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Abstract

Unique Dynamic Behaviors of Ice Divides:
Siple Dome and the Rheological Properties of Ice

Erin C. Pettit

Chair of Supervisory Committee
Professor Edwin D. Waddington
Earth and Space Sciences

The constitutive relationship between applied stress and deformation rate of ice controls
the dynamic behavior of the divide regions of ice sheets. I use finite-element modelling
to explore three aspects of flow near a divide: (1) the increased relative activity of linear
creep mechanisms at low stress, (2) the impact of sliding on stratigraphy, and (3) the role
of crystal fabric in deformation.

Raymond (1983) showed that a special flow pattern emerges near an ice divide when ice
is modelled using Glen’s flow law. I show that the dominance of linear creep mechanisms at
low stress tends to decrease the prominence of the special divide flow pattern. No Raymond
bump forms in the isochrones, and younger ice appears deeper in the ice column, when
compared to a more conventional Glen divide. When nonlinear rheological properties are
coupled with a strongly anisotropic fabric, the special divide flow pattern is enhanced.
Crystal fabric has little effect when the linear term dominates deformation rate. Finally,
my model results show that basal sliding tends to redistribute the longitudinal stresses
within the ice such that the special divide flow pattern is suppressed.

I use these results and available data to study Siple Dome, West Antarctica. The divide
region of Siple Dome is presently in steady state, it has thinned at most 40 meters in the
last 2000 years, and has been an elevated dome-like feature for much of Holocene. This
contrasts with other sites around the Ross Sea Embayment with show modern thinning.

Using unique measurements of vertical strain throughout the depth of Siple Dome
together with a finite-element flow model, I assess the relative importance of the linear
term in the flow law compared to the effect crystal fabric. The linear term does contribute
to flow at Siple Dome; the crossover stress is k = 0.22bar. The band of strong crystal
fabric around 750 m depth modifies the divide flow pattern, and, on the flanks, shear strain
is concentrated within this layer, rather than in the deeper basal ice, creating a false-bed
effect.
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Chapter 1

INTRODUCTION

1.1 Background

In recent decades, many scientists have collaborated to piece together a history of Earth’s
climate from information stored in the ice sheets of Antarctica and Greenland. While some
of this climate information is stored directly as chemical, structural, isotopic, and gaseous
signatures in the preserved annual layers of snow, researchers can also gather additional
clues from ice sheet behavior. Because large ice sheets respond dynamically to climate
changes, observations of present behavior and large scale structure reflect past geometry,
behavior, and climate forcings. An ice sheet’s dynamic history provides important con-
straints for interpretation of ice-core data, but it also influences our understanding of how
the ice sheet will respond to future changes in climate.

Much of the West Antarctic Ice Sheet is grounded below sea level, which makes it
different from Earth’s other present-day large ice sheets. It is also unique in that over
90% of its inland ice drains to the ocean through fast-flowing ice streams [McIntyre, 1985].
Ice streams have the ability to respond rapidly and possibly unstably to changes in their
boundary conditions [Retzlaff and Bentley, 1993; Anandakrishnan and Alley, 1997, e.g.].
For this reason, many scientists have put emphasis on understanding the dynamics of the
West Antarctic ice-stream system [Alley and Bindschadler, 2001].

Siple Dome (81.65° S and 148.81° W, Figure 1.1) is a ridge of slow-moving ice between
Kamb Ice Stream and Bindschadler Ice Stream (also referred to as Ice Streams C and
D, respectively) on the Siple Coast of West Antarctica, which drains into the Ross Sea.
It has been a cornerstone in connecting these two important glaciological questions: the
stability and dynamics of the ice stream system and the interpretation of ice-core data for
climate history. In that role it is certainly offering many eye-opening puzzles into ice-sheet
behavior [Taylor et al., in prep, e.g.].

1.2 DMotivation and Goals

In this work I have two primary goals. The first is to explore the unique behavior of ice
divides, the boundaries that separate the drainage basins of ice sheets. The second is
to examine the behavior of Siple Dome, as an example of an ice divide, not only for its
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Figure 1.1: The Siple Coast and the Ross Sea Embayment, West Antarctica. Siple Dome (81.65° S
and 148.81°W) is an inter-ice stream ridge on the Siple Coast of West Antarctica. Shaded re-
gions represent fast flowing ice, including Mercer (A), Whillans (B), Kamb (C), Bindschadler (D),
MacAyeal (E), and Echelmeyer (F) Ice Streams.



reflection of the general divide dynamics, but also to assess its history, which is key to the
deglaciation of the West Antarctic Ice Sheet and the interpretation of the recently drilled
ice core.

1.2.1 Ice divide behavior

As the location where the surface slopes and shear stresses approach zero, an ice divide
maintains a unique stress regime: the ice is essentially in pure shear with lower deviatoric
stresses than elsewhere on the ice sheet. This stress regime poses an interesting chal-
lenge for ice dynamics modelling because the typical assumption that longitudinal stress
is negligible does not hold. Yet, ice divides are desirable locations for ice cores because
the stratigraphy may be relatively undisturbed and the ice source is local. Thus, mod-
elling the flow of ice in this region is crucial for extracting information from ice cores and
understanding the histories and possible futures of ice sheets.

Near a divide, the effective deviatoric stress is dominated by the longitudinal stress
rather than by the shear stress. Also, the magnitudes of the deviatoric stresses (both
longitudinal and shear) are small relative to those on the flanks of the ice sheet. Accord-
ing to Glen’s flow law for ice, effective viscosity is inversely proportional to the square of
the stress [Nye, 1953; Glen, 1958]. Thus, the region with the lowest stress (near the bed
at the divide), is more resistant to deformation than surrounding areas. Deformation is
concentrated in the softer ice nearer the surface; the ice flow is refracted by the increase
in viscosity in the low stress zone, producing a special flow pattern. Raymond [1983] first
described the details of this special divide flow pattern and noted that the internal stratig-
raphy at a steady-state divide would reflect this flow pattern, causing ice of a particular
age to appear higher in the stratigraphic column at the divide than at the flank. Since
the special divide flow pattern has a limited horizontal extent, blending into flank flow
within one to two ice thicknesses from the divide, this flow pattern leads to an arch in the
isochrones, commonly called a “Raymond bump”.

There are several reasons why a particular ice divide may not exhibit this “ideal” flow
pattern. The first goal of this dissertation is to expand our understanding of this divide
flow with respect to the ice-sheet boundary conditions and the rheological properties of
ice.

The special divide flow pattern, and, therefore, the isochrone pattern that appears over
time, is sensitive to different types of boundary conditions and to changes in these boundary
conditions over time. Nereson et al. [1998a] explored the effects of changes in elevation of
bounding ice streams (which can cause the divide to migrate). Hvidberg [1996] included
realistic thermal boundary conditions, and Nereson and Waddington [2002] characterized
isotherms more fully under migrating divides. I expand on these works by looking at the
effect of basal sliding. Although Siple Dome is frozen to its bed, other divides may be
warm enough at their base to slip at the ice-bedrock contact; Inland WAIS [Morse et al.,
2001], and Law Dome [Budd et al., 1976] are examples.

In addition to boundary conditions, assumptions about the rheological properties of



the ice can alter the predicted flow field. The deformation of ice may be affected by
impurities [Cuffey et al., 2000a; Thorsteinsson et al., 1999, e.g.], grain size [Cuffey et al.,
2000b; Goldsby and Kohlstedt, 2001], and crystal anisotropy [Azuma and Goto-Azuma,
1996; Castelnau et al., 1996; Thorsteinsson, 2001, e.g.], especially because these properties
vary with depth and horizontal position in an ice sheet. Mangeney et al. [1996] modelled
the flow of anisotropic ice near an isothermal divide with a linear flow law for ice and
found that the overall flow pattern differed minimally from that predicted using isotropic
ice. Here, I use a model that combines the characteristics of anisotropic flow with a
nonlinear constitutive relation to investigate how anisotropy perturbs the special divide
flow pattern.

Finally, the degree to which ice behaves as a nonlinear fluid in the low-stress divide
region is still under debate. Conventionally, glaciologists have used Glen’s Law, which
describes ice as a power-law fluid with a cubic relation between stress and strain rate. It
is possible that at low stresses the micro-scale mechanism driving ice flow shifts to a more
linear creep mechanism [Langdon, 1996; Goldsby and Kohlstedt, 2001, e.g]. My work with
Ed Waddington (University of Washington) explores the effect of including a linear term
in the flow law and the flow patterns that result from different combinations of linear and
cubic flow laws.

1.2.2 History of Siple Dome

The summit of Siple Dome is a 1000 meter-thick ice divide; ice flows northeast about 60 km
into Bindschadler Ice Stream and southwest a similar distance into Kamb Ice Stream.
Because of it’s location on the active Siple Coast, its history may reflect the history of
the region and provide clues to questions such as: Is the recent stoppage of Kamb Ice
Stream [Retzlaff and Bentley, 1993] an anomalous event, or do ice streams frequently stop
and start? Is the ice along the Siple Coast still responding to the warming at the end of
the last ice age? What did the Ross Sea Embayment look like during the last ice age?
The work that I present here will provide constraints on the answers to these and other
questions.

Siple Dome is an ideal site for this investigation for several reasons. First, it has been
the location of intensive field research over the last decade as the site of a U.S. Antarctic
Program deep ice core. Second, its geometry lends itself to numerical modelling: as a linear,
ridge-like feature it can be modelled in cross-section as 2-D plane-strain flow. Third, the
layers that appear in low-frequency radar images suggest that it exhibits some degree of
the special divide flow pattern [Nereson et al., 1998b]. And finally, it is the most stable of
the inter-ice-stream ridges, and therefore should hold the longest record.

1.3 Synopsis

This dissertation is composed of five stand-alone manuscripts that fall into two categories:
theoretical studies of ice divides (Chapters 2 through 4) and dynamical analyses of Siple



Dome, West Antarctica (Chapters 5 and 6). Chapters 2 and 3 have been accepted for
publication in the Journal of Glaciology and the Annals of Glaciology, respectively. The
other three chapters are in preparation for publication. Since each chapter is a stand-
alone manuscript, some of the introductory material in each chapter is repeated. Also,
since other researchers contributed significantly to this work (as noted at the beginning of
each chapter), I consistently use the pronoun ‘we’ instead of ‘I’.

In the first three chapters, I explore the effects on the flow at an idealized ice divide of
including a linear term in Glen’s flow law, Glen’s Law (Chapter 2), of sliding at the ice—
bedrock contact (Chapter 3), and of incorporating anisotropy in the flow law (Chapter 4).
The first chapter follows from initial work by Waddington et al. [1996] to explore the effect
of the linear term in the flow law on the divide flow pattern using the finite-element flow
model originally developed by Raymond [1983].

In Chapter 2, I use a finite-element flow model developed by Paul Jacobson [Jacobson,
2001]to examine the effect of basal sliding on the flow at a divide. In the model, I vary
the viscosity of a thin layer of linearly-viscous till at the ice-bedrock contact to simulate
various amounts of sliding,.

In Chapter 3, I look closely at the effect of a preferred crystal orientation in the ice.
The preferred crystal orientation near an ice divide tends to be vertically oriented and
can be described by an effective cone angle (the half angle of a vertical cone within which
uniformly distributed c-axes produce deformation comparable to that from the real fabric;
the method of determining effective cone angle depends on whether the fabric information
is a sonic velocity or a Schmidt plot). I compare divides with different cone-angle profiles,
including one based on the sonic log measured at Siple Dome.

Chapters 5 and 6 comprise the dynamical analyses of Siple Dome. In Chapter 5, I
bring together the results of three independent studies of the mass balance of Siple Dome.
These studies all agree that ice flow at Siple Dome is presently nearly in balance with the
accumulation of snow on the surface. Then I examine the implications of this result for
the larger scale questions regarding the past fluctuations of the adjacent ice streams and
the deglaciation of the Ross Sea Embayment.

In Chapter 6, I compare finite-element models of Siple Dome to deformation measure-
ments, primarily the in situ vertical strain data, to investigate the dominant deformation
processes affecting flow near an ice divide. Specifically, I examine the relative importance
of deformation due to crystal anisotropy and due to near-linear creep mechanisms in the
pattern of flow near the divide. This study provides insight into the general behavior of
ice divides.

1.4 Measurements and Analysis Techniques

The bulk of this work relies on numerical modelling to interpret measurements of ice
properties and deformation. As such, it builds on the work of many other scientists.



1.4.1 Siple Dome data collection

The data that I use were collected during more than 10 years of collaborative field work at
Siple Dome. In 1994 and 1996, Charlie Raymond, Howard Conway, Nadine Nereson (Uni-
versity of Washington) and Ted Scambos (University of Colorado) set up and surveyed a
stake network using Global Positioning System (GPS) receivers to study the surface flow of
Siple Dome. During the same field seasons, Tony Gades (UW) and Bob Jacobel (St. Olaf
College) collected low-frequency radar data. Nadine Nereson and Charlie Raymond col-
lected a profile using ground-penetrating radar (high-frequency). John Morack (University
of Alaska, Fairbanks) and I resurveyed the stake network in 1999.

In 1996, the United States Antarctic Program began a deep drilling project near the
summit of Siple Dome. Although many researchers are involved in this project, I primarily
rely on the layer-counting time-scale by Richard Alley (Pennsylvania State University)
and Ken Taylor (Desert Research Institute), the preliminary grain-size data measured
by Larry Wilen (University of Colorado), the density profile for the upper ice and firn
(Joan Fitzpatrick) and the borehole sonic velocity log collected by Gregg Lamorey (Desert
Research Institute). Independent temperature logs measured in the main borehole by
Gary Clow (USGS), Bob Hawley (University of Washington) and Ed Waddington and in
a summit borehole drilled with hot water by Hermann Englehardt (California Institute of
Technology) provide constraints on the temperature field. The sonic log was converted
to cone angle for incorporation into the models by Throstur Thorsteinsson (University of
Washington and University of Iceland). Many of these data sets are still unpublished and
I use them here with permission from the researchers listed.

Numerous researchers have measured accumulation rate on Siple Dome. I use three of
those data sets. Gordon Hamilton (University of Maine) measured modern accumulation
rates across Siple Dome using Gross- measurements on shallow cores [Hamilton, 2001].
Also, the University of Washington’s low-frequency radar and high-frequency radar images
(interpreted by Nadine Nereson and me) provided relative accumulation patterns across the
divide. Gordon Hamilton also measured the vertical velocity of the firn with the “coffee-
can” technique, which uses markers buried in the firn and monitored by GPS [Hamilton,
2001].

The most essential data for this study are in situ vertical strain-rate measurements
made in collaboration with the University of Alaska, Fairbanks (Will Harrison, Dan Els-
berg, and John Morack) and the University of California, San Diego (Mark Zumberge and
Eric Husmann). UA designed wire-resistance strain gauges in a Wheatstone bridge con-
figuration to make continuous point measurements of deformation [Zumberge et al., 2002;
FElsberg et al., in review]. UCSD developed fiber-optic position sensors, which measure
annual strain rates averaged over a range of depth intervals from 174 to 800 meters.



1.4.2  Analysis techniques

Such a varied data set required the use of numerous analysis techniques. My goal was to
understand the dynamics of ice flow near a divide; this study relies, therefore, on numerical
modelling and inverse techniques. In some cases, simple kinematic models of ice flow were
sufficient to describe the phenomena reflected in the observations; however, the bulk of my
analysis required finite-element models.

We used two different finite-element ice-flow models. Both are two-dimensional plane-
strain flow models that describe flow over a cross section of an ice divide. The first was
developed by Charlie Raymond over twenty years ago. It has been modified and expanded
since then by Ed Waddington, Christine Schgtt Hvidberg (University of Copenhagen),
David Morse (University of Washington and University of Texas), and Nadine Nereson.
We used this model in Chapter 2.

Recently, a new thermo-mechanically coupled finite-element model was developed by
Paul Jacobson (University of Washington) This model allows sliding at the bed (Chapter 3)
and the incorporation of an anisotropic flow law (Chapters 4 and 6). Throstur Thorsteins-
son developed the anisotropic model. The specific analytical description of anisotropy
implemented in the Jacobson FEM is presently unpublished, I include the derivation used
here as an appendix (Appendix D). The details of the relevant models and their imple-
mentation are described in the relevant chapters.



Chapter 2

ICE FLOW AT LOW DEVIATORIC STRESS

This chapter is in press under the same title in Journal of Glaciology, with co-author E. D. Wadding-
ton from Earth and Space Sciences Department, University of Washington. Helpful review comments
were provided by R. Greve, L. Tarasov, C. Raymond, T. Thorsteinsson, W. Harrison, and an anonymous
reviewer.

2.1 Summary

The effective viscosity of ice depends upon many factors, including temperature, deviatoric
stress, crystal orientation, and impurities. A flow law that includes these factors and is
simple to implement is a requirement for numerically efficient ice-flow models. The dom-
inant micro-scale flow mechanism changes as temperature, deviatoric stress, or grain size
changes. For both anisotropic and isotropic constitutive relations, this shift in dominant
flow mechanism is expressed as a change in the stress exponent. We study the effects
of this shift in stress exponent on ice flow using a two-term flow law for isotropic ice.
Our stress-strain-rate relationship does not explicitly describe the micro-scale processes of
ice deformation; however, it encompasses a range of deformation behaviors with a simple
law. In terrestrial ice, a flow-mechanism shift may occur in low-deviatoric-stress regions
near ice divides, resulting in a near-linear constitutive relationship for ice flow. Compared
to a nonlinear (Glen) divide, a divide dominated by a near-linear flow mechanism has
vertical-velocity profiles that are similar at divide and flank sites, internal layers that do
not develop a Raymond bump, and a steady-state surface profile that is more rounded
near the divide.

2.2 Introduction

Information about the history of Earth’s climate is preserved in annual layers in ice sheets.
Our access to these annual layers, however, is limited to ice cores, boreholes, and ice-
penetrating radar. Full interpretation of these data in terms of climate and ice-sheet
history requires an understanding of local ice flow through accurate ice-flow modelling.
By comparing paleoclimate ice-core records or radar images with predictions from
ice flow models, scientists can infer constraints on the historical variations in accumu-
lation rate, surface elevation, and surface temperature. For example, Paterson and
Waddington [1984] deduced past accumulation rates on Devon Island from the thickness
of stratigraphically-dated annual layers in ice cores. Nereson et al. [1998b] used a model
of ice flow to infer recent flow history from radar internal reflections (isochrones) at Siple



Dome, West Antarctica. Hvidberg et al. [1997] modelled the flow from the GRIP ice-core
site to the GISP2 site in Greenland to aid in the interpretation of the cores. Marshall and
Cuffey [2000] studied the effects of a wandering divide at Greenland’s summit on ice-core
records. Large-scale models of present and paleo-ice-sheets relate geophysical and geologic

evidence such as post-glacial uplift and glacial landforms to ice-core climate histories [e.g.
Marshall et al., 2000; Peltier et al., 2000; Greve, 1997].

Most ice-sheet models use a constitutive relation for ice based on Glen’s Law [Glen,
1958): é.q = AT3,, where éq is the effective strain rate (the second invariant of the strain-
rate tensor), T.g is the effective deviatoric stress (the second invariant of the stress tensor),
and A is known as the softness parameter.! This relationship was generalized to a tensor
form by Nye [1957]. Experiments and field observations show that Glen’s Law provides
a good approximation to ice flow at many locations in glaciers and ice sheets, but its
applicability is not universal. The deformation rate of ice is a function of many properties
of the ice; impurity content, crystal orientation, and temperature are examples. Through
detailed observations and modelling of ice sheets and glaciers, and through laboratory
experiments on ice samples, deviations from Glen’s Law have become more evident. There
is an increasing need to formulate a flow law that is more widely applicable and is also
simple enough to be incorporated easily into current flow models.

There are multiple mechanisms at work in the deformation of ice, and different mech-
anisms dominate under different conditions. Glen’s Law [Glen, 1958], with an exponent
of 3, describes flow dominated by dislocation glide on the basal plane, rate-limited by dis-
location climb [e.g. Alley, 1992; Weertman, 1973]. Another interpretation of Glen’s Law
is that it expresses the transition region between dislocation creep with an exponent of 4
and a grain-size-sensitive process with an exponent of 1.8 [Goldsby and Kohlstedt, 2001;
Durham and Stern, 2001]. In polycrystals, the dominant mechanisms shift as deviatoric
stress decreases. At the lowest deviatoric stresses, Newtonian flow prevails, according to
studies of polycrystalline metals [e.g. Langdon, 1991, 1996]. There is currently debate over
which mechanisms dominate in various deviatoric-stress and temperature regimes within
an ice sheet. We approach this discussion from an ice-sheet modelling point of view. A
flow law that is non-mechanism-specific, but has the ability to encompass a wide range
of behaviors would be useful for ice-sheet flow models. We formulate a phenomenologi-
cal isotropic flow law, and incorporate it into a two-dimensional plane-strain steady-state
finite-element model to explore how a shift in mechanism at low deviatoric stress expresses
itself in ice sheets. Anisotropic flow laws [Azuma, 1994; Azuma and Goto-Azuma, 1996;
Castelnau et al., 1996; Thorsteinsson, 2001] typically use a power law with a specified
stress exponent, similar to Glen’s Law, to define deformation rate on the basal plane of
individual crystals; thus, our results will apply to models of anisotropic ice as well.

