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Introduction

Thermochronometers are increasingly used to determine the rates and timing of
exhumation in orogenic belts. A great deal of thermochronologic work has been done
in the North American Cordillera addressing two problems: (1) When were rocks in
various mountain belts exhumed? and, more recently, (2) How long-lived is the
topography of these mountain belts? In addressing these problems, a consensus has
arisen that most exhumation within the Basin and Range Province began in the mid-
Miocene, and continues today at similar or reduced rates (e.g. Stockli et al., 2000;
Reiners et al., 2000; Surpless et al., 2002; Armstrong, et al., 2003).

Thermochronometers with intermediate to high closure-temperatures such as
argon-cooling ages and fission-track ages are useful tools when studying long-lived
(greater than a few million years) tectonic exhumation where tens of kilometers of
overburdening rocks have been removed. More youthful (latest Miocene and younger)
range-bounding fault systems remain active within the Basin and Range and continue to
produce young topography. However, youthful topography has often undergone
insufficient exhumation to expose reset or partially reset ages in many
thermochronometers. Consequently, quantitative treatment of recent (Pliocene and
younger) bedrock uplift and exhumation is often overlooked in thermochronologic
studies. Low-temperature thermochronometers, such as (U-Th)/He and apatite fission-
tracks, must be used to study recent tectonic exhumation of rocks that previously
resided within the upper 5-10 km of the crust.

Though much of the exhumation in the Cordillera of the western U.S. is due to

extension since Miocene time, several notable exceptions exist, particularly within the
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Basin and Range and bordering tectonic provinces in southern California (Fig. 1). The
Transverse Ranges of southern California have undergone rapid post-Miocene uplift
and exhumation due to transpression within the Big Bend of the San Andreas Fault
(Fig.1) (Spotila et al., 1998; Blythe et al., 2000). Several transpressive structures are
also active within the Eastern California Shear Zone, a region of distributed dextral
shear east of the Sierra Nevada Block and within the Basin and Range Province (Figs. 1
and 2) (Glazner et al., 2002; Bartley et al., 1990; Miller et al., 2001; Dokka and Travis,
1990).

The Avawatz Mountains are one such transpressive mountain range, located at
the eastern termination of the Garlock fault (Fig. 2). The Garlock is a major sinistral
strike-slip fault that separates the highly extended Death Valley terrane to the north
from the less extended Mojave Block to the south (Fig. 2). In the intra-continental
transform model of Davis and Burchfiel (1973), total slip on the Garlock decreases
from west fo east and the fault terminates at a hypothetical zone of zero-displacement
which projects east of the Avawatz. More recent work demonstrates that the Garlock
fault terminates in a sharply southward bending thrust (Spencer, 1990a5. The Garlpck
fault initiated in the mid Miocene (Burbank and Whistler, 1987; Monastero, et al. 1997;
Smith et al., 2002). However, shortening in the Avawatz mountains appears to be
significantly younger than the full history of the Garlock fault based on folded and
tilted Miocene sediments within the range (Brady, 1984; Spencer, 1990a). This
apparent disparity in ages leads to two opposing hypotheses: Either (1) the Avawatz

Mountains are the logical termination of the Garlock Fault (and in turn behave as the
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Figure 1. Location map. California and western Nevada. Location of Eastern California Shear

zone (ECSZ) generalized from Miller et al. (2001).




leading edge of a relatively rigid Mojave Block), or (2) thrust faulting in the Avawatz
mountains is unrelated to long-term slip of the Garlock fault, and thrusting along the
Avawatz range-front is caused by transpression within the Eastern California Shear
Zone.

This paper addresses the Miocene to present cooling history of the Avawatz
mountains using low-temperature thermochronometers [(U-Th)/He and apatite fission-
tracks]. The purpose of this study is to better understand the kinematic history of the
Garlock fault within the context of the Eastern California Shear Zone. This paper also
demonstrates the ability of low-temperature thermochronometers to determine the
exhumation history of small ranges (< 10 km wide) with modest amounts of bedrock

uplift.
Tectonic Setting and Geologic Background

1. Location of the Avawatz mountains and range-bounding faults

The Avawatz mountains are located at the intersection of the dextral
Southern Death Valley fault zone and the sinistral Garlock fault (Fig. 2). The northern
range-bounding fault is the Mule Spring fault, a left-lateral splay of the Garlock fault
which becomes increasingly thrust sense as it curves southward around the eastern
flank of the range (Figs. 2 and 3). The eastern Avawatz mountains are bounded by the
Old Mormon Spring fault, an east-vergent thrust fault that emplaces Mesozoic granitic
rocks and Paleozoic to Precambrian sedimentary bedrock over Quaternary debris-flow

fans (Spencer, 1990a and 1990b).
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2. The Garlock fault and its tectonic significance

