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Magmatic systems present an apparent paradox: they exist as long-term, crystal-rich magmas 

(called mushes) which are mechanically locked, yet crystals in exposed plutons and volcanic 

deposits with diverse histories indicate magmatic mobilization and mixing processes are 

common. Geochemical and petrologic analyses of igneous rocks and crystals provide a way to 

distinguish magmatic events such as intrusion, crystallization, assimilation, and mixing that 

occurred. These events cannot be directly observed, so previous studies have used experiments 

and numerical simulations to investigate the dynamics of mobilization and mixing. The high-

crystal fractions in mushes require consideration of particle-particle-liquid interactions, which 

previous continuum and quasi-multiphase models do not recover.  



 

This dissertation takes a multi-scale approach to understanding the processes of mush 

mobilization and mixing. Chapters 2 and 3 present a discrete element method-computational 

fluid dynamics (DEM-CFD) model of a basalt and olivine magmatic mush subject to intrusion by 

basaltic magma from below. Chapter 2 demonstrates the crystal-scale control on the system-wide 

response to the intrusion. The localized mobilization of crystals above the intrusion site produces 

a region called the mixing bowl, where liquids and crystals are fluidized and mixed. Monitoring 

the crystals and liquid throughout the intrusion demonstrates the potential for diverse crystal 

populations to be created in even simple magmatic systems. Chapter 3 quantifies the dispersion 

of crystals in the simulations from their initial state for a range of intrusion velocities. The crystal 

dispersion occurs with an exponential relationship with time, and a mixing time scaling produces 

a single curve for the tested intrusion rates. Extrapolating the results to a realistic magmatic 

system produces mixing times that agree with those inferred for mixing events occurring in 

nature. Chapter 4 is a case study of a natural mush, the 1868 picrite eruption of Mauna Loa, 

Hawaii. Geochemical analyses at the crystal-scale demonstrate the existence of six olivine 

populations. These populations reflect a diversity of magmatic conditions and processes within 

the central and rift magmatic systems in Mauna Loa. 

Also included with this dissertation are three supplementary movies. These movies show the 

simulation presented in Chapters 2 and 3. Movie 2.1 shows the intrusion of the magma into the 

mush, Movie 2.2 shows the coordination number of the crystals within the mush, and Movie 2.3 

tracks the three pairs of crystals described in the text. 
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Chapter 1. INTRODUCTION  

1.1 ORGANIZATION OF DISSERTATION 

This first chapter provides the motivation for the work done for this dissertation. Chapters 2-4 

have been written as stand-alone papers. Chapter 2 of this dissertation, "The mechanics and 

temporal evolution of an open-system magmatic intrusion into a crystal-rich magma" is in press 

at the Journal of Petrology as of August 2017. Chapter 3, “Time scales of crystal mixing in 

magma mushes” was published in the journal Geophysical Research Letters in February 2016. 

Chapter 4, “Mush mobilization and mixing in the 1868 eruption of Mauna Loa, Hawaii,” will be 

submitted during Fall Quarter 2017. References for all chapters are at the end of this dissertation. 

1.2 MOTIVATION 

An unresolved issue in understanding igneous systems is the apparent paradox of the long-term 

existence of crystal-rich (and therefore mechanically locked) magmas known as mushes, while 

the exposed plutons and volcanic deposits derived from these mushes indicate magma 

mobilization and mixing are common processes. Direct observation of these processes is not 

possible, so geochemical and petrologic analyses of igneous rocks provide a way to infer 

magmatic responses to events such as intrusion, crystallization, assimilation, and mixing. 

Plutonic rocks integrate tens of thousands to millions of years of the reservoir’s existence 

(Barboni & Schoene, 2014; Cooper, 2015; Cooper & Kent, 2014), though this makes it difficult 

to distinguish individual mobilization and mixing events. Volcanic deposits sample the state of a 

magma reservoir in the hours, days, and months before they erupt (Cooper, 2015; Costa et al., 

2010; Kahl et al., 2011, 2013; Moore et al., 2014). This makes them ideal for understanding the 
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processes leading to their eruption, but they only include the mobilized portion of the reservoir at 

that point in time. 

Crystals with diverse histories found in volcanic samples can provide a longer, more complete 

story of the physical and compositional conditions in the reservoir. Microanalytic analyses of 

major, trace, and isotopic zoning patterns; melt inclusions; crystal sizes and morphologies; and 

age dating of crystals can be used to identify mobilization and mixing events which brought the 

erupted crystal assemblage together. The use of these techniques can identify crystal populations 

that reflect the long-term conditions in magmatic reservoirs (Cooper, 2015; Cooper & Kent, 

2014) and changes in these conditions by short-term events (Costa et al., 2010; Kahl et al., 2011; 

Thomson & Maclennan, 2013). This dissertation uses multiphase numerical simulations and 

geochemical analysis of crystals in a simple magmatic system to identify crystal-scale control of, 

and response to, magmatic mobilization and mixing processes.  

Due to the inability to observe magmatic processes as they occur, previous studies have used 

experiments and numerical simulations to investigate the mechanics of magmatic mobilization 

and mixing. Previous laboratory experiments have used fluids of different densities (e.g. 

(Huppert et al., 1986; Turner & Campbell, 1986)) and particle-rich systems (e.g. (Girard & Stix, 

2009; Hodge et al., 2012)) to investigate the dynamics of mobilization and mixing in magmas. 

However, the high crystal fractions in magmatic mushes make it difficult to create laboratory 

systems where variables including temperature, volume fraction, and velocities are monitored 

throughout the experiment. Numerical modeling using continuum or quasi-multiphase methods 

has the ability to monitor these variables throughout the simulation (Dufek & Bergantz, 2007; 

McKenzie, 1984; Ruprecht et al., 2008). However, physics and engineering advances in particle 

mechanics demonstrate the importance of considering interactions (frictional and collisional 
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contacts, buoyancy, viscous coupling, and lubrication) between individual particles and the 

liquid in systems with high particle volume fractions (Andreotti et al., 2013; Campbell, 2006; 

Forterre & Pouliquen, 2008; MiDi, 2004). 

The first question addressed in this dissertation is: how does a magmatic mush become 

mobilized? Chapter 2 introduces a numerical model of a basalt and olivine magmatic mush 

subject to intrusion by basaltic magma from below. Persistent crystal-rich conditions in basaltic 

magma bodies have been inferred from seismic evidence from ocean islands and mid-ocean 

ridges (Clague & Denlinger, 1994; Sinton & Detrick, 1992), and from the eruption of picrites 

(Rhodes, 1995). We present a simulation that is a discrete element method-computational fluid 

dynamics model, where every crystal is monitored for the duration of the intrusion, mobilization, 

and subsequent settling. As the liquid intrudes the mush, it mobilizes only a portion of the 

crystals; we call this region the mixing bowl. The presence of the crystal mush affects the 

dynamics of the entire domain as the liquids and crystals mix. As crystals encounter the intruding 

liquid, we use a reaction model to calculate the dissolution of a pair of crystals as they move 

through the mush. With this model, we demonstrate the potential for diverse populations of 

crystals to emerge in even the simplest magmatic systems (e.g. (Helz, 1987)). 

Studies of crystal zoning and chemical diffusion can constrain the time elapsed between 

intrusion, mixing, and eruption, which may range from hours to months. Once a mush is 

mobilized, the question becomes: how long does it take for it to become mixed? In Chapter 3, we 

quantify the dispersion of crystals during magmatic intrusion for simulations similar to the one 

presented in Chapter 2. We test a range of intrusion velocities that determine the initial volume 

of crystals and liquid that is mobilized. From there, we use a mixing metric, the initial neighbor 

distance, which determines the dispersion of initially neighboring crystals for each intrusion rate. 
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We find an exponential relationship between the mixing and the duration of the intrusion, when 

time is scaled with a characteristic mixing time. Extrapolating this relationship to realistic mush 

parameters gives us mixing times that agree with those inferred to occur in similar magmatic 

systems in nature.  

The fourth chapter of this dissertation is a case study of an erupted basalt and olivine mush. 

The 1868 eruption from the Southwest Rift Zone of Mauna Loa is one of two subaerial picrite 

eruptions that have occurred on Mauna Loa in recorded history. Despite the simple magmatic 

conditions, we identified six populations of olivine crystals that exist in both the olivine-rich 

picrites and olivine-poor basalts, defined by the crystal zoning of Fo# and NiO in olivine. We use 

MELTS experiments to infer the magmatic conditions under which the crystals grew, were 

stored, mobilized, and mixed. Using these experiments and the crystal zoning populations, we 

present a preliminary description of the central and rift magmatic systems within Mauna Loa, 

and a qualitative estimate for the relative timing of mixing events. Future diffusion modeling of 

the crystal compositions will provide estimates of the timescales of mush mobilization and 

mixing prior to the eruption. 
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Chapter 2. THE MECHANICS AND TEMPORAL EVOLUTION OF 

AN OPEN-SYSTEM MAGMATIC INTRUSION INTO A CRYSTAL-

RICH MAGMA 

This manuscript is in press as of August 2017 at the Journal of Petrology. 
Co-authored by Jillian M. Schleicher, George W. Bergantz 
 

2.1 INTRODUCTION 

Magma reservoirs are dominated by near-solidus, high crystal-fraction conditions (known as a 

magmatic mush) for tens of thousands to millions of years (Cooper, 2015; Reid, 2008; Schmitt, 

2011). Yet complexly zoned crystals erupted from crystal-rich magmas require rapid 

mobilization occurring on timescales over days to hundreds of years (Cooper, 2015; Cooper et 

al., 2016; Costa & Morgan, 2011; Kahl et al., 2011, 2013; Moore et al., 2014; Shea et al., 

2015b). Open-system intrusions of magma into magmatic mushes can rapidly disaggregate and 

mobilize the near-solidus magma, and explain the eruption of distinct populations of crystals 

(Bergantz et al., 2015; Burgisser & Bergantz, 2011; Girard & Stix, 2009; Huber et al., 2012; 

Kahl et al., 2011; Ruprecht et al., 2008; Streck, 2008; Thomson & Maclennan, 2013; Wallace & 

Bergantz, 2005) and crystals out of equilibrium with their carrier liquids (Moore et al., 2014; 

Neave et al., 2013; Passmore et al., 2012). However, the mechanics and temporal evolution of an 

open-system intrusion are not well understood (Bergantz & Breidenthal, 2001). Geological 

examples demonstrate that intruded magma can percolate or pond in the resident mush (Costa et 

al., 2010; Paterson, 2009; Perugini & Poli, 2005), or can lead to mush disaggregation and 

eruption (Kahl et al., 2011; Passmore et al., 2012; Thomson & Maclennan, 2013). 

The presence of crystals greatly affects the mechanics of a magma through both hydrodynamic 

and granular interactions (Marsh, 1981). Crystal concentrations of as little as 25 volume% can 
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form crystal contact networks (Philpotts et al., 1999) which can cause jamming, strain 

localization, variable crystal packing, and the transmission of stress by crystal-crystal contacts 

called force chains (Estep & Dufek, 2012; Sandnes et al., 2011; Sun et al., 2010). There are 

several mechanisms that can lead to the fluidization of crystals within a mush, including gas-

driven overturn (Ruprecht et al., 2008), buoyancy-driven overturn from basal intrusion and 

heating (Burgisser & Bergantz, 2011; Girard & Stix, 2009; Huber et al., 2012), and momentum-

driven fluidization by magmatic intrusions (Bergantz et al., 2015). An open-system, momentum-

driven intrusion can fluidize a crystal-rich mush when the intruding liquid locally separates 

contacts between crystals. This creates locally dilute (higher porosity) regions of the mush, 

which behave as a mobile fluid rather than a viscoplastic solid. 

Investigating the mechanics involved in an open-system intrusion requires an approach that 

resolves both the crystal-scale and the mush-scale throughout the event. We present a discrete 

element method-computational fluid dynamics (DEM-CFD) simulation to examine the granular 

and fluid dynamics of basaltic liquid intruding into an olivine-rich basaltic mush. The particle-

based numerical modeling is described in the Supplemental Text (Section 2.9) and includes 

frictional, collisional, translational, and buoyant forces, as well as viscous particle-particle-fluid 

coupling. This approach reveals the microphysical controls on fluidization and mixing in a mush 

over a range of spatial scales simultaneously that cannot be resolved with continuum modeling 

(mixture or Eulerian-Eulerian multi-fluid theories). The particle-based simulation records the 

motion of all crystals within the mush, enabling us to examine crystal gathering and dispersal 

during the intrusion.  

We have described some general features of magma dynamics using the DEM-CFD method in 

two previous publications. In Bergantz et al., (2015) we introduced the notion of the ‘mixing 
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bowl’ but did not describe the distinct time-dependent regimes throughout an open-system cycle.  

In Schleicher et al., (2016) we described the ways that crystal mixing could be quantified. Here 

we document and describe the distinct kinematic stages of an open-system event in a magma 

mush, and present a scaling to describe the multiphase dynamics under crystal-rich conditions. 

We also monitor the mixing between the crystals and the resident and intruding liquids, and their 

potential for recording the intrusion with crystal growth or dissolution. 

2.2 MULTIPHASE SIMULATION OF AN INTRUDED MAGMATIC MUSH 

To exemplify the mechanics of an open-system intrusion, we consider a geologically simple, 

yet common crystal-rich system: an olivine-mush in basaltic liquid (Table 2.1). To create the 

mush, we randomly distribute olivine crystals throughout the domain and allow them to settle. 

Crystals naturally organize into a random loose-packed bed, creating an average crystal fraction 

of ~0.6. We saturate the crystals with a resident liquid, which extends above the bed into a 

crystal-free region. An intruding crystal-free liquid enters the mush as a dike into the base of the 

domain at a constant momentum flux. The properties of the resident and intruding liquids are the 

same, approximating conditions observed in basalts (Table 2.1); calculations with MELTS 

indicated that melt density changed only 0.6% over the 50°C temperature interval assumed here 

and so will have negligible influence on the dynamics. Basaltic systems are often intruded by 

liquids with similar temperatures, viscosities, and densities to those residing within the mush 

(Geist et al., 2006; Rhodes, 1988), therefore all simulations are run with isothermal conditions. 

The open-system nature of the intrusion requires a domain where liquid is allowed to leave the 

top to accommodate the constant momentum flux of the intruding liquid. This assumption is 

supported by geological examples where input can be accommodated by crustal deformation 

(Baker & Amelung, 2012; Gerbi et al., 2004). Additionally, magma can drain from cracks in the 
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crust above magma reservoirs, allowing intruding magma to fill in the void spaces without 

accompanying crustal deformation (Johnson et al., 2010). The walls and base of the domain have 

a no-slip boundary condition for the liquid, and a wall-friction law for the crystals. The majority 

of liquid and crystal motions occur far from the walls, so boundaries have little influence on the 

overall dynamics of the system. Simulations are 2.5-D, with the depth of the domain given by the 

diameter of the crystals. However, this value is much less than the other spatial dimensions in the 

system, creating an effectively 2-D system. The theory and equations describing the numerical 

simulations can be found in the Supplemental Text (Section 2.9). 

Table 2.1. Simulation Parameters 

Parameter [units] Variables Values 
Domain size [m] Dw, Dh 2.56, 1.28 

Computational grid size [m]  0.01, 0.01 
Injection width [m] Iw 0.32 

Liquid density [kg/m3] ρl 2650 
Liquid dynamic viscosity [Pa·s] µl 0.2 

Crystal density [kg/m3] ρc 3300 
Crystal diameter [m] dc 0.004 
Initial bed height [m] H0 0.823 
Number of crystals N 147,040 
Simulation time [s] t 100 

Injection velocity [m/s] U0 0.023 
Minimum fluidization velocity [m/s] Umf 0.0025 

Mixing bowl taper angle from the vertical [radians] α π/6 

2.3 MECHANICAL FLUIDIZATION OF MAGMATIC MUSHES 

The general concept of fluidization as used in industry and sedimentary geology refers to the 

support of a bed of particles by the upward drag exerted by a fluid. The fluid works against 

gravity, expanding and supporting the bed from a stationary rest state. To fluidize a crystal-rich 

mush, the intruding liquid must enter at a sufficient rate to overcome the weight of the crystal 

bed. This rate is known as the minimum fluidization velocity (Umf), which is commonly 
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calculated using the Ergun equation (Ergun, 1952). This equation for the minimum fluidization 

velocity estimates the velocity of the injected liquid needed to induce a drag force on the crystals 

equaling the weight of the crystals. In these calculations, the work needed to overcome initial 

contact friction between the crystals is ignored.  

