INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g.,, maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zecb Road, Ann Arbor MI 48106-1346 USA
31377614700  800/521-0600






Seismic Velocity Structure of the Puget Sound Region from
3-D
Non-Linear Tomography
by
Neill Symons

A dissertation submitted in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy

University of Washington

1998

.ll '
Approved by. / W’p ‘é)u'm

(Chairperson of Supervisory Committee)

Program Authorized
to Offer Degree Geophysics Program

Date. October 21, 1998




UMI Number: 9916727

Copyright 1998 by
Symons, Neill Philip

All rights reserved.

UMI Microform 9916727
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



©Copyright 1998
Neill P. Symons



In presenting this dissertation in partial fulfillment of the requirements for the Doc-
toral degree at the University of Washington, I agree that the Library shall make
its copies freely available for inspection. I further agree that extensive copying of
this dissertation is allowable only for scholarly purposes, consistent with “fair use”
as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of
this dissertation may be referred to University Microfilms, 1490 Eisenhower Place,
P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted “the right
to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform.”

Signature M UAA Vg

Date_ /O /[20/498




University of Washington

Abstract

Seismic Velocity Structure of the Puget Sound Region from 3-D
Non-Linear Tomography

by Neill Symons

Chairperson of Supervisory Committee: Professor Robert S. Crosson

Geophysics Program

In this dissertation I describe a non-linear seismic tomography experiment in the
Greater Puget Sound Region (GPSR). The GPSR. contains portions of three dis-
tinct geologic provinces: (1) the Coast Range Province—composed of the Olympic
Mountains and the Siletzia terrane lying along the Washington Coast (the western
edge of the GPSR). (2) The Puget Lowland—an approximately linear depression that
stretches from Oregon’s Willamette Valley to the Strait of Georgia in Canada. The
Puget Lowland lies in the middle of the GPSR. (3) The Cascade Range-lying along
the eastern edge of the GPSR and characterized by extensive episodic volcanism since
the later Mesozoic.

The result of this study is a three-dimensional model of the P-wave velocity within
the GPSR. Interpretation of this model provides information about the subsurface
geology in the region. The method used to perform the tomography has been de-
veloped as part of this research. The method uses a finite-difference algorithm to
calculate seismic travel-times to every point in the region using the full 3-d velocity
model. The method is capable of using three different types of data: (1) earthquakes
with unknown hypocenters. The earthquake hypocenters are found as part of the



model during solution of the tomography problem. (2) Explosions or other seismic
events with known locations. (3) External data constraining the seismic velocity at
known locations within the model.

There is a good correlation between the velocity model derived in this experi-
ment and several known geologic structures in the GPSR, including: the core of the
Olympic Mountains; high seismic velocity where the basalt that makes up the Silet-
zia terrane outcrops; and low-velocity regions at basins under the cities of Seattle,
Tacoma, Everett, and Chehalis. The data provides sufficient resolution to delineate

the geometry of the contacts between these units within a large portion of the GPSR.
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Chapter 1

INTRODUCTION

1.1 Motivation for this Study

Several studies in the past 10 years have lead to a greatly increased concern over the
seismic hazards faced in the Pacific Northwest. For instance Bucknam et al. [1992]
and Satake [1996] provide evidence for, respectively, a large Seattle crustal earthquake
(estimated magnitude greater than or equal to 7) approximately 1100 years ago and a
large Cascadia subduction zone earthquake (estimated magnitude 9) about 300 years
ago. To understand and prepare for a large earthquake in the Pacific Northwest we
require an improvement in at least two areas of knowledge. First, we need better
tectonic models to assess where and when an earthquake is most likely to occur. And
second, we need better models for the geology of the subsurface to determine the
specific portions of the region that will be the most susceptible to damage when an
earthquake does occur.

This study is concentrated on a rectangular region from latitude 46.15°N to
48.80°V, longitude 121.35°W to 124.00°W, and from 0 to 60 km in depth (figure 1.1).
For the remainder of this thesis I will refer to the entire study area as the Greater
Puget Sound Region (GPSR). Eight of Washington'’s ten largest cities are contained
within the GPSR with a total population of approximately three million people.

In this study I use seismic tomography to generate a three-dimensional model
of the seismic P-wave velocity within the study area. Interpretation of this model

provides information about the subsurface geology. Once we know the geology it is



possible to evaluate proposed tectonic models for the region.

1.2 Seismic Hazards

The study region lies to the east of a major tectonic boundary. The Juan de Fuca
plate is subducting under the North American plate. There are three major types
of earthquakes which present a risk within the GPSR (figure 1.2). First, a subduc-
tion zone earthquake: paleo-earthquake studies based on buried tree stumps near the
Washington coast and analysis of tsunami records suggests that there was a great
subduction zone earthquake from the Juan de Fuca plate in January 1700. This
earthquake is estimated to have a magnitude of 9 [Satake, 1996] which would corre-
spond to a rupture of the entire length of the zone; from Cape Mendicino to southern
British Columbia. Earthquakes of this size have an estimated recurrence interval of
300-600 years [Atwater, 1996] in this subduction zone, so, another such earthquake
could occur at any time.

A second type of earthquake is also related to the subduction zone. These are
earthquakes that occur in the Benioff zone (within the subducted slab). This type of
earthquake has already occurred several times in this century. Most notably, there
was a 7.1 M, under Olympia in 1949 and a 6.5 M, under Tacoma in 1965 [Thorsen,
1986]. These events occurred within the descending slab at depths of approximately
45 km. Although these events are much smaller than rupture of the entire subduction
zone they present a significant hazard since they may be more frequent and are closer
to the population centers in the Puget Sound.

The third type of earthquake hazard in the GPSR is produced by crustal earth-
quakes. There has been only one crustal earthquake estimated to be over magnitude
6 in historical times, the 1872 North Cascades event [Malone and Bor, 1979; Ludwin
et al., 1991]. Since the fault dimensions are likely to be more limited in the crust,
the maximum magnitude of type this of earthquake is probably smaller than for a



subduction zone event. However, the epicenter could be much closer to populated
areas. Because of heavy deposits of glacial overburden, few, if any, faults can be

identified in this region from surface geology so geophysical techniques are required.

An example of this is the Seattle Fault which was first postulated based on large
gravity and magnetic anomalies but has now been imaged on several seismic reflection
surveys [e.g. Pratt et al., 1997]. The trace of the Seattle fault runs through downtown
Seattle and follows Interstate 90 to at least Lake Sammamish. This fault is believed to
be responsible for an earthquake with an estimated magnitude of 7.4 which generated
a tsunami in the Puget Sound ~ 1100 years ago [Atwater, 1992].

South of the GPSR, there are distinct bands of crustal earthquakes near to Mount
Saint Helens and west of Mount Rainier; however, in the central GPSR. the seismicity
is dispersed in an arcuate pattern (when viewed in an east-west cross section) down
to a depth of ~ 30 km (figure 1.1). There is a gradual termination of seismicity on
the eastern edge of the arc and a more abrupt termination to the west. The crustal
earthquakes in the Puget Lowland do not appear to be oriented along distinct fault

zones (figure 1.1).

Another geologic hazard related to crustal earthquakes in the GPSR is volcanism.
Although the study area contains only one major strato-volcano (Mount Rainier),
there are two others (Mount Saint Helens, and Glacier Peak) just outside the bound-
aries. Although any of these volcanos is capable of producing a moderate earthquake,
which could cause damage in the nearby populated areas, the primary hazard is a
catastrophic mud-flow. The 1980 eruption of Mount Saint Helens is a good example
of the type of damage expected from a large mud-flow. After the eruption a mud flow
down the Toutle River reached as far as the Columbia River where it silted up and

temporarily closed the Port of Portland (a distance of ~ 100 km).



1.3 Pacific Northwest Tectonics and Northwest Washington Regional
Geology

1.8.1 Regional Plate Tectonics

To quote from Duncan and Kulm [1989], “The geological development of the Pacific
Northwest from earliest Tertiary time to the present has been dominated by the effects

of plate convergence.” At present subduction occurs at 3.5—5 ;e’:r [Engebretson et al.,
1985] along the Juan de Fuca-Gorda-Explorer plate system which extends from the
Mendicino triple junction to the Queen Charlotte transform fault [Riddihough, 1984]
(figure 1.3 A); the Juan de Fuca plate is flanked on the north by the smaller Explorer
plate to the north and the Gorda plate on the the south.

There are 3 major characteristics of the Juan de Fuca subductior system that
make it unusual. (1) There are virtually no earthquakes deeper than 100 km as-
sociated with the subducting slab nor are there earthquakes in the toe of the slab
shallower than 20 km (figure 1.1). This is probably related to the fact that (2) the
spreading ridge is very close (150 — 300 km) to the subduction zone; as a result the
subducted slab is hot, buoyant, and thin. This is also the reason for the relatively
shallow subduction angle of about 11° [Crosson and Owens, 1987). (3) There is al-
most no expression of a trench; high sedimentation rates fill any trench that would
exist [Duncan and Kulm, 1989).

The present day Juan de Fuca plate is only a small remnant of the larger Far-
ralon plate which, 65 Ma, is thought to have extended from the present day Pacific
Northwest to Mexico [Atwater, 1970] (figure 1.3 B). At 65 Ma it is also thought that
the Kula plate subducted along the upper portion of North America from the Pa-
cific Northwest to Alaska. There was a triple junction east of the Pacific Northwest
between the Farralon, Kula, and the Pacific plates. Over time the Kula plate was
entirely subducted (Kula means “all gone”) and the southern portion of the Farralon

plate was subducted beneath California forming the San Andreas fault system [At-



water, 1970]. The breakup of the Farralon plate is still ongoing: the Explorer plate
is believed to have split off the Juan de Fuca plate along the Nootka fault about 4
Ma; the Gorda plate only shows evidence for motion independent from the Juan de

Fuca plate for 3 Ma [Riddikough, 1984].

1.3.2 Regional Geology

Geologically the study area contains parts of three major physiographic provinces:
from west to east; the Coast Range, the Puget Lowland, and the Cascade Range
(figure 1.4). The geology of the Pacific Northwest is complicated for a number of
reasons. First, the Coast Range, the Cascade Range and the underlying bedrock
in the Puget Lowland comprise of accreted terranes brought in on the subducting
slab according to interpretations by Duncan [1982] and Wells et al. [1984]. The
relationships between the different terranes are complex and difficult to decipher.
Second, large areas of the surface are covered by young sediment. Rapid uplift of the
Cascade and Olympic Mountains provides a good source of sediments. Furthermore,
several continental glaciations have deposited a heavy layer of glacial sediment. In
most of the GPSR heavy sedimentary cover completely covers the bedrock and leaves
little evidence of the underlying geology to be found on the surface [Hall and Othberyg,
1974]. In the central portion of the GPSR, the Puget Lowland, this sediment has

been mapped to a depth of several kilometers.

In the next section, will describe the three major units out of geographic order.
First the western portion, the Coast Range; then a jump to the eastern portion,
or the Cascade Range; and finally the middle unit, the Puget Lowland. Sediment
blanketing the Puget Lowland conceals the contact between the other two units; in
fact it is not clearly known if the basement underlying the Puget.Lowla.nd is from the
Coast Range, the Cascade Range, or another unique unit.



Coast Range

Starting at the coastline and moving inland west to east, the first geologic province is
the Coast Range. The Coast Range can be further divided into two distinct geologic
terranes, the core rocks of the Olympic Mountains and the Siletzia terrane [Babcock
et al.,, 1992]. The core rocks of the Olympic mountains comprise an accretionary
wedge of material scraped off the down-going Juan de Fuca slab. The Olympic core is
composed of melange and heavily faulted marine sedimentary rocks. It also contains
some minor pillow basalts that have been metamorphosed to prehnite-pumpellyite
and greenschist facies [Tabor, 1987]. Siletzia is a thick sequence of basalt known
as the Crescent Formation where it outcrops on the eastern edge of the Olympic
Mountains (fig 1.4), as the Siletz River Volcanics in Northwestern Oregon, and as
the Metchosin Volcanics is southern British Columbia [Snavely and Baldwin, 1948;
Duncan and Kulm, 1989; Tabor and Cady, 1978].

Duncan and Kulm [1989] have estimated a total volume of approximately 250, 000 km3
for the Siletzia terrane, roughly 5 times the volume of the island of Hawaii. Fur-
thermore, Babcock et al. [1992] have measured a composite section in the Crescent
Formation with a total depth of 16.2 km which contains no geologically detectable
faults or folds. Observations of fore-arc deformation suggest that crustal strength
may be heavily dependent on the thickness of the Siletzia terrane [Trehu et al., 1994]

making the configuration of this unit an important factor in seismic hazard.

The section of the Crescent formation (Siletzia) measured by Babcock et al. [1992]
is composed of two units. The lower unit is 8.4 km of pillowed to massive submarine
basalts. There are inter-beds of basaltic sandstone, siltstone, and conglomerate, with
minor turbidites, Hyaloclastites, and fossiliferous limestones. The inter-beds contain
clasts, up to 3 m in diameter, of quartz diorite Cady [1975]. This indicates a close
proximity to North America at the time of the basalt extrusion. The bottom of the

lower unit is inter-bedded, in places, with the underlying terrigenous Blue Mountain



unit. The upper unit is 7.8 km of sub-aerial flows, mostly columnar to randomly
jointed. With sills and occasional dikes. There are inter-beds' of basaltic breccia,
sandstone, and siltstone, with minor foraminiferal limestone

There are two competing hypothesis for the origin of Siletzia. Babcock et al. [1992]
argue that the terrane formed in situ due to rupture of the down-going Farralon slab.
They note that plate motion reconstructions rule out formation of the terrane on ei-
ther the Farralon or the Kula plates. Furthermore, their palomagnetic measurements
show that the terrane has not been significantly rotated or translated since forma-
tion. Alternatively, Duncan and Kulm [1989] expand on the idea originally proposed
by Snavely et al. [1968] that this formation originated as a chain of islands and sea-
mounts. If so, the presence of sedimentary inter-beds indicates that this must have
taken place close to the North American continent. They cite petrological, geochem-
ical, geochronological, and field studies wﬁich indicate a decrease in the age of the
formation from the east to the west from 62 to 48 Ma [Duncan, 1982]. This indicates
progressive eruption and accretion of the islands or seamounts to North America.
They also cite paloemagnetic evidence for large clockwise rotations of 35 — 70° [Simp-
son and Coz, 1977; Wells and Coe, 1985] which are not consistent with the complex
forming in place. The volcanism could have been the product of the Yellowstone
hotspot either coincident with a segment of the Kula-Farralon plate boundary [Dun-
can, 1982]; or during reorganizations of the spreading geometry [Wells et al., 1984];
or behind the trench in the wake of oblique rifting of the continental margin [Moore
et al., 1983].

Tabor and Cady [1978] describe the western edge of the Crescent formation in
the Olympic Mountains to be steeply dipping to the east where Tertiary marine
sedimentary rocks are thrust below the Siletz terrane. The resulting uplift is estimated
by Brandon and Calderwood [1990] to be about 10 km. At the eastern edge of
the Olympic Peninsula the Siletz terrane contacts the pre-Tertiary crystalline and
metamorphic rocks which make up the base of the Puget Sound region [MacQueen,



1982]. The contact is covered by a thick layer of glacial sediments [Hall and Othberg,
1974] but there is some constraint on the location from the magnetic data of Stanley
et al. [1992] and the gravity data of Bonini et al. [1974] and Finn [1990].

Cascade Range

The eastern portion of the study area lies on the western flank of the Cascade Moun-
tain Range where volcanics of late Mesozoic to Holocene age over-lie a pre-Tertiary
basement of varied composition. The basement rocks include metamorphic, igneous,
and sedimentary rocks from several exotic crustal terranes [Tabor, 1994]. Accretion
of the Cascade basement was complete by late Cretaceous or earliest Tertiary, af-
ter which these rocks formed the stable framework of the Pacific Northwest margin.
Johnson [1985] describes episodes of significant strike-slip and transtensional deforma-
tion in the Cascade basement during the early to early-middle Tertiary. The present
period of extensive episodic volcanism began during the later Mesozoic [McBirney,
1978]. A thick layer of volcanic rocks dating from the late Eocene or Oligocene to the
present [Stanley, 1984] over-lie the basement. There are a number of exposed plutons
near Mount Rainier [Cowan and Potter, 1986; Walsh, 1987] and also near Mount St.
Helens [Ewvarts et al., 1987].

Puget Lowland

The Puget Lowland is the low-lying region in central western Washington between
the Coast Range and the Cascade Range. This depression is the northern part of
a generally north-south lowland that is almost linear and stretches from Oregon’s
Willamette Valley to the Strait of Georgia in Canada [Johnson et al., 1996]). The
Puget Lowland includes the waterways of the Puget Sound and the major population
concentration within the GPSR. Because the underlying bedrock is covered by a
thick layer of late Tertiary and Quaternary sediment, heavy urban development,



and numerous large waterways it is difficult to ascertain the location of the contact
between the Coast Range province to the west and the Cascade province to the east.

A number of recent papers [e.g. Johnson, 1984; Johnson et al., 1996; Pratt et al.,
1997] have advanced the idea that the Puget Lowland is a long narrow thrust sheet
being pushed to the north. Basins filled with thicker than “normal” accumulations
of sediment under the cities of Chehalis, Olympia, Tacoma, and Seattle are bounded
either by antiforms or thrust faults that form as the thrust sheet is compressed [John-
son, 1985; Pratt et al., 1997]. This is consistent with the north-south major axis of
compression which predominates in crustal earthquakes in the region [Ma et al., 1996].

According to Johnson (1984, 1985], the Puget Lowland is a long narrow thrust
sheet that lies between the right lateral fault system along the western edge of the
Cascade Range (possibly the Straight Creek Fault in figure 1.4) and the right lateral
fault system along the eastern edge of the Olympic Range (Puget Fault in figure 1.4).
Johnson [1984] hypothesizes a right-lateral transcurrent fault which truncates the
former western margin of North America under the Puget Lowland. This fault is
a continuation of the west trending San Juan and the northwest trending Survey
Mountain faults on southern Vancouver Island. These are the faults that separate
the Metchosin formation (the Canadian name for Siletzia) from the rest of Vancouver
Island. Therefore, it is assumed that the continuation of these faults would separate
the Crescent formation (Crescent is the Olympic Peninsula name for Siletzia) from
the basement under the Puget Lowland. Slightly to the east there is right-lateral
motion along another large strike-slip fault system which includes the Straight Creek
fault, the Entiat-Levenworth fault system and the hypothesized Puget fault [Johnson,
1985].

In Washington, the northern end of the thrust sheet may lie at the southern Whid-
bey Island fault zone (SWIF) [Johnson et al., 1996). This structure could serve as a
step-over zone connecting the eastern and the western right lateral faults, terminat-

ing the block caught between these two fault systems systems (the Puget Lowland).
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Kinematically the thrust sheet hypothesis can be explained as a block of crustal
material caught between two right lateral fault systems, with the fault to the west
moving faster than the fault to the east. If the sliver ends at a strong backstop, the
SWIF, then the material to the south starts to pile up near the backstop (much like
a train wreck. Dynamically it is still unclear what drives the right lateral motion.
However, Wang [1996] has modeled subduction zones with oblique convergence and
buttressed ends (such as this one). The results of Wang [1996] indicate than margin
parallel compressive stress increases toward the fixed end of the fore-arc sliver. This
is consistent with kinematic model for the northwestern portion of the U.S. coast
advanced by Wells et al. [1998].

There is a right lateral oblique component to the subduction of the Juan de Fuca
slab, but it unclear how the margin-parallel stress could be transmitted into North

America without also transmitting the margin-perpendicular stress.

1.4 Previous Regional Velocity Studies

1.4.1 1-D Models

It was recognized in early structure studies by Neumann [1957] that an accurate
crustal structure model was necessary for good earthquake locations in western Wash-
ington; although Neumann [1957] recognized that crustal thickness was greater than
“normal” in western Washington; his results were inconclusive with only limited ob-
servational data. Crustal and sub-crustal earthquakes were used by Crosson [1976a, b]
in a formal joint hypocenter/station correction/velocity model inversion to estimate
a one-dimensional (1-D) crustal structure model. This model has a 40km thick crust
and a small low velocity zone near the base of the crust (Table 1.1). A derivative of
this model is still used for routine (PNSN) earthquake locations in the Puget Sound

region.
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Table 1.1: Ps2 1-D Velocity Model

Depth kmn__ P-Velocity 2% S-Velocity &2~

0.0 5.40 3.07
4.0 6.38 3.63
9.0 6.59 3.75
16.0 6.73 3.83
20.0 6.86 3.90
25.0 6.95 3.95
32.0 6.90 3.93
41.0 7.80 4.44

1.4.2 Previous Tomography

The Puget lowland has been the subject of several previous seismic velocity stud-
ies. Lees and Crosson [1989] performed a one step linear tomographic study. The
linear tomographic inversion is limited by the assumption of source locations and
ray-paths that are obtained with the 1-D velocity model. Nevertheless, this initial
study indicated that large 3-D velocity variations exist in the Puget lowland and can
be correlated with local geological structure. For example, the results suggest that
the Crescent terrane (Siletzia) persists to a depth of between 10 to 20 km and forms

the basement beneath the central basin.

