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Abstract

A Coupled Local Mode Approach to Laterally
Heterogeneous Anisotropic Media, Volume Scattering,

and T-wave Excitation
by Darin J. Soukup

Chair of Supervisory Committee:

Professor Robert I. Odom
Department of Farth and Space Sciences

This dissertation presents theoretical and numerical results for the coupled lo-
cal mode formalism applied to the seismo-acoustic wavefield in generally anisotropic
range-dependent media. General anisotropy affects the form of the elastic stiffness
tensor, which directly affects the polarization of the local modes, the frequency and
angular dispersion curves, the coupling and scattering of the local modes in range-
dependent media, and also introduces the effects of nearly degenerate modes. The
effects of anisotropy and the combination of anisotropy and lateral heterogeneity are
examined for 1-D and 2-D models, respectively. Horizontally polarized shear mo-
tion is determined to play an important role in seismo-acoustic wave propagation,
where modes have significant bottom interaction with anisotropic sediments at low
frequencies. The discrete modes for tilted anisotropy are best described as quasi-
P-SV, quasi-SH, and generalized P-SV-SH modes with particle motions in all three
Cartesian coordinate directions.

Lateral heterogeneity is introduced through interface and volume terms. The



relative significance of deterministic and stochastic effects from the interface and
volume scattering terms are considered. New stochastic volume scattering terms
are derived by applying perturbation theory to the elastic equations of motion and
boundary conditions. Anisotropy enhances modal scattering, which leads to the loss
of signal coherence, and apparent energy loss if not properly accounted for.
Coupled-mode scattering theory is applied to the T-wave excitation problem.
Modal scattering from lateral heterogeneity along the seabottom is shown to con-
vert energy from the directly excited hybrid crustal-acoustic modes to propagating
acoustic modes. Both refraction from a sloping seafloor and seafloor scattering act as
T-wave generation mechanisms, with each mechanism entering the modal scattering
theory as separate terms. In addition, fault type is strongly correlated with T-wave
excitation efficiency, while low shear speed sediment cover enhances T-wave gener-
ation. The discrete modes contribute to the majority of the seismic source field for
shallow sources, and the continuum spectrum becomes increasingly important with

greater source depth.
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Chapter 1

INTRODUCTION

This dissertation presents both theoretical and numerical results which provide
the foundation for modeling seismo-acoustic wave propagation in 1-D homogeneous
anisotropic and 2-D range-dependent anisotropic shallow water environments. There
is an apparent trade-off between anisotropy and lateral heterogeneity, and it can be
difficult to separate the two effects in a propagating signal. However, some analytical
expressions concerning the trade-offs between anisotropy and heterogeneity may be
be obtained, such as done by Mochizuki (1997). The motivation of this work is to
begin the process of unraveling these two effects theoretically and numerically and

consider them separately within a coupled-mode framework.

The forward seismo-acoustic wave propagation problem is studied in the context
of anisotropy, and deterministic and stochastic lateral heterogeneity. Shallow water
environments may be highly variable, with both lateral heterogeneity and anisotropy
being almost ubiquitous in the seafloor bottom /subbottom regions. Some common
causes of lateral heterogeneity in shallow water environments are marine sediment
composition, non-planar boundaries, rough surfaces, strong density and/or velocity
contrasts, and variations in water column depth and/or sediment cover thickness.
Shallow water sediments exhibit considerable lateral heterogeneity over short ranges
(Stoll et. al., 1994). In addition to lateral heterogeneity, anisotropy is often an
intrinsic property of marine sediments. Marine sediments exhibit anisotropy and

high velocity gradients in shear velocity (Ewing et. al., 1992). Anisotropy in material



properties can lead to observed anisotropic effects in fluid flow(permeability), heat
or electrical conductivity (resistivity), stress and strains, or elastic properties for
example (Friedman and Jones, 2001). When considering acoustic propagation, the
elastic properties of anisotropic marine sediments are of primary concern. Possible
sources of elastic anisotropy in marine sediments are reported to be the alignment of
cracks and/or pores in the sediment structure, preferred orientation of mineral grains,
and lamination as a result of compositional layering. (Carlson et. al., 1984).

Marine sediments often have transversely isotropic elastic symmetry (TI) with
the fast velocity directions in the plane parallel to the bedding plane and the slow
velocity direction along the normal of the bedding plane as shown in Figure 1.1. The
slow velocity direction is parallel to an infinite fold symmetry axis 3, also shown in
Figure 1.1. It is likely this type of elastic anisotropy observed in marine sediments is
predominantly due to compositional layering (Carlson et. al., 1984).

There exists a wide body of literature on the investigations of wave propagation
in TI environments, and much recent work has been done investigating more gener-
alized anisotropy. The majority of investigations have concentrated on TT elastically
symmetric media with a vertical symmetry axis(VTI), where § = Z as in Figure 1.1,
or with a horizontal symmetry axis(HTT), where § = cos oz + sin ¢g. Figure 1.1
and Figure 1.2 show the fixed coordinate frame of reference. An example of a VTI
medium is the horizontally layering of fine isotropic sediments, and an HTI medium
can be produced by the introduction of vertical parallel cracks in isotropic sediments.
Although VTI and HTI are completely adequate for some geophysical applications,
there are many instances where a more general orientation of the symmetry axis § is
needed, and should be considered to complement the existing body of VTI and HTI
work. Simply having VTIT or HTI layered sediments with non-horizontal bedding
planes provides an example of a TI medium with a non-vertical and non-horizontal
tilted symmetry axis. Anisotropic variations other than azimuthal may also be con-

sidered, where the anisotropic symmetry axis § is allowed to tilt in both azimuth ¢
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Figure 1.1: A representative elastically symmetric transversely isotropic structure
(TI) due to compositional layering. The fast velocity directions V s, are normal to §
and parallel to the bedding plane. The slow velocity direction V g, is parallel to the
vertical symmetry axis. A TI structure with a vertical symmetry axis is labeled as
VTI or azimuthally isotropic. The geometrical orientation of the anisotropy depends
on the orientation of the symmetry axis §. The bottom figures are expansions of
the the white block of material from the top figure. A structure can be transversely
isotropic with a vertical, tilted (neither vertical nor horizontal), or horizontal sym-
metry axis and be classified as VT, TTI, or HTT respectively. For a VTTI orientation,
the fast velocity direction is in the horizontal plane. A TTI orientation results in the
fast velocity direction being contained to an oblique plane and the HT1 orientation
restricts the fast velocity directions to a vertical plane normal to the symmetry axis 5.
Note that the slow velocity direction (V) always corresponds with the symmetry
axis direction §.



Fixed Cartesian Coordinate System
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Figure 1.2: The Cartesian coordinate system is defined with the x-direction corre-
sponding with the direction of propagation, the z-direction is positive downwards,
and the y-direction is free of any lateral variations. The symmetry axis 3 is defined in
reference to the fixed Cartesian coordinate system by the spherical coordinate angles
f and ¢. The angle between the z-axis and the symmetry axis § is described by 6.
The angle between the projection of the symmetry axis § onto the horizontal plane
and the x-direction is described by ¢.

and elevation #, the angle in the horizontal coordinate plane and the angle with re-
spect to the vertical axis respectively. Martin et. al. (1997), Thomson et. al. (1997),
and Zhu and Dorman (2000) provide complementary results to the work presented in
this dissertation. In addition, Martin et. al. (1997) provides an excellent summary

of work relevant to the topic of anisotropy and coupled modes.

A modal description of an acoustic signal is helpful in determining which regions
the signal predominantly propagates in. An acoustic signal may be composed of
acoustic modes, hybrid crustal-acoustic modes also known as seismo-acoustic modes,
and crustal modes. A pure acoustic mode propagates energy in the water column

and has very little interaction with the bottom/subbottom. A pure crustal mode



propagates its energy in the sediment and basement layers. The hybrid crustal-
acoustic mode has significant energy in both the water column and the underlying
sediment and basement layers.

Neglecting any seafloor bottom/subbottom elastic properties may be a reason-
able approach for problems involving high frequencies where the depth of the water
column is much greater than the wavelength of the acoustic signal of interest. For
these problems the acoustic signal may be entirely contained within the water col-
urmn and may not interact with the elastic properties of the seafloor. However, for
low frequencies and shallow water environments the bottom interaction of the acous-
tic signal becomes significant, and affects the propagation of the acoustic signal.
An seismo-acoustic wavefield will interact with the bottom/subbottom at some por-
tion if not the entire length of the propagation path. Therefore, the characteristics
of the acoustic signal are influenced by interactions with the seafloor and seabed.
Energy from the acoustic wavefield can be scattered, radiated into the bottom, or
absorbed by attenuation, resulting in a signal that is more accurately described as
seismo-acoustic. It is these affects of scattering and seafloor interaction that this
dissertation addresses. The seismo-acoustic signal then is composed of both acoustic
modes and hybrid crustal-acoustic modes. In this work the focus remains predomi-
nantly on acoustic and hybrid crustal-acoustic modes (seismo-acoustic modes) with
energy within the fluid layer. Park and Odom (1998) investigate the effects of VTI
elastic symmetry on local modes and on the coupling of local modes, focusing on
sediment modes. Their model has been modified to facilitate the study of acoustic
and seismo-acoustic modes in a generally anisotropic medium. The work of Park
and Odom (1998,1999) is extended by including a more generalized description of
anisotropy found in marine sediments. A modal formalism and coupled local mode
formalism are used to examine the seismo-acoustic wave propagation in 1-D and 2-D
anisotropic models respectively. The coupled local mode formalism is not neces-

sary for wave propagation in a 1-D homogeneous plane layered anisotropic structure.



However, the coupled local mode formalism is an appropriate method for the 2-D
range-dependent anisotropic wave propagation problem. Therefore the method of
modes is also applied when the wave propagation problem reduces to a 1-D homoge-
neous plane layered anisotropic structure. The effect of symmetry axis rotations on
the propagating modes are investigated.

The body of the dissertation centers around two distinct models. The first model
describes general anisotropy for a 1-D homogeneous plane layered structure. The
effects of anisotropy, entirely independent of any range-dependence are considered.
The second model focuses on the effects of anisotropy in combination with lateral
heterogeneity, expressed in a 2-D range-dependent medium. Anisotropic effects on
mode coupling and scattering, induced by lateral heterogeneity are considered.

Chapter 2 provides some background on anisotropy, and the treatment of the elas-
tic moduli in this dissertation. An introduction to TI elastic symmetry and nomen-
clature is found in section 2.1 and section 2.2 demonstrates the usefulness of the Bond
transformation in obtaining a generalized elastic stiffness tensor. The chapter con-
cludes with a brief chapter summary in section 2.3. Chapter 3 discusses anisotropy
and wave propagation for a 1-D homogeneous anisotropic plane-layered structure.
A brief description of the modal formalism of Maupin(1988) as applied to the 1-D
anisotropic structure is contained in section 3.1. The anisotropic model/profile is
described in section 3.2 and slowness curves are considered in section 3.3. Section 3.4
covers angular and frequency dispersion curves while section 3.5 provides the result-
ing generalized eigenfunctions. The chapter summary is found in section 3.6. The
combined effects of anisotropy and geometrical lateral heterogeneity are presented in
chapter 4, beginning in section 4.1 with a brief discussion on the coupled local mode
formalism of Maupin (1988) for a 2-D range-dependent anisotropic structure. The
description of the 2-D range-dependent anisotropic structure and its velocity/density
profile is found in section 4.2 and a discussion on coupled local modes, including

deterministic coupling matrices, eigenfunctions, and dispersion curves is presented



in section 4.3. A similar treatment of the stochastic boundary coupling terms is de-
scribed in section 4.4. The discussion of results are contained in the chapter summary
of section 4.5. Deterministic and stochastic volume terms are considered in chapter
5 of this dissertation. The deterministic lateral dependence of the elastic moduli are
considered in section 5.1, and numerical calculations of deterministic volume cou-
pling terms are presented in section 5.2. Sections 5.3 and 5.4 deal with incorporating
stochastic variations into the coupled-mode formalism and the elastic moduli respec-
tively. Stochastic volume scattering matrices are discussed in section 5.5. Another
summary concludes this chapter in section 5.6. Chapter 6 applies the modal scatter-
ing theories from the previous chapters to the T-wave excitation problem. The first
section 6.1 of the T-wave chapter 6 has been previously published (Park et. al., 2001)
with minor changes to reflect the dissertation content. Section 6.2 presents additional
T-wave excitation considerations. The summary of the Park et. al. (2001) paper has
also been included in the section 6.3, the T-wave chapter summary. The dissertation
is concluded with a final overall summary in chapter 7.

The notation used along with definitions of variables or parameters can be found
in the Glossary. A variety of useful relations, such as theory, and concepts concerning
anisotropy have been collected and presented in the appendices. Appendix A defines
some possible forms of anisotropy parameterization, while Appendix B expands on the
elastic stiffness tensor and matrix notation. Appendix C elaborates on the specifics
of the Bond transform for a TI medium and symmetry planes and wave polarizations
are considered in Appendix D for T1 elastic symmetry. A generalized form of the first
order equations are contained in Appendix E. Appendix F provides further insight
on the differential operator A from the equations of motion and Appendix G defines

the coupling matrix B,



Chapter 2

ANISOTROPY BACKGROUND

Background on anisotropy and the form of the elastic stiffness matrix is presented
as a foundation for the following chapters. A description of transversely isotropic
elastic symmetry is given. The Bond transformation is used to obtain an arbitrary
symmetry axis §, and therefore an arbitrary orientation of the transverse medium. In
addition, the sensitivity of elements of the elastic stiffness matrix to angular rotations
is considered. Both analytical and numerical results of the rotational sensitivity are

presented.

2.1 Transversely Isotropic Elastic Symmetry

Nomenclature for anisotropy has not been standardized in the literature. This poses
a problem that Crampin (1989) and Winterstein(1990) recognized over a decade ago.
Because transverse isotropy is used with multiple meanings in the current litera-
ture, any possible confusion is attempted to be eliminated by explicitly stating the
nomenclature used in this work.

For the purposes of this dissertation, a general anisotropic medium is defined
by an elastic stiffness tensor belonging to the transversely isotropic elastic symmetry
system. The nomenclature of Winterstein (1990) is used, where TT refers to a medium
with transversely isotropic elastic symmetry having an infinite-fold symmetry axis. A
medium retains its T1 elastic symmetry regardless of the orientation of the symmetry
axis or any physical rotation of the media. A TI medium with a vertical, horizontal,

or arbitrarily tilted symmetry axis is labeled VTI, HTI, and TTT respectively.



The term ”transverse” in transverse isotropy refers to any direction which is per-
pendicular to the symmetry axis of the medium and not to a fixed coordinate direc-
tion. Occasionally a TI medium may be referred to as azimuthally isotropic if the
symmetry axis is vertical. As noted by Winterstein (1990), TT has occasionally been
used to refer to a VI medium. In addition, hexagonal symmetry has often been
used interchangeably with the TT symmetry in the wave propagation communities.
Both T1 and hexagonally symmetric media have the same strain-energy functions,
and the elastic equation of motion will be exactly the same for both media.

Elastically, a hexagonally symmetric and TT symmetric medium look exactly the
same, but compositionally or structurally they are quite different. It is likely that
a real earth structure would belong to the transverse isotropy symmetry class, and
according to Winterstein (1990), sediments are unlikely to be structurally hexagonally
symmetric. Elastically, TI and hexagonal symmetries have the exact same degree of
symmetry, since both require five elastic constants. However, structurally TT has a
higher degree of symmetry and is closer in symmetry to isotropy than the hexagonal
symmetry. This is a result of TI having an infinite-fold symmetry axis (cylindrical
symmetry), while the hexagonal symmetry only has a six-fold symmetry.

A TT elastic symmetry system is distingnished by a unique form of the elastic
stiffness tensor. The elastic stiffness tensor has five independent moduli that define
the individual elements. Each element of the tensor is a linear combination of the
five independent moduli, which can be parameterized into several forms. They may
be expressed as velocities, elastic moduli, or even a combination of ratios of velocities
and elastic moduli (see Appendix A). In comparison, a fluid is described by one
elastic moduli and an isotropic material is described by only two elastic moduli.
Although the elastic symmetry has been limited to transverse isotropy for this work,
the theory and some portions of the code can incorporate more general anisotropy (up
to 21 independent elastic moduli). The elastic stiffness matrix *C for a VTI medium

is described in equation (2.1). The A,C,F,L, N and H = A — 2N represent the VTI
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elastic moduli in Love (1944) notation. The 6 x 6 abbreviated subscript matrix *C

contains all of the information of the elastic stiffness tensor, Ci; (see Appendix B).

A H F 0 0 0
H A F 0 0 0
F F C 0 0 0
“‘C= where H = A - 2N (2.1)
0 0 0 L O O
0 0 0 0 L O
|00 000 N|

The form or appearance of the elastic stiffness matrix is similar to an orthorhom-
bic symmetric medium. They share the same non-zero elements and the same zero
elements. The TI medium has a higher degree of symmetry than the orthorhombic
medium, which has nine independent constants. The VTI medium in equation 2.1
may be thought of having the appearance of a quasi-orthorhombic medium. Such
similarities with other symmetry systems are helpful when the elastic stiffness matrix
?Cyry is rotated to more general orientations.

The elastic moduli A,C, F, L, N from the above VTT medium in equation (2.1)
can be related to velocities for compressional and shear plane-waves in the medium.
The following describe the wave velocities for horizontally transmitted plane waves

within the xy-plane.

[A

o = > compressional waves (2.2)
|N . .

B = - horizontally polarized shear waves (2.3)
/L . .

By = P vertically polarized shear waves (2.4)

A vertically transmitted plane wave parallel to the z-axis have the velocities

i

ay compressional waves (2.5)

Bv

H

shear waves (2.6)

IO
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The elastic constant F' is not typically defined in terms of a plane wave velocity.
Muyzert and Snieder (2000) relate the elastic parameter F' to a velocity of a wave
propagating in a vertical plane between a source and receiver, and assign a velocity ¥
to the elastic parameter. Muyzert and Snieder (2000) indicate that Anderson (1961)

relates this velocity v to a wave with an incidence angle of 45° with the vertical axis.

F
vy = \/% velocity within the vertical xz-plane (2.7)

where 72 = o? — 2/3% in an isotropic medium.

The o and B represent the compressional and shear velocities, respectively, and
the subscripts H and V denote the horizontal and vertical displacement directions.
When A = C = A+ 2u, L = N = u, and F = A, the medium is isotropic and

rotationally independent.

2.2 Bond Transformation

Using the Bond transform for tilting a structure’s symmetry axis has been suggested
by Crampin (1981) and Winterstein (1990) and actually implemented for acoustic
body waves by Auld (1990) and recently by Zhu and Dorman (2000) and Okaya and
McEvilly (2003). The Bond transformation is applied in the study of global modes
and coupled local modes to obtain a general rotation of the elastic stiffness matrix
with TT symmetry.

A formalism similar to Crampin (1981) is used where the propagation direction is
assumed to always coincide along a fixed coordinate direction, the x-axis. The elastic
stiffness tensor is rotated in order to consider anisotropy with various symmetry
axis orientations. This is equivalent to keeping the elastic stiffness tensor fixed and
varying the direction of propagation. The first method is preferred because the
theory does not need to be modified for each directional change, only the elements
of the elastic stiffness tensor need to be changed. A physical reasonableness to the

modeling should be retained. Randomly perturbing various elements of C;; can lead
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to a non-physical elastic stiffness matrix. By starting with a real physical model, the
reasonableness of the model is maintained regardless of any rotation of the medium.
Odom et. al. (1996) provides a good summary of the conditions which constrain
the elastic moduli of a T1 elastically symmetric medium. Another advantage of the
Bond Transformation is working with a 6 x 6 matrix with only 36 individual elements
rather than a fourth order tensor with 81 individual elements, of which at most 21
can be independent. Complex tensor transformations are replaced with simple matrix
multiplication to transform the elastic stiffness matrix to any arbitrary orientation.

The elastic stiffness matrix is a function of the spherical coordinate angles § and ¢
when °Cr; = °Cr;(8, ¢) Rotating the elastic stiffness matrix *Cy; essentially changes
the form of the elastic stiffness tensor, and how the matrix or tensor is populated.
This directly affects the solution of the equation of motion as the elements of *Cy;
change.

For an isotropic medium, the direction of propagation does not matter. All planes
are symmetry planes and all directions are symmetry axis directions. The elements
of the elastic stiffness tensor do not change with any rotation of the medium. For
an anisotropic medium, the velocity of plane waves vary with propagation direction
through the medium. The elements of the elastic stiffness tensor change with any
rotation of the medium. For a TI elastically symmetric medium, five independent
elastic moduli along with two polar coordinates relating the symmetry axis and the
propagation direction are needed to adequately describe the velocity of plane wave
through the medium. The elements of *Cy; are linear combinations of the five inde-
pendent constants, being functions of the polar angles # and ¢.

While the elastic stiffness matrix may be rotated, the physical boundaries, dis-
continuities and the boundary conditions of the 1-D structure remain fixed. The
procedure for implementing the Bond transformation is to rotate the elastic stiffness
matrix with respect to a fixed set of coordinate axes. In general three angles 9,6, ¢

are needed to transform the elastic stiffness matrix “C}; to any arbitrary orientation.
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The rotations are taken first about the z-axis, next about the y-axis, and finally about
the z-axis again. v is an angle in the xy-plane and corresponds to the first rotation
about the z-axis. The angle # is defined in the xz-plane and corresponds to the second
rotation about the y-axis. The final angle ¢ is also defined in the xy-plane which
corresponds to the third rotation about the vertical axis. When the starting medium
is VTI, only rotations through the angles # and ¢ need to be considered. In figure
1.1 the Bond transformation is visually demonstrated. The elastic stiffness matrix
representing the elastic constants within the layer can be rotated to any arbitrary
orientation, as shown by the white blocks at the bottom of the figure.

The spherical coordinates of the symmetry axis directions, § = §(f, p)can be
projected onto a unit sphere. When tilting the symmetry axis, the symmetry axis
traces lines of constant elevation on the unit sphere as ¢ is varied and remains 4
fixed. Similarly, keeping ¢ fixed at some value and varying the value of 0 traces lines
of constant azimuth. The lines of constant elevation represent changes in azimuthal
anisotropy and the lines of constant azimuth representation changes in elevational
anisotropy. These are shown as red arcs in figure 2.1.

Applying the Bond Transformation to the unrotated elastic moduli elements

within ¢C":

!

o = MY][*C’|[MYT  Bond transformation about y-axis (2.8)

°*C = [M?[CM?]"T  Bond transformation about z-axis (2.9)

MY and M* are transformation matrices (e.g. Auld, 1990) about the y-axis and z-
axis respectively, and are defined for an elastic stiffness tensor with TI symmetry in

the Appendix C.

Substituting equation (2.8) into equation (2.9) and using the matrix multiplication

property [M*M¥]T = [M¥]T[M?]T to obtain:

°C = [R][*C"|[R]T  where R = M*MY. (2.10)
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Lines of Constant Elevation and Azimuth

Constant
Elevation

Constant
Azimuth

Figure 2.1: Any tilt of the symmetry axis with respect to the fixed coordinate system
results in an azimuthal, elevational, or a combination of azimuthal and elevational
change in anisotropy. The red line in the horizontal plane represents changes of
azimuth ¢ of the symmetry axis and the red line in the vertical plane represents
changes in elevation @ of the symmetry axis.

The individual elements of the elastic-stiffness tensor can be found by the following

relation for a medium with TI elastic symmetry.

“Cry = A(RuRjp+ RioRj2) + H(Ra Ry + RiRj1)
+ F(RiRj3+ RioRj3 + RisRj1 + RisRj2) + CRisRjs

+ L(RuRjs+ RisRjs) + NRigRjs (2.11)

The elements of *Cr; are dependent upon the orientation of the symmetry axis

through the elements of R. A rotation of the symmetry axis changes the value of any

given element in Cr;, where the specific elements of C;; remain linear combinations

of A,C,F,L, N as demonstrated by equation(2.11). The tractable, analytic form for

the rotated elastic stiffness matrix found in equation (2.11) is due to the large number
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of elements with zero-values for a VT medium, as shown in equation (2.1).

The sensitivity of the ®Cr; elements rotation can be determined by taking the
derivative of equation (2.11) with respect to 8 and ¢. The derivative with respect to
a generic angle A is:

8(°C) _ 8(*C1y)
oA oA

where A =0 or ¢ (2.12)

The angular sensitivity of a TI symmetric medium with an arbitrarily tilted sym-

metry axis may be express as:

a(°C OR; OR; O OR;2
(8AIJ) = A(aAl Rﬂ ‘71 8122R12+R12 8A)
OR;; 8Rj2 6R12 6R]1
+ H(aARﬂ-}—RﬂaA-{-aA Rz2
dR; OR;; OR aR
” F<3A1 Ry + Ru 5 + 4 Boa + Ragr
OR;3 4 8R31 OR;3 aRjg
N A T TN TN )

OR;3 OR;s

0 OR OR; OR
+ L(R“ + Ru— 3+ — CRjs) + Rig 35)

dA TN
+ N(aaRlA“RJGJFRJGBa?) (2.13)

Each element of the *Cr; matrix may be evaluated through equation (2.11) and
equation (2.13). Figure 2.2 plots the °Cy; element and its angular sensitivity as
functions of # and .

Auld (1990) provides a good treatment of the Bond transformation and addi-
tional details are also included in Appendix C. Appendix D contains a useful and
instructional tutorial on symmetry planes and wave polarizations for a T1 medium.
Similar to Okaya and McEvilly (2003), quasi symmetries have been determined for
TT symmetry when the symmetry axis § is rotated to specific orientations. Whereas

they determined that rotations about the y-axis result in a monoclinic form of the
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Sensitivity of the Cy; Element to Angular Rotations
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Figure 2.2: The C}; element of the elastic stiffness matrix *Cr; is shown in Figure
2.2(a) for various angles of # and ¢. This is a numerical plot of equation 2.11.
Figures 2.2(b) and 2.2(c) plot the sensitivity of the Cy; element to the angles ¢ and
# respectively.

elastic stiffness matrix, the rotations in Appendix D show that rotations where the
symmetry axis remains in any of the coordinate planes results in a quasi-monoclinic

form of the elastic stiffness matrix.