2.3.1 Scaling model variables for applications to natural examples 

The application of a model to natural examples requires scaling variables to ensure consistent 

extension of model results to other similar applications. Hence, the thermophysical properties 

and the system geometry need to be represented in terms of scaled quantities. In the case of our 

model of a crystal mush, these are the size of the crystals, the liquid viscosity, the thickness of 

the bed, and the rate of the incoming new intrusion that acts as to fluidize the crystal bed. One 

quantity that embodies all these degrees of freedom is the minimum fluidization velocity. In our 

simulations, liquid intrudes only a portion of the base of the crystal bed. We also know from our 

results described below that the fluidization occurs as a tapered geometry, an emergent property 

of the calculations, and we apply that ex post facto to ensure the proper scaling. Because of this, 

the Ergun equation must be modified to account for only the crystals that are fluidized in the 

region above the intrusion. As in Bergantz et al. (2015) and Schleicher et al. (2016), we use a 

modified Umf calculation in our simulations, which accounts for the small injection region 

relative to the domain size (Cui et al., 2014):  

   

1
2
αBIw

2 ln
2H0

Iw

⎛
⎝⎜

⎞
⎠⎟

Umf
2 +α AIw H0 −

Iw

2
⎛
⎝⎜

⎞
⎠⎟

Umf = Iw + H0 tanα( )H0 ρc − ρl( )g 1− ε l( )
  (2.1) 

   
A = 150

1− ε l( )2

ε l
3

µl

dc
2

  (2.2) 
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B = 1.75

1− ε l( )
ε l

3

ρl

dc   (2.3) 

In these equations, α is the angle from the vertical formed by the tapered geometry of the 

mixing bowl (Figure 2.1), Iw is the width of the injection region, H0 is the height of the crystal-

liquid bed, Umf is the minimum fluidization velocity, εl is the liquid fraction (porosity), µl is the 

dynamic viscosity of the liquid, ρl is the liquid density, dc is the crystal diameter, ρc is the crystal 

density, and g is the magnitude of gravitational acceleration.  

Only one intrusion rate is exemplified in our detailed example presented here, however varied 

intrusion rates of the intruded liquid change the emergent behavior of the mush (Schleicher et al., 

2016). We introduce a non-dimensional velocity U* which is the injected velocity of the liquid 

(U0) divided by the Umf of the mush (U*=U0/Umf). At low intrusion rates (U* << 1), the liquid is 

unable to fluidize the crystals and passes through the mush by porous flow. Intermediate 

intrusion rates (U* ~ 1) create a short, crystal-poor cavity, and higher intrusion rates (U* > 1) 

extend the cavity into a chimney (Philippe & Badiane, 2013). In magmatic systems, open-system 

intrusions may occur with liquid rising slowly through the mush, passing through the crystals as 

porous flow (U* < 1). Examples of this exist in Iceland and in other rift zone systems (Costa et 

al., 2010; Thomson & Maclennan, 2013). Other intrusions can enter the mush with sufficient 

momentum to fluidize the crystals (U* > 1), leading to mixing and possibly eruption (Moore et 

al., 2014; Neave et al., 2013; Passmore et al., 2012).  
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Figure 2.1. Schematic of the simulation domain (Dw is width, DH is height) and emergent mixing 
bowl, illustrating variables used in Equations 2.1, 2.2, 2.3  

2.4 THE CYCLE OF AN OPEN-SYSTEM INTRUSION EVENT 

Below we describe the three stages that a model crystal-rich mush might experience during an 

open-system event where a portion of the resident mush is fully fluidized. These stages 

correspond to 1) the initial response of the mush to the intrusion, 2) the self-similar, quasi steady 

state stage, and 3) the shut-off stage at the end of the open-system event. Distinct multiphase 

regimes can exist simultaneously during these stages of the intrusion as a result of the changing 

particle volume fraction (Andreotti et al., 2013; Jaeger et al., 1996). The highest particle fraction 

regime (≥0.5) is called the quasi-static state, where particles are in constant frictional and normal 

contact. Relative particle motion occurs by particle translation governed by the inter-particle 

geometry (Roux, 2009). At intermediate volume fractions (~0.5-0.1) is the dense granular regime 

(Jop, 2015; MiDi, 2004) where particles are fluidized, but frequent contacts between particles 

may be sustained (frictional) or collisional. At very low particle fractions (<0.1) the granular 

flow is in the dilute regime, where particle contacts are infrequent, and momentum is exchanged 

by collisions (Goldhirsch, 2003). These three granular regimes express the diversity of 

mechanical behavior exhibited by the mush throughout an open-system cycle. The simulation 

can be viewed in the supplemental material (Movie 2.1). 



 20 

  
Figure 2.2. Four time steps from the simulation of the open-system intrusion, where t*=(U0/H0)t. 
Subfigures (a), (c), (e), and (g) show the crystals (colored bands) and liquids (black for resident 
liquid, white for intruding liquid), while subfigures (b), (d), (f), and (h) show the crystal volume 
fraction for the same times. Black dashed lines in (a) represent the extent of the mixing bowl and 
inset image shows the lines of crystals forming the granular faults. Color bar in (b) illustrates the 
crystal volume fraction. The variations in crystal volume fraction within the bed represent the 
variable packing of the crystals from the initial random settling. See text for additional 
description and details. 
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2.4.1 Initially fluidizing the mush by intrusion of new magma 

When the new magma intrudes the resident crystal-rich mush, the mush responds as a 

viscoplastic material. The initial crystal packing in the bed (εc ~ 0.6) results in continuous 

contact between crystals (i.e. the quasi-static granular regime). Slight variation in crystal volume 

fraction exists in the bed (Figure 2.2b), which is the result of natural settling of the crystals to 

form the mush. At the start of the intrusion, pore-pressure created from the intruding liquid 

exceeds the frictional yield strength of the mush; the viscoplastic response of the mush includes 

vertical expansion and simultaneous fluidization along bounding crystal-liquid faults (Figure 

2.2a). We use the term “fault” because the initial failure is one involving frictional forces, there 

is manifest material displacement across the interface, the interfaces persist with minor erosion 

along the surfaces, and the faults are at approximately 60° angles to the horizontal on both sides 

of the intrusion, as predicted by Mohr-Coulomb failure criteria. They are faults, rather than shear 

zones. At the crystal scale, each fault is not a single plane (line, in the case of the 2D simulation), 

but a band of crystals moving along 60° angles from the horizontal (see inset image in Figure 

2.2a). The crystal networks can be ~10-100 crystals long, and the lateral extent of the crystals 

creating the macroscopic faults can be ~10-20 crystals wide. The faults delimit the region of the 

mush that is unlocked by fluidization, and this region is referred to as the mixing bowl. 

The geometry of the mixing bowl is established by this initial response and is insensitive to 

changes in intrusion rates exceeding the Umf. In this simulation the intrusion rate is 9.26 times the 

Umf (U*=9.26). The mixing bowl is a robust feature indicating that the numerical experiments 

satisfy the criteria for a self-similar extensible result. For example, varying the mush height does 

not alter the angle of the faults delimiting the mixing bowl, even when the height of the bed is 
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less than half the width of the intrusion. As shown later in the simulation, most of the mixing that 

occurs in the mush is within the mixing bowl, the only portion of the mush that is mobilized.  

The initial viscoplastic response of the mush is followed by block uplift of the resident mush 

within the mixing bowl, similar to experiments by Johnsen et al., (2008). After the initial uplift, 

the intruding liquid forms a small crystal-poor cavity that breaks up into finger-like instabilities 

as penetrative convection of the new liquid enters the mush. Around each instability is a halo of 

fluidized crystals that propagates ahead of the intruding liquid. The fingers do not rise at the 

same rate, and the shear stress at their margins entrains them together to form a single, rising, 

crystal-poor feature (these dynamic features are best seen in the supplemental Movie 2.1). The 

length scales of this process are not recoverable by Saffman-Taylor viscous scaling (where less 

viscous material intrudes more viscous material) due to intermittent flow from particle jamming 

(Sandnes et al., 2011). The rising intruding liquid entrains crystals from the base of the mush and 

carries them upwards to the top of the crystal bed. This crystal-fluid coupling hinders the 

formation of lasting crystal contacts, placing the low-crystal fraction instability within the dilute 

granular regime (Andreotti et al., 2013; Burgisser et al., 2005). 

Once the initial instability has penetrated the entire mush the initial transient ends, leaving a 

feature we call the chimney (Figure 2.2c and 2.2d). The chimney is a region of continued 

throughput and high porosity, surrounded by variably fluidized mush. Outside of the dilute 

chimney, the mixing bowl remains in the quasi-static regime where the crystal volume fraction is 

close-packed. The upper portion of the mixing bowl has a lower crystal volume fraction and is in 

the dense granular regime.  
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2.4.2 The self-similar mixing bowl 

After the initial transient described above, the dynamics in the mixing bowl are governed by 

quasi steady state, self-similar behavior (Figure 2.2e) (self-similar describes an object or 

condition whose proportions remain the same as it gets larger or smaller; the features are scale 

invariant). The approximate geometry of the mixing bowl persists, although there is minor 

crystal transport from erosion of the bounding granular faults. The dominant feature within the 

mixing bowl is the crystal-poor chimney. Throughout the intrusion, the chimney rises through 

the mush with varicose and meandering instabilities (Huppert et al., 1986). These forms of 

instability reflect the moderate Reynolds numbers (~10-100) of the chimney as it moves through 

the mush (see Figure 7 in Huppert et al. (1986)). The varicose instabilities cause liquid to arrive 

at the top of the mush in pulses, creating local variations in crystal fraction within the dense 

granular regions at the top of the mixing bowl (Figure 2.2f).  

As the crystal-poor liquid rises through the mush, it entrains crystals from the base of the 

mixing bowl and the sides of the chimney. These crystals are carried to the top of the mush and 

deposited on either side of the chimney, while the chimney liquid bifurcates and rises to mingle 

with the resident liquid above the mush. The entrainment, vertical transport, and deposition of 

crystals by the chimney create counter-rotating “granular vortices” that mix the crystals and 

liquid at the top of the mixing bowl. The overturn time of these granular vortices is 

approximately the same as the transit time of a crystal through the entire chimney. Due to the 

meandering chimney, the vortices are not perfectly symmetric within the mixing bowl. However 

the persistent fluidization of the mixing bowl maintains a self-similar geometry. In addition to 

upwards translation of crystals by the chimney, coherent tongues of crystals move downwards 

along the crystal-liquid faults of the mixing bowl. This continued upwards and downwards 
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motion of the crystals extends the well-mixed portion of the mixing bowl towards the intrusion 

site. We have previously shown (Schleicher et al., 2016) that the majority of the crystals within 

the entire mixing bowl eventually become well mixed.  

2.4.3 Termination of intrusion and defluidization of the mush 

Once the new magma input is terminated, the mixing bowl begins to defluidize and collapse 

(Figure 2.2g and 2.2h). The collapse happens rapidly at the bottom, where low porosity, crystal-

rich tongues slump into the former location of the chimney, reestablishing a quasi-static regime. 

This rapid collapse hinders additional mixing of the liquids, so a fossil chimney of intruded 

liquid remains. In the higher porosity core of the mixing bowl, the reestablishment of the close-

packed mush occurs as hindered crystal settling. The top of the mixing bowl has a concave-up 

shape with pronounced shoulders, which formed as some crystals were transported out of the 

mixing bowl during the intrusion. Once the crystals have returned to a settled state, the mixing 

bowl will have a fossil kinematic and compositional character, distinct from the surrounding 

mush which was undisturbed by the intrusion. 

2.5 GRANULAR MECHANICS AND THE VISCOUS AND COORDINATION NUMBERS 

The three stages of the open-system event described above demonstrate the complexity of 

dynamic states that can be manifested by multiphase systems with high particle concentrations. 

Multiple hydrogranular regimes are present at any given time during the simulation; these 

regimes are distinguished by the local particle fraction, the timescales involved with particle 

motion, and the shear rate. This is because the transmission of force by hydrogranular 

interactions has numerous sources: collisions, enduring frictional contact, lubrication, and fluid 

viscous effects. This is especially the case in particle-rich systems such as those considered here, 
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where the forces and particle support are transmitted along quasi-linear force chains that appear 

stochastically (Cates et al., 1998; Estep & Dufek, 2012; Sun et al., 2010). This produces a 

support fabric composed of load-bearing particles and spectators (Cates et al., 1998; Estep & 

Dufek, 2012; Sun et al., 2010). The force chains that form the support fabric migrate in response 

to external forcing, such that a particle that is a spectator one moment may be load-bearing the 

next. Even in simple, unimodal mixtures this can often produce non-affine deformation and non-

local conditions such that the stress at a point depends on the degree of mobility in the 

surroundings as well as the shear rate (Trulsson et al., 2012).  

One system property that has been invoked for distinguishing mechanical states is the critical 

crystal fraction associated with jamming, (εc,c) (Marsh, 1981). A thorough discussion of 

jamming, which progresses through a succession of micro-and-macrofragile states (Cates et al., 

1998; Ness & Sun, 2016) to hard jamming when a critical shear stress (not shear rate) is 

exceeded (Peters et al., 2016) is beyond the scope of this work so we simply adopt the findings 

of Ness & Sun (2015) where a threshold particle fraction for monodisperse spherical particles 

occurs between 0.57 and 0.59. The highest particle fractions define the quasi-static regime, 

where particle contacts are enduring and frictional contact is the primary mechanism of force 

transmission. The dense granular regime is challenging to generalize with a bulk rheology, since 

the behavior depends not only on volume fraction, but also sample preparation (Daerr & Douady, 

1999), confining pressure, and shear rate (da Cruz et al., 2005). Once the system reaches εc,c, the 

granular media macroscopically behaves as a plastic material, controlled by a friction criterion 

with a linear relationship between shear and normal stresses. 

Despite this complexity, remarkably, the same approach that has been useful in illuminating 

the fundamental controls on dilute multiphase flow (Burgisser et al., 2005) can be employed in 
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high-particle fraction conditions. That is, the microscopic response timescale of a single particle 

relative to the macroscopic timescale of the far-field forces acting on that particle can rationalize 

the multiphase physics. For example in the context of dilute flow, this is the ratio of the 

microscopic aerodynamic response time of a particle to the time a macroscopic carrier phase 

(fluid in this case) exerts a distinct force on it. This led to the introduction of a Stokes number 

that is the ratio of those two timescales. If the Stokes number is low the particle follows the fluid 

as a tracer, while if the Stokes number is high the particle is not bound to the fluid motion and is 

acting as a ballistic particle in the inertial state (Burgisser et al., 2005). 

The same notions of a particle response timescale relative to the behavior of the carrier phase 

emerge in dense multiphase flow (Cassar et al., 2005; du Pont et al., 2003). The premise is that 

particles exist in a granular framework where particle-particle contacts are idealized as points, 

and where force is collectively transmitted in a “granular continuum.” The mechanical 

connection between a particle and its neighbors is quantified by the particle coordination 

number, Z, which is a count of all the contacts between a particle and its neighbors. 

Conceptually, this granular continuum plays the same role in controlling the macroscopic scales 

as the fluid in dilute flows. Now if the granular framework is sheared, a particle can be displaced 

from its initial position and coordination state by macroscopic forces working against a 

microscopic restoring gravitational force (or some general restoring pressure for neutrally 

buoyant crystals), which will act to return it to the previous location. If the macroscopic forces 

acting on the particle carry it beyond its original location before the particle can reestablish 

contact with its neighbors in the granular continuum, the coordination number will approach 

zero. In this scenario, the particle is effectively an inertial or ballistic particle (even at low 

particle-Reynolds number), with respect to the granular continuum, just as in the dilute case. 
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This leads to a disassociation of the granular continuum, a reduction in the local particle volume 

fraction and a decrease in the number density of force chains. 

