 0.01 -0.14
Fe 1.65 -1.61 -1.28 0.05 0.09 -060 -0.09 1.10
Mn 1.64 -0.16 -0.66 -0.00 0.03 -028 -0.01 0.08
Mg -140 136 1.04 -0.04 -0.07 0.36 0.08 -0.93
Ca 038 -0.02 -1.94 0.01 024 -0.14 -0.02 025
Na 038 -0.00 -098 0.00 0.08 -0.14 -0.00 0.05
K 058 -006 054 0.00 0.12 -042 -0.01 0.08

Reactions
Hbl Pl Bt Ilm Opx  Cpx An Kfs Qtz _Water
A 147 -093 -241 0.08 1.00 -224 -0.15 1.85 -3.28 047
B -026 0.19 -047 0.16 1.00 023 0.14 051 -1.72 036
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(Na+K)A vs. AIV for Hbl. X are compositions in three different
samples from the Hbl-bearing gneiss (86, 244 and 594 cm). Crosses are

compositions in one thin section from the transition zone (61 cm). Filled square is
the composition of the one relict amphibole grain in the Hbl-free gneiss (15 cm).
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Figure 3.4  Backscatter photomicrographs of Kfs in Hbl-free Gneiss.
a) - Kfs (light) forming rims separating Qtz (dark) from Pl (medium).
b) - Antiperthite with up to 3 orientations of Kfs lamellae (light) in P1
host (medium); dark is sericitic alteration of Kfs. c) - Antiperthite.
d) - Antiperthite showing blocky-shaped Kfs blebs (light) in PI host
(medium). All from 18 cm. All scale bars are 100 pm.
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Figure 3.5  Microprobe traverse across antiperthite lamellae.  Traverse taken from

grain shown in figure 3.4b. Note that there is no consistent increase or decrease of
plagioclase components near Kfs lamellae.
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Figure 3.9

projected from Cal and An for marbles of bulk composition similar to the
marble at AB90-13 in the system KCMASCH for a binary H>O - CO; fluid.
Some reactions have been omitted for clarity. The numbered reactions on the
figure correspond to the ones in the text. The bold line shows the buffering
path described in the text.
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Temperature (C)

T-XCO, diagram, AB90-13 marble.  Calculated for 8 kbar

04

Mole fraction CO2
7 CO2 + Tr+ 3 Cal =5 Dol + 8 Qtz + H)O

4 COy2 +Phl+2 Cal+ An =3 Dol + Ms +2 Qtz

3 Cal + Phl + 3 CO2 = H70 + Kfs + 3 Dol
HyO+CO7+Dol+4Di =3 Cal + Tr
2HO+2Kfs+Phl+3 An =3Di+ 3 Ms

H20 +3 COy + Kfs + 3 Di =3 Cal + Phl + 6 Qtz
SAn+Cal+5Phl+14Qtz+3HyO =CO+3Tr+5Ms
H»O+9COy +4Phl+5Cal+4 An =7Dol +4 Ms + Tr
5Di+3COy +Hy)O =Tr+2Qtz + 3 Cal

2HO+4COy +Phl+7Di+An =4Cal +Ms+ 2 Tr
Di+2 COz =2 Qtz + Dol

HyO +COy + Kfs + An =Cal + Ms + 2 Qtz
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Chapter 4: Fluid inclusions

Introduction

The study of fluid inclusions in metamorphic rocks
provides information about the composition of the fluid phase
present during the metamorphism, its evolution during
metamorphic mineral growth, and the pressure and
temperature conditions of metamorphism. Fluid inclusions
also form from fluids either generated in the rock or
introduced after the peak of metamorphism, during cooling
and uplift. Interpretation of the properties of the several
generations of fluid inclusions commonly preserved in
metamorphic minerals may give evidence on the uplift history
of the metamorphic terrane or about specific recrystallization

or deformational events affecting the fluid inclusion-bearing
phase.

M.L. Crawford (1981, p. 157)

Fluid inclusions are small quantities of fluid encased in mineral grains. In

metamorphic rocks these inclusions vary widely in size, but are frequently less than 30
pm in diameter. Fluid can be trapped in inclusions during growth of the mineral
(primary) or along healed fractures in existing minerals (pseudosecondary and
secondary). The fluid in inclusions is generally considered to have been trapped at or

after the peak of metamorphism because most prograde P-T paths are such that the

internal pressure of the inclusion would increase to the point that it would burst

(decrepitate) along this path.
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Concerted fluid inclusion work in high grade rocks was inspired by the
discovery of a profound change in fluid inclusion composition from HyO to CO, at the
amphibolite to granulite facies transition in Norway (Touret 1971). Since granulite
facies assemblages are characterized by a lower activity of HyO than their amphibolite
counterparts, the CO; in the inclusions may represent the HyO-poor, peak metamorphic
fluid (Touret 1985). This has lead to theories of granulite facies paragenesis
development due to CO; streaming from some deeper source (Newton et al. 1980).
However, the idea that CO;-rich inclusions contain peak metamorphic fluids has been
called into question by Lamb et al. (1987) on the grounds that carbonic inclusions have
been found in granulite grade rocks for which mineral assemblage information indicates
H»O-rich peak metamorphic fluids.

In this chapter the results of fluid inclusion analysis across the blueschist to
amphibolite and amphibolite to granulite facies transitions is examined in order to assess
the composition of fluid trapped during the metamorphic cycle and the timing of

entrapment.