2.3 Chapter Summary

Horizontal shear motion is often ignored or neglected in the modeling of acoustic sig-
nals, where the majority of attention has been placed on the P-SV motion. However,
marine sediments support shear motion, and therefore must be treated elastically.
In addition, marine sediments are almost ubiquitously anisotropic. Since it usu-
ally cannot be prearranged to record a seismo-acoustic signal in a symmetry plane,
tilted anisotropy cannot be completely ignored. The form of anisotropy expressed in

the elastic stiffness matrix *Cr; directly shapes the formulation of the equations of
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motion. Therefore, the form of the elastic stiffness matrix, and its symmetry in rela-
tion to the propagation direction affects the wave propagation in the seismo-acoustic
waveguide. Understanding the properties of the anisotropy leads to a better under-
standing of the equations of motion used to describe the propagation of a signal in a
seismo-acoustic waveguide. The Bond transformation has been used to simplify the
rotation of the 4** order elastic stiffness tensor C'irij to an equivalent matrix rotation .
Analytical forms for the rotated elastic stiffness matrix, and its sensitivity to angular

rotations have been derived for elastically symmetric transverse isotropy.
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Chapter 3

1-D PLANE LAYERED ANISOTROPIC STRUCTURE

A study of a 1-D homogeneous plane-layered structure, with the absence of any range-
dependence is presented. By assuming anisotropic sediments, the elastic properties
of the sediment layers are allowed to vary with propagation direction. Specifically,
energy propagating along different directions within the sediment layers will result in
the wave propagating at different velocities. These anisotropic sediments are assumed
to have TI elastic symmetry with an arbitrarily oriented symmetry axis (§). The effect
of anisotropy on propagating modes, including changes in phase and group velocities,

and eigenfunction polarizations are investigated.

3.1 Modal Formalism for Plane Layered Anisotropic Structure

A modal representation of the Green’s function for the 1-D seismo-acoustic wave
propagation problem is employed, with the expression of the wavefield as a superpo-
sition of global modes. The global modes are defined as the eigenfunctions (displace-
ment and tractions) of a 1-D homogeneous anisotropic structure. The homogeneous
plane-layered medium is infinite in the xy-plane, and the global modes are the eigen-
functions appropriate for the entire domain and path of propagation. The initial
mode excitation may be determined by an appropriate source term.

The modal representation of the wavefield is a convenient method of solving the
non-separable first order coupled equations of motion. The modes also provide a
natural way of observing how sources and material parameters affect the wavefield.

However, some limitations exist. The computation time for calculating the modes
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and therefore the wavefield becomes larger as the number of layers of the model

and/or frequency increases. This can be inconvenient for very detailed analyses.

1-D Plane Layered Homogeneous Anisotropic Structure

=

Thin Anisotropic
4 Sediments

N>
&
P

SELR N R RO N NN

Figure 3.1: A 1-D plane layered homogeneous anisotropic structure representation of
shallow water environments. The model contains fluid layers over thin anisotropic
and/or isotropic sediments, additional sediment and/or basement layers, and is ter-
minated by an isotropic halfspace. There are no lateral variations in the structure,
and the elastic parameters only vary with depth. The anisotropy is restricted to
elastically symmetric transverse isotropy, but the symmetry axis § may have any
arbitrary orientation.

The modal formalism based on Maupin’s (1988) theory is presented for a 1-D
plane layered seismo-acoustic environment with general anisotropy as shown in figure
3.1. This modal approach to the equations of motion has the advantage of allowing

the physics of propagation to be examined on a mode by mode basis and is formally
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exact. The modal theory arises out of the equations of motion and is a convenient first
order theory. Additional and complimentary work with coupled-modes are given by
Odom (1986), Maupin (1988), Odom et. al.(1996),and Park and Odom (1998, 1999).
The theory for the 1-D plane layered wave propagation problem contains two critical
steps: i) expressing the equation of motion as a first order differential equation and
ii) solving the wave-equation with a superposition of global modes. For this chapter
the application of the modes is limited to deterministic anisotropic structures. In
addition, only the discrete modes are considered, while the continuum modes and
their contribution are neglected. Attenuation is also ignored, although the theory
remains valid for the inclusion of attenuation, since complex quantities have been
accounted for throughout the theory. Weak attenuation could easily be included as
a perturbation.

As previously shown in figure 1.1 and 1.2, a Cartesian coordinate system is as-
sumed with wave propagation progressing in the horizontal direction parallel to the
x-axis. The y-axis, the transverse direction, is the geometric symmetry axis for the
1-D medium along which material properties remain constant. This direction corre-
sponds to the motion of a pure horizontally polarized shear wave. The z-axis is the
vertical direction, positive downwards, and corresponds to the direction of motion of
a pure vertically polarized shear wave.

The Einstein summation convention is assumed unless otherwise noted. The the-
ory development uses both Woodhouse(1974) and abbreviated subscript notation
(e.g. Auld, 1990), also known as Voigt notation (e.g. Nye, 1957), for representing the
fourth order elastic stiffness tensor, Ci;. The Woodhouse notation is used primarily
to represent a general anisotropic medium in the modal theory and the coupled local
mode theory (chapter 4), and the abbreviated subscript notation is convenient for
rotating the elastic stiffness matrix through the Bond transformation. In order to
avoid some confusion, a superscript notation has been introduced. The superscripts

w and a imply Woodhouse and abbreviated subscript notations respectively (i.e. *C
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or ®C). The indices of the fourth order elastic stiffness tensor are ¢klj rather than the
conventional 75kl in order to facilitate the mapping between tensor notation and the
matrix notation of Woodhouse (1974). In addition, lower case indices vary over ranges
of i,k,1,7 = 1,2,3 while upper case indices vary over ranges of I, J = 1,2,3,4,5,6.
A more detailed account of elastic stiffness tensor and matrix representations are

located in Appendix B.

C = Cuy fourth order elastic stiffness tensor
*C = °*Cyy 6 x 6 abbreviated subscript elastic stiffness matrix
YC = (YCiju 9 x 9 Woodhouse elastic stiffness matrix

The 3-component displacement field vector w = (wy, wo, w3) is assumed to be in
harmonic form and involves a double Fourier transform over y and ¢ of the displace-

ment field w(z,y, z,t):
+oc  p+o00
w(z, 2, ky,w) = / f w(z,y, 2, t)exp(—ikyy + iwt)dydt (3.1)

Note that the physics convention of the Fourier Transform has been used, the
same as Aki and Richards (1980). The double Fourier transform has a mixed sign
convention consistent for wave propagation problems. In contrast, Maupin(1988)
used the engineering convention of the Fourier Transform. The right going wavefields

in this work have a phase factor in the form:
exp(ik,z — iwt) (3.2)

Throughout this work, all references to the displacement, traction, and stress-
displacement vectors incorporate the double Fourier transform. The 3-component

tractions can be expressed as:
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where the elastic stiffness matrix, “C;;, is in Woodhouse (1974) notation. Each
traction vector relates to stress elements in the form t; = (731, Tig, Ti3) for i =1,2,3.
The equations of motion have the same general form for both fluid and solid media.
The equations of motion are found in equation (E.1) of Appendix E. For solid media
a 6-component displacement-stress vector u = (w,t)T can be introduced, where
t = t,. For fluid media, a 2-component displacement-stress vector may be defined as
u = (w,t)T where w = w; and t = 7;; (no summation). The first order equation of
motion for the 1-D plane-layered structure shown in figure 3.1 can now be expressed
as:
Ou
Ox

A more generalized form of the first order equation is found in Appendix E. The

= Au-F (3.4)

boundary conditions are expressed as:

Tl = [Wal, = 2 (3.5)

[ts], = [wl, =
where the m™ subscript is for fluid-fluid and fluid-solid interfaces and the n*® sub-
script is for solid-solid interfaces. A free-slip boundary condition is imposed on the
horizontal displacements at the fluid-solid interfaces. The solid-solid interfaces are
assumed to be welded contacts where the displacement vector w and the traction
vector t3 are continuous across the interfaces. For fluid-fluid interfaces and fluid-
solid interfaces the displacements, w3, and the vertical stress, 733, are assumed to be
continuous across the interfaces. Following the notation of Maupin(1988), the square
brackets with a subscript (e.g. [quantityl,,) in equation (3.5) and the following
equations represent the evaluation of a quantity across the interface m or n. The
quantity may be continuous or discontinuous and the evaluation is taken from the
bottom of the interface to the top of the interface. For example, a discontinuity in

the elastic stiffness matrix across the nth interface would be expressed as:

[“Cijln = “Cj

a
nt N Cij

(3.6)

n—
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The differential operator A, described in Maupin (1988), from equation (3.4) and
the boundary conditions from equation (3.5) contain the physics of the 1-D problem
for the plane layered homogeneous anisotropic structure. Implicit in the A operator
is the elastic stiffness matrix Y C which represents a TI elastically symmetric medium
with an arbitrary symmetry axis. The orientation of the symmetry axis is defined by
the two angles # and ¢ as in figure 1.2 and figure 2.1. To obtain a general rotation
of the elastic stiffness matrix with TI symmetry, the Bond transformation is utilized.
The elements of the A operator may be real or complex. Attenuation may be included
as complex values when the medium becomes visco-elastic. Although attenuation
effects are currently neglected, the complex form of the elements of the A operator
are retained. The generalized form of the operator A in equation (E.18) of Appendix
E is not complex for perfectly elastic (non-attenuating) media, but the form used by
Maupin (1988) remains complex due to the explicit derivative with respect to the
y-coordinate. The form of A can be found in Appendix F for a fluid medium, a
general solid anisotropic medium, as well as for specific tilted T1I orientations where
meaningful analytical results can be obtained. F from equation (3.4) is the sum of

an external source F¥ .

s 0
F=F°= (3.7)

fS
A modal description of the wavefield is employed, and the reader is reminded
that the modal representation of the wavefield is formally exact. The modes are
independent solutions for the equations of motion and are functions only of depth.
The initial wavefield, u is expressed as a superposition of global modes u” = (w", r%)T

weighted by source excitation amplitude coefficients 0. The horizontal wave number

is k7 (£¢) and z; denotes the source position.

u=(w,t)’ = ; ® exp (z [: k7 (£) df) u’(2) (3.8)

The modal description of the wavefield in equation (3.8) is for the discrete modes only,
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and the continuum modes have been neglected. The seismo-acoustic signal propa-
gating within the 1-D plane-layered waveguide will experience geometrical spreading
as the signal propagates along the x-direction. The modes of the homogeneous plane-

layered medium are also energy normalized.

2 2
(—————~—-—-7T Fr(z = il?s)) geometrical spreading term (3.9)

1 2
(W> energy normalization term (3.10)

where v], U", and I" are the phase velocity, group velocity, and energy integral of
the mode r respectively as defined by Aki and Richards (1980).

Note that no assumptions have yet been made about the nature of the symmetry
of the elastic layers in the modal theory. The theory describes propagation where
the elastic regions have general triclinic anisotropy - a medium described by 21 in-
dependent elastic moduli. One consequence of restricting wave propagation to the
x-direction is the reduction in the number of elastic elements from the elastic stiffness
tensor Cj; needed to describe the medium. For the 3-D propagation problem, all
21 elements of the elastic stiffness tensor would be needed and included in the dif-
ferential operator A. For the 2-D propagation problem with propagation along the
x-direction in a medium with triclinic symmetry, the total number of elastic elements
needed from Cj; is 15. These fifteen elements of the elastic stiffness matrix remain

linear combinations of the original 21 independent elastic moduli when *C; has been

rotated.
Cn Ciz Cuu Cis Cig
C Cas Cqy Cs5 C
aC = 31 33 C34 O35 O (3.11)
Cu Cuz Cu Cys Cus
Cs1 Css Csa Css Cse
I Ce Ces Ces Cos Ces ]
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The second row and the second column of the elastic stiffness matrix in abbre-
viated subscript notation are not used in the 2-D wave propagation theory within
the xz-plane. Using the symmetry relationships for the elastic stiffness tensor, the 15

elements of the abbreviated elastic stiffness matrix needed are:

aclla a0137 acl4a acli'n aclﬁ
aC337 aC347 aC357 aC36: ac44 (312)
aC457 aC467 a0557 a0567 a066

The propagating seismo-acoustic signal will only be sensitive to these 15 elements
of the elastic stiffness matrix, regardless of whether the elastic stiffness matrix is ro-
tated or not. Essentially, the 2-D description excludes any sensitivity to the elements
in the 2™ row and 2™ column of the elastic stiffness matrix. Zhu and Dorman (2000)
also report a dependence of 15 elements for the elastic stiffness tensor for a general
TI medium.

Every term in the differential operator A which contains elastic moduli also con-
tains the elements of the 3 x 3 submatrix “C4;. It is reasonable to expect that the
equations of motion and therefore the modes are sensitive to the changes in these

elastic elements.

aClla 06157 aClG, 00557 aC567 acﬁﬁ (313)

3.2 Anisotropic Model and Numerical Code

Nine parameters are necessary to describe each elastic layer. The necessary param-
eters include the thickness of the layer, the density, the five elastic moduli, and the
two polar angles for the symmetry axis. The elastic moduli A, C| F, L, N describe
the intrinsic elastic symmetry of the layer, the polar angles describe the orientation

of the symmetry, and the thickness describes the boundaries of the layer.
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It is assumed that all anisotropic layers have the same symmetry axis orientation.
The elastic properties are constant within each layer, where each layer may have its
own degree of anisotropy, except the last layer which is defined as a uniform isotropic
halfspace.

A sediment model that is representative of a typical marine sediment profile has
been chosen. A typical sediment structure with TI anisotropy has its symmetry
axis normal to the bedding planes. The density for typical sediments range from
1.90 — 2.49g/cm?, while compressional speeds vary from 1.87 — 4.87km/s and the
degree of velocity variation due to anisotropy varies from 1-13% (Carlson et al,
1984) The degree of anisotropy typically increases with depth, where sediments with
bedding exhibit a higher degree of anisotropy than unbedded sediments. The global
modes are determined for a 1-D plane layered medium with the velocity/density
profile shown in figure 3.2.

The model is a variation of the Berge et. al. (1991) profile, and similar to the
model used by Odom et. al. (1996) and Park and Odom (1998). The velocity
and density profile is based upon a data set acquired in situ near the New Jersey
coast from Berge ef. al. (1991), with the addition of a deeper water column and
an oceanic crustal component. The model consists of an isovelocity fluid layer, five
thin anisotropic sediment layers and seven thin isotropic layers, a higher velocity
subbottom layer, and a uniform isotropic halfspace as a basement layer. The model
has a water column depth of 100m. The low shear speed sediments have a total
thickness of 27.5m and overlay higher speed sediments 372.5m thick. The degree
of anisotropy varies from 11% to 15% for the shear velocities. The compressional
speeds of all the layers are isotropic. Figure 3.2 shows the velocity/density profile,
while table 3.1 provides the parameter values for the model structure.

Table 3.1 indicates that the elastic symmetry is actually a reduced version of the
TI elastic symmetry. In all of the layers A = C , leaving only four independent

elastic moduli. This effectively places all of the anisotropy in the difference between
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Velocity and Density Profile of 1-D Plane Layered Anisotropic

Structure
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Figure 3.2: The velocity and density profile of the starting VIT medium. The red,
blue, and dotted black lines represent the shear velocity, compressional velocity, and
density respectively with depth. The profile on the right is an enlargement of the
thin sediment region to show the shear wave velocity splitting within the anisotropic
layers. The solid red line represents the vertical shear speed By and the dotted red
line represents the horizontal shear speed 8. Note that the velocity profile lacks any
compressional anisotropy

the shear moduli N and L. The anisotropy is purely shear in nature, where the
compressional velocity is isotropic and the shear velocity is transversely isotropic.
Berge ef. al.’s (1991) experiment was insensitive to compressional wave anisotropy.
The Berge et. al. (1991) data set is altered further by allowing the symmetry
axis of the TI layers to vary. With the modified Berge et. al. model as a starting
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Table 3.1: Velocity/Density Profile

DEPTH A= aCu C= G'C33 F = “013 L= aC44 N = O'CG(; P

1000.00  70.634 70.634 23.528 23.5530  23.5530 2335

VTI medium, the symmetry axis is rotated for all the anisotropic layers by using the

Bond transformation as discussed previously.

A phase velocity ordering is used for all of the modes when considering the eigen-
functions, dispersion curves, and coupling matrices. The modes are ordered from
smallest phase velocity to the largest phase velocity, where the lowest order mode
has the lowest phase velocity and the highest ordered mode has the highest phase
velocity. Note that the phase velocity ordering scheme is independent of polariza-
tions of the particular modes, therefore the phase velocity ordering is still used when

the P-SV and SH modes propagate independently. This is slightly different than
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Odom et. al. (1996), and Park and Odom (1998) where only the P-SV modes were
included in the phase velocity ordering of the modes, and the SH modes were not
included. The mode finding code developed by Park (1996) calculates the eigenval-
ues and eigenfunctions, which is an extension of the Chen (1993) algorithm. The
ANIPROP code (Park, 1996) has been modified to include fluid layers and used to
generate eigenvalues and eigenfunctions for each given model. The fluid/solid reflec-
tion and transmission coefficients were determined using the method of Mallick and
Frazer (1991), when adding the fluid layers to ANIPROP.

The model, described in this chapter is characterized by propagating acoustic
modes which have phase velocities within the range of 1500m/s and 2000m/s for
frequencies between 10.0Hz and 100.0Hz. The corresponding wavelengths at 50.0Hz
would be A = 30m and A = 40m respectively. The computations were carried out on

a desktop PC with dual 400MHz processors.

Table 3.2: Mode Wavelength Ranges

Phase Velocity | 10.0Hz  20.0Hz 30.0Hz 40.0Hz 50.0Hz 75.0Hz
1500.0m/s 150.00m 75.00m 50.00m 37.50m 30.0m 40.00m
2000.0m/s 200.00m 100.00m 66.67Tm 50.00m 40.00m 26.67m

3.3 Slowness Curves

Slowness curves reveal the nature of anisotropy in the direction of propagation. The
slowness curves show the inverse of the velocities of three mutually orthogonal plane-
waves propagating in an anisotropic medium: quasi-P, quasi-SV, and quasi-SH. Ve-

locities and therefore slownesses of the medium are determined numerically solving
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the Christoffel equation 3.14 (e.g. Auld 1990).
(k*yij — pw’6;5)v; = 0
|k?5i; — pw?dis| = 0 (3.14)
Solving the characteristic equation could be attempted analytically, which involves
a cubic polynomial. Although there exists an analytical solution to the general cubic
equation (first published by the Italian mathematician Girolamo Cardano in 1545,

English translation published by M.I.T. Press, 1968), it is not very insightful for the

general elastic stiffness tensor. The characteristic equation to be solved is:

2\ 3 9\ 2
— (%) + (711 + Yoz + 733) (p—:;) + (V23732 + 12721

2

pw
+  Y13Ys1 — Yi1Ye2 — V11733 — Y227Y33) Wz

+  M17227Y33 — Y117Y23Y32 — Y127Y21733 + V137217732
+ m2723Y31 ~ MsYeeys =0 (3.15)

Slowness curves may be considered where the symmetry axis remains along a
fixed direction and the propagation direction is allowed to vary. The slowness curves
for the first anisotropic sediment layer, as described by line 2 of table 3.1 are shown
in Figure 3.3. The slowness curves show plane-wave propagation in the xy, xz, and
yz-planes.

Figure 3.3 shows the slowness curves for the xy, xz, and yz propagating planes
for symmetry axes aligned with the 2, 2, and 4 axes respectively. The quasi-P plane
waves are entirely isotropic in nature, being rotationally invariant and all anisotropy
is only in the shear velocities. For a modal description of a seismo-acoustic wavefield
in a waveguide, the P and SV polarizations are always coupled together as P-SV
modes. Therefore, any variation in the SV plane-wave velocity will affect the P-SV
propagating modes, even without any variation in the P plane-wave velocities.

Figure 3.4 shows the slowness curves for the xz propagation plane for 36 symmetry

axes orientations within the first quadrant. The intervals of # and ¢ are 0°, 20°, 40°,
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VT1I Slowness Curves for XY, XZ, YZ-Planes
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Figure 3.3: The slowness curves for the xy, xz, and yz-planes for a VTI anisotropic
sediment layer, where § = 2. The inner circle is the compressional slowness, indicating
the absence of any anisotropy in the compressional velocity. The outer paths represent
the vertical and horizontal shear slownesses. In Figure (a) there is complete shear

velocity splitting. Both Figures (b) and (c) reveal shear velocity singularities at
# = 0°,180° and 6 =~ 70°, 110°.

50°, 70°, and 90°. The horizontal axis of the figure is the ¢ axis, where rows represent
changes in the azimuthal angle ¢. The vertical axis of the figure is the # axis, where
columns represent changes in the elevational angle #. Note that all of the slowness
curves in the fifth row are degenerate along the z-axis. These are slowness curves for
propagation in the xz-plane at § = 70° and ¢ = 0°,20°,40°,50°,70°,90°. The two
shear velocities remain degenerate for propagation along the z-axis for all variations
of ¢v. When the shear velocities are degenerate along the z-axis, then the modes
separate into two subfamilies of P-SV and SH modes that propagate independently.
This is the same mechanism for a VIT medium, where the degenerate shear velocities

along the vertical direction allow the SH and P-SV modes propagate independently.

The line singularities for a TI medium are dependent upon the the specific values
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Slowness Curves for Symmetry Axis Rotations
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Figure 3.4: The figure shows the slowness curves for orientations of the symmetry

axis § within the first quadrant. Each slowness figure indicates a change in azimuth

or elevation of symmetry axis. The horizontal rows represents variations of 8 and the
vertical columns represents variations of . The slowness curves are shown for the

xz-plane for an anisotropic marine sediment layer.
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of the elastic moduli A,C, F, L, N. Every different TI model may have a line singu-
larity at a different value of elevation 8. The TT medium used in this dissertation has
a line singularity at approximately 70° elevation. When ¢ = 70°, the line singularity
nearly intersects the z-axis. The shear plane-wave velocities may become degenerate,
but the polarization of the two shear waves still remain orthogonal.

The slowness surfaces for VI'1 media have singularities. These are instances where
the plane waves (body waves) become degenerate. This only occurs for the shear
waves in the model considered in this dissertation. The P-wave slowness sheet doesn’t
have any singularities, and is a perfect sphere. The two shear wave slowness sheets
have two kiss singularities and two line singularities (Crampin; 1981,1984,1989,1991).
For the VTI medium, line singularities occur at 8 approximately 70° and 110°, and
kiss singularities occur at # = 0° and 6 = 180°. A kiss singularity occurs where two
phase-velocity sheets touch tangentially at isolated points. The kiss singularity occurs
where the slowness sheet intersects the symmetry axis §. A kiss singularity always
occurs in a medium with transverse isotropic elastic symmetry. A line singularity
occurs where two slowness sheets intersect. The slowness sheets intersect in the plane
perpendicular to the symmetry axis §. Crampin (1989,1991) contain 3-D schematics

that graphically distinguish between the different types of singularities.

3.4 Angular and Frequency Dispersion Curves

A dispersion curve shows how the velocities of a set of modes change with the variation
of a particular independent variable. The phase or group velocities of the modes
trace out branches as the independent parameter is varied. The dispersion curves are
functions of w, 8, and ¢ which are defined as the frequency, angle of symmetry axis §
tilt in the vertical plane 6, and angle of symmetry axis § tilt in the horizontal plane
@.

Fixing the symmetry axis orientation by keeping # and ¢ constant while varying
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Frequency Dispersion Curves & ”Solotone” Effect
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Figure 3.5: Frequency dispersion curves for modal phase velocities between 1500m/s
and 2000m/s, for the VTI (5(6, ¢) = §(0°,0°) and a TTI (5(0, ¢) = 3(60°,80°). The
dispersion curves for the VTI symmetry in (a) and TTI symmetry (b) are very similar.
Both figures clearly show the ”solotone” effect, the dark bands in both figures (a) and
(b). The modal phase velocities trace out vertical paths that are nearly parallel in
figure (a). The even parallel nature is disrupted when the phase velocities approach
the value of an ”invariant” mode. The modal phase velocities in figure (b) also trace
out vertical paths, but a braiding effect can be seen to occur between adjacent phase
velocity traces. The dark bands that represent the phase velocities of the ”invariant”
modes are frequency dependent, but they vary more slowly than for the non-invariant
modes.

w results in a standard frequency dispersion curve. For a 1-D model, the frequency
dispersion curves in figure 3.5 show how the number of acoustic modes and the
phase velocity of the model vary with frequency. The frequency dispersion curves
produce vertical branches in phase or group velocity. The frequency dispersion curve
for the general TTI medium looks very much like the frequency dispersion curves
for isotropic or VI media. In both frequency dispersion curves of figure 3.5, note

the ”solotone” effect, where the spacing of the eigenvalues cluster to form apparent



35

"solotone” branches, the dark bands in the figures. The modes that contribute to
the ”solotone” branches are the modes sensitive only to the isotropic portion of the
model, and are therefore labeled as ”invariant acoustic modes”. The ”solotone”
effect is due to discontinuities in the density and elastic moduli of the model. The
solotone effect is a direct result of the inclusion of an elastic bottom structure for the
sediments and basement layers. This effect has been documented by Lapwood(1975),
Kennett ef. al.(1983), and Alenitsyn(1998). The ”solotone” branches are not a
result of any anisotropy in the model, however the invariant modes that contribute
to the ”solotone” branches play an important role in angular dispersion curves. This
solotone effect is frequency dependent. The number of modes in the 1500m/s-2000m/s
range increases with frequency, and the number of acoustic/invariant modes become
more numerous as the frequency increases. Another feature worth noting in the
frequency dispersion curves occurs for the eigenvalues at higher frequencies. Figure
3.5(b) reveals modes that are closely spaced together and experience a braiding effect,
where the two eigenvalues appear to become intertwined, even though they do not
cross. This effect is not seen for the VTI case in figure 3.5(a) where the quasi-P-SV
and quasi-SH modes propagate independently.