More recently, the study region of Moran [1995] (figure 1.1) extends as far north
as the city of Seattle. This is a non-linear tomographic inversion utilizing the method
of Lees and Crosson [1989], but modified to find rays through the perturbed model
using the ray bending technique of Um and Thurber [1987]. However, the Puget
Lowland is on the edge of Moran [1995] region, and tomography studies typically
have poor resolution near the edges. Work in the Puget Sound region by Stanley
[1996] and Villasenor [1996] is at a lower resolution (larger spatial area) than this

study, and is also limited by the inclusion of some earthquakes of low quality.
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1.4.8 Refraction and Reflection Lines

The Puget Sound region has also been the target of several active and passive reflec-
tion and refraction studies aimed at determining the crustal structure. Early work
by Spence et al. [1985] off the Southern tip of Vancouver island was unable to image
the subducting slab, but did provide controls on the dip of oceanic crust and the
distance at which subduction begins in this region, as well as constraining the veloc-
ity gradient beneath the oceanic Moho and the depth of the continental Moho. A
later study by Tabor and Lewis [1986] showed a similar result for the dip of the plate
off the Washington coast and a similar velocity gradient beneath the oceanic Moho
although it was unable to detect the continental Moho, possibly due to a less distinct
transition. Johnson et al. [1994, 1996] and Pratt et al. [1997] studied the structure of

the Puget Lowland during several seismic reflection studies.

Schultz and Crosson [1996] analyzed earthquake arrival times along a profile that
extends from near Hood Canal on the west side of the Puget lowland to Walla Walla in
eastern Washington. The focus of their investigation was the deep structure beneath
the Cascade Range, but the west end of the profile crosses the Puget lowland. The
main result of their research is the discovery of a seismic “root” beneath the Cascade
range, which is postulated to arise from subduction driven magmatic under-plating.
At the west end of this profile, the Moho was interpreted to dip at 4.4° to the east;
numerical experiments with a 1-D inversion suggest that this Moho dip could cause
the apparent low velocity zone at the base of the crust in the 1-D velocity inversions

[e.g. Crosson, 1976b].

‘Two major seismic refraction-wide-angle reflection profiles, in 1991 and 1995, have
been conducted near the edges of our target region. In 1991 the USGS and several
university collaborators conducted a major N-S refraction line along the west margin
of the Cascade Range. Interpretation of data from the 1991 experiment has been
presented in papers by Miller et al. [1998]; Gridley [1993]. The explosion locations
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along the profile are shown in figure 1.1, and these were recorded at a large number
of PNSN stations as well as on temporary recorders deployed for the experiment.
The 1991 experiment provided data to constrain the shallow crustal structure on the
east side of our target quite well, although the deep crustal structure may not be as
well imaged along the entire profile. In 1995, the USGS and university collaborators
conducted an E-W profile about the latitude of Grays Harbor, Washington [Luetgert
et al., 1995; Parsons et al., 1996]. The shot locations for the 1995 profile are also
shown on figure 1.1, and several of the shots were also widely recorded on the PNSN
stations.

In March of 1998 the Puget Sound region was the target of the large-scale active-
source Seismic Hazard in the Puget Sound (SHIPS) project. The source was a large
(6500 in3) airgun array towed off of the University of Washington Research Vessel,
Thomas Thompson. The SHIPS project was a cooperative effort between the United
States Geological Survey (USGS), the University of Washington (UW), the Univer-
sity of Oregon (UO), and the Geological Survey of Canada (GSC). Seismic energy,
provided by the UW Research Vessel Thomas Thompson, was recorded at a tempo-
rary array of ~ 250 seismographs and also at the permanent stations of the PNSN.
Although the data from the temporary deployment is not yet available, the data from
the permanent stations is analyzed in the final chapters of this dissertation to bolster

the resolution of our tomographic model near the surface of the earth.

1.5 Why This Study is Needed

I have undertaken this study to overcome problems with the previous work. Lees
and Crosson [1989] was an excellent first cut at the seismic tomography problem in
the GPSR, but the one-step linear inversion cannot adequately model the expected
high seismic velocity contrasts between the varied geologic units. There are two major

factors that contribute to our ability to generate a higher resolution and more accurate
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model for the seismic velocity in the GPSR since the study of Lees and Crosson [1989].
First, advances in computing power and algorithms have made it possible to use
new techniques, such as the 3-D finite-difference travel-time tomography developed
in this thesis. Second, there is now a much larger database containing both high
quality earthquakes and explosions, including data collected during the recent SHIPS
experiment (discussed in Chapters 6 and 7). While Moran [1995] did perform a
non-linear inversion his focus was on the Mount Rainier area and the resolution is
limited in the GPSR, precisely the region of greatest interest from a seismic hazard
perspective.

The various refraction and reflection studies provide high resolution models but
they are all 2-D studies. The geology changes rapidly in all directions in the GPSR
and a 3-D model is required to gain a regional perspective. This is a particular
problem in the Puget Lowland. There have been a large number of studies [e.g.
Johnson, 1984, 1985] that attempt to interpret large scale features based on small
scale studies. This has made it difficult to form a coherent model for either the
kinematics or the dynamics of the terrane interaction in the region.

Our study provides a high resolution 3-D model of the seismic velocity in the
GPSR. This model can be used for more accurate earthquake location and for eval-
uation of the regional geology and seismic hazards. It is also hoped that the high-
resolution of this study will allow us better formulate kinematic and dynamic models

for the enigmatic Puget Lowland.



15

LY

A
’-

Figure 1.1: (Left) Map of regional seismicity and cross section showing two distinct
seismically active regions in the Puget Sound. The earthquakes in this map are from
the PNSN catalog only, this is not meant to imply that seismicity ends at the Oregon
or Canadian borders. (Right) Map, showing the region of this study. Triangles are the
locations of PNSN seismograph stations. Light circles are well located earthquakes
from the PNSN catalog, scaled by magnitude, and the dark circles are explosions with
known locations. Also shown are the locations of several refraction profiles and other

tomography projects. Maps and cross section created with Xmap8 [Lees, 1995].
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Earthquake Source Cross-sectional Map
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Figure 1.2: Schematic cross section through the Juan de Fuca subduction zone. The
cross section shows the 3 general types of earthquakes that pose a hazard to the

Pacific Northwest; subduction zone, subducted slab, and crustal.



(A) Current Pacific Northwest Tectonics
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(B) Westermn North America Tectonics of
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Figure 1.3: (A) Map, adapted from Riddihough [1984], showing the general tectonics
of Western North America. (B) Map, adapted from Babcock et al. [1992] showing the

geometry of the North American subduction zone 65 Ma.
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Figure 1.4: (Left) Map, modified from Johnson [1985] showing the major geologic
provinces in the region. The three major provinces are: the Coast Range this is shown
on the map as the Coast Range and the Olympic Peninsula; the Puget Lowland; and
the Cascades. The map also shows some known or hypothesized faults. Abbrevi-
ations used on map: B, Bellingham; LRF, Leech River Fault; MR, Mount Rainier;
MSH, Mount Saint Helens; MSB, Mount Stewart Batholith; MV, Mount Vernon; PF,
Puget Fault; SCF, Straight Creek Fault; SE, Seattle; SJF, San Juan Fault; SJI, San
Juan Islands; SMF, Survey Mountain Fault; SWIF, Southern Whidbey Island Fault;
TA, Tacoma,;VI, Vancouver Island. (Right) Cartoon cross section through the Puget
Lowland, showing faults and other structures, bedrock topography, and the major

direction of compression.



Chapter 2

METHOD OF ANALYSIS

2.1 Introduction

The major result in this dissertation is a 3-D image of the P-wave velocity in the
Puget Lowland to a depth of approximately 60 km. This image has been created
using seismic tomography. Seismic tomography is one of the broad class of geophysical
inverse problems. In Greek Tomo means slice and graph means picture. The word
tomography is usually reserved for problems which generate an image, either in 2
or 3 dimensions, by analyzing observations that can be interpreted as path integrals
through the model. This is in contrast to, for example, than an inverse problem which
might try to determine the density profile of the earth through analysis of the mass
and moment of inertia.

This chapter begins with a review of some basic seismological concepts, such as
a ray-path, which are necessary to discuss the tomography problem. Then there are
two examples which serve as building blocks for the main part of the chapter which
describes, in detail, the general mathematics of the seismic tomography problem and

the specific method used to solve the problem in this study.

2.2 Seismology Backgrouﬁd

When the earth ruptures along a fault the elastic wave energy propagates outward
from the source, in wavefronts (surfaces along which the wave motion has the same
phase). The ray-path between the source (called the earthquake hypocenter) and
any other point in the earth can be thought of as the path along which the “signal”
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between the two points travels. In isotropic media ray-paths and wavefronts are
always perpendicular for a particular type of body wave motion (figure 2.1 A). The
travel-time is the amount of time it takes for the signal to move between a specific
source and receiver, and the arrival time at the receiver is the earthquake origin
time plus the travel-time. Then the seismic velocity is the speed at which the signal
propagates, in general a function of position. In seismological problems it is often
more convenient to formulate problems in terms of the slowness, defined as the inverse
of velocity (i.e. time per distance). Fermat’s principle states that a ray-path will be
a stationary point of the travel-time with respect to changes in path. As a simple
example we can use Fermat’s principle to derive Snell’s law which describes the angle
of refraction for a ray traveling through an interface between two materials with
different velocities. Given the geometry in figure 2.1 B, the travel time from point A
to point B is the sum of the path lengths in the two media divided by the velocity
in the respective media

NN e e e
()1 Vo

(2.1)

(see figure 2.1 B for a description of the variables). Since the layers have constant
velocity the only way the path can change is through the intersection point z;. Taking

the derivative

£ _ Ti—Ta _ B — i (2.2)
9w (@i —za)?+ @i —va)?  vay/(z8 — 7:)? + (y5 — )2
Now we can make the substitutions
sin(©,) = oz S
\/(-’EA —z:i)2 + (ya — ¥:)?
sin(©,) = S L (2.3)

\/(1'3 —z:)? +(yp — ¥:)?
and set equation 2.2 equal to zero to find the stationary points. With minor simpli-

fications the result is
sin(©;) _ sin(0,)

o v (2.4)
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Snell’s law.

A major approximation that we make in this study is that the earthquake can be
considered a point source in both space and time. Define this 4 dimensional location
as the earthquake hypocenter. In reality the earthquake takes place on a fault which
occupies a finite amount of space. Furthermore, the fault ruptures over a finite
amount of time. A larger earthquake typically has a larger fault area, and thus it
will occupy more space, and will usually have a longer duration. However, the largest
crustal earthquakes used in this study have magnitude of about 5 with a typical fault
area of 15 km? and a duration of 5 sec [e.g. Dewberry and Crosson, 1996]. Since we
will only be using the first arrival signals (defined momentarily) the duration of the
earthquake is not important. First arrival signals are assumed to originate near the
point of initiation of rupture of an earthquake. Since the stations we are using for
analysis are usually at distances of more than 10 km and the earthquake does not
rupture across the entire fault simultaneously the point source approximation is a
good one.

For any given source receiver geometry, signals can propagate along many different
paths (e.g. reflections or refractions) and can travel in different modes (e.g. P or S-
body waves, surface waves). Both P and S body waves propagate through the interior
of the earth, with P waves traveling faster than S waves. First arriving P waves are
normally observed most accurately, since they arrive before any other complicating
body and surface wave signals. Therefore only P wave observations are used in this
study.

After an earthquake is recorded an analyst picks the arrival-times off the seismo-
gram and these become the observations for the tomography problem. It is often
possible for the analyst to pick several different arrivals from a given earthquake,
however, the first arrival is almost always the least ambiguous since later arrivals
must be picked from within the envelope of energy arriving at the receiver. After

picking, the data are reduced from a recording of the ground motion at the receiving
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seismograph to two numbers, the arrival-time and an associated error estimate.

The result of the tomography prdceﬂs is a 3-D image showing the estimated ve-
locity at which a signal would travel through the earth. This is the seismic velocity
structure of the region containing the sources. Since the data are observations of the

P-wave arrival-time the model is for the P-wave velocity.

2.3 Travel-time Calculation

Solution of any inverse problem requires that we are able to calculate observations
from a given model. In the seismic tomography problem this corresponds to the
calculation of arrival-times given an estimate of the seismic velocity in the region and
the location of the sources (earthquakes) and receivers (seismographs). This is known
as the forward problem for the tomography process. Solution of any inverse problem
first requires that we have a method of performing the forward problem. There are
three common method of calculating seismic arrival-times in a 3-D model; shooting,
bending, and finite-difference methods.

First, the shooting method gets its name from the similarity to a ballistics prob-
lem. The travel-time calculator picks a dip and azimuth and traces a ray through
the model (bending the path to obey Snell’s law at all interfaces). The travel-time
calculator then attempts to adjust the dip and azimuth until the ray connects the
source and receiver (figure 2.3). This method can be used for 2-D problems where
the computation is much simpler since there is only one parameter, the takeoff angle
(dip), to adjust. Shooting has the benefit of being easy to understand and simple to
implement. It has two major flaws, first, there may be more than one ray connecting
the source receiver pair, and only one is the first arrival. In a complicated geometry
it may be difficult to find the one unique ray which represents the first arrival. This
problem is illustrated in figure 2.2, even for this relatively simple geometry the dis-
tance range from 75 — 175 km has multiple arrivals. Figure 2.2 also illustrates the
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second major problem with fhe shooting method, the distance range from 50 — 75 km
at 10 km has almost no arrivals. This figure was produced by shooting rays at in-
crements of =°. In this distance range this increment in takeoff angle produces a
change in the distance traveled by a ray of 5 km. Enefgy from an earthquake does
reach this distance range but because of the approximations used to reach the ray
formulation this portion of the signal is lost.

The second method, ray bending has commonly been used for most tomography
problems. This method starts with a path connecting the source receiver pair which
is not a ray (it is not stationary and it does not obey Snell’s law at interfaces). The
algorithm then attempts to adjust this path into a physical ray. During the adjust-
ment, or bending, process some form of approximation is usually employed. These
methods are usually quite fast, but like the shooting method there is no guarantee
that the path found is the true first arrival path. The approximations inherent to
this method can also result in substantial errors in the calculated times in a complex
geometry. The method of Um and Thurber [1987] is a ray bending method that has
commonly been used in regional tomography problems.

The final method is the one used in this project. A finite-difference scheme [ Vidale,
1990; Hole and Zelt, 1995] is used to calculate the travel-time to every point in a
grid from a given source location. These methods solve the eikonal equation on an
expanding subset of nodes in a box around the source location (see Appendix A
for details of the method). Finite difference methods have the advantages of being
fast (when large numbers of travel-times must be calculated) and accurate. Since
the travel-time is calculated to all points in the grid we can always find a travel-
time between any two points. With finite-difference methods the solution is always
guaranteed to be a global rather than a local extremal path. This is an improvement
over either the bending or the shooting method.

We can divide inverse problems into two broad classes, linear and non-linear. A

linear problem must pass a single test with regards to the changes in the observations



24

when the model changes. First define the functional F as a process which acts on a
given model m to produce an estimated observation. In the case of the seismic to-
mography problem the functional is the travel-time calculator. Then a linear problem
must satisfy

Flom; + fmy] = aF[m;] + SF[m,] (2.5)

where o and f are non-zero scalars [Parker, 1994, p. 11]. Given this definition seismic
tomography, and earthquake location, are non-linear problems.

If we define the forward problem as the prediction of the observations for a given
model then the inverse problem is just the opposite. Given the data, observations
of arrival times at a set of seismograph stations, can we determine the model (the
locations of the earthquakes and the velocity of the earth in the region containing
the earthquakes and the seismographs)? A general framework for solution to a geo-
physical inverse problem was laid out in Backus and Gilbert [1968] but the basic idea
was known well before that, for instance Geiger’s Method of earthquake location has
been used since the early 1900's. It is useful to start with two examples that can be
thought of as building blocks for the full problem and also serve to introduce some

terminology.

2.4 Elementary Examples

2.4.1 Geiger’s Method of Earthquake Location

The earthquake location problem is a geophysical inverse problem in which we con-
sider the hypocenter of the earthquake to be the only unknown. The location of the
seismographs is of course known to the people who do the installation but the deriva-
tion of a velocity model for the earth is a complex problem which we will assume has
already been solved. Since this example relates to the seismic tomography problem
which solves for the P-wave velocity only, we will simplify the problem further by

considering only P-waves (there is only a single velocity model instead of one for each
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type of wave).

This is a non-linear problem, and for any reasonable velocity structure the de-
pendence of the travel-time on the model (the hypocenter location) is a complex one.
Figure 2.2 shows an example of the travel-time as a function of distance from source
to receiver for several event depths using an approximation to the current 1-D velocity
model used by the PNSN in the Puget Sound region (table 1.1). Although there are
alternative methods of solution, here we present a standard perturbation formulation
of the solution known as “Geiger’s Method”. The observations are a vector of arrival
times 7; picked by an analyst; assume there are p picks. We start with a guess for an
initial hypocenter

~ - -
m
m®=| " (2.6)
m3
-m4 -
where
m = (27)
M, = Yy
mg = 2
mg = ¢t

are the hypocenter parameters; z, y, and z are the Cartesian coordinates and # is the
earthquake origin time.
Then the estimated travel-time from the hypocenter to the ith station is given by

a functional (the travel-time calculator) acting on the starting model
F=TimO); i=1,..p (2.8)

Here, of course, the functional also includes information relating to the velocity model

and station location. Now, the residual for the ith station is defined as the observed
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arrival time minus the calculated arrival time
ri=Ti—T;i=1,.p (2.9)

Clearly if the r; are small, then the predicted arrival-times closely match the ob-
served arrival-times and we consider that the solution is good. Conversely, if the r; are
large, then the predicted arrival-times are a poor match to the observed arrival-times
and the solution is likely to be far from the “true” earthquake location. However,
caution should be taken in interpreting residuals. For example, if there are only four
independent observations, then in general a solution can always be found which re-
duces all residuals to zero. This does not mean that the solution in this case is exact.
Similarly, in the case of a large number of observations the residual vector can never
be reduced to zero length due to velocity model errors and observational uncertainty.

Finding the earthquake location involves finding the model that reduces some
measure of the residual vector (a vector of the r; across the p stations recording the
event). The “standard” method of earthquake location minimizes the L, norm of the

residual vector
p
Loy=>)r? (2.10)

=1

Since this is the best analogy to the method used later in the seismic tomography
problem it is the convention that I will follow here.
Considering the arrival-time problem in isolation, it is possible to expand the

arrival-time evaluated at an arbitrary model m about m(®

4 a7
Tim] = T;im@] + }° El dmy + higher order terms (2.11)
=1 Omi Im©@
where
dm =m — m©® (2.12)

Assuming that a travel-time calculation algorithm is a good approximation to the
actual travel-time function the partial derivatives may be found analytically dur-

ing the calculation of the travel-times or if all else fails they can be approximated
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empirically by perturbing the model parameters. The choice depends on the exact
implementation of the model and the algorithm used to calculate the arrival time.

Now associate the observations with the “true” arrival-times, and the arrival-time
calculator for the initial model with the “estimated” arrival time. Equations 2.9
and 2.11 may be combined to give

>, 9T,

— dmg; i=1.p (2.13)
=1 O

mf9)

ri=

In this equation we have neglected higher order terms involving squares and higher
powers of dm. This neglect is valid if m(® is close to the true model. Equation 2.13
represents a set of p equations in 4 unknowns representing the perturbation from the
present model (m(®) to the true model (m). Since this system of equations represent
only a linear approximation to a non-linear problem, we cannot expect to solve for
the true earthquake hypocenter directly.

We can restate the system of p equations in a single matrix equation by defining

T an an an
omil @ Om2]| ) Bma| ) Imi|
K143 o [:/3 % L
J= &my m( &mg m(©) dmg3 m(©) émgy m(® (21 4)
K253 (253 T (253
[ 0™ me O™ 0 Om3| ) Om4| ) |
Then if we could solve the equation
Jim=r (2.15)

the model m©® + ém would (to the limits of the linearization) result in a residual
vector with a magnitude of zero. In all practical cases there are more stations than
the four model parameters so equation 2.15 does not, in general, have a solution.

However, if we solve the corresponding normal equations

J:I6m = J'r (2.16)
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we end up with the model which produces the minimum L, norm of the residual
vector [Press et al., 1986, p. 511].

Since equation 2.11 is based on a linearization of the full travel-time equation one
iteration of equation 2.16 will not, in general, provide a good solution to this problem.
However, if we perform a loop, repeatedly solving equation 2.16 and then recalculating
the travel-times we should approach the best solution for the earthquake hypocenter
location. In practice, although we have more equations than unknowns in the matrix
(equation 2.14) there are often very low eigenvalues in the normal matrix JtJ. This
is commonly manifested as a “tradeoff” between the origin time and the earthquake
depth. To reduce the effects of small eigenvalues some form of Levenburg-Marquardt

damping is usually used during on each iteration.