Sample locations

Two suites of samples were analyzed for fluid inclusion composition and
density. One suite consists of nine pelitic quartzofeldspathic schists from the isograds
area to below the peridotite layer. The other suite consists of five quartz veins located in
Nome group schists and Kigluaik group schists from the area near the isograds (figures

4.1 and 4.2). Fluid inclusions data is listed in appendix 4.

Pelite Leucosomes
62 fluid inclusions were analyzed from the pelite suite, chosen to represent the

spectrum of metamorphic grades exposed. Most samples have the assemblage: Grt + Bt
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+ Qtz + P1 + Graph + (Ms + Sta) or (Sil + Kfs) (table 4.1), with the exception of AB90-
19, which has the assemblage: Grt + Bt + Qtz + P1 + Kfs + Opx. The inclusions

measured occur within quartz, especially in quartz segregations. This inclusion

population is dominated by low density CO,. In the upper part of the stratigraphy (4th

pelite) a small population of low-salinity H>O inclusions occur.

CO;-rich inclusions

Seven of the nine pelite samples contain CO5-rich fluid inclusions. Size and
abundance vary systematically with stratigraphic location. Inclusions are very abundant
and large (5-20 um diameters) low in the stratigraphic section (Oth, 1st, 2nd and 3rd
pelites). In the mixed unit and 4th pelite, CO3 fluid inclusions are rare and not as large
(3-10 pm diameters). At room temperature, the inclusions are usually two phase (L +
V), dominated by the vapor phase. Rarely, the inclusions are only vapor phase. In one
case, a thin meniscus of a second liquid phase was seen at a necked down corner of a
carbonic inclusion, indicating that a small amount of HyO may be present in these
inclusions. Because of the dark walls of CO; inclusions, up to 20% H0 may be
present in the carbonic inclusions and not visible under the microscope (Roedder 1972).
Some inclusions homogenize to liquid, most to vapor; in two samples, critical behavior
was observed. The carbonic inclusions are pseudosecondary or secondary in nature.
Usually the planes of inclusions do not cross grain boundaries. In samples with
abundant carbonic inclusions there are multiple orientations of the planes of inclusions.
In samples with rare carbonic inclusions there is generally only one orientation of their

planar arrays, perpendicular to schistocity.
H0-rich inclusions
Five of the nine pelitic samples contain aqueous fluid inclusions. Aqueous

inclusions in schists are smaller than carbonic inclusions (2-10 pum diameters). Aqueous
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inclusions are two phase (L + V) with varying proportions of bubble size at room
temperature. All inclusions homogenize to liquid. Aqueous inclusions are not present
in the Oth, 1st, 2nd and 3rd pelite, and are moderately rare to rare in the mixed unit and
4th pelite. The aqueous inclusions are pseudosecondary to secondary in nature. No
trails were observed to cross grain boundaries. These planar arrays are generally limited
to one or two orientations. There are three samples in which both CO,- and HyO-rich
fluid inclusions occur. In these samples, there are more planes of H>O inclusions than
CO», inclusions, and the H7O inclusion planes have more inclusions/mm2. Due to the
rarity of both sets of inclusions, no clear textural or timing relationships were interpreted

concerning the two compositions of inclusions.

Qtz vein traverse

35 fluid inclusions from the quartz vein suite were examined in order to assess
any variation in fluid composition across the Nome group to Kigluaik group transition.
Quartz veins which do not cross cut foliation were chosen in order to examine the
earliest generations of fluid inclusions. Fluid inclusions in this suite are low salinity
Hy0 of varying density. Read and Meinert (1986) also investigated fluid inclusions in
quartz veins similar to ones investigated here within Nome Group schists (their type I
veins). Along with aqueous inclusions of similar characteristics to the ones reported
here, they found mixed HoO-CO9 and carbonic inclusions. The CO» within these
inclusions had characteristics similar to the carbonic inclusions from the 4th pelite
discussed in this chapter, namely a depressed melting point (-58.5 to -62.2°C) and

homogenization temperatures generally in the teens.
H30-rich inclusions
All five of the Qtz vein samples investigated contained HpO fluid inclusions.

COy-bearing fluid inclusions were not found in any sample. The Qtz vein aqueous
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inclusions are larger (3-15 um diameters) than their pelite counterparts. All are two

phase (L + V) with varying proportions of V to L. The inclusions are very abundant.

There are multiple orientations of planar arrays of inclusions in each sample. The

inclusions are secondary in nature; inclusions trails cross grain boundaries.

Fluid Inclusion thermobarochemistry

Carbonic inclusions

Tm (temperature at which the solid melts) of CO is slightly depressed below the
pure melting temperature of -56.6°C (figure 4.3). The positive correlation between Ty,
and T, (temperature at which the inclusion homogenizes to either vapor or liquid) in
carbonic inclusions (figure 4.4) indicates that the lowering of Ty, is caused by dilution
of CO; with a small amount of fluid other than HyO (Thomas et al. 1990), commonly
CH4 or N2 (Swanenberg 1980, Kreulen and Schuiling 1982, Rudnick et al. 1984,
Schreurs 1984, Althaus and Istrate 1990, Samson and Williams-Jones 1991, Winslow
etal. 1991). This small amount of lowering (down to -59°C) could be caused by ~20%
CH4 or N3 (Burruss 1981, Hall and Bodnar 1990, Kerkhof 1990).