Fixing the value of w and @ while varying ¢ creates an azimuthal angular dispersion
curve. Keeping w and ¢ constant while varying 6 creates an elevational angular
dispersion curve. The phase and group velocities of the modes are first computed for
a beginning symmetry axis orientation §(8, ¢). The symmetry axis § in the angular
dispersion curves is then allowed follow lines of constant elevation or constant azimuth
on a unit sphere as described in figure 2.1.

The VTI and TTI models appear similar, when observing the frequency disper-
sion curves in figure 3.5. The differences between the models become much more
evident in the angular dispersion curves. An angular dispersion curve with variations
in @ or ¢ produce horizontal branches of phase or group velocities. Figure 3.6 dis-

plays azimuthal angular dispersion curves on the top (figures 3.6(a) and 3.6(b)) and
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Angular Dispersion Curves
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Figure 3.6: Angular dispersion curves for both phase and group velocities at 50.0Hz.
Figure (a) and (b) show the angular dispersion curves for the phase and group ve-
locities respectively for §(6,¢) = §(10°,0° — 90°). Figure (c) and (d) represent
the angular dispersion curves for the phase and group velocities respectively for
5(0, ) = 8(0° —90°,10°). In general, changes in elevation (f) have a larger effect on
the phase and group velocities than changes in azimuth ().
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elevational angular dispersion curves on the bottom (figures 3.6(c) and 3.6(d)). The
left most figures (figures 3.6(a) and 3.6(c)) are the phase velocity angular dispersion
curves and the figures on the right (figures 3.6(b) and 3.6(d)) are the group velocity
angular dispersion curves. Note that a rectangular grid is used rather than a polar
grid for the angular dispersion curves. The velocities are displayed on the vertical
axis, and the angle variations are on the horizontal axis. A visual inspection of the an-
gular dispersion curves reveals that a complexity exists when considering anisotropy.
The dispersion branches show many instances where the branches approach one an-
other. The phase velocities appear to attract and repel one another as the tilt angle
varies for the 1-D model. It is evident that the the greatest changes in phase and
group velocities occur for the elevational angular dispersion curves (changes in 8).

The eigenvalues do not remain evenly spaced. Near 0° the variations are small and
the curvature of the dispersion branches are nearly flat. For azimuthal variations in ¢
there are less converging and diverging of the dispersion branches and the spacing of
the eigenvalues remain more even. Take note of the horizontal branches that occur at
approximately 1511m/s, 1550m /s, 1625m/s, and 1904m /s at 50.0Hz, which have been
highlighted in red in Figures 3.6(a) and 3.6(c). These are the dispersion branches
for the invariant acoustic modes at 50.0Hz. The phase velocities for the invariant
acoustic modes for other frequencies are found in table 3.3.

The phase velocity of these modes scarcely change for any variations of the sym-
metry axis direction, in either the azimuthal or elevational dispersion curves. These
modes are the same invariant acoustic modes that participate in the ”solotone” effect
in the frequency dispersion curves. The frequency ”solotone” effect precisely predicts
the invariant modes that sample the isotropic part of the model which are not sensi-
tive to any tilt of the symmetry axis. Because of the constancy of these modes, they
allow for an ”angular solotone” effect to occur when another mode branch sensitive to
tilt angle approaches. These modes that are affected by the tilt of the symmetry axis

are labeled ”sensitive modes”. The phase branches do not actually intersect, but as
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the sensitive mode approaches the invariant mode, their characteristics switch. The
invariant mode branch takes on the character of the sensitive mode branch and the
sensitive mode branch takes the character of the invariant mode branch. When the
P-SV and SH modes coalesce into a single family of quasi-P-SV and quasi-SH modes
or P-SV-SH modes, then any neighboring phase velocity branch may approach the

invariant acoustic mode branches and switch characteristics.

Table 3.3: Phase Velocities of Invariant Acoustic Modes

Frequency | Mode1l Mode2 Mode3 Mode4 Mode5 Mode6
10.0Hz
20.0Hz | 1560m/s

30.0Hz | 1528m/s 1637m/s

40.0Hz | 1517m/s 1577m/s 1920m/s

50.0Hz 1511m/s 1550m/s 1626m/s 1905m/s

75.0Hz | 1506m/s 1524m/s 1556m/s 1606m/s 1679m/s 1757m/s

An example of this can be seen in figure 3.13 of the eigenfunction section 3.5,
which will be discussed in further detail later. Two sensitive mode branches can also
approach one another. The branches do not actually cross, but they effectively take
on the characteristics of the other mode. It appears that when two mode branches
that are sensitive to the tilt of the symmetry axis, that they are modes of different
wave types. A quasi-P-SV mode approaches a quasi-SH mode or vice versa. When
the P-SV and SH modes propagate independently, then only the P-SV modes will
approach the invariant acoustic modes and switch characteristics.

The angular dispersion curves are sampled discretely, so the near crossing of the
branches may lack some strong curvature in the narrow angular ranges. A degeneracy

in the mode eigenvalues (phase velocities) occurs when ¢, = ¢, or k, = kq. The two
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modes combine into a single composite mode which is mutually orthogonal to all of
the other modes in the basis set. The result is still a set of mutually orthogonal
modes, but the number of modes is reduced as the two modes combine into a single
mode. As two modes become nearly degenerate, the phase and group velocities
and mode shapes move toward a single phase and group velocity and mode shape.
When the eigenvalues become nearly degenerate, then the branches either pinch close
together, or indicate an apparent crossing. An actual crossing of the dispersion
branches does not need to occur in order for the mode order sequence to change.
The phase velocity branches appear to cross, but they never actually cross because
of the numerical method imposed by the ANIPROP code. Park(1996) applies an
approximate plane wave solution when the reflectivity matrix is nearly defective. The
reflection matrix is formally defective when two eigenvalues are repeated, and only one
eigenfunction is shared for the duplicated eigenvalues. The treatment of the defective
matrix is necessary for numerical stability in ANIPROP, as two eigenvalues become
degenerate or nearly degenerate. In the real earth, the modes likely never cross
because heterogeneity and roughness would destroy the degeneracy. Polarization of
the modes ,whether predominantly P-SV or SH, cannot be inferred directly by a
visual inspection of the curves, apart from the invariant acoustic modes.

Findings similar to Martin et. al. (1997) and Thomson (1997) have been observed,
where the group velocity branches cross, but they do not necessarily correspond to
crossings of plane-waves in the slowness diagrams. Their phase and group velocity
dispersion curves show many of the same features as the angular dispersion curves.
Martin et. al. (1997) report the crossing of the phase velocities in azimuthal an-
gular dispersion curves. Several observations include the pinching together of the
phase velocity branches, apparent crossings of the phase velocity branches, as well as
changes in the mode order sequence. Mode ordering can change for variations in 6
or . The change in the sequence of the modes occurs for both types of angular dis-

persion curves, azimuthal and elevation. The branches approach very closely without
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actually touching.

The angular dispersion branches of the modes are symmetrical over a 180° range,
with the mirror symmetry plane occurring at 90°. This is true for changes in 6
or . For propagation in the xz-plane, the P-SV angular dispersion branches are
symmetrical over a 90° range and the mirror symmetry occurring at 45°. The SH
angular dispersion branches are not symmetrical over the range of 0° — 90° in the
xz-plane.

The group velocity angular dispersion curves are helpful in revealing how quickly
the velocity of the energy of a mode changes with the rotation of the symmetry axis.
The invariant acoustic modes have particularly stable group velocities for changes in
6 or . The group velocity of the invariant acoustic modes only tend to change when
near degeneracies occur and the mode characteristics are being switched with another
mode. Other modes reveal group velocity changes as the symmetry axis sweeps across
constant lines of azimuth or elevation. The group velocities are particularly sensitive
to changes in the characteristics of the modes due to apparent branch crossings in the
phase velocities. The group velocities change rapidly when another mode approaches.
These changes occur over an angular range that correspond to the near crossings of
the phase velocity branches.

The higher group velocities belong to the invariant acoustic modes. These are
similar to the "banded” modes discussed in Thomson(1997). When the sensitive
modes transition into an invariant mode, the group velocities of both modes converge,
and then cross. The sensitive mode’s group velocity then resumes the invariant’s
place, and the invariant mode becomes a sensitive mode with a lower group velocity.

It is usually easier to interpret the azimuthal angular dispersion curves than the
elevation angular dispersion curves as in figure 3.6. However, additional insight into
the mode branch sensitivity to the tilt of the symmetry axis § may be gained when
the velocity data for an entire set of elevation angular dispersion curves is stacked.

Figure 3.7 shows the stacked elevation angular dispersion curves for several fre-
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Stacked Angular Dispersion Curves
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Figure 3.7: The stacked angular dispersion curves show the dependence and sensi-
tivity of the dispersion branches on variations of the angles 6 and ¢ for a range of
frequencies. The thickness of an envelope indicates the sensitivity of a particular
mode to changes in azimuth (). Note the convergence of the phase velocities at 0°
and approximately 70°. This is where the shear velocities become nearly degenerate.
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quencies. The number of modes and character of the curves is frequency dependent.
The width of the envelopes reveals the sensitivity of the modes to changes in azimuth
at a particular angle 6. At 50.0Hz when 6 is near 0° the envelope is narrow and the
phase branches are only slightly dispersed. This is true of the branches near 70° as
well. The envelope has the largest width in the § range from 5° — 30°,45° — 65°, and
75° — 90° for Figure 3.7(e) at 50.0Hz.

3.5 Generalized Modes for Anisotropic Media

The focus for this section is on the effect anisotropy has on the modes - eigenfunctions.
The concept of generalized modes of Crampin (1981) is used to described modes
with particle motion in all three coordinate directions. Any lateral heterogeneity
is neglected for now, but will be included in chapter 4. In addition the crustal
modes are ignored, and only the modes which contribute primarily to an acoustic
or seismo-acoustic signal are considered. These are the discrete modes within the
phase velocity range of 1500m/s - 2000m/s. From the angular dispersion curves it
has been demonstrated that changes in the orientation of the symmetry axis can
have a dramatic impact on the eigenvalues of the propagating modes. How these
variations in the modal eigenvalues affect the characteristics of the eigenfunctions are
now considered.

The most distinctive feature of acoustic wave propagation in anisotropic media
is 3-D polarization of the particle motion. The polarization of the modes depends
on the angle between the propagation direction and the symmetry axis direction of
the anisotropic media. The properties of the elastic stiffness matrix determine the
degree with which the modes share particle motion polarizations. Crampin (1981)
notes that the two independent wave types, P-SV and SH, of isotropy coalesce into a
single family of generalized modes with three dimensional elliptical motion for general

anisotropy. The once pure P-SV modes acquire SH motion and the once pure SH
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modes acquire P-SV motion. This results in quasi-P-SV and quasi-SH modes or
generalized P-SV-SH modes, which possess polarizations into all three coordinate
directions.

The eigenfunctions are generally complex in value. Anytime the single generalized
family of modes for anisotropic media separate into two independent family of modes,
the components of the eigenfunctions become purely real or purely imaginary. When
a medium exhibits more generalized anisotropy, the eigenfunctions may have both
real and imaginary components in the three coordinate directions. The imaginary
components represent a phase delay in the time domain.

As discussed in Appendix D, the form of the elastic stiffness tensor affects the
eigenvalues of the modal basis in the seismo-acoustic waveguide. Special symmetry
axis orientations exist where P-SV and SH motions propagate independently in TI
symmetric media. In an isotropic medium, the pure P-SV and pure SH modes do not,
share the same particle motion polarizations. The medium is completely rotationally
symmetric. For a TI elastically symmetric medium, the P-SV particle motions and the
SH particle motions propagate independently when the symmetry axis § lies within
the sagittal plane or along one of the three coordinate axes, as summarized by Table
3.4. The sagittal plane is defined as the vertical plane containing the propagation
direction. Since the propagation direction is assumed to be parallel to the x-axis, the
sagittal plane is parallel to the xz-plane.

A visual interpretation of the eigenfunctions at 50.0Hz in figure 3.8 reveals the
P-SV modes have polarizations only in the xz-plane, and the SH modes have polar-
ization in the y-direction. The pure SH modes are all rather similar to one another,
with no particle motion in the fluid, and the largest amplitudes in the thin anisotropic
sediments. The shape of P-SV and SH eigenfunctions are similar to the propagat-
ing modes for an equivalent isotropic medium. Schoenberge and Costa (1991) found
that SH waves in a stratified monoclinic medium can be modeled using an equivalent

stratified isotropic medium for propagation in the plane of symmetry. In instances



44

Table 3.4: P-SV and SH Particle Motion Independence

Coordinate Axes:

5(6, ) = 8(90°,90°) = ¢
5(0,p) = 5(0°,0°) =2

Sagittal Plane:
5(8, ) = §(all, 0°)

Line Singularity:
5(0, @) = §(70°, all)
3(8, ) = 8(110°, all)

where the P-SV and SH modes propagate independently, it may not be entirely nec-
essary to implement anisotropic modeling. When the P-SV and SH particle motions
propagate independently in a plane layered homogeneous medium (i.e. the absence
of scattering), only the P-SV modes are necessary to represent the seismo-acoustic
wavefield. The SH modes (e.g. 3.8(b)) are purely sediment and crustal modes when
they propagate independently.

As shown in figure 3.9 the mode shape of mode 9 does not vary dramatically
when the symmetry axis § is aligned with any of the three coordinate axes. This is
typical of any of the modes when the symmetry axis § is aligned parallel to one of
the coordinate axes. The P-SV and SH motions are also separable when 6 = 70°.
These symmetry axis orientations correspond to one of the line singularities in the T1
elastically symmetric medium. The eigenfunctions are complex, but otherwise very

similar to those in figure 3.8.

As seen in figures 3.8 and 3.10, there is no SH motion in the fluid layers. Even

in the generalized eigenfunctions, motion is suppressed in the y-direction because
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Pure P-SV and SH Modes
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Figure 3.8: These are example pure P-SV and SH modes for 5(8, ¢) = 5(80°,0°).
This is an instance where the elastic stiffness matrix is quasi-monoclinic and the pure
P-SV and SH modes have completely separate polarizations. The P-SV mode has
particle motion in the sagittal plane and the SH mode has particle motion in the
y-coordinate-direction of the horizontal plane.

the fluid layer can not support any shear stress. However, y-displacements in the
generalized eigenfunctions do become evident in the bottom/subbottom layers for a

tilted symmetry axis.

For more general tilt of the symmetry axis away from the sagittal plane or coor-
dinate axes, *Cy; has the form of a quasi-triclinic elastic stiffness matrix. For these
general geometries, the modes of the waveguide belong to the generalized eigenfunc-
tions. They have polarization in all three coordinate directions, as shown in figure
3.10. The modes can be classified as predominantly quasi-P-SV or predominantly
quasi-SH for most symmetry axis orientations. Energy begins to appear in the SH

component of the quasi-P-SV modes as shown in figure 3.10(a). A similar effect for
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P-SV Mode for X, Y, and 7Z Axes
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Figure 3.9: The P-SV mode remains polarized in the sagittal plane when the symme-
try axis § = £, §, 2. The mode shapes are similar when the symmetry axis is aligned
parallel to any of the three coordinate axis directions.

the quasi-SH eigenfunctions is shown in figure 3.10(b). As the symmetry axis is tilted
away from the vertical the quasi-SH eigenfunctions gain particle motion in the x and
z-directions. However, some symmetry axis orientations exist where it is impossible
to label a mode as predominantly quasi-P-SV or quasi-SH. These modes can be more
accurately described as composite P-SV-SH modes. As shown in figure 3.10(c), the
amplitudes in the x, y, and z-directions all have similar magnitudes for the P-SV-SH
modes. The quasi-P-SV, quasi-SH, and P-SV-SH modes possess both P-SV and SH
particle motion characteristics. This is a direct result of treating the sediments and

bottom/subbottom as elastic.

Additional quasi-P-SV, quasi-SH, and P-SV-SH modes are shown in Figure 3.15
when the symmetry axis §(6,¢) = §(80°,20°). The x, y, and z components of dis-
placement, are in figures 3.15(a), 3.15(b), and 3.15(c) respectively. Notice that the

arplitudes of the modes are about the same magnitude in the three coordinate direc-
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Sample quasi-P-SV, quasi-SH, and P-SV-SH Modes
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(a) quasi-P-SV Mode (b) quasi-SH Mode (c) P-SV-SH Mode

Figure 3.10: The quasi-P-SV mode in figure (a) has gained some particle motion in
the y-direction, but still has particle motion predominantly in the sagittal plane. The
quasi-SH mode in figure (b) has gained particle motion in the sagittal plane, but the
mode remains predominantly polarized along the y-direction. The P-SV-SH mode in
figure (c) has polarizations in all three coordinate directions and attributes of both
P-SV and SH modes.

tions. The x- and z-components resemble hybrid acoustic-sediment particle motions,
and the y-components resemble the displacements of sediment modes. The modes
that are sensitive to the low shear speed sediment layers tend to have large displace-
ment oscillations at the depths where the low shear speed sediments occur. Because
all of the anisotropy for the models presented in this dissertation is contained in the
low shear speed sediments, the degree of displacement oscillation in the sediment

layers directly indicates any mode’s sensitivity to anisotropy.

Some of the modes have the majority of their energy in the water column and
the isotropic portions of the model. They have relatively little particle motion in the
anisotropic sediment regions of the model. These invariant modes are predominantly
quasi-P-SV acoustic modes with very little particle motion in the y-direction. Be-

cause these eigenfunctions are dominated by the isotropic features of the model, they
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Sample Invariant Acoustic Mode
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Figure 3.11: An example of an invariant acoustic mode at 50.0Hz for 5(6,¢) =
5(80°,30°). The mode only gains a very small portion of particle motion in the y-
direction. In addition, only small oscillations are observed in the anisotropic sediment
layers, compared to the modes in Figures 3.8 - 3.10.

are only slightly affected by any tilt of the symmetry axis within the anisotropic sed—r
iments. They closely resemble the P-SV acoustic modes for isotropy and symmetry
axis orientations where P-SV and SH mode propagate independently. An exam-
ple of an invariant acoustic mode is shown in figure 3.11. These invariant acoustic
modes are the same modes that participate in the frequency and angular solotone
effects observed in the dispersion curves. The acoustic modes are more sensitive to
the anisotropy at lower frequencies. As the frequency increases, the acoustic modes’
phase and group velocities become more invariant, indicating they become less sen-
sitive to the anisotropy. These acoustic modes then become the invariant acoustic
modes seen in the dispersion curves that participate in the ”solotone” effect. An
example of the frequency dependence of an acoustic mode is shown in figure 3.12.
The figure shows the 1% acoustic mode for § = 2. The x-component and z-component

particle motions are shown in Figures 3.12(a) and 3.12(b) respectively.
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Frequency Dependence of an Invariant Acoustic Mode
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Figure 3.12: The characteristics of the 1% acoustic mode are shown for several fre-
quencies. Figure (a) shows the x-component of displacement and figure (b) shows the
z-component of displacement, for a frequency range of 10.0Hz-100.0Hz. The acous-
tic mode shown has a single zero crossing in the z-component particle displacement,
within the fluid layer at higher frequencies. The modal amplitude tends to decrease
with increasing frequency.

In order to satisfy the boundary conditions between a fluid and anisotropic solid
for the equations of motion, the particle motion in the y-direction must be included.
The modes in figure 3.10 clearly show that as the symmetry axis § tilts away from the
vertical, the P-SV particle motion is no longer independent of the SH motion. Quasi-
SH, quasi-P-SV and P-SV-SH modes are needed for and accurate representation the

seismo-acoustic wavefield.

For the dispersion curves in Figure 3.6, near degeneracies occurred for P-SV

modes, even when the SH modes propagate independently. These near degenera-
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Switching of Modal Characteristics
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Figure 3.13: The x,y, and z particle displacements of a mode switches characteristics
with another mode due to a near degeneracy. The near degeneracy occurs as the
symmetry axis § is varied in #. In this case the quasi-SH mode becomes a quasi-P-SV
mode as § = 0° — 90°.

cies are due entirely to the solotone effect, where the phase and group velocities of
the invariant acoustic modes are almost stationary. The near degeneracies seen in
Figure 3.6 affect the characteristics of the modes. Even though the dispersion curves
do not cross, the characteristics of the modes switch. This is seen in the disper-
sion branches when a sensitive mode becomes an invariant mode. Figure 3.13 shows
how the characteristics of the modes changes as the angle 0 varies. Figures 3.13(a),
3.13(b), and 3.13(c) show the displacements for the x, y, and z-directions respectively.
The mode begins as a predominantly quasi-SH mode and transforms into a predom-
inantly quasi-P-SV as the angle 8 varies. The characteristics of the quasi-SH mode
are taken on by the quasi-P-SV mode and the characteristics of quasi-P-SV mode
are taken on by the quasi-SH mode. The identity of the mode in figure 3.13 is ex-

changed as it closely approaches the quasi-P-SV mode. As the modes approach near
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degeneracy, the eigenfunctions of both modes transition towards composite modes
with characteristics of both modes. There can exist two P-SV-SH modes that closely
resemble each other as the modes become nearly degenerate.

The mode order sequence does not remain fixed for increases in frequency or
changes in symmetry axis orientations. The sense of mode ordering is somewhat lost
when the two sets of independent mode types coalesce into a single set of generalized
P-SV-SH modes. The sequence of the mode ordering is not completely clear as the
symmetry axis is tilted. The switching of modes is a complex function of the phase
and group velocity relationships with the phase velocities approaching one another
and where the group velocities actually cross. For TT elastic symmetry, the mode
ordering of the eigenfunctions does not necessarily stay fixed as the symmetry angle
is tilted. The mode ordering may change when two modes approach one another, and
the mode order sequence tends to remain the same for the eigenfunctions at lower
frequencies. At lower frequencies, the eigenvalues tend to be spaced further apart
and near degeneracies are not as likely to occur. As the frequency increases, the
eigenvalues become more closely spaced, as is evident in the the dispersion figures 3.5
and 3.6. Near degeneracies have a higher occurrence as the frequency increases, and
the modes switch characteristics more often. Although it may be insightful to keep
track of individual modes and their characteristics as they transition from quasi-P-SV
to quasi-SH or vice versa, it really is not necessary. The modal formalism of section
3.1 does not require all of the modes to be individually identified as P-SV, SH quasi
P-SV, quasi SH or P-SV-SH. All that is needed is to be sure and include all of the
modes important to the seismo-acoustics waves composition.

The modes of the shallow water waveguide may be directly excited by any number
of source types. When the P-SV and SH modes propagate independently, then the
polarization of the acoustic modes are more source dependent as shown by figure
3.14. An explosive source will excite only P-SV motion (x and z-displacements).

The displacements for the x, y, and z-directions excited by an explosive source are
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P-SV and SH Explosive Source Modes
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Figure 3.14: Figures (a), (b), and (c¢) show the x, y, and z displacements for an explo-
sive source respectively. Figures (d), (e), and (f) show the x, y, and z displacements
for a double couple source respectively. The modes of a quasi-monoclinic medium
are similar to the modes of an isotropic or VIT medium, where the P-SV and SH
particle motions propagate independently. An explosive source only excites modes
with particle motion in the sagittal plane. A double couple source in the horizontal
plane only excites modes with particle motion in the horizontal plane.
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quasi-P-SV, quasi-SH, and P-SV-SH Explosive Source Modes
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Figure 3.15: Both explosive and double couple sources are effective at exciting modes
with 3-D particle motion, a result of the introduction of anisotropy into the sediments.
Note that the double couple source is more effective at exciting the lower order modes,
than the explosive source. The figures show the displacement of modes with phase
velocities between the of 1500m/s and 2000m/s, for a TTI medium at 50.0Hz. The
X, y and z-components of displacement are shown in figures (a) & (d), (b) & (e), and

(c) & (f) respectively.
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shown in figures 3.14(a), 3.14(b), and 3.14(c) respectively. Moment tensor sources
can also be of interest for some acoustic wave propagation problems, such as T-wave
excitation (Park et. al., 2001). A pure double couple in the xy-plane will only excite
SH motion as displayed in figures 3.14(d), 3.14(e), and 3.14(f). The excitation of
the P-SV and SH modes can be compared to the excitation of quasi-P-SV, quasi-SH,
and P-SV-SH modes. Using an explosive source, energy becomes evident in the x,
y, and z-displacement directions in figures 3.15(a), 3.15(a), and 3.15(a) respectively.
The significance is that the wavefield will contain y-displacements in the absence
of any heterogeneity or scattering. Using a double-couple source contained in the
horizontal plane, excitation of x, y, and z-displacements again becomes evident as
shown in figures 3.15(d), 3.15(e), and 3.15(f) modes. Here, a shear source is able to
excite modes which contribute to a seismo-acoustic wavefield. Because of the 3-D
polarization of the modes, they may be excited by a wide range of sources.

The generalized mode structure is significant for shallow water media. With
the bottom interacting modes, acoustic energy can leave the water column. It can
then be attenuated by the low shear velocity sediments, and redistributed to other
predominantly sediment modes. In addition, energy from other sources or signals,
such as noise, from the sediment and bottom layers can enter the water column
through these bottom interacting modes. With the anisotropic bottom interacting
modes, there exists a greater opportunity for the energy to become redistributed
and leave or enter the water column. This is due to the three component nature of
the eigenfunctions. Therefore, in the presence of anisotropy, attenuation of bottom

interacting modes could be underestimated if isotropy is assumed.

3.6 Chapter Summary

A seismo-acoustic signal may be represented by a superposition of acoustic, hybrid

crustal-acoustic, and crustal modes. It is important to note that, the modal formalism
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does not require all of the modes to be individually identified as P-SV, SH quasi P-SV,
quasi SH or P-SV-SH. All that is required is for all of the modes which contribute to
the seismo-acoustics signal to be included into the modal representation. However, it
is instructive to consider the individual modes, since they help bring understanding
into the physics of propagation.