! Appendix A is a table of the notation.
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2.3 Glen’s Isotropic Flow Law

Glen’s Law [Glen, 1958] relates deviatoric stress to strain rate, assuming that ice is an
incompressible, isotropic polycrystal that obeys a power-law form similar to polycrystalline
metals [Glen, 1955; Nye, 1953]. The most-widely-used expression of Glen’s Law is

n—1

¢, = EAge 57 (12) "5 1, (2.1)

Appendix A contains a description of all the variables. In this equation, €; and 7, are
the strain-rate and stress tensors, respectively, 7.g is the effective shear stress, and n is a
constant (usually equal to 3). A, (often called the softness parameter) is a constant that
describes clean, isotropic, Holocene glacier ice, with units of Pa~"s~!. Strain rate is a
function of temperature according to an Arrhenius relationship where @ is the thermal
activation energy for creep, R is the gas constant, and 7T is temperature. The coefficient E
is the enhancement factor, a non-dimensional multiplier describing the increase or decrease
in strain rate caused by variations in crystal size, impurity content, and crystal orientation.
F is a function of position and, in the case of crystal orientation, local deformation field.
The necessity of this correction factor is one indication of the need to refine Glen’s Law.
There is a slight dependence of strain rate on hydrostatic pressure [Paterson, 1994], but
we follow standard practice and neglect it.

Laboratory and field studies have focused on empirically determining A, and n, as-
suming E = 1. Weertman [1973], Budd and Jacka [1989], Goldsby and Kohlstedt [2001],
and Paterson [1994] provide reviews. Currently, most ice-sheet and glacier models use
n = 3 and A, as given by Table 5.2 in Paterson [1994]. This formulation, however, is
inadequate in some situations. For example, in strongly anisotropic ice, F is insufficient
for expressing all but the simplest deformation fields. Equation (2.1) is inappropriate for
ice with a strong crystal fabric [e.g. Azuma and Goto-Azuma, 1996; van der Veen and
Whillans, 1994; Thorsteinsson, 2001].

In low-deviatoric-stress environments, particularly in the central regions of ice sheets,
Glen’s Law predicts unusually high viscosities. By rearranging Equation (2.1) to the
standard form for a linear viscous fluid,

Tij = 2Ne€ijy (2'2)
we define an effective viscosity, 7.g:

Q n—
Ner = [2EAce” RT(72) 72 |71, (2.3)
For any n greater than 1, this viscosity goes to infinity as 7. goes to zero; this may result
in a singularity in the viscosity at the base of the ice under a divide. In polycrystalline
metals, however, the viscosity is bounded at low deviatoric stress by a transition to a linear
regime [Langdon, 1991]. We can expect a similar transition to appear in flow mechanisms
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in ice.

The validity of Glen’s Law with n = 3 has been verified with some confidence in the
laboratory and field down to 7. = 0.3bar (30kPa) [Budd and Jacka, 1989]. However,
Duwal et al. [2000] suggest that 7. = 2bar is the lower limit to the validity of Glen’s
Law with n = 3; at lower deviatoric stresses, n < 2. Since a deviatoric stress of less
than 0.5 bar is not uncommon in divide regions of ice sheets, a constitutive relation for ice
in ice-sheet models should incorporate behavior appropriate for low-deviatoric-stress flow
regimes, especially those models that focus on near-divide regions.

Meier [1958] suggested adding a linear term to the flow law, explaining, “One should
expect that the resultant flow of a polycrystalline mass would be the sum of contributions
from at least two mechanisms.” The additional term implies that there is a shift in
mechanism as the deviatoric stress decreases; but because Glen’s Law works most of the
time, many researchers neglect the added complexity of an additional term. Also, at low
deviatoric stresses and low temperatures, the laboratory experiments needed to determine
the best flow-law parameters could take millennia to run. (For example, at deviatoric
stresses and temperatures typical of Siple Dome, West Antarctica, 0.2 bar and —15°C, a
sample could require ~1500 years to undergo 10% strain.) In the lower-deviatoric-stress
regions of ice sheets (Figure 2.1), however, this change in behavior may be significant,
particularly for interpreting ice-core or other data collected near an ice divide.

2.4 Microphysical Processes at Low Deviatoric Stress

Identifying the mechanisms at work in ice deformation is no easy chore, and we do not
intend to do it here. Weertman [1973], Lliboutry [1987], Alley [1992], and Goldsby and
Kohlstedt [2001] provide background information on the microphysical processes in ice.
We do, however, want to highlight the processes that may make a multi-term flow law
necessary at low deviatoric stresses.

At deviatoric stresses in the range 0.5 bar (50 kPa) to 1.5 bar (150 kPa), typical of ice in
valley glaciers and in all but the central and near-surface regions of ice sheets, dislocation
glide on the basal plane is thought to dominate deformation. During dislocation glide,
dislocations move through the crystal along the basal plane. An applied stress causes
dislocations to multiply and get tangled up or stuck on obstacles (grain boundaries, solid
impurities), thereby increasing strain energy in the crystal. Recovery processes work to
decrease the strain energy. They include the creation and migration of grain and sub-
grain boundaries (through polygonization or twinning), the diffusion of vacancies and
interstitials, and the nucleation of new grains. In addition, crystals tend to rotate such
that their c-axes move toward the principal compressive deviatoric stress. This rotation
often requires a modification of grain shape through diffusion of vacancies, movement of
dislocations along and within grain boundaries, and grain-boundary migration. In an ice
sheet, all of these processes work to create characteristic grain sizes and crystal fabrics
that depend on temperature and strain histories.
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Figure 2.1: Cartoon showing the approximate pattern of effective deviatoric stress, 7.q, for a
typical ice divide. The arrows show approximate ice-flow trajectories. 7,, is the longitudinal
stress, which cannot be ignored in the region near an ice divide. It is largest near the surface and
approaches zero near the bed [Raymond, 1983]. 7,, is the horizontal shear stress. It is zero at the
divide and increases with depth and with distance from the divide. The extent of the region of
very low deviatoric stress (white) will vary with the thickness and the accumulation rate.

The third power of deviatoric stress in Glen’s Law is an empirical result. Weertman
[1973] discussed the dislocation-glide theory to support these results. According to Weert-
man [1973], Glen’s Law can be derived from two assumptions. First, dislocations move
along the basal plane with a velocity proportional to the deviatoric stress. Second, bal-
ance between dislocation-multiplication and recovery processes determines the dislocation
saturation density, which is proportional to the square of the stress deviator. This second
assumption equates the average internal stress (due to the presence of dislocations) to the
applied stress.

As deviatoric stress in the ice decreases, the dominant mechanism of flow changes.
There are several processes that may be involved: diffusion creep, Harper-Dorn creep,
and grain boundary sliding (superplasticity). In diffusion creep, a grain deforms by dif-
fusion of vacancies from regions of low compressive stress to regions of high compressive
stress through the crystal (Nabarro-Herring creep) and along boundaries (Coble creep).
Likewise, interstitials move from regions of high compressive stress to regions of low com-
pressive stress. Theoretically, this results in a linear stress-strain-rate relation [Lliboutry,
1987]. Because the high- and low-stress source and sink regions are most often along grain
boundaries, this process depends on grain size. With the large grain sizes found in natu-
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ral ice (1mm to 10cm), Lliboutry [1987] and many others consider diffusion creep to be
negligible.

Harper-Dorn creep is similar to dislocation glide in that deformation is dominated by
motion of dislocations along the basal plane; however, in this case, the dislocation density
is independent of stress. This occurs when dislocation-multiplication processes proceed so
slowly that the rate of recovery due to diffusion and grain-boundary migration dominates
[Alley, 1992; Montagnat and Duval, 2000]; thus, dislocations disappear at the same rate
as they are being created. According to this theory, n ~ 1 and the deformation rate has a
negligible dependence on grain size.

Grain-boundary sliding is strongly dependent on grain size. In this superplastic de-
formation, almost all of the dislocations are on the grain boundaries. The deformation
is primarily a result of dislocation climb and glide within the grain boundaries. Langdon
[1991] and Langdon [1994] described this type of deformation and its relationship with
other deformation mechanisms [see Langdon, 1991, Figure 7]. For grain-boundary sliding
in metals, Langdon [1994] showed evidence that n ~ 2 for small grain sizes and n ~ 3
for larger grain sizes. Recently, Goldsby and Kohlstedt [1997] found evidence for grain-
boundary sliding in ice of small crystal size (3 to 200 pum) at moderate-to-high deviatoric
stresses (relative to stresses found in existing ice sheets). They found n = 1.8 best fit their
data. Whether this process dominates in natural ice (with much larger crystals and lower
stresses) and what value of stress exponent is most applicable is still under debate. Grain
size is not an independent parameter, and feed-backs between grain-growth processes and
grain-size-sensitive deformation processes are not fully understood [Durham and Stern,
2001; Duwal and Lliboutry, 1985]. Furthermore, larger crystals often have complex shapes
and thus additional processes (for example, polygonization or grain-boundary migration)
must be present to prevent cavities or overlapping grains, or to relieve stress concentra-
tions. Even if grain-boundary sliding does become dominant at lower deviatoric stress, we
expect that it must be superseded at still lower deviatoric stress by an n = 1 process by
analogy with polycrystalline metals [Langdon, 1991].

2.5 Modified Isotropic Flow Law

Because ice in an ice sheet moves through regions of different deviatoric stress configu-
rations, it is necessary to explore the assumption that strain rate depends only on the
contemporary temperature and state of deviatoric stress. With this assumption, tempera-
ture and strain histories affect strain rate only through the grain size and crystal orientation
that they produce. In other words, is ice moving through non-uniform deviatoric-stress
fields slowly enough that its strain rate equilibrates with the local deviatoric-stress field, or
are deviatoric-stress gradients also important? It is commonly assumed that ice “forgets”
past stress conditions after the ice has undergone 10% total strain [defined as steady-state
creep, Paterson, 1994, p.83]. The length-scale for significant changes in the deviatoric
stress near an ice divide is one to several ice thicknesses [Raymond, 1983]. We express a
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characteristic length-scale, 0, over which ice acquires 10% total strain as:

5~ 0129, (2.4)

€char

where |u| is the velocity magnitude. A characteristic strain rate, €., can be derived from
the accumulation rate, b, and the characteristic thickness, H (€ ~ b/H). The speed, |ul,
also scales with the accumulation rate. Thus, the characteristic length scale for 10% strain
is § &~ 0.1H. Since 0.1H is much smaller than the scale of typical deviatoric-stress-field
variations (except perhaps near bedrock bumps), we can assume that the strain-rate field
near a divide is a function only of the contemporary deviatoric-stress field. This allows
us to confidently write an ice-sheet-scale flow law that relates the strain rate to only the
co-existing state of deviatoric stress in the ice and the co-existing ice properties.

Attention has recently focused on methods for relating deformation rate to anisotropic
crystal fabric [e.g. Azuma, 1994; Castelnau et al., 1996; Lliboutry, 1993; Thorsteinsson
et al., 1999]; impurities [e.g. Cuffey, 1999; Paterson, 1991; Thorsteinsson et al., 1999]; and
grain size [e.g. Cuffey et al., 2000b; Goldsby and Kohlstedt, 1997, 2001]. In simple cases,
these effects can be incorporated into the enhancement factor, E. In anisotropic flow laws
for polycrystals, however, Glen’s Law is often abandoned in favor of one that details the
strain rate of individual crystals within the polycrystalline aggregate, using a nonlinear
constitutive relation for deformation along basal planes. For example, a flow law of this
type worked well in separating crystal fabric and impurity effects on the shear strain rates
measured in the Dye 3 borehole in Greenland [Thorsteinsson et al., 1999; Thorsteinsson,
2000].

These modifications to Glen’s Law, however, are incomplete. If the mechanism of
deformation changes in low-deviatoric-stress regions of ice sheets, then a change in the
enhancement factor, F, or implementation of a fully anisotropic flow law that maintains
the n = 3 assumption cannot accurately describe the flow; a change in the exponent of the
constitutive relation is also necessary.

There are two ways to combine creep rates of multiple mechanisms: independently
and sequentially [Langdon and Mohamed, 1977]. In sequential processes [sometimes called
dependent processes, Durham and Stern, 2001], the two mechanisms interact such that
the slowest process is rate-limiting. The observed strain rate, ¢ is determined through
1/é =), 1/¢é;, where ¢; are the strain rates for individual mechanisms. If two mechanisms
operate independently, then the fastest process dominates flow, and their strain rates sum:
é =) €. In ice, most data [e.g. Colbeck and Evans, 1973; Goldsby and Kohlstedt, 2001;
Langdon, 1973; Durham et al., 2001] show that the stress exponent in the flow law increases
with increasing deviatoric stress; this is a characteristic of independent processes. Goldsby
and Kohlstedt [2001] did find sequential processes in some of their experiments, but only in
their finest-grain samples (3um); therefore, it is not likely to affect the flow of ice sheets.
Peltier et al. [2000], Goldsby and Kohlstedt [2001], and Durham et al. [2001] suggest a
flow law in which the total strain rate is an independent and sequential combination of
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four different mechanisms. This type of constitutive relation has also been found for
polycrystalline metals [Langdon, 1991]. Such a relation is useful for studies of laboratory-
scale ice deformation, but becomes less appealing at larger scales if it means we have to
track particle size distributions as well as temperature and fabric.

While the debate over dominant mechanisms continues, we take a pragmatic approach
to refining Glen’s Law for modelling ice sheets. We propose a multi-term flow law that
can approximate the expected behavior from a combination of mechanisms. We expand
Equation (2.1) to three terms and include a possible grain-size dependence. Our flow law
is:

3

. EnA,. _Qm _

€y = Z meo e nr (ng)m 171‘]', (2.5)
m=1

where A, and E have the same meanings as in Equation (2.1), but may be different for
each term. d is the average grain size, and p,, is a constant for each term.

For a given grain size, d, the three terms in this equation are equivalent to three
versions of Equation (2.1) with n = 1, 3, or 5. Laboratory and field studies have inferred
exponents ranging from n = 1 ton = 4.2 [Weertman, 1973, Table 2]. For example, Goldsby
and Kohlstedt [2001] fit n = 1.8 and n = 2.4 to their data in studies of grain-boundary
sliding; Wolff and Doake [1986] argued that an n = 1 relation best predicts the borehole-
deformation data from Devon Island and the depth-age profile at Camp Century. Many of
these data can be fit (within their uncertainties) with our formulation in Equation (2.5) by
selecting the appropriate softness parameter and enhancement factor for each term. For ice-
sheet-scale modelling purposes, it is not always necessary to have a separate term for each
suspected mechanism, as long as the form that is used approximates the correct behavior.
Indeed, this formulation is not intended to individually describe the microphysics of each
deformation mechanism, but to provide a simple empirical form to represent deformation
over a wider range of conditions than Glen’s Law with n = 3.

Several other authors, in addition to Meier [1958], have found multi-term flow laws to
be useful. Lliboutry [1969] used a three-term polynomial to accommodate the spread of
existing laboratory and field data, as well as to achieve mathematical simplicity. Colbeck
and Fvans [1973] fit their data from Blue Glacier to a three-term flow law similar to
Equation (2.5). Hutter et al. [1981] introduced a linear term to avoid the singularity in
viscosity (Equation 2.3) in Glen’s Law as the deviatoric stress goes to zero. Smith and
Morland [1981] needed a polynomial flow law to express the stress-strain-rate relationship
for the wide range of empirical data in the literature. Waddington et al. [1996] explored
the effects of the linear term on ice divides. In this paper, we expand on Waddington
et al. [1996] and show that a linear term can have a significant impact on some ice-sheet
modelling applications.

To explore the effect of a shift in mechanism at low deviatoric stress, we focus on just
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the first two terms, representing linear and Glen (n = 3) stress-strain-rate dependencies:

. E1Ap 9 E2A,
€y = dTlOle RT +dT2026 RT(TeQH) Tije (2.6)

linear term Glen term

By factoring out the coefficients of the second term, Equation (2.6) can be rewritten:
¢y = T[E? + 775, (2.7)
where
E2A02 _Q2
S 2T RT
dpr2

is the coefficient for normal Glen flow when py = 0 (there is no crystal size dependency in
Glen’s Law) and

r= (2.8)

E1A01 d_me_QlR—TQZ ]1/2
E2A02 dr1 '

In this formulation, k, the crossover stress, is the effective deviatoric stress at which the
linear and cubic terms contribute equally to the total strain rate (see Figure 2.2). k is the
square root of the ratio of the coefficients of the two terms in Equation 2.6. The effective
viscosity is now 7. = (2[k? + Tfﬂ])_l, which remains finite as 7.4 — 0 (compare with
Equation (2.3)). The expression for k in Equation (2.9) highlights the sensitivity of the
crossover stress to properties of the ice such as temperature, thermal activation energy,
and grain size. For example, if the micro-scale flow mechanisms have different thermal
activation energies, then k2 will depend on temperature through a factor of ¢~ (@1=@2)/AT
This effect can be large: a difference in activation energy of 10kJmol™! will result in a
difference of approximately one order of magnitude in k for typical ice sheet temperatures.
Langdon and Mohamed [1977] have provided a detailed description of the effect of thermal
activation energies for both sequentially and independently combined creep processes in
metals.

k=] (2.9)

As another example, two of the three mechanisms (diffusion creep and grain-boundary
sliding) that may dominate at low deviatoric stress depend on grain size; therefore, we
include a grain-size dependence in our flow law. Unless p; = po, the crossover stress will
also depend on grain size. Creep rate is independent of instantaneous grain size for the
normal Glen regime [Paterson, 1994], so probably p, = 0 in Equation (2.5). Goldsby and
Kohlstedt [1997] fit their data with a grain-size dependence of p = 1.4 for a flow law with
an exponent of n = 1.8. To be represented by Equation (2.6), however, their data would
have to be re-analyzed to find the best-fitting parameters.

Crossover stress may depend on other ice properties as well. For example, since the
n = 1 Harper-Dorn creep mechanism is based on dislocation glide on the basal plane, it
likely has the same crystal-orientation dependence as n = 3 dislocation creep. If these
two mechanisms dominate, and crystal orientation is expressed approximately through en-
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Figure 2.2: Strain rate versus deviatoric stress for the linear and cubic terms in Equation (2.7).
The dashed curve shows the total strain rate (i.e. the sum of the two terms). k is the crossover
stress at which the linear and cubic terms contribute equally to the total strain rate.

hancement factors, E,,, then Fy = E, in Equation (2.9), and k is independent of crystal
orientation. A diffusional process or grain-boundary sliding, however, may be indepen-
dent of crystal orientation. If one of these processes dominates deformation rate at low
deviatoric stress, then F7 # Fo and k depends on crystal orientation.

A useful parameter that can readily show which term (linear or Glen) is dominant

anywhere in an ice sheet is:
2

- 271/2
eff
0= ] o0
() is a non-dimensional stress that describes the relationship between the effective deviatoric
stress and the crossover stress. The effective deviatoric stress is a function of a divide’s
geometry and climate, while the crossover stress is a material property independent of
geometry and accumulation rate, but dependent upon other ice properties according to
Equation (2.9). The flow law expressed in terms of €2 is:

é; = DKL + Q%7 (2.11)

2.6 Divide Characteristic Stress

The effect of the linear term in Equation (2.11) on an ice sheet depends on the distribution
of deviatoric stress in the ice sheet and on the value of the crossover stress, k. The
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deviatoric-stress field in an ice sheet depends primarily on the geometry. Figure 2.1 shows
the typical pattern of effective deviatoric stress, 7.4, near an ice divide. The linear term
in the flow law will be important if Q = [r2,/k?]"/? < 1. Since Q is a function of position,
it is useful to define a characteristic stress (T...,) to represent the large-scale behavior of a
particular divide. Equation (2.7) suggests the form:

~1/3
o = [zr%] , (2.12)

where €., & % is the characteristic strain rate. With this definition, 7, is of the same
order of magnitude as the average 7.4 in the vicinity of the divide, except for those divides
strongly dominated by the linear term (k? > 72,).

Similarly, we can define a non-dimensional characteristic stress using §2:

22 11/2
Qepar = [k%] , (2.13)

char

where k.., is a characteristic value for k£ based on the properties of the ice at two-thirds
depth under the divide (the region most sensitive to the presence of the linear term).