2.4.2 The Linear Seismic Tomography Problem

This example will show a very simplified 2-D seismic tomography problem. In order
to simplify the problem we will make 2 major assumptions (neither one of which is
very good in the real world). (1) Assume there are sources and receivers with known
locations distributed around the edge of the space we are interested in. (2) Assume
all the ray paths are straight lines that do not obey Snell’s law. Taken together these

two assumptions, known sources and straight ray-paths, make this a linear problem.

The model is broken up into a set of cells and each is assigned a variable describing
the inverse of it’s velocity known as the slowness. The contribution of each cell to
the travel-time of a specific ray is just the ray length in that cell multiplied by the
slowness. Since we have control over the source and the receiver locations we can select
rays to form a complete system of equations and then solve for the characteristics of
each cell based on the ray lengths and the values of all the rays. For the four node
four ray system shown in figure 2.4, define the travel-time of the ith ray as t;, the
slowness of the jth cell as s; and the path length of the ith ray in the jth cell as B;;.
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Then the geometry in figure 2.4 leads to 4 equations in 4 unknowns

ti = Pus+ Pase
ta = Py3s3+ Pyysy
i3 = P382+ Pysy

ts = Pyosy+ Py3sz+ Pys, (2.17)
This can also be expressed in a matrix form as
As=t (2.18)

if we define the quantities

A=| (2.19)

| Pu Pio Py3 Py |

where, in this case, almost half of the P;; are exactly zero.
The assumptions made at the beginning of this example make this a linear and
fully constrained problem. Therefore, solution of equation 2.18 provides a model

which exactly fits the data in one step, there is no need for iteration.
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2.5 Non-Linear 3-D Seismic Tomography

The full non-linear seismic tomography problem is considerably more difficult for
three reasons. (1) The medium properties vary strongly so that seismic source travel-
times are predicted by rays that may be strongly curved in the earth. (2) In regional
seismic tomography the receivers are only on one side of the model (at or very close
to the surface of the earth). (3) The source and receiver geometry is very sparse and
irregular. In fact many (or all) of the source locations (hypocenters) are unknown

and must be determined as part of the model.

2.5.1 The Forward Problem

Assume we have g sources (earthquakes) each recorded at p receivers (seismographs).
For simplicity of notation assume all sources are recorded at all receivers. From each
recording we extract the P-wave travel time. We define the observed arrival time
from the ith earthquake to the jth seismograph as 7. The notation 7;; is somewhat
confusing; this actually represents a vector of length 7 by j not a matrix. We also
define -
Z;
xi=| % (2.20)
2

Ti

as the set of four dimensional earthquake location (the hypocenter) of the ith earth-

quake. Then the arrival time of a seismic signal can be written as

1
CRL L G4 (2:21)

where v(£) is the true earth seismic velocity as a function of position and [ is the
minimum travel-time path of the signal from the earthquake hypocenter to the seis-
mograph station (the ray-path). The ray-path depends on both the velocity structure
of the earth and the location of the hypocenter.
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It is convenient to define our model in terms of the inverse of velocity, s = 1,

termed the slowness. The slowness as a function of position, s(§), is approximated;
since we cannot define the slowness at every location in the earth we choose to define

it a set of n known points on a regular grid,

S1
s=| " (2.22)

Sn

=Y -

The slowness at any point within the model is then given by tri-linear interpolation
using the 8 nodes surrounding any point that lies within the model. If we define c;(¢)
as the interpolation coefficient for the kth node for a point £ (for any given £ only 8

of the c; will be non-zero). Then we can write

56 = 3" scel®) (2.23)
k=1

this is the relationship between the discretized slowness model and an estimate for
the true slowness at the point £.

This is one of three common methods to approximate a complex earth with a finite
number of variables, the other two are: (1) expansion in orthogonal functions. This
method is often used by the global seismological community for the definition of 3-D
whole earth velocity models where the expansion functions are spherical harmonics.
(2) The representation by 3-D constant velocity blocks or voxels. The voxel and the
node methods are similar but there are important differences. The voxel method
can represent a true discontinuity in the slowness field but can only approximate a
continuous field; the node method with linear interpolation can represent a continuous
field but can only approximate a discontinuity through a high gradient across a small
distance (figure 2.5).

We now define the full model as the combination of the slowness model and the
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unknown hypocenters

X1
m=| x, (2.24)

Xq

Notice that this is single vector of length n + 4q. The arrival-time for the ith event
at the jth station can be approximated as a function of m which is accurate to the
degree that our discrete model representation (s) and the hypocenter assumptions

match the real earth.
Ti=Tym]; i=1,..p; j=1,..q (2.25)

m is the full model including both the discrete approximation to the slowness of the
earth and the hypocenter coordinates; and T};[m)] is a functional which calculates the
seismic travel-time based on the model (and also incorporating known portions of the
model such as the receiver locations); and 7; is an estimate for the arrival time from

the ith earthquake to the jth seismograph based on the current model.

2.5.2 Inverse Problem

The inverse problem is defined as the construction of a model that fits a set of
observational data in a prescribed manner. There are many ways in which an inverse
model can be constructed including selection from a randomly generated set of models
(so-called “Monte Carlo” methods) and systematic generation using linear analysis
methods. The earth may be thought of as comprising a highly complex system
requiring a large number of “parameters” to describe. In fact the real earth is complex
on so many different length scales that the description of any significant volume of the
earth would effectively require an enumerable number of parameters. On the other

hand our observational capability is quite limited and based on a relatively small
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number of observations. Therefore we can not expect to determine (or “invert” for)
every detail of the earth structure. We see some necessarily simplified version of the
true earth that adequately explains our observations.

In seeking our inverse model we may impose various constraints; for example,
we may require that the P-wave velocity (or slowness) at a point- in the model ap-
proximate an appropriate weighted average of the true earth over some volume taken
about the observation point. This type of constraint is an example of a “smoothing
constraint”.

In the travel-time problem as noted earlier, the observed travel-times are not
a linear function of slowness structure or hypocenter parameters. As a result, we
cannot formulate a linear approximation to the inverse problem that will allow us
to compute the inverse model in one step. Therefore, a perturbation formulation is
required which allows us to compute an improved model (in the sense of fitting the
data better) from an existing approximation.

The “model” in our problem comprises a finite number of numerical parameters
describing the P-wave slowness and hypocenters of the events within our model space.
The model space is the 3-D volume of the earth within which we will estimate the
slowness and hypocenter parameters. Define an initial reference model estimate, m(©,
which is a composite vector of model and hypocenter sub-vectors
[ s©@

X0

m® = | x® (2.26)

0
where s is the model vector and x; are the hypocenter vectors. For the tomography
problem the starting model can be obtained from an existing 1-D model or may be a
3-D model derived from earlier work [e.g. Symons and Crosson, 1995a]. Depending on

whether we are calculating travel-time (using a finite difference method) or whether



we are estimating the slowness values, we are free to use different parameterizations or
coarseness of grid spacing in the slowness representation. This is an important detail
in practice which can be ignored at this point in the mathematical formulation.

If we perform a Taylor expansion about the reference model m(®, then equa-

tion 2.25 becomes

T;j[m] = T;;[m@] + niiq OT;
ij = 4ij = amk

© dmyg + higher order terms (2.27)
m

where dm;. is the change in the kth model parameter, %ﬁ- © is a derivative relating
m 0

changes in the kth model parameter to changes in the calculated arrival-time of the

ith event at the jth station.

Now, we can define the residual as the observed minus the calculated arrival time
Tij = Tij — 750 (2.28)

and, substituting equation 2.27 into equation 2.28 for Tij, to first order

n+4
q aq';_]
=1 O

rij = (2.29)

m(0)

If we define the residual vector

11

T1,2

r=|r, (2.30)

T2,1

Ta.p




35

and the Jacobian matrix

Omy @ Oma| Omnitq | (0)
omy m© M2 m(0) Omntaq m(0)
J=| &= Tip ee. Tp (2.31)
Omil @ %Mz o Omnieq | (0)
omy m©® M2 0 Omntaq m(0)
i 87711 m(o) 87712 m(o) a"‘nﬂq m(o) j

Then, to the limitations of the linearization approximation, if there is a solution to

the equation

Jim=r (2.32)

m® + ém will precisely fit the data.

As with the Geiger’s method example, since equation 2.32 is only a linearization of
the full problem, finding a model requires a number of iterations. On each iteration
we calculate travel-times and residuals using the non-linear calculator then solve
equation 2.32 and update the model. As the model gets closer to the “true earth” the

linearization approximation gets better and the calculated perturbations get smaller.

Computation of the Frechét Kernels

The partial derivatives are also known as Frechét kernels: ?—T—'J; is the derivative of the
arrival time of the ith earthquake at the jth station with respect to the kth model
parameter. An obvious, but very inefficient, method of approximating the kernels is
by a forward difference operator in which individual model parameters are changed
and travel-times are recalculated.This method has been used for small 2-D problems
[Ammon and Vidale, 1993], but it rapidly becomes intractable for larger 2-D or for

any 3-D problems since the number of parameters grows rapidly for larger problems,
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we would have to perturb ~ 100, 000 individual parameters, and recalculate ~ 50, 000
travel-times for each perturbation.

The solution adopted here is to use a semi-analytical approach based on ray theory.
Finding the ray-path is normally a difficult problem in it’s own right. It is done by
either the shooting or the bending method of finding a seismic travel-time. In this
case, however, the finite difference travel-time calculator (FDTT) has already done
most of the work; the travel-time has been calculated to all of the model space, and
surfaces with equal travel-time are analogous to wavefronts. Since the ray-path is
always perpendicular to the wavefronts, if we start from the receiver the quickest way
to the source is just the negative gradient of the travel-time field (figure 2.6). Since
the travel-times are calculated on a finite difference grid we can use a numerical first
difference operator to find the gradient at any point. We can then take a small step
in the direction of the negative gradient and repeat the process, building up the ray-
path as a set of straight line segments as we go (figure 2.7). Fermat’s Principle states
that the travel-time is stationary with respect to small changes in the ray-path. This
implies that to first order, travel-time perturbations depend only on velocity model
perturbations, not on ray-path perturbations. A small change in velocity will not
move the ray-path and the change in travel-time is just the product of the length
of the segment and the change in slowness along the segment. If the segments are
short then the velocity of a segment is approximately constant and the slowness of
the segment is just the slowness at the center of the segment as determined by tri-
linear interpolation from the 8 nodes surrounding the point. If the center of the mth
segment is at the point €, then we use equation 2.23 and the Frechét kernels are the

products of the ray segment length and the interpolation coefficients.

T _ <~ 6
e _n.z;ll"‘ ce(€_) (2.33)

where [{7) is the path length of the mth segment of the ray between the ith earthquake
and the jth station; and ck(§,.) is the interpolation coefficient for of the kth model
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parameter for the mth segment.

In practice I have found that Tlﬁ of a cell side length is a good value for the length
of the segments. There is an important distinction to be made here between the grid
used to calculate the travel-times and the grid used to perform the inversion. The
travel-time gradients are calculated using the travel-time grid but the Frechét kernels

are accumulated segment by segment on the inversion grid.

External Constraints

In the same manner we can add external constraints, based on known velocities from
wells or refraction profiles. Assume we have u constraints, the sth constraint is for a
slowness of V; at location §_. Then if the current model is m®®, with elements m®,

we can calculate the slowness at i with the current model

Vim®] = z"j ck(€,)m (2.34)
k=1

Equation 2.34 is linear and has the analytic derivative

v
mg

= Cr (é) (2.35)

m(0)

so the slowness for a model, m, can be expressed exactly in a linear expansion

Wlm] = Vm®] + 3 2%

k=1

m(0)

where as previously ém = m — m(®. If we define the residual for the ith external
constraint as §V; = Vi[m] — V;[m®] then a re-arrangement of equation 2.36 yields
a linear equation to eliminate the external constraint residuals by perturbing the

current model

svi=3 2%

Sma (2.37)
k=1 M

m(0)

Each external constraint generates a single equation of this form.
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Matriz Formulation

We can combine the ray and the external constraints into a single matrix equation.

Recall that there are n slowness parameters in the model and 4q hypocenter param-

eters (equations 2.20 and 2.22).

(2.38)

 Pmarere

I any ., . 8my dma ... _8mu 0
om, mn  8mn4a OMmagty
9np,  Onp Omp . _9mp 0
om, dmn  Omaq Oy
om...0m 0 0 B . _6my 0
dmy mn OMmpnys Omn g
8rp, . 8 g 0 Omp | 8mp 0
om, omn mnis dmnis

I=|:

Lar T o R 0 01q1
amy émn Omaitaq+1
8_1’22.. . .QT.S.B. 0 0 87¢p
ém; 8ma OMmaigqs1
v, .. 8% 0
dmy Smn
v . .8V 0

| Om,y omn

If the matrix equation
r=Jém

(2.39)

has a solution, then m(® + ém will simultaneously satisfy all of the observations (to

the limits of the linearization in equation 2.29). Of course since the linearization is

only an approximation we are required to iterate to a solution.

Weighting of Equations

In the final solution the data will not be perfectly fit and it is desirable to weight

the rows of equation 2.39 so some rays are preferentially fit over others. At the time
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an event is picked all picks are assigned a numerical factor according to the analysts
confidence in the true location of the pick. Most seismographs operated by the PNSN
are digitized with a 100H z sample frequency and so the minimum confidence interval
is 0.01s. However, most arrivals cannot be picked to nearly this precision and the
confidence interval will almost always be higher than this. We also wish to weight
the events, events with many picks are better located than events with few picks but
some of the picks may contain redundant information. To weight the individual picks
we pre-multiply equation 2.39 by a diagonal weighting matrix,

- . -
wigT O 0
0 1U1“—:"-2- 0 0
W= 0 0 wizl=" 0 0 0 (2.40)
1
0 se- 0 0 'lem 0 0
L 0 o 0 wmllmnm J

where w; is the weighting adjustment for the ith event, and y; j is the analyst picked
error for the jth pick in the ithe event. If all of the w; are 1, then the picks are
just inversely weighted by their error and the events are weighted by the cumulative
inverse error of their picks. If the w; are Eﬁ% then events with more picks are nor-
malized with respect to events with fewer picks. The optimal weight could seem to be
somewhere in-between these two extremes, but numerical experiments have indicated
little difference between the final model inverted using these two end members so
we have chosen to use the former option. After pre-multiplication by the weighting

matrix the equation 2.39 is transformed to

Wr = WJém (2.41)

2.5.8 Regularization

In general, Equation 2.39 will be inconsistent (not all equations can be simultaneously

satisfied) and under-constrained (some model parameters will not be constrained by
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the equations). Mathematically this is manifested by the non-existence of J~!. The
normal approach taken in tomography is the application of additional constraints
to coerce the system to fit some a priori assumptions in the absence of data to the
contrary, this process is known as “regularization”. We use the common method of
looking for the smoothest model [Lees and Crosson, 1990]. This can be thought of
as an application of Occam'’s Razer [Constable et al., 1987], the result is the simplest
possible model consistent with a prescribed fit to the data. The true earth is certainly
more complex, but it must have at least as much structure as the model we generate.

A smoothness constraint is applied by requiring the discrete Laplacian operator

ViisereteMigie = (Mi1 ik — 2Mijk +Miy1 i) + (2.42)
(Mij—1k — 2Mi 5k + My jr1e) +

at every point in the model to be small; for a totally smooth model the second
derivative would be zero at every node. The factor a multiplying the last term of
Equation 2.43 allows for the introduction of an anisotropic operator. We think of the
Laplacian as a filter on the model [Crosson and Lees, 1989), the filter passes the high
wavenumber portion and this is minimized by the regularization equations. Setting a
to one results in a filter symmetric along the coordinate axes (figure 2.8 1a-c); setting a
to zero results in a 2-D filter, with adjacent layers of the model completely de-coupled;
any value between one and zero results in an anisotropic operator (figure 2.8 2a-c)
which allows more model variability in the vertical direction than in the horizontal
directions. The true Laplacian operator is symmetric in all dimensions while the
seven point operator (Equation 2.43) has higher smoothing along the three coordinate
axes. A 27 point discrete operator including cross terms can be made which is almost
completely symmetric (figure 2.8 3a-c). Numerical experiments with this data set
indicate that the 27 point operator produces a result that is no different from the seven

point operator. However, since the smoothing for the 7 point operator is strongest
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. along the coordinate axes, which are typically aligned in the horizontal and vertical
directions, models with strong diagonal structure might require the full operator.

There are two common approaches to generating a smooth model: (1) creeping:
start with a smooth model and add smooth perturbations (ém from Equation 2.39)
on every iteration; (2) jumping: we start with any model and attempt to generate a
solution that removes existing roughness from the final model [Chapman and Orcutt,
1985]. Jumping is the strongly preferred method for this problem since the ray-paths
change from one iteration to the next and smoothness of the final model is paramount.
If we use creeping it is possible to introduce structure into the model in places where
it is not required by the final model (figure 2.7). With the jumping formulation any
unnecessary structure is immediately removed from the model.

After the addition of the jumping version of the regularization constraints we solve

the modified problem

wJ Wr
om = (2.43)
AL —-Ab

where A is an arbitrary regularization weighting factor, L is the regularization matrix,

and b is the roughness of the existing model obtained from

b =Lm©® (2.44)

2.5.4 Solution of the System

A graphic view of the complete matrix system is shown in figure 2.9. A typical in-
version with 2991 events and an inversion grid spacing of 4 km horizontal by 2 km
vertical yields a model with 144, 144 nodes and 11,964 free hypocenter coordinates.
The events generate 51,809 rays and with the addition of the regularization con-
straints the total system is 207,543 equations for 156,108 variables for a total of
32,399, 122, 644 elements in the matrix. This system would be impossible to store,

let alone solve, on any present computer; however, only 7,257,455 elements in the
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matrix have non-zero values for a sparsity of 99.98% (only 0.02% of the elements
are non-zero). The system is solved iteratively using the Conjugate Gradient Least
Squares method [Paige and Saunders, 1982] which allows solution without storing
the full matrix or forming the normal equations.

After solution of Equation 2.43 we update the model using
m™ = 4dm® + m® (2.45)

where p is a weight factor. The solution is initially tried with a u of one and the norm
of the system is checked. Since the matrix equation is only a linearization of the true
system there is no guarantee that the solution will improve the fit of the model to
the data. However, there must exist a value of x which does improve the overall fit
of the model [Parker, 1994] unless we have reached an exact local minimum for the
non-linear system in which case the norm of the solution vector should be very small.

At the end of each iteration we examine the norm of the solution vector. If the
norm falls below a specified value, typically on the order of 1, we consider the solution
to have converged to a local minima. There can be no guarantee in a non-linear
problem that a global minimum is found.

See Appendix B for a pseudo-code implementation of the code used to solve the

full non-linear seismic tomography problem in this research.

2.6 Resolution

There is an eloquent statement of the problem of model resolution in Parker [1994].
“When we are confronted with a solution to an inverse problem deliberately built to
be as featureless as possible ... we are entitled to ask whether the flat places are merely
manifestations of our ignorance of the true structure. If the inversion process is in
principle incapable of creating undulations or other structure with a scale finer than
that of the constant plateau, this must cast doubt on the necessity of a featureless

zone. The alternative is of course that the Earth really is quite smooth in those
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regions.” Parker [1994] also lays out a qualitative scheme to determine the resolution
of a particular data set to specific model features in a linear inverse problem which we
call the “spike test”. First we create an artificial model chosen to be a delta function
(or a close approximation) at some point. We solve the forward problem and create
synthetic data based on this artificial model. Then we invert the synthetic data and
see the smallest-scale feature allowed to appear in the model with the current value
of the regularization. Parker [1994] calls this the resolving function. The width to
which this function spreads out tells the scale of resolution for the problem at the
point tested.

In the case of the tomography problem we have to make one minor change to this
methodology. It would make no sense to define a model which is a delta function, but
we can add an approximate delta function as a perturbation to an existing model.
Since the portions of the model sampled by the data change as the model changes
(the rays take different paths) it is important that the perturbation be small relative
to the base model. It is also clear that the resolution varies with the model we choose
as well as with position. For example if we choose a constant velocity half-space
as the base model, the ray-paths will be nearly straight lines (slightly bent by the
perturbation). These rays would sample very different parts of space than rays in a
model with large velocity contrasts and sharply bent rays. For this reason, we always
perform a resolution analysis after we have chosen a best model, then a perturbation
is added to that model. We calculate arrival-times using the finite-difference travel-
time calculator and these calculated times become the synthetic data. We invert for
a model using the synthetic data and subtract the starting model. We then compare
the resulting difference to the perturbation to get an approximation to the resolving
function.