The form of the elastic stiffness tensor determines whether the local modes prop-
agate independently as P-SV and SH modes or coalesce into a set of quasi-P-SV,
quasi-SH, and generalized P-SV-SH modes. This distinction greatly affects the po-
larization of the propagating signal. Since it usually cannot be prearranged to record
a seismo-acoustic signal in a symmetry plane, the effects of tilted anisotropy can-
not be completely ignored. Conversion of acoustic energy into horizontally polarized
shear motion can be expected at fluid/solid boundaries where lateral heterogeneity
or anisotropy exists in the solid layer. As a result, one consequence of the presence of
anisotropy is that the seismo-acoustic signals can have a significant portion of their
energy in horizontally polarized shear motion (SH and quasi-SH) even in the absence
of any range-dependence. This is in contrast to an isotropic or VTI elastic medium,
where all acoustic energy propagates independently of any horizontally polarized
shear motion. In the absence of any scattering, all particle motion for an acoustic
signal would be restricted to the sagittal plane for isotropic and VTT media. For gen-
eral anisotropy the compressional motion{quasi-P), vertically polarized shear motion
(quasi-SV) and horizontally polarized shear motion (quasi-SH) no longer propagate
independently.

Horizontally polarized shear motion experiences higher attenuation than com-
pressional motion, with intrinsic SH attenuation approximately 2-3 times larger than
compressional wave attenuation, or even larger in low shear speed sediments. Be-
cause shear motions experience higher attenuation than compressional motion, this
could be an important loss mechanism for acoustic signals with significant seafloor

interaction. The SH motion could have a profound effect on the propagation of the



acoustic signal. The signal may experience more energy loss than an equivalent sig-
nal propagating in an isotropic model or only fluid layers. Therefore, in the presence
of anisotropy, attenuation of bottom interacting modes would be underestimated if
isotropy is assumed. Hughes et. al. (1990) observed that high propagation loss in
thin sediment layers is due to absorption of shear waves in the sediment. Acoustic
energy with quasi-SH modes or quasi-SH displacement components would contribute
to the loss reported by Hughes et. al. (1990).

The frequency and angular dispersion curves give insight into the characteristics
of specific modes. They indicate which modes are sensitive to anisotropy, and which
modes remain invariant to the anisotropy and its symmetry axis orientation. The
mode set being divided into both sensitive and invariant modes may account for why
anisotropy is often successfully introduced and modeled as a perturbation. Since not
all of the modes are sensitive to the anisotropic layers, the impact of the anisotropy
is limited by contribution of the sensitive modes, while the invariant modes still
contribute an isotropic aspect to the seismo-acoustic signal.

Horizontal shear motion has historically been ignored or neglected in the modeling
of acoustic signals, with the majority of attention placed on acoustic P-SV motion.
However, any description of seismo-acoustic signal propagation which ignores SH
motion in these type of environments would be incomplete. Particle motion in the
three coordinate directions must be included into the seismo-acoustic wavefield. It
has been demonstrated that an elastic treatment of the bottom and subbottom of
the shallow water environment at low frequencies is necessary for understanding the

propagation of the seismo-acoustic energy for tilted anisotropy.
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Chapter 4

ANISOTROPY AND GEOMETRICAL HETEROGENEITY

It is helpful to separate the effects of anisotropy and the effects of heterogeneity in a
complicated medium. In chapters 2 and 3 the effect of anisotropy in the absence of
heterogeneity was investigated. Now consider the effect of lateral heterogeneity on
the coupling of local modes for VT1 and TTI media. The local modes are defined as
the eigenfunctions of a 1-D model that is the local equivalent of the range-dependent
model at a fixed position z,. The local modes are weighted by range-dependent
amplitude coeflicients, which can be determined by solving an evolution equation.
This evolution equation depends on the coupling matrix By, which contains all of the
physics for the redistribution of energy between coupled local modes. B, contains the
elastic moduli of the model, lateral derivatives of the elastic moduli, the local eigen-
functions, and the vertical derivatives of the local eigenfunctions. The local modes
are orthogonal, but any lateral heterogeneity breaks the orthogonality of the modes,
and allows them to couple, where energy is redistributed between the modes. Build-
ing upon the previous discussions concerning homogeneous plane-layered anisotropic

media, now consider the wave propagation effects for a 2-D range-dependent model.

4.1 Coupled Local Mode Formalism for Range-Dependent Anisotropic
Media

The theory presented for the 1-D homogeneous anisotropic plane-layered halfspace
of section 3.1 can be extended. The method of coupled local modes is applied to

the 2-D range-dependent seismo-acoustic wave propagation problem. Any introduc-
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tion of lateral heterogeneity leads to two additional steps in solving the equations
of motion. As for the previous homogeneous anisotropic plane-layered medium, the
equations of motion can be expressed as a first order differential equation and the
solution of the coupled first order equations are expressed in terms of the basis of
local modes. In addition, the interface boundary conditions must be transformed into
equivalent localized volume forces, and an evolution equation for the amplitude co-
efficients which describes the coupling between modes in a range-dependent medium
must be obtained. The specific deterministic anisotropic structure of the medium is
assumed to be known for the model.

The modal theory in Section 3.1 is extended by following the the coupled local
mode formalism of Maupin (1988). The boundary conditions for geometrical hetero-

geneity along interfaces may be expressed as:
[t(7)3)n = [W(R)]n = 0, for the n* interface (4.1)

The coupled local mode formalism also assumes that all tractions vanish at the
free surface, imposes a free-slip boundary at any fluid-solid interfaces, and enforces
a radiation condition at infinity. In addition, the displacement and tractions are
considered continuous across interface normals.

Consider an effective volume force term F7 arising from traction discontinuities

along the interfaces.

F=F 4F =| - |+ °
S [t],, 6 (z — hn(z))
This additional effective volume force will be found in the coupling terms of the
local modes. The interfaces between fluid layers are considered planar, and do not
contribute an equivalent volume force.
As before, a modal description of the wavefield is assumed, where the local modes

are independent solutions for the non-separable equation of motion. The wavefield, u
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is expressed as a superposition of local modes u”(z; z) weighted by range-dependent
amplitude coefficients ¢, (z).

u=(w,t)’ = ZT:cr(m) exp (z /: kT (£) df) u'(z;z) (4.2)

8

where k() is the local horizontal wave number, and z,; denotes the source position.
Substituting the Ansatz (4.2) into the equation of motion (3.4), taking the scalar
product with respect to local mode u?, and then evaluating the scalar product inte-

grals results in an evolution equation for the amplitude coefficients c.(z).

de,

o B¢, (4.3)

where the coupling matrix B, is defined as:

B, = (~ <uq, %1;’”> +iY haw® [tr]n) exp (z /0 " (ke — k’)df) (4.4)

and the Hermitian scalar product is defined as:

(ui,u") = z'/oo (W™ — t"Tw") dz (4.5)
0

The range-dependent amplitude coefficients are determined from the solution of
equation (4.3). The combined effects of heterogeneity and anisotropy on the eigen-
functions are studied through the coupling matrix B,,. For a deterministic medium,
B, is a mode coupling matrix which essentially determines how much of the modal
energy from local mode r is redistributed into local mode g. The coupling matrix
contains an inner product which introduces volume terms and interface terms. It con-
tains the local eigenfunctions, their vertical derivatives, and the material properties
as well as any lateral heterogeneities. The range-dependent amplitude coefficients
are determined from the solution of equation (4.3). B, would be a diagonal matrix,
describing self-modal coupling, for a homogeneous plane-layered medium. The local
modes are all mutually orthogonal, preventing any redistribution of energy between

the modes. Some heterogeneity needs to exist for the coupling matrix B,, to contain
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off diagonal terms that leads to mode coupling. The heterogeneity may be sloping or
rough interfaces, volume variations, or both. A full expanded form of the coupling
matrix B, can be found in Appendix C.

The deterministic coupling matrix of Maupin (1988) contains both boundary in-
terface terms and volume terms. When the material properties are assumed to be
constant within each layer of the model, then the derivatives of elastic moduli are
zero. All volume terms in the coupling matrix B, become zero, and only the inter-

face terms of the B, matrix remain. Therefore in the absence of material property

variations:
1 T awq* -
By = % (Zhn ["wq pwiw’ — st + W Qaaw'p?
_owT 6w’" Aur
52 —(CaCH )" — t7(C1' Cus) 52 +t7C 't }
. oty 1 0t i
- h (‘E;‘Jf@: - s ufotul |

— ih ((kq-—k’")( A +tq3w1))

) exp (z /0 “ (k7 — k’")df) (4.6)

where hy(z) describes the range dependence of the fluid/solid interface boundary.

The *Q);; matrix is defined as:

hy(z)t

szJ U (w il)(w ﬂl)(wclj) (4-7)

4.2 Laterally Heterogeneous Anisotropic Media

The coupling matrices are compared to reveal how modal energy redistributes when
anisotropy and range-dependence are present. The VTI model will be compared to
a general anisotropic TTI medium.

The shallow 2-D water environment has a bottom/subbottom with complex elastic

properties that vary in both direction and location. Figure 4.1 shows a representation
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of a 2-D range-dependent model. The thin anisotropic sediments are modeled as in

chapters 2 and 3.

2-D Layered Laterally Heterogeneous Anisotropic Structure

\ Aals
=

Thin Anisotropic

L B B

Figure 4.1: A 2-D laterally heterogeneous anisotropic structure. The structure con-
tains fluid layers over thin range-dependent anisotropic and/or isotropic sediments,
additional range-dependent sediments and/or basement layers, and is terminated by
an isotropic halfspace. The elastic moduli may vary in both range and depth. The
local equivalent of this 2-D model at z; is the plane-layered homogeneous anisotropic
model in figure 3.1.

When investigating the effects of anisotropy in a 2-D range-dependent seismo-
acoustic environment, 1-D profiles are generated that are the local equivalent of the
range-dependent model shown in figure 4.1. At a particular point z, of the 2-D
range-dependent model, a 1-D profile is created with the same elastic properties and

depth dependence as the 2-D model. For example, the density and elastic moduli of
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the 2-D model are described in the 1-D profile as:

The model is range-dependent with elastic sediments and bottom layers. The
anisotropy belongs to the transversely isotropic elastic symmetry class, and is only
in the thin sediment layers. All other layers remain isotropic. The elastic parameters
are known and assumed to be deterministic in nature, while ignoring any small scale
variations that would be evident in a real earth structure.

For the 1-D profile, the same model as shown in figure 3.1 and table 3.1 is used.
The 1-D vertical profiles are the plane layered homogeneous anisotropic structure

considered previously in Sections 2 and 3.

4.3 Deterministic Interface Coupling Matrices

The form of the lateral heterogeneity in the deterministic interface coupling matrices
is restricted to non-horizontal bedding planes (interface boundaries). The coupling
matrix B, essentially determines how much of local mode r is redistributed into mode
g. For isotropy, when the symmetry axis § is within the sagittal plane, or 3 is aligned
to one of the coordinate axes, the pure SH and P-SV particle motions propagate
independently. Any mode coupling is dominated by nearest neighbor interactions
between modes of the same wave type. If the modes involved in the B, matrix are
strictly different wavetypes with completely separate polarizations, then the coupling

between the different wavetypes will be zero. Only SH/SH and P-SV/P-SV coupling
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is observed between the modes. Figure 4.2 shows the B, coupling matrices for pure
P-SV and SH modes at 20.0Hz, 30.0Hz, 40.0Hz, and 50.0Hz.

The white elements in the coupling matrices represent zero values. Note that
the diagonal elements, which represents the self-coupling of a mode or the phase of
the mode, have also been set to zero. It appears that the coupling between modes
may not be dominated by nearest-neighbor interactions, but in fact the modes are
only coupling with their respective wave types and the coupling is strongest for the
nearest mode of the same wave type. Absolutely no coupling occurs between the SH
and P-SV local modes. If the P-SV and SH modes are separated and then grouped
first by modal wavetype, and second by phase velocity, then the nearest-neighbor
coupling of Odom et. al. (1996) is observed.

As the symmetry axis is tilted, coupling can occur between any generalized mode
regardless of mode wavetypes, as shown in figure 4.3. The quasi-P-SV, quasi-SH,
and generalized P-SV-SH modes may have energy in all three coordinate directions,
allowing the modes to be available for a wide redistribution of energy whenever lateral
heterogeneity is present. The mode coupling may be dominated by nearest-neighbor
interactions or by non-nearest-neighbor interactions. The strength of the coupling
depends on the closeness of the phase velocities of the modes and the degree of
similarity between the eigenfunctions. However, the 3-D particle motion of the local
modes allow coupling between all of the modes, whether of similar or dissimilar
polarization.

Figure 4.3 shows the B, coupling matrices for a symmetry axis orientation where
5(0, ¢) = 8(10°,20°). Note that all of the modes couple to some degree. The invariant
acoustic modes have polarizations predominantly in the sagittal plane. The invariant
modes appear at higher frequencies in isotropic, VTI, and TTI media. They are
essentially insensitive to most tilt of the symmetry axis § within thin anisotropic
sediment layers. These modes couple weakly with any predominantly quasi-SH modes

when lateral heterogeneity is present. In contrast, the invariant acoustic modes may



64

B, Interface Term Coupling Matrix for VTT Media

Bar Matrix - Phasa Velocity Ordering: 8=00 ¢=XX #=20.0Hz M<NONE @ NONE (Berge e, al,) Bar Matrix ~ Phase Vslootty Ordeting: =00 ¢=XX {=30.0Hz M=NONE @ NONE (Berge at. ai)

-

(a) Frequency = 20.0Hz (b) Frequency = 30.0Hz

Bqr Matnx - Phase Valocity Ordenng: 6=00 6=XX {=40.0Hz M=NONE @ NONE {(Berge et al.} Bqgr Matrix — Phase Velocity Ordefing: 5=00 ¢=XX {=50.0Hz M=NONE @ NONE (Berge et. a/)
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Figure 4.2: By, coupling matrices for P-SV and SH modes at 20.0Hz-50.0Hz when

~

§(0,¢) = 5(0°,0°). The coupling is restricted to P-SV/P-SV and SH/SH coupling.
The white spaces indicate that there is no P-SV/SH exists.
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B, Interface Term Coupling Matrix for TTI Media

Bar Matrix — Phase Velocity Ordering: 8=10 4=20 f=20.0H2 M=NONE @ NONE (Berge et. al}

(a) Frequency = 20.0Hz

=10 =20 f=40.0Hz M=NONE @ NONE (Berge &t, a/}

Bar Matiix - Phase Velocity Crderin;

Mode

3 4 5 6 7 8 9 10 11 12 13 14 15
Mode a

(d) Frequency = 50.0Hz

(c) Frequency = 40.0Hz

Figure 4.3: B, coupling matrices for quasi-P-SV, quasi-SH, and P-SV-SH modes at
20.0Hz-50.0Hz. Any mode may coupling into any other mode without the restrictions

to the quasi-monoclinic symmetries shown in Figure 4.2.
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couple strongly with any quasi-P-SV, generalized P-SV-SH, or quasi-SH modes with
significant particle motion polarizations in the sagittal plane.

Near degeneracies play an important role in the coupling of local modes. Since
the By, coupling matrix is directly dependent upon the spacing of the eigenvalues
as well as the polarization of the modes, it is important to consider what happens
as the eigenvalues become degenerate. Many near degeneracies in the modal phase
velocities can be seen in Figure 3.6(c) between 10° — 20° and 70° — 80°. For the
near degenerate case ¢, ~ ¢, and k, = k4, and when two modes are degenerate, then
¢ = ¢ and k, = k,. The wavenumber dependence of the coupling matrix B, can be

factored out as a Ak term.

1 ,

qu = EEBW- (48)

As the difference between the mode phase velocities becomes smaller, the contribution

to the coupling matrix B, may become larger.

1 1 cIc”

Ak kq—kT:w(c"-cq)

(4.9)

The coupling of the two modes is expected to become very large as they approach
a near degenerate state. Higher order modes must have closer spaced eigenvalues
than lower order modes to obtain the same Ak value. The B, coupling matrix may
be dominated by such interaction of closely spaced modes. The coupling at near
degeneracies is not infinite, but the closely spaced phase velocities, and therefore the
closely spaced wavenumbers of the two discrete modes, can dominate the coupling
term between the modes, as shown in figure 4.4(a). When the nearest-neighbor
contributions are removed as in figure 4.4(b), then the B, coupling matrix is similar
to the one in figure 4.3(d). As the modal phase velocities converge, the polarizations
of the modes become more alike.

In contrast, when the spacing of two eigenvalues is large, then the coupling be-

tween two modes may become weak. In addition, if two eigenfunctions have rather
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B, Interface Term Coupling Matrix for Near Degeneracy

Moda r

R R
Mode r

0 1 2 3 4 5 6 7 8 9 101 12 13 14 15 1 2 3 4 5 & 7 8 8 10 1t 12 13 14 15
Moda a Mode o

(a) Near Degeneracy Case {b) Near Degeneracy Excluded

Figure 4.4: Coupling matrices showing the effects of near degeneracy for 5(8,¢) =
§(10°,60°) at 50.0Hz. Nearly degenerate in phase velocity, two modes may strongly
couple and dominate the appearance of the coupling matrix. When the nearest-
neighbor coupling terms are removed, the coupling matrix resembles those of 4.3

dissimilar polarizations then the coupling may also be weak, if the wave numbers
of the two modes are not in close proximity to one another. An example of when
the polarizations are completely dissimilar is when pure P-SV and SH local modes
propagate independently, as observed in figure 4.2. In general, eigenfunctions with
different polarizations will tend to couple more weakly than eigenfunctions that have
similar polarizations. The strongest coupling occurs between modes of similar polar-
izations. For an isotropic case only P-SV modes may have similar polarizations with
other P-SV modes, and only SH modes may have similar polarizations with other
SH modes. For the more general anisotropic case, two modes with particle motions
in all three polarization directions and closely space eigenvalues will exhibit strong

coupling.
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Table 4.1: Symmetry Axis Orientation and Coupling

§ quasi-Monoclinic Medium:
SH/SH
P-SV/P-SV

quasi-Triclinic Medium:
quasi-P-SV/quasi-SH
quasi-P-SV/quasi-P-SV
quasi-P-SV/P-SV-SH

quasi-SH/quasi-SH
quasi-SH/P-SV-SH
P-SV-SH/P-SV-SH

Table 4.1 summarizes the combinations of of wave types that will couple for a TTI

medium.

When the symmetry axis § allows for a quasi-triclinic form of the elastic stiffness
tensor all the modes are excited regardless of the source type, and all the modes are
involved in the coupling, although some modes’ contribution is much smaller than
others. The coupling matrix B, results suggest that the combination of a tilted
symmetry axis and lateral heterogeneity is rather efficient at scattering a seismo-

acoustic signal.

Figure 4.5 shows the B,, coupling matrices for four moment tensor sources, which
are of interest for T-wave excitation. The figure clearly shows which modes are excited
when the source modes are pure P-SV and SH modes with separate polarizations.
The explosive source in figure 4.5(a) clearly shows that the SH modes are excluded
entirely, as they are not excited at all. A double couple source in the xz-plane produces

a similar coupling matrix to the explosive source, where again the SH modes are not
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directly excited, as shown in figure 4.5(c). The double couple sources in the xy-plane
and the yz-plane only excite the SH modes, as shown in figures 4.5(b) and 4.5(d)

respectively.

4.4 Stochastic Interface Coupling Matrices

Stochastic rough boundaries are added to the non-horizontal interface boundaries of
section 4.3. Park and Odom (1999) have successfully included both deterministic
bathymetry terms and rough boundary interface terms for isotropic and transverse
isotropy media into the coupled mode equations. The formulation for the scattering
coupling matrix S, presented by Park and Odom (1999) is valid for more general
anisotropy symmetries, such as those already discussed previously. The terms of the
coupling matrix can be cast in a form that that only includes the displacement w, the
traction vector t, and their respective derivatives. This gives uniformity, where all
of the coupling matrices may be expressed in terms of the stress-displacement vector
u = (w,t)T and is derivatives.

The evolution equation for coupling due to stochastic rough interfaces come from

the dissertation of Minkyu Park (1997):

%‘i—“’ =X ( (< u’, %‘f > +i 3 b [ -tr]n) exp (z /0 (- Icq)d§>) d,
+3 Dy + ZEW%;—T
= Y Bgd, + Z;qucr + 3> EgByre,
S Bpd4 Y See o)

The B, matrix is defined the same as in section 4.1 and Appendix G. The
matrices Dys and Eqp are defined as:

B

1+ (hg)2

n

qu — ZZ,-},” ( {WQ* . ata(no)] . Zkrhg [Wq* . tr(ﬁo)]

z
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B, Interface Term Coupling Matrix for Explosive and Seismic

Sources

Bar Matrix — Phase Velocity Ordering: 8=80 ¢=00 =50.0Hz (Bergs et. al} Bqr Matrix - Phase Velocity Ordering: 880 $=00 =50.0Hz (Berge et al}
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{c) Double Couple Source in XZ Plane (d) Double Couple Source in YZ Plane

Figure 4.5: The excitation of P-SV and SH modes by explosive and double couple
sources for §(0, ) = 5(80°,0°).
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+ (h2)2 |:W¢I* . Btr (ﬁo)jl + h?zhgz [wq* . t'r(ﬁo)]

0z n 1+ (hg)2 "
BOR0 z
+ —=t= [WT" - t7(X)],, |exp (¢ [ (K" — K9)dE), (4.11)
1+ (R8)” ) ( /° )
B .
E, = —i e (WP -t (D), exp ¢ [ (K7 — K7)dE ), (4.12)
Z;’y 1+ (hg)Q ( /0 )

Note the sign correction for the fourth term of the D, matrix from Park and Odom
(1999) equation (36). The function -y, is defined as a zero-mean stochastic process,
that adds roughness to a deterministic reference boundary. Additional restraints on
7n are reported by Park (1997). After some algebra, the matrices can be expressed

as:

ot} . ot}
_ e %) o |ger. O
o = (o5

+w—@QTMWﬁu+~E@74MﬁmJ
1+ () (1+(hg))
X eXP (z /Om(kr - k‘q)d§> , (4.13)
_ . (i’/g)2 Wq* . T X Z‘ z T _ q
&r~z;%;qﬁf[ i, exp (i [ (6 = k0dz) (4.14)

The derivative of the traction vector t3 can be determined from the original equa-
tions of motion. The vertical derivative of the tractions t3 can be expressed as:

Ots S N =
8. VT e (4.15)

where it has been assumed that all propagation is restricted to the xz-plane, and all
derivatives in the y-coordinate direction are zero.

Figures 4.6 and 4.7 present the scattering coupling matrix S, for a VIT medium
and TTI where §(6, ¢) = (10°,20°) respectively.

The rows and columns of S, represent the primary and scattered modes respec-

tively. Figure 4.6 is similar to those presented by Park and Odom (1999), except
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S¢r Interface Term Scattering Matrix for VTI Media

. Sqrinterface matix s(6.4)=8(00.XX) +=30.0Hz

Sqrinterface matrix 5{9,¢)=5(00,XX) 1220.0Hz

o 2
Moda a

(a) Frequency=20.0Hz (b) Frequency=30.0Hz

Sqr interface matrix s(8,9)=8{00,XX} f=50.0Hz

Sqr interface matrix s(6.4)=s{00,XX) f=40.0Hz

Mode r

Mode r

k £
1t 2 3 4 5 8 7 8 @2 10 11 12
Mode a

8 7 8 e 10 1 12
Mode a

1 2 3 4 5

(d) Frequency=>50.0Hz

(c) Frequency=40.0Hz

Figure 4.6: S, coupling matrices for P-SV and SH modes at 20.0Hz-50.0Hz. The
rows represent modes from the primary wavefield, and the columns represent the

modes from the scattered wavefield.
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that SH modes have been included into the mode sets. Figure 4.7 represents the
extension of the work presented by Odom and Park (1999) to a more general case
of anisotropy, where the symmetry axis of the TT elastically symmetric medium may
have any arbitrary orientation. The symmetry axis, §(6, ¢) = (10°,20°), is not to far
from vertical. Some of the scattered modes are preferentially excited, while others
are less excited. Scattered modes 2, 4, and 5 from Figure 4.7(c), represented by
columns 2, 4, and 5 respectively, are excited to a much smaller degree than scattered
modes 0, 3, 4, 7, 9, and 11. At the frequency of 40.0Hz (Figure 4.7(c)), it can be seen
that the primary modes 1, 4, 6, 7, 9, and 12, represented by rows 1, 4, 6, 7, 9, and
12 contribute the most to resulting scattered wavefield. What is interesting is the
characteristics of these modes. The primary modes 0, 3, and 11 are invariant acoustic
modes, with the majority of their energy in the isotropic portion of the model. They
do not contribute to the scattered wavefield as strongly as the more sensitive modes.
This implies that the energy will remain coherent longer in these modes that the
sensitive modes. However, these same invariant modes from the scattered wavefield
receive more energy than the sensitive type modes. This implies that rough interface
boundaries tend to preferentially redistribute energy from sensitive modes to invari-
ant modes. This may indicate that energy from seismic sources below that water
column would be preferentially scattered into invariant acoustic modes, which would

remain coherent longer. Such mechanism could help explain T'—wave generation.