The particle-fluid coupling can be quantified by the value of a Viscous number (Iv) where it is 

assumed that the particle response time is governed by viscous forces (Ness & Sun, 2015; 

Trulsson et al., 2012): 

    
Iv =

3µl
!γ

2 ρc − ρl( )gdc   (2.4) 

Here µl is the dynamic viscosity of the liquid, !γ is the local shear rate of the liquid (calculated at 

the computational cell-scale), ρc and ρl are the densities of the crystals and liquid, respectively, g 

is the gravitational acceleration, and dc is the diameter of the crystals. As in dilute flows, a value 

of Iv << 1 indicates that the particle will recover from any perturbation and reestablish contact 

with the granular surroundings, and enduring frictional contacts are the primary means of force 

transmission. If Iv >> 1 the particles lose contact with their neighbors, the granular mixture is 

disassociated, and particle interactions are primarily collisional; the multiphase mixture becomes 

a dilute granular flow. The Viscous number ignores numerous microphysical processes such as 

pore pressure and fluid transport through the adjacent granular media, dissipation associated with 

lubrication, non-spherical particle shape, non-ideal point contacts (with non-zero surface area), 

etc.  

The granular state of the system at one time step is shown in Figure 2.3, which represents the 

same time step in Figure 2.2e and 2.2f. The location of the mixing bowl is outlined by red dashed 

lines. The background image illustrates the magnitude of the Viscous number on a logarithmic 

scale. The white lines represent equal volume fractions of fluid and particles (εc = 0.5). In 

general, εc > 0.5 on either side of the contour within the mush, and εc < 0.5 in the chimney, 
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fluidized region, and crystal-free portion at the top. An exact value for εc,c has not been 

determined for our system, but the naturally settled bed of monodisperse crystals has an average 

particle fraction of 0.58, within the critical range for the transition found by Ness & Sun (2015). 

(polydisperse crystals with respect to size and shape will have a different average packing). 

Many of the crystals are in pockets of hexagonal packing, but variations from the initial random 

settling create thin regions of lower particle fractions (Figure 2.2b). These thin regions might 

represent volume fractions less than εc, but the dominant behavior of the mush outside of the 

mixing bowl is quasi-static, so we choose to illustrate a particle fraction of 0.5. The regions with 

the highest values of Iv also have particle fractions of 0.1 or less, corresponding to the dilute 

granular regime. Regions of the system with higher values of Iv vary through time as liquid in the 

chimney rises in pulses and meanders through the mixing bowl. 

 
Figure 2.3. The Viscous number of the intrusion at t*=1.48 (Figure 2.2e and 2.2f). Red dashed 
lines show the mixing bowl and white lines represent equal volume fractions of liquid and 
crystals (εc = εl  = 0.5). Iv is illustrated by shades of blue, represented with a logarithmic scale.  
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Figure 2.4. Average coordination number for crystals within the lateral extent of the mixing bowl 
(shown as grey box in the inset image) through time. The maximum coordination number for the 
monodisperse crystals is six, representing hexagonal packing. Also labeled are the times when 
the crystal-poor chimney breaks through the top of the crystal mush, and the timing of the end of 
the intrusion when the melt supply is shut off. 
 

The coordination number, Z, is a measure of the availability of a particle to transmit and 

dissipate energy by collisional and frictional interactions. The porosity shown in Figure 2.2 is a 

cell-averaged property and is not a complete description of the local granular state of the system. 

Figure 2.4 shows the average coordination number as a function of scaled time, with t*=(U0/H0)t 

for the simulation (Movie 2.2). Three distinct phases can be seen that correspond to the three 

stages described above: a transient start-up period where progressive fluidization produces 

dilation and a reduction in the coordination number, a quasi steady phase where the dissipation 

fluctuates around an average indicating both hydrodynamic and granular modes of dissipation, 

and the re-establishment of the granular state once the intrusion ceases. Note that during the 

collapse of the mixing bowl after the shut-off, the coordination number increases over the 

original value of the settled bed, reflecting the sensitivity to packing from settling to the 

proximity of other crystals. Lastly Figure 2.4 shows the coordination number has a high-
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frequency component over-printing the long wavelength temporal behavior. Although our 

sampling density is not sufficient to do a spectral analysis, we suggest that the high-frequency 

component may reflect the stochastic “chatter” produced by force chains forming and dissipating 

as a result of the unsteadiness in the driving fluid flow. Hence it provides a window into the 

microscale mechanics that recovers a time-dependence not apparent in the velocity for example. 

Previously, multiphase models for magma dynamics have employed a model for multiphase 

flow that is an extension of continuum models. Hence it might seem reasonable to represent the 

dynamics of the open-system event as a reduced system by invoking either a granular-fluid 

constitutive model (Boyer et al., 2011) or a mixture continuum rheology with a suspension 

viscosity. However Figure 2.3 illustrates the challenges in trying to describe the dynamics in 

those contexts. The shear rate varies in time and space, and a local pressure as required by the 

model of Boyer et al. (2011) is not uniquely defined. Even in regions with low values of Iv, there 

is still local phase-relative-motion and mixing (Schleicher et al., 2016). Extending the granular 

rheology approach to a non-local constitutive model (Kamrin & Koval, 2012) still requires an 

assumption of locally steady conditions which are not obtained in our results, nor likely to be 

found in nature. Comparisons between our DEM results and a continuum model for the same 

system (not shown here) with a yield strength and suspension rheology did not recover the same 

kinematic template as the higher resolution DEM model, and produced results that were 

significantly different in the distribution of strain, mixing and particle transport. This exposes the 

limitations of the suspension rheology approach in high-particle fraction systems and reaffirms 

the importance of resolving the micro-granular mechanics to adequately address the mechanics 

of crystal-rich magma mushes. 
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2.6 THE CRYSTAL RECORD OF THE OPEN-SYSTEM EVENT 

Much of the evidence for open-system magmatic events comes from processes recorded at the 

crystal scale, such as zoned crystals and the existence of diverse crystal populations (Costa et al., 

2010; Kahl et al., 2011, 2013; Viccaro et al., 2016; Wallace & Bergantz, 2002). When crystals 

encounter magmatic environments of changing chemical potential, they can respond by growth, 

recording the changes through chemical zoning, or by dissolution, producing resorption features 

in the crystals. Open-system mixing can also bring together distinct crystal populations formed 

by crystals with different reaction histories. 

Our particle-based simulations enable us to track crystals and the liquid in which they reside 

during the open system intrusion. This capability recovers the crystal gathering and dispersal 

dynamics. To illustrate crystal transport and reaction during an open-system event, we monitored 

three pairs of crystals that are proximal at the final time step of the simulation (Figure 2.5, 

supplemental Movie 2.3). These pairs represent crystals that would be adjacent in a thin section 

of a volcanic or plutonic sample. Figure 2.5a shows the trajectories of the three pairs of crystals 

throughout the simulation. White circles outlined in black indicate the initial locations of each 

crystal, and black circles outlined in white show the final position of the three crystal pairs. The 

grey band at the bottom illustrates the location of the intrusion, and white dotted lines represent 

the mixing bowl. The image in the background is the final time step of the simulation showing 

the mixing between the resident (black) and intruded (white) melts.  
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Figure 2.5. (a) Trajectories of 3 pairs of crystals monitored during the simulation. White circles 
with black outlines illustrate starting location for all crystals, and black circles with white 
outlines show the ending location of each crystal pair. White dashed lines show the mixing bowl. 
Resident (black) and intruding (white) liquids during the final time of the simulation are shown 
in the background. (b) The composition of the liquid scalar in which each of the crystals reside. 
Resident liquid has a scalar concentration of 0; intruding liquid has a value of 1. The arrow at 
t*=1.65 shows the end of the intrusion. 
 

Monitoring the three pairs of crystals also illustrates the potential diversity in liquid 

composition a crystal could encounter during an open-system event (Figure 2.5b). The changing 

liquid composition is associated with a liquid scalar, which represents variations in temperature 

or chemical composition between the incoming and resident magmas. The liquids in our 
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simulation have been shown to have negligible changes in thermophysical properties, but 

maintain their compositional distinctions and potential for reaction, so the scalar simply 

expresses the proportions of intruding and resident liquids with values between zero and one: 

zero is the resident liquid (black), one is the intruding liquid (white), and values between zero 

and one are a mixture of the two liquids. Mixing takes place by both advection and chemical 

diffusion, and the diffusion equation is described in the Supplementary Text (Section 2.9). The 

horizontal axis is the non-dimensionalized time of the simulation, with t*=(U0/H0)t. The arrow at 

t*=1.65 indicates the end of the intrusion.  

The differences in the scalar concentrations encountered by the three pairs of crystals reflect 

the sensitivity to initial position and the kinematics of subsequent mixing. The purple crystals are 

initially directly above the intrusion, and are carried up through the mixing bowl by the fingering 

instabilities that eventually form the crystal-poor chimney. This is the only period of time when 

they encounter the intruding liquid. Once they reach the top of the mixing bowl, the purple 

crystals are deposited into the quasi-static edges of the mixing bowl, where little crystal-crystal 

and crystal-liquid relative motion occurs for the duration of the intrusion and resettling. The 

green crystals are initially on the edges of the mixing bowl, where the crystal-liquid faults form. 

Both crystals’ motions roughly parallel the faults, first moving upwards as the mush expands to 

accommodate the intruding liquid, and then downwards as crystals slide down the faults to 

replace the central crystals entrained by the chimney. The green crystals only encounter the 

chimney liquid near the end of the intrusion, and approach a mixed scalar concentration of ~0.4 

as the crystals settle back into the mixing bowl.  

The orange crystals encounter a greater diversity of granular regimes than the purple and green 

pairs. The dark orange crystal initially encounters the intruding liquid, but is left at the base when 



 34 

the instability that carries it merges into the central chimney. Eventually it is entrained in the 

chimney, but its trajectory is not straight due to the varicose instabilities of the rising liquid. 

During this time, the light orange crystal remains in the quasi-static regime, traveling downwards 

through the mixing bowl until the chimney entrains it as well. Both orange crystals enter the 

dense, granular vortices, where they travel through the upper portion of the mixing bowl 

together, experiencing a full rotation. The dilute and dense regimes of the mixing bowl in this 

region promote crystal-crystal-liquid mixing, giving a final scalar concentration of ~0.3 for the 

orange crystals. This value is lower than the green crystals residing near the fossil chimney 

liquid, which did not mix as thoroughly with the resident liquid.  

We can use the variable scalar compositions encountered by the different crystals to determine 

what the crystals could record during the single open-system intrusion. We use the approach of 

Chen & Zhang (2008) (based on the work of Kerr (1995)) to calculate the convective reaction 

rate of two crystals as they encounter the intruding liquid during the simulation. As a crystal 

moves through a liquid with changing physicochemical conditions, a compositional boundary 

layer forms around the crystal. In convective reaction, the relative velocities of the crystal and 

liquid determine the thickness of the boundary layer, rather than a time-dependent boundary 

layer in the case of diffusion-controlled dissolution (Donaldson, 1985). Within the boundary 

layer, crystal reaction is controlled by the difference in timescales of diffusive mass transfer and 

interface reaction (Chen & Zhang, 2008). While this model of reaction is most simply described 

as dissolution, it can also be applied to crystal growth. However, crystal growth is complicated 

by the possibility of simultaneous growth on existing crystals and the nucleation of new crystals, 

which would produce different crystal size distributions and clustering (Špillar & Dolejš, 2013, 



 35 

2014). Should the reaction rate be negative (indicating growth), it is assumed growth occurs only 

on pre-existing crystals.  

To determine the olivine reaction rate, we use the MgO concentration in the crystals and liquid 

for the equilibrium-determining component as in Chen & Zhang (2008). We use the MELTS 

software (Gualda et al., 2012) to calculate the equilibrium MgO weight percent in olivine 

crystals and basaltic liquid at a temperature 50°C colder than the liquidus, with the basalt starting 

composition from Rhodes (1995). The resident liquid and crystals are assumed to initially be at 

this lower temperature, and the intruding liquid is at the liquidus temperature. Over the 

temperature range considered, the density difference is only 0.6% so we use a constant density 

for the liquids. Numerical simulations with heat transfer (not shown) indicate there is little 

thermal inertia or thermal-chemical decoupling, so we use the scalar value tracking the intruding 

liquid as a proxy for the temperature of the liquid. We calculate the temperature using a linear 

relationship between the scalar concentration and temperature; a scalar value of zero has the 

temperature of the resident liquid, while a value of one represents the liquidus temperature. The 

results from MELTS provide a linear relationship between temperature and MgO composition, 

and we use this relationship to estimate the far-field liquid composition in which the crystals 

reside at every time step. 

The convective reaction rate is given by Chen & Zhang (2008) as: 

  
u = βD

δ   (2.5) 

which is composed of  the diffusivity (D) of the equilibrium-determining component (here MgO) 

and the compositional boundary layer thickness (δ). The boundary layer thickness is determined 

by the relative velocity between the crystal and the surrounding liquid, and the diffusivity of the 
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equilibrium-determining component (MgO) in the liquid (see Equations 7-10 in Chen & Zhang 

(2008)). The boundary layers calculated the simulation range between ~10-5-10-4 m. Also 

included in the convective reaction rate is a dimensionless parameter (β) that determines crystal 

growth or dissolution (negative or positive value, respectively):  

   
β =

ρl C0 −C∞( )
ρc Cc −C0( )   (2.6) 

This parameter depends on the densities of the liquid (ρl) and crystal (ρc), the MgO weight 

percent in the liquid within the crystal-liquid interface (C0), the far-field (i.e. the liquid 

computational cell) MgO weight percent (C∞), and the MgO weight percent in the crystal (Cc).  

We use the thermometer of Putirka (2008, Equation 13) to calculate the interface liquid 

composition as a function of temperature (T), which is independent of pressure and the 

compositions of the far-field melt and crystal: 

   
C0 =

T − 994.4
26.3   (2.7) 

To apply this approach to our simulation, we assumed the crystals were initially in 

equilibrium with the resident liquid (i.e. C0 = C∞). However, the interface melt composition is 

independent of the composition of the crystals and the external melt (Equation 2.7), and because 

of this produces disequilibrium conditions when the crystals are stationary within the resident 

melt. The reaction rate calculation (Equation 2.5) is for convective reaction, therefore stationary 

crystals require a convection-free model that is beyond the scope of this study (Chen & Zhang, 

2008; Liang, 2000). We only apply the calculation to crystals that are continuously moving 

relative to the liquid (the orange crystals from Figure 2.5). The light orange crystal does not 
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encounter the intruding liquid during the beginning of the intrusion, so we set the crystal reaction 

rate to zero during this time.  

The results of the reaction calculation for the two orange crystals are shown in Figure 2.6. 

Both crystals experience positive reaction rates, indicating they only undergo dissolution when 

interacting with the intruding liquid. During the simulation, the dark orange crystal would 

dissolve a total of 0.38 µm from the rim, while the light orange crystal, which encountered the 

intruding liquid later in the simulation, would dissolve 0.25 µm. The high frequency variations in 

the crystals’ dissolution rates are due to the changing scalar concentration (see Figure 2.5b) and 

relative velocity between each crystal and the surrounding liquid. Despite being highly variable, 

the relative velocities are low, with Reynolds numbers between ~10-4-1. The average rates of 

dissolution for the examined crystals are 13.7 µm/hr for the dark orange crystal, and 12.6 µm/hr 

for the light orange crystal during the time it encountered the intruding liquid. Assuming 

constant dissolution rates with these averages, the 2 mm radius crystals would dissolve fully after 

~6-7 days.  

 
Figure 2.6. Dissolution experienced by the orange crystals from Figure 2.5. Solid light and dark 
orange lines show the dissolution rate that each crystal experiences during the simulation. 
Dashed black lines show the accumulated dissolution rate the both crystals experience during the 
simulation. The arrow at t*=1.65 shows the end of the intrusion. 
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The convective reaction rates calculated from the simulation fall within the range of rates from 

previous experiments and theoretical calculations for similar temperatures and compositions. 