Th for carbonic inclusions that homogenize to liquid ranges from 31 to 12°C
with most inclusions above 25°C (figure 4.5), indicating a density of around 0.55
g/cm3. However, the vast majority of inclusions homogenize to vapor, indicating a
density less than 0.47 g/cm3, similar to low density carbonic inclusions described in
forsterite from lower crustal xenoliths by Roedder (1965). In addition, since the
inclusions with the lowest homogenization temperature also indicate the highest level of
dilution with extra component (figure 4.4), the actual density of inclusions with Tp,<-
56.6 is less than that calculated if pure CO3 is assumed (Touret 1981, Touret and
Kerkhof 1986). For example, a pure CO; inclusion with Th(lig)=15°C has a density of
0.82 g/cm3 (Angus et al. 1976), whereas an inclusion that is 80% CO; and 20% CHy
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with a Tp(liq)=15"C has a density of 0.45 g/cm3 (Burruss 1981, Holloway 1981).

Therefore, I conclude that carbonic fluid inclusions in pelite leucosomes have a density
near that of the critical point, 0.47 g/cm3. There is a systematic trend toward more pure
CO, deeper in the stratigraphic section.

21% N2 was found in one Kigluaik inclusion by laser Raman spectroscopy
(Touret written communication 1989), the remainder being 71% CO5 and 2.4% CHy.

The other inclusions analyzed were 100% CO».

Pelite aqueous inclusions

The final melting temperature of this small population of aqueous fluid
inclusions is only lowered to about -0.5°C (figure 4.6). This indicates a salinity of
about 0.9 wt% NaCl equivalent (Potter and Brown 1977). Ty, ranges from ~175° to
250°C with most around 175°C, and all homogenize to liquid (figure 4.7). This
corresponds to a density of ~0.90 g/cm3. Two additional groups of aqueous inclusions
were measured in 4th pelite leucosomes (figure 4.8). One has Ty, and T, of -4 and
175°C, found in a pelite from the mixed unit, another has temperatures of -8° and
350°C, found in a 4th pelite from the 2nd Sil isograd ("'normal" pelite aqueous
inclusions also occur in this sample). These data indicate salinities of 6.4 and 11.7 wt%

NaCl equivalent, and corresponding densities of 0.94 and 0.77 g/cm3, respectively.

Qtz vein aqueous inclusions

These inclusions overlap in composition and density with those of the pelite
leucosomes, but have a greater degree of variability in density (figures 4.6, 4.7 and
4.8). T in Kigluaik group 4th pelite Qtz veins ranges from -0.2 to -2.2°C (figure 4.6),
corresponding to salinities less than 3.7 wt% NaCl equivalent. These fluid inclusions
have a range of T, from ~200° to 325°C, most at about 280°C (figure 4.7),

corresponding to a density of 0.78 g/cm3. Aqueous inclusions in Nome group Qtz
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veins cluster more tightly at Ty = -1.9 and Ty, = 225°C (figure 4.8). This corresponds

to a salinity of 3.2 wt% NaCl equivalent and a density of 0.86 g/cm3. These findings

are in agreement with measurements on aqueous fluid inclusions in quartz veins from

Nome Group schists investigated by Read and Meinert (1986).

The similarity in composition and density of aqueous inclusions between pelite

matrix, pelite quartz vein and Nome Group quartz vein leads to the interpretation that all

these inclusions are cogenerational.

Discussion

Calculation of isochores (Nicholls and Crawford 1985) for the carbonic and

aqueous inclusions (figure 4.9) leads to some straight-forward conclusions. Isochores

for aqueous inclusions from the Sta and Sil+Kfs isograds pass through the estimated P-

T conditions of peak metamorphism of their enclosing rocks and may therefore represent

peak metamorphic fluids. Isochores for Nome group aqueous inclusions and those for

Kigluaik group carbonic inclusions fall well below their respective estimated peak P-T

conditions and therefore cannot represent unmodified peak metamorphic fluids.

Petrogenetic grid constraints indicate that the P-T path followed by Kigluaik group rocks

is clockwise in nature (Ky to Sil, Bt + Sil to Crd, Rt to Ilm, Grt to Opx + P1). Sucha

path crosses all the isochores determined in this study, allowing the interpretation that

the fluid in inclusions is late and has not been modified since trapping. It is also

possible that fluids were trapped at the peak of metamorphism and have since been

modified. Modifications could include change in inclusion volume, diffusion of fluid

species in/out of or leakage of material out of the inclusion (Roedder 1984). These

possibilities are explored in the following sections.




Changes in shape and composition
Changes in volume which would decrease the density of trapped peak fluids
include precipitation of daughter minerals, partial decrepitation, and stretching of the

inclusions. Since daughter minerals are denser than the fluid from which they

precipitate, the remaining fluid must become less dense; however, no daughter minerals

were observed. Partial decrepitation of fluid inclusions has been identified in other
granulite grade rocks by the distinctive texture of a large central inclusion with a planar
cluster of smaller inclusions around it (Touret 1977, Swanenberg 1980). None of these
"decrepitation clusters” or "exploded inclusions" were identified in Kigluaik carbonic
inclusions. However, this does not preclude the possibility that such features have since
annealed into more regular-looking arrays of inclusions. Given a retrograde path of
mostly isothermal decompression, fluids trapped at peak conditions would be expected
to decrepitate upon a pressure differential of one or two kbar, for the size of inclusions
measured in this study (Roedder 1981, Bodnar et al. 1989). This size dependence of
decrepitation potential would be manifested in a systematic variation in density with
inclusions size, smaller inclusions being more dense. No such systematic variation was
observed in Kigluaik carbonic inclusions. Hence, most inclusions have not
decrepitated. Stretching via plastic deformation in a host mineral is viable in softer
minerals such as halite and fluorite (Roedder 1981, Bodnar and Bethke 1984), and has
recently been experimentally established in quartz (Sterner and Bodnar 1989) at
temperatures of 600° to 700°C on the time scale of days to weeks. Therefore it must be
concluded that Kigluaik carbonic inclusions could have undergone a change in volume
due to stretching after trapping.