4.5 Chapter Summary

A generalized set of P-SV-SH modes is required to correctly model seismo-acoustic
signals where tilted anisotropy is present. Since there no longer exists a clear distinc-
tion between pure P-SV and SH modes, all modes can carry energy for the seismo-
acoustic signal. The implication is that all of the modes are intricately coupled for

even weak anisotropy, and therefore more modes are available in anisotropic media
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Sqr Interface Term Scattering Matrix for TTI Media,

Sqrinterface matix ${8,6)=5(10,20) f=30.0Hz

Sarinterface matix 8(0,9)=5(10,20) f=20.0Hz

Mode r

3
Mode o

(b) Frequency=30.0Hz

(a) Frequency=20.0Hz

Sqr intarface matrix s(0,4)=5(10,20) {=50.0Hz

Sqrinterface matix {6,8)=5{10,20) #=40.0Hz

Meds 1

(d) Frequency=50.0Hz

(c) Frequency=40.0Hz

Figure 4.7: S, coupling matrices for quasi-P-SV, quasi-SH, and P-SV-SH modes
at 20.0Hz-50.0Hz. The rows represent modes from the primary wavefield, and the

columns represent the modes from the scattered wavefield.
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for the redistribution of energy. The magnitude of anisotropy as well as the direction
of the symmetry axis have been observed to be of equal importance. Any rotation
of the symmetry axis away from vertical (e.g. non-horizontal bedding planes) will
cause energy to be transferred between the modes, even if lateral variation is weak.
The elements of the By, and S, coupling matrices give insight into the degree of en-
ergy distribution between modes due to heterogeneity in the presence of anisotropy.
Heterogeneity is very efficient at redistributing energy among modes in anisotropic
media. The combination of lateral heterogeneity and anisotropy can be effective at
scattering a signal, and energy may become broadly redistributed among all of the
propagating modes. Any lateral heterogeneity can cause the modes to couple, and
the coupling tends to become stronger as the phase velocities associated with the
local modes converge to similar values. In contrast, the isotropic and transversely
isotropic modes transfer energy only to a few nearest-neighbor modes of the same
wavetype (e.g. modes having the same polarizations). In nearest neighbor energy
transfer, lower order modes couple to the nearest lower order modes and higher or-
der modes transfer energy to the nearest higher order mode. With the introduction
of even modest amounts of anisotropy, it becomes possible for higher order modes
to directly transfer energy into lower order modes without cascading down through
multiple nearest neighbor interactions.

Acoustic energy can leave the water column through bottom interacting modes.
The energy can then be attenuated by the low shear velocity sediments, and redis-
tributed to other predominantly sediment modes. In addition, energy from other
sources or signals, such as noise, from the sediment and bottom layers can enter the
water column through these bottom interacting modes. With the anisotropic bottom
interacting modes, there exists a greater opportunity for the energy to become redis-
tributed and leave or enter the water column. This is due to the 3-D nature of the
eigenfunctions, which are a direct result of the elastic treatment of the bottom sedi-

ments and subbottom structure. Therefore, in the presence of anisotropy, attenuation
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of bottom interacting modes would be underestimated if isotropy is assumed.
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Chapter 5

DETERMINISTIC AND STOCHASTIC VOLUME
SCATTERING

The investigations of the previous chapters are complemented by including volume
scattering terms for anisotropic media into the coupled local mode formalism. A
considerable amount of work has been done in the area of volume scattering by many
others. The volume scattering theory and numerical analysis presented is preceded
by the work Aki and Richards (1980), Beran (1994) and Tracy and Schmidt (1997)
to name a few. Aki and Richards (1980) provide a perturbation approach to volume
scattering. Beran (1994) applied a statistical modal analysis to scattering by random
density fluctuations in a plate, where cross-modal terms are retained. Tracy and
Schmidt (1997) investigate the effects of surface roughness and volume fluctuations
on the seismo-acoustic field.

Park and Odom (1999) have successfully included boundary terms (both deter-
ministic and stochastic) for isotropic and transverse isotropy media into the coupled
mode equations. Their work has been extended to more general anisotropy in chapter
4. A natural step towards a more complete description of the forward problem is the
inclusion of volume heterogeneity, in the presence of isotropic, transverse isotropic
and more general anisotropic media. This chapter begins with considering deter-
ministic volume scattering, and then stochastic perturbations to the the material

parameters is considered.



78

5.1 Description of Deterministic Elastic Moduli

The deterministic coupling matrix B, of Maupin (1988) contains both boundary
interface terms and volume terms. The expanded form of the deterministic coupling
matrix By, is found in Appendix G. In the absence of any lateral heterogeneity along
the interface boundaries, all layer interfaces are horizontal planar boundaries (hn =
0), and only the deterministic volume terms of B, remain. Several assumptions are
made about the nature of the density and elastic moduli in considering heterogeneity
of the material parameters. First, let the x and z-dependence of the density and
elastic moduli be separable, as in equation (5.1). It is also assumed that there is no
heterogeneity in the water column. When the elastic moduli and density have range
dependence, where p # 0 and ‘”C’ij # 0 (with the dot representing a derivative with
respect to the range coordinate), then it is assumed that the all of the elastic moduli
of the elastic stiffness matrix and density have the same range dependence. The
rotated elastic stiffness matrix contains elements which are the linear combinations
the the five elastic moduli A,C, F, L, N as described by equation (2.11). Therefore
the assumption of a single range-dependent function greatly simplifies the problem by
avoiding a unique range-dependent function for each element of the elastic stiffness
matrix. The elastic moduli and density are modified by a range-dependent function

g(z), where g(z) # 0 (to prevent dividing by zero) and g(z) may have a zero value.

p(z,2) = go(z)po(2)
YCij(z,2) = go(2)(¥Cij(2))o
w1 = (o 5.1
ij (*/E’Z) go(l“)( ij (z))o ( )
The o subscript in the above equation and the following equations indicates that
go(z) is deterministic in nature, with the absence of any stochastic properties. Using

the results from equation (5.1), the range-dependence of the elastic matrices in the
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B, coupling matrix may be determined.

“Q = @ Cylo = 8lD)("Cae s (“C)ognl)(“Ci
= go(z)("Cij — “Ca"CT"Cij)o
- a0y (5.2
i = s (e (53)
“CRCy = = (Ci)ale)("Cr)o = (i Cy), 6.4
"CatCr! = () (“Cados (O = (*Ca™CR), (5.5)

The horizontal derivative of the density and elastic moduli may be taken, where

the x-derivative of g,(z) describes the rate of change of the material properties.
p= go(z)po(?)

sz’j = 3o(T)("Qyj)0
1

w y—1 - ¢ wey—1
. CH go(x) gg(x)( Cll )O
(wCﬁle’lj) =0
®CyCF) = 0 (5.6)

where the dot indicates the horizontal derivative of the elements of the elastic stiffness
matrix or the horizontal derivative of the product of the elements of the elastic

stiffness matrix.

The x dependent terms can be factored out of the volume integral of the B, matrix.

1 0o ow? ow’
Br = g (0 [ (et = O @ul
- Wq*ip(sz’,(z)o)a(;j + Bgv:* (@32(2),)ipw"
— W (Qu(2),) W p? —Eé%zc—)tq*(Cﬁl(z)o)tr) dz (5.7)

The function g,(x) serves a similar role as the deterministic slope ho(z) does for
the interface terms of the B, matrix. The deterministic volume terms of B, are

proportional to the rate of change of the material properties.
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The deterministic aspects of the material properties could be further generalized
by allowing each elastic modulus have its own range-dependence. If it is still assumed
that the x and z-dependence are separable, then the deterministic x-dependence could
be factored out for each term in the B, matrix, and the volume integral evaluated
separately for each term. However, all of the elastic moduli should be correlated, so
the assumption of a single range-dependence should be fairly good.

These results are valid for any generally anisotropic deterministic structure, with
the assumption that the x-dependence is separable from the z-dependence of the
elastic moduli. The deterministic coupling matrix B, remains a symmetric matrix

regardless of whether it contains volume terms, interface terms, or both.

5.2 Numerical Modeling for Deterministic Volume Scattering

The deterministic volume terms from the B, matrix are calculated for the same
model which was used in chapter 4 to calculate the deterministic and stochastic
interface terms. An evaluation point z, has been chosen where izo(:co) = 0, and the
value of the functions g(z,) and §(z,) evaluated at the point z, are both equal to
1. This assumption ensures that only the contributions to the By matrix are the
deterministic volume terms.

The volume terms for the B, matrix in Figure 5.1 indicated that the weakest
coupling exists between the SH modes and other SH modes. The strongest coupling
is between the P-SV modes and other P-SV modes. There is no SH/P-SV coupling
for the VTI medium

The volume integral terms which contribute to the B, in coupling matrix Figure
5.1 and Figure 5.2 seem very similar to the interface terms presented in Figures
4.2 and 4.3 of chapter 4. One advantage of evaluating the coupling matrix with a
symmetry axis near the vertical, is that the modes can be clearly defined as quasi

P-SV, quasi-SH, and invariant. In Figure 5.2(c), modes 0, 3, and 11 are invariant
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B, Deterministic Volume Term Coupling Matrix for P-SV and SH

Modes

Bar Integral matrix s(8,9)=3(00,XX) 1=20.0Hz

Bar integral matiix $(8.43=s(00,XX) [=30.0Hz
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Figure 5.1: B, coupling matrices for P-SV and SH modes at 20.0Hz-50.0Hz. The
weakest coupling is SH/SH coupling and the P-SV/P-SV coupling is the strongest in

the figures.
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acoustic modes, modes 2, 5, 8, and 10 are quasi SH modes, and modes 1, 4, 6, 7, 9,
and 12 are quasi P-SV modes. The strongest coupling for the volume terms occurs
between the quasi P-SV and other quasi P-SV modes. In contrast, quasi SH modes
couple very weakly with other quasi SH modes. The intermediate coupling involves

combinations of invariant, quasi P-SV, and quasi-SH modes.

5.3 Coupled Local Mode Formalism for Stochastic Volume Heterogene-

ity

The combined effects of anisotropy and stochastic volume heterogeneity on wave
propagation are now considered. The method of coupled local modes is again used
to represent the displacement-stress wavefield, as presented in chapter 4, and ex-
tended by including stochastic volume scattering terms. Volume scattering terms
are included in the coupled mode equations for general anisotropic heterogeneous
media using perturbation theory. Since the exact parameterization of any structure
cannot be precisely known, one way to represent the structure is to use an average
deterministic model and then incorporate additional random variations. The elastic
moduli and density of each layer are assumed to have a mean deterministic part,
which may include large variations, and a smaller scale stochastic fluctuation. After
the application of perturbation theory to the coupled mode equations and the bound-
ary conditions, the displacement-stress field may be expressed as a sum of a primary
Oth order wavefield and a 1st order scattered field. This approach introduces ran-
dom volume scattering to the problem. The inclusion of random variations cause the
signal to scatter and energy to transfer between the individual modes of the model.
In general, density variations promote backscattering and variations in the elastic

moduli generate predominantly forward scattering.

The Oth order solution corresponds to the deterministic range-dependent medium,

and the 1st order solution provides a correction due to the scattering from the small-
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B, Deterministic Volume Term Coupling Matrix for quasi-P-SV,
quasi-SH modes, and P-SV-SH

Hgr integral malrix s(@.4)=5{10,20) f=20.0Hz Bar integral malrix ${0,4)=8(10,20) {=30.0Hz

Hode 1,

(a) Frequency=20.0Hz (b) Frequency=30.0Hz

Bqr integral mairix S(8.6)=s(10,20) 1=40.0Hz Bar integrat matrix 3(,8=8(10.20) 1=50.0Hz

0 1+ 2 3 4 5 6 7 B ¢ 10 11 12 13 14 15
tode u_

(c) Frequency=40.0Hz (d) Frequency=50.0Hz

Figure 5.2: B, coupling matrices for quasi-P-SV, quasi-SH, and P-SV-SH modes
at 20.0Hz-50.0Hz. The coupling between quasi P-SV modes is the strongest, while
coupling between quasi SH modes remains weak. The intermediate values of coupling
arise from cross of modes of different wavetypes between combinations of invariant,
quasi P-SV, and quasi SH modes.
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scale random fluctuations. The primary and scattered wavefields are each dependent
upon a unique set of mode coupling coefficients, ¢, and s, respectively. The primary
wavefield mode coupling coefficients give insight into the distribution of modal en-
ergy due to the deterministic structure. Similarly, the scattered field mode coupling
coefficients reveal how modal energy is redistributed due to random fluctuations of
the density and elastic moduli.

The coupling between coherent modes and scattered modes is described. Consider
the case where a coherent mode u, couples to coherent mode u,, where coherent mode
u, couples to scattered mode u,, and where scattered mode u, couples to scattered
mode u,. The goal is to determine the coupling matrices By, and H,, which describe
these coupling interactions. New volume scattering correction terms are derived by
applying perturbation theory to the equations of motion and boundary conditions.
Perturbation theory is applied to the first order coupled equation (3.4), and the den-
sity and elastic moduli perturbations are incorporated into the A operator. Consider
the following perturbation expansions of the stress-displacement vector, the differen-

tial operator A, and the traction vector:
u(z,2) = u,(z,2) +ew(z,2) +e’us(z, 2) +uz(z, 2) + - -
Ax,z) = A,(z,2) +eAi(z,2) +*As(z,2) + 3 As(z,2) + - - -
[, = [tol, +eftal, + & [ta], +° [ta], +--- (5.8)

The expanded expressions are then substituted into the equation (3.4).

55(‘10 +eu +etup +fug+--) =
(A, +eA; +e*Ay + A5+ Y (u, +emy +fup +us + -+ )
. 0
+_Pn 8(z = hn(x)) (5.9)
n [toy, + & [tal,, + 7 [te,, + € [ts], + - -

Collecting orders of € results in:

ou,
Oz

. 0
= Au,+ Y h, ] (5.10)
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8u1 0

— = Aju;+Aju,+ hn (511)

oz ; (1]

8112 . 0

— = A+ Ay + Asu, + Zh‘" (512)

3:1: n [tZ]n

6u3 . 0

*E;C* = A,uz+ Ajus + Asu; + Aszu, + Zh" [ ] (513)
n t'2 n

Parameters with a o subscript (e.g. wug) are unperturbed deterministic values and
belong to the homogeneous equation. Equation (5.10) is the same deterministic
equation already treated in chapters 3 and 4.

The total wavefield is represented as the combination of a primary field and a
scattered field, u(z, z) = uo(z, 2) + u;(z, 2), both superpositions of local modes u".
The primary wavefield results from the average deterministic portion of the model
and the scattered wavefield results from the small-scale random fluctuations in the
model.

w,(@,2) = Lerla) exp (i [ K (€)d¢)u"(z0)

r

u(z,z) = Zr:sr(x) exp (z /(:c k(&) df) u’(z; ) (5.14)

Note that the scattering amplitude coefficient s, is not to be confused with the
symmetry axis § of the anisotropic medium. A single scattering theory is used, and
it is assumed that the Born approximation applies to this problem. It is assumed
that any single scattering event is weak, and does not require the primary field to
be renormalized. Therefore the primary waves are unchanged by their propagation
through the heterogeneous medium. The energy conservation law is violated, because
scattered waves should in fact remove some fraction of the primary wave energy. The

Born approximation also limits the scope of the research, where the results are valid
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only for weak stochastic heterogeneity. However, the deterministic heterogeneity can
be strong.

Evolution equations for the primary and scattered fields are derived after substi-
tuting up and w; from equation (5.14) into equations (5.10) and (5.11), taking the
Hermitian product with mode u9, and doing some additional algebra. For the pri-
mary field, the coefficients ¢,(x) are determined from the same evolution equation as
for the unperturbed deterministic model of chapter 4.

(90
‘o ZBchr (5.15)
Substituting the primary and scatter wavefields from equation (5.14) into equation

(5.11).

i ;hn [E sq(xz) exp (z/o k"(€) df) t"(z; )

(5.16)

r )
It is assumed that each summation series in equation (5.16) uniformly converges
to a generally complex function. This allows the the order of summation and differ-

entiation to be interchangeable. Also, let exp(i¢”(z)) = exp (i fy k" (£) d€)

25 exp (307 0)) ' 9) + (e 5 e (6(@) w (i)
+ Zsr exp (i¢" (z)) ?_u_gglx_) = Ag) s, (x) exp (i¢" (z)) u'(z; z)
+ Alz e (z) exp (i (z)) u'(z; )

. 0
+ > hg

5.17
n Zsr exp (i¢" (z)) t'(z; z) 17

n
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The horizontal derivative of the exponential term can be expressed as:

& (exn(i6 (@) = 221 explio (&) = i () expli () (.13)

where the differentiation of a definite integral has been used:

O 5‘1—( exp (i [ £(6) df)) (5.19)

In addition, the local mode solution to the homogeneous equation can be applied,

where
k" (z)u (z5,2) = A (zy,2) (5.20)

where z; denotes some lateral x-coordinate point where the local modes u” have been
determined. The evolution equation for the amplitude coefficients of the scattered
field may be obtained by substituting equations (5.18) and(5.20) into equation (5.17),
taking the Hermitian product with mode u?, and simplifying with additional algebra:
Osq
P zr: Byrs, + ; H,c, (5.21)
The B, coupling matrix in the stochastic evolution equation (5.21) has the same
form as the unperturbed problem. The B, matrix essentially describes how much
on scattered mode u, goes into mode u,. The range dependent scattering coeflicients
s, are determined from the solution of equation (5.21). The scattered field mode
coupling coefficients from H,, give insight into the distribution of modal energy due
to scattering in the presence of heterogeneity and anisotropy. The expanded form of

the stochastic volume scattering matrix Hy, is located in Appendix G.

5.4 Stochastic Perturbation of Elastic Moduli

The form of the Hy, scattering matrix directly depends on the form of A,. Therefore,
the description of the heterogeneity of the elastic moduli directly affects the form that

the scattering matrix H,, takes. The H,, stochastic volume scattering matrix has
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been included into the coupled local formalism for a general anisotropic medium.
The expanded form of the Hy, matrix from Appendix G contains perturbed values of
the density and elastic moduli. The density and elastic constants within each layer
may exhibit both deterministic and stochastic volume heterogeneity, where material
properties are separated into two parts: an averaged deterministic function and a
small-scale stochastic function 7. It is assumed that 1 >> |y|. As in chapter 4, the

~ function is assumed to be a zero-mean stochastic process.

p(.’E,Z) = po($,2)+8p($,2)1
= po(z, 2) (1+€p(a¢,z)1)

Po(, 2)
= po(z,2)(1+e73) (5.22)

Cirij(z,2) = Cinj{w, 2)o + eCipij(z, 21

Cinii(z, Z)l)
= Cigs(m,2)o (1 + e Z0
(272 ( S nan

= Ciklj(xu Z)o(l -+ 8'7/4) (523)
1
oL =
i (7:2) Cikij(x, 2)o + €Cigj(x, 2)1
1

o Skl <71
Cirt; (2, 2)o (1 + ECikzj(iEa z)o)
1

Cikij(z,2)o(1 + €v4)

1
N ——(1—c¢ 5.24
Ciklj(xaz)o( 74) ( )

where the parameter ¢ is introduced for bookkeeping purposes to keep track of the

orders of perturbation, and Cjg; in this section represents a specific ikl 7t element
of the fourth order elastic stiffness tensor, rather the actual tensor itself. The terms
with the o subscripts are the reference values and the terms with the subscripts of 1
are the perturbation values.

The gammas in equations (5.22) and (5.23) are defined as:

. ,01(5[3,2)
Y2(z,2) = oo(2.2) (5.25)
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Cirij(z, 2)1

74(9372) = Ciklj(zaz)o

(5.26)

Deterministic and Stochastic Characteristics of the Density and
Elastic Moduli

(@)Y or ("CY, (%))

Figure 5.3: A schematic to demonstrate the deterministic and stochastic nature of the
density and elastic moduli. The deterministic features are assumed to be smooth and
continuous in the x-direction. The stochastic portion is a small-scale perturbation,
where 1 >> |v]

Another linear perturbation approach can also be applied to the elastic moduli,

which are a function of density and velocity.
Cii(2,2) = pla,2)V?(z,2) (5.27)

The velocity may be perturbed similarly to p and Cjy; in equations (5.22) and
(5.23).

Viz,z) = V,(z,z)+eVi(z,z2)
= V,(z,=2) (1 + E%—%—’Z—;)
= Vo(z,2)(1 + evys(z, 2)) (5.28)
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where the gamma in equation (5.28) is defined as:

(o.2) =

(5.29)

Substituting the definitions of p and V into equation (5.27) and only keeping pertur-

bation terms of order 0 and ¢

Cinii(z,2) = polz,2)(Vo(z, )1 + e(ya(z, 2) + 275(2, 2))) (5.30)
= pola, 2)(Volg, 2))°(1 + enalz, 2))
= Cij(2, 2)o(1 + ema(z, 2)) (5.31)

where 74(x,2) = (1a(z, 2) + 2v5(z,2)) and Ciyi(z, 2)e = polz, 2)(Vo(z, 2))?. This
results in the same perturbation equation as equation (5.23).

The elastic parameters are therefore perturbed following the general description
found in equation (5.31). The anisotropy is assumed to have transversely isotropic
elastic symmetry, where the five elastic constants A,C,F,L,N describe the medium.
All of the elastic parameters for all of the layers are described as having the same
random statistics of vy(z, z), where |y(z, 2z)| << 1. The five parameters along with
the symmetry axis orientation § determine the values of the elastic stiffness matrix
Cirij(%, z), and the perturbed stochastic elastic stiffness matrix Cigj(z, 2);. For TI

elastic symmetry, the five elastic moduli are then:

Alz,z) = Az, z)o(1 + &y

) = Az, 2)o )
Clz,z) = C(z,2)o(1 +&7)
F(z,z) = F(z,2)o(1 + &)

L(z,z) = L(z, 2)o(1 + &%)
Nz, z) = N(z,z)o(1 + &7) (5.32)

For the medium to be physically reasonable, the elastic moduli must obey some

restrictions, the elastic parameters A, C, F, L, N cannot just have any arbitrary value.
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A structure with transverse isotropic elastic symmetry follows the following restric-

tions from Odom et. al. (1996):

Q2 Q &~ Q
AV AV A\ A Y
Wik Ny @ ©

v
2
Y
<o

C(A~ N)
(A—L)(C - L)

v

v

F

)

(F + L)? (5.33)

To ensure the physical reasonableness of the five independent elastic parameters,

the restrictions of equation (5.33) are enforced. Substituting the perturbed elastic

moduli from equation(5.32) into the transverse isotropic elastic symmetry restrictions,

and simplifying gives.

Co

Lo

Co

Ny

Co

Ao

Co(Ay — Np)

(Ao — Lo)(Co — Lo)

1+4ey

vV IV IV IV IV VIV

v

(Fo -+ L0)2
0 (5.34)

Because of the linear nature of the elastic moduli perturbations, and the assump-

tion that all the elastic moduli have the same stochastic dependence, the restrictions
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are the same form as equation (5.33) with an additional restriction on ¥(z, z). The
last restriction is already ensured by the previous assumption that 1 >> |y|. The

perturbed elastic moduli can now be determined.

YQiy ~ (YCij)o(L+e7) = (“Car)o(1 +7)(PCri)o(1 ~ €7)
X (“Cij)o(1 +€7)
~ (YCiy —YCaC T 1"Cii)o(1 — £79)
~ (YQu)o(1+€7) (5.35)
YOGt = (YO).(1+em) (5.36)
YCRMCy; = (YOl —e7)(VChy)o(1 +67) (5.37)
~ ("C7"C), (5.38)
YCu"Ch' = (“Ca)o(l+e7)("CT)o(1 — £7) (5.39)
~ (YCiu®Cro (5.40)

5.5 Stochastic Volume Coupling Matrices

The coupled local mode theory with stochastic volume terms is applied to a gen-
eral 2-D range-dependent and laterally heterogeneous medium, as shown in Figure
4.1. The local modes are determined from a plane-layered medium that is the lo-
cal equivalent of the range dependent medium. The medium is assumed to have a
known deterministic structure, where the variations can be large. A 1-D profile is
developed at a defined lateral positions (e.g. z,), and is the local equivalent of the
range-dependent medium. Examples of the modes are presented in chapter 2 of this

dissertation.
The Hy, stochastic volume scattering matrix is based on the normalized local

modes, without any specific source excitation. The Hg, matrix describes how much

of coherent mode u, goes into the scattered mode u,.
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H,, Stochastic Interface Term Scattering Matrix for P-SV and SH
Modes

Har interface matrx s{6,9)=8{00.XX) £=200Hz Har Inferface malrix s(6,81=3{00,)0() £=30.0Hz

(a) Frequency=20.0Hz (b) Frequency=30.0Hz

Har interface marix s(8,4)=s(00,XX) [=40.0Hz Har intertace matrix 5(8.9)=8(00,XX} $=50.0Hz

(¢) Frequency=40.0Hz (d) Frequency=50.0Hz

Figure 5.4: H,, stochastic interface terms for P-SV and SH modes at 20.0Hz-50.0Hz.
The strongest scattering occurs for coherent modes u, coupling into their scattered
mode counterpart u, where ¢ = r. Strong coupling also occurs between the coherent
P-SV modes and the scattered P-SV modes. The coherent SH modes experience the
weakest scattering
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H,, Stochastic Interface Term Scattering Matrix for quasi-P-SV,
quasi-SH and P-SV-SH modes

(a) Frequency=20.0Hz (b) Frequency=30.0Hz

Hgr mierface malnx s(6.0}=9(10,20) {=50.0Hz

Har interfece matrix s(3,6)=8(10.20) f=40.0Hz

Made r

2 3 45 8 7 8 9 1011 12 13 14 15
Modea

(¢} Frequency=40.0Hz (d) Frequency=>50.0Hz

Figure 5.5: Hy, stochastic interface terms for quasi-P-SV, quasi-SH, and P-SV-SH
modes at 20.0Hz-50.0Hz. The tilting of the symmetry axis allows coherent quasi-SH
modes to couple into scattered quasi-P-SV modes. The coherent quasi-SH modes
experience the weakest scattering, similar to the VTI case where the SH coherent
modes experience the weakest scattering.
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H,, Stochastic Volume Term Scattering Matrix for P-SV and SH

modes

Har integral matrix s(8,0)=3(00.XX) $=20.0Hz Har integral matrix s{8,4}=8(00,XX) 1=30.0Hz

(a) Frequency=20.0Hz (b) Frequency=30.0Hz

Har Inlagral matnx 5(8.6)=s(00,XX) $=40.0Hz Har integrad matiix s{8.9}=5(00,XX} {=80.0Hz

NS : X ) »
N NN L

14N

Made

R R S SR )
s - G 7

] 1 2 3 4 5 8 7 8 9 10 1 12 01 2 3 4 5 5 7‘ 8 9 10‘ ki 72 13 14 \1\5
Made a Mode a
(¢) Frequency=40.0Hz (d) Frequency=>50.0Hz

Figure 5.6: H,, stochastic volume scattering coupling matrices for P-SV and SH
modes at 20.0Hz-50.0Hz.
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H,, Stochastic Interface Term Scattering Matrix for quasi-P-SV,
quasi-SH and P-SV-SH modes

Har integral matrix s

(a) Frequency=20.0Hz (b) Frequency=30.0Hz

Hay integral maleix. (8.6)=8(10.20} {=40.0Hz Har integral matrix 5(3,9)=9(15.20) {=50.0Hz

2 3 4 5 6 7 8 8 10 1 2
Mode o

(¢) Frequency=40.0Hz (d) Frequency=50.0Hz

Figure 5.7: H, stochastic volume scattering matrices for quasi-P-SV, quasi-SH, and
P-SV-SH modes at 20.0Hz-50.0Hz. The coherent quasi-SH modes experience the
weakest scattering, except when coherent quasi-SH modes u, coupling into their
scattered mode counterpart u, where ¢ = r. The strongest coupling occurs between
coherent quasi-P-SV modes and scattered quasi-P-SV modes.
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5.6 Chapter Summary

The inclusion of deterministic and stochastic scattering into the local coupled formal-
ism provides an improvement in the forward problem of wave propagation in complex
fluid-elastic media. The modal approach to wave propagation has the advantage of
being formally exact, as well as giving physical insight into the physics of propagation.
By utilizing perturbation theory to the coupled local mode formalism, a new scat-
tering coupling matrix H,, is derived which describes how much energy of coherent
mode u, is redistributed into scattered mode u,.