Experiments by Donaldson (1985) gave dissolution rates for olivine at near-liquidus 

temperatures of 9-14 µm/hr. Liang (2000) calculated theoretical rates for olivine solid solution 

diffusion-controlled (rather than convection-controlled) dissolution of ~3-36 µm/hr. The rates we 

calculate are lower than the hypothetical dissolution rate of 52.6 µm/hr calculated by Chen & 

Zhang (2008), who considered a crystal falling in a melt with a constant, disequilibrium 

composition. The crystal and liquid compositions chosen for the example in Chen & Zhang 

(2008) represent a larger disequilibrium than the compositions in this study, which explains the 

faster dissolution rates. We conclude the rates calculated for the crystals represent realistic values 

when reacting by convective dissolution to the intruding liquid. 

The reaction rates for the orange pair of crystals represent crystal dissolution when they 

encounter the intruding liquid. However, natural crystals can have reversely zoned rims, 

indicating the rims grew from a more primitive liquid prior to eruption. For crystal growth to 

occur in our simulation, the far-field composition of the melt (C∞) would need a higher MgO 

content than that of the interface liquid (C0). These quantities are both calculated as functions of 

temperature (from MELTS and Equation 2.7), and for a given temperature, C0 is always greater 

than C∞. In the presented simulations, the crystal, interface liquid, and far-field liquid are at the 

same temperature, making crystal growth impossible. However, if the thermal inertia of a crystal 

were considered, it is possible for a crystal encountering a higher temperature far-field liquid to 

generate a thermal (and therefore, compositional) gradient that would promote crystal growth. 

This hypothesis requires additional simulations that include heat transfer to monitor the 

temperatures of the crystals and far-field liquid separately. 
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2.7 GEOLOGICAL IMPLICATIONS OF THE OPEN-SYSTEM MODEL 

While our CFD-DEM model of intrusion of a melt into an olivine mush is highly simplified, 

we offer some tentative implications of the modeling that may illuminate conditions found in 

natural examples. The primary benefits of using CFD-DEM arise from the resolution of small-

scale crystal-crystal mechanical interactions, and the tracking of individual crystal trajectories 

and response as mixing proceeds. 

The resolution of crystal-scale interactions allows for extreme strain localization and frictional 

behavior to be modeled. It is this behavior that produces the distinct morphology of the mixing 

bowl. And similar processes operating in a mush may produce the frequent observation of 

cryptic internal contacts in plutons, which are often rootless in the sense that they do not 

obviously connect with any through-going externally derived tectonic feature. Rather, these 

features juxtapose elements of a crystal-mush with itself, producing cross-cutting looking 

features but without substantial changes in mode (Paterson, 2009). Hence any external or internal 

process that can produce pressure changes such that some fluidization can locally occur, 

releasing frictional crystal contacts, may produce what is recognized in the field as a contact. 

That contact itself may not have any significance in the sense of magmas that are temporally 

discordant and originate elsewhere. The simulations suggest that in hydrogranular systems like a 

crystal mush, frictional forces are to be expected and strain localization common. Hence models 

which invoke a continuum assumption to describe geological observations are not adequate for 

crystal-rich systems, perhaps to even as low as 30% crystallinity, and describing crystal-rich 

transport with notions taken from simple fluid dynamics as in Glazner, (2014), are inadequate to 

illuminate the diversity of behavior encountered in natural examples. 
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Another feature of the mixing process described above (also see Schleicher et al. (2016)) is 

that new magma injections interact with the mushy reservoir in a pulsating fashion. The fact that 

enclaves are very common in silicic rocks, but their feeder systems are rarely recognized 

suggests that the production of discrete enclaves and the “digestion” or break-up of their feeder 

system happens simultaneously. As seen in Figure 2.2, the pulsating mechanical response of the 

mush bifurcates the incoming magma. If the host magma was silicic and the incoming magma 

mafic and subject to chilling to produce a stable but ductile rind, this process would produce 

enclaves, and erase the distinct dike-like character of the feeder zone as suggested in Figure 2.2g. 

The simulations of crystal chemical response to open-system input, while highly simplified, 

make it clear that caution is warranted when using the crystal record of open-system events to 

infer distinct mixing episodes; the interested reader is directed to Schleicher et al., (2016) for 

more discussion of mixing systematics. Although we consider only a few crystals here as proof 

of concept examples, even in this highly simplified scenario the crystal cargo is incredibly 

diverse. And although we are not in a position yet to offer quantitative statistical guidelines to 

address sample ergodicity in resolving distinct open system events, it is to be expected that 

proximal crystals will likely have discordant reaction time-series. 

2.8 CONCLUSIONS 

The presented simulation illustrates the localized response of a crystal-rich mush to an open-

system intrusion. The emergence of the fluidized mixing bowl confines crystal and liquid mixing 

to this region, while the surrounding mush is relatively unaffected. Little to no intruded liquid 

passes through the mush into the overlying reservoir without some mixing with the resident 

liquid due to vertical transport and overturn in the mixing bowl. The self-similarity of the mixing 

bowl indicates that different intrusion rates or mush characteristics (e.g. liquid and crystal 
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composition, mush height, intrusion width) would generate a similar fluidized region, as long as 

the intruding liquid exceeds the minimum fluidization velocity of the mush. Prolonged intrusion 

could increase the lateral extent of the mixing bowl as crystals erode along the crystal-liquid 

faults, but the overall geometry would persist.  

Although the simulation represents a geologically simple system, we document the mechanical 

and compositional diversity that can arise from an open-system intrusion. The mixing bowl and 

surrounding mush contain a variety of hydrogranular regimes, reflecting the changes in local 

crystal fraction and coordination number. The variation in these regimes leads to non-affine 

crystal and liquid motion within the mixing bowl. Crystals that are proximal at the end of the 

intrusion may have followed different trajectories through the mixing bowl and reacted with a 

variety of liquid compositions. While the tracked crystals in our simulation undergo only 

dissolution when reacting with the intruding liquid, natural systems with variable liquid 

temperatures and compositions could produce a complex crystal cargo, even from a single open-

system event. 

2.9 SUPPLEMENTARY TEXT 

This supplementary text includes details of three supplementary movie files. It also provides 

details of the simulation methods, which include the model theory and governing equations, 

simulation initialization, and code validation.  

2.9.1 Supplementary movies 

Movie 2.1: movie of Figure 2.2, showing the simulation of the open-system intrusion into the 

crystal-rich mush. The left shows the crystals and liquids, and the right shows the corresponding 

crystal volume fraction. 
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Movie 2.2: The same simulated intrusion as Movie 2.1, but the crystals are colored based on 

their coordination number. Values range from one, representing crystals touching only one other 

crystal, to six where crystals are in hexagonal packing. Figure 2.4 shows the average 

coordination number of crystals within the indicated region (see Figure 2.4 inset) through time, 

calculated from this movie. 

Movie 2.3: The same simulation as Movies 2.1 and 2.2, highlighting the crystals monitored 

in Figures 2.5 and 2.6. The three pairs of crystals have been shown with the same colors in these 

figures, but are 2.5 times larger than their actual size to increase their visibility. 

2.9.2 Simulation methods 

2.9.2.1 Multiphase fluid simulation theory and algorithm 

We performed simulations using a modified version of the MFIX (Multiphase Flow with 

Interphase eXchange) numerical algorithm developed by the DoE supported National Energy 

and Technology Laboratory. It simulates multiphase flow by employing discrete element 

method-computational fluid dynamics (DEM-CFD). This is a Lagrangian-Eulerian approach for 

solid (crystal) and fluid (liquid) phases, respectively, where crystal phases are explicitly resolved 

and the liquid phase is treated as a continuum. This method allows us to model hydrodynamic, 

hydrodynamic-to-crystal, crystal-to-hydrodynamic and crystal-to-crystal interactions, that is, the 

so-called 4-way coupling. Collisions, sustained frictional contact, buoyancy, fluid drag and 

interphase momentum transport between phases are directly resolved with the soft-sphere 

approach, using a spring-and-dashpot system to model the contact forces (Cundall & Strack, 

1979). The MFIX DEM-CFD algorithm has been verified and validated (Garg et al., 2012a, 

2012b; Li et al., 2012) including the physical effects of chemical reactions (Li & Guenther, 
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2012); validation is discussed in detail below. Our simulations were run on the Stampede Cluster 

at the Texas Advanced Computing Center (TACC). 

2.9.2.2 Governing equations 

The liquid phase is described with the governing equations for mass and momentum 

conservation: 

    

∂ε lρl

∂t
+∇ ⋅ ε lρlv l( ) = 0

  (2.8) 

   
D
Dt

ε lρlv l( ) = ∇ ⋅Sl + ε lρlg − I lc

  (2.9) 

Here, εl is the volume fraction of the liquid phase, ρl is the liquid density, vl is the liquid phase 

velocity vector, g is the gravitational acceleration, Ilc is a coupling term that involves the transfer 

of momentum between the liquid and crystal phases, and  Sl  is the liquid-phase stress-tensor, 

given by: 

  Sl = −Pl I +τ l

  (2.10) 

   τ l = 2µl Dl + λltr(Dl )I
  (2.11) 

    
Dl =

1
2

∇v l + ∇v l( )T⎡
⎣⎢

⎤
⎦⎥

  (2.12) 

Pl is the liquid-phase pressure,  I  is the identity matrix, and  τ l  is the liquid-phase shear stress 

tensor. µl and λl are the dynamic viscosity and second coefficient of viscosity for the liquid 

phase, and  Dl  is the strain rate tensor. The second coefficient of viscosity is typically small but 

included here for completeness. 
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An advection-diffusion equation is employed to model transport of a scalar attached to the 

liquid phase. This scalar acts as an inert tracer of a compositional field associated with new 

magma and is shared by mixing between the resident and incoming liquids: 

   
∂
∂t

ε lρlCl( ) +∇ ⋅ ε lρlv lCl( ) = ∇ ⋅ Dl∇Cl( )
  (2.13) 

Here Cl is the concentration of the liquid scalar and Dl is the diffusion coefficient for the scalar in 

the liquid phase. The cation diffusivity in basaltic melts is typically of order 10-10 m2/s (Richter 

et al., 2003). This produces a scalar Peclet number of at least order 105 for the most active 

regions of flow for the duration of the simulations. Therefore, the scalar diffusivity was set to 

zero with no noticeable change in the scalar field. Hence modeled variations in the scalar field 

are entirely due to advective mixing and numerical diffusion. We did not quantify the effects of 

numerical diffusion on scalar mixing. 

The crystals in the simulation are Lagrangian particles, with coupled equations solved for 

individual crystals at each time step. The position of the crystals and their linear and angular 

momentum are calculated according to Newton’s Laws:  

    
dX( i) (t)

dt
= V ( i) (t)

  (2.14) 

    
m( i) dV ( i) (t)

dt
= FT

( i) (t) = m( i)g +Fd
( i∈k ) (t)+Fc

( i) (t)
  (2.15) 

    
I ( i) dω ( i) (t)

dt
= T( i) (t)

  (2.16) 

The superscript (i) represents each crystal within the domain, X(i)(t) is the crystal position, V(i)(t) 

is the crystal linear velocity, and m(i) is the ith crystal’s mass.    FT
( i) (t)  is the sum of the forces 
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acting upon the ith crystal,    Fd
( i∈k ) (t)  is the total drag force on the ith crystal in the kth liquid cell, 

and    Fc
( i) (t)  is the contact force from interactions with other crystals. The equation for angular 

velocity,   ω
( i) (t) , includes the ith crystal’s moment of inertia 

  
I ( i) =

m( i)dc
( i)

10
 and the sum of the 

torques    T
( i) (t)  acting on the ith crystal. 

Additional details of the implementation of the spring-and-dashpot model for calculating 

collisional forces used in MFIX can be found in the documentation of the MFIX-DEM algorithm 

(Garg et al., 2012b). The values of the crystal-crystal coefficient of friction, restitution, and 

spring constant required for DEM are 0.1, 0.1, and 105 kg/s2, respectively. The sensitivity of 

model outcomes to the choice of DEM parameters depends on the dynamic regime considered 

(Paulick et al., 2015) although it has been noted particle dynamics in fluidized beds are not very 

sensitive to the choice of DEM contact parameters (Tsuji et al., 1993). The coefficients of 

friction (µf) for non-compacted, olivine crystals in melt have never been measured. Hence we 

assessed the sensitivity of both the quasi-static and fully-fluidized model results to variations in 

contact friction from values of 0.03 to 0.5. Neither the quasi-static results, the formation of 

fluidized granular eddies, nor the mixing characteristics changed significantly over this interval, 

so a value of 0.1 was used.  

For brevity we do not repeat the development of the DEM model in-depth where the restitution 

coefficients and spring constants are defined; the interested reader is directed to Garg et al. 

(2012a, 2012b). The value of the restitution coefficient (e) changes for collisions of particles in a 

viscous liquid, as shown by experimental results (Yang & Hunt, 2006). The authors defined a 

parameter called the binary Stokes number for colliding particles in a viscous liquid:  
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StB =

m* U1 −U2( )
6πµl (rc

*)2

  (2.17) 

where m*=(1/m1+1/m2)-1 and rc
*=(1/r1+1/r2)-1 are the reduced mass and radius of the two 

particles in the collision, respectively, (U1-U2) is the relative approach velocity of the particles, 

and µl is the fluid dynamic viscosity. The restitution coefficient of two colliding particles 

increases with increasing StB. Our simulations generate StB << 1, therefore based on the empirical 

data of particle-particle and particle-wall interaction in a viscous fluid the choice of e = 0.1 is 

appropriate (Yang & Hunt, 2006). 

The values used for the particle stiffness coefficients (kn, kt) are smaller than those of the 

natural materials because using the actual values incurs simulation times that exceed any 

practical limits. However it has been shown in validation studies that reducing the particle 

stiffness coefficients (spring constants) does not produce measureable error, and this is common 

practice throughout the CFD-DEM community (Nakamura & Watano, 2007). A DEM study 

(Coetzee & Els, 2009) demonstrated that particle stiffness coefficients below 105 kg/s2 resulted 

in variable internal friction angle within the granular material. However, for kn values at and 

above 105 kg/s2 and low particle friction coefficients (µf < 0.2), the angle of internal friction did 

not vary as a function of stiffness coefficient. We also performed a sensitivity study of the 

stiffness coefficients and found values that satisfy validation and do not give unrealistic 

compaction of the particle bed. 

2.9.2.3 Simulation initialization and properties 

The simulations are 2.5-D, with the third dimension equaling the width of a crystal. Our 

simulation is for a dike-like body whose long dimension is into-and-out-of the plane of the 

domain, so 3-D edge effects are ignored and the liquid motion is governed by the quasi-2-D 
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geometry. Accurate resolution of both the liquid and crystal dynamics requires that the liquid 

continuum grid-cell size has to be less than 1/19.3 of the domain size, and larger than 1.63 

crystal diameters (Peng et al., 2014). We performed grid resolution studies and found that at a 

grid cell of 2.5 crystal diameters gave stable and reproducible results. The number of crystals is 

well above the minimum required to recover scalable, ensemble-averaged behavior (Ness & Sun, 

2015). 

The injection rate used in the simulation falls within the range of magma ascent rates of 10-4-

101 m/s for volcanoes in a range of tectonic settings as estimated by geochemical, petrographic, 

and geophysical studies (Girard & Stix, 2009; Parks et al., 2012; Rutherford, 2008). Specifying 

the intrusion rate is appropriate for modeling open-system events driven by momentum, rather 

than by thermal or compositional buoyancy. This choice of input style is motived by the common 

occurrence of a complex crystal cargo in mixed magmas, with crystal clots, rapidly created 

disequilibrium features, and evidence for near instantaneous mingling of large volumes of 

magma (Costa et al., 2010; Davidson et al., 2001; Wallace & Bergantz, 2005), all of which 

indicate that many open-system events are strongly forced and can undergo mixing and 

mingling. In addition many open-system events have evidence that the open-system process has 

sufficient energy to overcome viscosity barriers producing mingled magmas with crystal transfer 

(Ruprecht et al., 2012) as well as evidence of crystals transported out of a crystal mush which 

requires fluidization.  