Figure 2.3 shows characteristic stresses for various divides, based on estimated ice
thickness (H), average accumulation rate (b), and temperature (') in the lower half of
the ice column. These numbers come from several sources, including a variety of scientific
literature, web sites, and personal communications. While this is a crude representation
of conditions under any particular divide, this graph shows the spread of possible char-
acteristics. Even with estimates shown in Figure 2.3, we cannot determine which divides
have Q.. > 1 (exhibiting primarily Glen rheology) or have Q.. < 1 (exhibiting primarily
linear rheology) without knowing k.,... We can, however, use Figure 2.3 to guide selection
of sites at which to make measurements to constrain k...

Figure 2.4 shows schematically the relationship between Q.. and a divide’s behavior.
When Q.. is large (72_. > k2 ), divide deformation is dominated by the Glen term in

char char
the flow law; we call this a Glen divide. When Qg.,, is small (72 < k2 ), we get a
linear divide, where the linear term dominates right at the divide, while the Glen term is
progressively more important with increasing distance from the divide. In a transitional
divide (0.5 < Qenar < 2), both terms contribute significantly to the modelled deformation
rate at the divide. Ice flow at linear and transitional divides is modelled inaccurately with

the conventional Glen’s Law.

2.7 Finite-Element Ice-Flow Model

Raymond [1983] developed a two-dimensional, plane-strain, finite-element model using all
terms of the stress tensor to study divide behavior. We have modified this model to explore
the impact of the linear term in the flow law on ice flow near a divide.
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communications. The three divides shown in large type are studied in more detail in Figures 2.6
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Paleo-Ice Sheet at Last Glacial Maximum (LGM), North America; TD, Taylor Dome, Victoria
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Dome A, East Antarctica; VD, Valkyrie Dome, site of Dome Fuji Station, Queen Maud Land, East
Antarctica (EAR)



20

Glen divide

Qerar> 1

Transitional divide

Qchar&

-2 0 2

o

Height above bed (z/H)

-_—

Linear divide

Qera< 1
: A

-2 0 2

Distance from divide (x/H)
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The model is structured around the following assumptions:

1.

The ice deforms in plane strain; thus, the model best represents a ridge ice divide,
such as Siple Dome [Nereson et al., 1996] or Roosevelt Island [Conway et al., 1999].

The ice sheet is in steady state.

Strain rate is a function of deviatoric stress according to Equation (2.11). We do not
account for effects of fabric, impurities, or grain size in this model. This flow law
is implemented by calculating an effective viscosity at each iteration based on the
stress field of the previous iteration. These iterations continue until a convergence
criterion is met.

. Measured temperature profiles in the divide regions of ice sheets typically have a

low gradient near the surface and a steeper gradient near the bed. To capture the
qualitative features of this shape, we use a quarter of a cosine curve, specified by
measured surface temperature and estimated geothermal gradient at the bed.

Total thickness of the ice and firn is reduced to ice-equivalent thickness.
The ice is frozen to the bed.

The ice surface is stress-free and is allowed to evolve until the topography reaches
a steady state with the specified uniform accumulation rate. We terminate the

evolution when the maximum change in surface-node elevations is < 1mma~".

The horizontal-velocity profile on the flank boundary (at ~30 ice thicknesses from the
divide) is based on laminar flow, and carries away the integrated mass balance from
the divide to the boundary, in order to satisfy mass conservation for a steady-state ice
sheet. Because our boundary is more than 20 ice thicknesses from the divide, results
for the region within ten ice thicknesses of the divide are insensitive to the details of
the horizontal-velocity profile on the flank boundary [Raymond, 1983; Schett et al.,
1992].

We use finite-element grids with flat beds and 66x20 nodes. We choose initial ice
thicknesses and accumulation rates to represent three ice divides that have very
different characteristic stresses.

In order to isolate effects of the flow law from site-specific geometry, we model idealized
ice sheets with flat beds and with the average accumulation rate, thickness, and deep-ice
temperature characteristic of three divides that span a broad range of characteristic stress
in Figure 2.3. The East Antarctic Ridge (EAR) end member, approximates Valkyrie
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Dome, the site of Dome Fuji Station, a thick, cold, low-accumulation region. Siple Dome
is the model for our Small West Antarctic Ridge (SWAR), with moderate accumulation
rate and thickness. The other end-member is a Small Alpine Ice Cap (SAIC); the thin,
high-accumulation Quelccaya Ice Cap, Peru, is an example. Table 2.1 contains the model
parameters that we use. In modelling each divide, we vary the crossover stress, k, from 0
(Glen flow) to 0.4 bars; this range spans all characteristic stresses in Figure 2.3.

Table 2.1: Model input parameters for the three divides. Data sources are as follows: ¢ Satow et al.
[1999]; ® estimates based on heat flow assumptions; ¢ Nereson et al. [1996]; and ¢ Mosley- Thompson
et al. [1993]

Tsurt (O C) dT/deed(O C m_l) b (m a’_l) H (m)

East Antarctic Ridge -55% 0.023 0.03* 3500
(Valkyrie Dome,
Dome Fuji Station)

Small West Antarctic Ridge -26¢ 0.030° 0.1¢ 1000¢
(Siple Dome)
Small Alpine Ice Cap -od 0.0b 1.304 1654

(Quelccaya Ice Cap, Peru)

2.8 Results

2.8.1 Vertical velocity and depth-age scale

Raymond [1983] used an earlier version of this model to determine the steady-state pat-
terns of deviatoric stress and strain rate under an isothermal divide with Glen flow. His
Figure 3 shows the depth profile of horizontal and vertical velocity at the divide and at var-
ious distances from the divide. There are two results to note in that figure: (1) the region
affected by the presence of the divide extends horizontally several ice thicknesses, and (2)
the vertical deformation rate is more concentrated in the upper two thirds of the ice sheet
near the divide, when compared to the flank. This vertical-strain-rate pattern results from
the presence of a region of low deviatoric stress near the bed at the divide, where Glen’s
Law predicts high viscosities. Because this region of stiff ice impedes downward flow, a
particular isochrone moves down more quickly on the flank than at the divide, producing
a local arch in the isochrone. These arches, called Raymond bumps, have been recognized
in radio-echo-sounding images at Fletcher Promontory, West Antarctica |[Vaughan et al.,
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1999], Siple Dome, West Antarctica [Nereson et al., 1998b], and Roosevelt Island, West
Antarctica [Conway et al., 1999]. Interestingly, in radar transects of the divide in Green-
land [Jacobel and Hodge, 1995] a Raymond bump is noticeably missing, most likely due to
the peregrinations of the divide [Marshall and Cuffey, 2000; Hindmarsh, 1996].

In normal Glen flow, ice near the bed at a divide tends to be warmer due to reduced
downward advection of cold ice relative to the flank [Paterson and Waddington, 1986].
This heat softens the ice, partially countering the increase in viscosity due to low deviatoric
stress. Hvidberg [1996] predicted a smaller-amplitude Raymond bump due to this thermal
softening.

Figure 2.5 shows our results for relative vertical-velocity profiles for the Small West
Antarctic Ridge (SWAR) resulting from our calculations; the two other divides we modelled
produce qualitatively similar results. When the linear term dominates at the divide (2 <
1), the shape of the relative vertical-velocity profile at the divide approaches the shape
found on the flanks, where the nonlinear term always dominates. The linear term allows
the ice at the divide, where deviatoric stress is low, to maintain a viscosity comparable to
that of the ice on the flank, which is under higher deviatoric stress. This causes both the
differential thermal softening and the Raymond bump at the divide to disappear.

By impacting the shapes of isochrones near a divide, the value of k in a model’s consti-
tutive relation at low deviatoric stress also affects the calculated depth-age scale used to
interpret ice cores. Since the age of ice at a given depth at the divide is equal to the integral
of the inverse of the vertical-velocity field along the particle’s flow path, the progression
shown in Figure 2.5 affects the corresponding calculated depth-age scale. Inclusion of the
linear term in a flow model results in younger ice at a given depth at a divide.

2.8.2 Isochrones and surface morphology

In Figure 2.6, we show the effect of the linear term on isochrones near a divide. Since k is
unknown, we model the isochrone shapes near the three divides for four values of k.

For the lowest value of k, 0.01 bar, all three divides exhibit nonlinear behavior described
by Glen’s Law. For k = 0.1bar, the East Antarctic Ridge (EAR) shows transitional
behavior, since it has a characteristic 7., of approximately 0.1 bar and Q.. ~ 1; the
amplitude of the Raymond bump in the isochrone pattern is much-reduced. For the Small
West Antarctic Ridge (SWAR), Tepar ~ 0.2bar and for the Small Alpine Ice Cap (SAIC),
Tenar ~ 0.4 bar; therefore, transitional behavior occurs only at values of k larger than 0.1 bar
and 0.2 bar, respectively.

If Glen’s Law works well for deviatoric stresses down to 0.3 bar, as Budd and Jacka
[1989] suggest, it is unlikely that the crossover stress, k, is larger than 0.3 bar. The Small
Alpine Ice Cap (SAIC), therefore, has deviatoric stresses large enough that nonlinear Glen
flow should dominate, regardless of the value of k. Depending on the actual value of
k, the Small West Antarctic Ridge (SWAR) and East Antarctic Ridge (EAR) could be
transitional, linear, or Glen divides. The existence of a distinctive Raymond bump in the
radar images of Siple Dome [Nereson et al., 1998b], our model for a Small West Antarctic
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Figure 2.5: Modelled vertical-velocity profiles for divide flow (assuming a range of Q.,;) and for
flank flow for the Small West Antarctic Ridge (SWAR). The SAIC and the EAR model results are
qualitatively similar. Glen flow occurs when the nonlinear term dominates; there is a significant
difference between the Glen profile and the flank profile where the nonlinear term always dominates.
At a transitional divide, the linear term causes the divide profile to resemble the flank profile more
closely. In the limit of Q.. — 0, there is no difference between the divide profile and the flank
profile.
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Ridge, suggests that it is a Glen or transitional divide and, therefore, k <0.2 bar.

The relatively softer ice in the divide region of a linear or transitional ice sheet (com-
pared to a Glen divide) also affects the surface geometry. Figure 2.7 shows the modelled
surface shapes for the same three divides shown in Figure 2.6. The effect of the linear term
is not only to reduce surface curvature near the divide, but if a large enough region of ice
behaves linearly (i.e. € > 1, see Figure 2.4) it may produce a slightly thinner divide. The
overall thickness of an ice sheet, however, is ultimately limited by nonlinear (Glen) flow
on the flanks, where shear stresses are high. The crossover stress, k, could have an impact
on modelling of the Laurentide Ice Sheet, for example. Some models of the Laurentide Ice
Sheet predict much thicker ice than can be accounted for by isostatic rebound and sea level
changes [e.g. Marshall et al., 2000]. Many scientists have ascribed this incompatibility to
properties of the bed, but Peltier et al. [2000] noted that a different flow law could also
contribute to a thinner ice sheet. In their model, Peltier et al. [2000] assumed a near-linear
constitutive relation based on grain-boundary sliding for the entire ice sheet. Realistically,
even an ice-sheet geometry based primarily on flow due to GBS is likely to be constrained
by a higher-power constitutive relation on the flanks; thus, both terms are important for
accurately modelling ice sheets.

2.9 Conclusions

Glen’s Law, with a cubic relation between deviatoric stress and strain rate, was derived em-
pirically, and it works well for modelling most ice sheets and glaciers. In the low-deviatoric-
stress regimes found particularly near ice divides, Glen’s Law may be inadequate, because
the ice-flow mechanism may change. Our extended formulation for the constitutive rela-
tion for ice, Equation 2.5, is not mechanism-specific; it is intended to represent a range
of microphysical processes (within their current experimental uncertainties), yet maintain
simplicity for flow modelling at ice-sheet scales. Since empirical evidence shows that de-
viatoric stress and strain rate are related by exponents ranging from n = 1 to 4.2, our
formulation uses a summation of three terms with exponents 1, 3, and 5. At low devia-
toric stresses, the linear term dominates flow. At deviatoric stresses typical of most ice
flow, the cubic term dominates. In high-deviatoric-stress situations, the fifth-power term
may become important.

The importance of the linear term depends on the value of the unknown crossover
stress, k, which is the deviatoric stress at which the linear and cubic terms contribute
equally to the strain rate. A steady-state divide exhibiting linear flow has:

1. a vertical velocity profile that closely resembles the profile on the flanks (and, there-
fore, corresponding similarities in the shape of the horizontal velocity profile, and in
vertical and horizontal strain rates),

2. a lack of a Raymond bump in isochrones or an arch in isotherms,
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Figure 2.7: Modelled surface morphology for the three divides in Figure 2.6. The transition from
Glen flow to linear flow causes a flattening of the surface in the divide region because of the change
in the velocity field (see Figure 2.5.)



28

3. younger ice than a corresponding Glen divide at any given depth,

4. more-rounded topography at the ice divide.

The linear term of the flow law may also be important near the surfaces of ice sheets and
glaciers, where shear stresses and 7.4 can be small. The impact of rheological properties
of this near-surface region on large-scale ice-sheet models is minimal; it may, however,
become important in flow of valley glaciers [Marshall et al., 2002].

We must also consider whether the magnitude of this effect is large enough to be of
concern to modelers, considering the variability in strain rates due to anisotropy, impurity
content, and grain size. The model by Azuma [1994] predicts a maximum enhancement
factor of 9 for anisotropic ice in simple shear; all other stress configurations produce less
enhancement. Other anisotropy models give comparable results [e.g. Thorsteinsson et al.,
1999]. The theoretical basis for enhancement due to solid or chemical impurities or grain
size is less well understood, but measurements from high-deviatoric-stress environments
show maximum total enhancements (including anisotropy) of up to 10 relative to isotropic
ice at the same temperature [Dahl-Jensen and Gundestrup, 1987; Cuffey et al., 2000a)]. In
addition, laboratory tests on impurity-laden ice show enhancements up to 2 [Budd and
Jacka, 1989]. From these data, we can conclude that the enhancement of the strain rate
due to these effects is no more than one order of magnitude, and often less. On the
other hand, transition to linear flow in the near-divide region is equivalent to applying an
enhancement factor, E, of up to 10° to the n = 3 version of Glen’s Law in regions where
Q) < 1, such as near the bed at the divide. In other words, the uncertainties due to the
unknown value of k£ will be negligible for much of the ice sheet, but in the near-divide
regions, the assumption of an n = 3 flow law may result in large errors in models.

Before this constitutive law can be incorporated into current flow models, however, the
value of the crossover stress, k, must be determined. This effort may involve re-analyzing
existing laboratory and field data as well as designing future experiments to study the
transition between linear and Glen constitutive behavior [e.g. Morse, 1997; Zumberge et al.,
2002]. Although in this paper we modelled only isotropic ice, the issue of stress-dependent
flow-law exponent also applies when modelling anisotropic ice, especially if the anisotropic
model relies on an n = 3 relationship between deformation and resolved shear stress on
the basal plane for an individual crystal.
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Chapter 3

EFFECTS OF BASAL SLIDING ON ISOCHRONES AND FLOW
NEAR AN ICE DIVIDE

This chapter is in press under the same title in Annals of Glaciology 37, with co-authors H. P. Ja-
cobson (who developed the finite-element model) and E. D. Waddington from Earth and Space Sciences
Department, University of Washington. Helpful reviews were provided by A. Fowler, F. Ng, and T. Hulbe

3.1 Summary

If an ice sheet is frozen to its bed, deep ice directly under a divide experiences low deviatoric
stress and is relatively hard, because the rheology of polar ice is described by a power-law
constitutive relation. In steady state, stratigraphic layers tend to form an arch (“Raymond
Bump”) in this region. However, when the basal ice can slide, the stresses are redistributed,
and longitudinal extension due to sliding is associated with increased deviatoric stress in the
deep ice under the divide. This increased deviatoric stress weakens the tendency to form
a Raymond Bump. To find a realistic spatial distribution of sliding under an ice divide,
we incorporate a thin layer of viscous till in a finite-element plane-strain flow model. The
resulting basal “sliding” velocity varies approximately linearly with distance from the ice
divide. By varying the till viscosity, we can adjust the amount of basal motion. We find
that the Raymond Bump decays exponentially with the fraction of total ice flux carried by
sliding: the arch is 50% smaller when the sliding flux is only 7% of the total ice flux. This
implies that the possibility of a wet bed must be considered when inferring past ice-divide
locations from radar internal layering.

3.2 Introduction

Ice-penetrating-radar images, ice-core records, and ice-deformation measurements hold
clues to past and future behavior of ice sheets. The challenge is to infer paleoclimate and
ice-flow history from these data. Rigorous solution of these inverse problems requires an
understanding of the subtleties of ice deformation and flow.

Ice cores are often drilled near ice divides, in order to minimize stratigraphic dis-
turbance due to horizontal shearing of ice [e.g. Waddington et al., 2001]. Therefore, a
rigorous ice-flow model for the ice-divide region is required, particularly since, at ice di-
vides, longitudinal stress gradients cannot be ignored [Nye, 1959; Morland and Johnson,
1980; Raymond, 1983]. Furthermore, at the low deviatoric-stress levels found under ice
divides, the ice rheology may be near-linear, changing the pattern of ice flow | Waddington
et al., 1996; Pettit and Waddington, in press|. Ice flow can also be influenced by changing
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boundary conditions. For example, there is a significant feedback between the near-divide
flow field and the surface temperature [Hvidberg, 1996]. Elevation changes of bounding ice
streams [Nereson et al., 1998al, or transient and spatially asymmetric accumulation-rate
patterns [Nereson et al., 1998b] can cause an ice divide to migrate.

Here, we explore the effects of basal motion on the ice-flow pattern and the internal
stratigraphy under an ice divide. Some ice divides are presently frozen to their beds (e.g.
Greenland Summit, Johnsen et al. [1995]; Devon Island, Paterson and Clarke [1978]; and
Siple Dome, G. Clow, pers. comm.), while others such as Law Dome [Budd et al., 1976]
and parts of the West Antarctic Ross-Amundsen ice divide (Morse and others, in press)
are at or near the pressure-melting temperature at the bed. At these divides, basal sliding,
a deforming till layer, or both, may be present.

Because polar ice is described by a power-law constitutive relation, [e.g. Paterson,
1994, Chapter 5, Glen’s Law), its “effective viscosity” increases with decreasing effective
deviatoric stress. Where an ice sheet is frozen to its bed, the deep ice directly under a divide
experiences low deviatoric stress, has a relatively high effective viscosity, and is relatively
resistant to deformation. As a result, stratigraphic layers tend to move downward more
slowly within a distance of one ice thickness of the ice divide, when compared to flank
regions (at distances greater than about five ice thicknesses from the divide). In a steady
state, these layers tend to form an arch (“Raymond Bump”) in the divide region [Raymond,
1983]. However, when the basal ice can slide, or when a deformable till layer exists, stresses
are redistributed, and the deep ice undergoes more longitudinal extension. This extension
increases longitudinal deviatoric stress in the deep ice under the divide, resulting in a lower
effective viscosity there and a weakened tendency to form a Raymond Bump.

In order to explore the effects of various levels of basal sliding on the flow pattern
and the stratigraphy, we must first formulate a realistic spatial pattern of basal motion
that might be expected under and near ice divides. This is not a trivial matter, because
there is still no general agreement on the detailed form of a basal sliding relationship
for ice sheets. Conventional sliding boundary conditions incorporate simplifications and
assumptions that break down in the divide region. Many models incorporate a sliding law
based on the theory by Weertman [1957], for which sliding velocity, wuy, is a function of
local basal-shear stress [Nye, 1959; Morland and Johnson, 1980; Payne, 1995; Tarasov and
Peltier, 2000; Marshall et al., 2000]:

up = k7™, (3.1)

where 7 is the local shear stress, and k is a function of several ice-flow and geometric
parameters, potentially including effective water pressure (the difference between ice over-
burden pressure and basal water pressure).! As Weertman [1961] noted, this law includes
the implicit assumption that longitudinal stresses are insignificant. Near an ice divide,
however, longitudinal stresses cannot be neglected, because shear stresses approach zero.

! Appendix A is a table of the notation.
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Because the driving shear stresses are small, we expect that longitudinal strain rates in
the ice will control the allowable gradients in basal sliding velocity.

Here we use a two-dimensional plane-strain finite-element flow model, which automati-
cally incorporates longitudinal-coupling effects. To parameterize sliding at the ice-bedrock
interface, we use a layer of deformable, linearly-viscous till and allow the model to deter-
mine the pattern of basal motion under and near a divide. We then vary the till viscosity
to examine the sensitivity of isochrone shape and the velocity field to varying amounts of
basal “sliding”. From the perspective of the ice, varying the till-layer thickness has the
same effect as varying the till viscosity. The choice to use a linear-viscous till, rather than
a power-law till, will affect subtle details of the model results, but not the general features
that we present here.