The Garlock fault separates the more extended Death Valley terrane to the north
from the less extended Mojave Block to the south. Maximum offset on the fault is 64
km based on displacement of the Jurassic Independence dike swarm (Davis and
Burchfiel, 1973). Clockwise increases in magnetic declination anomalies from the El
Paso basin north of the central Garlock fault require initiation of slip by 11 Ma
(Burbank and Whistler, 2002). Miocene volcanics and sedimentary rocks within the El
Paso basin record the full 64 km of displacement on the Garlock and supply geologic
evidence for slip initiation after 17 Ma (Monastero, et al., 1997). Slip-rate estimates of
3.1-3.8 mm/yr for the last 10.4 Ma, based on offset volcanic rocks in the Lava
mountains extrapolated to the full 64 km offset, yield an inception of sinistral slip at
16.4 Ma (Smith et al., 2002). However Quaternary slip rates for the central Garlock
fault are significantly faster than this estimate, ranging from 7mm/yr (Carter, 1994) to
5-7 mm/yr (McGill and Sieh, 1993). Initiation of the Garlock likely occurred due to
rapid east-west extension between the Black mountains and the Sierra Nevada block
during the Miocene (Davis and Burchfiel, 1973; Snow and Wernicke, 2000).
Continued extension in Death Valley, Panamint Valley, and Owens Valley probably
helps drive left-lateral slip on the Garlock fault today.

Davis and Burchfiel (1973) proposed the Garlock as an intra-continental

transform fault based on the increasing magnitude of sinistral offset along the fault’s
trace from east to west. This interpretation predicts that the Garlock fault should

terminate somewhere east of the present-day Avawatz mountains at a zone of projected




zero-displacement. However, the Avawatz mountains truncate this hypothesized
termination, and several workers have considered a thrust fault termination to be an
acceptable alternative to the zero-displacement hypothesis (Spencer, 1990a; McGill,
personal communication). In this interpretation the Mule Spring and Old Mormon
Spring faults represent the northeastern leading edge of a relatively rigid Mojave Block.

Perhaps the most interesting feature of the Garlock fault for the purposes of this
study is the broad oroclinal bend in the trace of the fault, which deviates from a

northeast strike on its western end to an east-west strike on the eastern end of the fault

(Fig. 3).

3. The Mojave Block

The Mojave block is a wedge-shaped tectonic province with characteristically
subdued topography bounded by the Garlock fault to the north and the Big Bend of the
San Andreas fault to the south (Figs. 1 and 2). The Cenozoic history of the Mojave
Block includes several distinct tectonic events. The early Tertiary was a period of
tectonic quiescence (Glazner et al., 2002) that allowed a widespread geomorphic
surface to form within the Mojave Block (Dokka and Macaluso, 2001). Localized,
large-magnitude extension began in the early Miocene and continued until 18 Ma in the
central Mojave block (Glazner et al., 2002). Rhyolitic to basaltic volcanism began at
the same time, continued well into the late Miocene, and ended with a few small-
volume basalt flows at ~5 Ma (Glazner et al., 2002; Schermer et al., 1996).

Active northwest-striking right-lateral faults crosscut earlier tectonic features of

the eastern Mojave desert in part of what is now known as the Eastern California Shear
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Zone (ECSZ). The ECSZ was first named by Dokka and Travis (1990) who recognized

the importance of these faults in accommodating missing motion on the San Andreas
fault. Subsequent geodetic observations in eastern California now delimit the entire
ECSZ as a zone of dextral strain that extends northwards through the Walker Lane to
the Klamath mountains (Miller et al., 2001). This zone of deformation accommodates
up to 15% of the relative motion between the Pacific and North America plates (Dokka
and Travis, 1990). The ECSZ is easily recognizable in topographic maps as a belt of
mountain ranges and inter\)ening basins between the Sierra Nevada and the Basin and
Range with northwest-striking physiographic and structural orientations (Fig. 1).