The model covers a large amount of space and it is impractical to perform res-
olution tests over the full space of the model. However, we can approximate the

functionality of the “spike test” by applying a variable perturbation across the entire



model. Spakman and Nolet [1988] call this a checkerboard test. If we can recover a
checkerboard perturbation in a specific portion of the model than we can assume the

data is able to resolve features of that size in that area of the model.

2.7 Error Analysis

A fundamental feature of smoothest model inversions such as this one is that any
model which fits the data to the same or better tolerance than the one we select
must have at least as much structure as the model we present [Constable et al., 1987],
however, there is no guarantee that the structure will be the same as in the model we
select. Since we will take the step of interpreting the features of the model in terms
of the geologic structures they represent it is necessary to quantify how the model
features depend on the methodology and possible errors in the inversion. In this
section I explore two methods on analyzing the “robustness” of a model. A jackknife
test is used to assess the dependence of model features on specific portions of the
data. And a suite of different starting models are used to check for the existence of

local minima in the model and possible different interpretations of the results.

2.7.1 The Jackknife Test

A simple and intuitive, if inefficient, method of determining the dependence of a
non-linear model on the data would be to perturb each individual data point and re-
derive the model. We could then empirically construct an nxm (n number of data, m
number of model parameters) matrix showing how each model parameter depended
on each data point (the variance—co-variance matrix). If we have structures that
depend on one, or a very few, data points, then care must be taken in interpretation
of those features, we can only be as sure of them as we are of the small amount of
data that indicates their existence. Unfortunately in a model with ~ 50,000 data

points that takes on the order of a day to invert, it is impractical to take this limiting
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case and individually perturb each data point.

The simple jackknife test [Efron and Tibshirani, 1993] is a method of approxi-
mating this functionality. If we have a sample x = (z;, z2, ..-z,) and a functional F’
which transforms the data into a model parameter © = F[x]. Then the jackknife is

formed from samples that leave out one observation at a time
X)) = (Z1,Z2, - Tic1, Tig1, ---Tn) (2.46)

Then
O = Flx) (2.47)

is the ith jackknife replication of ©. And the jackknife estimate of the standard error
of © is defined by

1

8€jack = [n ; - Y (O — 9)2J : (2.48)

n

Of course this still requires us to perform n iterations of the inversion process to cal-
culate this estimate of the error. However, Efron and Tibshirani [1993] show that this
estimate can fail for some data. A better estimate is the “delete-d jackknife”; instead
of leaving out 1 observation at a time we leave out d observations. Unfortunately
there is little guidance for the magnitude of d. It should be greater than /7 but less
than n. Using the delete-d jackknife the estimate of the standard error is

z

Rijack = | — —nd > (&) - ©)° (2.49)
)

where ( . ) is the binomial coefficient (n taken d times), O is F of the data with d
elements removed. In terms of the number of iterations that must be performed this is
even worse than equation 2.48 since ( 0 ) (the permutations of removing d elements
from a set of n) is much greater than n. However, Efron and Tibshirani [1993] also

state that we can just use a randomly selected subset of the ( i ) permutations. In
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this case the delete-d jackknife estimate of the standard error is

n—d
dm

SO —e)zr (2.50)

§Ed—jack = l:

where m is the number of iterations that are performed.

2.7.2 Starting Models

Another fundamental problem with any non-linear problem is the possible existence
of multiple minima for the residual vector length. In figure 2.10 I illustrate this
problem for a simple two variable model. In the case of a linear problem there will
always be a single minima. If we use the perturbation formulation (equation 2.29)
then any starting point will eventually lead to this single minima. However, in the
non-linear case there are potentially a multitude of minima. Two different start-
ing models, which can be arbitrarily close together, can lead to radically different
solutions (figure 2.10 B).

In order to explore the possible effect of local minima and starting model on this
problem I will try a number of possible starting models and examine the solutions
resulting from each. The three most instructive starting models are; (1) a 6 %
half-space. This is the “worst” starting model, it is used to see if the problem will
converge to reasonable solution in this region with the available data set. (2) the
PNSN standard model (table 1.1), this is the model that was used for the initial
location of all of these earthquakes. Derivation of this model is detailed in Crosson
[1976a, b]. And (3), a 1-D model inverted using a subset of the best of the data that
are used for the full tomography problem, this is the “best” starting model for this

data set.
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(A) Relationship between the source, receiver, wavefronts, and ray path. The wavefronts
propagate outwards from the source. The raypath is always perpendicular to the wavefronts and is

the path that the signal travels between the source and the receiver.
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(B) Geometry for the derivation of Snell’s law using Fermat’s principle.
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Figure 2.1: (A) Hypothetical wavefronts and ray-path for a specific source-receiver
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geometry. (B) Geometry for the derivation of Snell’s law from Fermat’s Principle,

derivation discussed in text.
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Figure 2.2: Examples of travel-time as function of distance between hypocenter and

receiver for hypocenter depths of 5, 10, and 35 km.
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Shooting

Figure 2.3: Figure showing three methods of calculating travel times. (A) Shooting
method, dip (and azimuth in 3-D case) are adjusted until ray connects source and
reliever. (B) Bending method, a path is adjusted until it is a ray-path. (C) Finite-

difference method, times are calculated to all points on a 3-D grid.
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Figure 2.4: Illustration of the linear tomography problem. The problem is linear since

the rays are straight lines and the source locations are known.
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Figure 2.5: Figure showing the models resulting from the 1-D analog of a nodal and a
voxel view of a discretized model. Note that the nodal model represents a continuous

field while the voxel (in this case pixel) view represents a series of dis-continuities).



Figure 2.6: Illustration of mountain analogy. To climb the mountain just go uphill, -
this is the equivalent of finding the ray by back tracing the gradient of the travel-time.
To get down the mountain and end up in a specific place is much harder, we do not

know which direction to go.
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Figure 2.7: Cross section showing a calculated travel-time field and the resulting ray
(black ray). Note that the the travel-time minimum is at the station and the gradient
of the travel-time (red arrows) always shows the quickest way back to the station.
A ray from an event at the same location with an earlier velocity model is shown in

green.
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Figure 2.8: (A) Contour plots of 3-D Fourier transform of isotropic Laplacian filter.
High wave-numbers are in the middle of the transform and low wave-numbers are on
the edges. (B) Contour plots of the transform of an anisotropic filter. (C) Plots of a

27 point fully isotropic discrete Laplacian operator.
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Figure 2.9: Graphic view of the the completely assembled matrix equation illustrating:
1) the sensitivity portion made up of 1a) the slowness sensitivities (all positive) and
1b) the hypocenter sensitivities. 2) the regularization made up of 2a) the slowness
Laplacian regularization and 2b) a simple Levenburg-Marquardt regularization to
stabilize hypocenter locations. 3) The ray residuals. and 4a) The jumping constraints
designed to remove existing roughness from the model. 4b) zero values corresponding

to the Levenburg-Marquardt hypocenter stabilization.
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(A) Linear Problem (B) Non-linear Problem

Figure 2.10: The solution to a linear problem will always have a single minima (left).
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A non-linear problem may have multiple local minima and the starting point can

have an effect on choice of final models.



Chapter 3

DATA

"This chapter is a description of the data set used to perform a seismic tomography
inversion for the GPSR. The data are derived primarily from earthquakes recorded
by the Pacific Northwest Seismograph Network (PNSN). Two basic data sets are an-
alyzed. The first data set, which we will label the complete data set (CDS), includes
observations of phase arrival-times that are routinely performed by staff seismolog-
ical analysts. These observations were un-reviewed and were selected using specific
quality requirements. The second data set, the high quality data set (HQDS), is
generally a subset of the CDS which has been selected for the very highest qual-
ity with as much redundancy as possible removed. The HQDS has been completely
re-picked and re-analyzed for comsistency. Both data sets also include explosions
with known hypocenters and external constraint data provided by a 2-D wide angle

refraction/reflection line through the eastern part of the study area.

3.1 Seismic Data

The study area (figure 3.1) includes a total of about 100 seismographs operated at
various times since 1980. Most are permanent stations of the PNSN. The PNSN is
jointly funded by the USGS, DOE, and the State of Washington and monitors seismic
activity throughout Washington and in parts of Oregon and Idaho.

Most PNSN seismographs are telemetered to the UW in a multiplexed analog
format over phone lines, VHF radio, or microwave links. At the UW the signals are

de-multiplexed and digitized at a 100 Hz sample rate. At present, incoming signals



are monitored by a local variant of the Earthworm computer program [Johnson et al.,
1995]. Other digital acquisition systems have been used during various periods since
1980. All work in basically the same manner. Events are detected based on a change
in ratio of the short term average (STA) and long term average (LTA) values of
the incoming signals. When an event is detected on an appropriate distribution of
stations, the system records all available incoming signals until the STA/LTA ratio
decreases below some cutoff value. The event is then available to an analyst. If the
event is an earthquake the analyst makes preliminary picks of the arrival-times of
P-wave and S-wave phases. If the event is of a moderate to large size (> 3.0 M) the
analyst can sometimes obtain additional data from PNSN broadband stations that
are not continuously telemetered or seismographs maintained by other organizations
such as the Canadian National Seismograph Network at this time. This analysis
produces observed arrival-times and associated errors from the original data.

The seismic data used in this project has all been collected by the PNSN since
1980; prior to 1980 the PNSN data were recorded in an analog format which was of
a lower quality than the more recent digital data. Furthermore, the earlier analog
records cannot easily be checked for accuracy. Since 1980, the PNSN has recorded a

total of approximately 8000 earthquakes within this region.

3.1.1 Construction of CDS

The CDS was selected from a research data set from the PNSN data maintained by
Professor Robert Crosson. Cross checks were carried out with the master catalog for
the PNSN to ensure that significant data were not overlooked.

In order to select earthquakes with well constrained locations, I included events
within the study region that meet the following criteria in the initial data set desig-
nated CDS. (1) Events with a magnitude of greater than or equal to 2.5 M.. There
are 421 events of this size. (2) Events with at least 10 P-picks and having both
“quality factors” B or better. Quality B translates to a maximum RMS of 0.3, a
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maximum horizontal error of 2.5 km, a maximum vertical error of 5.0 km, a maxi-
mum gap of 135°, and a maximum distance to the nearest station of twice the event
depth or 10 km whichever is greater. There are 2360 events that meet this criteria.
(3) Events with more than 20 P-picks. There are 1858 events that meet this criteria.
Some events may meet two or even all three criteria, the union of all these subsets

consisted of 3429 earthquakes.

3.1.2 FEarthquake Relocation

Routine earthquake location for the PNSN is done using a variation of Geiger's
method and a 1-D velocity model with station corrections [Crosson, 1976b]. The 1-D
model is parameterized as a set of constant velocity layers with discrete boundaries.
Since the layered model is significantly different from the 3-D node parameterization
used in the tomographic inversion, it is advantageous to relocate the earthquakes with
a method tailored to work with the 3-D model. Nelson and Vidale [1990] have shown
how earthquakes can be located without the need for iteration required by Geiger's
method. Travel-times are calculated from each station to every point in the model
using a finite-difference travel-time calculator (FDTT). Then a grid search can be
conducted to minimize errors in the calculated arrival-times. This method was also
used by Symons and Crosson [1995b] to relocate earthquakes in the GPSR. Since
the entire model is searched for the best location, this has the additional benefit of
eliminating the possibility of finding a local rather than a global minimum for the
earthquake hypocenter.

Since all earthquakes used in this study have more picks than there are free
hypocenter parameters (4 parameters), arrival-time data cannot be exactly fit in
general. The residual vector, r, from equation 2.9, is one measure of the misfit. We
will define the residual variance as the L, norm of the residual vector

w=iﬁ (3.1)

=1
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Since event location with FDTT involves a search throughout the volume of the model
for a location with the lowest variance, the residual variance can easily be plotted
as a function of position (figure 3.2 A). Most earthquake location functions based on
Geiger’s Method provide an error bound based on the assumption of local linearity
and the partial derivatives of the travel-time with respect to hypocenter change at
the nominal event location. This is why normal methods of locating earthquakes
with 1-D velocity models provide only an error ellipse; the true form of the residual

variance is not available.

Sometimes the geometry of stations around an event can result in a large un-
certainty in the hypocenter even though the event fits one of our criteria for a well
located earthquake. A good example of this problem can be seen with a circular
distribution of seismograph stations. If the earth is characterized by a 1-D velocity
model and seismographs are located in a circle around an earthquake, changing the
earthquake depth will effect the arrival-time at all stations equally; and this change
can be absorbed into the earthquake origin time. There is a perfect tradeoff between
the depth and the origin time of the earthquake. If the station distribution is not
a perfect circle and/or the earth is not 1-D then the depth and origin time can be
determined but the problem is likely to be ill-conditioned (the location coefficient
matrix in equation 2.14 has one very small eigenvalue). Due to the travel-time geom-
etry, this effect can be seen in the error estimate for the Magnitude 4.9 M, Bremerton
earthquake of June 23, 1997 (figure 3.2 B), in this case the closc-in station distribu-
tion is close to circular and poorly constrains the depth of the earthquake. A poorly
determined hypocenter location may be manifested by a large change in the event
location as the model is changed by a small amount (because of picking errors and
velocity model inaccuracy the best location may be found at negative depths). For
this reason, events exhibiting more than a 5 km change in hypocenter depth during
the change from a layered to a nodal velocity model were eiiminated from the data

set, this reduced the initial data set from 3429 to 2997 earthquakes. Explosions are
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not affected since their locations are known. The locations of the 2997 comprising

the CDS are shown in figure 3.1.

3.1.8 Construction of the HQDS

During the period of time over which the CDS was acquired there were a number
of different people processing the data using several different software packages. It
is even likely that a single person will exhibit changes in the details of their picking
behavior over a long period of time. In order to reduce any possible bias I selected
a subset of 1004 of the best earthquakes from the CDS to be re-picked. This is the
HQDS, later in this chapter I perform tests to assess the resolving power of the two
separate data sets. The next paragraph describes how and why these events were
selected.

The CDS has a degree of redundancy due to events with similar locations. Since
it is impractical to re-pick the entire data set of 2997 events in the CDS, I used a de-
clustering technique to select only the best earthquakes in specific volumes of space to
reduce the total size of the data set. The idea behind this method is to remove as much
redundant data from the inversion as possible while leaving behind most of the unique
characteristics. The de-clustering was done in an iterative fashion. Starting with
2 km on-a-side blocks only the “best” single earthquake in each block was retained
in the subset. In this case the best earthquake was defined as the earthquake with
the greatest number of P-picks. This step was repeated several times using slightly
different origins to reduce the effect of the exact block boundaries. The block size was
then increased to 64 km® (4 Am on a side) and the process was repeated retaining
only the 2 best earthquakes. This process was repeated with blocks of increasing size
until the HQDS contained approximately 1000 earthquakes. Since the study area has
a much greater horizontal than a vertical extent the larger blocks were selected to
have a horizontal to vertical aspect ratio of greater than one. The number of events

to retain and the block sizes are shown in table 3.1. They were chosen empirically to
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produce a decimated data set of this approximate size. Since the earthquakes with
the largest number of picks were retained in the data set, the total number of rays
was only reduced by approximately a factor of 2 (from 52370 in the CDS to 22265 in
the HQDS) even though the number of earthquakes was reduced by a factor of nearly
3.

Table 3.1: Declustered Puget Sound Eartquakes

Block Size (H km x V km) Allowed/Block Remaining Deleted

Original Data Set - 2973 -
2x2 1 1918 1055
4x4 2 1741 177
8x5 3 1436 305
16 x5 4 1004 432

[ then personally re-picked the HQDS in approximately a one month time interval
with particular care taken to keep only un-ambiguous high-quality arrivals and to
consistently pick reasonable timing error estimates. The timing error estimates are
used to assign weights to the individual picks for both the-event location and the full
tomography problem (equation 2.40). Because of this weighting, it is important that

the error bounds on the individual picks be reasonable and consistent.

3.1.4 Comparison of Residuals

During the relocation step the residuals of both data sets increased. This is because
there are no station corrections applied to the travel-times when the events were
relocated with the 3-D method using the ps2 velocity model. Table 3.2 shows the
average RMS for both data sets using both the standard 1-D and the 3-D location
methods. There are fewer picks with the 3-D method since only stations that are

within the study area are used.
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Table 3.2: Comparison of the residuals between different data sets using different
location methods.

Data Set Location Method Avg. RMS Max. RMS Total Picks Used

CDS 1-D 0.274 1.568 109410

CDS 3-D 0.29 1.319 55620
HQDS 1-D 0.27 0.711 46471
HQDS 3-D 0.33 0.685 21853

3.1.5 Comparison of Ray Coverage

Figure 3.3 shows a comparison of the number of rays effecting each node of the
inversion grid. The primary difference in the coverage between the two data sets is
the maximum number of rays sampling any node. With the CDS, there are nodes
that are sampled by over 2500 rays (the maximum is 2645 rays); with the HQDS,
there are no nodes sampled by more than 1000 rays. However, the two data sets
sample approximately the same portion of the GPSR. This indicates that the HQDS
has successfully reduced the redundancy in the CDS without substantially decreasing

the amount of unique data.

3.2 Explosions

Both data sets also include 20 explosions recorded by the PNSN with very well deter-
mined origin parameters. Explosions are simpler to deal with in the inversion since
the origin time and event location are known. There are explosions from two different
time periods, the first set of 9 explosions were recorded during the shooting of the
UTEP-USGS north-south refraction line in 1991 [Miller et al., 1998; Gridley, 1993]
(figure 3.1). The second set of 13 explosions is from the OSU-USGS-UTEP cross
Cascades profile shot in 1995 [Luetgert et al., 1995; Parsons et al., 1996]. Both ex-
periments actually used more explosions, but we are able to use only those included

within the GPSR. In total there are 373 P-arrival picks from the explosions. Since
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these data have small location uncertainties, they are typically given a heavier weight
in the inversions.

Table 3.3 shows the explosions used in this study. The table includes, the date,
time, and location for each explosion. The table also shows the number of picks, the
maximum residual (using the ps2 velocity model) on any pick, and the distance to

the furthest station that recorded the explosion.

Table 3.3: Summary of Puget Sound Explosions

Date Time (GMT) Lat. (°) Lon. (°) Picks Res. (s) Mx. Dist. (km)

09/24/1991 05:59 46.776  -121.955 11 0.2 51.4

09/24/1991 06:01 47.338 -121.989 22 0.8 162.1
09/24/1991 06:03 47.899  -122.062 22 2.3 181.4
09/24/1991 06:05 48.478 -122.211 10 0.6 175.7
09/24/1991 08:59 46.492 -121.901 20 1.0 219.6
09/24/1991 09:05 48.242 -122.106 30 0.9 214.1
09/28/1991 07:01 46.715 -123.119 22 0.5 187.7
09/28/1991 09:01 46.495 -123.142 12 0.2 128.5
10/02/1991 09:11 46.715 -123.119 26 0.8 227.6
09/11/1995 07:01 46.587 -123.238 30 0.9 244.5
09/11/1995 07:05 46.487 -121.900 23 0.5 220.1
09/11/1995 07:13 46.557 -122.758 7 0.9 95.7

09/11/1995 10:07 46.584¢ -121.656 14 0.3 98.0

09/11/1995 10:03 46.568 -122.455 25 0.4 220.9
09/11/1995 10:05 46.525 -122.175 24 0.5 186.8
09/15/1995 07:03 46.568 -122.455 23 0.5 220.9
09/15/1995 07:05 46.487 -121.900 22 0.3 146.7
09/15/1995 10:05 46.525 -122.175 20 0.5 186.8
09/15/1995 10:07 46.584 -121.656 9 0.3 58.1

09/15/1995 10:09 46.573 -123.819 1 0.3 90.6

3.3 FExternal Constraints

A unique feature of this inversion is the inclusion of data from external sources in

addition to the seismic data. The Puget Sound region has been the subject of a
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number of studies that provide constraints on the seismic velocity structure. The
refraction study performed by Miller et al. [1998] and Gridley [1993] (figure 1.1)
provides more than just explosive sources for the travel-time inversion. Multiple
arrivals were used during the analysis of this line, providing much more detailed 2-D
models than could be inverted from the first arrivals only.

3.3.1 Parameterizing the Miller et al. [1998] Model

The most current model based on the 1991 profile is that of Miller et al. [1998]. The
Miller et al. [1998] model is defined as a continuous P-wave velocity on a vertical
plane aligned along the profile. OQur first step is to discretize it into observations of
velocity at points in space. Then, using the formalism of equation 2.37, we generate
one equation for each observation. The density of the interpolation must be chosen
to adequately represent the complexity of the 2-D refraction line without causing the
matrix (equation 2.38) to become so large that solution of equation 2.43 becomes
intractable. I have found empirically that a 2 km grid of points is a good interval at

which to discretize this profile with our model resolution.
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Figure 3.1: Map showing all the stations that have been run by the PNSN during
the period from 1980 to 1997. Some stations are temporary and where only run for

short periods of time. Also shown are earthquakes and explosions used in the study.
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(A) Variance Around the Location for the (B) Variance Around the Location for the
Duvall Earthquake Bremerton Earthquake
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Figure 3.2: Map showing the variance of the May 3, 1996 5.3M. Duvall earthquake as
a function of position (left map and two left cross sections). Right map and two right
cross sections are similar plots for the June 23, 1997 4.9M, Bremerton earthquake.
Even though this event is relatively close to the nearest station (7km), has a small
gap of 45°, and has a total of 29 P-picks within this study area; it still has a poor
location estimate (note the “tube” of almost constant variance in the cross section).
For comparison I have drawn a black line around the region of constant variance in

each of the cross sections.
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Figure 3.3: Comparison of the sampling between the CDS and the HQDS. The colors
show the number of rays sampling a specific node. Note the scale is logarithmic.
For the CDS the maximum number of rays sampling any one node was 2645; for the
HQDS the maximum was 912. But, the two data sets sample approximately the same

portion of the model.