Lateral material heterogeneity and anisotropy allow for effective redistribution of
energy. Energy can transfer between modes by deterministic variations and random,
or stochastic variations. Perturbations in the elastic moduli and density contribute
to elastic wave scattering, leading to apparent energy loss and complex waveforms or
loss of signal coherence

The two key and distinguishing features of this research are the treatment of the
bottom and subbottom as elastic solids, and the representation of the ocean acoustic
signal as a superposition of modes. It is into this framework that the effects of rough
surface scattering, anisotropy, and volume scattering are incorporated. Through
theoretical and numerical work, the seismo-acoustic wave propagation is modeled in
a realistic shallow water environment where anisotropy, gradients, discontinuities and

random heterogeneities may occur.
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Chapter 6

T-WAVE EXCITATION AND COUPLED LOCAL MODES

Portions of this chapter have been previously published by Park et. al. (2001), in
particular the introductory section of chapter 6, section 6.1 and parts of the chapter
summary. A T-wave can be loosely defined as an almost horizontally propagating
acoustic signal in which part or all of the propagation path is within the oceanic wa-
ter column. T-waves are often the dominant signal in ocean acoustic records. These
acoustic signals may be detected by hydrophones, or seismic stations along islands
or coastlines. The coda are complex without any clear onset and the signal involves
a significant amount of ringing. A 7T-wave may have a frequency range from 1Hz
to 30Hz, where periods higher than 2 seconds are not observed. T-waves may be
generated by earthquakes, underground or underwater explosions, submarine volcan-
ism, or other marine and submarine sources. T-waves typically propagate at very
low phase velocity, often exhibit generally weak dispersion, and correspond to sound
waves trapped in the oceanic low velocity water layer, known as the SOFAR channel.
At frequencies somewhat above the cut-off frequency for a given mode, the dispersion
curves become asymptotically flat. This common characteristic of modal propagation
accounts for the observed weak T-wave dispersion over quite a broad frequency range,
since the T-wave itself comprises only a few low order modes. Since the attenuation
of sea water is very low and the waveguide exhibits quasi-cylindrical spreading (Fox
& Dziak, 1999), the energy can travel very long distances with low transmission loss.
T-waves produced by even very small earthquakes (i.e. too small to be detected
by land based seismic arrays) are detectable with ocean bottom hydrophones. T-

waves are relevant to a broad range of geophysical studies as recently summarized by
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Okal (2001). The detection of submarine volcanism, earthquake source tomography
of abyssal plane events, relevance to tsunami generation, Comprehensive Test Ban
Treaty verification and even thermal tomography of the oceans are mentioned.

T-waves have been observed for around 50 years, yet the mechanism for gen-
erating T-waves at the seafloor has not been thoroughly understood. Ray theory
indicates that crustal seismic energy crossing the seafloor interface into the overlying
water column experiences severe refraction toward vertical due to the large velocity
contrasts between the water column and the seafloor bottom/subbottom. Several
mechanisms have been proposed to explain how energy can propagate horizontally
and become trapped in the oceanic sound channel: i) down-continental-slope con-
version (Tolstoy and Ewing, 1950) and recently examined by Sperry et al. (1996),
ii) Stoneley wave coupling (Biot, 1952), iii) sea-ice scattering (Keenan and Merriam,
1991), iv) seafloor-seasurface reflection scattering (Johnson et. al., 1967), and v)
seafloor roughness scattering (Fox ef. al., 1994). None of these mechanisms has yet
been distinguished as the primary mode by which seismic energy becomes acoustic
energy in the sound channel (Slack, et. al., 1999).

That oceanic T-waves arise from the seismic waves scattered by a rough sea bot-
tom was given support recently by de Groot-Hedlin and Orcutt (1999), who were
able to reproduce realistic 7T-wave coda from several low-order acoustic modes ex-
cited by point sources distributed over the sea floor. Assuming the excitation to be
proportional to the acoustic modal amplitude at the point where the exponential
tail contacted the bottom, they synthesized T-wave signal envelopes, which showed
good agreement with the measured envelopes. They suggest that the remaining dis-
crepancies between the modeled and measured energy envelopes arise from coarse
bathymetry, mode coupling and radiation pattern effects.

The excitation of such modes is addressed, where the most important feature of the
modal representation is the mutual orthogonality of the modes, making it impossible

to transfer energy from one mode to another if the earth were truly a layered semi-
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infinite half-space or a radially symmetric sphere. The physical mechanism for 7-wave
generation requires something that breaks the strict modal orthogonality.

In this chapter, a coupled-mode based scattering theory (Park and Odom, 1999)
and summarized in chapter 4 of this dissertation is applied to the excitation of the
T-waves within the earthquake epicentral region. The modal scattering theory is a
stochastic extension of Maupin’s (1988) exact 2-D coupled mode theory, in which the
medium is characterized by some deterministic range-dependent layered structure su-
perposed with a random boundary fluctuation of strength €. The actual wavenumber
spectrum of the bathymetry is known to be a red power law (Fox and Hayes, 1985).
However, this will have no significant effect on the main conclusions of this chap-
ter. The modal scattering theory yields a stochastic correction d,, which satisfies the

evolution equation:

%%1 = Byd + > Secr (6.1)

T T

where ¢, and d,, are the modal weighting coefficients of an incident wave and scat-
tered waves, respectively and Sy, is the scattering matrix. Equation (6.1) is the same
as equation (4.10) of chapter 4.

The coupling matrix B, accounts for energy redistribution among modes of the
scattered waves due to a range-dependent reference structure, and the scattering
matrix Sg accounts for energy scattered from an incident wave interacting with the
heterogeneous layer boundary.

Note that the matrix S, accounts for contributions from both random interface
roughness and deterministic non-planar interfaces, i.e. sloping interfaces. Scattering
from one mode to other modes will occur for: i) the case of plane layers with random
boundary roughness, ii) the case of smooth, but non-planar layer boundaries, and iii)
for the case of non-planar boundaries that are also rough. The contribution from non-

planar boundaries is directly proportional to the boundary slope, which supports the
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observation that T-wave excitation is more efficient for steeper slopes (e.g. Talandier

and Okal, 1998).

6.1 Coupled-Mode Scattering Theory and T-wave excitation

The earth model for the excitation of 7T-waves consists of an overlying ocean, ocean
bottom sediments, ocean crust and upper mantle.

The model (Figure 6.1a) corresponds to the ocean-earth structure in the epicentral
region of a T-wave producing earthquake that occurred near the western tip of the
Blanco Transform Fault Zone (TFZ) in the North Pacific (Lat 44.710, Lon -130.310,
mb = 3.9, depth = 9 km). The ocean sound speed model comes from the Levitus
ocean sound speed database (Levitus and Boyer, 1994) for the 2.25 km deep ocean,
followed by a realistic ocean crustal model from 2.25 km - 4.3 km, and terminated
by PREM below 4.3 km.

The 1% acoustic mode (the first three plots in Figure 6.1a decays exponentially
in the water column and eventually becomes zero at depths well above that of even
shallow earthquakes. Mode 1 is essentially zero at the ocean bottom for 5 Hz. This
indicates that direct earthquake excitation of the lower order acoustic modes will
be very weak at best. Explosions in the water column or marine volcanic eruptions,
however, could possibly excite those lower order acoustic modes directly. The compu-
tations have been carried out for frequencies from 0.2 to 20 Hz, but the focus remains
on 5 Hz because it is at the approximate center of the T-wave band.

Using the mode code DISPERS0 (Saito, 1988), the initial wavefield excitation for
the earthquake described above has been computed using the Oregon State University
(OSU) moment tensor source solution. This yielded 185 seismo-acoustic modes at 5

Hz (Figure 6.2a), 75 at 2 Hz and 38 at 1 Hz.

The cut-off phase velocity has been set at 4.46 km/sec to exclude lower-mantle

modes. However it should be mentioned that for deeper earthquakes, contributions
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15t Acoustic Mode and Hybrid Crustal-Acoustic Mode
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Figure 6.1: (a) The 1% acoustic mode at 1, 2 and 5 Hz and the velocity profile.
Black and red lines in the mode function figures represent the vertical and horizontal
components of the particle displacement, respectively. Blue, red and black lines in
the profile represent the compressional wave speed, the shear wave speed and the
density, respectively. The horizontal compression of the graphics suppresses sound
speed detail in the water column. (b) Particle motion of the 32" mode, an example
of an ocean hybrid mode with characteristics of acoustic modes, ocean crustal modes
and often strong interface waves.

from the continuum spectrum corresponding to steeper rays become increasingly im-
portant, and only the discrete spectrum in treated this chapter. At 5 Hz, modes 0-19
are the fundamental Stoneley (mode 0) and the propagating acoustic modes. The 40™
and higher modes are crustal and upper-mantle modes. Modes 20-39, hybrid modes

with characteristics of acoustic modes, ocean crustal modes and interface waves, have
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Initial Wave Excitation by Earthquakes: Source Depth

4 4728

Ampitude (ostugl)
Armpitude (aoshul)

(a) Source depth = 9 km (b) Source depth = 80 km

Figure 6.2: The initial seismo-acoustic wavefield at 5 Hz produced by a Blanco TFZ
earthquake at two different source depth positions. (a) An initial excitation by a 9
km depth earthquake. Ocean hybrid modes, approximately 39 modes from mode 19
to mode 58, are strongly excited by the earthquake. Red and blue colors represent the
vertical components of the particle displacement in the earth and the water column,
respectively. (b) The initial excitation by a 80 km depth earthquake. A large number
of crustal and upper mantle modes, starting with mode 60 are excited.

relatively large amplitudes in the ocean crust as well as significant water-borne com-
ponents and often strong interface components at the water-bottom boundary. Figure
6.1b shows the particle displacement components of the 32" mode at 5 Hz, a good
example of the ocean hybrid modes with the characteristic large amplitude anti-node

at the water-bottom boundary.
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Approximately 39 modes from mode 19 to mode 58, mostly oceanic hybrid modes,
are strongly excited by the earthquake. There is essentially no energy in the funda-
mental Stoneley or the propagating acoustic modes as they have vanishingly small
amplitudes at a depth of 9 km (Figure 6.2a). The initial source excitation has also
been computed using the same source solution, but for a source depth of 80 km
(Figure 6.2b). The 80 km source depth is fairly extreme for T-wave producing earth-
quakes, because a source at that depth excites even higher order modes than the
shallower source. The continuum spectrum (steeply arriving rays) will become more
important. Mode numbers less than about 59 are not excited at all because the source
is far below the exponential tail of those lower order modes, making direct T-wave
excitation essentially impossible for such a deep earthquake. The modes have been
truncated above their turning depths for plotting purposes only.

As a result of interactions with a sloping and/or rough sea bottom, energy is
transferred from the higher order modes to the Stoneley fundamental and to the
lower order acoustic modes that have some significant amplitude at the water-bottom
interface. This is shown in Figures 6.3a (9 km depth), and 6.3b (80 km depth).

The absolute value of the z displacement component of the quantity may be

plotted
u, = dgul® = (3 84 ) ul?, (6.2)

where u, is the stress-displacement vector of the ¢** scattered mode. This is just the
spatially local excitation at one point, and in fact must be multiplied by the bottom
slope or a random bathymetry function, and integrated over the bottom to compute
the actual excitation. However, the actual T-wave excitation will be proportional to
the quantity shown in Figure 6.3. The energy from the initial earthquake source has
been down-scattered to lower order modes which cannot be excited directly by the
earthquake. The Stoneley wave fundamental (mode 0) is excited because it has an

anti-node near the water-bottom interface. However, the fundamental mode has been
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T-Wave Excitation by Seabottom-Scattering
(Without Fundamental Stoneley mode)

D TO0N2EE

Ly dvet=y

Ampitude (absiug)
Arplitude (abstugl

(a) Source depth = 9 km (b) Source depth = 80 km

Figure 6.3: T-wave excitation by seabottom-scattering at 5 Hz. (a) The scattered
wavefield from the 9 km deep source produced by lateral heterogeneities and fine-scale
irregularities of bathymetry and upper ocean crust. Energy has been down-converted

from the higher order modes by interaction with the heterogeneity. (b) Same as (a),
but for an 80 km deep source.

removed from the plot to emphasize the excitation of the acoustic modes. Notice that
even for the deeper 80 km earthquake, energy is being scattered into acoustic modes
of order less than 10. Energy scattered into the Stoneley mode (mode 0), is available
for re-scattering to other low order modes. Figure 6.3 represents a very significant
result for the excitation of T-waves.

Figure 6.4 illustrates the effect of fault type on the initial source excitation at

9 km depth, showing the horizontal component of the particle displacement for a
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normal fault (6.4a), from a Gorda Rise earthquake, and for a strike-slip fault (6.4b)
from a Blanco TFZ earthquake. The source was normalized so that the strike-slip

and normal fault sources have the same magnitude.

Initial Wave Excitation by Earthquakes: Fauit types

N
N

Amplitude (absugl)
Acpitude (absiugl)

(a) Normal Fault (b) Strike Slip Fault

Figure 6.4: An initial seismo-acoustic wavefield at 5 Hz produced by a Blanco TFZ
earthquake for two different fault types. (a) A normal fault earthquake. (b) A strike-
slip fault earthquake. The results clearly indicate sensitivity to source type.

The normalized modal amplitudes for the strike-slip fault are much larger than for
the normal fault. It is well known that Rayleigh wave excitation amplitude shows very
strong dependence on source depth, frequency and source type (Aki & Richards, 1980,
p.318), and the acoustic/ocean crustal modes are just generalized Rayleigh waves.

Since the T-wave excitation is ultimately proportional to the initial source excitation,
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this strong dependence on fault type should be reflected in the 7-wave data, which
indeed seems to be borne out by observation of 179 North Pacific earthquakes recorded

on SOSUS arrays from 1992 to 1998 (R. Dziak, 2001).

6.2 Fault Type Events, Continuum Modes, and Sediment Cover Effects

on T-wave Generation

The moment tensor source from the Blanco Transform Fault Zone (TFZ) earthquake
event used in section 6.1 is rotated to represent specific fault type events. The three
specific fault types used for comparison are a vertical normal fault, a 45° normal

dip-slip fault, and a vertical strike-slip fault, as shown in Figure 6.5.

Seismic Fault Type Events

Fault Type Diagram

Vertical Normal Fault 45° Normal Dipslip Fault Vertical Strikeslip Fault

Fault

¢ = strike angle

Side View Side View Top View Top View

Figure 6.5: The three specific fault type events considered are a vertical normal fault,
a 45° normal dip-slip fault, and a vertical strike-slip fault. A coordinate transforma-
tion rotates the TFZ earthquake event moment tensor source, allowing all three fault
type events have the same moment magnitude.

The excitation of lower order acoustic modes from a seismic source has a strong de-
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pendence on the strike angle (¢). The strike angle shown in Figure 6.5 is an azimuthal
angle in the horizontal plane and measured clockwise from north (x-direction). Ra-
diation pattern effects on T-wave generation from the three fault events in Figure
6.5 are considered. The excitation of the relative modal energy for the initial and
scattered wavefields are a function of the strike angle. Figure 6.6 reveals the strong

dependence on the strike angle.

Strike Angle Dependence
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Figure 6.6: The figures show the energy sum for the excitation modes as a function
of strike angle. The modal energy is for a 9%km deep source. The black, blue and
red lines represent normal, dip-slip, and strike-slip faults respectively. Fault type
profoundly affects the degree of excitation of acoustic energy along the seabottom.
Vertical normal faulting produces a much smaller scattered wavefield than other fault

orientations.

The normal fault in Figure 6.6 excites a strong initial wavefield, but is ineflicient
at contributing to the lower modes of the scattered wavefield. Low order 7T-wave
contributing modes are not directly excited by seismic sources , but are excited by

scattering from heterogeneities at and near the seafloor boundary. It is therefore



109

likely that the normal fault excites modes with small displacement and tractions near
and along the seabottom boundary. Large amplitude displacements and tractions in
the x-direction are necessary to transmit energy into the horizontally propagating
lower modes, since the scattered wavefield is dependent upon these x-direction eigen-
functions. Any mode without significant amplitudes along the seabottom boundary,
will be less sensitive to scattering effects due to deterministic or stochastic hetero-
geneities along the seabottom. This appears to be the case for the normal fault type
event. Both the strike-slip and normal dip-slip faults type events excite scattered
modes with more significant displacements and tractions along the seafloor bound-
ary. The stochastic scattering matrix S, used in Figure 6.6(b) incorporates both
a rough boundary terms and a sloping boundary of 5°. The sloping boundary and
rough boundary effects can be considered separately since they contribute as separate
terms to the modal scattering theory (see equations (4.13) and (4.14)).

Figure 6.7 shows the modal energy sums for both the rough interface terms and
the deterministic bathymetry term for the first few acoustic scattered modes. The two
terms are of similar magnitude and clearly of equivalent significance in the excitation
of the scattered modes. The B, terms can be interpreted as a downslope conversion
mechanism, and the S, terms can be interpreted as a rough boundary scattering
mechanism for 7-wave generation. It is likely that both term are responsible for
transferring energy into the SOFAR channel. However, there may be regions where
one mechanism may dominate over the other. For example, downslope conversion
may dominate on continental margins and rough seafloor scattering my dominate in
abyssal plain regions. The modal representation provides a convenient formalism in
which to incorporate both effects into the scattered wavefield.

Note that from Figure 6.6(a) it is observed that the vertical normal, the 45° normal
dip-slip, and vertical strike-slip faults contribute approximately the same amount of
energy to the initial source wavefield when the strike angle is approximately 45°.

Figure 6.8 shows the modes which contribute to the initial and scattered wavefields
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Downslope Conversion and Scattering Comparison
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Figure 6.7: The effects of downslope conversion and scattering can be compared by
considering the terms separately for the first few modes of the scattered wavefield.
The black lines represent the energy of the first 7 acoustic modes for a sloping bound-
ary, which have slopes varying from 1° — 5°. The red line represents a rough planar
boundary with no slope. The energy of the rough boundary scattered wavefield is
comparable to that of the sloping boundaries. The modes are from the model in
Figure 6.1 and calculated at a frequency of 5.0Hz

at the 45° strike angle ¢. The normal fault type event has the largest initial wavefield,
but the initial modes experience weak conversion to the low order scattered modes.
The normal fault type event has the weakest scattered field of all three fault type
events. The strike-slip fault type event has the smallest initial field, but the initial
modes experience the strongest conversion to the low order scattered modes. The
strike-slip event type is efficient at scattering energy into the SOFAR channel in the

presence of any lateral heterogeneity. The dip-slip event type is more efficient than
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the normal fault type, but less efficient than the strike-slip fault type. This is a result
that should be directly observable in T-wave data. The strike-slip source and the
normal dip-slip source excite a similar set of seismic source modes. The normal fault
source modes have noticeable different characteristics, with smaller values along the
seabottom boundary. The normal fault source appears to excite a narrower band of
modes than the other fault orientations. The energy available to the initial seismo-
acoustic wavefield may be increased simply by rotating the moment tensor, where
the excitation of any mode basis is sensitive to the fault type event.

At shallow source depths, the discrete modes contribute to the majority of the
T-wave excitation. The continuum spectrum, however, becomes increasingly more
important at greater source depths. The lower order modes may still contribute sig-
nificantly to the T-wave generation for deep sources, but the continuum spectrum
contribution cannot be neglected. Deep earthquake sources do not create a large
initial seismo-acoustic wavefield, and the wavefield is more dependent upon the con-
tinuum spectrum (Figure 6.3). A locked mode approach is used to expand the discrete
modes to include the continuum modes as source depth increases.

Figure 6.9 demonstrates the relationships between the modal wavefield as a func-
tion of mode number, phase velocity, and angle of incidence. For the 9km source a
small number of the total number of modes are responsible for the majority of the
wavefield. The wavefield for the 80km source clearly has not saturated yet, and is
therefore more reliant upon the continuum spectrum. The wavefield is not entirely
accounted for by employing the discrete modes only, since the discrete coupled lo-
cal mode representation of the wavefield does not encompass all equivalent angles of
incidence. The locked mode approach is not the most effective method of dealing
with the continuum for large depths because of the large number of discrete modes
involved.

Sediment on the seafloor enhances the efficiency of T-wave generation. Deep

sediment cover over the seafloor appears to enhance the direct excitation of the initial



112

Initial Wave Excitation
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Figure 6.8: Figures (a), (b), and (c) show the initial x-displacement for dip-slip,
normal, and strike-slip fault type events respectively. The amplitudes of the modes
for each fault type correspond well with the energies of Figure 6.6 for a strike angle of
45°. Figures (d), (e), and (f) show the scattered z-displacements for dip-slip, normal,
and strike-glip fault type events respectively. Note that the strike-slip event is the
most efficient at scattering energy into the low order acoustic modes.

seismo-acoustic wavefield, as well as the resulting scattered wavefield. Figure 6.10
shows the initial and scattered wavefields for the non-sediment model used in section

6.1 and the sediment model. The sediment mode] is the same as the original model,
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Figure 6.9: The relative energy contribution of the discrete modes are considered for
a 9km source and 80km source in figures (a) and (b) respectively. A small number of
low order modes contribute to the majority of the energy for the shallow 9km source.
The energy sum for the 80km source does not level out, and the continuum modes
are increasingly important as the source depth become greater. The initial wavefield
was calculated using the original (non-rotated) Blanco TFZ earthquake event at a
frequency of 50.0Hz.

with the addition of deep low shear speed sediment layers. The initial field from the
original model indicates that the first 20 modes do not hold any significant amount
of energy to contribute to 7-wave signals. For the sediment model, the first 30 low
order modes are not directly excited. However, the initial wavefield for the sediment
model does have more energy which can cascade down to lower order modes through
deterministic and stochastic scattering. The low speed sediment layers of the sediment
model produce modes that have strong x-displacements along and near the seafloor

boundary in the underlying sediments. The combination of low shear speed sediments
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and lateral heterogeneity will increase the excitation of low orders modes.
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Figure 6.10: Figures (a) and (b) show the initial wavefield for the original Blanco
TFZ earthquake event for a model without and with sediment cover respectively.
Figures (c) and (d) show the scattered wavefield for the same models used in figures
(a) and (b) respectively. The sediment cover enhances the scattering of modal energy
into the low order acoustic modes, and will enhance T-wave excitation.

Figure 6.11 shows the scattered fields resulting from stochastic volume pertur-

bations and stochastic interface roughness. Only the interface terms of H, (which
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come from integrating the volume integral by parts) are compared to S, .

H, Stochastic Interface Term Scattering Matrix
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Figure 6.11: The H,, and S, stochastic interface scattering matrices are compared
for a tilted symmetry axis. A small amount of TT anisotropy was introduce into the
first elastic layer of the velocity/density profile shown in Figure 6.1. Figures (a),
(b), and (c) show the x, y, and z-displacement for the scattered field due to the Hy,
matrix respectively. Figures (c), (d), and (e) show the same for the S, matrix. The
results are very similar. Both random rough interface terms and stochastic volume

perturbations can contribute to the excitation of T-waves.
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The elastic treatment of the sediment and oceanic crust is crucial to obtaining
T-wave excitation. The shear velocity in the model is responsible for the conversion
of seismic energy into horizontally propagating acoustic energy. When shear motion
is turned off for the model, by setting the shear velocity to zero, no energy is scattered
into the low order acoustic modes. This makes the importance of shear motion to

T-wave generation very clear.

6.3 Chapter Summary

A modal representation of the seismo-acoustic field provides a natural framework
for modeling T-waves, and brings clarity to well known features of T-waves such
as generally weak dispersion and the concentration of the energy near the SOFAR
channel axis. The T-waves comprise just a few of the lowest order acoustic modes.
Once one moves to frequencies just a short distance above the modal cut-off frequency,
the dispersion curves for these low order acoustic modes are virtually flat. This means
that even a broadband signal will be only very weakly dispersive. The concentration
of energy near the SOFAR channel axis is obvious from Figure 6.1a. Higher order
modes of course fill more of the channel, but the energy carried by the low order
modes is still concentrated near the axis.

Because of mode orthogonality, T-waves would not exist if the earth was a laterally
homogeneous plane-layered half-space or radially symmetric sphere. There is no way
to directly excite low order propagating acoustic modes with a source placed well
below the exponential tail, or ray equivalent turning point of the modes.