Solid boundaries have a no-slip boundary condition for the fluid and a wall-friction law for the 

crystals, but the majority of fluid and particle motion occurs far from the walls, so boundary 

conditions have little influence on the dynamics.  
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2.9.2.4 Code validation 

The validation of numerical models of dense multiphase mixtures is challenging. This is 

because granular-fluid mixtures are usually opaque, making optical measurements of laboratory 

experiments difficult. Inserting instruments into experimental systems would interfere with the 

flow field by particle-instrument interactions. In addition, the large number of degrees of 

freedom and many-body interactions produce emergent behavior, non-local and non-affine 

deformation such as shear-localization, dilatancy and jamming, all of which are not always 

repeated in duplicate experiments. Laboratory experiments can have multi-modal grain sizes 

with variable density and roughness, which is hard to duplicate in a numerical model for 

validation. Hence validation of numerical models for dense multiphase systems is usually based 

on the statistics of many realizations from an experimental test-bed that recovers the largest 

scales of the dynamics such as the global properties of mixing, pressure-drop, bed-height, or 

other measures of system-scale, granular ensemble behavior. 

Numerous exercises have been previously performed on the MFIX-DEM code as validation 

studies (Li et al., 2012). This has included quasi-static granular flow such as run-out to reproduce 

the repose angle of glass beads, and under more dynamic conditions, simple multiphase shear 

flow, particle segregation and unmixing, as well as fully fluidized states. MFIX-DEM results and 

analog experiments gave very good agreement across the entire dynamic range. However we also 

developed validation exercises. 

As our simulations exemplify a dynamic cycle from static to fully-fluidized, we must 

demonstrate validation for both these states. The Viscous number, Iv, and critical particle volume 

fraction, εc,c, framework (defined in the main text) provide a basis for identifying which dynamic 

regime and validation protocols are appropriate (Ness & Sun, 2015). The Viscous number is zero 

in the initial quasi-static regime where the volume fraction is near critical at the random packing 
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of approximately 0.6. In the fully fluidized regime the Viscous number is variable with values 

spanning more than an order of magnitude and with a variable crystal volume fraction that is 

below the critical crystal volume fraction. 

The validation of the initial quasi-static state where the mixing bowl is first formed was based 

on replicating the fluidization of granular soils (Alsaydalani & Clayton, 2014). Our model 

reproduced the same geometry and conditions as the analog experiments, indicating that our 

implementation of MFIX-DEM is recovering the quasi-static, viscoplastic, dense phase behavior. 

In this regime, crystal collisions are unimportant and are primarily frictional. Instead, sustained 

contact forces produce stress chains and the formation of bounding faults that create the mixing 

bowl. The formation of these bounding faults is followed by the Reynolds’ dilatancy leading to 

the initiation of fluidization. Our simulations capture this process, in accord with experimental 

results (Alsaydalani & Clayton, 2014). 

After the initial quasi-static response that forms the mixing bowl, four time scales compete to 

control the subsequent fluidization: one associated with the shearing from the momentum flux, 

one associated with the relaxation time of the crystal-crystal contacts, one associated with the 

steady forcing of gravity, and one associated with the dissipation from liquid viscosity. For the 

values of the Viscous number from our simulations, which is never greater than unity, the 

fluidized portion of the system is always in a quasi-Newtonian regime. Direct validation for this 

regime is difficult to obtain as no existing experiments satisfied all the scaling requirements for 

verisimilitude. Alternatively, we invoke a previous MFIX validation exercise (Li et al., 2012) of 

a bubbling fluidized bed as a proxy validation for our fluidized regime, as it has body forces and 

non-steady behavior. However it is in a more fluidized dynamic regime where the Viscous 

number is greater, and so the dissipation mechanisms are not going to be weighted the same as 
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they are in our simulations. Nonetheless, that validation exercise, which may in fact be a more 

challenging validation test example than ours, produced excellent agreement with experiments. 

In summary, our implementation of MFIX code meets validation as far as can be determined 

from the existing analog experiments. 
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Chapter 3. TIME SCALES OF CRYSTAL MIXING IN MAGMA 

MUSHES 

Originally published in the journal Geophysical Research Letters 
Co-authored by Jillian M. Schleicher, George W. Bergantz, Robert E. Breidenthal, Alain 
Burgisser 
 

3.1 INTRODUCTION 

The compositional diversity and eruptive behavior of volcanic systems are often attributed to 

magma mixing. An obstacle to understanding the mixing processes is that the crystal cargo is 

complex, as expressed by crystal textures and chemical zoning (Charlier et al., 2007; Davidson 

et al., 2005, 2007; Ginibre et al., 2007; Martin et al., 2010; Wallace & Bergantz, 2005). This 

complexity arises from crystal and melt transfer during repeated open-system reintrusion events 

(Kahl et al., 2011; Perugini & Poli, 2012; Ruprecht et al., 2012), the remobilization of cumulates 

(Klemetti & Clynne, 2014; Passmore et al., 2012), and the mechanical entrainment of antecrysts 

from the magma chamber walls and floor (Davidson et al., 2007). Because of this complexity, 

identifying the time scales over which crystal-rich magmas transition from one spatial 

distribution and thermodynamic state to another by mixing has been elusive.  

Numerous schemes have been employed to quantify mixing in magmas and the Earth’s mantle. 

Mixing has often been described in terms of the evolution of Eulerian scalar field variables, as 

implemented in continuum numerical simulations, often including passive tracers (Oldenburg et 

al., 1989; Tackley & King, 2003; van Keken & Zhong, 1999), analog laboratory experiments 

(Jellinek et al., 1999; Laumonier et al., 2014; Sato & Sato, 2009; Turner & Campbell, 1986), or a 

mixture of dynamic and kinematic elements in a reduced system amenable to chaotic analysis 

(Lyapunov exponents, chaotic advection, and twist maps) (Bergantz, 2000; Coltice & Schmalzl, 
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2006; Farnetani & Samuel, 2003; Ferrachat & Ricard, 1998; Kellogg & Turcotte, 1990; Perugini 

et al., 2012). However, it is an open question if these methods can be applied to multiphase 

systems such as crystal-rich, non-Brownian multiphase mixtures, as they can exhibit nonaffine 

deformation and nonlocal rheology (Bouzid et al., 2013; Lemaître et al., 2009).  

The mixing, or dispersion, of granular mixtures differs from that of pure fluids. (In this study 

we use the terms crystals and particles interchangeably.) The distribution of non-Brownian 

particles in a multiphase mixing system reflects the competition between flow-induced advection 

and particle segregation, the latter a process without parallel in single-phase fluids. Processes 

intended to produce multiphase mixing may instead cause the granular fraction to separate or 

unmix because of particle properties such as density or size; in non-Brownian systems this 

produces metastable, nonuniform particle distributions. Even in dilute, low-Reynolds number 

flow, particles can migrate across streamlines (Guazzelli & Morris, 2012), and particles of low 

(<<1) but different Stokes numbers can be locally separated (Bec et al., 2005). In dense viscous 

suspensions, lubrication forces can make it difficult to initiate the phase-relative motion required 

to mix a suspension (Mutabaruka et al., 2014). Hence, there is no a priori reason to expect that 

the mixing of crystals, being of finite size and mass, can be modeled as tracers, nor that simply 

quantifying the global strain rate within the mixing domain provides a reliable metric of particle 

trajectory and hence the progress of crystal mixing.  

3.2 A MIXING PARADIGM FOR CRYSTAL-RICH MAGMA MUSHES 

The most significant difficulty in understanding crystal-rich magma mixing is the absence of 

real-time observational constraints on the volumes and mechanisms involved. However, recent 

two-dimensional numerical modeling of open-system events in crystal-rich magma mushes using 

discrete element method-computational fluid dynamics modeling (DEM-CFD) provides a 
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template for quantifying mixing, and we employ that template here to further quantify crystal-

rich mixing (Bergantz et al., 2015). The DEM-CFD method explicitly considers frictional, 

collisional, translational, buoyant, lubrication, and viscous particle-particle-fluid coupling at the 

crystal scale, and the mechanical coupling between the resident and intruding liquids and the 

crystal mush.  

Specifically, (Bergantz et al., 2015) demonstrated that at the start of a reintrusion event, a 

crystal mush at random close packing can respond initially as a viscoplastic material when 

intruded from below by a pure melt. The propagation of granular-fluid stresses associated with a 

new intrusion creates localized conjugate failure modes or soft faults, and these delimit a 

fluidized region called the mixing bowl. Figure 3.1a shows the essential features of the mixing 

bowl, which approximates the maximum available volume of the crystal pile available for 

mixing. Following the initial viscoplastic response, portions of the mixing bowl can become 

fluidized and participate in time-dependent overturn and mixing as shown in Figure 3.1b and in 

the supplemental Movie 2.1. 
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Figure 3.1. Two time steps taken from the simulation of an open-system event in basaltic mush. 
(a) An olivine mush with about 40% porosity is shown in side view. Resident basaltic liquid is 
colored black, and new magma, colored white, intrudes from below. The interplay between pore 
pressure and crystal contact properties induces a viscoplastic response that creates a mixing bowl 
and (b) causes overturn, subsequently mixing crystals and melts.  

For crystal mixing to occur within a crystal-rich mush, intruding melt must fluidize settled 

crystals by locally decreasing their packing. At a minimum, this requires that the intruding melt 

enters the crystal mush at a sufficient rate to overcome the weight of the crystals in the bed. This 
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rate is known as the minimum fluidization velocity, Umf. The Umf of a system is typically 

calculated using the Ergun equation (Equation 3.1), with the condition that the drag force on the 

particles from the injected fluid equals the weight of the bed (Equation 3.4): 

   

−ΔP
H0

=αU0 + βU0
2

  (3.1) 

   
α = 150

1− ε f( )2

ε f
2

µ f

dp
2

  (3.2) 

   
β = 1.75

1− ε f( )
ε f

3

ρ f

dp   (3.3) 

   
1− ε f( ) ρ p − ρ f( )g =αUmf + βUmf

2

  (3.4) 

Here ΔP is the fluid pressure drop across a particle bed of height H0, U0 is the superficial 

velocity entering the base of the system, εf is the fluid fraction (porosity), µf is the dynamic 

viscosity of the fluid, ρf is the fluid density, dp is the particle diameter, ρp is the particle density, 

and g is the magnitude of gravitational acceleration. This calculation only considers the pressure 

drop across the bed in a mixture of particles and fluid and does not consider the effect of granular 

forces such as contact friction or geometrical jamming that will impact the true minimum 

velocity for fluidization.  

Following Bergantz et al., (2015), new melt intrudes only a portion of the base of the lateral 

extent of the mush in our simulations. The mixing bowl (Figure 3.1) is tapered and opens 

upward; therefore, the Ergun equation must be modified. The modified calculation of Umf 

accounts for the small injection region relative to the domain size (Cui et al., 2014):  
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Umf = Iw + H0 tanθ( )H0 ρ p − ρ f( )g 1− ε f( )
  (3.5) 

where θ is the angle from the vertical at the edges of the fluidized region (mixing bowl) and Iw is 

the width of the intrusion inlet. This modified equation defines a dimensionless velocity, U* = 

U0/Umf, for the system. In the case that U* < 1, melt enters the domain at a rate lower than Umf, 

moving through the mush as porous flow. When U* > 1, the melt enters at a rate exceeding Umf 

and fluidizes the crystals, as is the case in the presented simulations.  

3.3 CALCULATING OPEN-SYSTEM MIXING IN CRYSTAL MUSH 

3.3.1 Quantifying the mixing of discrete phases 

The quantification of particle mixing has obvious industrial applications, and at least 40 different 

schemes have been proposed to quantify the mixing of solid particles (Poux et al., 1991). In 

almost all cases, a single metric was sought that gives a measure of the goodness of mixing 

throughout the entire active region. The requirements for a general index of mixing should 

(Doucet et al., 2008): (1) satisfy sample size, frame invariance, and ergodicity requirements; (2) 

have a connection to the spatial coordinates to identify the major and minor directions of the 

progress of mixing; (3) have grid independence; and (4) resolve both weak and strong mixing. 

Weak mixing or “color mixing” is defined as a process where there is a progressive loss of the 

spatial correlation of the mixing constituents from an initial distribution as mechanically neutral, 

colored particles. Strong mixing refers to the additional loss of spatial correlation of properties 

usually leading to segregation such as size, density, or shape. It follows that any system mixed in 

the strong sense is also mixed in the weak sense.  
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3.3.2 The initial neighbor distance mixing index 

To quantify the progress of crystal mixing in a magma mush, we employ the initial neighbor 

distance (IND) mixing index (Deen et al., 2010). The IND varies from an initial condition value 

of zero, to a maximum of unity, which is the random, well-mixed state. The IND satisfies the 

requirements listed in Section 3.3.1 above and, unlike the Lacey Index of mixing used by 

Bergantz et al., (2015), does not depend on grid size. In our application of the IND, the 

requirement of ergodicity is automatically satisfied because we evaluate all the particles that are 

available to be mixed (Figure 3.2).  

 
Figure 3.2. The volume (area, for our 2-D simulations) of magma that is mobilized by the 
intruding crystal-free magma depends on the mass flux of the intrusion. Data points represent the 
area fraction of mobilized crystals, A, to mixing bowl crystals, Amb, and are fit with a 
logarithmic function (dashed line). A logarithmic fit is used to give an area fraction of zero as the 
mass flux goes to zero. Inset images display the mobilized crystals for four U* values. Grey 
regions are stationary crystals, black regions are mobilized crystals, and white lines delimit the 
mixing bowl with 60° angles from the horizontal on either side of the intrusion. 
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The IND mixing index is obtained by recording the distances between initially neighboring 

particles at the start of mixing and summing them at every subsequent time step as the particles 

are dispersed. This is done for all initially active particles in the mixing domain. Because the 

kinematics of fluidized magma mushes can be complex, particles move apart and together, which 

produces noise in the initial neighbor distance time series. To reduce this noise, a second time 

series is created consisting of the distance between each particle and a random particle. The final 

IND is created from the ratio of the summed initial neighbor distances:  

 
 

IND =
rij − dp

N part

∑
rik − dp

N part

∑   (3.6) 

Here Npart is the number of particles involved in the mixing calculation (see Figure 3.2), rij is the 

distance between particle i and its initial nearest neighbor particle j, and rik is the distance 

between particle i and its random, initially paired particle k.  

3.4 CHARACTERISTIC CRYSTAL MIXING TIME CALCULATION 

3.4.1 Dimensionless time scale and mixing time calculation 

The choice of a characteristic time scale for dense suspension mixing is not obvious because it is 

controlled by a large number of degrees of freedom reflecting both fluid and granular modes of 

mechanical coupling and dissipation (Marzougui et al., 2015; Ness & Sun, 2015). To first order, 

mixing in our simulations results from vertical transport in the central chimney and large-scale 

overturns within the fluidized region. The proposed scaling properties treat the suspension as a 

single-phase mixture, the Reynolds number (Re) of which is: 
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Re =

ρmixU0
A

2
µmix   (3.7) 

where ρmix is the mixture density (ρmix = εf ρf + (1 - εf) ρp), U0 is the fluid velocity entering through 

the inlet (dike), and A is the area of active fluid and particles defined below. The mixture 

viscosity, µmix, is calculated using the relative viscosity: µmix = µf µrel. We use the relationship 

proposed by Stickel & Powell (2005):  

   
µrel = 1−

1− ε f

ε p,max

⎛

⎝
⎜

⎞

⎠
⎟

−2.5ε p ,max

  (3.8) 

where εp,max is the maximum packing fraction of particles, here chosen as 0.65. We also note that 

evaluating Re at the inlet instead of in the mixing bowl decreases it by a factor of 2.  

In single-phase flows, viscous forces prevail when Re < 1. The vorticity of large-scale vortices 

decays by direct viscous stresses over the entire active area. The time scale for mixing is 

proportional to the rotation time of these large-scale vortices. Their size is constrained by the 

mixing bowl, they are driven by the thrust coming from the inlet, and the bulk viscosity opposes 

resistance to their rotation. Dimensional arguments similar to those used by Breidenthal et al., 

(1990) yield the following characteristic time scale for the viscous regime:  

   
tmix−v =

A
U0

µrel

  (3.9) 

This time scale can be thought of as the travel time across the active area (A) multiplied by the 

bulk viscosity contrast of the resident and injected magmas.  