Chapter 4

TOMOGRAPHIC INVERSION

This chapter contains the results of a seismic tomography inversion {described in
Chapter 2) on the HQDS described in Chapter 3. We first examine the selection of
parameters used in the inversion. Then, we compare the resolution resulting from
inversion of the full and reduced data sets described in Chapter 3. Next, we examine
the resulting model. Finally, we discuss the resolution and the robustness of the

model, critical factors for making a final interpretation of the results.

4.1 Inversion Parameters

As noted in Chapter 2 there are a number of parameters that must be selected
before we can perform the tomographic inversion. We have already chosen the study
area which defines the spatial size of the model space and determines the source
receiver geometry. Three additional important parameters must be selected: (1) The
density of the grids used in the travel-time calculation and in the inversion-tighter
grids are computationally more intensive, but can provide higher resolution if there
is sufficient information. (2) The starting model to use-since this problem is being
solved in a perturbation formulation an initial model is required. (3) The value of
two regularization constraints—one to control the smoothness of the slowness model,

and a Levenburg-Marquardt factor used to stabilize the hypocenter perturbations.
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4.1.1 Grid Sizes

As was noted in Section 2.5.2 the grid used to calculate the travel-times and the grid
used for the inversion can have different parameterizations. The model is transformed

between the grids using tri-linear interpolation.

Travel-Time Grid

Implementation of the finite-difference travel-time calculator (FDTT) used in this
process [Hole and Zelt, 1995] requires a cubic grid (the same spacing in the z, y, and
z coordinates). Because of computational constraints, I selected a travel-time grid
spacing of 2 km.

I performed tests comparing the travel-times generated by the FDTT and a 1-D
travel-time calculator using a 1-D velocity model. The 1-D model is the ps2 model
(table 1.1) which has constant velocity layers with discrete boundaries. As discussed
in Section 2.5.1, the discrete boundary can only be approximated with the nodal
formulation calculator. As the block size or the node spacing gets smaller to different
formulations converge, but for finite spacings the two methods actually represent
slightly different models. However, with a 2 km grid size, calculated travel-times
from the methods appropriate for the different models agreed to within 0.1 sec over
the central portion of the model with the ps2 velocity model (table 1.1). The 2 km
square grid uses 567,324 nodes (103x153x36) to represent the target region.

Inversion Grid

The density of the inversion grid is primarily limited by available computer memory.
The tomography algorithm is more complex and requires more storage than the travel-
time algorithm; for this reason the inversion grid is more sparse than the travel-time
grid. The inversion grid used in this study is selected to be compatible with the travel-

time calculation grid and has nodes spaced at 4 km horizontal and 2 km vertical



71

intervals (a 4x4x2 km grid). For the GPSR this results in a model consisting of
144,144 slowness parameters (52x77x36 nodes). In addition the system will contain
4q hypocenter parameters where g is the number of events with unknown locations
(earthquakes) included in the problem. For this parameterization, using the HQDS
results in a model with a total of 148,160 free parameters. When this project was
started in 1994 it was difficult to find a local machine capable of running an inversion
with ~ 150,000 nodes in a timely manner. In 1998, a desktop PC with a moderate
amount of memory can easily run several iterations of an inversion with ~ 150,000

nodes in ~ 6 hours.

4.1.2 Starting Model

To find an initial 1-D starting model, we can use the same methodology as we use for
the full 3-D seismic tomography problem. Equation 2.43 has no explicit dependence
on the type of model. To perform a 1-D inversion , we define the model as a single
constant velocity layer for each of the 36 layers of nodes in the inversion grid. No
station corrections are applied. We use a 1-D analytic travel-time calculator. Since
the layers are constant velocity, the first arrival must either be a direct ray (refracted
at each layer interface) or a critically refracted head wave. A critically refracted head
wave is represented by a ray that travels down from the source to a higher velocity
layer and is refracted to travel horizontally along the top of this layer and then back
up to the receiver.

The data for the 1-D inversion are earthquakes from the HQDS discussed in
Chapter 3. The starting model for this inversion was the ps2 model. The results
of the 1-D inversion are shown in table 4.1 and are plotted against the ps2 velocity
model [Crosson, 1976b] in figure 4.1. The 1-D inversion converged in 16 iterations.
After the inversion the RMS, using the 3-D location method with the 1-D velocity
model on the HQDS, dropped from 0.27 sec (ps2 model) to 0.24 sec. Unless otherwise

stated, this is the starting model for all subsequent inversions.
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Table 4.1: Inverted 1-D Velocity Model

Depth (km) P-Velocity &ﬂg_

0.00 5.89
2.00 5.86
4.00 6.07
6.00 5.98
8.00 6.14
10.00 6.59
12.00 6.43
14.00 6.51
16.00 6.69
18.00 6.61
20.00 6.84
22.00 6.77
24.00 6.81
26.00 6.89
28.00 6.93
30.00 6.68
32.00 6.32
34.00 6.16
36.00 6.37
38.00 7.03
40.00 7.89
42.00 7.90
44.00 7.70
46.00 7.69
48.00 7.82
50.00 7.94

4.1.8 Regularization Parameters

Two regularization parameters are defined for the inversions done in this study: a
smoothness constraint A that controls the tradeoff between the amount of structure
of the inverted model and the reduction in misfit; and a Levenburg-Marquardt pa-

rameter, v, used to stabilize the earthquake hypocenters.
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Smoothness Constraint

For real inverse problems with errors in the observations, and models that cannot
fully represent the real earth, it is important to decide how closely to fit the model
to the data. The statistical quantity x? is a useful measure of the misfit of the model

to the observations. The x? is defined as
r
- x

where n is the number of observations, r is the residual (with mean zero) for the
kth observation, and 4 is the standard deviation about zero of the kth observation.
If we assume the residuals are normally distributed with mean zero, then we should
choose a model where, on average, the misfit of the observations is equal to the
standard deviation of the error in each observation [Parker, 1994]. This corresponds
toayx®=n.

Unfortunately, we do not have any a priori knowledge of the standard deviation
of residuals for a particular observation. However, the estimated uncertainty in the
observations is selected by the analyst when the earthquake is picked. Although, it is
difficult to determine what these uncertainties actually mean, the units are in seconds
I interpret the uncertainties as the approximate standard deviations of the observa-
tions. The actual residuals are not, in general, normally distributed (figure 4.3).

The regularization parameter A from equation 2.43 controls the tradeoff between
how well we fit the data versus smoothness of the inverted model. A higher A results
in a smoother model which normally cannot fit the data as well. For a linear inverse
problem, it is always possible to fit the data to the desired x2 (given a sufficiently
dense parameterization of the model). But finding the correct value of A to accomplish
this task is a subjective process.

Unfortunately, the non-linear problem is more complicated. Different starting
models or values of the smoothing parameter can cause the solution to jump into

a different local minima. As a result, the tradeoff curve representing the misfit of
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the data as a function A may not be a strictly increasing function. Moreover, the
density of the model parameterization is not high enough to allow the reduction of
the observation residuals to an arbitrarily low value. Figure 4.2 top shows the tradeoff
curve for the tomography problem in this study region using the HQDS. In each case,
the inversion was allowed to fully converge. Using this curve I selected a A of 8, a
value at the bottom of the local minimum on the tradeoff curve. This corresponds
to a Zné of 11.9, equivalent to an average RMS of 0.11 seconds, a reduction from the
original 0.24 seconds with the best fitting inverted 1-D model (table 4.1). Selection of
this value for the regularization parameter was also based on more subjective factors
such as the number of iterations required for both the full tomography problem and
the CGLS algorithm to converge, as well as the “look” of the model resulting from
the various values of A used in the generation of figure 4.2. The %2 of 11.9 is higher
than the optimal Ean of 1. However, given that the error estimates of this data are

only approximations picked by the analyst, this is not unreasonably high.

Earthquake Hypocenter Location and Stabilization

Three different earthquake location methods are used in the inversion process: (1)
grid search [Nelson and Vidale, 1990]-this provides a hypocenter location which is
constrained to lie on a node in the travel-time grid. (2) Geiger’s method location-
interpolated travel-times are used to refine the hypocenter without constraint to a
travel-time node. These first two methods are applied once during a specific ap-
plication of the tomography process before entry into the main inversion loop (ap-
pendix C). (3) A perturbation to the hypocenter is then returned as part of the
solution to equation 2.43. This refinement to the hypocenter location is calculated on
every iteration of the main inversion loop. The last two location methods utilize an
Levenburg-Marquardt (LM) regularization factor to stabilize the location. A higher
value for this parameter controls the tradeoff between the size of the perturbation to

the hypocenter location and the reduction in misfit between the calculated and true
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arrival times.

On every iteration of the main inversion loop, the partial derivatives of the travel-
times at the current hypocenter location (not constrained to lie on a travel-time
node) go into the Jacobian matrix (equation 2.38) and the hypocenter perturbations
are returned as part of the solution to equation 2.43. The same LM parameter used in
the Geiger’s method portion of the location problem is also added to the full matrix
(equation 2.43) to stabilize this pa.rt of the matrix. This can be seen in the lower
right corner of the matrix shown in figure 2.9. For the HQDS, a value in the range of
0.1 to 0.01 provides a good balance between fitting the data and minimizing jumps
of the hypocenters. The higher end of this range yields a matrix that converges more
rapidly to a solution under the CGLS algorithm [Paige and Saunders, 1982].

4.2 Comparison of Data Sets

Because the hypocenters of earthquakes included in the dataset are actually unknown
and must be determined in the inversion, more earthquakes mean an increase in the
model size (the number of columns in the J matrix from equation 2.39) and an increase
in the number of data (the rows of the J matrix). For this reason, it is significantly
faster to perform an inversion with fewer earthquakes. We would prefer to use the
HQDS discussed in Chapter 3 since we are more confident in the observations, but
not at the cost of a significant loss of resolution.

Figure 4.4 shows a comparison of a checkerboard test for the full and reduced
datasets. There is slightly better recovery of the synthetic model with the full data
set, but this comes at the cost of the inversion taking nearly twice as long. With
both data sets, the checkerboard is recovered throughout the center of the model to
a depth of ~ 55 km.

The results shown in figure 4.4 are for synthetic noise-free data. The checkerboard

tests are repeated in figure 4.5 with Gaussian noise proportional to the estimated error
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of the actual observed data added to each calculated travel-time. Since the re-picked
‘arrival-times have reduced error because of the more consistant picks the resolution
in the re-picked dataset is comparable to the full data set. The higher quality of the
data compensates for the reduction in quantity. I use this result to justify the use of

the re-picked dataset through the balance of this study.

4.3 Results

Figure 4.6 shows the final inversion results using the HQDS. The regularization weight
(A) for this inversion was 8. The velocity range of the final model is from 4.5 to
8.2 £ During the course of the inversion, the model roughness (Il Lm [|?; as defined
in equation 2.43) increased in norm from 1.16 to 1.96 (an increase of 70%) and the
norm of the data residual vector dropped from 0.00797 to 0.000676 (a decrease to
8.5% of it’s original value). This is equivalent to a decrease in RMS error from 0.24
to 0.11 s. The drop in the residual vector and the RMS are not consistent because
the residual vector is inversely weighted by the estimated errors and the RMS is a
simple average. The complete model consists of 36 layers. Rather than display all

the layers, I have selected eight representative levels to display here.

In figure 4.7 I show the results of checkerboard tests for the same portions of the
model. The results shown in these figures indicate that there is good resolution of
features with scales on the order of 20 km throughout the center of the model (only
~ 20 km at the edge of the model is completely un-resolved). The resolution is best at
depths between 10 and 30 km, but some large features are resolved from the surface

down to a depth of 50 km.
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4.4 Error Analysis of the Final Model

4.4.1 Results of a Jackknife Test

In figure 4.8, I show a jackknife estimate of the standard error on the re-picked data
set. There are 21019 rays (or observations) in this model so we need to drop between
v/21019 (~ 145) and 21019 data points. I choose to drop ~ 5% (2400) of the data
and perform 20 iterations. In all cases, the results show a generally low estimated
standard error of the model in the central portion of the study area. The estimated
error at the edges of the model is much larger, but this is expected. In the absence of
a ray, the velocity and gradient values of the nearest set of constrained model nodes
determine the velocity model values. Since the edges of the model may be some
distance from the nearest node, a small change in the value of this gradient can cause
a large change in the un-sampled portions of the model.

In figure 4.8 there are two major exceptions to the low estimated model variance
through the central portion of the model. In the layer covering 9 to 11 km depth
(figure 4.8 B) there is region of high error slightly west of the center of the model.
Another region of high variance in this figure is seen on three of the four maps in the
south central part of the model.

This region is surrounded by 5 PNSN stations: Capitol Peak (CPW); Lucas Creek
(LCW); Alpha Peak (APW); Boistfort Mt. 2 (BOW); and Boistfort Mt. 1 (BFW).
Figure 4.3 shows the distribution of the residuals for all picks in the HQDS at several
of these stations. Of the 5 surrounding stations (only LCW, APW, BOW, and BFW
are shown) have an approximately Gaussian distribution of residuals. However, BFW,
has a sparse and heavily skewed distribution. It is possible that dropping one or two of
these picks could result in a large change in the model, resulting in the high jackknife
estimate of variance for this portion of the model.

The location of this spot does correspond with the Centralia coal mine which sets

off frequent blasts during the mining process. Unfortunately, for seismologists, the
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mining process makes use of what is known as a “ripple blast”. The blast is from
several shots each separated by 50 — 100 m and the detonation time is staggered.
This increases the efficiency for mining, but it makes for an emergent P arrival and a
large amount of surface energy which looks very much like an S arrival. Consequently,
these blasts are often mis-located. However, with the care taken in the selection of
the HQDS we can be relatively certain that none of these blasts remain in the data
set.

The lower 2 plots in figure 4.3 show the residual distribution for Snow Dome (OSD)
and Port Gamble (PGW), two stations on the outskirts of the region of high error
slightly west of the center of the model. These residuals have an an approximately
Gaussian distribution and I do not have a good explanation for variance in this portion
of the model. However, this does not have a major effect on the interpretation of the
results.

Figure 4.8 also shows the results of the jackknife test for the portion of the model
below 20 km depth. The region of low variance shrinks (and the minimum values
increase) in the deep portion of the model. The area with the lowest variance is

slightly offset to the west from the center of the model.

4.4.2 Starting Models

A fundamental issue with any non-linear problem is the possible existence of more
than one solution. In the case of a linear problem there will always be a single
minimum. If we use the perturbation formulation (equation 2.29), any starting model
will eventually lead to this single minimum (figure 2.10 B). However, in the non-linear
case there are potentially a multitude of minima. Two slightly different starting
models can lead to radically different solutions (figure 2.10 B).

In order to explore the possible effect of local minima and starting model on this
problem I used a number of possible starting models and examined the solutions

resulting from each. The three most instructive starting models were: (1) a 6.5 &=

sec
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half-space—this was the “worst” starting model, it was chosen to see if the problem
would converge to a reasonable solution with this data set. (2) An approximation
to the PNSN standard model, ps2, (table 1.1)-this is the model that was used for
the initial location of all of these earthquakes. Derivation of this model is detailed
in Crosson [1976a, b]. (3) A 1-D model derived in a preliminary inversion as part
of this study using a portion of the HQDS-this is the “best” starting model for this
data set.

In figure 4.9 the results of inversion performed with these three starting models
are displayed. The results are actually remarkably similar. To aid in the compari-
son, figure 4.10 shows 4 maps and cross sections. The upper left map and section
are an average of the inversion results from the three different starting models. The
remaining maps and sections show the difference between the average and the indi-
vidual inversions. The maximum differences in the central portion of the model are
~ 0.3'::“—c, slightly higher than predicted by the jackknife estimates. Through most of
the model the results from the different starting models are indistinguishable. The
major difference is the number of iterations and the amount of time it took the in-
version to converge to a solution. For the “best” model (the 1-D inverted model)
the inversion converged in 15 iterations and the final average RMS is 0.11. The ps?2
model converged in 19 iterations with an RMS of 0.12. The half-space converged in
24 iterations with an RMS of 0.12. The same major structures are present in all three
of the final models.

Of course, these models explore only a very small portion of the space of possible
starting models. However, I have made an effort to perform tests over as wide as

possible a range of starting models.

4.4.8 Conclusions from Error Analysts

The results of a jackknife test show that there is generally low standard error through

the center of the model in the regions where we attempt geologic interpretation in
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Chapter 5. The jackknife estimated variance through the center of the model is typi-

km
sec”

cally 0.05 — 0.15 corresponding to expected standard deviations from 0.22 — 0.38
Where there are exceptions to these low estimates, they are localized and do not af-
fect the overall geologic interpretation. In the upper 20 km of the model the highest

variance is isolated to two portions of the model where the variance reaches a high of

km
sec’

~ 0.42 corresponding to a standard deviation of 0.64
Tests with three different starting models show that the final inverted model has
very little dependence on the initial model. The features that I will interpret seem

to be very robust.
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Figure 4.1: Plot of the 1-D velocity model inverted from 100 earthquakes chosen from
the HQDS.
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Figure 4.4: Comparison of the results of a checkerboard test using the full and reduced
data sets with no noise. Left, synthetic model; upper right, inversion from the full
data set; and lower right, inversion from the reduced data set. Note that the resolution
in the synthetic model is higher than either of the inversions so a perfect reproduction

is impossible.
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Figure 4.5: Comparison of the results of a checkerboard test between the full and
reduced data sets with noise added to each pick. Left, inversion from the full data
set; and right, inversion from the reduced data set (see figure 4.4 for synthetic model).

Note that the resolution in the synthetic model is higher than either of the inversions

so a perfect reproduction is impossible.
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Figure 4.7: Maps showing various layers of a checkerboard test performed on the final

model.



Maps of Synthetic Model

{owsy uﬂ){ uoeqinyed

Maps of Inverted Madel

20: 2

725 lan ©

2

AN

2y

=% 2

Figure 4.7: (continued)

89



90

“w

0.01
5 !
¥ s
Z
_ S §o.09
¥ @
e
m
]
-3 =
S 9",1 0.17
B
[
';' -«
>0.25
it
?

4830
%0

73..

& &
5 &
? 2|18

Do Naw r . .
123’30 123 122°% 12° 121°30

124° 123°30 1230 122°3¢ 122" 121°%

Figure 4.8: Several maps of the jackknife estimate of the standard error. See text for
details.



48' 48'%0 49

70

0.01

0.09

ejBwWyST J01T-PIS BYUPORL

49’

48°30

Figure 4.8: (continued)

91



92

1D inversion Starting Model Standard PNSN Starting Mode!

Figure 4.9: Comparison of one layer of and two cross sections for three different
starting models.

See text for description of the models used.
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Chapter 5

INTERPRETATION OF RESULTS

In this chapter I will interpret the results of the tomographic inversion in terms of
the geologic features that may be represented by the velocity contrasts of the model.
The results are shown in map view in figure 4.6. To aid in interpretation several cross
sections are shown in figure 5.1. To understand the interpretation it is important to
consider the resolution of the model (shown in figures 4.7 and 5.2) and the estimated
errors in the velocity model (shown in figure 4.8).

We look at features in the three main geologic provinces within the GPSR; the
Coast Range, the Puget Lowland, and the Cascade Range. In addition, I look at
one feature deep in the model which I interpret as a mantle wedge above the top of
the subducted slab at a depth of about 45 km. A far more detailed analysis of the

features near the surface is contained in Chapter 7.