T-waves are excited by down-conversion modal scattering due to bathymetric ir-
regularities and upper ocean crustal heterogeneities, with a large amplitude modal
anti-node at the water-bottom boundary playing a significant role. Essentially any
mechanism that breaks the strict mode orthogonality of the 1-D medium will scat-

ter energy that can be interpreted as mode coupling. The modal scattering theory
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(Park and Odom, 1999) explicitly includes the effects of random roughness as well
as non-planar bathymetry. The presence of both features will increase the scatter-
ing, and therefore the strength of the T-wave. Steeply arriving rays corresponding
to high order modes have very large horizontal phase velocities, from which energy
can be relatively efficiently scattered into low order modes corresponding to nearly
horizontally propagating rays. These low order modes propagate with the observed
low group velocities and weak dispersion.

One benefit of the modal representation of an acoustic wavefield is that the low
order modes are already propagating horizontally. Once energy has been transferred
to the low order acoustic modes, it is able to propagate horizontally within the SOFAR
channel. If any of the lower modes are excited, then the energy will be almost
horizontally propagating by the nature of the modes. The modal basis allows the
energy to be transferred from initial seismic source modes into the modes composing
the T-wave. An advantage of being able to examine the physics of propagation on a
mode by mode basis is that is that it be easily determined if the lower order modes,
which compose the T-wave, are directly excited by a given source mechanism for a
given model and source depth.

Fault type profoundly affects the degree of excitation of acoustic energy along the
seabottom. Normal faulting events produces small scattered wavefields, producing
smaller T-wave excitation than strike-slip and dip-slip faulting events. Since, effects
of source characteristics appear to be reflected in the T-wave excitation, 7T-waves
may be useful for source type discrimination. In addition, any low velocity sediment
cover over the seafloor enhances the scattering of energy from higher order modes to
the lower order T-wave carrying modes.

The coupled-mode representation of the wavefield does not encompass all equiva-
lent angles of incidence. The continuum spectrum becomes a more significant portion
of the T-wave signal as source depth increases. Only the discrete modes have been

included, and deeper earthquakes require contributions from the continuum. While
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a significant amount of energy is accounted for with shallow sources, the continuum
spectrum becomes increasingly important at greater source depths.

The ability to model T-wave generation with the modal scattering theory is a
direct result of including elastic properties into the bottom/subbottom structure to
accurately model the excitation of the T-wave. The shear velocities and shear motion
play an important role in 7-wave generation. The modeling in this chapter has
included the effects of scattering in the epicentral region only, neglecting cumulative

propagation effects.
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Chapter 7

SUMMARY AND CONCLUSIONS

Marine sediments, while being almost ubiquitously anisotropic and laterally heteroge-
neous, support shear motion, and therefore must be treated elastically. One method
of treating the seafloor bottom and subbottom regions elastically is through a modal
representation of the seismo-acoustic signal. The equation of motion can be ex-
pressed as a first order coupled equation that is directly dependent upon the elastic
moduli. Therefore, the form of the elastic stiffness matrix, which describes any elastic
anisotropy, will directly affect the formulation of the equation of motion, the charac-
teristics of the modes, the frequency and angular dispersion curves, and the coupling
of coherent and scattered modes in range-dependent media.

The Bond transformation is used to rotate the elastic stiffness matrix *Cr; to an
arbitrary orientation. Analytical forms of the rotated elastic stiffness matrix, and its
sensitivity to angular rotations have been derived for TI elastic symmetry.

Whether the local modes propagate independently as P-SV and SH modes or
coalesce into a set of quasi-P-SV, quasi-SH, and generalized P-SV-SH modes greatly
affects the polarization of the propagating signal. An anisotropy medium may be
ignored and treated as an equivalent isotropic medium when the elastic stiffness
matrix is quasi-monoclinic or quasi-orthorhombic. These are instances where the P-
SV and SH particle motions propagate independently. For more general quasi-triclinic
forms of the elastic stiffness matrix (tilted TT medium), the modes are described as
quasi-P-SV, quasi-SH, and generalized P-SV-SH modes with particle motions in all
three Cartesian coordinate directions. The 3-D nature of the eigenfunctions cannot be

approximated by an equivalent isotropic material, therefore a full anisotropic elastic
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treatment of the problem is necessary. It is important to note that, the modal
formalism does not require all of the modes to be individually identified as pure
P-SV, pure SH, quasi P-SV, quasi SH or P-SV-SH. The only requirement is for all
of the modes which contribute to the seismo-acoustics signal to be included into the
modal superposition.

Seismo-acoustic signals can have a non-negligible portion of their energy in hori-
zontally polarized shear motion, when they experience significant bottom interaction
with elastic anisotropic marine sediments. Conversion of acoustic energy into hori-
zontally polarized shear motion can be expected at fiuid/solid boundaries, even in
the absence of any range-dependence. SH plane wave motion experiences approxi-
mately 2-3 times more attenuation than P-SV plane wave motion, or even larger in
low shear speed sediments. Therefore, horizontal shear motion can be be an impor-
tant loss mechanism for seismo-acoustic signals with significant seafloor interaction.
The signal will experience more energy loss due to attenuation in an anisotropic en-
vironment than an equivalent signal propagating in an isotropic model or only within
fluid layers. If anisotropy is present, but isotropy is assumed, then attenuation will
be underestimated.

The combination of lateral heterogeneity and anisotropy can be effective at scat-
tering a signal, and energy may become broadly redistributed among all of the prop-
agating modes. The rotation of the symmetry axis away from vertical (e.g. non-
horizontal bedding planes) will allow energy to be transferred between the modes,
even if lateral variation is weak. The redistribution of energy can lead to the loss
of signal coherence. With the introduction of even modest amounts of anisotropy,
it becomes possible for higher order modes to directly transfer energy into lower or-
der modes without cascading down through multiple nearest neighbor interactions.
Acoustic energy can leave the water column through bottom interacting modes. The
energy can then be attenuated by the low shear velocity sediments, and redistributed

to other predominantly sediment modes. In addition, energy from other sources or
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signals, such as noise, from the sediment and bottom layers can enter the water
column through these bottom interacting modes.

For 2-D wave propagation in an isotropic medium, any heterogeneity will only pro-
mote scattering to modes of the same wavetype. With the introduction of anisotropy,
heterogeneity may scatter energy into modes with displacements in all three coor-
dinate directions. For a medium with a quasi-triclinic form of the elastic stiffness
matrix all of the modes are excited regardless of source mode type, and all of the
modes are involved in coupling. The inclusion of deterministic and stochastic scatter-
ing into the local coupled formalism provides an improvement in the forward problem
of wave propagation in complex fluid-elastic media. By utilizing perturbation theory
to the coupled local mode formalism, a new scattering coupling matrix Hy, is derived
which describes how much energy of coherent mode u, is redistributed into scattered
mode u,. The coupling matrices By, S;, and Hy, indicate that the combination
of tilted anisotropy and lateral heterogeneity is efficient at scattering the seismo-
acoustic energy. Any lateral heterogeneity can cause the modes to couple, and the
coupling tends to become stronger as the phase velocities associated with the local
modes converge to similar values.

The solotone effects in both frequency and angular dispersion curves indicate the
modes that are sensitive and insensitive to anisotropy. The frequency and angular
dispersion curves give insight into the characteristics of specific modes. They indicate
which modes are sensitive to anisotropy, and which modes remain invariant to the
anisotropy and its symmetry axis orientation. A mode set divided into both sensitive
and invariant modes may account for why anisotropy is often successfully introduced
and modeled as a perturbation. Since not all of the modes are sensitive to the
anisotropic layers, the impact of the anisotropy is limited by contribution of the
sensitive modes, while the invariant modes still contribute an isotropic aspect to the
seismo-acoustic signal.

A generalized set of P-SV-SH modes is required to correctly model seismo-acoustic
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signals where tilted anisotropy is present. Since there no longer exists a clear distinc-
tion between pure P-SV and SH modes, all modes can carry energy for the seismo-
acoustic signal. The implication is that all of the modes are intricately coupled for
even weak anisotropy, and therefore more modes are available in anisotropic media
for the redistribution of energy.

A modal representation of the seismo-acoustic field provides a natural framework
for modeling T-waves excitation. An advantage of being able to examine the physics
of propagation on a mode by mode basis is that is that it be easily determined if the
lower order modes, which compose the T'-wave, are directly excited by a given source
mechanism for a given model and source depth. The T-waves comprise just a few of
the lowest order acoustic modes.

Without lateral heterogeneity, there is no way to excite low order propagating
acoustic modes with a source placed well below the exponential tail of the modes. T-
waves are excited by modal scattering due to bathymetric irregularities and/or upper
ocean crustal heterogeneities. The presence of both refraction from a sloping seafloor
and seafloor scattering will increase the scattering, and therefore the strength of the
T-wave. Once energy has been transferred to the low order acoustic modes, it is able
to propagate horizontally within the SOFAR channel.

Fault type is strongly correlated with 7T-wave excitation efficiency and greatly
affects the degree of excitation of acoustic energy along the seabottom. Normal
faulting events cause smaller T-wave excitation than strike-slip and dip-slip faulting
events. In addition, low velocity sediment cover enhances the scattering of energy
from higher order modes to the lower order 7-wave carrying modes.

The coupled-mode representation of the wavefield does not encompass all equiv-
alent angles of incidence. Only the discrete modes have been included, and deeper
earthquakes require contributions from the continuum. While a significant amount
of energy is accounted for with shallow sources, the continuum spectrum becomes

increasingly important at greater source depths.
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The ability to model T-wave generation with the modal scattering theory is a
direct result of including elastic properties into the bottom/subbottom structure to
accurately model the excitation of the T-wave. The shear velocities and shear mo-
tion play an important role in 7-wave generation The modeling in this chapter has
included the effects of scattering in the epicentral region only, neglecting cumulative
propagation effects.

Future work may include the implementation of the Riccati equation solver to
include propagation effects for the work presented in this dissertation. Attenuation
and coupling to the continuum spectrum have not been included in this dissertation
and could be pursued. The theory and numerical results of this dissertation have
been restricted to the 2-D wave propagation problem. Further work could be done
on extending the couple-mode formalism to the 3-D wave propagation problem. An
inverse problem could be developed and applied to experimental data for a shallow
water marine environment. The methods of coupled local modes could also be applied
to other anisotropic and laterally heterogeneous regions. Appropriate geophysical
applications would involve regions where the propagation of energy is confined to
a waveguide. Sea ice and lake ice could be added to the shallow water waveguide.
Surface waves and interface waves could be studied for crustal and crustal/mantle
regions. Interface waves that travel along the crustal/mantle boundary or the core
mantle boundary could also be considered. These regions of the earth are known to

have lateral heterogeneity and exhibit anisotropy.
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GLOSSARY

*: Complex conjugate

[quantity] : Jump across the n* interface discontinuity

A: Differential operator from the first order form of the equation of motion
A,C,F,L,N: Five elastic moduli for VTI medium in Love notation
B,: coupling matrix

aC =¢ Cys: Elastic stiffness matrix in abbreviated subscript notation
Ciij: Fourth order elastic stiffness tensor

wC: 9X9 matrix in Woodhouse notation

“Ci;i: 3X 3 submatrix in Woodhouse notation

¢,:  Modal amplitude coefficient for coherent mode

D,.: Stochastic interface coupling matrix

d,:  Modal amplitude coefficient for interface scattered mode

E,: Stochastic interface coupling matrix

F = F;: External force in first order form of the equation of motion
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gn: range-dependence of the elastic moduli for the n** layer
H,: Stochastic volume coupling matrix

hn: range-dependence of the n™ interface boundary

HTI: Tl medium with horizontal symmetry axis

k:  Wavenumber

MvY: Bond transform matrix for rotation about the y-axis.

M*: Bond transform matrix for rotation about the z-axis

@i;:  3X3 matrix of elastic moduli found in equation of motion
R = M¥YM?: Bond transform matrix for tilted TI medium

& Infinite fold symmetry axis of a TI medium

Sgr: Stochastic interface coupling matrix

s;:  Modal amplitude coefficient for volume scattered mode

t;:  Traction vector

TTI: Tl medium with tilted symmetry axis

u:  Displacement-stress vector

V:  Velocity associated with elastic stiffness tensor element Cjyy;

VTI: TI medium with vertical symmetry axis.
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w:  Displacement vector

X+ 3X3 matrix of elastic moduli defined in Appendix E
Y;;:  3X3 matrix of elastic moduli defined in Appendix E
Z;;»  3X3 matrix of elastic moduli defined in Appendix E |
agy: Horizontal compressional velocity

am, By, o, € n: Five elastic moduli for a VTT medium in Takeuchi and Saito notation
ay: Vertical compressional velocity

Br: Velocity of horizontally polarized shear wave

Bv: Velocity of vertically polarized shear wave

6: Elevation angle

p: Density

. Azimuthal angle

751 Stress tensor

w:  Angular frequency
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Appendix A

VTI ANISOTROPY PARAMETERIZATION

The elements of the elastic stiffness tensor, Cjy;;, can be parameterized in a number of
ways. Each parameterization results in the exact same elastic stiffness tensor. Love
notation (1944), Backus notation (1965) and Takeuchi and Saito notation (1972)
are each considered. The theory of Odom et. al. (1996) and Park et. al. (1998)
use the Love parameterization where the five independent elastic constants for a
VTI medium are expressed as the elastic moduli A,C, F, L, N. Both works relied
on the DISPER80 code which uses Takeuchi and Saito notation (1972), where the
five independent constants are expressed as velocities ay and By along with ratios
of the elastic moduli x, ¢,n7. The ANIPROP code of Park (1996) uses the modified
Backus notation (1965) where the five independent constants of a VIT medium are the
elastic moduli A, B,C, D, E. The relationships between the three parameterizations

are contained in Tables A.1-A.3

Table A.1: Love Notation

Love Notation | Backus Notation | Takeuchi and Saito Notation | Isotropy

A= A-B+C pay A+ 2p
C= A+B+C patd A+ 2u
F= A-3C~-2(D+FE) on(o? — 28%) A
L= D+E pBY It

N = D-FE pBYE 7
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Table A.1 shows A,C, F, L, N (Love, 1944) for a VTI medium described in terms
of ay, By, ¢,&,n (Takeuchi and Saito, 1972) and A, B,C, D, E (Backus, 1965). The

interpretation of the elastic moduli is found in section 2.1 of the main text.

The anisotropy describe by Takeuchi and Saito (1972) is parameterized by a hor-

izontal compressional velocity ag, a vertical shear velocity (v, a ratio of horizontal

and vertical compressional velocities ¢, a ratio of horizontal and vertical shear ve-

locities £, and a third anisotropic ratio 7. Table A.2 shows oy, By, ¢, £, n described
in terms of A,C,F,L, N, and A, B,C, D, E. Note that the ratio ¢ is not to be con-

fused with the azimuthal angle ¢ in the xy-plane describing the symmetry axis §

orientation.

Table A.2: Takeuchi and Saito Notation

Takeuchi and Saito Notation | Love Notation Backus Notation Isotropy
\/Z A-B+C A+ 2u
g = —
p p p
L D+E I
By = = -
p P P
N D-E
¢= i DB !
5o ¢ A+B+C 1
B A A-B+C
B F A-3C-2(D+E) .
7= A-2L |A-B+C-D-F

The previous works of Backus(1965), Crampin(1977), Shearer and Orcutt (1986)

relate the five constants A, B,C, D, E to the individual elastic stiffness tensor ele-

ments for a HTI medium, with a symmetry axis in the x-direction .

The values in
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Backus Notation Love Notation Takeuchi and Saito Notation [sotropy:
2 2(1 —
i- 3(A+C)+2(F + 2L) a3 (3(1 + ¢) + 2n) + 285 (1 — 1) A+ 20
8 8
B 4(C - A) 40%4 (¢ — 1) 0
2 8
oo A+C—2(F+2L) | o%(1+¢—2n) —465(1—n) 0
B 8 8
. L+N o (1+¢
D= 3
5 pBy ( 5 ) %
_ L-N 1-¢
E= ==
2 pBy ( 5 ) 0

Table A.3 are similar, except they describe the Cyy; elastic stiffness tensor for a VTI

medium. Table A.3 shows A, B,C, D, E for a VTI medium described in terms of

A,C,F,L,Nand aHaﬂVa¢7§7n'

Additional parameterizations of VTI media include the Thomsen parameteriza-

tion (1986) and the alternate parameterization of Romanowicz and Snieder(1988)

and Muyzert and Snieder(2000).
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Appendix B

ELASTIC STIFFNESS TENSOR AND MATRIX
NOTATION

The fourth order elastic stiffness tensor Cjy; has symmetries that allow the 21 in-
dependent elements to be expressed in more compact matrix notations. The elastic

stiffness tensor obeys the following symmetry:
Cirj = Crity = Cirji = Cljix-

which reduces the 81 components of Cjy; to at most 21 independent components.

The indices of the fourth order elastic stiffness tensor are iklj rather than the conven-
tional ijkl in order to facilitate the mapping between tensor notation and the matrix
notation of Woodhouse (1974). Woodhouse’s notation (1974) and abbreviated sub-
script notation (e.g. Auld, 1990) describe the exact same elastic parameters from the
elastic stiffness tensor Cjy;. However, the Woodhouse matrix and the abbreviated

subscript matrix are not equivalent.

C = Ciuy fourth order elastic stiffness tensor
°C = *°Cyy 6 x 6 abbreviated subscript elastic stiffness matrix
YC = ("Cij)u 9 x 9 Woodhouse elastic stiffness matrix
YCyi 3 x 3 Woodhouse submatrix

Lower case suffixes such as iklj have values that range from ¢, k,[,7 = 1,2,3. Upper
case suffixes such as I.J have values that range from 7, J = 1,2, 3,4, 5,6. The individ-
ual elements of the elastic stiffness tensor can be put into a matrix format by using an

abbreviated subscript notation, also known as Voigt notation (Nye, 1957) or matrix
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Table B.1: Abbreviated Subscript Notation

ikorljjIorJ
11 1

22 2

33 3

23,32 4

5

6

13,31
12,21

notation. Table A.1 below describes how to transfer between traditional fourth order
tensor notation and the abbreviated subscript notation for the individual elements of
Cirij and Ciy.

The four suffixes 2klj are replaced with two suffixes IJ. Considering the Woodhouse

elastic stiffness matrix first, which is composed of nine submatrices:

(“Cii)w (“Ci)m ("Cia)m
YC=("Cij)n=| (“Ca)ry (“Ca2)py (“Cas) (B.1)
("Cs1)m (“Ca2)u (YCaa)m

The 9 x 9 Woodhouse matrix is a symmetric matrix, and there are only six unique

submatrices, where:
T w w T
wC@'j = wc,;j = Cji = Cji (BQ)

The elements of the Woodhouse submatrices “C;; expressed in traditional fourth

order subscript notation, composing the 9 x 9 Woodhouse matrix:
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I

. Ci11s Crioz Chriss

i
Ci212 Crazz Chase : Ciz13 Ciaoz Cross

I

I

Cis13 Cisas Chass

C'21 13 C2123 CV2133

|
i
]
YC = C2211 C'2221 C2231 02212 02222 02232 : C2213 C'2223 C'2233 (B3)
|
[

C'23»'13 C’2323 02333

|
t
I
i
1
|
t
+
t
I
|
|
1
I
!
+
|
|
1
1
1

]
|
{
Csa12 Cszzz Csosa | Csms Cszes Closs
i
i

|
03311 C’3321 03331 ! 03312 03322 C3332 03313 C3323 C3333

The elements of the Woodhouse submatrices as expressed in abbreviated subscript

notation, composing the 9 x 9 Woodhouse matrix:

[ i Cis Cis | Cis Cra Cu | Cis G Cis |
Cﬁl 066 C’65 l: CGG 062 C(64 i CV65 CG4 063
Cs Cs Css 1 O G Con 1 O COsa Oy
061 066 C’65 : CGG 062 CG4 : C65 C64 063
YC = Cn Co U E Cop Con Cu ; Cos Cos Co (B.4)
' Ca Cu O 1 Cis Cp Cu 1 Cis Cu Cis
C'51 C156 C55 : C’56 C52 054 : C155 CEA CV53
Cu Cus Css E Cis Cao Cuy i Cis Cu Cus
| Cn Ca Cas 1 Cas Cp Cay 1 Css Cas Cag |

The above forms of the YC are valid for any triclinic anisotropic medium with 21 inde-
pendent constants, as well as for any medium with a higher degree of symmetry, such
as TIL Substituting the Love notation (1944) elastic constants into the Woodhouse

matrix for a TT elastically symmetric medium.
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(0°,0°) = 2
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For 5(8, ) = §(90°,90°) = ¢

A0 O0'O0FO!00H
0L 0! L0000 0
00N, 00O, NGO O
0 Lo !Loolooo
vC = FOOEOCO?OOF (B.7)
000 .00L . 0L O
0 oNlOOO !NOO.
000 !00L 1 0LO
| H0 0O /0 F 0,00 A

The 6 x6 abbreviated subscript matrix is also a symmetric matrix, with the possibility

of 21 unique and independent elements where:

aCI,] - aCIJT = D'CJ[ == aCJIT. (BS)

Any additional symmetry would reduce the number of independent elements. The
elements of the abbreviated subscript elastic stiffness matrix expressed in traditional

fourth order tensor notation for a general triclinic medium.

Cllll C'1122 01133 C’1123 01113 C’1112

Caoni Cogza Coozz Cozez Comiz Coaro
C C C C C C

aq o | o Casm Caszs Caps Gz oo (B.9)
Casi1 Chaze Cossz Cozes Chazis Cosia

C41311 01322 01333 01323 01313 01312
01211 C'1222 01233 C'1223 C1213 C’1212

The abbreviated subscript elastic stiffness matrix with the elements expressed in



abbreviated subscript notation.

Cu
Co1
Cs1
Cu
Cs
Co1

aC:

012
C'22
C32
C42
Csa
Ce2

Cis
Cos
Css
Cu3
Css
Cés

C'14
C24
CS4
044
CS4
Ces

Cis
Cos
Css
Cys
Css
Ces

Cie
Cos
Cse
Cus
Cse
Ces
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(B.10)

Consider a TI elastically symmetric medium as used in the main text of the paper.

The elastic moduli are expressed in Love notation (1944).

For 3(8, ) = §(0°,0°)

ac___

o o o Mo h>‘
o o o N o oI
o o o OO 9 4
e T e SR S e S e B et

z

For 5(8, p) = §(90°,0°) = &

Ne

F

F
GC:

0

0

0

o o o T o
o o © = oI

o O

o o O

o N o o o ©

o N o o o ©
2 o o o o ©

M~ © o o o o

where H = A — 2N

where H = A - 2N

(B.11)

(B.12)
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For (0, ¢) = 8(90°,90°) = §

A F H O 0 0
F C F 0 0 0
HF A0 00
°QC = where H = A — 2N (B.13)
0 0 0 L 0 O
0 0 0 0N O
0 0 0 0 0 L

The individual elements for a TT medium with an arbitrary symmetry axis $(6, ¢)
can be determined by equation (2.11) from the main text. The elements of *C will

be linear combinations of the elastic moduli A, C, F, L, N.
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Appendix C

BOND TRANSFORMATION OF TI SYMMETRIC
STRUCTURES

Any arbitrary tilt of a TI symmetric medium can be obtained by rotating through
the two angles § and . The Bond transformation matrices described by Auld(1990)

are found below.

2 2 2

Orp gy ay, 205y 0y, 20,055 202205y
2 2 2

Uy Gy Oy, 204y Oy, 20,0y, 2050y

a? a? a? 20,40, 2a,,0,, 20,404y

M= 2T zy 22
GOy OyylOzy Qyzlzy Qyylyy =+ Qyrlzy Oyzlzz + Ay zOzy Oy Qg + OyxQyy

(C.1)

Q205 OzyQry QpzOxy OpyQyy + OgzCay OgzOzy + QpzQyy Qg Uzy + Apylzy

| Oz Oyg QpyQyy QgpQyy OgyQyy + Oz Oyy gz Oyg + Qypglyy Qpgyy + Ugyly: |

The Bond transformation matrix M is composed of the elements form the general

transform matrix a.

Qzz Ogy Qgz

Uye Oyy Oyz (C2)
Qzx Qzy OQpz

The general transformation matrices for rotation about the y and z axes are a¥ and

a® respectively.

cosf 0 —sinf cose sing 0
a¥ = 0 1 0 a’=| —sing cosp 0 (C.3)
sinf 0 cos@ 0 0 1
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The corresponding Bond transformation matrices about the y and z axes are then

MY and M? respectively.

cos’f 0 sin*@ 0 —sin20 0
0 1 0 0 0 0
sin?§ 0 cos®# 0 sin20 0
MY = (C.4)
0 0 0 cos 6 0 sin 6
Isin20 0 —Zsin20 0 cos20 0
0 0 0 —sind 0 cosf |
cos’yp sin®p 0 0 0 sin2p |
sinp  cos?p 0O O 0 —sin 2¢p
0 0 0 0 0 0
M? = (C.5)
0 0 0 cosy —siny 0
0 0 0 siny cosy 0
| —%sin2¢ Zsin2¢ 0 0 0 cos2¢p |

Applying the Bond transformation to the elastic stiffness matrix *C to obtain a

general rotation.
°C = [R][*C"|[R]"  where R = M*MV

The individual elements of the elastic-stiffness tensor for a T1 elastically symmetric

medium can be found by the following relation.

a’O],] = A(Rz'lel + }?/iQRjQ) -+ H(Ri]_RjQ =+ RiZle) (06)
+ F(RaRjs+ RiaRjs + RisRj1 + RisRj3) + CRisR3
-+ L(Rz’4Bj4 + Ri5Rj5) -+ NRiﬁRjG

The R transformation matrix for a general rotation of a VIl medium to any arbitrary
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orientation is:

cos? Bcos®p sin? ¢ sin? fcos?p |
{
cos?@sin®yp  cos?y  sin*@sin’yp :
. [
sin? @ 0 cos? § .
R = i
1 . . 1 . - i
—35 sin 26 sin ¢ 0 58in20sing |
i
1 : 1
5 cosfsin 2¢ 0 —3 sin 26 cos ¢ |
1 2 0o 1 1 in2 g o \
| —5cos“0sin2p 5sin2p —3sin®fsin2p 3

! —sinfsin2p —sin20cos? cosfsin2p ]

I

' sinfsin2p —sin20sin®p —cosfsin2p

: 0 sin 26 0

| (C.7)
. cosfcosp  —cos2fsiny  sinfcosy

{

| cos fsin ¢ cos 26 cos sin # sin ¢

| —sinf2cosp Lsin20sin2p  cosfcos2p

Once the rotated elastic moduli are determined for some symmetry axis §(6, @), they
can be inserted into the elements of the differential operator A and the coupling
matrix By,. The elements of °C;; need to be converted from abbreviated subscript
notation into Woodhouse notation as done in Appendix A. It should be noted that
the Bond Transformations that include rotations about both the y and z axes are
best done numerically. Analytical results are not always insightful for most arbitrary
symmetry axis orientations of 5(6, ¢).