This viscous time scale is ultimately determined only by the thrust at the inlet and the active 

area of fluid and particles. The logarithmic relationship between area and U* (and hence, U0, for 

systems with the same Umf) discussed below, means that U0 controls tmix-v: higher values of U0 
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result in lower tmix-v. The four presented simulations start with the same initial bed packing and 

fluid viscosity, so the relative viscosity term is constant. Therefore, a second viscous mixing 

timescale removes the µrel term from Equation 3.9, and includes only the ratio of the square root 

of the area and the intrusion velocity. 

In single-phase flows with Re > 1, mixing can be simply ascribed to just two scales, the Taylor 

and the Batchelor layers (Broadwell & Breidenthal, 1982; Broadwell & Mungal, 1991; 

Dimotakis, 2005). These are the diffusive spatial scales associated with the largest and the 

smallest eddies in the flow. As Re increases, the sizes of the largest and smallest eddies, as well 

as their diffusive scales, spread further apart. At a Re of order O(103) in a single-phase system, 

there is an increase in molecular-scale mixing at the mixing transition. The characteristic time 

scale for mixing in the inertial regime is given as (Breidenthal et al., 1990): 

   
tmix−i =

A3/2ρmix

ρ fU0
2Iw   (3.10) 

The characteristic mixing time can be thought of as the ratio of the mass of material in the active 

area to the injection thrust.  

Below the mixing transition, the flow is not self-similar and there is no well-defined size for 

the small-scale vortices, so there is essentially no Batchelor layer. Large-scale motions control 

mixing in a single- and condensed-phase system and particle dispersion in a two-phase system. 

Non-Brownian particle dispersion differs from the mixing of a scalar field variable in that it does 

not depend on a progressive reduction in scale by repeated stretching. Hence, global strain rate 

may not provide a reliable proxy for the progress of dispersion and multiphase mixing. As a 

result, mixing and dispersion below the mixing transition do not depend on Re.  
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While Re characterizes the dynamics of the motions within the active area, the ratio tmix-i/tmix-v 

characterizes the respective effectiveness of inertial and viscous forces in advancing the actual 

mixing process by large-scale vortices. Re of our simulations straddle unity and tmix-i/tmix-v is well 

below unity. This suggests that while tmix-v is the most appropriate choice in our runs to calculate 

the dimensionless times as t* = t/tmix-v, the role of inertial forces cannot be neglected. This is 

reflected by the fact that using tmix-i instead of tmix-v to calculate t* collapses the data equally 

well. The second viscous time scale, tmix-v without the viscosity ratio, also collapses the data. The 

range of t* values for this alternative viscous time scale for falls between 0 and ~10, indicating 

this may be a more appropriate time scaling. 

 

 
Figure 3.3. The initial neighbor distance (IND) as a function of dimensionless time (t*) for four 
intrusion rates. Time is nondimensionalized by the characteristic mixing time given in Equation 
3.9. An exponential curve (red dashed line) is fit to the IND curves for three U* intrusion rates. 
The black curve is not included in the fit; see text for discussion. White circles with black 
outlines display the times and IND values used in Figure 3.4. 
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The four simulations shown in Figure 3.3 have Re varying from approximately 0.5 to 5. This 

variation is associated with the progressive onset of pulsing and active bifurcation of the central 

chimney (Figure 3.1b). Pulsing is created by the interplay between the collapse of one margin of 

the mixing bowl into the base of the fluidized core, followed by the subsequent buildup of 

pressure from continuously supplied new melt that is then released as a pulse that rises in the 

central chimney. This pulse undergoes internal circulation and induces small-scale granular 

vortices described in previous simulations (Bergantz et al., 2015). However, the appearance of 

these new, smaller scales of overturn and fluid motion do not seem to produce significant 

additional crystal separation. It follows that the particle dispersion is essentially independent of 

Re and of tmix-i/tmix-v, for all U* > 1 given that the range of these two dimensionless quantities in 

magmatic applications are unlikely to exceed O(102) and O(1), respectively. In summary, 

Equation 3.9 works because the primary contributions to the increasing value of the IND are 

vertical transport in the chimney, lateral transport at the mush-reservoir interface, and large-scale 

circulation in the mixing bowl, which are the dominant mechanisms of dispersion. Simply 

indexing the crystal mixing to the strain history may misrepresent the time scales of crystal 

separation. 

Some care is required to estimate the area term, A. Although the mixing bowl (Figure 3.1) 

approximates the spatial scale of the initial plastic response of the mush, the entire mixing bowl 

may not be subsequently fluidized. Hence, the area term must be adjusted to reflect the portion of 

the mixing bowl that is active or unlocked. Figure 3.2 provides an empirical estimate of the 

active area as a function of the input velocity and the bed characteristics  

   

A
Amb

= 0.187 ln U *( ) + 0.481
  (3.11) 
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The logarithmic relationship chosen for A/Amb and U* recovers the requirement that the active 

area of particles approaches zero as the input velocity decreases to zero.  

We performed four numerical experiments at different values of U* and calculated the 

characteristic mixing response using the IND method. All experiments used the same geometry 

and boundary conditions as shown in Figure 3.1 but with different values of the input mass flux. 

The results are shown in Figure 3.3 where the IND as a function of scaled time is shown. 

Although the experiments were not terminated at the same value of the IND, they all show an 

exponential approach to mixing; the three experiments with the lowest U* exhibiting a 

statistically significant collapse to a common exponential relationship (Figure 3.3). The black 

curve, for a U* of 12.7, was not included in the exponential relationship as it shows a distinctly 

different trajectory. Despite having a greater input velocity and hence thrust, the U* = 12.7 

experiment shows a delayed mixing time scale compared to the others. Examination of the 

simulation reveals that the U* = 12.7 is so vigorous that some particles in the active region are 

carried completely out of the mixing bowl, where they are deposited and so removed from any 

further mixing, yet are still included in the IND calculation. While this process contributes to the 

global redistribution of crystals, it produces an apparent delay in the progress of mixing as 

defined by the IND metric.  
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Figure 3.4. (a) The Kernel density estimation (KDE) of the distribution of distances between 
crystals and their initial neighbors for the U* = 9.26 intrusion for IND equal to 0.63 and 0.9. The 
KDE of the distances at the initial time (IND = 0) has a peak around 1, as many crystals are 
within one crystal diameter of their initial neighbor. Continued intrusion disperses the crystals, 
lowering the peak, and extending the tail of the curve to greater particle separation and hence 
degree of mixing. (b) Initial neighbor distances of particles considered for the IND calculation at 
an IND of 0.63. (c) Initial neighbor distances of these same particles at an IND of 0.90. Blue 
regions within the mixing bowl in (b) and (c) are crystals entrained from the walls, and not 
included in the IND calculation.  

While the IND provides a single measure for the goodness of mixing of active particles within 

the entire domain, there will be a distribution around this value, with some portions better mixed 

than others. We illustrate this in Figure 3.4a, which is the kernel density estimation, KDE, of the 

particle pair distances at two points in time. The KDE was constructed using the adaptive kernel 

density estimator, based on linear diffusion as proposed by Botev et al., (2010), which avoids 

uncertainties associated with KDE bandwidth selection (Rudge, 2008; Vermeesch, 2012). Two 

curves are shown for the simulation with U* = 9.26 representing IND values of 0.63 and 0.90, 

which are also shown as small circles in Figure 3.3. Figure 3.4b and 3.4c illustrate how the 

particle spacing distribution changes as a function of the IND, with a noticeable change going 

from an IND of 0.63 to 0.90. The KDE and particle spacing distribution for IND equal to 0.63 

(Figure 3.4a and 3.4b) show that a significant number of particles are still in close proximity to 
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their initial neighbor. A practical implication of this is that it would take numerous geological 

samples to adequately characterize the diversity of mixing conditions that coexisted during the 

open-system event. When the IND equals 0.9, Figure 3.4a and 3.4c show that the distance 

between initial particle pairs is distributed more uniformly and is much greater. Nonetheless, 

even at an IND of 0.9, some elements of the system remain relatively unmixed.  

3.4.2 Applications to natural systems 

Here we exemplify the application of the IND framework to a natural example at two values of 

the input mass flux. Consider a 500 m thick crystal mush, composed of basaltic melt and olivine 

crystals, as might be found in an ocean island, mid-ocean ridge or a composite system like 

Iceland. We use a melt viscosity and density of 2 Pa s and 2650 kg/m3, respectively. The crystal 

density is 3300 kg/m3 and diameters are 0.002 m, creating an overall mush porosity of 0.4. If a 

crystal-free basaltic intrusion enters the mush from a meter-wide dike, the minimum fluidization 

velocity of the system is 0.005 m/s. Using the relationships described above, an intrusion 

entering at U* = 9.26 would fluidize a volume of ~130,000 m3 per meter of dike length normal to 

the mixing bowl span. The crystals in the active area would achieve an IND mixing value of 0.9 

after 20 h of sustained intrusion, based on the viscous time scale given in Equation 3.9. If the 

inertial time scale is used, it increases this duration by a factor of 8. The amount of new melt that 

would have come into the system is ~3400 m3, which is ~2.6% of the volume activated by the 

intrusion. This is a mass flux rate of approximately 0.0015 km3/yr, roughly two orders of 

magnitude lower than the long-term rate calculated for the Kilauea system (Poland et al., 2012) 

and about one order of magnitude lower than that estimated for the Hekla volcano in south 

Iceland (Geirsson et al., 2012). If the input dike length is greater, the corresponding input 
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velocity will be lower to match the same mass flux, and the U* = 2.11 may provide a better 

estimate of the input velocity and fluidization potential. Under these conditions it will take 

approximately 73 h of continuous magma input to reach an IND of 0.9. For these same 

conditions, the viscous time scaling without the viscosity ratio gives IND = 0.9 mixing times of 

approximately 13 h and 2 days for U* = 9.26 and U* = 2.11, respectively. Given the 

geophysically constrained estimates of mass flux into basaltic systems, we conclude that the 

active crystal cargo of a natural basaltic crystal mush will likely be well mixed during reintrusion 

events on a time scale of days to tens of days (Costa et al., 2010; Kahl et al., 2015). 

3.5 SUMMARY AND CONCLUSIONS 

Crystal mixing in basaltic magma mushes was quantified by introduction of the initial neighbor 

distance (IND) method. The IND method satisfies many of the criteria for a robust metric of 

mixing and provides a global measure of the loss of spatial correlation from an initial distribution 

of crystals in the crystal-rich mush. The IND was applied to a model open-system reintrusion 

event in a basaltic magma chamber, and two characteristic mixing time scales were introduced 

that allow for the estimation of the time to mixing under a variety of geologically relevant 

conditions. A kernel distribution estimation was employed to illustrate the distribution of local 

crystal segregation scales around the global IND value. Application to natural basaltic systems 

reveals that mixing of a basaltic crystal mush can occur within days with geologically inferred 

magma intrusion rates.  
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Chapter 4. MUSH MOBILIZATION AND MIXING IN THE 1868 

ERUPTION OF MAUNA LOA, HAWAII 

4.1 INTRODUCTION 

4.1.1 Crystal populations 

Magmatic systems typically contain diverse populations of crystals formed and brought 

together by processes such as intrusion, disaggregation of cumulates, mixing, and assimilation of 

previously crystallized material (Cooper et al., 2016; Kahl et al., 2011; Moore et al., 2014; 

Viccaro et al., 2016). Each population of crystals reflects the chemical, mechanical, and 

thermodynamic conditions of their growth and residence within a magmatic system (Jerram & 

Martin, 2008; Streck, 2008), and distinguishing the conditions that formed the populations helps 

to infer how magma moves through the crustal magmatic system (Gaffney, 2002; Kahl et al., 

2011). Plutons integrate tens of thousands to millions of years of storage (Barboni & Schoene, 

2014; Cooper, 2015; Cooper & Kent, 2014) that are punctuated by magmatic processes occurring 

on timescales as short as days to months (Barboni & Schoene, 2014; Cooper et al., 2016; Cooper 

& Kent, 2014; Kahl et al., 2011; Moore et al., 2014). The large timescales involved in pluton 

assembly can hinder the identification of individual processes that generate populations of 

crystals, though magmatic structures which form during late-stage mixing and intrusion events 

can be preserved (Paterson, 2009). Volcanic eruptions sample the near-instantaneous state of a 

magma reservoir, and erupted crystals contain records of magmatic processes from a range of 

timescales. Crystal growth, dissolution, and diffusion can record (or erase) the sequence of 

magmatic processes that occurred throughout the existence of the crystal (Cooper, 2015; Costa et 
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al., 2010; Kahl et al., 2011; Moore et al., 2014; Ruprecht et al., 2008). The remainder of this 

study will focus on volcanic products and their record of magmatic processes. 

Crystal populations are defined by a combination of textural characteristics and crystal 

compositions which provide insight into the origin and history of the populations (Jerram & 

Martin, 2008; Streck, 2008). Textural characteristics of crystals include the size distribution of 

crystals (Jerram & Martin, 2008; Marsh, 1988, 1998) and the morphology of crystals (e.g. 

resorption features, skeletal crystals, kink banding, clustering) (Helz, 1987; Jerram et al., 2003; 

Welsch et al., 2013). Compositional populations include the mineralogy in the samples (e.g. 

(Neave et al., 2014; Passmore et al., 2012); the major, minor, trace elemental, and/or isotopic 

composition of crystals (Davidson et al., 2007; Hansen & Grönvold, 2000; Thomson & 

Maclennan, 2013); the ages of crystals (Cooper, 2015; Eppich et al., 2012); the compositions of 

melt inclusions within the crystals (Danyushevsky et al., 2004; Tuohy et al., 2016; Wallace et 

al., 2015); and the type of chemical zoning (Kahl et al., 2011, 2013, 2015; Lynn et al., 2017; 

Moore et al., 2014; Viccaro et al., 2016; Wallace & Bergantz, 2002, 2004, 2005). These 

populations reflect the stages of transport and storage experienced by the crystals, and thus can 

be used to infer magmatic conditions and processes in the reservoir prior to eruption. 

Multiple populations of crystals within a single eruption indicate that multiple magmatic 

environments contributed to the crystal assemblage. A magmatic environment, as in Kahl et al., 

(2011), is defined by the thermodynamic, chemical, and mechanical conditions within a 

magmatic reservoir. Distinct magmatic environments can exist as physically separate reservoirs 

throughout the crust, or as regions within the same reservoir with thermal, chemical, and crystal-

fraction variability. Identifying the conditions within magmatic environments (e.g. depth, 

pressure, temperature, composition) helps to infer how magma moves through the reservoir 
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(Gaffney, 2002; Kahl et al., 2011, 2013, 2015; Tuohy et al., 2016). An important caveat is that if 

a crystal passes through an environment or experiences a magmatic process that occurs in a 

timescale too short to be recorded by the crystal, no record of this event or environment will exist 

(Ruprecht et al., 2008). Additionally, crystal dissolution can erase the record of a magmatic 

environment; this could be recorded as a sharp break in compositional zoning through the 

crystal. Previous studies by Kahl et al. (2011, 2013) and Viccaro et al. (2016) used diffusion 

modeling for different crystal populations to estimate timing of magma transfer through 

magmatic environments, and found these timescales correlated with geophysical and degassing 

monitoring data. These results indicate it is possible for crystals to record residence in and 

movement between multiple magmatic environments prior to their eruption. 

We studied olivine crystals from a simple example of an erupted mush, the 1868 picrite 

eruption of Mauna Loa. The goals of this study are to determine whether there are distinct 

magmatic environments sourcing the Southwest Rift Zone (SWRZ) of Mauna Loa by identifying 

crystal populations in a single eruption, and to understand mobilization and mixing processes 

that occurred within the reservoir prior to the eruption. The focus of many previous studies of 

Mauna Loa lavas has been on geochemical and isotopic variation in whole-rock compositions to 

investigate the source of magma (e.g. Cohen et al. (1996); Kurz et al. (1995); Rhodes (1983, 

2015)). Long-term, major-element homogeneity of Mauna Loa whole-rock samples has been 

interpreted as the result of a frequently replenished, shallow summit magma reservoir that feeds 

both the summit caldera and rift zones (Rhodes, 1983, 1988). However, to understand the 

conditions of mobilization and mixing within the rift reservoir system, it is necessary to also 

study samples at the crystal scale. A number of previous Mauna Loa studies, primarily from drill 

cores, submarine flows, and rift eruptions, looked at variation in olivine cores (Figure 4.1). The 
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range of core compositions for Mauna Loa olivine falls between Fo80-Fo90, and NiO 

concentrations between 0.3-0.6wt%. The studies that measured zoning found most olivine 

crystals have normally zoned rims, with only rare reversely zoned crystals (Baker et al., 1996; 

Garcia et al., 1995; Garcia, 1996). In this study we identify crystal populations from the 1868 

eruption, distinguished by their composition and variety of Fo and NiO zoning. 