3.3 Finite-Element Ice-Flow Model

To calculate the velocity field and find the steady-state isochrone pattern, we use a ther-

momechanically coupled finite-element model (FEM). This model is similar to ice-divide

models by Raymond [1983] and Hvidberg [1996]. Figure 3.1 shows the model geometry.
The model is structured around the following assumptions:

1. The ice deforms in plane strain; thus, the model best represents a ridge ice divide,
such as Siple Dome [Nereson et al., 1996] or Roosevelt Island [Conway et al., 1999].

2. Strain rate is a power-law function of deviatoric stress according to Glen’s flow law:

n—1

éij = A(T2) 2 Tij, (3.2)

where €;; and 7;; are the strain-rate and deviatoric stress tensors, respectively, 7. is
the effective deviatoric stress [Paterson, 1994, p. 91] and we assume that A depends
only on temperature through the Arrhenius relation A = Ajexp(—Q/RT).

3. The ice is underlain by a layer of till of uniform thickness. There is no slip between
the ice and the top of the till layer, and no slip between the bottom of the till and
the bedrock. The viscosity of the till layer is a model input parameter which can be
adjusted to model various levels of basal resistance.

4. The temperature calculation is based on the surface temperature and the geothermal
gradient at the bottom of a thick layer of bedrock [Waddington, 1987]. In addition
to conduction and advection, strain heating is included in the thermal model. The
thermal conductivities and diffusivities of the ice, rock, and till are assumed to be
equal and uniform (the values for ice fall within the range typical for sedimentary
rocks, Stein [1995]).
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Figure 3.1: Finite-element model geometry. Solid lines are element (9-node quadrilaterals) bound-
aries. Plus signs mark nodes in the ice. Solid dots mark bedrock nodes. The ice is initially 1000m
thick at the divide, with an initial surface profile is calculated using the shallow ice approxima-
tion. The ice at the divide can move only vertically. The velocity profile on the flank boundary
(~ 30Hg;,) exports ice flux equal to the surface accumulation integrated over the surface. The
till layer is 10 meters thick (one element thick). The ice-till and the till-rock contact are no-slip
boundaries. In each model run, the surface evolves until it reaches steady state with the uniform
accumulation rate.
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5. The upper surface is stress-free and is allowed to evolve until a steady state is reached
with a specified uniform accumulation rate. We define steady state as a maximum
change in the surface elevation (excluding the 5 nodes nearest the flank boundary)
over a year of less than a specified tolerance e (typically <5mm per year for a 1000 m
thick ice sheet).

6. The divide is a line of symmetry where ice is constrained to move only vertically.

7. The horizontal-velocity profile on the flank boundary (at 30 ice thicknesses from the
divide) carries away the integrated mass balance from the divide to the boundary, in
order to satisfy mass conservation for a steady-state ice sheet. Because our boundary
is more than 20 ice thicknesses from the divide, the results for the region within ten
ice thicknesses of the divide are insensitive to the details of the horizontal-velocity
profile on the flank boundary [Raymond, 1983; Schett et al., 1992].

8. Because our goal was to isolate the effect of sliding, the layer of till does not undergo
the thinning that one would expect, given the export of till by shearing flow through
the flank boundaries. We also do not allow for mass-loss due to melting from the
base of the ice sheet or mass gain due to freeze-on of basal water.

Table 3.1 shows values of constants used in the model. We chose the surface temper-
ature, geothermal flux, ice thickness, and accumulation rate characteristic of Siple Dome,
West Antarctica.

As shown in Figure 3.1, we model an idealized symmetrical divide with a flat bed. We
use a 39x31-node grid of quadratic elements. Since we are most interested in the solution
near the divide, the nodes are more closely spaced within the divide region. Horizontal ice
velocity and horizontal temperature gradient are zero at the ice divide. The model solves
for temperature, pressure, and velocity fields.

We varied the till viscosity from 10° to 10'® Pas, to capture the range of possible be-
haviors. For each till viscosity, the model reaches a steady state in which the accumulation
rate and the flow due to gravity (a function of the model geometry) are balanced. In order
to compare different model runs, we chose to keep the accumulation rate constant and
to allow for differences in the final steady-state geometry. The alternative is to maintain
constant ice sheet thickness at the divide, but adjust the accumulation rate for each set of
boundary conditions. Our conclusions do not depend on this choice.

We present our results in non-dimensional form, indicated by a hat (") over the variable.
We use ice thickness at the divide, Hg;,, as the characteristic distance. The characteristic
Viscosity, 7., is defined by rearranging Equation (3.2) for n = 3 such that 7 = 2né (the
standard form for a linear fluid). This yields [Pettit and Waddington, in press|:

nice = (2A)_1/3 (échar)_2/37 (3.3)
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Table 3.1: Finite-Element model parameters.

Parameter Value
n flow-law exponent 3
A, flow-law constant (7' < —10°C) 1.3 x 107> Pa3a~!
A,  flow-law constant (T'> —10°C) 6.26 x 1019 Pa=3a~!
Q activation energy (T' < —10° C) 60 kJmol
Q activation energy (7 > —10° C) 139 kJmol !
R gas constant 8.314 Jmol 1K1
k thermal conductivity 2.1W m1K!
c heat capacity 2.11 kJK kg™!
p density 910kg m~3
T..t surface temperature -25°C
Qeo  geothermal flux 65 W m~2
H ice thickness 1000 m
b accumulation rate 0.1ma!
H,, till thickness 10m
Nun  till viscosity 105 to 10" Pa s
Nice char. ice viscosity 101 Pa s
H.... bedrock thickness 1000 m

We use the value of A appropriate for average ice temperature. €., = b/ Hg,, where b
is the accumulation rate. The characteristic time is t..e = 1/égpar = Haiv/ b. For Siple
Dome, the characteristic viscosity is ;.. = 10'° Pas (), = 1) and the characteristic time
iS toner = 10 years.

3.4 Results

Our first goal was to determine a realistic spatial distribution of basal-ice motion under an
ice divide. To do this we used a layer of till with an adjustable but spatially uniform vis-
cosity and thickness. When ice is frozen to its bed, the entire ice flux has to be transported
through internal deformation in the ice. A very stiff till layer produces the same results.
But as the viscosity of the till layer decreases, shear deformation in the till increases, de-
creasing the shear deformation required within the ice sheet to achieve equilibrium with
the specified accumulation rate at the surface. Ultimately, when the till viscosity is low
enough, virtually all of the shear deformation is concentrated in the till layer, shear stress
at the base of the ice goes to zero, and the ice deforms only through longitudinal stretching
(similar to an ice shelf). This trend is shown in Figures 3.2 and 3.3.

“Sliding velocity” is represented by the basal ice motion at the ice-till contact. Fig-
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ure 3.2(a) shows the longitudinal profile of this basal ice motion for model runs with a range
of non-dimensional till viscosities 7, from 10~* to 10°. In the low-viscosity-till model run,
the basal-ice motion increases linearly with distance from the divide. This result is not
unexpected, since nearly all of the motion occurs through shearing of the till layer. In this
case, longitudinal stress o, in the overlying ice, which varies slowly with distance from
the divide, controls the basal-velocity gradient. The ice near the divide moves away from
the divide as “plug flow” (Figure 3.3a): the basal velocity in this region is equal to the
surface velocity, which, from steady state mass continuity, is
b
Us = Up = T, (3.4)
where z is the distance from the divide. In contrast, in the high-viscosity-till model run
(Figure 3.3c), sliding velocity is zero everywhere, and the ice motion is accommodated
largely through internal horizontal simple shear. In both of these cases, the details of the
rheology of our till-layer do not affect the results.

To conserve mass, the plug-flow horizontal-velocity profile of the weak-till model run
requires a near-linear vertical velocity profile at all distances from the divide, as shown on
the left side of Figure 3.3. The ice sheet necessarily reaches a different steady-state surface
profile in plug flow compared to a steady state dominated by internal deformation in the
ice (Figure 3.2b). In steady state, the ice flux at any position is equal to the integrated
accumulation rate from the ice divide; this flux is the same regardless of the till viscosity.
Therefore, as till viscosity decreases, increased basal sliding contributes more to the ice
flux, and the internal deformation within the ice sheet must contribute less. Since internal
deformation is driven by ice thickness and slope, a steady ice sheet with more sliding must
be thinner and have a shallower slope.

We also explored the behavior of the flow and stratigraphy with basal-till viscosities
intermediate between the stiff-till (fu = 10%) and weak-till (i, = 10™*) model runs.
The velocity field and steady-state geometry of an ice sheet are most sensitive to the till
viscosity when the till viscosity is within an order of magnitude of the characteristic ice
viscosity (7. = 1). For these transitional model runs, the total deformation is divided
comparably between the till and the ice. The sliding velocities and surface profiles for
these intermediate model runs are shown in Figure 3.2. Unlike the result in the weak-
till model run, these velocity profiles are not linear (Figure 3.2a). The sliding velocity
gradually increases with distance from the divide, with a steeper gradient within a few
ice-thicknesses of the divide. The horizontal-velocity profile is more similar to plug flow
near the divide; however, as surface slope and basal shear stress increase with increasing
distance from the divide, internal deformation carries an increasing fraction of the ice flux
(Figure 3.3b). The details of the model results for these transitional model runs depend
on our choice of till rheology. A power-law till would slightly change the curvature of the
sliding velocity and surface profile curves in Figure 3.2.

To maintain the plug flow characteristic of the low-viscosity-till model run (and the
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near divide zone of the transitional model runs), the longitudinal deviatoric stresses must
be more evenly distributed with depth, compared with the pattern for an ice sheet frozen
to its bed. This is particularly important near the base of the ice at the divide, where low
deviatoric stresses and correspondingly high effective ice viscosity (due to the nonlinearity
of Glen’s flow law) contribute to the formation of the Raymond Bump in the isochrones.
In Figure 3.4, we show results from four model runs with non-dimensional till viscosities
varying from 10% to 10~*. The left column shows simulated steady-state isochrones and
the right column shows the pattern of non-dimensional effective viscosity in the ice. Fig-
ure 3.4(a) shows the typical patterns for an ice sheet frozen to its bed. The arch in the
isochrones on the left results from deformation around the “hard” zone deep under the
divide, as seen in the effective-viscosity distribution on the right. All three of the high- to
moderate-viscosity till model runs (a-c) show a zone of relatively hard ice deep under the
divide. The extent of this zone and the magnitude of its peak effective viscosity relative to
the viscosity on the flank determines the size of the Raymond Bump; as we increase basal
sliding, the arch in the isochrones diminishes. The high longitudinal stresses near the bed
of an ice sheet with basal sliding keep the effective viscosity low (Figure 3.4d), and hinder
the formation of this zone, resulting in flatter isochrones.

By analyzing the decrease in prominence of the divide arch, we can quantify the effect
of sliding on the flow field. We define the amplitude of the Raymond Bump for each
isochrone as the maximum distance that the isochrone rises above an imaginary smooth
curve that best fits the shape of the isochrone on both flanks of the dome. In Figure 3.5,
this arch amplitude is plotted as a function of the fractional height of the isochrone at
10 ice thicknesses from the divide for each model run. The arch decreases in magnitude
with increasing sliding. Also, the depth of its maximum amplitude decreases as sliding
increases. This effect is due to a subtle change in the shape of the vertical velocity profile
at the divide (see Figure 3.3). The depth of a layer is given by the temporal integral of
its downward velocity along its particle path. The maximum arch amplitude occurs at a
depth where the difference between these integrals is maximum for particle paths at the
divide and on the flank. As the amount of basal sliding increases, the differences between
flank and divide vertical-velocity profiles are pushed to shallower depths; this subtle shape
change pushes the height of the maximum amplitude upwards.

In Figure 3.6 we take each curve from Figure 3.5, and plot the maximum bump ampli-
tude against the flank flux ratio ¢4, defined as the percentage of the total ice flux carried
by sliding at about 5 ice thicknesses from the divide:

upHs

ds = s (35)
upHs + f0H5 ui(z)dz

where Hj is the ice thickness at 5Hyg;,, up is the sliding velocity at 5Hg;,, and u; is the hor-
izontal velocity due to internal deformation at 5H;,. Figure 3.6 shows that the maximum
arch amplitude decays exponentially with increasing sliding: it takes only 11% sliding flux
to cause the arch to decrease to 36% (1/e) of its size in the stiff-till model run. Thus, a
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small amount of sliding can significantly alter ice flow and reduce the amplitude of the
Raymond Bump.

3.5 Discussion

Previous attention to sliding has focused on fast-moving ice streams and on the central
reaches of valley glaciers. The impact of sliding on the flow pattern near ice divides has
received little attention. To our knowledge, only Morland and Johnson [1980] have looked
in some detail at the effect of sliding on the flow field near an ice divide. They assumed a
sliding velocity based on a modification of Equation (3.1), which we expect has difficulty
in reflecting the important role of longitudinal stress gradients near a divide. Because
the overlying ice resists dramatic inhomogeneities in longitudinal strain rate, the basal-
ice velocity should also vary smoothly with position. Weertman [1961], realizing that
Equation (3.1) may be inapplicable near a divide, added a longitudinal-stress term, and
showed that, as a result, small ice caps such as the Barnes were predicted to have a flatter
profile than the sliding law Equation (3.1) would suggest.

To investigate the effect of sliding at a divide more thoroughly, we have incorporated
a layer of deformable till into our plane-strain finite-element ice-flow model. Our till layer
is not intended to be a realistic basal substrate, but it is a simple method for represent-
ing sliding behavior that includes the strong longitudinal-stress coupling represented by
extensional stresses in the ice. Indeed, for low-viscosity till, the sliding velocity near the
divide is controlled by the longitudinal strain rate in the ice, not by the details of pro-
cesses in the till. Furthermore, with a “slippery” ice-rock interface instead of a till layer,
the results should be the same. Also, the longitudinal coupling in the ice will smooth out
stress variations due to roughness or small topographic features.

Although we present results for a steady-state ice sheet, ice divides that are undergoing
changes are probably never far from the steady-state stress and flow patterns that we derive
[e.g. Nereson and Waddington, 2002]. This allows us to use our results to address changes
in flow and stratigraphy as an ice sheet evolves. For example, Conway et al. [1999] used the
stratigraphy observed by ice-penetrating radar in the vicinity of the divide on Roosevelt
Island to infer that, prior to 3200 years ago, Roosevelt Island did not exhibit the special
flow pattern that is characteristic of an ice divide frozen to its bed [Raymond, 1983].
They also went on to infer that Roosevelt Island was not an ice divide prior to 3200 B.P.;
it may have been on the slope of a larger ice sheet. While the latter inference may be
correct, our results suggest that an alternate interpretation is possible. Prior to 3200 B.P.,
Roosevelt Island could have supported an ice divide over a wet bed that allowed sliding;; if,
at 3200 B.P. the basal ice on Roosevelt Island then froze to the bedrock, then the special
ice-divide flow pattern that is creating the observed transient Raymond Bump would have
been initiated. The ice on Roosevelt Island appears to have thinned by several hundred
meters since 3200 B.P [Conway et al., 1999]. Comparable thinning prior to 3200 B.P.
would have tended to cool the basal ice and, if it was thawed, could have lead to freezing.
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Figure 3.4: Isochrones and effective viscosities for 4 model runs with decreasing till viscosity (dark
shading represents low effective viscosities; light shading represents high viscosities). The size of
the Raymond Bump is related to ice viscosity peak at the base of the ice at the divide relative to the
flank (more than about 5 ice thicknesses away from the divide). (a) high till viscosity (Hu = 10%),
(b) moderate till viscosity (fyy = 1.7), (c) till viscosity (fyy = 1) (d) low till viscosity (uy = 1074).
(a) through (c) have similar flank viscosities, (d) has a slightly higher flank viscosity because the
steady state ice sheet is somewhat thinner and therefore is colder. Note that (b) and (c¢) have
similar till viscosities, yet measurably different viscosity peaks and Raymond Bump sizes; this is
evidence that the transition from hard-till end member (a) to soft-till end member (d) occurs over
a small range of till viscosities. The isochrones near the bed for the transitional model runs show
a slight down-warping. This is a subtle effect of our choice of linear till rheology and is not likely
to occur in a real ice sheet.
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3.6 Conclusion

In this modelling study, we find that basal-ice motion under a divide in plane strain is likely
to exhibit a roughly linear increase with distance from the divide if the ice-bed interface
is slippery. The basal motion is limited not by shearing in the till but by longitudinal
stretching within the ice.

The shapes of the horizontal- and vertical-velocity profiles are more uniform with dis-
tance from the divide when the basal ice is allowed to slide; the unique divide flow described
by Raymond [1983] disappears. This creates flatter isochrones and a younger depth-age
scale. As the sliding contribution increases, the vertical-velocity pattern (Figure 3.3) and
the depth-age distribution (Figure 3.7), approache their corresponding patterns on the
flank. In addition, as the flux fraction due to basal motion is increased, the longitudinal
and vertical strain rates become more uniformly distributed over depth. As a result, the ice
experiences greater downward flow at all intermediate depths, creating younger depth-age
relationships as shown in Figure 3.7.

The history of basal sliding is an important factor in the interpretation of ice-penetrating
radar layers and depth-age scales for ice-core records at ice divides.
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Chapter 4

THE ROLE OF ANISOTROPY IN FLOW NEAR AN ICE DIVIDE

This chapter is in preparation as a paper with co-authors Ed Waddington, Throstur Thorsteinsson ,
and Paul Jacobson.

4.1 Summary

Polycrystalline ice within an ice sheet shows a preferred crystal orientation that typically
has a c-axes clustered vertically due to the dominant stress patterns. We explore the effect
of this anisotropy on the large-scale flow pattern near an ice divide. We incorporate an
analytical formulation for anisotropy into the nonlinear flow law within a finite-element
ice-sheet flow model. With four different profiles of crystal fabric, we show that the effect
of anisotropy depends on the vertical distribution of the crystal fabric and is consequential
only when the fabric tightens to an effective cone angle of less than about 30 degrees. For
a steady-state divide with a nonlinear flow law for ice, the shape and size of the isochrone
arch reflects the details of the crystal fabric as well as the nonlinearity of ice flow. A
vertically oriented fabric tends to increase the magnitude of the special divide flow pattern
that is produced by the stress-dependent viscosity of a power-law fluid. Fabric has little
effect on ice divide flow when ice is modelled as a constant viscosity fluid.

4.2 Introduction and Background

Deformation of single ice crystals in response to stress is strongly anisotropic. Crystals
shear easily along their basal planes, much like a deck of cards, while shear on other planes
is almost two orders of magnitude harder [Duwal et al., 1983]. Moreover, the bulk strain
rate of a polycrystalline aggregate subjected to stress depends on the orientations of the
crystals within it. The deformation of anisotropic ice has been studied extensively both
in theory [Johnson, 1977; Budd and Jacka, 1989; Alley, 1992; Azuma, 1994; Azuma and
Goto-Azuma, 1996; Castelnau et al., 1996] and in the laboratory [Duval, 1981; Duval and
LeGac, 1982; Shoji and Langway, 1985; Pimienta et al., 1988; Castelnau et al., 1998]; it has
been explored less so in observation and modelling of large-scale glacier flow [Russell-Head
and Budd, 1979; Paterson, 1991; Castelnau et al., 1998; Thorsteinsson et al., 1999].

As ice undergoes viscous deformation, the ice crystals rotate towards the most compres-
sive stress [Paterson, 1994]. Thus, ice in glaciers and ice sheets typically has a non-random
crystal orientation fabric (the statistical pattern of crystal orientations within the bulk)
that exhibits preferred orientation depending on the state of stress [Alley, 1992, e.g.]. In
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valley glacier the fabric can vary widely because the stress tensor is variable on small spa-
tial scales. In ice sheets, however, the stress tensor is more uniform, except near bedrock
bumps and near the terminus.

Despite evidence that ice behaves anisotropically on large scales, most ice-sheet models
treat ice as an isotropic material [Marshall et al., 2000, e.g.]. This is a natural result of the
complexity of describing an anisotropic stress-strain-rate relationship, and the large-scale
effects of anisotropy can sometimes be incorporated through “enhancement factors” in the
isotropic ice flow law known as Glen’s Law [Glen, 1958; Nye, 1953]. As ice sheet models
are improved and our expectations for detailed predictions of ice flow increase, the effect of
anisotropy on ice-sheet-scale ice flow may no longer be negligible. The need to incorporate
measurements of crystal fabric into ice flow models is increasing, especially at ice divides
where stratigraphy in ice cores may be affected in unanticipated ways [Alley et al., 1997,
e.gl.