The two most likely candidates for diffusion or leakage out of inclusions are Hy

and HyO. Diffusion of Hy into fluid inclusions has experimentally been shown to occur
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(Hall et al. 1989, Morgan et al. 1991). Addition of Hp to CO,-bearing fluid inclusions

would drive the reaction: CO + 4H; = CHy + 2H70. Hydrogen is a minor component
in most metamorphic fluids, and especially in CO, dominated fluids (French 1966,
Ohmoto and Kerrick 1977, Frost 1979, Rice and Ferry 1982). However, variation in
the fugacities of fluid species along fO; buffers on the retrograde path in the matrix pore
fluid can lead to significant overpressures of fHj in the matrix with respect to the
inclusion depending on the specific external conditions (Hall and Bodnar 1990). For a
retrograde path that is convex to the temperature axis (clockwise), as is the path for
Kigluaik rocks, the overpressure in fHj calculated by Hall and Bodnar is 30 bars or less
for fO; conditions one log unit below FMQ, and only a few bars for more oxidizing
conditions (one log unit above FMQ). Such a fugacity gradient in Hy would have
promoted diffusive addition of Hj to Kigluaik inclusion, but the quantity of mass influx
at these very low gradients is probably quite small, suggesting that Hy did not enter the
inclusions. Pasteris and Wanamaker (1988) showed experimentally that matrix oxygen
fugacity communicated with pure CO; inclusions in forsterite by movement of crystal
defects, not molecular Op. The fugacity gradients experimentally imposed were quite
large (4-5 log units) and therefore compositional change to Seward Peninsula inclusions
due to fO; communication with the matrix is unlikely.

Experimental evidence shows that the density of H>O inclusions can change in
response to a pressures gradient between inclusion and confining pressure (Pecher and
Boullier 1984, Sterner and Bodnar 1989, Sterner et al. 1988) and may be attributable to
diffusive movement of HyO through the confining quartz. Sterner and Bodnar (1989)
concluded that at 600°C diffusion of HyO through quartz did not occur or was below the
detection limits of ~0.5 wt% HO loss. However, Sterner et al. (1988) indicate that at

higher temperatures (~825°C), HyO diffusion through quartz may be a viable
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mechanism. Hollister (1988, 1989) proposed that HyO from a homogeneous HyO-CO»
mixture can preferentially leave the inclusion and diffuse away, leaving CO; behind,
aided by plastic deformation in the quartz. This process is controversial and has not
been experimentally verified.
Figure 4.10 illustrates the magnitude of diffusive loss of HyO and volume

change necessary to convert fluid trapped at 8 kbar and 800°C to pure CO, with a

density of 0.45 g/cm3. Ideal mixing of HoO and CO» is assumed, with densities of

0.825 and 1.15 g/cm3, respectively. The density after diffusive loss of HyO depends on
the amount of HO originally in the inclusion. In the Kigluaiks, peak metamorphic
XCO3 is probably in the range 0.5 to 0.8 (Lieberman 1988, this dissertation chapter 3),
leading to CO; densities of 0.7 to 1.0 g/cm3 after HyO loss. The increase in size of the
inclusion due to stretching necessary to bring the density to 0.45 g/cm3 is a 20 to 30%
increase in radius, assuming spherical geometry. If the peak fluid was 80% CO; and
the fluid inclusions hide the 20% H,O so no diffusive loss of HyO is needed, then a
37% increase in radius is necessary to bring about the change in density to 0.45 g/cm3.
These calculations indicate that a combination of HyO loss and stretching could turn
mixed volatile inclusions into pure CO, with the appropriate density, and that stretching

is always necessary to accomplish this.

Timing of inclusion entrapment

Although stretching of fluid inclusions in quartz may occur at temperatures over
800°C, there is no experimental evidence that stretching occurs at temperatures reached
in the isograd area (550° to 700°C). If stretching is called upon to explain the low
densities of the high-grade carbonic inclusions, then the carbonic inclusions in the
isograds should not have stretched, and should display higher densities. This is not the

case. Ifitisargued that on geologic time scales, stretching could occur at the lower
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temperatures of the isograds, then HpO inclusions should have stretched also.
However, many aqueous inclusions have higher densities, compatible with peak isograd
conditions. The data is reconcilable if the isograd aqueous inclusions were trapped
earlier and have not all undergone a substantial amount of stretching, and the carbonic
inclusions were simply trapped later at very low pressures. Since peak fluid
compositions in the isograds were water-rich (Lieberman 1988) these aqueous
inclusions could contain peak Kigluaik isograd fluids.

The array of isochores is interpreted to represent trapping along a clockwise P-T

retrograde path. Aqueous inclusions were trapped in rocks of the isograd area near the

peak of metamorphism. Additional aqueous fluids were trapped there during

decompression, or some peak inclusions were modified (stretched?) along this path.
Carbonic inclusions were trapped very late along this retrograde path and do not
represent trapped peak metamorphic granulite facies fluids. Carbonic fluid inclusions in
the Adirondack granulites are also thought to have been trapped after the peak of
metamorphism (Lamb et al. 1987, Morrison and Valley 1988).