 

 
Figure 4.1. NiO-Fo plot showing ranges of previously analyzed olivine crystals from Mauna Loa. 
Data are from: Baker et al. (1996); Gaffney (2002); Garcia et al. (1995); Garcia (1996); Rhodes 
(1995); Sakyi et al. (2012); Sobolev et al. (2007, 2011). 
 

4.1.2 Mauna Loa, Hawaii, 1868 

The Mauna Loa picrite eruption of 1868 occurred at the end of a two-week sequence of 

tectonic and volcanic events. Seismicity began on March 27, coinciding with a small eruption at 

Mokuaweoweo, the summit caldera of Mauna Loa (Hitchcock, 1911). Thousands of earthquakes 

occurred during the following days, culminating on April 2 with the largest earthquake in 
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recorded Hawaiian history, estimated at magnitude 7.9 (Figure 4.2a). The earthquake generated a 

tsunami that inundated the southeast coast of the island along Kilauea, and a three-mile long 

landslide that occurred near Wood Valley. 

On April 6, pumice and ash erupted at Kahuku along the SWRZ, and on April 7, lava erupted 

from vents between 600-900m in elevation (Rhodes, 1995).  The eruption lasted five days, with 

fountains of lava at the main vent (Hitchcock, 1911). The flow began as pahoehoe and traveled 

more than 18 km to the ocean in four hours, creating the Puu Hou littoral cones. A steep cliff 

bisected the flow, and accounts report the initial pahoehoe was followed by a’a moving across 

the pastureland to the east of the cliff (Hitchcock, 1911). In total the eruption produced 0.123 

km3 of lava (Lockwood & Lipman, 1987). 

The 1868 picrite was an unusual eruption in Hawaiian recorded history. It occurred during a 

period of high-magma flux to Mauna Loa between 1843-1887 (Lockwood & Lipman, 1987), 

which produced primitive and picritic rift and radial vent eruptions in 1852, 1855, 1859, and 

1868 (Rhodes, 1995; Rhodes & Hart, 1995; Riker et al., 2009). These eruptions also had high 

quenching temperatures for Mauna Loa subaerial lavas, some exceeding 1200°C (Riker et al., 

2009). Lavas erupted during this period contained decreased incompatible element 

concentrations, possibly because the high magma flux prevented them from stalling in the 

shallow reservoirs where magma normally would cool and fractionate before eruption (Rhodes & 

Hart, 1995). Incompatible element concentrations gradually returned to higher levels beginning 

in 1899 (Tilling et al., 1987), coinciding with a declining magma supply rate (Lockwood & 

Lipman, 1987; Rhodes & Hart, 1995). This shift in magma supply could represent the end of the 

period of numerous rift-zone eruptions on Mauna Loa, and indicate a return in the future to 

increased summit activity (Lockwood, 1995). The 1868 eruption immediately followed the 
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magnitude 7.9 earthquake, which was the result of slip along the décollement at 9 km depth in 

the crust (Wyss, 1988). It is possible that the earthquake disrupted the Mauna Loa magmatic 

system, draining the magma stored in the summit reservoir into the SWRZ which allowed the 

deeper, olivine-rich magmas to erupt (Tilling et al., 1987; Walter & Amelung, 2006). However, a 

similar picrite erupted in 1852 from the Northeast Rift Zone, making it likely that both picrites 

erupted as the result of tapping into deeper, olivine-rich magmas during the period of increased 

magma supply (Rhodes, 1995). These unique aspects of the 1868 eruption could provide 

evidence for conditions within parts of the Mauna Loa reservoir system that would not normally 

be active during typical subaerial or rift eruptions, thus making it an ideal flow to investigate 

reservoir conditions and magma transport. 

4.2 SAMPLES AND METHODS 

4.2.1 Sample locations 

Samples were collected from the upper parts of the flow (Figure 4.2), from deposits of both 

pahoehoe and a’a. Samples included lava with low (<10%) olivine contents (referred to as 

“basalts”), lava with high (30-40%) olivine contents (“picrites”), one tephra sample, and lavas 

containing xenoliths (which were not analyzed in this study).  

4.2.2 Modal abundances 

Olivine modal abundances for 22 samples were determined using stitched images from a 

petrographic microscope. Olivine crystals larger than those in the groundmass were traced in 

each image using the vector graphics software Inkscape. Modal abundances of olivines, vesicles, 

and groundmass (which included rare plagioclase and orthopyroxene crystals that were larger 

than the groundmass) were determined using the image processing software, ImageJ. Olivine 
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contents are reported as dense rock percentages, with only areas from olivine and groundmass 

considered. 

 

 
Figure 4.2. Map of the 1868 southwest rift eruption of Mauna Loa, Hawaii. a) Map includes a 
portion of Mauna Loa and Kilauea volcanoes and their summit calderas. Inset image shows the 
Hawaiian Islands, and the location of the map. The SWRZ of Mauna Loa is labeled with a 
dashed line, and the 1868 eruption is shown in grey. The star shows the epicenter of the 
magnitude 7.9 earthquake that preceded the eruption, and the circle shows the location of the 
landslide that resulted from the earthquake. b) The lava flow field outline with sample locations; 
purple dots represent samples with less than 10% olivine crystals (basalts), and green dots 
represent samples with 30-40% crystals (picrites).  
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4.2.3 X-ray Fluorescence 

Twenty-two samples were analyzed using X-ray fluorescence (XRF) at the University of 

Massachusetts, Amherst with a Philips PW2400 sequential spectrometer. Whole rock 

abundances of major and trace elements (Nb, Zr, Y, Sr, Rb, Pb, Ga, Zn, Ni, Cr, V, Ce, Ba, La) 

were measured using methods in (Rhodes & Vollinger, 2004). 

4.2.4 Electron Microprobe 

Crystals from 12 samples were analyzed using a five spectrometer JEOL Hyperprobe JXA-

8500F at the University of Hawaii. Point analyses were taken with a 20kV accelerating voltage 

and a 200nA beam current. Peak counting times were 60 seconds, and backgrounds were 

measured for 30 seconds on each side of the peaks. Analyses include Si, Mg, Ca, Ni, and Fe. 

Crystals were analyzed at the core and rim with point analyses, and 1-7 line scans per sample 

were taken. Prior to measuring the line scans, backscatter electron (BSE) images of the crystals 

were analyzed using ImageJ to determine preliminary zoning patterns; this avoided spending 

unnecessary time measuring constant compositional plateaus in the cores. The beam diameter for 

both the points and line scans was 2 µm, and the line scans were taken with points spaced 

between 5-7 µm. Line scans were taken perpendicular to crystal faces, and locations were chosen 

away from corners. BSE images were analyzed using ImageJ to avoid sloping zoning profiles 

due to sectioning effects (Shea et al., 2015a). Repeat analyses on San Carlos and Spring Water 

standard olivine were measured after every two to three line scans or sets of point analyses. SiO2 

and MgO analyses were corrected based on peak drifts measured from analyzing the standards, 

and these corrections were applied to line scan measurements taken between standards. Two-

sigma precision values from repeat analyses of the San Carlos analyses are: 0.47wt% for SiO2, 

0.32wt% for MgO, 0.17wt% for FeO, 0.008wt% for NiO, and 0.009wt% for CaO. Data are 
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presented with error bars relating to the day in which the measurements were made, so they may 

appear smaller than the overall standard analyses.  

4.3 RESULTS 

4.3.1 Whole rock 

Bulk rock compositions follow an olivine-control trend for both major and trace elements 

(Rhodes, 1983, 1995), and fall along major element trends previously established in samples 

representing over ~600kyr of Mauna Loa magmatic history (Rhodes, 2015). Two varieties of 

samples are distinguished by their olivine content (Figure 4.3). We will refer to these as basalts, 

with olivine contents lower than 10% and whole rock Mg# ~60-65, and picrites, with olivine 

contents between 30-40% and whole rock Mg# ~77-81 (where Mg# = 100 (Mg2+ / (Mg2+ + 

Fe2+))). The basalts and picrites are not spatially segregated (Figure 4.2), with the exception of 

low-olivine a’a lobes to the east of the cliff. This part of the flow was reported as occurring later 

in the four-day eruption (Hitchcock, 1911).  

 
Figure 4.3. Whole rock Mg# (100 * (Mg2+ / (Mg2+ + Fe2+))) against olivine % in samples. Purple 
and green dots represent basalts and picrites, respectively. 
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Olivine crystals are subhedral to euhedral in samples of both the basalts and picrites, present as 

both single crystals and clusters. Crystals range from <1mm to 1cm in their longest dimension. 

The basalts contain plagioclase and orthopyroxene crystals that are larger than the groundmass. 

Additional information on these mineral phases can be found in (Rhodes, 1995).  

4.3.2 Microprobe 

4.3.2.1 Core and rim analyses 

Of the twelve samples analyzed by microprobe, four were basalts and eight were picrites. The 

measured olivine core compositions fall between Fo78.2-Fo89.5 (Fo# = 100 (Mg2+ / (Mg2+ + Fe2+))), 

with little distinction between core ranges for the basalts (Fo78.2-Fo89.2) and picrites (Fo80.5-

Fo89.5). Both the basalt and picrite core composition distributions have peaks at ~Fo89 and have 

similar compositions as those from previous studies (Figure 4.4). The slightly higher Fo values 

of the previously studied olivines could be the result of more primitive magmas sourcing 

submarine eruptions (Garcia et al., 1995). Compared to whole rock compositions, olivine cores 

in the basalts tend to have values around the equilibrium field for a partition coefficient of KD = 

0.345±0.018 (Matzen et al., 2011), both above and below the range expected for crystals in 

equilibrium with the whole rock compositions (Figure 4.5). The whole-rock Mg# for the basalts 

and picrites fall in distinct groups, with basalt values between Mg# = 59.9-64.8, and picrite 

values between Mg# = 76.5-80.5. The olivine compositions that would be in equilibrium with the 

picrite whole rock Mg# values are higher (~Fo90-Fo92) than any crystal analyzed in this study. 

Instead, the picrite olivine cores have Fo values below the equilibrium field, indicating these 

high Mg# samples are the result of olivine accumulation. 
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Figure 4.4. Probability distribution functions of Fo# in olivine cores. a) Olivine cores from 53 
crystals from the 1868 eruption of Mauna Loa (this study). Cores are the average plateau 
compositions of crystals. Crystals from basalt samples are shown in purple, and those from 
picrites are shown in green. Bars representing picrites and basalts are stacked, not overlapping. 
b) Olivine core compositions from previous studies of Mauna Loa olivines; see references in 
Figure 4.1. 

 

The range of olivine rim compositions is between Fo72.5-Fo85.2. Rim values are only considered 

from crystals for which the final points in each line scan had acceptable totals. While we do not 

have glass compositional analyses, previous studies by Rhodes (1995) and Wilkinson & Hensel  

(1988) include microprobe analyses of glass and groundmass in samples from the 1868 eruption. 

Rims from this study with concentrations greater than Fo82 fall in the equilibrium range (Fo81-

Fo85) calculated using KD = 0.345±0.018 (Matzen et al., 2011) for these glass and groundmass 

compositions. Crystals in this study with rims lower than Fo80 are spread between Fo72-Fo79, and 

do not have a clear distribution peak to indicate an equilibrium melt composition. Defining the 

true rim of a crystal can be difficult, so it is possible that “rim” analyses actually sample 

somewhere in the zoned part of the crystal.  
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Figure 4.5. Olivine core Fo# compositions (average core plateaus) plotted with their 
corresponding sample whole rock Mg#. Dashed black lines represent equilibrium ranges between 
olivine and whole rock compositions, with KD = 0.345±0.018 (Matzen et al., 2011). Purple and 
green bars at the top of the plot represent range of whole rock compositions for all analyzed 
samples of basalts and picrites, respectively (the vertical position does not imply an equilibrium 
Fo#). Symbols distinguish the six zoning types found in olivine crystals; see text for additional 
details.  
 

 
Figure 4.6. Measured NiO wt% plotted against Fo# in olivines from the 1868 eruption (purple 
triangles and green squares symbols for basalts and picrites, respectively) and Mauna Loa 
olivines from previous studies (black circles); see references in Figure 4.1. Filled symbols 
represent core analyses, and open symbols are rims. All analyses from literature data are plotted 
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as filled symbols, unless specified as rims. Core analyses are average plateau compositions, and 
rim points only include analyses that had acceptable totals at the crystal rims. Error bars from 
this study are smaller than the symbol size.  

 

Olivine crystals from the 1868 eruption have core and rim compositions consistent with the 

trends of previous studies of Mauna Loa olivine (Figure 4.6). We focus on NiO-Fo relationships 

for this study, but our CaO-Fo and SiO2-Fo relationships also correspond with those of previous 

studies. The highest Fo# olivine crystals from the 1868 eruption have lower NiO compositions 

than some of the crystals from previous studies. These lower NiO values could reflect 

differences in the parental liquid compositions; Lynn et al., (2017) demonstrated variations of 

~0.1wt% NiO in olivine can occur from changes of ~100 ppm Ni in the parental melt; however, 

they went on to demonstrate that this variation for high Fo olivine (>Fo88) is more likely caused 

by variations in parental melt SiO2 contents, which affect melt polymerization and nickel 

partition coefficients. At lower Fo values (<Fo88), NiO variation in olivine is due to magmatic 

processes including fractional crystallization, mixing, and diffusion (Lynn et al., 2017). Most 

previously analyzed olivine from the SWRZ have similar ranges of NiO for given Fo values as 

those in this study (Figure 4.1); the higher NiO olivine crystals originating from other parts of 

Mauna Loa could experience different magmatic conditions than those erupting from the SWRZ.  

4.3.2.2 Crystal zoning 

Olivine crystals in both the picrites and basalts exhibit normal and reverse zoning of Fo# 

(Figure 4.7). Normally zoned crystals have core compositions between Fo87.1-Fo89.5, with the 

exception of three normally zoned basalt crystals with core compositions below Fo87 (Figure 

4.5). Zoned crystals have wide homogeneous core plateaus (100s of microns up to >1mm), and 

narrow zoned rims ~50-100 microns from the edge of the crystal. Reverse zoning occurs with an 

increase in Fo relative to the core plateau, and then a drop to Fo values equal to, or lower than, 
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the core plateau composition at the outermost rim, making a hook-shape profile. Reverse zoning 

exists in only three of the nineteen basalt crystals analyzed. Previous studies of Mauna Loa 

olivine found reverse Fo zoning to be rare, and typically less than 1 Fo-unit (Baker et al., 1996; 

Garcia et al., 1995; Garcia, 1996), but olivine crystals erupted from Kilauea do commonly 

exhibit reverse zoning (Helz, 1987).  Reversely zoned crystals in this study have an average Fo 

difference of 1 Fo-unit from the core plateau to maximum Fo, though the range of differences for 

all analyzed crystals is between 0.2-3.8 Fo-units. 

         
Figure 4.7. Examples of the 6 zoning varieties defined by olivine Fo# (blue circles) and NiO 
wt% (red diamonds) compositions; see text for more details. Note the changes in scales for all 
values and distances. Points within the traverses with unacceptable totals are not shown, and 
error bars for analyses are smaller than the size of the symbols.  
 