The strike-slip faults of the Mojave block can be divided into several discrete

and recognizable domains (Fig. 2). The two largest and most important are:

(1) A domain of through-going northwest striking faults in the central Mojave
block extends from the San Andreas fault to the Garlock fault. Though the
ECSZ extends north of the Garlock fault, none of these northwest-striking faults
cuts either the Garlock or the San Andreas. Instead, the faults end in zones of
diffuse deformation (Dokka and Travis, 1990). This domain of faulting
produced the 1999 Hector Mine earthquake and the 1992 Landers earthquake.
(2) A domain of east-striking oblique left-lateral faults in the northeastern
Mojave block shows evidence of north directed reverse slip on some faults
(Miller and Yount, 2002; Schermer et al., 1996). This domain of east-striking
faults is immediately south of and strikes parallel to the broad oroclinal bend in

the Garlock fault. Schermer et al. proposed a model for this system of east




striking faults whereby fault bounded blocks are rotated clockwise in response
to left slip. Furthermore, they suggested that the ends of fault blocks were more
affected by distributed ductile strain than the main portion of each fault block.
Widely scattered magnetic rotations, fault curvatures, and in the case of the
Avawatz mountains, uplift and shortening resulted from this relationship (see

Figure 14, Schermer et al., 1996).

Controversy remains over the timing of strike-slip initiation in the Eastern
California shear zone. Age estimates for the ECSZ range widely from 2-11 Ma (Dokka
and Travis, 1990) to 5.6 Ma (Schermer et al., 1996). Yet, the importance of the ECSZ
in accommodating plate boundary motions is well documented (Dokka and Travis,
1990; Miller et al., 2001). Consequently, tectonic events as far removed as the opening
of the Gulf of California and the transition from extension to strike-slip motion in the
Death Valley region and Walker Lane would greatly benefit from a more complete and
precise understanding of ECSZ timing. Dokka and Travis estimated an inception of
strike-slip motion at ~11 Ma for the ECSZ based on geologic mapping in this central
domain of the Mojave Desert. Work in the northeastern sinistral domain of the Mojave
block suggests that slip in this domain is significantly younger than the estimate of
Dokka and Travis. Volcanic rocks between 17 Ma and 5.6 Ma within the northeastern
Mojave desert have similar total displacements. This similarity in displacement
amounts of all Miocene rocks in the region suggests that strike-slip motion in the ECSZ

is late Miocene or younger (Schermer et al., 1996).
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4. Southern Death Valley Fault

The Southern Death Valley fault (SDVF) is an active right-lateral fault that
strikes northwest along the southwestern flank of the Black Mountains through
southern Death Valley (Fig. 2). The SDVF borders the western front of the Black
Mountains and intersects the Garlock fault along the northern flank of the Avawatz
mountains in a zone of anastomosing reverse and strike-slip faults (Fig. 3). This
anastomosing zone of faults narrows towards the eastern flank of the Avawatz
mountains while becoming increasingly thrust-sense.

The SDVF is the easternmost fault in the Eastern California Shear zone (Miller
et al., 2001). The interaction between the SDVF and the Garlock fault creates a region
of compression that is responsible for shortening within the Avawatz mountains

(Spencer, 1990a).

Geology of the Avawatz Mountains

The Avawatz Mountains are composed primarily of Mesozoic magmatic arc
granitoids and, to a lesser extent, Precambrian — Paleozoic metasedimentary rocks
(Spencer, 1990b). They are bounded on the north by the oblique Mule Spring fault and
on the east by the Old Mormon Spring reverse fault (Figs. 3 and 4). The early Miocene
Arrastre Spring fault in the western Avawatz mountains separates the primarily granitic
bedrock of the Avawatz from early Miocene to Pliocene fluvial and alluvial deposits of
the Avawatz Formation (Spencer, 1990a,b; Brady, 1984). Deposition of the Avawatz

formation and normal faulting on the Arrastre Spring fault were coeval, and by late
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Miocene time the sediment source for the upper Avawatz Formation was somewhere to

the southeast of the modern Avawatz mountains (Spencer, 1990a,b; Brady, 1984).