We model two-dimensional plane-strain flow of the divide region of an ideal ice-sheet
to examine the effects of anisotropy on the flow near ice divides. Divides are unique
in terms of their flow behavior when compared to other regions of ice sheets. The low
shear stress near the divide renders invalid the normal assumption that longitudinal stress
and its gradients are negligible. Yet, accurate models of flow near ice divides contribute
significantly to interpretation of ice-core and borehole measurements as well as to GPS
surface motion and radar internal structure information [Raymond, 1983; Nereson et al.,
2000, e.g] .

At the divide, the effective deviatoric stress is small and its spatial variability is dom-
inated by the longitudinal stress pattern. Because of the nonlinearity of Glen’s Law, ice
experiencing low stress has a high effective viscosity. In the central region of an ice sheet,
the lowest deviatoric stresses are found near the bed and within one ice thickness of the
divide (refer to Figure 2.1). Correspondingly, the ice there has a significantly higher ef-
fective viscosity than the surrounding ice. The flow field is warped around this “lump” of
hard ice, producing a “special” divide flow pattern [Raymond, 1983]. Under the divide,
older ice is closer to the surface than on the flanks; an arch appears in the isochrones, a
feature often called a Raymond bump. We can observe the signature of this flow pattern
in the internal structure observed by radio-echo sounding images [ Vaughan et al., 1999].

The divide signature, particularly as seen in radar images, has been used to infer past
and present behavior of ice sheets [Nereson et al., 1998b, a; Nereson and Waddington, 2002;
Marshall and Cuffey, 2000]. Since ice-sheet ice typically exhibits a strong crystal fabric, we
expect that anisotropic ice flow alters this special divide flow pattern. For example, when
basal planes are aligned parallel to the direction of shear stress, flow is enhanced by up
to nine times that predicted by Glen’s Law [Budd and Jacka, 1989; Azuma, 1994; Azuma
and Goto-Azuma, 1996; Castelnau et al., 1996; Thorsteinsson, 2002]. Characterizing the
flow pattern resulting from combined nonlinear and anisotropic deformation will improve
interpretation of the divide signature and predictions made by ice-sheet flow models.

As a first step, Mangeney et al. [1996] modelled the flow of anisotropic ice near an
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isothermal, plane-strain, two-dimensional divide using a linear stress-strain relationship
for ice. In this chapter, we take the role of anisotropy to the next step by combining
a description of anisotropic deformation based on linear flow at the crystal scale with a
more realistic nonlinear constitutive relation for bulk flow of ice. We have developed an
analytic description for anisotropy that is an extension of the work in Thorsteinsson [2001].
Although our model is not a full nonlinear anisotropic ice-sheet flow model, it captures the
essential impact of anisotropy on deformation near a divide, and it is simple to implement
in ice-sheet models.

4.3 An Anisotropic Constitutive Law for Ice

Empirically, ice behaves as a power-law fluid [Glen, 1955; Nye, 1953]. The simplest expres-
sion for Glen’s Law (introduced in Chapter 2) is é.q = A73;, where é.¢ is the effective strain
rate and 7. is the effective stress.! In this form, all the variations due to properties of the
ice are lumped into A, the softness parameter. As we discussed in Chapter 2, this form is
limiting, for two primary reasons. First, ice flow results from a combination of micro-scale
flow mechanisms, and as a result, the flow-law exponent may change as the dominant flow
mechanism changes [Pettit and Waddington, in press, Chapter 2]. Second, polycrystalline
ice in an ice sheet is strongly anisotropic; a vertically oriented fabric develops with depth
driven by the stress regime [Alley, 1992]. In anisotropic ice flow, the components of the
strain-rate tensor are no longer proportional to the corresponding stress component and,
thus, a simple softness parameter is ineffective at describing ice flow.
The standard stress-strain-rate relationship used in ice flow models is

é’l - EAOe_Q/RTTeszT,‘m (4.1)

This formulation does not provide a means for incorporating the directional flow enhance-
ments due to anisotropy, except cursorily through the scalar enhancement factor, E.
Many authors have presented anisotropic flow laws for ice [Castelnau et al., 1996;
Azuma, 1994; Thorsteinsson, 2001, e.g.]. Their approaches differ primarily in how they
translate the large scale applied stress to the local deformation of a crystal within the
aggregate. One end of the spectrum assumes that the strain of all crystals is the same,
the homogeneous-strain assumption. In this case, crystals that are favorably oriented for
deformation (under the given state of stress) deform and shift the stress burden onto
neighboring unfavorably oriented crystals. The other end of the spectrum of anisotropic
flow laws assumes that the applied stress is the same for all crystals, the homogeneous-stress
assumption or the Sachs model [Sachs, 1928]. Each crystal deforms at a rate dependent
on its orientation, and grain boundaries migrate to ensure no gaps between grains appear.
The real distribution of stress is probably somewhere in between. The homogeneous-
stress assumption is likely closer to the real mechanism in ice since the homogeneous-

! Appendix A is a table of the notation.
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strain assumption requires up to 5 active slip systems to accommodate deformation, while
the homogeneous-stress assumption can be accommodated by grain-boundary processes
[ Thorsteinsson, 2000].

We use a model developed by Thorsteinsson [2001], based on homogeneous stress, in
which the bulk deformation of the ice aggregate is assumed to be the average deformation
of all the crystals within the aggregate. The resolved shear stress (RSS) on the basal plane
of each crystal depends on its orientation relative to the applied stress. The RSS drives
the deformation of the crystal. Thus, crystals with basal planes oriented parallel to the
shear stress will have a larger RSS and will deform more readily than crystals with basal
planes oriented perpendicular to the shear stress.

To build an ice flow law from this theory, Thorsteinsson [2001] used a distribution of
crystal orientations within an aggregate to define the bulk deformation. The fabric within
an ice sheet typically has a cluster of c-axes oriented vertically. This type of fabric can
be approximated by defining a “cone angle” that is the half-apex angle of a cone within
which all the crystals are uniformly distributed. Thorsteinsson derived analytical solutions
to describe the deformation of the bulk material for a given cone angle. The advantage
of the analytical solution is that it is relatively easy to incorporate into a flow model.
Compared to other formulations, this formulation generally under-predicts anisotropic
enhancement [Azuma, 1994; Castelnau et al., 1996; Thorsteinsson, 2001]. But since the
“real” enhancement is not known and the style of deformation is generally the same for all
formulations, we assume the scalar enhancement factor, E, for the bulk material will adjust
to account for this uncertainty. Thorsteinsson’s analytical formulation has two limitations;
it does not allow for evolution of the fabric, and it does not include interactions between
neighboring crystals [ Thorsteinsson, 2002].

Under the assumption of plane strain with a stress state of combined pure shear and
simple shear, the deviatoric stress tensor has the form:

c 0 7
T 0 —0

Based on Thorsteinsson [2001], using the homogeneous stress assumption (Sach’s model)
and a linear ice rheology, the strain rate can be described as a function of vertically oriented
cone angle:

1| am e+ btz dri2 €713
éij = dri2 cT1 + ates + brss €723 , (43)
"let eT13 €723 b(T11 + T22 — 2733)
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where
a = %8(100 + 95 cos a + 36 cos 2ar + 9 cos 3a) sin? (%) )
b = —5(20+25COSO¢+12C0820¢—|—3C083O¢) sin? (%) )
c = 4—18(—20 + 5cos a + 12 cos 2 + 3 cos 3av) sin? (%) , (4.4)
d = %(20+ 15 cos a + 4 cos 2a 4 cos 3a) sin? (%) ,
e = %(10-1—4(:0804+3cos2a+2cos3a+cos4a),

« is the cone angle, and 7.4 is an effective viscosity (from Glen’s Law based on the isotropic
softness parameter and enhancement factor). For the plane strain assumption (Equa-
tion 4.2), the stress balance and conservation of mass equations can be rewritten as partial

differential equations?:

—1la—-0 1 1
- _ — = 4.
et ( 3b 2a+ b 26) Uz + llefigyg ez =~ Pr 0 (4.5)
1 -1 1
Mot 5 Wag + Tt <§ — 2—@) Wy — P2 = pg (4.6)
Uy +w, = 0. (4.7)

This derivation assumes that A and a through e are spatially uniform; therefore, these
PDE’s apply to individual finite elements, and are not descriptive of the overall flow field.

4.4 Measurements of Anisotropy

Ice sheet fabric has traditionally been measured in two ways. In the laboratory, ice-core
thin sections viewed through cross polarizing filters provide statistics of crystal orientation
for tens to a few hundred crystals [Gow et al., 1997; Thorsteinsson et al., 1997, e.g.].
In the field, borehole sonic logging measures the speed of sound transmitted through
through approximately 7 meters of ice (containing thousands of crystals) [Thorsteinsson
et al., 1999]. Sound speed reflects the elastic anisotropy, which is related to fabric in a
straightforward way. Thorsteinsson [2000] relates this sonic velocity measurement to an
effective cone angle, which is a convenient measure for vertically symmetric fabric such
as ice found in ice sheets. Ice core fabric data can also be represented as an equivalent
cone angle (such that it encloses 90% of the c-axes of the real fabric, for example) to
compare with the sonic log. Thorsteinsson [2000] compared cone angles calculated from
sonic velocity measurements to those calculated from thin section and concluded that the

2 A more complete derivation of these equations is in Appendix D
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sonic velocity is the most useful and accurate and, additionally, has a high vertical spatial
resolution. In this study, we take advantage of the sonic log measured at Siple Dome, West
Antarctica (G. Lamorey, personal communication, 1999) and converted to cone angle using
the method described by Thorsteinsson [2000].

4.5 Anisotropic Flow near an Ice Divide

Before studying anisotropic divide flow with the analytical finite element model, we esti-
mate the expected effect of anisotropy in the divide region using results from the Thorsteins-
son [2001] model for predicting anisotropic deformation (based on nonlinear ice rheology).

As we mentioned earlier, Mangeney et al. [1996] first examined the effect of a vertically
symmetric crystal fabric on linear, isothermal flow of a 2D plane-strain ice divide. Using
a fabric that is isotropic near the surface and becomes progressively tighter with depth
in the ice sheet, they showed that both the horizontal and vertical velocities increased by
approximately 1.5 times. Shear was concentrated in the lower, tighter-fabric ice, causing
the horizontal velocity profile to have slightly higher curvature. The key limitation in this
model is that both the anisotropic deformation and the bulk ice flow are based on linear
rheology; the shape of the velocity profiles does not vary with distance from the divide
and no special divide flow pattern is produced.

The Thorsteinsson [2001] model is a more complex fully nonlinear version of Equa-
tions 4.3 through 4.7. Figure 4.1 shows results from his calculations for the increase in
vertical strain rate due to anisotropic flow under a combined pure shear and simple shear
stress state. Given a cone angle and a relative amount of shear stress, the contours show
the flow enhancement of the vertical strain rate. (Enhancements for other strain rate com-
ponents differ depending on the degree of anisotropy.) We focus on vertical strain rate
because it is sensitive to ice rheology and the difference in shape of the vertical-velocity
profile between the divide and flank profiles determines the size of the arch in the isochrones
(see Chapter 2).

In Figure 4.1, note that the cone angle associated with peak enhancement of vertical
strain rate varies from about 60 degrees to 35degrees as the relative amount of shear
stress increases. This is an expression of the differing direction of the maximum applied
compressive stress (vertical on the left edge of the graph approaching 45 degrees on the
right edge). The lower left region of the figure, where cone angles are less than 40 degrees,
represents stiff ice in vertical compression relative to isotropic ice. Specifically, ice with
cone angles between 20 and 40 degrees are stiff when compressed vertically, but softer
than isotropic ice when undergoing shear. This is because an aggregate with a small
vertical cone angle can easily shear parallel to the basal planes, yet vertical compression
perpendicular to the basal planes is very difficult. If the crystals have a broader distribution
of c-axes (spread over a cone larger than 45 degrees, for example) then the ice is soft when
compressed vertically, because many of the crystals have basal planes tilted nearly parallel
to the applied stress.
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Figure 4.1: Enhancement in vertical strain rate due to anisotropy for combined simple and pure
shear. The x-axis is the ratio of the magnitude of the simple shear stress to pure shear, such that
the far left region of the figure represents flow dominated by pure shear (similar to ice divide flow)
and the middle and right regions represent flow dominated by simple shear (similar to flank flow).
On the vertical axis the cone angle varies from 0° (strongly anisotropic) to 90° (isotropic). Note
that the cone angle associated with the peak enhancement varies as the relative amount of shear
stress varies. (Adapted from Thorsteinsson [2001].)
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We estimate the effect of this enhancement (or reduction) on flow near an ice divide
by using a cone-angle profile derived from Siple Dome’s sonic velocity log. To first order,
the cone-angle profile at a site within ten ice-thicknesses of the divide will have the same
character as the divide profile, since both areas have similar histories and particle paths
for the deep ice begin near the divide. Therefore, in Figure 4.2 we apply the results shown
in Figure 4.1 to Siple Dome’s cone-angle profile for two stress fields: one similar to a divide
(pure shear) and one similar to a flank site (dominated by simple shear).

Throughout most of the depth of the ice sheet, the ice is stiffer at the divide than on the
flank. This difference in effective viscosity is similar in character to the viscosity difference
described by Raymond [1983] due to the nonlinearity of the flow law, which produces an
arch in the isochrones and affects the depth-age scale at an ice divide. Figure 4.2 suggests
that anisotropy can produce an arch in the isochrones similar to the Raymond bump.
This calculation is a first-order estimation of the effect of anisotropy on the divide flow
pattern. There is no mechanism to redistribute the stresses within the ice sheet due to
the feedback between the deviatoric stress distribution and the effective viscosity. A more
realistic assessment of an anisotropy-induced arch in the isochrones (“Throstur’s bump”?)
requires a finite-element model.

4.6 Finite-Element Ice-Flow Model

We model an idealized divide with a thermomechanically coupled finite-element model.
The geometry and approach are similar to Raymond [1983], Mangeney et al. [1996], and
Chapters 2 and 3. The fundamental assumptions of the model include:

1. The ice deforms in plane strain; thus, the model best represents a ridge ice divide,
such as Siple Dome [Nereson et al., 1996] or Roosevelt Island [Conway et al., 1999)].

2. The temperature calculation is based on the surface temperature and the geothermal
gradient. Conduction, advection, and strain heating are included in the thermal
model. The temperature is updated once each time step after the iterative flow
solution.

3. The upper surface is stress-free.
4. The divide is a line of symmetry where ice is constrained to move only vertically.

5. The horizontal-velocity profile on the flank boundary (at 30 ice thicknesses from the
divide) carries away the integrated mass balance from the divide to the boundary, in
order to satisfy mass conservation for a steady-state ice sheet. Because our boundary
is more than 20 ice thicknesses from the divide, the results for the region within ten
ice thicknesses of the divide are insensitive to the details of the horizontal-velocity
profile on the flank boundary [Raymond, 1983; Schett et al., 1992]. In practice, we
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begin with a laminar flow profile at the boundary, but as velocities within the ice sheet
are calculated, we update the shape of the horizontal-velocity profile at the boundary
(while maintaining the flux) to account for the unique rheological properties of the
anisotropic ice and the non-uniform temperature field.

6. The flow law with anisotropy is incorporated through a two steps calculation. First
an isotropic effective viscosity (7.s) is calculated for each element from the effective
strain rate calculated during the previous iteration using Glen’s cubic flow law for
isotropic ice. Then this effective viscosity is substituted in Equations (4.5) to (4.7),
which are solved for the new velocity gradients for the element, given the element’s
cone angle. This process is repeated for a specified number of iterations (typically 10)
to achieve reasonable convergence within a timestep. This two-step process allows
us to combine the nonlinear bulk flow of ice based on Glen’s Law with a description
of anisotropy (based on a linear rheology). Small uncertainties will be introduced
where the ice properties (such as cone angle) of adjacent elements are vary.

7. In these models the cone angle at the divide is extrapolated to the flanks as a function
of normalized depth (z/H(x)).

8. The model solves the flow equations on a grid of 9-node quadratic elements for
temperature, pressure, and velocity fields.

The physical characteristics of the model are based on Siple Dome [Nereson et al., 1996]:
1000 meter thick, with an accumulation rate of 0.12m/a~!, a surface temperature -25° C,
and geothermal flux 65 W m~2. We use a 55x51 node grid of elements with elements
concentrated in the divide region and near the bed (Figure 4.3).

We initialize the surface profile from a simple isotropic model using the assumptions
of the shallow ice approximation. The surface then evolves, forced by the ice flow and the
prescribed accumulation rate, until it achieves a steady state. Steady state is reached when
the root-mean-square of the change in the surface velocities within 10 ice-thicknesses of
the divide does not exceed a specified tolerance, € (typically < 10~®ma~! per year). The
resulting solutions for different profiles of anisotropy, therefore, may not have the same ice
thickness or surface profile. The alternative is to use the same ice-sheet thickness at the
divide for all models, but adjust the steady-state accumulation rate. The two alternatives
produce similar conclusions; we chose to force each model with identical accumulation
rates and allow ice thickness to vary because of simpler solution techniques. We therefore
non-dimensionalized the results; velocities are expressed relative to the surface velocity
(accumulation rate plus the small advection of ice from upstream) and thicknesses are
relative to the ice thickness at the divide unless otherwise noted.
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Figure 4.3: Finite element mesh of 9-node quadrilateral elements for a model of idealized divide.
The divide is a plane of symmetry. Each plus marks the center of an element

4.7 Model Results and Discussion

As discussed earlier, most measurements of crystal fabric in ice sheets show a similar
pattern, with isotropic ice near the surface and a tightening of the fabric with depth. The
details of the actual distribution of cone angle with depth can vary depending on each
ice sheet’s history. We chose four different cone-angle profiles for this study, shown in the
left column of Figure 4.4. The isotropic profile used for comparison for all models has an
equivalent cone-angle profile of 90 degrees at all depths. The middle column of Figure 4.4
shows the predicted vertical velocity profile at the divide and the flank for each model. The
right column shows the horizontal velocity profiles at one, two, and ten ice-thicknesses from
the divide. The solid lines represent the anisotropic-nonlinear solutions. For comparison,
we include the solution for anisotropic-linear flow (dot-dash lines), isotropic-nonlinear flow
(dashed lines), and isotropic-linear flow (dotted lines).

Models A and B have fabric that is consistently above about 35 degrees. Neither of
these models show much effect from the anisotropy. The vertical-velocity profiles are nearly
identical to the isotropic nonlinear model; this result is expected since the anisotropic model
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uses the isotropic nonlinear model as a foundation. Models C and D both have regions
with extremely tight fabrics. Model C, which is based on the measured sonic log from Siple
Dome, shows the significance of a distinct band of tight fabric. This band is a real feature
in the sonic velocity log, possibly associated with the Holocene/Wisconsin boundary at
about 700 meters depth and the onset of recrystallization at just over 800 meters depth.
The results from this model are show larger in Figure 4.5.

Model D shows the effects of a broader band of tight fabric without the sharp discon-
tinuities in the Siple Dome fabric. Both of these fabrics show significant changes in the
vertical-velocity profile when compared to the effects of model A and B. It seems fabric
tighter than about 30 degrees is needed for the anisotropy to have a measurable effect on
the divide flow pattern. Interestingly, for ice flow based on a linear rheology even strong
anisotropy has small overall effect. This result agrees in part with the conclusion reached
by Mangeney et al. [1996]. We see less of an increase in magnitude of the velocities than
Mangeney et al. [1996], this may be because of the differences in the assumed cone angle
profile. (Their profile is most similar in shape to our profile A, but with stronger fabric
near the bed.)

The band of highly oriented crystals In the Siple Dome profile (C) concentrates the
shear such that the band of oriented crystals behaves like a false-bed in the divide region.
In the right plot in Figure 4.5, this shear zone is narrow near the divide and thickens
with distance from the divide. The corresponding vertical velocity within the band of
anomalously tight fabric is small; most of vertical strain occurs above the band.

In Figure 4.6, we assume the cone angle profiles and corresponding flow patterns have
existed for all time and calculate the isochrone patterns produced from each flow field. This
false-bottom effect in the Siple Dome profile produces a large arch in the isochrones, much
bigger than can be produced by nonlinear isotropic ice flow. (The three sets of isochrones
shown are anisotropic-nonlinear (largest bumps), isotropic-nonlinear (middle bumps), and
isotropic-linear (flat isochrones). For all the anisotropy models, the isochrone arches vary
in shape and size depending on the details of the profile of anisotropy in the ice.

To compare the arches produces from all four anisotropy models, we quantify the bump
height as the distance above a curve that fits the isochrone along its flanks. In Figure 4.7,
we plot this height (relative to the ice thickness) as a function of the relative height of the
isochrone above the bed 10km from the divide. This graphical method for examining the
details of isochrone arches is similar to that used by Nereson and Waddington [2002] and
Conway et al. [1999]. The general bump-height profile is the same, but there are slight
variations in the magnitude and height of the peak bump amplitude.