Source of aqueous fluids

The ranges of aqueous fluid inclusion salinities and densities overlap among
Kigluaik pelites, Kigluaik quartz veins, and Nome group quartz veins. This allows the
interpretation that they all have the same source, indicating that the inclusions are late at
least with respect to metamorphism in the Nome group. The source of aqueous fluids
could be connate, magmatic or metamorphic. Connate waters from continental shelf
sediments would likely be more saline than these fluid inclusions (Roedder 1984).
Igneous fluids likewise have high salinities (Roedder 1984). Metamorphic fluids have
the appropriate low salinity. Substantial dehydration has occurred in Kigluaik group

pelites; dehydration-derived fluids would have driven off connate fluids. Therefore I
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conclude that aqueous fluid inclusions in the isograd area are metamorphic in origin,

rising from local dehydrating sediments.

Source of carbonic fluids

The source of carbonic fluids is more problematic. There are three possible
sources of N7 in fluid inclusions: atmospheric N7, ammonia released from silicate
minerals during dehydration reactions such as: 2(NH4)Al3Si3019(OH); + 3/, O2 = Nj
+ 6Hy0 + 3AI»S105 + 38i0; (O is supplied by the buffer capacity of the rock, such as
2Fep03 = 4FeO + Oy, where iron oxides are components in biotite or iron oxides), and
nitrogen compounds released from organic matter during maturation to graphite
(Samson and Williams-Jones 1991). None of these sources are completely satisfactory
to explain late CO2-N3. The possibility that any atmospheric gas could survive an entire
granulite grade metamorphic cycle is remote. Ammonia from dehydration and nitrogen
from organic maturation are given off during prograde metamorphism, not during the
waning stages of uplift. The dehydration scenario is especially difficult to justify

because it requires that N is trapped, but not the HoO given off by the same reaction.

Conclusions

Two generations of fluid inclusions have been identified in Kigluaik Group and
Nome Group lithologies. The earlier generation consists of low salinity aqueous
inclusions with a density of ~0.9 g/cm3. These were trapped at and following the time
of peak metamorphism in the isograd area of the Kigluaiks. The other generation of

fluid inclusions consists of nearly pure CO, with low densities (around the critical

density of 0.47 g/cm3). These carbonic inclusions were trapped late in the metamorphic

cycle, as was concluded for Adirondack carbonic inclusions (Lamb 1987, Morrison and
Valley 1988, Lamb et al. 1991). This contrasts with other granulite grade terranes

where (higher density) carbonic inclusions are taken to represent samples of peak fluids
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(Newton et al. 1980, Hansen et al. 1984, Touret 1985, Santosh et al. 1991). In the

-

granulite grade rocks of the Kigluaik mountains, no peak metamorphic fluids survived
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“ﬁj as fluid inclusions.
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Table 4.1

Sample#
Pelites
AB87-218
AB87-220
ABS87-290
AB87-254.2
AB85-208.1
AB89-33.2
AB89-1.1
0S-18
AB90-19.1

Quartz veins
AB87-201
AB87-208
ABS87-212
AB87-217
AB87-257

Fluid inclusion host rock assemblages.
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Nome
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Fluid inclusion sample location map.  See figure 1.2 for
explanation of map patterns.
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Chapter 5: Summary and Conclusions

Stable isotope profiles across lithological boundaries only provide information
on the component of transport parallel to the profile. In the main marble unit of the
Kigluaik Mountains (transitional amphibolite-granulite facies), steep oxygen and carbon
isotope profiles attest to extremely small amount to no time integrated fluid flux across
lithological boundaries (see also Baker 1990, Cartwright and Valley 1991 1992).
Pervasive upward fluid flow is ruled out. Both marble and gneissic units retain oxygen
isotope signatures characteristic of their protolith, indicating that an external fluid did not
homogenize rock compositions. The small amount of fluid that did advect across
lithologic boundaries is inferred to have been CO»-rich and derived from marble,
moving downwards in two cases out of three. The H7O evolved during prograde
metamorphism of the underlying pelite-bearing layer left no measurable isotopic imprint
on the main marble above. This HpO, and the HyO released from crystallizing partial
melt in the pelites, presumably departed along mainly horizontal channels external to the
main marble. The main marble was an effective aquitard. Cross-cutting veins in
marble, composed of monomineralic diopside, are extremely rare. Only during the
waning stages of metamorphism did the injection of pegmatite dikes permit fluids, in
this case HpO-rich, to penetrate the main marble and, at pegmatite-marble contacts,
precipitate garnet, clinopyroxene, epidote, wollastonite, and fluorite. In addition, small
amounts of late, channelized HyO-rich fluid locally converted forsterite to serpentine and
diopside to tremolite.

The isotopic profiles are interpreted to be dominated by diffusive processes.
The extent of isotopic interaction is related more to lithological type (compare marble at
AB89-41 with that at AB89-61) than to stratigraphic horizon (compare AB89-62 +
AB90-27 at the base of the main marble with AB89-61 in the interior). Outcrop AB89-
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41 involves a relatively pure dolomitic marble whereas marble at AB89-61 has a varied
composition with a much higher proportion of silicate phases (table 2.2). AB§9-61
would have undergone much more devolatilization during prograde metamorphism than
AB89-41. Devolatilization reactions enhance porosity, leading to more extensive
interaction with fluid (Rumble and Spear 1983). Other workers have found thick pure
carbonate marbles to be very effective barriers to infiltrating fluid (Gerdes et al. 1991,
Frueh-Green et al. 1991). The estimate of porosity for AB89-61 based on a 1 Ma time-
scale is nevertheless very low and it is questionable that transport of material could have
occurred under these circumstances. If fluid was present only during transient
devolatilization events (Thompson 1983, Hoemes and Hoffer 1985) in the marble, the
corresponding time scale would be much less than 1Ma and calculated porosity
increased to levels more appropriate for fluid interconnectivity regardless of solid-fluid
dihedral angle (Brenan 1991). Ductile thinning of this section (factor of two?) may have
occurred (Miller et al. 1992a), but this amount of thinning would not significantly effect

the conclusions presented here.