Methods
1. (U-Th)/He technique

The (U-Th)/He method of thermochronometry dates the time when apatite
crystals have cooled through a temperature of ~70 °C (Wolf et al, 1996, Farley, 2000).
The temperature when time starts to be recorded in the thermochronometer is the
closure temperature. Below this closure temperature, apatite crystals begin to retain
helium produced by the alpha decay of uranium and thorium, which occur as trace
elements in the crystal lattice. He closure is not complete at 70 °C, but rather He
diffusion gradually decreases within a temperature zone between ~40-80 °C, termed the
helium partial retention zone (PRZ) (Stockli, et al., 2000, Ehlers and Farley, 2003).

The (U-Th)/He method potentially dates young rock-exhumation events because
it represents a lower temperature system than any other currently developed
thermochronometer. The Avawatz Mountains are an ideal location to apply this
technique because recent and rapid vertical tectonic motions and tilting have probably
occurred, and the bedrock of the range is primarily apatite-bearing quartz monzodiorite
(Spencer, 1990a,b; Calzia and Rdmdo, 2000).

Dating a suite of rocks from a mountain block using a single
thermochronometer at a range of elevations is a useful technique for studying tectonic

exhumation. In addition, two or more thermochronometers with differing closure
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temperatures can be used from a single sample to provide more information on the
cooling history of a range block. Advection of isotherms during rock uplift can
complicate interpretation of cooling rates using this techniqﬁe (Ehlers and Farley,
2003). A reasonable upper-limit on exhumation rates can be determined regardless of
such complications, and the data may illustrate acceleration of cooling between the
times that the first thermochronometer (e.g. apatite fission-tracks) and the second
thermochronometer reach closure.

Apatite ages were obtained at the (U-Th)/He Chronometry Lab at Yale
University in New Haven, CT and corrected for alpha ejection (Farley et al., 1996) by
Professor Peter Reiners. Ages were determined for individual apatite crystals and
repeated in triplicate for most samples in order to ensure that samples contained

measurable helium concentrations and reproducible results.

2. Fission -track Dating

If recent cooling in the Avawatz mountains is associated with young thrust
faults and occurred after a period of more quiescent tectonic behavior, the use of two
thermochronometers in conjunction (in this case apatite fission-tracks and (U-Th)/He)
would help illustrate the youthfulness of the range.

The apatite fission-track method of thermochronometry dates the time when
apatite crystals have cooled below the temperature of ~110 °C (Green et al., 1989).
Spontaneous fission of radioactive trace elements creates damage tracks in the crystal

lattices of a variety of Uranium-bearing minerals. Fission-tracks in apatite anneal
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rapidly at temperatures higher than ~110 °C. As apatite cools through the closure
temperature, the annealing rate slows. The partial annealing zone of apatite (PAZ),
between 60 and 110 °C, is analogous to the helium partial retention zone.

Apatite fission-track dates were obtained at the fission-track laboratory facility
at the University of Washington, under the supervision of Professor Richard Stewart.
Apatite samples were mounted in epoxy, polished and etched with 0.5 M HNO; for 20
seconds according to Wagner and Van den Haute (1992). Samples were covered with
mica detectors and sent off to the Oregon State Reactor Facility to be irradiated for 25
hours. Mica detectors were etched in 40% HF for 20 minutes (Wégner and Van den

Haute, 1992).

Results

Average sample (U-Th)/He ages calculated from replicate single crystal
analyses range from 4.0+ 0.2 (20) Ma at 1010 m elevation (sample AV-5) to 7.2+ 0.5
Ma at 810 m elevation (AV-11) (Fig. 5; Table 1). The oldest helium ages come from
locations at both high elevations in the interior of the range and low elevations near
active range-front of the Avawatz mountains (Figs. 5 and 6). Therefore, apatite helium
ages show no age-elevation trend.

Apatite fission-track ages (Fig. 5; Table 2) range from 19.5+ 5 Ma at 650 m
elevation (AV-1) to 9.0+ 2.5 Ma at 1010 m elevation (AV-5). The apatite fission-track
data are remarkably similar to the helium data in that the lowest elevation sample is

older than samples at higher elevations.
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Figure 4: Geologic Map of the central Avawatz mountains (from Spencer, 1990a).
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Discussion

The circa 7 Ma He ages and circa 19 Ma fission-track age near the range front
and the abrupt step towards younger ages at slightly higher elevations in both data sets
(Fig. 5) indicate that the processes involved in producing the helium age-elevation
distribution were also at work‘in producing the fission-track age-elevation distribution.
Two of the old range-front samples (AV-1 and AV-11) are located in the hanging-wall
of the Old Mormon Spring fault, whereas sample AV-2 is located in the footwall (Fig
6).