Finally, as we see with the velocity profiles in Figure 4.4 and the bump height profile in
Figure 4.7, anisotropy based on linear ice rheology has little effect on the special divide flow
pattern, producing no significant isochrone arch. The effective viscosity for ice with linear
rheology is not a function of the magnitude of the effective deviatoric stress; the difference
between the linear-anisotropic and linear-isotropic cases is that the effective viscosity is a
constant tensor, rather than a constant scalar, respectively. In order to produce the special
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Figure 4.4: The left plots are the four cone angle profiles we chose to model. Models B and
C are based on the real sonic log for Siple Dome shown as the dotted line. The middle column
shows the vertical velocity profiles at the divide and flank. The right column shows the horizontal
profiles for 1, 2, and 10 ice thicknesses from the divide. On each plot, several models are shown for
comparison. The solid lines are the anisotropic model with a nonlinear rheology. The dashed lines
are isotropic and nonlinear. The dotted linear are isotropic linear flow. In models A and C, there
is an additional dot-dash line that represents anisotropy combined with linear bulk ice rheology.
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divide flow pattern, the effective viscosity (whether scalar or tensor) must be a function of
distance from the divide, which occurs when the viscosity is a function of the deviatoric
stress. In other words, an isochrone arch is formed when the vertical strain rate is different
at the divide compared to the flank. The vertical compressive stress driving this strain
rate is nearly uniform with distance from the divide, while the shear stress component
increases. For linear rheology and vertically oriented fabric, this increasing shear stress
component has minimal effect on the anisotropic viscosity tensor (in part because the shear
stress does alter the fabric). The viscosity tensor, therefore, does not vary with distance
from divide and no special divide flow pattern can appear.

Also, with nonlinear rheology, there is a feedback between the deviatoric stress tensor
and the effective viscosity. This feedback tends to redistribute the stresses within an ice
sheet, such that stiff ice regions tend to support higher stresses (similar to ‘bridging’).
These higher stresses then tend to decrease the stiffness, which, in turn, feeds back on
the stress distrubtion. Linear rheology cuts off this feedback process. When anisotropy is
included, the nonlinear feedback process is altered resulting in a large anisotropy effect on
the divide flow pattern, while anisotropy has a negligible effect in the linear case without
this feedback.

4.8 Conclusions and Implications

We combined a linear-based description for anisotropic ice flow with an isotropic nonlinear
bulk ice constitutive law in a thermomechanical finite element model. Our goal was to
assess the impact of crystal fabric on flow near a divide for nonlinearly behaving ice.

With four different profiles of crystal fabric, we show that the effect of anisotropy
depends on the spatial distribution of the crystal fabric and is consequential only when
the fabric tightens to an effective cone angle of less than about 30 degrees. For a steady-
state divide with a nonlinear flow law for ice, the shape and size of the isochrone arch
reflects the details of the crystal fabric as well as the nonlinearity of ice flow.

An important conclusion is that anisotropic ice flow does not seem to produce an arch
in the isochrones if the stress exponent in the flow law is equal to one. Only when the ice
behaves nonlinearly (a stress exponent greater than unity), creating an isotropic Raymond
bump, does crystal fabric work to enlarge and reshape the bump. With the vertically
oriented crystal fabric typically found near ice divides, the effect of anisotropy is always
to increase the size of the existing Raymond bump relative to the isotropic case.

The magnitude of the special divide flow pattern is a combination of several processes.
Pettit and Waddington [in press|] show that when flow near a divide is described by a flow
law combining a linear term and a nonlinear (Glen) term, the size of the isochrone arch
is a function of the relative importance of linear and nonlinear terms. The linear term
dominates at low stresses, the nonlinear term at high stresses. When we expand this flow
law to also describe flow of vertically-oriented anisotropic ice, the effect of the anisotropy
is to modify the nonlinear term almost exclusively. Therefore we expect that a divide that
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has low enough stresses to be dominated by the linear term in the flow law will not be
significantly affected by crystal anisotropy. But for divides that exhibit higher stresses,
strongly anisotropic ice will significantly affect the ice flow pattern and the interpretation
of ice core records, borehole logs, radar images, and deformation measurements.
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Chapter 5

MASS BALANCE AND BEHAVIOR OF SIPLE DOME, WEST
ANTARCTICA

This chapter was presented as a poster at the American Geophysical Union 2001 Fall Meeting with
co-authors E.D. Waddington and N.A. Nereson (University of Washington), G. Hamilton (University of
Maine), and M.A. Zumberge (UCSD Scripps Institute of Oceanography). One section (identified with
footnotes) was published in Zumberge et al. [2002]. This chapter is also a draft of a paper for publication
with the same co-authors.

5.1 Summary

We present three independent measurements of ice-thickness change in the divide region of
Siple Dome: a GPS surface horizontal-strain network, fiber optic vertical-strain measure-
ments at depth, and precision GPS measurements of vertical motion of near-surface ice
(“coffee-can” method). From the horizontal strain network, we calculate the divergence
of the horizontal velocity. This divergence is equal to the gradient of vertical velocity at
the surface and, with some assumptions about the distribution of strain rates with depth,
we can calculate the vertical velocity at the surface. For steady state, the vertical velocity
must be balanced by the local accumulation rate. The fiber-optic instruments provide a
profile of the relative vertical velocity with depth. We fit a theoretical vertical-velocity pat-
tern to these data and extrapolate to find the surface vertical velocity. Our third method
(coffee-can) directly measures the vertical motion of a marker 20 meters deep using preci-
sion GPS and compares it with the local long-term rate of snow accumulation to calculate
the net rate of ice sheet thickness change.

All three methods reach the same conclusion: Siple Dome is currently very close to
being in steady state. This result has three implications. First, ice dynamics models
developed to interpret radar images or ice core data can assume steady state behavior in
the present and recent past, simplifying the models. Second, our result suggests that the
central part of the Ross Embayment may have had a low-elevation profile during the late
Holocene, even though other areas of the WAIS may have been thicker. Third, the stead
state balance of Siple Dome constrains on the times scales for the behavior of its bounding
ice streams.

5.2 Introduction

Siple Dome is a 1000 m thick ridge of slow-moving ice that sits between Ice Streams C
and D, which are part of a system of ice streams that channel 90% of the ice flowing
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from the West Antarctic Ice Sheet into the Ross Ice Shelf [McIntyre, 1985] (Figure 5.1).
The dynamics of these ice streams are a major factor affecting the rate of ice volume
change in West Antarctica. As an inter-ice-stream ridge, Siple Dome’s modern behavior in
terms of its mass balance and geometric evolution provides constraints and clues to three
glaciological puzzles related to the past and future of the West Antarctic Ice Sheet.

First, the Ross Sea Embayment has undergone significant thinning since the Last
Glacial Maximum (LGM) [Denton and Hughes, 2000]. The pattern of deglaciation in the
Ross Sea holds clues to the future of the marine-based West Antarctic Ice Sheet (WAIS).
If Siple Dome is still undergoing thinning from deglaciation following the end of the LGM,
measured accumulation rates should be smaller than the rate of surface lowering due to
ice flow, as seems to be the case on Roosevelt Island [Conway et al., 1999]. Second, as an
inter-ice-stream ridge, Siple Dome’s present geometry and internal structure are sensitive
to changes in its bounding ice streams [Nereson et al., 1998a; Nereson, 2000], thus it is
possible to study recent ice dynamics of the Siple Coast through “reading” Siple Dome’s
present and past behavior. How has the shutdown of Kamb Ice Stream [Retzlaff and Bent-
ley, 1993] affected Siple Dome? Can we “see” previous changes in the ice streams through
Siple Dome? And third, Siple Dome is the location of the most recent U.S. Antarctic
Program’s deep drilling project for paleo-climate and paleo-ice-sheet studies. Successful
interpretation of ice-core measurements requires knowledge of the local flow pattern and
its history.

The mass balance of a polar ice sheet is a balance between snow accumulation and
ice flow (characterized by the absolute vertical motion of the surface). A change in the
accumulation rate or ice-sheet boundary conditions (e.g. temperature or flow of bounding
ice streams) will alter the pattern of ice flow until the divide reaches a new steady-state
geometry. These changes do not typically affect the ice sheet as a whole; it may be
thickening in one region and in balance or thinning in another. Thus, it is the spatial
pattern of mass balance that is important to understanding its present behavior. Neither
the accumulation rate nor the surface vertical velocity is easy to measure, however. They
are variable in both space and time, and the presence of the firn layer makes it difficult to
measure absolute vertical motion of the surface or ice equivalent accumulation rate.

In this paper, we combine results from several independent studies of accumulation
rate and ice flow to show that Siple Dome is in steady state: the central region (30 km on
either side of the divide) is not significantly thinning or thickening. Then we discuss the
implications of this result, in conjunction with conclusions from other studies, in terms
of the local dynamics of the ice stream system and the larger-scale reconstruction of the
evolution of the Ross Sea Embayment through the Holocene.
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5.3 DMass Balance of a Polar Ice Sheet

5.8.1 Balance of processes

For a polar ice sheet to be in steady state, the total dynamic thinning due to flow must
be balanced by ice-equivalent accumulation of snow on the surface. We calculate this
dynamic thinning as the difference between the surface vertical velocity and the down-slope
advection, which are both measurable quantities. The excess thinning (or thickening) rate
is the imbalance between the mass lost to dynamic thinning and the mass gained through
accumulation:

. . dS(x
Ba) - ) o+ we) - w@S2 e
—— ~~ ~—— —,di/
_excess measured measured calculated
thinning rate  ccumulation surface slope
(=0 for rate vertical advection
steady state) velocity

equivalent to the total
dynamic thinning

where z is the distance from the divide along a flow line, b is the ice-equivalent accumulation
rate, ws and ug are the vertical and horizontal velocities at the surface, H is the ice
thickness.! The terms in this equation are expressed as functions of distance along a flow
line; in reality, they are also functions of time. Although we use this equation to determine
the modern-day mass balance, we use the temporal nature of some of the measurement
methods to infer constraints on the changes in mass balance with time.

We have measurements of the pattern of accumulation rate and surface vertical velocity
using several different methods. The slope-advection term is small relative to the other
two terms; we calculated it from the surface geometry and surface horizontal velocity, both
measured using global position system (GPS).

5.8.2  Measurements of accumulation rate

The pattern of accumulation across Siple Dome was first described by Zwally and Gloersen
[1977] through passive microwave satellite images. They observed a south-north gradient
in accumulation across Siple Dome. This pattern has been attributed to orographic uplift

! Appendix A is a table of the notation.
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of storms approaching from the north and depositing more moisture on the windward side
of the dome [Bromwich, 1988, e.g.]. Nereson et al. [2000] confirmed that this pattern has
existed through at least the last half of the Holocene through analysis of the structure of
internal layers imaged by 3 MHz radio echo sounding (RES) (Figure 5.2), a system devel-
oped at the University of Washington [Gades, 1998]. Nereson et al. [2000] used a kinematic
steady-state ice-flow model to predict internal-layer shapes as a function of a steady-state
accumulation pattern across the dome. The pattern derived from the RES images gives
relative accumulation rates, which are shown as the shaded regions in Figure 5.3. The
darkest shading encompasses the accumulation rates that predict layers that best fit the
observed internal layer pattern, with lighter shading showing less well-fitting patterns.

The accumulation pattern Nereson et al. [2000] deduced from the internal layer struc-
ture assumes that the asymmetry of the internal-layer structure seen in Figure 5.2 is not
a result of asymmetrical thinning of bounding ice streams C and D. They discount this
possibility because the presence of a distinct arch in the isochrones under the divide. This
arch (often called a “Raymond bump”) is due to the nonlinearity of the ice-flow law [Ray-
mond, 1983], and the development of a Raymond bump requires the divide to be in a
stable position or slowly migrating for at least several thousand years. The asymmetric
internal-layer pattern is visible as deep as 700 m; this suggests the accumulation pattern
shown by the shaded regions in Figure 5.3 is an average over 5 to 10ka.

We use two additional methods for determining the more recent accumulation across
the dome. At 7 locations, Hamilton [2001] collected shallow cores for gross- radioactiv-
ity measurements [Pourchet and Pinglot, 1979; Whillans and Bindschadler, 1988]. These
provide a 42year average accumulation rate at discrete points, and are plotted as rela-
tive accumulation in Figure 5.3 For all but the site 30 km south of the divide, there is
not a significant difference between the modern day accumulation rates and the pattern
determined by RES.

The final accumulation-rate data that we include in this study are 100MHz ground-
penetrating radar (RAMAC System) collected in 1999-2000 season along a 13 km line across
the divide. We converted the travel time to layer depth using a propagation velocity that
is a function of the measured firn density (personal communication from G. Lamorey).
The uncertainty in the absolute depth of the shallowest layer (at about 18 meters deep) is
about 1 meter, with a relative uncertainty along a layer of 0.1 m. We used the measured
firn density profile to determined the ice-equivalent depth to the shallowest continuous
internal layer. Since the dynamic thinning due to ice flow is minimal in the top-most layer
of the ice sheet, the relative accumulation rate is the ratio of the ice equivalent depth to
the ice equivalent depth at the ice divide. This curve is shown as the heavy grey line
in Figure 5.3. This accumulation pattern represents an average over approximately 100
years.

Since the absolute accumulation rate is only known for the shallow core 42 year average,
we turn to the depth-age scale from layer-counting of the ice core [Taylor et al., accepted]
to estimate the absolute accumulation rate over a longer time-scale at the divide site to
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Scaled accumulation rate,b(x)/b(0)
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Figure 5.3: Accumulation rate pattern across Siple Dome. Shaded regions are the results from
Nereson et al. [2000], dark represents accumulation rates that best model (within one standard
deviation) the deep internal layer structure observed with radio echo sounding (Figure 5.2). This
represents an average over 5-10ka. Crosses with 1o error bars, from Hamilton [2001], show average
accumulation over 42 years based on shallow cores using Gross ( identifying the radiation from
the 1955 bomb layer. The light gray curve spanning approximately -6km to 7km is the ice-
equivalent depth to a shallow layer observed by ground-penetrating radar, representing the average
accumulation pattern over approximately 100 years. GPR data collected by Charlie Raymond and
Nadine Nereson.
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scale the RES and GPR patterns. At the divide, we can assume no horizontal advection of
ice and that the vertical velocity pattern is time-independent. The age, A, of ice a certain
depth, z, in a steady state divide is:

z 1 ,
Az) = /H w(z’)dz’ (5.2)

where H is the ice thickness and w(z’) is defined by the shape function method of Reeh
[1988]:

w(z') = —bp(?), (5.3)

where b is the accumulation rate, which we assume is constant with time for this estimation.
For ("), we modified the analytical expression for vertical velocity shape function at a
flow divide from Reeh [1988], (his Equation(32)), by including a steady-state temperature
profile with vertical advection based on the Robin [1955] model as presented in Paterson
[1994] using a surface temperature of -25°C, a bed temperature of -2°C, and a linear
vertical velocity profile. This is a good approximation to the measured profile (personal
communication from G.D. Clow, 2001). With the known depth-age scale, we solved for
the average accumulation rate for several depths. These results are shown in Table 5.1.
The These data are presented in table form in Table 5.2.

Table 5.1: Average accumulation rates based on measured depth-age scale from ice core

Ice Equiv. Height above Bed (m) Age (a) Accumulation Rate (cma™!)

975.2 100 13.0
932.7 500 11.6
724.2 3000 12.1
616.5 5000 12.4

As Siple Dome is the site of the most recent U.S. Antarctic Program deep drilling
project, many other data related to the modern accumulation rate exist. Kreutz et al.
[1999] analyzed 2m snow pits; Kreutz et al. [1997] counted annual layers in a 130 m core
5 km north of the divide; Richard Alley (personal communication, 2003) used layer counting
from the deep ice core; and Bob Hawley inferred accumulation from strain rates in the
firn [Hawley et al., in review]. For this study, we focus on the data relevant the pattern
of accumulation across the divide both in recent times (but long enough to average out
annual fluctuations) and over the longer term. The pattern of accumulation shown in
Figure 5.3 are all similar, even though the the timescales of measurement are different
(gross-(: 42years; GPR: 100years; RES: 1000 to 5000 years). The absolute magnitudes
for the accumulation rate at the divide over different timescales shown in Table 5.1, reflects
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a slight increase in the accumulation rate in the recent past. Since our goal is to determine
the modern-day thinning rate, we put more emphasis on the recent accumulation rates
(also because fewer assumptions are involved in determining them). The RES and GPR
accumulation patterns, however, provide important clues to Siple Dome’s past behavior.

5.8.8 Measurements of surface vertical velocity

The accumulation pattern shown in Figure 5.3 must be balanced by ice flow downward
and outward from the divide to maintain a steady-state ice-sheet thickness (Equation 5.1).
As a result the mass balance is not only sensitive to changes in the accumulation rate,
but also to variations in the ice flow pattern induced by changes in the basal boundary
conditions [Pettit et al., 2002, and Chapter 3|, surface temperature [Huvidberg, 1996], or
the flow of bounding ice streams [Nereson et al., 1998a; Nereson, 2000]. Measurement of
the surface vertical velocity is key to determining if the ice sheet is in balance with the
present-day accumulation rate. We combine the results from three independent methods
for measuring vertical velocity, to ensure that the results are reproducible.
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Precision GPS “Coffee-Can” method

Hamilton et al. [1998] and Hamilton and Whillans [2000] developed a method for directly
measuring the vertical velocity at the surface of an ice sheet using a suite of three to five
markers at 5 to 20m below the surface. They have used this method in West Antarctica
(Byrd Station, near Whillans Ice Stream, and as part of the US ITASE expedition) and
western Greenland. Hamilton [2001] originally published the application of this method
to Siple Dome; we use these results.

Each marker is a piece of steel stock frozen into the firn at the bottom of a shallow
borehole. A non-stretchable wire attached to the marker comes up the borehole and is
encased in a 2.5m steel pipe that extends above the surface (Figure 5.4). A marker’s
movement is measured using precision GPS on the steel pipe combined with accurate
measurement of the non-stretchable wire relative to the top of the steel pipe. A suite of
three to five markers at varying depths 5 to 20m below the surface is used at each site
to test for repeatability. One pole at each site is defined as the long-term tracking pole,
and 12 to 24 hour static GPS measurements define the absolute motion of this pole. The
other markers are measured using repeated local surveys using GPS and optical leveling
to connect them to the long-term tracking pole.

Because this measurement of vertical motion takes place within the firn column, we
compare it to the “firn-equivalent” accumulation rate, or b, /ps, where by, is the accumu-
lation rate measured in mass units and py is the density of the firn at the depth of the
marker. The ice-equivalent rate of thickness change is then:

- bm ds

H= p—f+IUf—us(a), (5.4)
where w; is the velocity of the marker in the firn, u, is the horizontal velocity, and S is the
surface elevation. The derivation of firn-equivalent accumulation relies on the assumption
of Sorge’s Law: the density profile remains constant with time. The density for this
calculation is measured from the same shallow core that also provided the samples for the
gross-0 accumulation measurements shown in Figure 5.3. The densities, firn-equivalent
accumulation rates, and the measured marker velocities are shown in Table 5.2.

Fiber-optic vertical-strain network?

Because of the uncertainties associated with firn densification and direct surface velocity
measurements, this method aims to measure the vertical-velocity profile throughout the
depth of the ice using embedded instruments and to determine the vertical velocity at the
surface by extrapolating this curve from the bed to the surface using an ice-flow model.
Zumberge [1997] originally developed this method of measuring motion for determining
seafloor spreading. The application to ice at Siple Dome is described in Zumberge et al.

2Part of this section was published in Zumberge et al. [2002]
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Figure 5.4: Diagram of experimental setup for the Coffee-Can method of determining surface
vertical velocity. At each site a suite of 3 to 5 markers are frozen in at varying depths from 5 to 20

meters below the surface. From Hamilton and Whillans [2000]
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[2002] and we initially installed the instruments to study the rheology of ice near ice divides
[Pettit and Waddington, in press, Chapter 2, and Chapter 6].

Figure 5.5 shows the instrument design for these optical-fiber strain sensors. A complete
description of the instrument design is in Zumberge et al. [2002]; here, we summarize the
important aspects. Similar to the coffee-can method, these sensors work by anchoring
the end of an optical-fiber cable (“the marker”) to the ice by lowering it under tension
(prestrain is 0.1% to 0.2%) into a water filled borehole and which subsequently freezes.
The fiber is encased in an aluminum sheath such that only the anchored end of the fiber
is frozen to the ice, to protect the fiber from breakage and to ensure that it is strained
uniformly over its length. The optical-fiber cable consists of two fibers spliced at the
anchored end: a transmit fiber and a return fiber. The fibers were installed in pairs, a
short fiber 80m in length and a long fiber 235 to 985m in length (ice depth is 1000 m),
such that each pair provides the vertical compression of the ice over the depth interval
between the short and long fiber. We installed an array of five fiber pairs at each of two
sites on Siple Dome: the divide site (site F in the coffee-can experiment) and a flank site,
7km north of the divide (site C in the coffee-can experiment)

The optical length of each fiber was measured using a modified electronic distance
meter (EDM) and converted to physical length by the fiber’s index of refraction (which is
a function of the amount of strain). The system also has to be corrected for temperature
effects, both within the fiber and in the EDM. Repeat measurements were made within
each field season and over the four years the instruments were active. The uncertainties
for these measurements are a combination of the uncertainty for a single measurement of
displacement (thermally induced error in the EDM, uncompenstated temperature effects,
and differencing two adjacent measurements) and the rms residuals from fitting a straight
line to the measurements taken over time.