5.1 Coast Range

5.1.1 Olympic Core Rocks

In the far western portion of figure 4.6 A there is a low velocity region. This region is
interpreted to correspond to the core rocks of the Olympic Mountains. The core rocks
are primarily composed of melange and heavily faulted marine sedimentary rocks
[Tabor, 1987] and are expected to have low seismic velocities. At a depth of 5 km,
the P-wave seismic velocity of the model in this region ranges from ~ 5.4 — 5.6 %
Table 5.1 is a compilation of some relevant rock velocities from Christensen and

Mooney [1995]. At this depth we would expect accretionary wedge sediments from the
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top of the slab to metamorphose into a metagraywacke facies. The model velocities are
a good fit for the laboratory measured velocity of this facies. The region of reduced
velocity persists in depth to approximately 25 km where the velocity increases to

~ 6.3 5. consistent with rocks of the mica quartz schist facies.

sec’

Table 5.1: Summary of Rock Velocities from Christensen and Mooney [1995]

Rock Type Depth (km) P-Vel. () o2 %Anisot. p (%) o

Basalt 5 5.845 0.547 1.7 2878 144
10 5.892 0.543 1.6 2883 144
15 5.915 0.542 1.4 2889 144
20 5.918 0.541 14 2894 144
25 5.915 0.540 1.3 2899 144
30 5.908 0.540 1.3 2904 144
35 5.899 0.539 1.3 2910 144
40 5.890 0.539 - 2915 144
45 5.882 0.539 - 2920 144
50 5.873 0.539 - 2026 144
Metagraywacke 5 5.336 0.615 4.8 2615 112
10 5.461 0.564 4.5 2621 112
15 5.536 0.519 4.1 2627 112
Phyllite 20 6.171 0.168 10.3 2745 58
25 6.165 0.158 9.9 2751 58
Mica Quartz 20 6.340 0.370 13.7 2849 129
Schist 25 6.344 0.375 13.4 2856 129

5.1.2 Crescent Formation

To the east of the low-velocity Olympic Core rocks there is fairly rapid transition into
material with a substantially higher velocity (figure 4.6 B and C). This portion of
the model is well resolved (figure 4.7) although there is an area with high estimated
error (figure 4.8 B). However, the high error is confined to a small portion of the high
velocity region and does not affect the interpretation.

The high velocity region corresponds to surficial exposures of the Crescent Basalt,

a portion of the Siletzia terrane discussed in Chapter 1. At the surface the Crescent
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formation forms a horseshoe shaped contact (the name Crescent formation is due to
Lake Crescent on the Olympic Péninsula) with the Quaternary glacial deposits to
the east [Schuster, 1992] (figure 5.3). At least the outline of the Crescent Formation
horseshoe shape is visible in the model (figure 4.6 A). Although there is some missing
continuity, the resolution in this portion of the model is not sufficient to interpret
this as breaks in the formation.

The Crescent Formation is a thick basalt unit, mapped in places with a total
section thickness estimated to be more than 16 km [Babcock et al., 1992]. The basalt is
inter-layered with marine sediments [ Tabor and Cady, 1978]. The high velocity region
to the east of the Olympic Core falls within the laboratory determined basalt velocities
of table 5.1 (5.84 to 5.87 %), and the correspondence with basalt velocities persists
to a depth of at least 25 km. The Crescent is a thick unit by any measure. Compared
with the Babcock et al. [1992] estimate our results of 25 km vertical thickness could
indicate even greater section thickness, or could represent very steep dip to the mid-
crustal depths. On the East-West cross section (figures 5.1 A and B), the contact
between the Crescent and the Olympic Core appears to dip to the east at an angle
of approximately 45°.

Figure 5.1 also indicates that the western termination of extensive seismicity is
coincident with the contact between the Crescent formation and the lower velocity
rock of the Olympic Core complex (figure 5.1 B). I propose a simple mechanical model
to explain this cutoff in seismicity. Figure 5.4 shows a schematic of the model. The
Crescent formation and the Olympic core rocks are two units of different mechanical
strength. When the two units are subjected to a north-south compressive stress
they must undergo the same strain but they can have different internal stress. Since
the Olympic core is the weak unit its deformation is accommodated aseismically.
Earthquakes in the GPSR would be expected to occur only in stronger units such
as the Crescent formation which deform seismically. However, when the system is

subjected to an east-west compressive stress, the two units are under the same stress
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but they can undergo different strains. In this case, since the Olympic core is relatively
weak, only a small amount of stress is transmitted into the Crescent formation and

we see few earthquakes with east-west maximum compression.

5.2 Puget Lowland

5.2.1 Seattle and Tacoma Basins

The most obvious features in the upper 10 km of our model are the two distinct
regions of low velocity beneath the cities of Seattle and Tacoma (Figure 4.6). These
correspond to basins filled with sediment and expected to have low seismic velocity.
In the tomographic model the low velocity due to the Seattle Basin persists to a
depth of 11 km. Unconsolidated sediments in this area are mapped to a depth of
~ 4000 feet Hall and Othberg [1974] and the reflection model of Pratt et al. [1997]
shows low velocities and reflections consistent with sedimentary formations persisting
to a depth of 6.5 km. While I do expect the low velocity to persist for some distance
below the base of the sediments, 11 km seems extreme. This is probably due to
near-surface features being smeared down into the model by almost vertical rays.

In addition to the large low velocity regions near Seattle and Tacoma there is also
less clear evidence for low velocity basins near the cities of Everett and Chehalis.
These basins are less well resolved than either the Seattle or Tacoma basins. This is
a result of two factors: first, these basins are closer to the edges of the model and so
there is decreased ray coverage. Second, neither of these areas is as well instrumented
as the Seattle-Tacoma region.

According to the Puget Lowland hypothesis of Pratt et al. [1997], this entire
region is a thrust sheet under a north-south compression. Their model includes
basins delimited by east-west striking thrust faults or anticlines. Unfortunately, the
resolution of our model is insufficient to define the bounding features of the basins.

Since the resolution in the near surface is relatively poor with this dataset, I will
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forego an in depth discussion of the Seattle and Tacoma basins until Chapter 7 where

I will augment the earthquake data with a large number of surface sources.

5.3 Subducted Slab

At depth, the most prominent feature in the model is a velocity reversal (figure 3.1 A, B, E,
and F). At a depth of approximately 35 km the velocity jumps to ~ 8 &2 However,

gec”

below this depth there is a reduction in velocity to ~ 7.6 % Although the checker-
board test shows reduced resolution in this portion of the GPSR, the model can detect
the sense of large features. Extensive tests with different starting models and data
sets have shown this to be a robust feature. I interpret the first transition, to 8 &=

sec

material, as the Moho; then the second transition, to 7.6 £2 material, corresponds to
sec

top of the subducted oceanic plate. The result is a wedge of mantle trapped between

the bottom of the continental crust and the top of the subducted oceanic plate.

There are then two possible compositional explanations for the low velocity fea-
ture. First, work by Kirby et al. [1996] suggests that in “hot subduction zones” there
is an early transition of basalt to eclogite. At these depths eclogite has a seismic ve-
locity of 7.83 ’:—:‘;; not very different from the mantle. However, this transition releases
the water trapped in the oceanic crust, and this water could lead to serpentinization
of the mantle above the descending slab. For comparison, the seismic velocity of
pure serpentinite at 45 km depth is 5.2 %c A second, perhaps simpler, possibility is
that the oceanic crust at this depth is still basalt. At a depth of 45 km basalt has a
seismic velocity of 5.8 ’:—:‘z Since the resolution at this depth is poor, it is impossible

to distinguish between these two possibilities using the results of the tomography

experiment.
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5.4 Comparison With Previous Studies

In general, the results of this tomographic inversion agree with the results of Lees and
Crosson [1990] and Moran et al. [1996]. Specifically, the model of Lees and Crosson
[1990] contained low velocity features in the region of the Olympics and the basins
under Seattle and Tacoma. Poorly resolved features on the edge of my model such
as the low velocity under Mount Rainier at a depth of 15-17 km (figure 4.6 C) were
interpreted structurally by Moran et al. [1996]. The model of Moran et al. [1996]
included low velocity regions under Seattle and Tacoma similar to this model.
Figure 5.1 C shows a cross section close to the 2-D refraction profile of Parsons
et al. [1998]. Although the resolution of my model is not sufficient to recover the
detailed near shore structure seen in Parsons et al. [1998], the two models both
include a mantle wedge that terminates along a north-south line approximately along

the center of the Puget Sound.

5.5 Hypocenter Relocations

Figure 5.5 shows a comparison of the hypocenters of the CDS using the ps2 velocity
model (with station corrections) and the 3-D model resulting from this study. As
described in section 4.3, the average RMS for the data set is substantially lower with
the 3-D model. The earthquakes tend to be 2-5 km shallower with the 3-D model
while the horizontal locations do not change much. There are a limited number of
events with depths that change by ~ 10 km and one event with a hypocenter that
changes by over 50 km horizontally. This is obviously a poorly lccated event that has
a very poorly constrained location in spite of the efforts to remove such events from
the dataset (this event did not make it into the HQDS). The changes do tend to be
larger in the areas were a poor depth constraint might be expected (e.g. deep slab
events), and lower in the vicinity of concentrations of seismographs (e.g. near Mount

Rainier and Mount Saint Helens).
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5.6 Summary

Interpretation of the inverted model of the P-wave seismic velocity delineates major
features such as: the Core Rocks of the Olympic Mountains; the Siletzia terrane;
basins filled with low velocity sediments under the cities of Seattle, Tacoma, Everett,
and Olympia; and a mantle wedge at a depth between 40 and 50 km under Seattle.
After this inversion was complete additional data became available which allowed the
inversion of a model with much higher resolution in the Central Puget Lowland and

this is the subject of the balance of this dissertation.
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Figure 5.5: Comparison of the location of the earthquakes of the CDS located with
the ps2 velocity model (with station delays) and with the 3-D model resulting from

this study. Vectors are shown connecting the earthquake pairs from the locations
with the different models.



Chapter 6

ADDITIONAL DATA FROM THE SHIPS EXPERIMENT

As a result of concern about a large, damaging earthquake in the Seattle Metropoli-
tan area the US Geological Survey (USGS) instigated the “Seismic Hazards in the
Puget Sound” (SHIPS) project. A portion of the work for SHIPS is being performed
by a number of collaborating institutions including the University of Oregon (U of O),
the Geological Survey of Canada (GSC), and the University of Washington (UW).
SHIPS is an active experiment consisting of a marine phase performed from March

10 to March 24, 1998, and a land phase currently scheduled for the spring of 1999.

6.1 Marine Phase of SHIPS

During the marine phase the UW Research Vessel Thomas Thompson, was outfitted
with an array of 17 airguns with a total volume of 6500 in3 (figure 6.1). The Thomp-
son towed a 4 km streamer for recording short offset reflections and the Canadian
Research Vessel Tully was employed for long offset reflections. In addition, approxi-
mately 240 land-based seismometers were deployed for the period that the Thompson
was active; 60 by the UW, 20 by the U of O, 30 by the GSC, and the reminder by
the USGS (figure 6.2). These stations were concentrated along the waterways, but a
substantial number were scattered in a 2-D array across the Puget Sound region. The
Thompson spent several hours performing a “shakedown cruise” in Lake Washington
and the rest of the experiment in the waterways of the Puget Sound (figure 6.2).
When the streamer was not deployed, the Thompson fired all guns at 40 s intervals.

Because of space considerations when the streamer was deployed, 3 of the largest
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guns were inactive and the cycle time was reduced to 20 s.

6.2 Data

At this time, the data from the temporary'seismographs deployed for the SHIPS
experiment are not yet available. However, the shots were also recorded at the per-
manent seismograph stations of the PNSN, and this data was available immediately,
even before the experiment was completed. For the duration of the SHIPS exper-
iment 33 PNSN stations in the immediate Puget Sound region were set to record
continuously (in addition to the normal triggered mode). The continuous data was

stored in 15 minute chunks in the standard UW?2 data format.

6.3 Stacking

6.3.1 Motivation

Certain source receiver pairs had excellent signal-to-noise ratios and provided unam-
biguous first arrivals (figure 6.3). Analysis of these shots using the coda magnitude
relationship developed for the PNSN indicates that the individual shots had a magni-
tude equivalent to approximately a 0 M, earthquake. Because this is a relatively small
signal for an urban and seismically noisy environment, the signal at the majority of
stations was less clear. In order to enhance the signal-to-noise ratio at these stations
I developed a stacking technique. The stacking is motivated by the underlying idea
that the signal (the arrival of energy from the Thompson’s airguns) is coherent with
a 40 s period, whereas the noise that is obscuring the signal can be modeled as a

random process.

6.3.2 Synthetic Example

Figure 6.4 illustrates this process. An impulsive oscillatory waveform (figure 6.4 A)

was assumed with a period of 40 s and random amplitude (Gaussian distributed with
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a mean 1 and a variance of 0.2). We then add zero mean Gaussian noise with a
variance of 1 to obscure the signal. In an individual 40 s window (figure 6.4 B) the
signal is difficult or impossible to pick. However, when we sum 84 of the windows
(equivalent to 1 hour of data), the signal adds coherently and the noise cancels out
(figure 6.4 C). In fact, with random Gaussian distributed noise such as this with

variance o2 and mean pu, the expected value of the average of n points is

o2
= — 6.1
Pe=pi—m (6.1)
As expected, the improvement of the signal in this example fits this relationship. If
we compare figure 6.4 B and figure 6.4 C, the average value noise in the stack of 84

traces is slightly over 10% of the noise in the un-stacked traces.

6.3.3 Arrival-Time Move-out

The primary complication in the stacking process comes from the movement of the
source (the airgun array towed by the Thomas Thompson) during a single stack. In
order to contain approximately 100 shots (needed to reduce the noise level to 10%
of the unstacked level) each stack needs to be 1 hour long. During 1 hour the ship
may move up to 8 km. This causes an apparent change in the 40 s periodicity of the
data due to variation in the propagation distance and structure. If we stack blindly
without correcting for the source movement the signal loses coherency and is not well
recovered. Figure 6.5 is a demonstration of this effect. In this example, the signal is
obvious in the individual traces displayed in the record section. However, the signals
do not align because of the movement of the source, and the stacked signal is unclear.

In order to correct this problem, we use a slant stacking process. We define the
stack location as the position of the middle shot going into the stack (figure 6.6).
Instead of adding the windows directly, we first calculate a time offset from the stack
location to the shot location. To determine the offset, travel-times are calculated with

the finite-difference travel-time (FDTT) calculator using a reasonable 3-D velocity
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model. Then the offset is just the difference in travel-time between the stack location
and the shot location. Figure 6.6 shows the calculated travel-times across a real stack;
this stack-station combination was chosen because it has a large offset (the source
movement is nearly perpendicular to the gradient of the travel-time).

Of course the 3-D model does not exéctly represent the earth. However, the differ-
ence between the 3-D model and the true earth is reflected in the difference between
the predicted travel-time and the true travel-time. This is exactly the information we
need in order solve the tomography problem. It is the first derivative of this difference
across the range of shots in an individual stack that causes mis-alignment of the stack.
It is reasonable to expect that this first derivative is small across a distance on the
order of 8 km. Figure 6.7 shows realignment based on the 3-D model from Chapter 4.
There is a slight mis-alignment due to the inaccurate velocity model (visible near the
top of the record section). However, the main energy arrival in the stack corresponds
to the arrivals at the center of the record section, which is the projected location of

this stack.

Filtering

There are two other important effects due to the motion of the source. First, there is
a loss of coherency in the waveform at the station. Recent work by Bear and Pavlis
[1997] indicates that high frequency seismic signals can lose coherency across distance
ranges on the order of 150 m. Although the work of Bear and Pavlis [1997] looked
at loss of coherency as the receiver location changed, it seems reasonable to expect a
similar result as the source moves. For this reason, it is desirable for the signals to
be low-pass filtered so that the long wavelength portion of the signal, less sensitive
to small scale (~ 100 m) velocity variations, is all that remains. The signal spectrum
shows a peak between 2 and 15 Hz (figure 6.8). Since we want the low-period
portion of this signal we choose to use a zero-phase bandpass filter with corners at 2

and 10 Hz on the signals before stacking. Figure 6.9 shows a comparison of the same
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signal stacked with a various number of shots both with and without filtering. This
signal was chosen because it is strong enough to be successfully stacked even without
filtering to explore the effect of filtering on the quality of the arrival. Although the
loss of high frequency energy in the filtered trace makes arrival-time picks less precise,

the mean absolute time of picks on the filtered and un-filtered traces is the same.

6.3.4 Water Depth Correction

The next problem that needs to be addressed, with respect to the movement of the
ship, is the change in the water depth beneath the shots making up a stack. Since the
acoustic velocity of water is low (~ 1.5 £2) this could cause an error in the absolute

arrival time as well as causing mis-alignment in the stack. We account for this by

projecting the source down to the water-bedrock interface and adjusting the time

km
sec”

using an assumed water velocity of 1.5 The true path of the energy from the
shot actually follows a slanted path toward the station (figure 6.10); but since the
velocity increases rapidly in the bedrock, a projection straight down is a reasonable
approximation. The real angle taken by the signal through the water will be the
furthest from vertical with shots that are close to stations. In general, this is where
the water is shallow.

In fact, we can make a few assumptions and calculate the error in the shot location
due to the vertical shot projection for both a near and a distant station. The ray-
parameter, p, for a P-wave ray is defined by

sin(6
p= 220

(6.2)

where 6 is the angle the ray makes to vertical and vp is the P-wave velocity where

the ray angle is measured. At the bottom of the ray-path, the turning point, 4 is 90°

so p for any ray is # . As a general rule of thumb, the turning point for
Turning Point

a ray with a surface source and receiver is 10% of the source-receiver distance. So, a

100 km ray turns at ~ 10 km. Using the inverted 1-D velocity model for the GPSR.
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(table 4.1) this corresponds to a ray parameter of ﬁ or 0.1517 ==. In the water,
where the velocity is 1.5 £2, this ray would make an angle of sin~(1.5p) = 13° from
vertical. The deepest stack was in 220 m (table 6.1 day 071, hour 12) of water, so a
13° angle produces a negligible location error of 51 m. A ray with a 10 km source-
receiver distance has a ray-parameter of 0.17 = corresponding to an angle, in the

water, of 14°. Even in 220 m of water this causes a location error of only 58 m.

6.4 Sample Stack

A sample of the results is shown in figure 6.11, they vary from very clear at Oak
Harbor (OHW) and on all three components at Mt. Erie (ERW), to difficult-to-see
but detectable due to a change in frequency content at Jim Creek (JCW), to un-
detectable at Gold Mountain (GMW) where there are some high points around the
predicted arrival but nothing unambiguous enough for a pick.

From all of the stacks performed, I have selected the best from the 20tk hour
(GMT) of Julian day 069; (figure 6.13) and the worst from the 5th hour of Julian
day 071 (figure 6.14) to display here in a record section format. In the best example

there are 21 clear arrivals, in the worst example there are only 7.

6.5 Selection of Data to Stack

Since there is a large amount of data from the SHIPS experiment, and it is impractical
to analyze it all at this time, I selected a subset of the available data. I selected 56
hour-long periods chosen to give good coverage of the central Puget Sound region
(figure 6.12). From these stacks I was able to pick a total of 862 P-wave arrivals.
This is an average of 15.4 f‘t:—"c;

Table 6.1 shows a summary of the results of the stacking. “WD” is the water
depth under at the stack. “Dt” is the distance from the stack location to the most

distant shot, this is as high as 4.6 kmn since the stack is not always at the exact center
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of the shots. “Num” is the number of picks for the stack, “Res” is the maximum
absolute residual for picks made on the stack. And “Off” is the distance from the
stack to the most distant station on which a pick was made.