Figure 6 is a topographic profile of the Avawatz mountains drawn parallel to the
sampling transect. Helium age isochrons at 4 Ma and 5 Ma are offset along a
hypothesized fault located west of the active range-bounding fault. The 5 Ma He
isochron is currently located at a higher structural level than the 7 Ma He isochron,
which is depicted in the footwall of this hypothesized fault (Fig. 6). The helium age
distributions in Figure 6 suggest recent reverse slip along this previously unmapped
fault (see Figure 4) located within the plutonic bedrock of the Avawatz, where no offset
markers exist. The extremely fractured nature of the Quartz Monzodiorite of the
Avawatz mountains further supports the existence of this fault.

This offset of isochron markers within the bedrock of the Avawatz mountains is
evidence for a recent faulting and cooling event. Furthermore the step towards older
ages at low elevations near the range front in the initial thermochronologic results (Fig.
5) suggests that not all samples participated in this cooling event. Figure 7 is an
interpreted plot of the thermochronologic data that excludes samples located in the

footwall of the hypothesized fault in Figure 6. In this interpretation, an imaginary 7 Ma
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He isochron surface that projects above the current topography of the Avawatz
mountains was once a continuous, nearly horizontal surface, that was offset by the
hypothesized fault, tilted eastwards during faulting, and eroded away. The background
or pre-orogenic age of the Avawatz mountains is circa 6.8 Ma based on the oldest He
ages both at high and low elevations that previously resided at or near the same
structural level.

Besides exclusion of the low-elevation samples from the interpreted data set
(Fig. 7), I have also excluded the helium age of sample AV-7. In Figure 6, sample AV-
7 lies anomalously close to the 5 Ma He isochron, yet the sample age is 7.0 = 0.6 Ma.
This age is based on two individual crystal analyses. However, a third analysis,
rejected as irreproducible, has an age 0of 4.8 + 0.3 Ma.

The timing and rate of the cooling event induced by offset along the
hypothesized Avawatz bedrock fault are recorded in the remaining interpreted
thermochronologic data (Fig. 7). A linear age-elevation fit to the interpreted fission-
track data, indicates an exhumation rate between ~15 Ma and ~9 Ma of 0.13 mm/yr
(Fig. 8). This exhumation rate is indicative of slow vertical passage of the sampling
transect through a fission-track partigl annealing zone (PAZ) and is thus considered an
apparent exhumation rate. Note that the true exhumation rate of the Avawatz
mountains could have been significantly slower (on the order of 50%) between 15 and
9 Ma if the data are corrected for heat advection and passage through a fission-track
PAZ (Ehlers and Farley, 2002).

A linear age-elevation fit to all of the interpreted helium samples (Fig. 7),

indicates an exhumation rate of 0.35 mm/yr between ~7 Ma and ~4 Ma (Fig. 8). The
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helium data therefore represent a potential increase in exhumation rate in the last 7
million years. However, a recognizable break in slope occurs at ~4.8 Ma. A line fit to
the data above this break in slope indicates an exhumation rate for the highest Avawatz
samples of 0.11 mm/yr, similar to the apparent exhumation rate recorded by the fission-
track data (Fig. 8). This exhumation rate is indicative of slow vertical passage of the
sampling transect through a helium partial retention zone (PRZ) and is thus considered
an apparent exhumation rate. Advection of isotherms and passage through the PRZ
could again result in an overestimate in this rate on the order of 50% (Ehlers and
Faﬂey, 2002).

At ~4.8 Ma the exhumation rate recorded by the remaining helium data
increases to 1.7 mm/yr (Fig. 8). Though this exhumation rate is again a potential
overestimate due to advection of heat during vertical rock uplift, it is an order of
magnitude faster than the apparent rate recorded by samples interpreted to be from a
fossil PAZ and fossil PRZ. Sample AV-7 would fall along this exhumation rate line if
the true helium age of the sample is 4.8 + 0.3 Ma.

Based on the apparent exhumation rates recorded in the helium data and fission-
track data, I propose the following model for the bedrock uplift and exhumation history
of the Avawatz mountains:

1. Between ~15 Ma and ~5 Ma, the Avawatz mountains resided near the

modern termination of the Garlock fault as a region of low relief topography,

perhaps a relict of Early Miocene extension on the Arrastre Spring fault.