The differential shortening of the optical-fiber cables provides average strain over the
interval between a shallow fiber anchor and a deep fiber anchors (intervals of 174m to
905m). To extract a surface vertical velocity from these data, we fit our measurements
of vertical strain rate to a flow model. We approximate Siple Dome as a linear ridge and
model it in cross-section as two-dimensional plane flow. Using the shape function method
of Reeh [1988], the vertical velocity is expressed by

(5.5)

w(z, =) = —[b(z) — H@IH(E) + us(z)d(2) (dB 'dH) ,

dz

where z is horizontal position, b(z) is the accumulation rate, B(z) is the bed elevation,
H(x) is the thickness in ice-equivalent units (as if the firn had been compacted to an ice
layer, reducing Siple Dome’s thickness by about 16 m), H(z) is the excess thinning rate,
us(z) is the horizontal velocity at the surface, 2’ is the height above the bed scaled to the
local ice thickness H(z), and ¢(z’) and ¢(z') are the shapes of the horizontal and vertical
velocity profiles, respectively. For ¢(z’) and v(z’), a Dansgaard-Johnsen velocity model
[Dansgaard and Johnsen, 1969] is applicable at the flank site. The horizontal velocity
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Figure 5.5: Diagram of optical-fiber instrument for measuring vertical strain rates. See text or
Zumberge et al. [2002] for further details.
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shape ¢(z') is constant in the upper part of the ice sheet (above height h above the bed)
and decreases linearly to zero between height i and the bed. Using the value of h = 227m
recommended by Nereson et al. [1996], with their measured values of B(z), H(x), and
(), we found the value of the vertical velocity at the surface, ws = b(z) — H (z) necessary
to best fit the slope of the vertical velocity (Equation (5.5)) to our vertical strain-rate data
in a least-squares sense.

At the divide, however, the Dansgaard-Johnsen model does not satisfy the boundary
condition that du/dz = 0 at the bed [Raymond, 1983; Reeh, 1988]. The horizontal ve-
locity profile, ¢(z), at the divide must have an inflection point such that it is concave
downward near the bed. This curvature results in a vertical velocity profile, 1 (2’), that
is steeper in the lower part of the ice sheet than the Dansgaard-Johnsen model permits.
We modified the analytical expression for vertical velocity shape function at a flow divide
from Reeh [1988], (his Equation(32)), by including a steady-state temperature profile with
vertical advection based on the Robin [1955] model as presented in Paterson [1994] using
a surface temperature of -25° C, a bed temperature of -2° C, and a linear vertical velocity
profile. This is a good approximation to the measured profile (personal communication
from G.D. Clow, 2001). We then used this shape function to find the best-fitting value
of ws. Because ug(x) = 0 at the divide, we did not need to derive the corresponding
temperature-dependent forms of ¢(z’) in Equation (5.5).

At the divide, the best-fitting model predicts ws, = 11.9 & 0.5cma~!. At the flank,
ws = 17.8 & 1ecma™! (vefer to Table 5.2). These uncertainties are calculated from the
measurement uncertainties propagated through the model and the fit of the model to the
data; they do not include uncertainties resulting from model assumptions. The solid curves
in Figure 5.6 and 5.7 are these best-fitting models for the divide and flank, respectively
(Equation (5.5) using these values of wy).

These models rely solely on the measured velocity difference of pairs of anchors (each
consisting of an 80 m anchor and a deep anchor), not absolute motion of the anchors. To
plot these data for comparison with the model results, we needed to assign an absolute
velocity to each pair of anchors. We did this by minimizing the mismatch between the
absolute velocity of each pair and the model curves in Figures 5.6 and 5.7.

The coffee-can method for measuring vertical velocity at the surface has a significant
advantage over the optical-fiber method because of the simplicity of the installation and
data collection. Because the fiber-optic method involves measurements from the entire
depth of the ice sheet, it provides a better picture of the dynamic behavior of the ice sheet
on a large scale (of one ice-thickness or more).

GPS horizontal strain network

This method for calculating the downward vertical velocity of the surface relies on the
conservation of ice mass at the surface. Nereson [1998] originally applied this method to
the divide region of Siple Dome (sites F and E), here we complete the analysis by applying
it to the flank (site C) as well.
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Figure 5.6: Vertical velocity profile at the divide site. Dots represent velocities measured by the
optical-fiber strain sensors (measurement errors are less than the width of the dot). Solid line is
best-fitting steady-state model (Equation (5.5)) using the Reeh velocity profile.
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Figure 5.7: Vertical velocity profile at the flank site. Squares represent velocities measured by the
optical-fiber strain sensors (measurement errors are less than the width of the square). Solid line
is best-fitting steady-state model (Equation (5.5)) using the Dansgaard-Johnsen velocity profile.
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The continuity equation requires that the divergence of the horizontal ice flux out of a
volume of ice be balanced by vertical thinning of the ice volume and accumulation added
to the volume. For a column of ice:

i (99 Oy
H=1b (ax+ay>’ (5.6)

where H is the time rate of change of ice thickness, b is the accumulation rate, gz and gy
are components of the horizontal ice flux. The divergence of the horizontal ice flux can be
determined from measurements of surface horizontal velocity gradients:

0q,  Ogy Ous  Ovg
— 4+ —= | =9H 5.7
(83: oy K Ox + oy )’ (5.7)
where 7 is the ratio of the depth-averaged horizontal velocity to the surface horizontal
velocity (@/ug). It can range from 0.8 for isothermal, laminar flow with a nonlinear (n=3)

flow law to 0.85, empirically determined from finite-element modelling of Siple Dome. We
use 0.8, but include this range of values in our uncertainty analysis.

In December 1994, a survey grid was set up around the summit site, in anticipation of
the deep drilling program; the details of the data collection are described in Nereson [1998].
Nereson [1998] resurveyed the grid in December 1996 and determined the pole velocities
(Figure 5.8). This extensive survey produced relative pole positions with residuals less
than 0.01 m. That same year, additional poles were installed around the flank site. We
resurveyed these poles in January of 1999. Because the grid contains fewer poles and did
not contain redundant measurements, the uncertainties for these pole positions are up to
0.2m in the horizontal. The velocity vectors for this grid are shown in Figure 5.9.

We used these velocity measurements in Equation (5.7) to determine the horizontal
flux divergence. Then we calculated wy (= H — b) from continuity, Equation (5.6). The
results are shown in the bottom row of Table 5.2. The uncertainty for the divide horizon-
tal divergence is 0.05ma™!, found from the range of results obtained when various pole
configurations are used in the calculation, combined with the uncertainty in the value of
~. The uncertainty at the flank is higher because of the higher uncertainties in the GPS
residuals.

5.8.4  Slope correction term

To complete this mass-balance analysis, we calculate the slope correction term for each
site. The horizontal velocity at each site was measured during the same GPS occupations
as the coffee-can vertical motion measurements and confirmed at sites F and C by the
GPS survey network. The region extending 1 to 2km from each site was surveyed for
surface topography using kinematic GPS. A spatial scale of several ice thicknesses is used
to determine the slope important for large-scale ice flow; this slope is assumed to be time
invariant. The correction term for each of the five sites is shown in Table 5.2.
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Figure 5.8: Map view of GPS survey network at the summit site (site F) including velocity vectors
and elevation contours. Zero on the x-axis is the ridge; zero on the y-axis is the peak along the
ridge. The large arrow points to true north. The data span the austral summer 1994/95 to austral
summer 1996/97. Adapted from Nereson [1998].
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Figure 5.9: Map view of GPS survey network at the flank site (site C), showing velocity vectors
and elevation contours. Zero on the x-axis is the ridge; zero on the y-axis is the peak along the
ridge. The large arrow points to true north. The two sites are shown at the same scale; note
that the survey grid is less extensive at this site. The data for these velocity calculations span the
austral summer 1996/97 to austral summer 1998/99.
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5.8.5 Net ice-sheet thinning rate

Table 5.2 shows the results for each of the three methods. We calculated the thinning
rates using both the 42 a average gross-( measurements and the 500 a average calculation
from Table 5.1. Since the coffee-can method and the optical-fiber method have the lowest
uncertainties, we have plotted the average of these results (using the 42 a average accumu-
lation rate) as arrows in Figure 5.10, a diagram showing the geometry of Siple Dome. The
errors are shown as thin bars behind the arrows. For the three sites nearest the summit,
our calculations show neither thinning nor thickening within our uncertainties. Only one
of the five sites shows significant thinning: site A, on the side of Siple Dome nearest Bind-
schadler Ice Stream. We calculate thinning at both sites A and H when vertical velocities
are compared to the 500 a average accumulation rate.

5.4 Implications for Siple Dome

The conclusion that Siple Dome is in balance with its modern accumulation rate provides
an important constraint on the region. We present the implications of this result on three
spatial scales: the dome itself, the dome and its neighboring ice streams, and the Ross Sea
Embayment.

5.4.1 History of Siple Dome

A summary of key conclusions from this study and from others (as cited) for the Dome as
a whole:

1. Siple Dome is 1000 m thick and has an average accumulation rate of approximately
0.12 to 0.13ma~'. This implies that it has a fundamental response time to pertur-
bations in its boundary conditions of H/ b = 8,000 years. This is the timescale over
which perturbations are felt throughout the depth of the ice sheet; therefore, it is
the response time for the shape of the internal layers.

2. Nereson et al. [1998a] showed that it has a volume response time of about 700 years.
This timescale reflects the adjustment of the surface geometry to a step change in
boundary conditions.

3. The RES data in Figure 5.2 show asymmetry in the internal layer structure to the
deepest observable layers. This asymmetry is a result of an orographic precipitation
pattern [Nereson et al., 2000].

4. At the divide there is a distinct arch in the isochrones (see Figure 5.2). [Nereson
et al., 1998b] showed that this feature is most likely a Raymond bump, a result of
the special divide flow that results from the nonlinearity of the ice-flow law. To
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Figure 5.10: Calculated thinning rates plotted on a cross section of Siple Dome. The arrow and
error bar scale is shown in the upper right of the figure. The surface profile is from kinematic
GPS; the bed profile is from RES data (Figure 5.2; the grey lines indicate approximate extensions
of the surface and bed profiles. The region within 10km of the divide is in steady state within
our measurement uncertainty; at larger distances, only Site A, on the north slope shows significant
thinning,.
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produce a Raymond bump, the divide must be frozen to its bed [Pettit et al., 2002]
and cannot have moved more than a few ice-thicknesses from its present position
[Nereson et al., 1998b], otherwise the bump would have been “smeared out” by a
migrating divide [Nereson and Waddington, 2002].

5. The three sites nearest the summit (within 7 ice-thicknesses) in this study show no
significant thinning (the resolution of these methods is on the order of 2.5cma™1!).

6. The north flank site (at 30 km from the divide) shows significant thinning. The south
flank site (also 30 km from the divide) is also thinning according to our estimate using
the longer-term accumulation rate measured from the RES study.

These six observations imply that Siple Dome has been a ridge-like elevated feature (driv-
ing orographic precipitation patterns), exhibiting stable or slowly migrating divide-flow,
surrounded by lower-lying ice streams, for much of the Holocene (since its fundamental
response time is 8,000 years). It is probable, although we cannot say for sure, that it was
a dome surrounded by ice streams during the glacial maximum (about 20 ka BP).

Since the volume response time is much shorter that the fundamental timescale, our
conclusion that it has no net thinning at present only constrains the behavior for the past
few thousand years. If Siple Dome was more than 40 m higher 2000 a BP, our techniques
would detect thinning (assuming a constant thinning rate over the last 2000 years) There-
fore, we can only say that any significant thinning from the deglaciation must have occurred
earlier in the Holocene, and Siple Dome reached its present thickness by 1000-2000 a BP

That at least one, and perhaps both sites 30km from the divide (about half-way to
the ice-stream margin), may be thinning, yet the summit is in steady state, suggests that
the elevation difference between the summit and the ice streams was smaller in the recent
past, but still enough to drive orographic precipitation. This may imply that the flanks
have not reached steady state after deglaciation, while the divide has; although since the
surface adjustment timescale is short relative to the length of the Holocene, it is more
likely that the flanks are responding to more recent forcings, such as thinning of the ice
streams.

5.4.2  Siple Coast dynamics

The system of ice streams and inter-ice-stream ridges along the Siple Coast of West Antarc-
tica has proven to be very dynamic. Adjacent to Siple Dome (Figure 5.11), the Siple Ice
Stream and the Duckfoot both seem to be relic ice streams that ceased fast flow within
the last 500 years [Jacobel et al., 2000; Nereson, 2000, and unpublished work by Ben
E. Smith]. Also, Kamb Ice Stream stagnated about 130 years ago [Retzlaff and Bentley,
1993]. Whillans and Bindschadler [1988] observed a modern thinning rate of Whillans Ice
Stream of 6cma~!. Bindschadler et al. [2002] calculate a thinning of Bindschadler Ice
Stream in its middle and lower reaches of 1to30cma™! and a thickening of Ice Stream
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E. Also, Conway et al. [2002] found evidence suggesting that Ice Stream C-0 has switched
flow directions less than 250 years BP. All of these observations imply that the Siple Coast
is an active region of constantly changing flow.

The most stable parts of this region are the inter-ice-stream ridges, yet they are affected
(although more subtly) by changes in the ice streams on their boundaries. Changes in the
bounding ice streams leave an imprint in the glaciological record recorded in the slow
moving ridge ice. Nereson and Raymond [2001] compared Ridges DE and BC with Siple
Dome and found that Siple Dome is the most steady of the three ridges. The most
significant clue to its stability is the presence of a Raymond Bump in the internal layer
structure (see the radar image in Figure 5.2). The relative stability of Siple Dome is
intriguing since Siple Dome is bounded by Kamb Ice Stream which has shown the most
dramatic change in recent history. The clues we have to the history of Siple Dome and its
bounding ice streams are:

1. Siple Dome has been an elevated feature for much of the Holocene and has not
undergone large volume changes in the last few thousand years.

2. Nereson et al. [1998b] found that Siple Dome has been migrating toward Bindschadler
Ice Stream at a rate of up to 0.5ma~"! for several thousand years, at least until
1000 years ago from analysis of the Raymond bump in the Siple Dome radar stratig-
raphy. (The bump is too subtle in the near surface layers to extend this analysis to
the most recent 1000 years.

3. Kamb Ice Stream stopped approximately 130 years ago [Retzlaff and Bentley, 1993]
and is currently thickening in its upper reaches [Price et al., 2001].

4. Bindschadler Ice Stream is thinning in its middle and lower reaches at a rate of up
to 30cma~! [Bindschadler et al., 2002].

5. The grounding line for the Siple Coast has been retreating [Bindschadler and Vorn-
berger, 1998]

These observations present some puzzles. The most likely driving force for migration of the
Siple Dome divide is changes in the relative elevations of the ice streams. Yet, if the divide
is presently migrating toward Bindschadler Ice Stream, we would expect a thickening of
the ice at sites C and A in this study and a thickening of the boundary with Bindschadler
Ice Stream.

The divide has been migrating to the north for a minimum of about 2000 years (the
time it would take to move the divide the 700 meters (the observed displacement of the
peak of the deepest visible internal layer to the modern divide position) at the maximum
rate determined by Nereson et al. [1998b]). A thinning of Kamb Ice Stream relative to
Bindschadler Ice Stream would be required to drive the migration northward. This may be
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Figure 5.11: Satellite image of Siple Dome and surrounding ice streams. White line indicates the
location of the RES cross-section shown in Figure 5.2.
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possible if Kamb Ice Stream underwent a steady thinning over thousands of years until it
reached a threshold thickness that caused it to stop flowing. At present, Kamb Ice Stream
is thickening in its upper reaches [Price et al., 2001], and, thus, should drive the divide
migration in the opposite direction. Nereson et al. [1998a] predicted that a perturbation
in the ice streams take 200 to 350 years to affect the divide position. Therefore it is most
likely that the divide has not yet “felt” the thickening due to the shut down of Kamb Ice
Stream. Site H, however, is much closer to the boundary with Kamb Ice Stream and should
feel the effects of the shutdown as a thickening (or reduced thinning rate) in a much shorter
amount of time. We do not observe a thickening at this site, either because the thickening
of Kamb Ice Stream is occurring only much farther upstream; because it is a small effect,
below the resolution of our technique; or because it is balanced by a longer-term thinning
process (perhaps associated with the northward divide migration).

On the other hand, the northward migration may be caused by thickening of Bind-
schadler Ice Stream. One possibility is the stoppage of the Siple Ice Stream about 450 a BP
[Conway et al., 2002, and unpublished work by Ben E. Smith], a tributary of Bindschadler
Ice Stream. But evidence suggests this is too recent to cause the migration we observe
[Nereson, 2000].

Because the migration happened over at least 2000 years [Nereson et al., 1998b] it is
not likely that abrupt changes in the ice streams, such as the stoppage of Kamb Ice Stream
or the Siple Ice Stream, have caused the northward migration. Indeed the presence of a
strong arch in the isochrones [Nereson and Raymond, 2001, cf. Ridge BC or DE], coupled
with the steady-state behavior that we measure, suggests that Ice Streams C and D have
not undergone dramatic changes in the past several thousand years. The only ice-stream
fluctuations consistent with the evidence are long-term gradual changes or very short-term
changes. Since the propagation time for changes in the margins to reach the divide is
less than 300 years [Nereson et al., 1998a], the effects of rapid fluctuations in ice stream
behavior (on the scale of 100 to 200) years would be averaged out before perturbing the
divide significantly.

The other possible driver for northward migration is changes in the accumulation rate.
In 5.3.2, we show that there is a general increase in accumulation from the south side
of the dome to the north side. [Nereson et al., 1998a] showed that a change in this
accumulation-rate gradient can cause divide migration. In particular, a strengthening
(increase) in the gradient can drive the divide northward. Nereson et al. [2000] used the
layers in Figure 5.3a to deduce the change in accumulation rate over the Holocene from
the layer dips. They found that the accumulation rate gradient has possibly decreased
in time during the last 10ka, a change that would drive the divide southward instead of
northward (if not accompanied by a compensating change in the flow). Therefore this is
not a likely candidate for the observed behavior.
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5.4.8 Deglaciation of the Ross Sea Embayment

On a larger scale, the present steady state behavior of Siple Dome provides a constraint
on the deglaciation of the Ross Sea Embayment. The results presented here along with
results from other studies constrain aspects of the deglaciation process. These important
results are:

1. This study showed that Siple Dome has been stable for the last several thousand
years and has been an elevated feature with respect to the surrounding ice streams
for over ten thousand years. The ice streams bounding Siple Dome have been a
persistent and relatively stable feature of the Ross Ice Drainage since the LGM.

2. Denton and Hughes [2000] and Conway et al. [1999] present results from several
studies of radiocarbon dating of ice-age glacial drifts along the Transantarctic moun-
tains. This evidence suggests the ice did not retreat past McMurdo Sound until after
7600 yr BP.

3. Roosevelt Island, a grounded ridge of ice within the floating Ross Ice Shelf, also has
a Raymond bump in its internal structure, as imaged by radar. Conway et al. [1999]
analyzed the shape of this bump to conclude that before 3200 a BP, the dome did not
exhibit the special nonlinear divide-flow pattern seen now. In the early Holocene,
Roosevelt Island possibly was overrun by faster moving ice, then as the ice around
it thinned and the grounding line retreated, it became an elevated feature with a
slippery bed, and ultimately 3200 a BP, it froze to its bed and began exhibiting the
divide-flow pattern. They also show that the dome is currently still thinning by
0.0940.03ma .

4. Among the mountains to the east of the Ross Ice Shelf are the Ford Ranges. The ice
in this region feeds into the Sulzberger Ice Shelf. Stone et al. [2003] have analyzed
samples of glacial deposits from various elevations using cosmogenic isotopes to de-
termine exposure ages. These data show that the ice has thinned by more than 700
meters during the Holocene and this thinning may still be occurring.

Each of these points is highlighted in Figure 5.12, along with dashed lines indicating the
most likely evolution of the grounding line during deglaciation [adapted from Conway
et al., 1999].