We also consider NiO zoning in the olivine. Nickel, a compatible element in olivine that 

substitutes for iron and magnesium in the olivine crystal lattice, often corresponds to Fo zoning 

in olivine. We track both Fo and NiO for the crystal traverses, using the variety of zoning and the 

lengths of the zoned rims to define six main zoning populations (Figure 4.7, Table 4.1). All but 

nine analyzed crystals have zoning patterns that match for Fo and NiO (i.e. both components 

show normal or reverse zoning) (Figure 4.7a-d). We define the length of the zoned rim for a 
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crystal as the distance from the rim where variation from the mean core plateau composition of 

Fo or NiO exceeds the analytical error. We frequently see agreement between the plateau lengths 

for Fo and NiO in crystals with matching zoning varieties (Figure 4.7a,c). However, the lengths 

of these plateaus can be decoupled for Fo and NiO in both normally and reversely zoned crystals 

(Figure 4.7b,d). This decoupling is likely due to the differences in diffusion coefficients for Fe-

Mg and Ni in olivine (Chakraborty, 2010). Nickel diffuses more slowly in olivine than Fe-Mg 

diffusion, which is consistent with the smaller rims in NiO than Fo (Figures 4.7b,d). The 

remaining nine crystals have mismatched zoning patterns for NiO and Fo, with one component 

normally zoned and the other reversely zoned (Figure 4.7e,f).  In later discussion, these six 

zoning populations will be referred to as Types 1-6 (Table 4.1). All six types occur in crystals 

from both basalts and picrites, except Type 3, which only occurs in picrite crystals.  

Table 4.1. Description of six zoning population types 

Type Fo Zoning NiO Zoning Fo-NiO coupling Percent of analyzed 
olivine crystals 

1 Normal Normal Coupled 22.6% 
2 Normal Normal Decoupled 35.8% 
3 Reverse Reverse Coupled 7.5% 
4 Reverse Reverse Decoupled 17.0% 
5 Normal Reverse Decoupled 5.7% 
6 Reverse Normal* Decoupled 11.3% 

*Zoning is normal or unzoned (the crystal has a constant composition throughout the traverse, 
within analytical error). 

 

These populations are primarily defined by the variety of zoning in NiO and Fo, but the zoning 

makes up only the outermost 50-100 microns of the crystal. The cores are much wider, and likely 

preserve conditions closer to those in which the crystals grew and/or were stored. Most of the 

normally zoned crystals with matching NiO zoning (Types 1 & 2) form a cluster at high Fo and 

NiO compositions (Figure 4.8), and all crystals with normal Fo zoning (Types 1, 2, & 5) contain 

cores with similar Fo values (Fo85.7-Fo89.5). The cores of reversely zoned crystals (Types 3, 4, & 
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6) have a larger range (Fo78.2-Fo87.5) (Figure 4.8). Distributions of core NiO values do not show 

distinct peaks in either the normally or reversely zoned crystals (except for the highest NiO-Fo 

olivines in Types 1 & 2), with normal zoning ranges between 0.29-0.42wt% NiO and reverse 

zoning ranges between 0.20-0.37wt% NiO.  

 
Figure 4.8. NiO-Fo relationships for cores of all crystal traverses, distinguished by zoning types. 
Diamond symbols represent crystals with normal zoning in Fo, square symbols represent reverse 
Fo zoning, and colors distinguish the NiO-Fo zoning relationships. Lines indicate the results of 
MELTS simulations at 1kbar, 0.3wt% H2O, starting value of 0.083wt%, and degrees of 
crystallization are indicated by percentages; see text for more details. 

4.4 DISCUSSION 

4.4.1 Crystallization conditions of olivine 

The existence of the six zoning types in the basalts and picrites indicate that even a simple 

magmatic system has the potential to generate multiple populations of crystals. These 

populations are likely the result of a combination of crystal growth and storage in multiple 

magmatic environments, mixing of magmas between these environments, and diffusive re-
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equilibration. In order to understand the conditions under which these different olivine 

populations developed, we ran MELTS simulations (Ghiorso & Gualda, 2015; Gualda et al., 

2012) to calculate the equilibrium mineral/melt assemblage for two parental compositions from 

Rhodes (1995) and (2015) (Table 4.2). Rhodes (1995) calculated a parental melt composition for 

the 1868 eruption, starting with MgO melt concentrations that would be in equilibrium with the 

highest Fo# olivine analyzed. He then calculated other components using MgO-oxide 

relationships from whole rock analyses. The starting composition of Rhodes (2015) includes 

parental compositions estimated for young lavas (<200ka) from Mauna Loa. We tested four 

initial NiO contents for the Rhodes (2015) starting composition: 0.09wt% and 0.11wt% from 

Lynn et al. (2017), and 0.064wt% and 0.083wt% from Gaffney (2002); these were also used as 

the starting composition of Rhodes (1995) in addition to his original estimate of 0.034wt%. We 

used an oxygen fugacity of QFM-1 based on measurement of a sample of 1868 glass Rhodes & 

Vollinger (2004). Each crystallization simulation began at 1500°C, with a temperature step of 

1°C, and had a constant pressure of 1, 2, or 3 kbar. We tested a range of water contents (0.0, 0.1, 

0.2, 0.3wt%) from melt inclusion measurements of Mauna Loa olivine (Fo88) (Wallace et al., 

2015).  

The MELTS experiments with a starting composition from Rhodes (2015), a NiO composition 

of 0.083wt% from Gaffney (2002), water contents 0.1-0.3wt%, and a pressure of 1 kbar 

recreated many of the Ni-Fo relationships in core plateau compositions for olivine crystals from 

this study (Figure 4.8). Cores from Types 1 and 2 olivine appear to follow the fractional 

crystallization trend, though at high NiO-Fo values, equilibrium and fractional crystallization 

predict similar compositions. The lower Fo cores in Types 3 & 4 olivine, where both NiO and Fo 
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are reversely zoned, have a wider range of compositions and fall on both trends predicted by 

equilibrium and fractional crystallization.  

Table 4.2. Starting compositions for MELTS simulations 

 Rhodes (1995) Rhodes (2015) 
SiO2 50.29 48.44 
TiO2 1.86 1.58 
Al2O3 11.83 10.10 
Fe2O3 1.22 12.27* 
FeO 9.88  
MnO 0.17 0.17 
MgO 13.00 17.40 
CaO 9.07 7.96 
Na2O 1.85 1.66 
K2O 0.36 0.27 
P2O5 0.22 0.17 
NiO 0.034, 0.064, 0.083 0.064, 0.083, 0.09, 0.11 
H2O 0, 0.1, 0.2, 0.3 0, 0.1, 0.2, 0.3 

*total Fe is expressed as Fe2O3 for Rhodes (2015). 
All values are in oxide wt% 

 

Many of the crystals have homogeneous cores that are hundreds of microns wide, much larger 

than the widths of their rims, indicating they were kept at equilibrium conditions for much of 

their existence. Rhodes (1995) interpreted the 1852 and 1868 picrites to be the result of sampling 

a deeper, olivine-rich portion of a density-stratified magma reservoir, which is thermally and 

compositionally buffered by frequent intrusions of more primitive magma. A pressure of 1kbar 

produced the most reasonable mineral assemblages, with additional phases forming around 

1170°C. Using a simple calculation of pressure and depth, with a constant density of 2800 kg/m3, 

1kbar corresponds to a depth of ~3.6km. Previous geophysical and ground deformation studies 

of Mauna Loa inferred depths of the central summit reservoir to be 3-4km deep (Decker et al., 

1983; Okubo, 1995). Additionally, melt inclusions in Mauna Loa olivine (Fo88) from the 

Northeast Rift Zone indicate residence at shallow depths (0.5-1.1kbar) (Wallace et al., 2015). 
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These depths therefore agree with the interpretation of Rhodes (1995) that these picrites 

represent magmas from the deeper portions of a density-stratified, shallow reservoir.  

The MELTS simulations also predicted some of the evolving trends of NiO and Fo in the 

analyzed olivine crystal traverses (Figure 4.9). Many of the normally zoned picrite olivine 

crystals in Types 1 and 2 have zoned rims with fairly linear NiO-Fo relationships. Costa et al. 

(2008) showed NiO-Fo trends become more linear after a crystal undergoes diffusion, which is 

not modeled by MELTS. Basalt olivine crystals in Types 1 and 2 have cores that fall along the 

fractional crystallization trend. Moving through these crystals, the rims have kinked, concave-up 

trends, which Costa et al. (2008) demonstrated occurs in crystals growing in fractionally 

crystallizing magmas. The basalt compositions frequently extend beyond the NiO-Fo 

relationships where olivine was the only crystallizing phase as calculated by MELTS. We do not 

include compositions predicted when additional mineral phases crystallize because MELTS does 

not account for NiO partitioning into minerals other than olivine. Olivine was the only crystal 

phase present until 1200°C (with liquidus temperatures ~1420°C), after which clinopyroxene, 

orthopyroxene, and plagioclase crystallized. These minerals are consistent with the phases 

observed in the basalt samples, indicating that temperatures around 1200°C are present in part of 

the reservoir system encountered by some or all of the magma sourcing the 1868 eruption.  

The cores of many of the reversely zoned crystals in olivine Types 3 and 4, from both picrites 

and basalts, also plot near the MELTS predicted fractional crystallization trend. The most 

primitive (i.e. highest NiO-Fo) compositions in some of these crystal traverses follow the 

fractional crystallization trend, which could indicate mixing occurred between multiple magmas 

related by fractional crystallization. These primitive compositions in the rims do not occur as 

plateaus, which would indicate the crystals resided in more primitive magmas until their 
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eruption. Instead they return to lower values at their rims, forming a hook-shaped profile. This 

could be the result of growth in an evolving liquid, or diffusive re-equilibration with a more 

evolved liquid. Mismatched NiO and Fo zoning distances in the rims of these crystals could 

reflect diffusion, due to the faster rate of iron-magnesium diffusion than nickel. 

 
Figure 4.9. Evolution of NiOwt% and Fo# for the traverses of all crystals analyzed, separated by 
zoning types. Purple lines represent traverses from basalt crystals, and green lines are traverses 
from picrite crystals. Black circles and arrows represent olivine core and rim compositions, 
respectively. Dashed and dotted lines show crystallization trends calculated from MELTS, with 
the same conditions as in Figure 4.8. 
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The trends in the last two zoning populations, Types 5 and 6, do not follow the results of 

MELTS or those of the previous four types. Type 5, which has normal zoning in Fo, has very 

slight reverse zoning in NiO in two of the three crystals. These zoning patterns likely began with 

reverse zoning in both NiO and Fo. As the crystals resided in the reservoir, diffusive re-

equilibration removed the reverse zoning of Fo faster than that of NiO, and thus, generated a 

normal zoning pattern in Fo while retaining the reverse NiO zoning. Type 6 crystals are much 

more complicated. They do not follow the trends predicted by MELTS, nor do they have similar 

core compositions or evolution of NiO-Fo relationships. These crystals are likely the result of a 

complex combination of magma mixing and diffusion. The Type 6 crystals identified in this 

study are in all different samples, and exist in both basalts and picrites.  

4.4.2 The reservoir system of Mauna Loa 

The olivine crystals analyzed in this study represent the sampling of multiple magmatic 

environments and processes within the reservoir system of Mauna Loa. The high Fo# euhedral 

olivine cores likely crystallized and accumulated in the shallow summit reservoir, where 

replenishment from more primitive melts keeps the composition and temperature relatively 

constant (Rhodes, 1983, 1988). These crystals are frequently euhedral and do not exist as clusters 

forming from dense cumulates, but as single crystals or crystals growing in twinned pairs or 

ordered groupings (Welsch et al., 2013). The high magma flux during this period (Lockwood & 

Lipman, 1987) could have kept the crystals in near-suspension, rather than forming dense olivine 

cumulates previously inferred for Hawaiian volcanoes (Clague & Denlinger, 1994).  

The mobilization of the olivine-rich magma (mush) could have occurred from magmatic 

intrusions, similar to processes described in Chapter 2 of this dissertation. The intrusion of new 

magma would require additional storage space in the reservoir, so the mobilized mush could 
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have moved from the summit reservoir to the SWRZ reservoir system. These reservoirs are less 

frequently replenished than the central reservoir, which leads to melt evolution as mineral phases 

beyond olivine crystallize and form xenoliths (Gaffney, 2002). These magmas are considered 

evolved compared to the primitive magmas sourcing the summit reservoir, but based on MELTS 

simulations, additional phases begin crystallizing with ~Fo77-79 olivine, after ~30% 

crystallization from both the fractional and equilibrium crystallization runs.  

After mobilization, crystals and melt from the mush likely mixed with the more evolved rift 

reservoir magmas. The distinct olivine contents in the picrites and basalts suggest that 

incomplete mixing occurred between the magmas. However, most of the olivine zoning types are 

represented in both picrites and basalts, which requires that some crystal exchange occurred 

between the two magmas. The varieties of zoning demonstrated by the six olivine populations 

indicate the crystals have complex histories, which include a series of multiple mixing events 

and storage in different conditions over a range of time scales.   

Olivine crystals with similar core compositions making up Types 1 & 2 likely formed and grew 

in the same magmatic environments; the differences in their rim compositions and zoning could 

have resulted from different timescales of storage and incomplete mixing. The high Fo olivine 

cores in Types 1 & 2 represent those that grew in the central reservoir, with normally zoned rims 

forming from diffusive re-equilibration or growth in the more evolved rift magma. The 

decoupled zoning profiles for Fo and NiO in Type 2 crystals reflect the faster diffusion of iron-

magnesium exchange than the diffusion of nickel; these crystals were likely stored in the more 

evolved magmas for longer than those of Type 1. The Type 1 & 2 olivine in the basalts generally 

have lower Fo rims than the olivine in the picrites, suggesting incomplete mixing between the 

mush and the rift reservoir melts.  
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Types 3 & 4 with reverse zoning tend to have more evolved cores than those of Types 1 & 2. 

These crystals could have originated in the rift reservoir, or grown from a mixture of the mush 

and rift magmas. The most primitive portions of the zoning profiles frequently fall along 

crystallization trends for the primitive magma calculated with MELTS. Entrainment of these 

cores by a mixture of the mush and rift magmas could have led to growth on the pre-existing 

crystals, in magma more primitive than the one in which they originally grew or were stored.  

The return to more evolved compositions at the outermost rim of the hook-shaped profiles once 

again suggests storage in a more evolved melt, with the crystals growing or undergoing diffusive 

equilibrium. The decoupled zoning profiles in Type 4 could reflect differences in storage 

timescales of the reversely zoned crystals. Crystal storage over even longer timescales could also 

explain the crystals of Type 5. The olivine making up this population could have originally been 

reversely zoned in both Fo and NiO. If they were stored in evolved melts long enough, the 

differences in diffusion timescales would have erased the original reverse zoning of Fo, 

generating a normal profile. The slower diffusion of nickel would have preserved the original 

reverse zoning if the crystals erupted before this zoning could also be diffusively erased. 

The crystals of Type 6 are more difficult to explain. The cores of these crystals do not have 

similar Fo-NiO relationships to suggest similar growth and storage conditions. The mismatch in 

zoning type between NiO and Fo cannot be easily explained by crystal growth followed by 

diffusion: if the crystal began with a reverse zoning profile, the slower diffusion of nickel should 

produce a mismatch like that in Type 5. A series of growth, mixing, and diffusion events are 

likely required to explain the diversity of zoning seen in this final population, suggesting the 

storage and transport of olivine crystals through the mush and rift reservoirs are not straight-

forward.  
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This study of the 1868 eruption of Mauna Loa demonstrates that even a simple magmatic 

system can generate distinct populations of crystals. In order to determine the sequence of 

magmatic events that created these populations, it is necessary to consider the mechanics and 

geochemistry of the mush at both the crystal- and reservoir-scales. Resolving both these scales 

using the models in Chapters 2 and 3 demonstrates the crystal-scale control on magmatic 

mobilization, crystal and liquid mixing, and the formation of distinct magmatic environments 

within a single system. The results of these simple models can begin to provide insight into the 

complexities of magma mixing and the formation of crystal populations. 

4.4.3 Future work: diffusion modeling 

Future work for this project includes using the diffusion software DIPRA (Girona & Costa, 

2013) to recreate the different zoning patterns observed in the crystals from this eruption. If the 

zoning patterns can be successfully modeled, this will provide estimates of crystal residence 

timescales in a given magmatic environment. Understanding the residence times of crystals in 

these different conditions within Mauna Loa’s magma reservoir could provide information about 

the transport of magma, especially during periods of high rift zone activity. As explained in Shea 

et al. (2015a), at least 20 crystal zoning patterns from a given population are needed to estimate 

accurate timescales. Following this advice, we have enough transects to accurately estimate the 

normally zoned crystals with high Fo cores (>Fo87).  
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