The estimates of time integrated fluid flux calculated here (0 and 0.01 m>/m?) are

four to six orders of magnitude less than those calculated for metasedimentary rocks in
low to medium grade regional metamorphic terranes (Ferry and Dipple 1991). The
method used by Ferry and Dipple is based on reaction progress, whereas the
calculations presented here are based on advective-diffusive displacements of stable
isotope discontinuities (Bickle and McKenzie 1987). Many stable isotope studies are
consistent with estimates of fluid advection monitored by reaction progress (Ferry
1986). The difference in estimated flux may be reconcilable in that the present
calculations are for cross-lithology transport and those of Ferry and Dipple represent

layer-parallel flux. A difference in crustal level could affect the extent of fluid movement
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possible (Baker 1990), but since the time integrated fluid flux is small, practically no

fluid advected across the main marble units at any time during metamorphism. The

present flux parameters are one to two orders of magnitude smaller than those calculated

by Bickle and Baker (1990a) for outcrops in an amphibolite grade terrane in the

Cyclades of Greece using the same methods of calculation.

Granulite facies metamorphic parageneses are usually characterized by a reduced

activity of HoO (e.g. Newton 1986), and this field location is no exception (Lieberman

1988 and figure 2.10 here). The present results render unlikely the possibility that this
was caused by an influx of pervasive externally derived H>O-poor fluid, such as CO;

streaming from the mantle (Janardhan et al. 1982) or from mantle-derived mafic magma

(Frost and Frost 1987). The main marble extends across the entire mountain range

(figure 1.3) and formed an impermeable barrier to upward pervasive flow of fluid, CO»

or otherwise, during metamorphism. Passage of HpO-undersaturated synmetamorphic

plutons (Frost and Frost 1987) can be ruled out because the layering in the Kigluaik

Mountains has only been disrupted by late plutons and pegmatites. Because

orthogneiss units comprise only a small part of the lithologic sequence, heating of

previously dry rocks (e.g. Valley and O'Neil 1984) can also be ruled out. There are two

internal methods left of altering pore fluid composition: (1) extract H2O by partial

melting (e.g. Crawford and Hollister 1986) and (2) add CO» by local decarbonation of

graphite or carbonate minerals (Glassley et al. 1989). Both may occur. In the vicinity

of marble contacts, it was argued in chapter 3 that (2) operated on a decimeter scale.

Fluid movement played a limited role in controlling mineral parageneses in the

Kigluaiks.

The retrograde path followed by rocks in the Kigluaik Mountains was dominated

by decompression. This is supported by mineral replacements, petrogenetic grid
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considerations and fluid inclusion microthermometry. In the lower part of the

stratigraphy, no peak metamorphic fluids were trapped. In the isograd area, however,

aqueous inclusions may represent fluids trapped at the peak of metamorphism. Rocks at

all levels of the Kigluaik Group contain low density CO»-rich inclusions trapped late
along the retrograde path. This is in contrast to other terranes, where carbonic
inclusions have been used in support of theories of CO, from mantle sources (Newton
et al. 1980, Touret 1985).

In view of the above, I conclude that heat was transported into the section by
conduction alone. Most likely, the source of heat was syn-metamorphic intrusions
below the present level of exposure, or perhaps exposed to the west of this field area
(Amato et al. 1992). The data presented here demonstrate the large effect that can be
played by lithologic layering during metamorphism. Differing lithologies can control

fluid movement deep in the crust just as they do in the near-surface environment.
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Appendix 1: Mineral assemblages in Kigluaik group pelites

This appendix is organized into two parts; one where the information is arranged

by sample number, the other where the information is organized by stratigraphic

horizon. Mineral identifications were made petrographically or by electron microprobe.

Samples were collected by Alison Till (XXX KT78), Steve Pollack (SL81-XXX), Josh
Leiberman (OS-XX, AB85-XXX, AB86-XXX, AB87-XXX), Brian Patrick (AB84-
XXX) and Clifford Todd (AB89-XX, AB90-XX). Unit refers to the stratigraphic
horizon from which the sample came (see figure 1.4): Oth, 1st, 2nd, 3rd, and 4th refer
to pelite units; TGOC refers to the Thompson Creek Orthogneiss; mixed refers to the
mixed metasedimentary unit between the TGOC and the 3rd pelite; syen refers to the
metasyenite unit within the main marble. The Isograd column denotes the isograd zone
from which the sample was taken (see chapter 1 for explanation of isograd zones).
Mineral abbreviations are listed in table 1.1, with the exception of "Tourm" tourmoline,
and "Op", which stands for opaque, usually ilmenite. "X" signifies that the mineral is
present. "inc" signifies that the mineral is present only as an inclusion within another
mineral, usually garnet. "It" signifies that the mineral is texturally late. "tr" signifies a

trace amount of the mineral. An exclamation point means that the mineral is very

abundant. "fib" refers to fibrolite, the fine grained fibrous form of sillimanite. "A" in

the Ky column stands for andalusite, instead of kyanite. "Lithol" describes the lithology

of the sample: gqtzite = graphitic quartzite, btgneiss = biotite gneiss.
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Appendix 2:

Major element mineral compositions

Microprobe analyses of minerals were carried out on a JEOL Superprobe 733 at

the University of Washington, Department of Geological Sciences. The accelerating

voltage was 15 kvolts and sample current 15 namps for biotite, feldspar and carbonate

and 25 namps for all other phases. Natural minerals and synthetic glasses were used as

standards. Data were reduced using the method of Bence and Albee (1968).