The sensitivity of the elastic stiffness matrix to changes in # and ¢ may also be

considered.
a(a ) _— a a T a BI{T ZNAY
5 = X CR'+R C——-—a where R = M*M (C.8)

The individual elements of the derivative of the elastic stiffness matrix with respect

to the generic angle A is:

a(aCU) _ A (51%11

1A T A oA

OR;  ORi OR;
oA oA
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BRZI aRj2 aRzQ 8R
+ H(aARQ-l-Ru 5A + BAR1+Rz2 8A>

+ F (%RS + Ry | ORe Rjs + Jo
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+ %%le + Rz’aaFRAz1 + 68123 + Ri3 8R]2)
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+ L (%%Rﬂ + Rm%—f{f + a(.fA’s 5) + &583’5)
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+ N (—aKﬁst ~+ Rj65§)
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1
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i
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~3sin20cos ¢ 0 1sin2fcos¢

cos 6 cos 2¢ 0 % sin 26 sin ¢

| —cos?fcos2p cos2p —sin®fcos2p :
—2sinfcos2¢ sin20sin2yp  2cosfcos2yp ]
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Appendix D

SYMMETRY PLANES AND WAVE POLARIZATIONS

The polarization of the modes composing the seismo-acoustic wavefield depend
on the propagation direction through the anisotropic medium. The polarization of
any mode will change if the propagation direction changes or the elastic stiffness
matrix is rotated. Pure P-SV and SH polarization directions exist in a TT elastically
symmetric medium for specific propagation directions. The polarization of the modes
is determined by the proximity of the propagation direction to the symmetry axis
direction.

The form of the elastic stiffness matrix indicates the amount of symmetry and
the location of symmetry planes for an anisotropic medium. These symmetry planes,
help predict when transverse particle motion may propagate independently of the
P-SV particle motion, or when quasi-SH particle motions propagates independently
of quasi-P-SV particle motions.

Auld (1990) discusses pure plane-wave mode propagation directions in relation
to symmetry planes and symmetry axes. The modes of a shallow water waveguide
follow these same principles with a little modification. P, SV, and SH plane waves
propagate independently for pure mode directions of propagation. For the modes of
a shallow water wave guide, the P and SV particle motions are always coupled, but
the SH particle motions may propagate independently for some geometries of the
symmetry axis and propagation directions. If the SH motions coupled with either SV
or P particle motions, then the modes will have polarizations in all three coordinate
directions. |

Whenever the propagation is within a symmetry plane, the single generalized
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mode family splits into two independent mode families, and the SH modes will prop-
agate independently of the P-SV modes. The propagation, in a sense will behave as
quasi-isotropic. This is true regardless of whether the anisotropy is strong or weak.
A VTI medium can be thought as a quasi-isotropic or quasi-orthorhombic medium.
The wave propagation is similar to an isotropic medium, but the modes have slightly

different shapes.

Consider rotating the elastic stiffness matrix, so that the symmetry axis § first
aligns with the three coordinate axes. When § = Z, ¢, or 2 then the form of the elastic
stiffness matrix remains in the form of a quasi-orthorhombic, with 12 non-zero matrix

elements and the remainder having zero values:

(Ci Cia Cis 0 0
Cop Cpp Coy3 0 0
C3 C3 C33 0 0
0 0 0 Cu O
0 0 0 0 Cs
0 0 0 0 0 Cg

°Cr; = where § = Z, 9, or

N
—~~

>

-
S

0
0
0
0
0

For a VTI medium, all elements of the elastic stiffness matrix ®*C; are unaltered

by rotations about the z-axis.

An orthorhombic medium has the xy, xz, and yz-planes as symmetry planes, and
the quasi-orthorhombic elastic stiffness matrix will have these symmetry planes as
well. Applying symmetry principles for § along any of the coordinate axes, the SH
modes will propagate independently of the P-SV modes. The mode set is separated
into two families of modes, the SH modes and the P-SV modes, when the § is aligned

with any of the three coordinate axes.

Now consider tilting the symmetry axis § so that it remains in the xz-plane. The

elastic stiffness matrix “Cr; takes on the form of a monoclinic medium where the
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single symmetry plane is orthogonal to the y-axis and parallel to the xz-plane.

Cii Cipa Cis 0 Ci5 0
Cy Cp Cyy 0 Cos 0
Cs Cse C 0 C 0
“Cpy=| 0 TFTE % where (8, ) = §(all,0°) (D.2)
0 0 0 Cu 0 Cg
Cs1 Cs2 Cs3 0 Css 0O

0 0 0 064 0 Cﬁs_

A monoclinic medium has a single plane of symmetry. Consider the form of
the elastic stiffness matrix when the symmetry is parallel with the xz, yz, and xy-
planes respectively. The tilted TI medium with the symmetry axis along one of the
coordinate planes has the form of a monoclinic material, but with a higher degree of
symmetry. A true monoclinic material has 13 independent parameters. The tilted
TI medium only has five independent elastic moduli, even though the elastic stiffness
matrix is populated the same as a monoclinic medium. The elastic stiffness tensor
can be thought of exhibiting a quasi-monoclinic form, with higher symmetry due to

a reduction in the number of independent elastic moduli.

For the symmetry axis in the xz-plane, the Cyy element is insensitive to any
variation in @ when ¢ = 0°. This is of little consequence, since the Cy; element is not
included in the equation of motion for 2-D propagation along the x-direction. The
horizontally polarized shear modes will propagate independently of the P-SV modes
for all orientations of the symmetry axis that lie in the xz-plane. The modes are
split into two families of propagating modes: P-SV modes with polarizations in the

xz-plane and SH modes with polarizations in the transverse coordinate direction.

Now consider tilting the symmetry axis so that it remains in the yz-plane. The

elastic stiffness matrix again takes on the form of a quasi-monoclinic medium where
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the single symmetry plane is orthogonal to the x-axis and parallel to the yz-plane.

" 1

Ciy Ci2 Ci3Ciy 0 0
Cy Co Co3 Cyy 0 0
U3 O C33 C3¢ 0 O
Cyp Cip Cyi3 Cyy 0 O
0 0 0 0 Cs Cse

L 0 0 0 0 055 Cﬁs_

where §(6, @) = §(all, 90°) (D.3)

The Cy; element of the stiffness tensor is insensitive to any variations of # when

@ = 90°.

The symmetry plane and symmetry axis principles indicate that no pure hori-

zontally polarized modes should be expected when the elastic stiffness matrix is in

this form, unless the symmetry axis § is vertical or horizontal in the yz-plane. The

principles indicate that the quasi-shear modes will have polarizations parallel to the

symmetry axis, having both transverse and vertical components. The modes will

likely consist of a single family of generalized P-SV-SH modes with polarizations in

all three coordinate directions. The quasi-monoclinic elastic stiffness matrix has a

higher degree of symmetry than a true monoclinic medium.

Next consider tilting the symmetry axis § so that it remains in the xy-plane. The

elastic stiffness matrix again takes on the form of a quasi-monoclinic medium with

the single symmetry plane orthogonal to the z-axis and parallel to the xy-plane.

(Cy Cia Cis 0 0 Cy |
Co Coz Cos 0 0 Cag
Csi Ciz Cy3 0 0 Cag
0 0 0 Cy Ci O
0 0 0 Cs Css O

| Ce1 Cs2 Gz 0 0 Cie |

where $(6, ¢) = 8(90°, all) (D.4)

The C33 element of the elastic stiffness matrix is insensitive to any variations of

¢ for 8 = 90°.
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Now consider tilting the symmetry axis to a general orientation that excludes the
coordinate axes directions and the xy, xz, and yz coordinate planes. The general
form of the rotated *Cy; elastic stiffness matrix is quasi-triclinic in nature with a
higher degree of symmetry than a true triclinic elastic stiffness matrix. Similar to the
monoclinic comparison, a true triclinic material has 21 independent elastic moduli.
The rotated elastic stiffness matrix in equation (D.5) still only has 5 independent
elastic moduli. Each element remains a linear combination of the five elastic moduli.
So the rotated elastic stiffness matrix can be thought of being quasi-triclinic, with a
higher degree of symmetry due to the reduction in the number of independent elastic

moduli.

Cii Cig Ci3 Cuy Cis Cie
Ca1 Cp Coz Cou Cos Cog
C31 Csa Cs3 Csy Cy5 C

a0y = 31 U3z C33 O34 O35 Cse where (6, ) (D.5)
Cu Cio Cy3 Cuyy Cus Cis
CUs1 CUs2 Css Csa Css Cse

Ce1 Cs2 Cgz Cgs Ces Ces |

Except when the symmetry axis § is aligned with the x-axis or y-axis, the mode
set consists of quasi-P-SV, quasi-SH, or generalized P-SV-SH modes.

The form of the elastic stiffness tensor may change as a T1 medium rotates from
a general orientation to more specific orientations. The elastic stiffness tensor of
a TTI medium would be described as quasi-triclinic, the elastic stiffness tensor for
a symmetry axis within any of the coordinate planes would be described as quasi-
monoclinic, and the elastic stiffness tensor when the symmetry axis is aligned with
any of the three coordinate axes would be quasi-orthorhombic.

Figure D.1 shows the form the elastic stiffness matrix takes for orientations of
the symmetry axis §(6, ¢) in the first quadrant. The vertical axis is the angle ¢ in

10° increments and the horizontal axis is the angle 8 in 10° increments. Each matrix
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represents the form of the elastic stiffness matrix 2Cy; for a specific symmetry axis
§ orientation. The first row shows the form of *Cy; for ¢ = 0° and 6 = 0° — 90°.
This represents the symmetry axis within the sagittal plane and the elastic stiffness
matrix has the form of a quasi-monoclinic medium. The first column shows the
elastic stiffness matrix for § = Z, with the form of a quasi-orthorhombic medium or
VTI. The corner matrices of Figure D.1 in the tenth column also have the quasi-
orthorhombic form and correspond to HTI media with the symmetry axis § aligned
parallel to the £ and 4 axes. The tenth column shows the form of *Cy; for § = 90°
and ¢ = 0° — 90°. This represents the symmetry axis within the xy-plane and the
matrices have the form of a quasi-monoclinic medium. This also is a HTT medium
where (6, ¢) = cos ¢ + sin . The tenth row shows the form of the elastic stiffness
matrices for ¢ = 90° and ¢ = 0° — 90°. The matrices for § in the yz-plane also have a
quasi-monoclinic form. All other orientations of the symmetry axis for *C;; produce
the form of a quasi-triclinic medium. Okaya and McEvilly (2003) noticed similar
results for rotations of hexagonal symmetry about the x, y, and z axes, and mentioned
the appearance of monoclinic symmetry for rotations about the y-axis. Shoenberge
and Costa (1991) also state that hexagonal anisotropy behaves as monoclinic when
the symmetry axis is within the sagittal plane.

Yin and Cao (2002) report similar findings where a rhombohedral crystal sym-
metry can take the form of orthorhombic, monoclinic, and triclinic configurations.
The difference between a true elastic stiffness matrix configuration and a quasi elastic
stiffness configuration is in the number of independent moduli. The true elastic stiff-
ness matrix configuration has a higher number of independent elastic moduli than the
quasi elastic stiffness matrix of the same name. There are 21, 13, and 9 independent
elastic moduli for the triclinic, monoclinic, and orthorhombic symmetric mediums
respectively. For a rotated TT medium, the quasi-triclinic, quasi-monoclinic, and
quasi-orthorhombic forms of the elastic stiffness matrix will only have 5 independent

parameters.
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Bond Transformation of *Cr; Matrix
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Figure D.1: Each 6 x 6 matrix in the figure represents the elastic stiffness matrix *Cy;
for specific orientations of the symmetry axis §, and indicates how *Cj; is populated
as § is rotated. Each matrix in a horizontal row represents a 10° increment in ¢
for a fixed value of 6. Likewise, each matrix in a vertical column represents a 10°
increment of 6 for a fixed value of . The first row represents rotations about the y-
axis, the last row represents rotations about the x-axis, and the last column represents
rotations about the z-axis when § is within the xy-plane. All of the matrices on the
outside edges of the figure represent the elastic stiffness matrix being rotated about
a coordinate axis and have a quasi-monoclinic form.



157

Appendix E

EQUATIONS OF MOTION AND FIRST ORDER
EQUATIONS

Consider the equations of motion for elastic waves in anisotropic structures as
described equation (3) of Maupin (1988).
O Ot Oty

W= Ty T T
t, = wcij‘g% (E.1)
The characteristic equation can be expanded out for each individual traction vector.
t, = wcu%g‘ + wClz%vyz + wCl?,%‘—:“ | (E.2)
t, = “”021%—:— + "’022%‘5— + wcgg%vg— (E.3)
t; = ow%g— + wC?,z%% + wcss%‘g (E4)

Now consider the the derivative with respect to x of w and t;. The derivatives

are chosen to be expressed only in terms of material properties and the vectors w

and t:

ow v wotwe OW oty OW
—55:- — Cnltl — 111 012?@— + 0111 013-52— (E5)
oty

0 ow 0 ow d
2 w wev—1
ot = g () = 3 (o) - gy i)

) ow\ 0 oW\ D [y wet
_EZ— (ng*'é:—y-) e —5; (X33—é—;) - b—z ( 031 Cll tl) —-F (E6)

where the ¥ X;; matrix is defined as:

£

VX = YCij — (PCa)(YC) (Y Cyj) (E.7)
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Note that the “X;; matrix is the same as Maupin’s (1988) “@Q;; matrix.
Now consider w and t; and their derivative with respect to y. The derivatives are

chosen to be expressed only in terms of material properties and the vectors w and

t22

%3;_ = “Cpity - 02;%21%— + 05" Cos (?: (E.8)
2 (Ya%}) -2 (ng%g) R A ) I )

where the ¥Y;; matrix is defined as:
“Yi; = "Cij — (“Ca)("Ci5") (Y Caj) (E.10)

Similarly the derivatives of w and ty; with respect to z may be considered. The
derivatives are chosen to be expressed only in terms of material properties and the

vectors w and tj:

ow wo OW wey OW

—é—z— = 0331133 - 0331 031—8—" + 0331 032 ay (E]_l)
oty 9 0 ow 0 ow O fw~ w1

B, - MW oo (Zn—a-x—) E (Zm By) 3 ( Ci3°C33 ts)

0 ow 0 ow O (o w1
oy (221_5;> Ay (Z22 By) oy ("CutClts) -F - (B12)
where the ¥ Z;; matrix is defined as:
Y Zij="Cy — ("Cis)("Cs3') (" Csy) (E-13)

These three sets of equations can be reformulated into a single set of generalized

equations of motion.

ow -1 -1 ow -1 ow

o Crimtn = YC ¥ Cri 83:1 Crin’ Crnj=— o, (E.14)
atm _ 2 Wy weY wey—1low . ow

9z, PWW 7, (( Cs; Cim“Crm Crmi) &Ei)
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- ,(( Cij =" Cin" Cramy ij)”“f)

Ox; Ot;
2 (9GO )
BZL‘Z‘ mm
9 w w w1 w . Q_V_V_
o (0 = “CiurCrtrom) 32 )
9 w w wey-1 w . _a_‘z
-3 (75 = “Cm OO 3
a w w -1
—5};( Cim"Crpitm) — F (E.15)

where 7,j,m = 1,2,3,i#m, j #m, ¢ # j, and z;; = z,y, 2 and
An eigenvalue problem may be formulated from the generalized equations of mo-

tion, which results in a generalized first order coupled equation.

——-—gz = A™i™ - F where u™ = (w, t,,,)7 (E.16)
AT AT

A= ( 1 432 (E.17)
An A%

For a solid triclinic anisotropic medium, the sub-operators for the generalized first

order coupled equation are:

9 B
4 = (—ComEC) 2+ O )

no= ("Coh),

J
m 0

0
w Py pp— w . w “1 w . ————
(( Cii =" Cim” Cr Cini) Bxi)

~5% ( - wcmwc;;wcm%)
1 = (- CCmee )—%(wcjm)(wc;:n)), (B.18)
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Appendix F

DIFFERENTIAL OPERATOR A

The differential operator A from the equation of motion (3.4) in the main text and

in equation (F.1) below is described in greater detail.
Ou
Oz

where u is the stress-displacement vector, A is a differential operator which con-

= Au-F (F.1)

tains the combinations of the elastic stress matrix “C}; and its derivatives, and F is
an external force.

The operator lacks any horizontal derivatives and the only derivatives are vertical
derivatives of the elastic moduli, horizontal slowness, and eigenfunctions. For a fluid
medium or a solid anisotropic structure, the differential operator A may be expressed

in terms of sub-operators:

All A12
A= (F.2)
A21 A22

For a solid triclinic anisotropic medium, the sub-operators are:

At = (—~("’Cﬁl)(w013)§;+(“’Cﬁl)("’Cm)iP)

A12 - (wcﬁl)
A = (—sz - %(wQ%%) + 75pr23% + gg(wQszip) +p2(wQ22))
an (—%{wcm)(wcm s z‘p(wcm)(wc;f)) (.3)

where the *();; matrix is defined as:

YQij = YCij — (“Cir) ("C7")(Cyy) (F.4)
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This general form is valid for any triclinic anisotropic structure. The differential
operator A for a TI elastically symmetric medium can be obtained by substituting
the elastic stiffness submatrices from Appendix A into equations (F.3),(F.3),F.3), and
(F.3). The differential operator A is then expressed analytically for the case when

the symmetry axis § is aligned with the Cartesian coordinate axes.

For 3(0, ) = 3(0°,0°) = 2:
0 iky%m _%_{%
At = | g, 0 0
\-% O 0
L 00
A% =19 L o
0 0 1
/——pwz 0 0
A2 - 0 —pw ——(La%) yQ(@r_(TJX_—ﬁ) k2NF6+az(zk L)
0 sza—i—;%z 2‘7—V—E —pw? — (%(ACAFQ )+k2L
0
A2 = zkyAA?N (F.5)
-85

Note that equations F.5-F.5 corrects equations (3.11)-(3.14) from Minkyu Park’s
dissertation (1997)

For 5(6, ¢) = 3(90°,0°) = £
0 kL -E2
AV = 4k, 0 0
\-5‘; 0 0
& 00
A?=110 L 0
00 1
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— pu? 0 0
0 —puw?— {% (N‘aa?) -I—k'y2 (ACEFz))iky (AC-—?(éN—Fz) 562_‘_ ;%(z’kyN)
\ 0 ik NE 4+ 2 (kAN 2 B (ACF0) | g2y

0 ik, —2
AZ = gL 0 0 (F-6)
-2E o0 o0
For 5(8, ) = §(90°,90°) = 4:
( 0 zky% ——A‘fN;%
A= gk, 0 0
\ -2 o0 0
10 0
AP=10 $ 0
\0 0 %
— puw? 0 0
A= 0 —p? — 2 (L) + k2 (AS)) ik, (BE) £ + 2 (ik,L)
k 0 ik LL + 2 (ik,2BE)  —pw? — 2 (EEA2) 4 k2],
0 iky, —£
A% =1 kB 0 0 (F.7)
~g2420 g 9

Additional symmetry, where the TI elastic symmetry reduces to isotropic symmetry

may be considered. When A =C, L= N, H=F,and ' = A— 2L, then all planes

within medium are symmetry planes, and therefore all directions are equivalent:

-3, F F 3
tky 0 0
9 0 0
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5 00
A% =119 1 0
\ 0 0 1
(—pw2 0 0
A= 0 —pw? — 2 (L2) + k2 (£52) ik (A552) 2 + 2 (iky L)
\ 0 ik L+ & (iky (A5 —pw? — L (B4 2) 1 k2L
0 ik, —Z
A2 — kL 0 0 (F.8)
&5 0 0

where A=A+ 2u, L =p,and F = .

This is the same result as reported by Park and Odom (1998) and Maupin (1988).
Consider the case where u = 0 and the isotropic medium becomes an isotropic fluid.
As stated by Maupin (1988), the “C}; matrix becomes singular for a fluid layer. A
simple solution is to define the ®C;; matrix and its inverse “*Cy;' within a fluid as

Kennett (1983) does in his monograph:

AO0O -~
(“Cit)fwia=1] 0 0 0 “CiVpwia=| 0 0 0 (F.9)
0 0 O 0 00

Therefore, a form of the differential operator and equation of motion for any fluid

layers may be formulated.

3
a
A" =V ik, 00
0

1
A

A? = | 0 0 0
0
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AP = 0 —pw? 0

0 ik, -2
A% = | ik, 0 0 (F.10)
3
L -2 0 0

After some algebra, the system of equations can be reduced to a two component

displacement-stress vector form.
2
0 iy 01 8 1
Appia = o T Ot Bz T A (F.11)
—pus? 0

where u, we, w3, and t are defined as:

W= o (P12
ik,
Wo = p_wEt (F.13)
1 ot
. Lo F.14
W3 0?0z ( )
t = 1y (F15)

This is Maupin’s (1988) result for a fluid layer. The fluid/solid coupling terms used
in the main text are the same as those reported in Maupin (1988). Tromp (1994) also

has described fluid/solid coupling terms using a slightly different modal notation.
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Appendix G

DETERMINISTIC AND STOCHASTIC COUPLING
MATRICES

The B, coupling matrix as described by Maupin (1988) and the main text is
defined as:

B, = (— <uq, %‘;r> iy bW [t’"]n> exp (z /ﬂ " (ke - k’")dg) (G.1)

where the Hermitian scalar product is defined as

oo

(u,u") = i /0 (Wit” — tw") dz (G.2)

The traction t may be discontinuous across the interfaces, resulting in the evalua-
tion of an improper integral. This leads to interface summation terms that include
jumps across the boundary discontinuities. The coupling matrix for an unperturbed,

deterministic structure has the expanded form:

1 hy(z) 1 p? ot 1 ot
_ q¥ - 2. .7 x| >+ & T
B, = pramy (/0 (wl pwrwy +t (/\ pr)t 52 28z>dz

o0 . Bwq* . Ow" .. o OWT awq* .
+ /h (Wq puiw’” — Q33 — wipQlas + Qsﬂpw

(@) Oz
. 6wq* ow’
~ WQaw'p? — £ (Ca O — W lP(CmCu )& — £ (C Chs) P
(O Ca)ipw” + tq*Cﬁlt’) dz
. Jw ow’ Oow*
+ Zhn {—Wq*Pw2WT - Q33 + W Qaew'p® — 52 (Cs: OOt

—t7(Ch

111 t'l'jl
n
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: ot 1 0ot 1 2
(AL (12 g )
P hy{z)~

) exp (z /0 "k — kr)dg) (G.3)

When the horizontal derivatives of the elastic moduli are zero, the volume terms of

— ih ((kq — k") (wi s + tq3w1)>

hg(z)*

the coupling matrix B,, become zero, and only the interface terms of the By, matrix
remain. All fluid-fluid interface terms have been neglected and their contribution
to the coupling terms is assumed negligible. Therefore, in the absence of material

property variations, the coupling matrix reduces to:

1 : ow? _ Ow"
By = ke — k (Zhn [ﬁwq*pWQWT - Q33 + W Quw'p”
awq* 8
o (Car Ot — t7(Ci'Cis) e ﬂltr}
. otly 1 ot}
(LB 2]
0z pw? 0z hy(a)-

~ i (0 = )t + )

) exp (z /0 "k - kr)dg) (G.4)

This is the By, deterministic interface term coupling matrix.

hy(z)+

When the horizontal derivatives of the interface boundaries are zero, the inter-
face terms of the coupling matrix B, become zero, and only the volume terms of
the B, matrix remain. All fluid-fluid volume terms have been neglected and their
contribution to the coupling terms is assumed negligible. Therefore, in the absence

of geometrical boundary variations, the coupling matrix reduces to:

1 o0 awq* . 8w . Ow’
— g% 5 2T ;
By = o g ( /h @ (W pwIwW ipQas gy
ow 8wq* ) v iNar
+ 5% QszZPW - w Q22W p° — Ey (031C11 )t - Wq*ZP(Cleul)t
- tq*(CﬁICB) agv (Cll 012) pW -+ tq*C ltr) dZ) (G5)

This is the By, deterministic volume term coupling matrix.
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The scattered coupling matrix Hy, is defined similarly to the B, matrix:

H, = (<uf,Au >)exp (z /0 20 dg) (G.6)

The terms of the scattering coupling matrix contain the stochastic function (z, 2):

ow* ow’

- ee _ qg* /2. T P
i (/hf(m)< wiy(z, 2)pww —l——_az Yz, 2) Qs )
, Ow_owe
B 9z oz
v(z, 2)(Ca1 O )t + w™ipy(z, 2)(C2 Ci7')'t"

i

H,,

+ wPipy(z, 2) v(x, 2)QspipW” + W y(z, 2)Qhyw'p?
ow?*
Oz
g* ~1 ,8W g* —1 s r
+ t7y(z,2)(C Cis) P +tTy(x, 2)(C; Cra2)'ipw
aw”

— tTy(z, z)Cﬁllt’") dz + ’LZ [wq*v(a:, z) (Qgg,—a—;— — Q3ipwW’

+ (cslcﬁl)'t")Dexp (z /O "k = k’)df) (G.7)

7

The volume scattering matrix Hy contains both volume terms and interface
terms. The interface terms arise out of evaluating the volume integral and integrating

by parts.
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