Table 6.1: Summary of SHIPS stacks

Stack Location Picks
Day Hour Lat (°) Lon(°) WD (km) Dt (km) | Num Res (s) Off (km)
069 20 47.740 -122.270 0.020 3.36 21 3.3 1194
069 21 47.683 -122.231 0.040 3.93 19 3.1 125.0
070 10 47.686 -122.482 0.160 3.61 12 2.2 70.3
070 12 47.537 -122.470 0.070 4.54 15 2.2 130.0
070 13 47.466 -122.518 0.110 4.44 13 0.3 137.0
070 14 47397 -122.539 0.130 4.03 16 1.6 161.5
070 15 47.331 -122.552 0.100 2.25 17 1.7 151.5
070 19 47.325 -122.711 0.070 3.56 12 1.5 173.2
070 20 47.260 -122.695 0.080 4.06 11 1.9 119.0
070 23 47.148 -122.762 0.070 4.21 15 1.4 193.1
071 02 47.258 -122.853 0.040 4.47 12 2.2 134.2
071 03 47.184 -122.803 0.050 4.62 14 1.5 141.9
071 04 47.120 -122.725 0.070 4.72 19 14 152.0
071 05 47.132 -122.673 0.120 1.19 7 1.7 149.6
071 06 47.203 -122.596 0.180 2.14 11 1.8 165.3
071 07 47.253 -122.565 0.080 3.71 18 1.5 160.0
071 09 47.305 -122.498 0.070 3.96 17 2.1 170.5
071 10 47.297 -122.451 0.140 3.32 14 1.2 170.5
071 11 47.350 -122.388 0.080 4.25 14 04 151.6
071 12 47411 -122.360 0.190 4.16 19 2.2 145.5
071 13 47.484 -122.403 0.220 4.56 14 1.0 109.2
071 14 47.564 -122.431 0.210 4.85 13 1.2 111.5
071 15 47.606 -122.358 0.170 4.02 19 2.0 1354
071 16 47.651 -122.444 0.100 4.04 18 2.0 132.5
071 17 47.729 -122.433 0.170 4.61 14 2.2 123.9
071 18 47.808 -122.411 0.190 4.37 13 2.2 1284
071 20 47.942 -122.322 0.200 4.46 17 2.3 134.8
071 21 48.005 -122.277 0.150 3.74 21 3.1 144.0




continued from previous page

Day Hour Lat(°) Lon(°) WD (km) Dt (km) | Num Res(s) Off (km)
071 22 48.067 -122.327 0.100 3.94 20 1.5 151.6
072 02 48.068 -122.419 0.180 3.89 19 2.0 132.2
072 04 48.163 -122.547 0.100 3.33 13 0.8 96.0
072 15 47.877 -122.459 0.190 4.34 16 1.2 122.3
072 16 47.948 -122.522 0.160 5.07 11 14 84.6
072 20 47.776 -122.729 0.050 3.47 13 0.7 122.9
073 02 47.493 -123.050 0.160 3.93 16 1.0 125.3
073 03 47431 -123.108 0.160 4.18 14 2.2 124.3
073 04 47.373 -123.123 0.120 4.00 8 2.0 128.2
073 05 47.448 -123.096 0.120 4.43 19 2.1 130.9
073 07 47.583 -122.984 0.160 4.46 21 1.0 128.5
073 08 47.635 -122.915 0.110 3.65 21 2.6 129.3
073 09 47.667 -122.832 0.140 3.71 17 2.2 112.7
073 10 47.705 -122.760 0.140 3.80 16 1.4 136.0
073 12 47.827 -122.667 0.050 3.60 11 0.5 95.6
073 14 47.945 -122.637 0.090 4.14 14 1.6 146.9
073 15 48.026 -122.626 0.080 4.87 15 1.7 154.8
073 16 48.118 -122.653 0.160 6.01 17 0.9 164.9
073 17 48.196 -122.783 0.060 6.54 14 1.8 126.3
073 18 48.254 -122.888 0.070 5.03 15 1.3 142.8
073 19 48.309 -122.950 0.140 4.08 16 3.1 129.1
075 04 48.198 -123.113 0.150 3.94 16 1.7 177.0
075 05 48.164 -123.042 0.050 4.00 15 1.0 182.7
075 07 48.107 -122.956 0.070 6.29 19 1.8 174.0
Q75 07 48.113 -122.911 0.070 3.41 19 1.8 172.9
075 08 48.155 -122.841 0.090 3.71 16 0.9 174.7
075 10 48.284 -122.779 0.070 4.00 12 1.0 148.2
075 11 48.352 -122.748 0.060 4.03 13 1.3 191.7

113
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Figure 6.1: View off the fan-tail of the University of Washington Oceanographic vessel
Thomas Thompson. All guns (suspended beneath the floats) have just fired but the
bubbles are only visible from the two in the center. The Laurelhurst neighborhood

of Seattle is in the background.
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Thompson Track Map
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Figure 6.2: Map showing the path of the RV Thomas Thompson during the SHIPS
experiment. This figure also shows the locations of temporary and permanent seis-

mographs in operation during the experiment.
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Figure 6.3: Figure showing two good examples of energy (unstacked) from the airguns
of the RV Thomas Thompson arriving at permanent seismographs of the PNSN.
These examples are from a shot in Lake Washington during the first active day of the
experiment (black circle with grey fill in the map.
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Synthetic Stack Example

(A) Synthetic signal with 40s period; left side, one cycle with unit amplitude; right side, 3 cycles
with random amplitude (Gaussian with unit mean and 0.2 variance).

1 1.5

10 20 E 1 40 20 4 60 8 100 120
-0.25

-0.5

-0.75

(C)A stack of 84 (1 hours worth of data) 40s windows. The noise in the stacked signal is
approximatly 10% of the noise in the unstacked signal.

Figure 6.4: Examples of synthetic stacking.
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Example Straight Stack
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Figure 6.5: Example from Oak Harbor (OHW). On the bottom we show a record
section of shots in 1 hours worth of data (to reduce clutter only % of the shots are
actually shown). At the top we show the stack resulting from these shots. Because
the source is moving the shots do not add coherently and we get a low quality result.

The location of the shots making up this stack is shown in Figure 6.3.
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Map of shots and stack location for the 10th hour of March 16 (Universal Time). Color
shows the time calculated from station CPW. Right is the whole region, left is blow up in
the region of the stack showing the time offset during this stack. This stack is 8 km long

and the total time offset across is approximately 1.2s.

Figure 6.6: This figure shows the time offset across a single stack. The travel-times
were calculated using the 3-D velocity model of Symons and Crosson [1997] and the
finite-difference travel-time calculator. Times are calculated outward from Capitol
Peak (CPW), total offset across the stack is approximately 1.2 s.
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Example Slant Stack
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Figure 6.7: Example from Oak Harbor (OHW). This is the same as Figure 6.5 except
we have corrected for source movement. The shots do not exactly align as a result of
the imperfect model, but the stack is of high quality. The stack location would be at
the center of the record section. The main arrival on the stack is coincident with the

arrivals at the center of the section.



121

1 Second of Arrival Amplitude Spectrum of Arrival, Grey Box is

Nominal Pass Band of the Fiiter
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Figure 6.8: (Top) Time series and Fourier Power Spectrum of 1 s of arrival at Haystack
Mountain (HTW), this is one of the good arrivals from Figure 6.3.
(Bottom) 80 s of signal before and after filtering.
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Figure 6.9: Figure showing a comparison of stacking with and without filtering at a
station with a strong arrival. In both the filtered an un-filtered data the shape of
the waveform is maintained without regard to of the number of shots included in the

stack.
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Figure 6.10: Schematic of the water projection process. The shot near the water

surface is projected straight down to the bedrock surface. Since the water velocity is

low, the path in the water is near vertical as consequence of Snell’s Law.
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Figure 6.11: Figure showing stacks with various grades of success. At ERW and
OHW the arrival is clear (on all three components at ERW). At JCW the arrival

is visible as a change in frequency content, and at GMW there is no clear arrival,
there are increases in energy but nothing that is an unambiguous P-wave arrival. The
marks in the seismogram windows show the predicted time of the arrival using 3-D
velocity model derived in Symons and Crosson [1997]. The large difference between
the predicted and true arrival-times is an indicator of substantial information about

the velocity model in this signal.
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Figure 6.12: Map of stack locations used in this study and locations of permanent

stations of the PNSN.
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Figure 6.13: Record section showing the best stacking result. There are 21 picks on
stations: NOAA/PMEL (NOWS); Seattle (SEA); Queen Anne (QAW); Seward Park
West (SPW); Bald Hill (BHW); Port Gamble (PGW); Maple Valley (MPL); Haystack
Lookout (HTW); Gold Mt. (GMW); Rattlesnake Mt. (RMW); Jim Creek (JCW);
Hoodsport (HDW); Oak Harbor (OHW); Grass Mt. (GSM); Cultus Mt. (CMW);
Garrison Hill (GHW); Mt. Erie (ERW); Voight Creek (RVC); Snow Dome (OSD);
Mt. Constitution (MCW); and Mt. Baker (MBW). Not all arrivals are visible in this

section because of overlap in the record section.
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Figure 6.14: Record section showing the worst stacking result. There are 7 picks from
this stack: McNeil Island (MEW); Capitol Peak (CPW); Gold Mt. (GMW); Maple
Valley (MPL); Queen Anne (QAW); Seattle (SEA); Cultus Mt. (CMW).



Chapter 7

VELOCITY INVERSION USING SHIPS DATA

In this chapter, I discuss the results of an inversion incorporating a portion of the
SHIPS data introduced in Chapter 6. In addition to the SHIPS data, this inversion
uses the HQDS and the 1991 and 1995 explosions. After a brief discussion of the
resolution of this new model I will interpret features in the Coast Range, the Puget
Lowland, and the Cascade Range as in Chapter 5.

7.1 Resolution

7.1.1 Hit Comparison

Figure 7.1 shows a comparison of the sampling for a near-surface layer (3-5 km) of
the model. The colors in the map show the number of rays that sample each node
of the inversion grid. The comparison is based on the HQDS with and without the
addition of 56 stacks of SHIPS data chosen to be well distributed in space (locations
shown as yellow circles in figure 7.1 left). In the immediate Puget Sound region
the results are excellent. With only earthquake data and a few explosions the near
surface is sampled only in areas extremely close to stations (figure 7.1 right). After
the addition of surface sources from SHIPS, this near surface region is well sampled
throughout the Puget lowland. This result leads me to expect sufficient resolution in
the near surface to resolve the features that are critical to understanding the seismic
hazard in the GPSR. For the balance of this chapter, I will focus exclusively on the
well-sampled central portion of the model from latitude 47°45'N to 48°15'N and from
longitude 123°45'W to 122°15'W (a square 160 km on a side, figure 7.1).
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7.1.2 Checkerboard

Prior to interpretation, I performed a resolution test for the region of interest. Here,
the checkerboard input model used for the test is much more dense than that used
for the previous resolution test in chapter 4. The characteristic size of the elements
in this checkerboard (figure 7.2) is approximately 10 km horizontal by 6 km vertical
(compared to 20 km horizontal by 10 km vertical in figures 4.7 and 5.2).

The shallow maps and cross section A of figure 7.2 indicate good resolution at
this scale from the eastern edge of the Olympic Peninsula east through the central
Puget lowland at depths of 5 — 7 km. At a slightly greater depth of 11 — 13 km the
well resolved region is much larger; the sense of the perturbation is recovered through
almost the entire detail region. In the immediate Seattle area the perturbation is

resolved to almost its full magnitude.

7.2 Geologic Interpretation

The results of the inversion are shown in map and cross sections in plate 1. Figure 7.3

shows a few selected maps and cross sections with my interpretations labeled.

7.2.1 Coast Range
Core Rocks of the Olympic Mountains and Contacts

Plate 1 maps D, E, and F; and cross sections A, B, H, and J all show a low-velocity
feature in the northwestern portion of the model between 47°30'N and 48°N and
123°W and 124°W. This feature corresponds to the core rocks of the Olympic Moun-
tains which are expected to have low seismic velocities. Using this anomaly, I have
drawn my interpretation of the contact between the high velocity rocks of the Siletzia
terrane (discussed below) and the lower velocity rocks of the Olympic core complex

on figure 7.3. In the east-west cross sections the contact varies from steeply dipping
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(~ 60° in plate 1 cross section H) to overturned near the surface in plate 1 cross
section J (figures 7.3 H and J show the contact). In plate 1 cross sections H and J
the low velocities persist to a depth of nearly 30 km. Because of the east-dipping
contact the core rocks at depth are actually 15 — 20 km east of the surface exposures
of the Siletzia terrane.

From the geometry of the contact, I conclude that the accretionary prism has
formed under the Siletzia terrane and warped the Siletzia upward. This is consistent
with dips of the Siletzia terrane measured where the formation outcrops at the surface
[Babcock et al., 1992]. This is also similar to the geometry of the accretionary wedge
and the Siletzia terrane imaged by Davis and Hyndman [1979] just off the coast of
Vancouver Island. The difference is that on Vancouver Island the contact lies offshore;
on the Olympic Peninsula the contact lies just to the west of the Puget Sound and
the accretionary wedge is aerially exposed, forming the Olympic Mountains.

I suggest that the originally flat-lying formation has been warped upward along
the contact with the Olympic Core. The upward warping is consistent with the only
2 crustal earthquake focal mechanisms from the study of Ma et al. [1996] in this
portion of our study area. Events 63 and 67, from the study of Ma et al. [1996],
indicate a maximum compressive principle stress with an east-west orientation. This
is in contrast to their study as whole which found predominantly north-south ori-
ented stress. The upward warping of the Crescent formation may result from vertical
accumulation of relatively weak Olympic core sediments scraped off of the descending
slab. If this model is correct, then the Crescent formation does act as the backstop
to scrape sediments off the down-going Juan de Fuca slab, but the geometry is not
that of the “normal” backstop (figure 7.4).

The Crescent backstop geometry shown in figure 7.4 implies that the accumulation
of the accretionary wedge acts to lift the Crescent formation. Figure 7.5 shows the
free-air gravitational anomaly for the GPSR measured by Finn et al. [1991]. The long

period free-air anomaly is a measure of how well the continental crust is isostatically
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compensated [Heiskanen and Meinesz, 1958; Cordell, 1979]. Indeed, comparison of
figure 7.5 and figure 5.3 does show a relative gravity high corresponding to the surface
exposures of the Crescent formation. This indicates that the elevation of the Crescent
is this region is being supported elsewhere.

The western-most cross section (plate 1 cross section A and figure 7.3 A) also
shows the bottom of the Olympic core complex at approximately 20 km depth. The
bottom corresponds to a change in P-wave velocity from 5.9 £2 to 6.4 2 within a
4 km change in depth. This transition is also clear in the east-west cross sections
(plate 1 cross sections H and J and figure 7.3 H and J). I interpret this feature to be

the intersection of the Olympic core complex with the basalts of the oceanic crust at

the top of the down-going Juan de Fuca plate.

Siletzia Terrane and the Contact With the Puget Lowland

Between the low velocity rocks of the Olympic Core and the low velocities in the
Puget Lowland, there are high velocity rocks of the Siletzia terrane (known locally as
the Crescent formation). The geometry of the western contact with the Olympic core
rocks was discussed in the previous section. The geometry of the contact between the
Siletzia terrane and the Puget Lowland is most clear in plate 1 map C although the
high velocity anomaly is first visible in plate 1 map B and persists to plate 1 map E
which is the deepest layer to which the low velocities of the Puget Lowland persist.
Plate 1 map C shows the horseshoe shape of the Siletzia terrane that is similar to the
geology shown in figure 5.3.

In plate 1 maps C and D and figure 7.3 the horseshoe shaped contact between
the Siletzia terrane and the Puget Lowland is broken by an eastward excursion of the
high velocity corresponding, on the surface, with the Blue Hills (figures 5.3 and 7.3)
a local out-crop mapped as a portion of the Siletzia terrane [Johnson et al., 1996].

In plate 1 map D there is another break in the horseshoe shape of the Siletzia—
Puget Lowland contact north of the Blue Hills. This feature does not correspond
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to any surface features but it is just south the line of the southern Whidbey Island
fault (SWIF) (figure 7.3 map). The SWIF was postulated by Gower et al. [1985]
and identified, primarily from seismic reflection data, by Joknson et al. [1996]. John-
son et al. [1996] identify the southern Whidbey Island fault zone as a broad region
(6-11 km wide) with splays exhibiting strike-slip, reverse, and thrust displacement.
There is a less well defined high velocity perturbation along a line just south of the
SWIF that connects this feature with the well defined high velocity in the northwest
corner of plate 1 map D. The well defined high velocity region in the northwest cor-
ner of the map corresponds to an out-crop of Siletzia terrane on the southern tip of
Vancouver Island. This out-crop is separated from the rest of Vancouver Island by
the Leech River and San Juan-Survey Mountain Faults which Johnson et al. [1996]
interpreted as the western end of the SWIF. A linear northwest-southeast trending
feature persists in this portion of the model from a depth of 7 km (plate 1 map D) to
a depth of 15 km (plate 1 map F). The line moves northeast as the depth increases
so I infer a slight northeast dip for the SWIF zone, consistent with the results of
Johnson et al. [1996] based on seismic reflection surveys at much lower depth. The

structure continues off the eastern edge of this map in plate 1 map F.

In the center of the southern edge of plate 1 maps C and D and figure 7.3 Cand D
there is another high high velocity feature identified as what eventually crops out at
the surface as the Black Hills (figure 7.3 map). Although this feature does not persist
all the way to the surface I believe this is a function of poor resolution at the near
surface with good resolution at greater depths (figure 7 .2). Plate 1 cross section C
shows a cross sectional view which passes through this structure. Pratt et al, [1997]
identify the fault separating the Black Hills and the Tacoma basin as a south dipping
thrust fault. Since their seismic reflection results end at the south end of the Puget
Sound, their interpretation is based on the mapped dip of the Doty fault (south of
this boundary) which dips to the south. Based on the tomography, I interpret the
boundary between the Black Hills and the Tacoma basin as a north dipping thrust



133

fault (figure 7.3 D). This is also more consistent with historical subsidence in the
region [Sherrod, 1998].

7.2.2 Puget Lowland
Sedimentary Basins

The most obvious features in the upper 10 km of the detail map (plate 1 maps A-D
and figure 7.3) are the low velocity regions below the cities of Seattle and Tacoma. The
minimum velocity under the city of Seattle is ~ 2.5 % directly under station SEA
(a Wood-Anderson seismometer in the basement at the University of Washington;
appendix D). For comparative purposes, sonic logs from the Socal-Schroeder #1 well
slightly north of Lake Washington average ~ 3.0 ’:—'e"; through the upper 2.5 &m of
sedimentary rocks [Brocker and Ruebel, 1998]. The package of sedimentary rocks
is much thinner at Socal-Schroeder #1 since the well is located north of the main
portion of the Seattle basin. Plate 1 cross section J shows the region of low velocity
persisting to a depth of ~ 10 km below Seattle. This is in contrast to the results of
Pratt et al. [1997] which showed low velocities persisting to a depth of only 6.5 km in
the Puget Sound just west of Elliott Bay; approximately 15 km west of the slowest
inverted velocities in our model.

The size and magnitude of the low velocity region below Seattle could have a large
effect on the intensity of shaking experienced in the city during a large earthquake.
For this reason I performed a resolution kernel test specific to this region in order
to assess the reliability of these results. Since the Seattle and Tacoma basins are
relatively widely separated in space we can save time by performing the resolution
test in both simultaneously. Since we are interested in the resolution with regard to
low velocity basins, the perturbation is a negative one. This is significant because
we are using only the first arrival; with a low velocity perturbation energy will tend

to move around the perturbation and this will affect the resolution. The resolution
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test (figure 7.6) indicates that a shallow low velocity region in the Seattle area is
recoverable to almost its full magnitude and does not significantly smear in depth.
A perturbation in the Tacoma region is not quite as well recovered and there is some
smearing, a 6 km synthetic perturbation shows as a 10 km deep perturbation in the
inverted result.

The recovery of the correct anomaly depth under Seattle leads me to believe that
low velocities do persist to a depth of 10 km directly under the city of Seattle. This
requires a slope on the bottom of the basin that is down to the east from Elliott bay
(where the refraction study of Pratt et al. [1997] constrains the depth to the bottom
of the basin to 6.5 km) to under the U of W (where this study constrains the depth of
the basin to 10 km). The smearing of the resolution kernel test in Tacoma suggests
that this study does not have the necessary resolution to give a good constraint on
the depth of the Tacoma basin, although our data suggests a range of 5-10 km.

Without the data from the temporary SHIPS stations it is difficult to define the
eastern edge of the Seattle basin with any degree of accuracy. However, the western
edge is well constrained. Directly west of West Seattle, the edge of the basin is
coincident with the contact between high velocity rocks of the Blue Hills and lower
velocity rocks to the east. This contact lies almost exactly under the city of Bremerton
(plate 1 map C), and can be seen as an anomaly in the contact between the rocks of
the Siletzia terrane and the lower velocity rocks of the central Puget lowland. This
contact generally follows Hood Canal except for an eastward jump at the Blue Hills
(under PNSN stations GNW and GMW; appendix D).

There is less clear evidence of a low velocity region under Everett in plate 1
map C. Compared to the distinct regions of low velocity under Seattle and Tacoma,
the Everett Basin is a more spread-out low-velocity patch to the north of Seattle.
Examination of the checkerboard test in this area (figure 7.2) does show relatively
poor resolution toward in the upper portion of this feature, so the northern boundary

is not well constrained and the full magnitude of the anomaly is not expected to be
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recovered. However, the existence of the Everett basin is significant and clear from

the tomography results.

7.2.3 Cascade Range

Although the contact between the Puget Lowland and the Cascade Range is not ter-
ribly well constrained, plate 1 maps C and D show the eastern edge of the Puget
lowland as a transition into high velocity material (figure 7.3 H and J Cascade front).
‘This transition strikes almost due north in plate 1 map C. The geometry of the tran-
sition is more complex in plate 1 map D (the contact is not linear). This is probably
the result of uplift of the basement of the Puget Lowland. Topographically, this tran-
sition corresponds to the start of the foothills of the Cascade mountains. I interpret
this transition as the contact between the basement of the Puget Lowland (the Silet-
zia terrane) and the pre-tertiary basement of the Cascade Range. Unfortunately, this
model has insufficient resolution to determine whether this is an active structure or

a suture zone.