Biotites were normalized to 11 oxygens assuming all Fe measured is Fe2+, so

that the solution model of McMullin et al. (1992) could be used for thermodynamic

calculations. (OH) was determined by the formula (OH) =2 - F - Cl, and a wt% H>O

calculated accordingly. Definition of exchange vectors (Thompson 1982, Dymek 1983)

and formulas used to caclulate them are defined as follows: Xy =K_jAL;QSi=1-K -

Na - Ca; X, =K.1Si.1CaAl = Ca; Kiispl = Al.2TiMg = Ti; Xgioet = Mg32Al = 3 - Mg

- Fe - Mn - AlVi - Ti; X = Mg.18i.1Al = 3 - Si - Xan - Xite.

Feldspars were normalized to Ca+ Na+ K =1.

Gamets were normalized to 8 cations. Fe3+ was calculated so as to bring the

number of oxygens to 12.

Hornblende stoichiometry calculated from microprobe data is dependent on the
normalization scheme used (Robinson et al. 1982). I have chosen to normalize to the
average of 15 (excluding K and Na) and 13 (excluding K, Na and Ca) cations
(Hollocher 1991). Niether F nor Cl were measured; (OH) was assumed to be 2. Wt%

HO was calculated based on this stoichiometry. Definition of exchange vectors

(Thompson 1982) and formulas used to caclulate them are defined as follows:

Xed = 0.181.1(Na,K)Al = (Na + K)A; Xigpi = ALy TiMg = Ti; Xap = Ca_1AL{NaSi =

NaM4; X = Mg.1Si.1Alp = 8 - Si -Xeq + Xab. "xsO" is the oxygen wt% correction for

Fe2+ to Fe3+ conversion.
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Olivine was normalized to 3 cations, clinohumite to 13 cations and chondrodite

to 7 cations, assuming all Fe measured is Fe2+. The (OH) content of clinohumite and

chondrodite was determined by the formula (OH) =2 - F - 2Ti, and a wt% H,O

calculated accordingly.

Pyroxenes were normalized to 4 cations. Fe3+ was calculated so as to bring

oxygens to 6. "xsO" is the oxygen wt% correction for Fe2+ to Fe3+ conversion.

Spinels were normalized to 3 cations. Fe3+ was calculated so as to bring

oxygens to 4. "xsO" is the oxygen wt% correction for Fe2+ to Fe3+ conversion.

Staurolites were normalized to Si + Al = 25.53 (Holdaway et al. 1986). Fe3+is

assumed to be 0.25; lithium is assumed to be 0.2; hydrogen is assumed to be 3.06

(Holdaway et al. 1986). Wt% LiyO and HO was calculated accordingly.
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Appendix 3: Stable isotope mineral compositions

Stable isotope analyses were carried out on a Finnigan Mat Delta E spectrometer
at Department of Geosciences, New Mexico Tech, Socorro, New Mexico. Carbonates
were dissolved in phosphoric acid overnight in a 25°C water bath; silicates were reacted
with CIF3 at 450°C for 10 hours, and liberated oxygen was then reacted with a glowing
carbon rod. The CO; was then isolated by standard cryogenic techniques. §'%0 values
are reported relative to SMOW, 813C relative to PDB. One sigma precision for

extraction and mass spectrometry is estimated at 0.3 %eo.
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distcm 180 13C mineral
-31 14.9 fspar

25 11.9 fspar
-18 104 fspar
-1 9.9 fspar
-5.1 10.8 fspar
o} 11.0 fspar
0.3 12.7 2.0 calcite
0.75 13.0 2.2 caicite
125 13.1 2.3 calcite
1.6 135 2.3 calcite
2.2 16.4 -1.3 dolomite
2.6 18.3 -09 dolomite
3.2 206 -0.5 dolomite
37 225 0.3 dolomite
4.2 227 -0.2 dolomite
4.8 233 -0.3 dolomite
54 231 -0.4 dolomite
5.9 23.1 -0.3 dolomite
6.35 227 -0.4 dolomite
11 224 -0.5 dolomite
30 223 -04 dolomite
244 229 0.7 dolomite
396 224 -0.5 dolomite

calcite

43 222 -1.6 calcite
25 20.6 2.5 calcite
-6.35 19.4 quartz
-35.5 20.2 quartz
-63.5 18.1 quartz

quartz

calcite

35 194 43 calcite
3 18.2 3.6 caicite
-1 15.1 quartz
-7 16.3 quartz
-16 142 quartz

quartz

. calcite
366 23.7 -1.2 calcite

366 23.4 1.2 calcite
366 238 -1.2 calcite
366 24.0 -1.2 calcite
135 20.7 0.7 calcite
107 19.6 -1.3 calcite
102 19.8 -1.3 calcite

94 19.3 -1.6 calcite

71 19.5 -1.3 calcite

calcite

d180 biot
6.3

7.0
7.0

1/2 hr
2hr
overnight
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41 18.6 -1.5 calcite
33 201 -0.8 dolomite
33 204 -0.8 dolomite
15 16.9 -1.2 calcite
11 16.5 -1.3 calcite
10 16.8 -1.6 calcite 1 hr
10 16.6 -1.6 calcite  overnight
7.6 16.9 -1.6 calcite
; 5 16.6 -1.8 calcite
25 16.3 -1.8 calcite |
ﬁ 24 15.9 quartz |
60 165 quartz .
ABS0-27
cm d180  d13C mineral .
2621 227 -0.6 calcite -
1676 228 0.9 calcite
701 22.6 -1.0 calcite
. 183 21.8 0.7 calcite
, 51 20.9 -1.5 calcite
| 25 213 -06 calcite
6 18.8 -1.9 calcite