Exhumation rates < 0.1 mm/yr were the result of slow erosional exhumation of

this low relief topography. The Garlock fault was active by 11 Ma and did not
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terminate in a thrust fault, but may have terminated in a zone of zero-
displacement as hypothesized by Davis and Burchfiel (1973).

2. At ~7 Ma rocks currently located near the modern range front of the
Avawatz mountains were located at or near the same structural level as rocks
currently exposed at the highest elevations in the range. All of these rocks
attained helium closure at this time during slow exhumation through a PRZ.

3. At ~4.8 Ma reverse slip began along a hypothesized fault located west of the
currently active range-bounding fault within the quartz-monzodiorite bedrock.
Slip on this fault offset previously horizontal He isochrons and tilted them
towards the east and created the modern sample age distribution.

Slip on this hypothetical fault probably created the first significant
topographic relief in the region of the Avawatz Mountains since early Miocene
time. Relief production would have induced rapid erosion and rapid cooling
near an ancient range front through landsliding, a process which is currently
recorded in the debris-flow fans of the Avawatz mountains’ east slope. Rocks
within the range are intensely fractured and clay-altered, which probably
encourages gravitational mass-wasting of the range-front to this day, and also
supports the existence of the fault hypothesized east of the modern range front.
4. Shortening and range-block exhumation continued into the Quaternary and
exposed a fossil PRZ, a fossil PAZ, and fully reset helium ages that record the
cooling event that began at ~4.8 Ma. Modern range-front deformation appears
to be localized on the range-bounding Old Mormon Spring fault. No abrupt

offset in the 7 Ma isochron surface occurs across this fault. This lack of
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offset suggests that the Old Mormon Spring fault is Quaternary in age, and has

accumulated little offset at present.

Conclusions

The model proposed above has significant importance for the regional tectonic
history of the Eastern California Shear zone, the Garlock fault, and relative plate
motions at the Pacific margin. Uplift and exhumation in the Avawatz mountains is not
associated with the full history of slip on the Garlock fault, based on the post 5 Ma
cooling event recorded in the Avawatz helium ages. -

Initiation of the Eastern California Shear zone has been poorly dated by
previous workers (Dokka and Travis, 1990; Schermer et al., 1996). Gan et al. (2003)
estimated an inception of the ECSZ at 5.0+ 0.4 Ma for the eastern part of the ECSZ and
about 1.6 Ma later for the western part, on the basis of current strain rates and
accumulated dextral strain across the Garlock fault recorded by the modern oroclinal
bend in the fault trace. I present evidence from apatite (U-Th)/He and fission-track data
that suggests recent, tectonically induced cooling of the Avawatz mountains began at
~4.8 Ma. These data suggest that inception of right lateral slip along the Southern
Death Valley fault zone, the easternmost fault in the ECSZ, has created a barrier against
sinistral slip at the tip of the Garlock fault. This fault interaction induced shortening
and surface uplift.

Du and Aydin (1996) argued that restraint of strike-slip motion and
transpression within Big Bend of the San Andreas fault may have transferred plate-

margin motion further inland and created the ECSZ. Inception of the modern trace of
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the San Andreas fault south of the Big Bend coincided with localization of the Pacific-

North America plate margin in the Gulf of California (Page, 1990). Pacific-North
America plate-margin localization, which occurred after ~6 Ma, is in accordance with a
post 5 Ma inception of the ECSZ (Oskin et al., 2001). Thermochronologic data from
the San Bernardino mountains and San Gabriel mountains along the Big Bend indicate
that rapid, tectonically induced cooling began some time after ~7 Ma, and cooling rates
accelerated in both ranges after ~3 Ma (Blythe et al. 2000; Spotila et al., 1998), again
consistent with late-Miocene inception of transpression in the region.

Previous thermochronologic studies within the North American Cordillera have
typically dealt with larger range blocks than the one presented in this study (e.g. Blythe
et al., 2000; Spotila et al., 1998; Stockli et al.; House et al., 2001; Armstrong et al.,
2003). However, the complex nature of plate-margin deformation in North America,
potential relationships between young topography and changes in plate-margin
kinematics, and the success of this study in determining the exhumation history of a
small range with modest exhumation may encourage further studies of small (<10-15

km wide) range blocks.
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