Duwvall Earthquake

The transition from the Puget Lowland into the higher velocity material of the Cas-
cade range is not imaged across the entire map, but there is a well resolved portion in
the neighborhood of the May 2, 1996 Duvall earthquake (M, 5.3). This earthquake is
discussed in detail in Thomas et al. [1996]. The centroid moment tensor and the first
motion focal mechanism agree that this event resulted from either a west or an east
dipping thrust fault. The tomography (plate 1 cross section H) indicates a contact
in this exact region. It seems likely that the Duvall earthquake occurred on a small
fault that is part of this observed contact. Unfortunately, the resolution of the model

is not sufficient in this region to show the actual fault.
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Figure 7.1: Comparison of the number of hits/node with (left) and without the SHIPS
data (right). In both maps completely un-sampled regions are shown as uncolored.
The yellow dots are the locations of the SHIPS shots used in this comparison. The
color map is based on the number of rays sampling a given node. Box in left map

shows the region selected for detailed analysis in this chapter.
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Figure 7.2: Comparison of synthetic (left) and inverted (right) checkerboard using
the SHIPS data. Compared to the checkerboard in Chapter 4 these perturbations

are much smaller.
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Figure 7.3: Map and several cross sections (from plate 1) with my interpretations

labeled. There is no vertical exaggeration on the cross sections.



139

Conventional
Acreationary Wedge Backstop
Y4
)]
or Slab
Crescent
Formation
Backstop
Acreationary Wedge

Figure 7.4: Comparison of the standard geometry for an accretionary wedge backstop
(Top). And the geometry for the Crescent formation backstop interpreted in this
study (Bottom). Since the Crescent dips the same direction as the subducting slab

there is an upper force imparted by the accumulating sediments.
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Figure 7.5: Map of the free-air gravity anomaly of the GPSR from Finn et al. {1991].
The long wavelength portion of this anomaly is a measure of crustal isostatic com-

pensation.
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Chapter 8

CONCLUSIONS

In this dissertation I have described a non-linear seismic tomography experiment
in the Greater Puget Sound Region (GPSR). The GPSR contains portions of three
distinct geologic provinces: (1) the Coast Range Province—composed of the Olympic
Mountains and the-Siletzia terrane lying along the Washington Coast (the western
edge of the GPSR). (2) The Puget Lowland-an approximately linear depression that
stretches from Oregon’s Willamette Valley to the Strait of Georgia in Canada. The
Puget Lowland lies in the middle of the GPSR. (3) The Cascade Range-lying along
the eastern edge of the GPSR and characterized by extensive episodic volcanism since
the later Mesozoic.

"The result of this study is a three-dimensional model of the P-wave velocity within
the GPSR. Interpretation of this model provides information about the subsurface
geology in the region. The method used to perform the tomography has been de-
veloped as part of this research. The method uses a finite-difference algorithm to
calculate seismic travel-times to every point in the region using the full 3-d velocity

model.

8.1 Data

The method is capable of using three different types of data: (1) Earthquakes with
unknown hypocenters. The earthquake hypocenters are found as part of the model
during solution of the tomography problem. (2) Explosions or other seismic events

with known locations. (3) External data constraining the seismic velocity at known
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locations within the model.

Within the GPSR earthquakes are the most numerous type of data. During
this experiment I have examined the resolution possible using two different sets of
earthquakes. First, the complete data set (CDS) consists of all earthquakes within
the GPSR that meet a specific set of selection criteria. The arrival-time picks in the
CDS are un-reviewed. Next, a high-quality subset (HQDS) of the CDS. These are the
best events from within the GPSR selected to keep as many of the unique ray-paths
as possible. The HQDS has been re-picked so that we have more confidence in the
accuracy and consistency of the observations. Comparison shows that the HQDS
provides almost the same resolution as the CDS, and the inversion takes only half as

much time to complete.

Our study also includes 20 explosions within the GPSR which were used in wide-
angle reflection—refraction line experiments performed in 1991 and 1995. The ex-
plosions are used directly in the inversion since their locations are known. The 2-D
interpretation of the velocity structure resulting from the 1991 experiment is also

incorporated into the inversion as external constraints.

The last source of data included in the inversion are shots of the 1998 Seismic
Hazards in the Puget Sound (SHIPS) experiment. During SHIPS, about 30,000 air
gun shots were fired at approximately 100 m intervals in the waterways of west-
ern Washington and British Columbia. We stacked waveforms recorded at about 50
PNSN stations to obtain approximately 1000 travel-times of first arriving compres-
sional waves from as uniform as possible a distribution of shots. The addition of the
SHIPS data to the existing earthquake dataset improves the resolution in the upper

20 km of our model.
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8.2 Features of the Model

I have interpreted two separate models. The first model was complete before the
SHIPS experiment and shows a number of large surface and deep features. The second
model includes data from the SHIPS experiment and interpretation is confined to the
near surface in the central portion of the GPSR where the resolution is improved by
the inclusion of the additional data. Significant findings include:

e Coast Range Features

— A spectacular image of the accretionary prism which forms the Olympic
Mountains. The model velocities are constant with laboratory measured
velocities of metagraywacke—quartz-mica-schist facies rocks to a depth of
25 km.

— An excellent correlation between the low velocity material in this model

and the low gravity feature along the Washington coast.

— The contact between the core rocks of the Olympic Mountains and the
Siletzia terrane (known as the Crescent formation in this area). The core
rocks underlie the Siletzia terrane. The Siletzia terrane dips down to the
east over the contact with the Olympic core rocks. The conclusion is that
the accumulation of the sediments that are being pushed up to form the
Olympic Mountains underneath the Siletzia terrane has warped these rocks
upward.

— At the contact with the Olympic core, our model shows a thickness for the

Siletzia terrane of ~ 20 km, consistent with measurements of the surface

geology by Babcock et al. [1992].

— Shallow high velocity features in the model correspond to isolated outcrops
of the Siletzia terrane at the Blue Hills near Bremerton and the Black Hills

south of Tacoma.
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— The basal contact between the low velocity rocks of the Olympic core
complex and higher velocity material (~ 6.5 f:"—c) which we interpret as the
top of the down-going Juan de Fuca slab. Approximately 10 km below
the top of the Juan de Fuca slab there is another increase in velocity to

~ 8 £ T interpret this as the bottom of the oceanic crust.

— The model also includes a northern contact between the Siletzia terrane
and lower velocity material. The contact corresponds to the Southern

Whidbey Island Fault described by Johnson et al. [1996].

e Puget Lowland Features

— Well defined low velocity features in the model correspond to sedimentary
basins under the cities of Seattle, Tacoma, Everett, and Chehalis. The best
imaged is the Seattle basin, which is 10 £m deep under the University of
Washington. This is deeper than the 6.5 km described by Pratt et al.
[1997] in the Puget Sound just west of Elliott Bay.

— There is a good correspondence between the velocity of the center of the
Seattle basin in this model (~ 2.5 ’::"—c) and well logs for unconsolidated

sediments in the upper 2.5 km of the Socal-Schroeder #1 well slightly
north of Lake Washington (~ 3.0 £2) [Brocker and Ruebel, 1998].

— The western edge of the Seattle basin is well constrained at the contact with
the Siletzia terrane. Unfortunately, the eastern edge is not well constrained

with this data set.

— In general the Tacoma basin is not as well constrained. However, the
southern edge lies against a shallow velocity anomaly corresponding to
the Black Hills. The geometry of the contact between these two features
suggests a south-dipping thrust fault; consistent with regional subsidence,
but in disagreement with the model of Pratt et al. [1997].
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e Cascade Range Features

— The model shows the eastern edge of the Puget lowland as a transition
into high velocity material along a contact striking nearly due north. To-
pographically this corresponds to the start of the foothills of the Cascade
mountains. While I cannot definitively constrain the eastern edge of the
Siletzia terrane, it appears to extend at least 30 km east from the eastern

edge of the waterways of the Puget Sound.

— Although the contact between the Siletzia terrane and the Cascade base-
ment is not imaged across the entire section, there is a well resolved portion
in the neighborhood of the May 2, 1996 Duvall earthquake (M. 5.3). It
seems likely that the Duvall earthquake occurred on a small fault that is
part of this structure.

e Deep Features

— At ~ 35 km the velocity jumps to ~ 8 ;"3, I interpret this as the Moho.

— Approximately 15 km below the Moho there is a low velocity region.The
velocity reversal is probably the basalt that forms the oceanic crust on
the Juan de Fuca slab. However, the low velocities could be serpentinized

mantle if the basalt has transformed to eclogite.

8.3 Future Work

The SHIPS experiment provided a large amount of high quality data which has only
just begun to be analyzed. The models shown in this dissertation were inverted with
no data from the large temporary deployment of seismometers which were a major
component of SHIPS. The inclusion of the SHIPS data from the permanent stations
of the PNSN resulted in a large improvement in the quality of the model in the upper

20 km, but there are still many questions that are unanswered.
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The models discussed in this dissertation do not have sufficient resolution to ex-
plore the terminating features of the basins in the Puget Lowland. Further analysis
will almost certainly lead to the identification of heretofore unknown faults. The ge-
ometry of the contact between the Cascade Range and the Siletzia terrane is poorly
resolved in this study, understanding this feature is critical to interpretation of the
current tectonic regime in the GPSR.

In addition to providing higher resolution P-wave velocity models by using data
from the temporary SHIPS seismic deployment, it is possible that the 3-component
SHIPS stations might provide enough data for the inversion of an S-wave velocity
model. The S-wave structure is critical for modeling the strong-motion response of

the region; and, at present, there is very little data to address this question.
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Appendix A

FINITE-DIFFERENCE TRAVEL-TIME CALCULATIONS

All travel-times used in this document have been calculated with a class of finite-
difference travel-time calculators (FDTT) described in Vidale [1988, 1990]. The
method works by solving the eikonal equation on an expanding box of nodes sur-
rounding the source, when the box has expanded to fill the entire region the prob-
lems is complete. The actual code used for this work was corrected and extended by
Hole [1992]; Hole and Zelt [1995]. This solver has the advantages of being fast and
accurate, there are also no problems with shadow zones or accidental calculation of
second (instead of first) arrivals in complex media.

The following explanation of the eikonal equation closely follows Officer [1974].
We start with the 3-D wave equation in Cartesian coordinates

P2v U 9 ?v
2 —
¢ (6:1:2 * dy? * 822) a2 (A1)
By inspection the solution of equation A.1 is
¥ = f(k-x—ct) (A.2)

Then the equation of characteristics of equation A.1 is

ar\?  (ow\* [av\* 1 (872
&) < (&) +(&) =2 (%) (43
and equation A.2 also solves this equation. Now if ¢ is not constant then k will change

and so we replace the argument of equation A.2 with the more general equation

U = f[W(z,y,z2) — cot] (A.4)
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where ¢ is a constant reference velocity. Substituting equation A.4 into equation A.3

we obtain the eikonal equation

2 2 2
@@ e

We first define the function T'(n,€) as the travel-time from a seismic source at
position 1 to a receiver at position £&. For a given source this defines the 2D scalar
function T'(€) . Now, by definition the gradient is the value of the change in dependent

variable for change in independent variable so

VT(E) = % (A6)

where 1 is the length vector, and % is just time per distance or the slowness. This

can be changed from a vector relation into an easier to use scalar form by squaring

ot ot

VI@®)-VTE) =35 (A7)
or simplifying (3T_(§))2+(w)2=(i) 48)
oz Ay 2 '

An Illustration using Huygen'’s principle: a wave propagates as if every point on
the wave surface is a secondary source, at a later time the wave will be the envelope
of wavelets from the initial wave (figure A.1). Consider the function W (n) defining
the family of wavefronts from a given source. Then a wavefront at time ¢, is made
up of the locus of points W(n) = A + coty (A and ¢y constants) and W (n) —coto = A
defines a wavefront with a given phase.Consider the wavelet from the point 1 where

the velocity is ¢ at a time ¢t = £y + dt
W(n) — coto = W(n + c dt i) — co(to + dt) (A.9)
where i is the unit normal to the wavefront. If dt is small then

W(n) — coto = W(n) +cdt 4- VW(n) — co(to + dt) (A.10)
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to first order and

i-VW(n) = % (A.11)
Now the gradient of W must be parallel to the normal to the wavefront, so, for some
constant B
Bi =VW(n) (A.12)
If we pre-multiply by @i then
f-Bi=1-VW(n) (A.13)
And using equation A.11
B= % (A.14)

Substituting back into equation A.12 and solving we get
i = —VW(n) (A.15)
Co
Now substituting for @i in equation A.11
c Co
aVW(n) FVW(n) = — (A.16)

Multiplying by € yields the eikonal equation.

The first step is the discretization of the volume into a set of cubes, the slowness is
specified at nodes which makeup the corners of the cubes. The algorithm is initialized
by finding the travel-time from the source to the corners of the box containing the
source. This box is then iteratively expanded until it fills the entire volume. In 2-D,
expansion of the box starts from the relative minimum time on each of the four sides
(figure A.2). The time is then calculated from node t; to node ¢; using a non-centered

finite-difference equation

|®
| =

(to — t3)

|2
|“=~

1%

)
N

)
>

(81 —t2) . (A.17)
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where h is the node spacing and ty, %1, and, £, are already known. Substituting into
the 2-D eikonal equation (equation A.8) and solving for ¢3

V/ah2s? — 8 + 21ty — 83

S (A.18)

t3 =1%o +

where s is the slowness in this cell (average of the nodal slownesses). Now the time

to node ¢, is calculated using a centered finite-difference equation

ot 1

3z = ﬁ(to + 11 — t3 — t4)

at 1

5 = op(to+ts —t —t) (A.19)

and again solving equation A.8, in this case

ty = to + \/2h2s2 — 12 + 2t,t5 — 12 (A.20)

Extension to 3-D is simple, there are of course more cases to consider but the
methodology is the same. Instead of the four sides of a square, the box expands on

the six sides of a cube.
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Figure A.1: According to Huygen’s principle the wavefront at time ¢, + d# is made of

the locus of circles with radius ¢ dt from all points on the wavefront at time #,.
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Figure A.2: The expansion of the box begins from the relative time minimum at node

to to node t3.



Appendix B

PSEUDO-CODE FOR NON-LINEAR SEISMIC
TOMOGRAPHY USING FINITE-DIFFERENCE
TRAVEL-TIMES

Table B.1: Seismic Tomography Pseudo-code

Read in the starting model m(®

Generate the regularization matrix, L; b = Lm(®

0
NO  =lb|?

Calculate travel-times
Locate earthquakes using Grid Search
Refine earthquake locations using Geiger’s method and interpolated travel-times
Generate the residual vector, r; N =|| r [|2
Start main loop

Generate the J matrix by back tracing the travel-times

wJ

e

Create the full matrix A = [
Use CGLS to find a solution to Adm = [

Wr
"
If || 6m ||2< tolerance then exit main loop

Start inner loop; p=1
m; =m;_; + udm
b =Lm;; Nyier =l B [
Calculate travel-times and residual vector, r
Nizy =|| r: |I?
If ANS o+ Ny < ANl 4 NS
then exit inner loop
elseu=5§

End inner loop

End main loop




Appendix C

PUGET LOWLAND SEISMOGRAPH STATIONS

Table C.1: Puget Lowland Seismograph Stations

Name Inst. Date | Abreviation Lat. Lon. Elev. (km)
Ape Cave - APW 46N39.4667 | 122W39.4050 0.457
Ashford 3/95 ASF 46N45.6030 | 122W 1.5930 0.528
Boisfort Mt 1 10/72 BFW 46N29.2000 | 123W12.8900 0.902
Bald Hill 7/84 BHW 47N50.2100 | 122W 1.9300 0.198
Blyn Mt. 7/70 BLN 48N 0.4417 | 122W58.3107 0.585
Lake Shannon 12/84 BLS 48N34.3500 | 121W40.0000 1.341
Boistfort Mt. 2 11/80 BOW 46N28.5000 | 123W13.6833 0.870
Crazy Man Mt. 4/80 CMM 46N26.1167 | 122W30.3500 0.620
Cultus Mt. 6/86 CMWwW 48N25.4217 | 122W 7.1400 1.190
Cowlitz River 3/80 cow 46N29.4600 | 122W 0.7267 0.305
Capitol Peak 7/70 CPW 46IN58.4300 | 123W 8.1800 0.792
Dalles Ridge 4/95 DLR 47N 6.1688 | 121W34.0450 1.190
Elk Rock 5/80 ELK 46N18.3333 | 122W20.4500 1.270
Frog Mountain 5/95 FGM 47N 4.5480 | 121W45.7595 1.158
Mt. Fremont 9/72 FMW 46N56.4933 | 121W40.1883 1.859
Garrison Hill 9/75 GHW 47N 2.5000 | 122W16.3500 0.268
Glacier Lake - GLK 46N33.8367 | 121W36.5117 1.320
Gold Mt. 2/70 GMW 47N32.8750 | 122W47.1800 0.506
Green Mountain 3/95 GNW 47N33.8640 | 122W49.5173 0.165
Grass Mt. 6/70 GSM 47N12.1900 | 121W47.6700 1.305
Hoodsport - HDW 47N38.9100 | 123W 3.2533 1.006
Haystack Lookout 6/75 HTW 47N48.2083 | 121W46.1442 0.829
Jim Creek 12/82 JCW 48N11.7117 | 121W55.5178 0.792
Kosmos 05/81 KOS 46N27.6800 | 122W11.4300 0.828
Lucas Creek 3/92 LCW 46N40.2400 | 122W42.0467 0.396
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continued from previous page

Name Inst. Date | Abreviation Lat. Lon. Elev. (km)
Ladd Mt. 6/75 LMW 46N40.0900 | 122W17.4400 1.224
Longmire 3/88 LON 46N45.0000 | 121W48.6000 0.853

Lyman 4/75 LYW 48N32.1200 | 122W 6.1000 0.107
Mt. Baker 11/72 MBW 48N47.0400 | 121W53.9800 1.676

Mt. Constitution 11/72 MCW 48N40.7800 | 122W49.9400 0.693
McNeil Island 3/85 MEW 47N12.1103 | 122W38.7600 0.097
Mashel Creek 8/95 MHL 46N52.9428 | 122W 3.8405 1.215

Monroe 09/79 MOW 47N50.7817 | 122W 2.8817 0.180
Burnt Hill 7/80 OBH 47N19.5750 | 123W51.9500 0.383
Oak Harbor 5/75 OHW 48N19.4000 | 122W31.9100 0.054
Lake Quinault 7/80 OLQ 47N30.9683 | 123W48.5250 0.121
North River 7/80 ONR 46N52.6250 | 123W46.2750 0.257
Snow Dome 10/84 OSD 47N49.2500 | 123W42.1000 2.010
UW Pack Forest 2/95 PAK 46N50.4893 | 122W18.1830 0.436
GS Canada ~ PGC 48N38.9998 | 123W27.0295 0.005
Port Gamble 4/85 PGW 47N49.3133 | 122W35.9615 0.122
- - PIB 48N49.1000 | 123W19.1500 0.060
Randle 3/80 RAN 46N24.5000 | 121W51.8167 1.620
Camp Muir 9/93 RCM 46N50.1483 | 121W43.9067 3.085
Camp Schurman 6/27/89 RCS 46N52.2600 | 121W43.8660 2.877
Rattlesnake Mt. 8/85 RDT 47N27.5825 | 121W48.3200 1.024
Emerald Ridge 7/89 RER 46N49.1533 | 121W50.4550 1.756
Rattlesnake Mt. 7/71 RMW 47N27.5825 | 121W48.3200 1.024
Rockport - RPW 48N26.9000 | 121W30.8167 0.850
Shriner’s Peak 6/95 RSH 46N48.7598 | 121W31.7162 1.770
Voight Creek 1/83 RVC 46N56.5750 | 121W58.2883 1.000
Ranney Well 5/95 RWwW 46N57.8343 | 123W32.5980 0.015

Strawberry Look. 6/80 SBL 46N20.4200 | 122W 2.3300 1.665

Seattle - SEA 47N39.3000 | 122W18.5000 0.030

- - SEAE 47N42.0000 | 122W16.3000 0.000

South Mt. 3/75 SMW 47N19.1700 | 123W20.5000 0.840

GS Canada - SNB 48N46.5598 | 123W10.2718 0.408
Seward Park 9/69 SPW 47N33.2217 | 122W14.7517 0.008
Satsop 5/93 SSW 46N58.3400 | 123W26.0300 0.120
Striped Peak 6/73 STW 48N 9.0483 | 123W40.2183 0.308
Tradedollar Lake 11/83 TDL 46N21.0500 | 122W12.9500 1.400
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Name Inst. Date | Abreviation Lat. Lon. Elev. (km)
Tolt Res. 10/93 TTW 47TN41.6777 | 121W41.3332 0.542
GS Canada - VGZ 48N24.8338 | 123W19.4637 0.067
Willame Creek 6/95 WCR 46N36.8477 | 121W45.9932 1.200
Bear River Ridge 12/93 WIB 46N20.5800 | 123W52.5100 0.503
White Pass 3/80 WPW 46N41.8900 | 121W32.8000 1.250
Crystal Mt. 10/95 XTL 46N55.7967 | 121W29.5967 1.665
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NOTE TO USERS

Oversize maps and charts are microfilmed in sections in the
following manner:

LEFT TO RIGHT, TOP TO BOTTOM, WITH SMALL
OVERLAPS

The following map or chart has been microfilmed in its entirety at
the end of this manuscript (not available on microfiche). A
xerographic reproduction has been provided for paper copies and is
inserted into the inside of the back cover.

Black and white photographic prints (17”’x 23”) are available for an
additional charge.
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