Nome Group Marbles

AB80-4.1 219 4.8 calcite
AB80-4.3 18.3 3.9 calcite
ABS80-90. 13.8 3.0 calcite
AB80-91. 13.4 4.6 caicite
AB81-18 15.9 4.7 calcite

AB90-13
cm OxQtz OxHbld OxBiot Oxce Carb cc
594 15.1 12.1 8.3
381 14.9 12.2 89
170 15.1 122 7.4
86 15.1 11.7 7.4

61 15.3 11.9 71
57 14.8
4 18.0 7.6
38 16.2
23 16.1
18 16.0 8.2
15 15.7 1.1
10 16.2 1.1
6 16.2
0 20.9 -0.9
-18 21.7 -0.8
-61 222 -1.0
-152 222 -0.9
-366 18.1 0.2

Kigluaik Pelites

Qtz Biot Wh Mica
85-215.1 194 13.2
89-16 18.7 13.0
89-82.2 17.5 114
89-20 16.2 11.0




-
|

AB90-26

89-13
89-11.1

87-220.1

cm
1389
1361
1323
992
543
283
104

154
14.3

16.3

Ox cc

28.0
28.3
23.1
27.3
16.5
25.0

7.6
9.6

Carb cc

-0.8
-1.6
5.2
0.3
0.9
4.7

13.9

Ox Qtz
14.3

13.1
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Ox Biot
8.2

72

-

S




Appendix 4: Fluid inclusion measurements

Doubly polished thin sections (100-200 um thick) were prepared from the
sample material. Microthermometry was performed on a Fluid Inc. stage in the School
of Oceanography, University of Washington, Seattle, WA. The thermocouple was
calibrated by a synthetic pure CO; fluid inclusion. Accuracy is taken to be 0.1°C for
temperatures near or below 0°C increasing to +1°C for temperatures above 200°C.

Isochores were calculated using the programs of Nicholls and Crawford (1985).




PELITES
0s-18

AB89-1.1

AB85-208.1
area 1

area 2

AB87-220.1
area 1

area 2

area 3

AB89-33.2
area 1

area 2
area 3

AB87-218

Pel |
-57.1
-568.7
-57.0

-57.0

Pel lil
-57.2
-57.2
-57.2
-57.1
-56.6
-57.7

-0.3
-0.2
-7.8
-7.9

-58.6
-58.6
-0.7
-0.8
-0.5
-59.0
-0.6
-0.5

-56.9
-56.8
-56.8

-4.0

-57.0

Th

28
235
30.2
30.2
30.2
30.2
20.3
29.5

259
26.5

259
28.1
26.1
26.2
27.8
224
237
24.6
229

Pel IV
184

352.5
353.7

Pel lV

169.5
170
171
182

Pel 1

167
185

31
31

Pel IV
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Qtz in pelite
vap

liq

crit

crit

crit

crit

lig

lig

Qtz in pelite
liq
lig
lig
vap
vap
lig
lig
liq
lig
liq
lig
liq
lig
lig

Qtz in pelite
lig

vap

liq

lig

Qtz in pelite
vap
vap

vap

Qtz in schist
vap

vap

vap

liq

lig

vap

vap

vap

Qtz in pelite

others to vap
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area 1 -58.9 11.4 lig medium bubble at -56
-58.6 16.7 lig
-58.5 17.8 lig
-58.5 12.9 liq small bubble at -56
-58.4 171 liq large bubble at -56
area 2 -568.1 20 vap
-58.1 20 vap
-68.1 20 vap
area 3 -58.5 126 liq most to bubble
-58.5 129 crit

vap

AB87-254.2 Pel IV vap co2

AB87-280 Qtz in schist
area 1 0.9 256 lig
-1.0 200 liq

lig

AB90-19.1 Qtz in 'charnokite’

-57.0 308 lig others to vapor 29+
-57.0 30.1 liq
-56.8 29.8 liq

liq

QTZ VEINS

ABB7-257.2 Pel IV Qtz in gtz vien
2.1 283.3 liq
22 289.8 lig
-2.0 2777 lig
-2.1 2827 lig
2.1 2834 liq
2.0 250.7 lig
2.0 283.4 liq

AB87-217 Pel IV Qtz in gtz vien

plane 1 -1.0 318.6 liq
-0.6 259 liq
-0.8 312.2 liq
0.2 257.1 lig

plane 2 05 271 lig
-0.4 279.2 liq
-0.5 265.7 liq
-0.5 280.3 liq
0.4 277.3 liq
0.4 269.5 lig
-0.4 277 liq
0.5 285.6 lig

liq

AB87-212.1 Qtz in gtz vien

03 2054 liq
05 2195 liq
05 2141 liq

liq



AB87-201.1
plane 1

plane 2

AB87-208.3

-1.9
-1.7
-1.6
-1.6
2.4

-2.3
-1.8

-1.4
-1.5

Nome
230.8
208.5
228.5
228.3
2237
230.4
228.3
224.9
233.3

Nome
226.3
210
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Qtz in gtz vien
lig
lig
liq
liq
lig
liq
lig
lig
liq
Qtz in gtz vien

liq
lig

.
.
e
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