The most recent reconstruction of the Ross Ice Drainage during the LGM is from
Denton and Hughes [2000], who incorporate past ice elevations (from total gas content
and stable isotope studies from Byrd Station and Taylor Dome ice cores and ice-flow
modelling) with the elevations of glacial deposits along the Transantarctics (Point 2 above)
and the suspected elevation history of Roosevelt Island [Point 3, Conway et al., 1999]. This
reconstruction is consistent with the minimum LGM elevations required by the evidence
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Figure 5.12: Satellite image of the Ross Ice Shelf. Key evidence for the reconstruction of the
Ross Ice Drainage at LGM and deglaciation during the Holocene are highlighted: Siple Dome (this
study), the Ford Ranges [Stone et al., 2003], Roosevelt Island [Conway et al., 1999], and sites along
the Transantarctic Mountains [Denton and Hughes, 2000; Conway et al., 1999]. The white lines
show possible grounding line positions as the ice sheet retreated (adapted from Conway et al. [1999].
This retreat has been coined the “swinging gate theory” [Denton and Hughes, 2000; Conway et al.,
1999]. The hatched black region is downstream from Siple Dome and Ice Streams C and D and
may have had a low profile through much of the Holocene, in contrast to the other parts of the
Ross Embayment.
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from Stone et al. [2003]. In the Siple Dome region, however, the Denton and Hughes [2000]
reconstruction predicts ice elevations over 700 m thicker than the dome is today. The results
of this study restrict Siple Dome to at most 40 m thicker 2000 a BP, and with lower-lying
ice streams on either side through much of the Holocene. To make the reconstruction
consistent with our results, we suggest that in the early Holocene, the central region of the
Siple Coast (Ice Streams C and D with Siple Dome in between, the black hatched region
in Figure 5.12), was thin with active ice streams, while the region around Roosevelt Island
may have been much thicker.

There are two histories that can produce this difference across the Ross Sea. First, Siple
Dome and the flow downstream may have always been low and thin, even during the glacial
maximum. Or Siple Dome was much thicker during the LGM. Then the grounding line
retreated in the central Ross Sea much earlier in the Holocene than on the sides, thinning
Siple Dome and Ice Streams Kamb and Bindschadler well before Roosevelt Island. With
the thin interior ice near and downstream from Siple Dome and thicker ice to the north
and east, an ice cap possibly existed over the Ford Ranges that fed the region around Ice
Stream E and Roosevelt Island.

5.5 Conclusions

In this paper we have brought together results of multiple studies related to the mass
balance of Siple Dome to show that its geometry is in balance its present accumulation
rate.

We examine the pattern of accumulation across the dome over three timescales. A
42 year average was determined by detecting the 1955 bomb layer using gross-3 at seven
points across the divide. We used the shallowest layer imaged by ground penetrating radar
to estimate a 100 year average. We use the average pattern over several thousand year from
the pattern of internal layers in 3 MHz radio echo sounding. And we estimated longer-term
accumulation rates from the depth-age scale from the ice core. All reflect an orographically
driven pattern of high accumulation on the north (upwind) side and low accumulation on
the south side.

We determined the surface vertical velocity necessary to balance this accumulation
pattern using three independent methods: high-resolution GPS firn-motion measurements,
deep ice vertical strain rates, and surface horizontal strain rates.

Our results show that the surface within about 10km of the divide is in steady state
to within the uncertainties of the measurements. The north side of the dome, halfway
between the summit and the Bindschadler Ice Stream margin, appears to be thinning a
small amount. The south side of the dome may also be thinning, but at a rate that is just
above the detection level of our methods. This has several implications for the local and
regional ice sheet history.

Siple Dome cannot have been more than 40 meters thicker 2000 a BP, otherwise it would
show measurable thinning. This result is in contrast to Roosevelt Island, which shows a
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9(£6)cma~! thinning rate [Conway et al., 1999]. Siple Dome has been a fairly stable,
elevated topographic feature bounded by ice streams through much of the Holocene and
probably as early as the LGM. The divide has a distinctive Raymond bump, an arch in
the isochrones characteristic of a stable divide. Since the ice divide is sensitive to changes
in its bounding ice streams, Siple Dome’s stability puts constraints on the behavior of Ice
Steams C and D. The ice streams cannot have fluctuated greatly in their thicknesses and
speeds over timescales greater than about 300 years (the propagation timescale for a step
change in ice stream thickness to affect the summit[Nereson et al., 1998a]). We conclude
that the stoppage of Kamb Ice Stream, therefore, is either a gradual event occurring over
thousands of years (possibly due to the overall ice sheet thinning since LGM) or part of
“rapid” (less than 300 year) fluctuations in streaming flow.

Finally, evidence of present steady state behavior and the existence of a Raymond
bump in the isochrones at the divide suggests that Siple Dome and Ice Streams C and D
have been stable feature of the West Antarctic Ice Sheet throughout the Holocene. We
surmise that the central part of the Siple Coast maintained a low profile with fast flowing
ice, while there was much thicker ice along the Transantarctic Mountains and between the
Ford Ranges and Roosevelt Island along the coast.
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Chapter 6

THE CROSSOVER STRESS, ANISOTROPY, AND THE FLOW LAW
AT SIPLE DOME

This chapter is a draft of a paper with possible co-authors Ed Waddington, Throstur Thorsteinsson,
Paul Jacobson, Will Harrison, Dan Elsberg, Mark Zumberge , Eric Hussman, John Morack, and Gregg
Lamorey.

6.1 Summary

The flow pattern near an ice divide is the result of a combination of processes. The
nonlinear rheology of ice flow causes ice near the bed at a divide to have a high viscosity.
The ice particle paths refract and velocities decrease as they move through this region; over
time this produces an arch in the isochrones. The shape and size of this arch is modified by
the action of crystal anisotropy, the temperature field, and a shift in the flow-law exponent
that occurs at low stresses. We use Siple Dome, a nearly steady-state ridge with a frozen
bed, to study the relative importance of these processes in a realistic setting constrained
by measurements of ice-flow, temperature, and ice properties.

We find that the linear term in the flow law and crystal anisotropy both contribute
significantly to deformation. The crossover stress that best fits our data, assuming the
divide is still migrating, is £k = 0.22bar. It is larger if the divide is no longer migrating.
The band of strong crystal fabric around 750 m depth causes an increase in the difference
between the flank and divide vertical-velocity profiles. The isotropic enhancement factors
for the three layer ice sheet that best fit our data are: Holocene Ice, £1 = 1.3; Ice-Age
Ice, F2 = 0.06; Recrystallized Ice, F = 0.2. The Ice-Age Ice and Recrystallized Ice layers
are stiffer relative to clean, isotropic Holocene Ice. Finally, on the flank, the strong crystal
fabric at depth concentrates the shear strain such that the recrystallized ice near the bed
undergoes minimal deformation, creating a “false-bed” effect.

6.2 Introduction and Background

Ice divides separate the drainage basins of ice sheets. As the locations where the surface
slopes and shear stresses approach zero, ice divides maintain a unique stress regime: ice is
essentially in pure shear with lower effective deviatoric stresses than elsewhere on the ice
sheet (see Figure 2.1). This stress regime poses an interesting challenge for ice dynamics
modelling, since the low shear stress near the divide renders invalid the normal shallow-
ice-approximation assumption that longitudinal stresses are negligible. Yet, modelling the
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flow of ice in this region is crucial to interpreting ice cores and examining the histories and
possible futures of all ice sheets.

The ways in which the ice-divide stress regime alters the ice flow pattern depend on the
ice-sheet boundary conditions and the details of the constitutive law for ice. Near a divide,
the effective deviatoric stress is dominated by the longitudinal-stress rather than the bed-
parallel shear-stress. Also, the magnitudes of the deviatoric stresses (both longitudinal
and shear) are small relative to the shear stresses on the flanks of the ice sheet. According
to Glen’s flow law for ice, effective viscosity is inversely proportional to the square of the
stress [Nye, 1953; Glen, 1958]. Thus, the region with the lowest stress (near the bed
at the divide), is more resistant to deformation than surrounding areas. Deformation is
concentrated in the softer ice nearer the surface; the ice flow trajectories are deflected near
this hard “lump” of ice producing a unique flow pattern. Raymond [1983] first described
the details of this special divide flow pattern and noted that the internal stratigraphy at a
steady-state divide would reflect this flow pattern, causing ice of a particular age to appear
higher in the stratigraphic column at the divide than at the flank. Since the special divide
flow pattern has a limited horizontal extent, blending into flank flow within one to two
ice thicknesses from the divide, this theory leads to an arch in the isochrones, commonly
called a “Raymond bump”.

Since Raymond’s initial analysis, several authors have expanded on this theory of divide
flow by looking at the perturbations to the flow field caused by variations in the boundary
conditions. Nereson et al. [1998a] explored the effects of changes in elevation of bounding
ice streams (which can cause the divide to migrate). Huvidberg [1996] included realistic
thermal boundary conditions and Nereson and Waddington [2002] characterized isotherms
more fully under migrating divides. Finally, in Chapter 3 [also published as Pettit et al.,
2002], we modelled the effects of a sliding boundary condition at the base of the ice.

In addition to boundary conditions, crystal anisotropy can play a significant role in
ice deformation and may modify the special divide flow pattern. Mangeney et al. [1996]
modelled the flow of anisotropic ice near an isothermal divide with a linear ice-flow law
and found little change in the overall flow pattern. In Chapter 4, however, we combined
the characteristics of anisotropic flow with a more realistic nonlinear constitutive relation
and found that strong anisotropy perturbs and enhances the special divide flow pattern.

Finally, the degree to which ice behaves as a nonlinear fluid in the low-stress divide
region is still under debate. Conventionally, glaciologists have used Glen’s Law, which
describes ice as a power-law fluid with an n = 3 relation between stress and strain rate
(where n is the exponent in the power law). It is probable that at low stresses the micro-
scale mechanism driving ice flow shifts to a more linear flow mechanism [Langdon, 1996;
Goldsby and Kohlstedt, 2001, e.g]. In Chapter 2 [also published as Pettit and Waddington,
in press|, we summarize the theory behind this possible shift in flow mechanism, reformu-
late the flow law as a two-term law, and define the crossover stress as the stress at which
the linear mechanism and the traditional Glen’s Law (n = 3) mechanism contribute equally
to the strain rate. We then model the flow patterns resulting from different combinations
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of linear and Glen flow laws.

In this chapter, we compare the impact of the constitutive law’s stress exponent with
that of deformational anisotropy (introduced in Chapter 4) for a real divide: Siple Dome,
West Antarctica. We chose Siple Dome because it has been studied extensively over the
last decade, and it is the site of the U.S. Antarctic Program’s most recent deep drilling
project. In this study, we take advantage of the plethora of available ice core, surface flow,
mass balance, and in situ vertical-strain data. The vertical-strain data are unique and
essential to this study; the instruments were developed as part of a collaboration with the
University of Washington to study the details of ice flow at an ice divide [Zumberge et al.,
2002; Elsberg et al., in review]. We use two high-resolution custom instruments: fiber-optic
position sensors developed by the University of California, San Diego [Zumberge et al.,
2002], and wire strain meters developed by the University of Alaska, Fairbanks [Elsberg
et al., in review]. The existence of these data allows us to use the known geometry and ice
properties of Siple Dome to invert for realistic flow-law parameters based on vertical-strain
rates measured at depth and horizontal velocities measured on the surface.

6.3 Case Study of Siple Dome

Siple Dome is a 1000 m thick ridge of slow-moving ice between Ice Streams C and D on
the Siple Coast of West Antarctica (Figure 6.1). The summit region has been in steady
state for several thousand years (Chapter 5) and it has been an elevated dome-like feature
for much of the Holocene and possibly since the last glacial maximum [Nereson et al.,
2000]. The internal structure, as imaged by low-frequency ice-penetrating radar, shows a
distinctive Raymond bump (Figure 6.2). The characteristic deviatoric stress [as defined
by Waddington et al., 1996; Pettit and Waddington, in press, and Chapter 2] is 0.2 bar,
low enough that linear and near-linear flow mechanisms may contribute measurably to the
deformation. These characteristics make Siple Dome ideal for a case study of the effects
of rheological processes on divide flow.

If we assume that the radar stratigraphy in Figure 6.2 represent isochrones [Paren and
Robin, 1975], the pattern existing in the ice sheet today reflects the integrated flow field
over tens of thousands of years. Some authors have used these layers to study the present
and past dynamics of ice divides [Vaughan et al., 1999; Nereson and Raymond, 2001].
Our focus, however, is on the rheological properties and the flow law of the ice; therefore,
we prefer to use a more direct measurement of the modern strain-rate field in the divide
region. Our analysis is based on in situ vertical-strain-rate measurements, which depends
only on the modern geometry of the ice sheet and on the present rheological properties of
the ice, not on the divide’s history.

As introduced above, many processes can modify the vertical velocity profile and thus,
over time, the arch in the isochrones. These include the effects of boundary conditions,
deformation due to anisotropy, near-linear flow mechanisms, and the temperature regime.
Here, we narrow our focus to anisotropy and the activation of linear and near-linear flow
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Figure 6.1: The Siple Coast and the Ross Sea Embayment, West Antarctica. Siple Dome (81.65° S
and 148.81° W) is an inter-ice stream ridge on the Siple Coast of West Antarctica. Shaded regions
represent fast flow ice, including ice streams A (Mercer Ice Stream), B (Whillans Ice Stream), C
(Kamb Ice Stream), D (Bindschadler Ice Stream), E (MacAyeal Ice Stream), and F (Echelmeyer Ice
Stream). The dot on Siple Dome approximately identifies the summit location, and the adjacent
line represents the cross section modelled here.
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Figure 6.2: Ground-based 3 MHz ice-penetrating radar image of the divide region of Siple Dome
[Raymond et al., 1995; Scambos and Nereson, 1995; Jacobel et al., 1996]. The image corresponds
to the central section of the black line across Siple Dome in Figure 6.1. Bindschadler Ice Stream is
to the right and Kamb Ice Stream is to the left. Note the concave-downward arch in the isochrones
at the divide that is driven by the nonlinear stress-strain-rate relationship and a vertically-oriented
crystal fabric.

mechanisms.

The tendency of crystals to align vertically with depth in an ice sheet causes stiffening
of the ice undergoing vertical compression at the divide and softening of the ice shearing
on the flanks (Chapter 4). This contrast in effective viscosity alters the vertical-strain-
rate profile and enlarges the isochrone arch. On the other hand, we showed in Chapter 2
that the introduction of a linear term into Glen’s Law diminishes the divide—flank flow
difference and attenuates the arch. It is important to note that these effects modify an
existing Raymond bump; where no bump exists (because of a sliding bed or a wandering
divide, for example), anisotropic deformation cannot create one.

Our question is:
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Given a crystal fabric field (based on the measured sonic velocity in the bore-
hole) and a temperature field (also based on measurements in the borehole)
what is the relative importance of the three Raymond bump “modifiers” (anisotropy,
linear flow mechanisms, and temperature) at Siple Dome?

6.4 The Constitutive Law for Ice

In general, empirical analyses have shown that ice behaves as a power-law fluid [Glen,
1955; Nye, 1953]. The simplest expression for Glen’s Law (introduced in Chapter 2) is
é; = At27,, where ¢é; and T, are the strain-rate and stress tensors and 7.q is the second
invariant of the stress tensor.! In this form, all the variations due to properties of the ice
are lumped into A, the softness parameter. As we discussed in Chapters 2 and 4, this form
is limiting, for two primary reasons. First, ice flow results from a combination of micro-
scale flow mechanisms, and as a result, the exponent may change as the dominant flow
mechanism changes. Second, polycrystalline ice in an ice sheet can be strongly anisotropic.
The stress regime in an ice sheet tends to drives development of a vertically oriented fabric
[Alley, 1992]. The simple form of Glen’s Law with a scalar softness parameter is ineffective
at describing ice flow with crystal anisotropy.

6.4.1 A two-term isotropic flow law

In Chapter 2, we develop a two-term flow law for isotropic ice that is simple to incorporate
into ice-flow models, but can encompass a range of deformation behaviors, specifically the
low-stress behavior seen near ice divides. This flow law is:

¢y = DR + 7273, (6.1)
where €;; and 7; are the strain-rate and deviatoric-stress tensors,
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In these expressions, F is an enhancement factor, A, is the softness parameter, () is the
activation energy, 1" is the temperature, R is the gas constant, d is the average grain size
(if p = 0, there is no crystal-size dependency), and the subscripts refer to the linear and
nonlinear creep mechanisms. In this formulation, k, the crossover stress, is the effective
deviatoric stress at which the linear and cubic terms contribute equally to the total strain

(6.3)

! Appendix A is a table of the notation.
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rate and, when p,, = 0, I' is the coefficient for “normal” Glen flow (for a derivation of this
flow law see Chapter 2).

6.4.2 An anisotropic modification to flow

This formulation still does not provide a means for incorporating the directional flow
enhancements due to anisotropy. Ice crystals only two active slip systems (similar, in
many ways, to a deck of cards), with deformation on other slip systems being more than
60 times harder [Duval et al., 1983]. As a result, an ice aggregate with crystals aligned
in the same direction is much softer in simple shear than an isotropic aggregate. Since
grains within an ice sheet are known to develop a preferred orientation as the ice sheet
evolves [Alley, 1992], incorporating anisotropy into a flow law may improve our ability to
realistically model ice-sheet deformation.

We use an anisotropic flow model originally developed by Thorsteinsson [2001] based on
the Sachs [1928] homogeneous-stress assumption. In Sachs’ description of anisotropy, the
bulk deformation of the ice aggregate is assumed to be the average deformation of all the
crystals within the aggregate. The resolved shear stress (RSS) on the basal plane of each
crystal depends on its orientation to the applied stress. The RSS drives the deformation
within the crystal. Thus, crystals with basal planes oriented parallel to the shear stress
have a larger RSS and deform at a faster rate than crystals with basal planes oriented
perpendicular to the shear stress.

To build a law from this theory, Thorsteinsson [2001] used a statistical distribution of
crystal orientations within an aggregate to define the bulk deformation. The fabric near
an ice divide typically has a cluster of c-axes oriented vertically. This type of fabric can
be described by a “cone angle”, the half-apex angle of a cone within which all crystals in
an ideal block of ice are uniformly distributed. (In real ice, the distribution is not uniform
and there are outliers; its cone angle is that of the ideal block of ice which produces the
same strain rate.) Thorsteinsson derived analytical solutions to describe the deformation
of the bulk material for a given cone angle with a linear RSS-strain-rate relationship on the
basal plane (Chapter 4). The conservations of momentum and mass are (a more complete
derivation of these equations is in Appendix D):

1 (~la-b 1 11
(=207 = Z —u,, —p, = 4
T <3b a+b 2e> Uoe T ggttzs ~ P =0 (64)
11 1 (1 B 65
T2 ®@ 7 \3p 2¢) = P71 '
Uy +w, = 0. (6.6)

where 1/T" is the isotropic effective viscosity (with I' as defined in Equation 6.2) and a
through e are functions of the cone angle based on the the Sach’s model (Appendix D
contains the definition of a through e). This derivation assumes that I" and a through
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e are spatially uniform; therefore, these PDE’s apply to individual finite elements in the
model, and are not descriptive of the overall flow field. This analytical solution is relatively
easy to incorporate into a flow model.

Compared to other anisotropic flow laws, this formulation generally under-predicts
anisotropic enhancement [Azuma, 1994; Castelnau et al., 1996; Thorsteinsson, 2001]. Since
the “real” magnitude of enhancement is not known, yet the style of deformation is generally
the same for all formulations, we allow the scalar enhancement factors (E,, and E)) for the
bulk material to adjust to account for this uncertainty.

Thorsteinsson’s analytical formulation has three limitations. It is based on linear de-
formation on the basal plane, it does not allow for evolution of the fabric, and it does not
include interactions between neighboring crystals [ Thorsteinsson, 2002]. We assume that
the effects of these limitations are small compared to the magnitude of the anisotropic de-
formation. First, the use of a linear stress-strain-rate relationship to determine anisotropic
deformation for single crystals is combined with nonlinear bulk deformation of the ice; this
method approximates the pattern of behavior of the fully nonlinear system without the
mathematical complexity. Second, crystal fabric is continually evolving in an ice sheet. In
this model, however, we are not analyzing time-dependent behavior. We relate the modern
stress field (imposed by the present geometry) the measured strain-rate field, and mea-
sured crystal orientation (cone angle) through the ice flow law. And third, Thorsteinsson
showed that interactions between neighboring crystals generally speeds the rate of fab-
ric development, but maintains the general pattern of ice flow. Again, we assume slight
variations in the flow due to neighboring crystals as included in the enhancement factors.

6.5 Finite-Element Ice-Flow Model

To study the flow at Siple Dome, we use a finite-element model (FEM), similar to the
ice-divide models developed by Raymond [1983] and Hvidberg [1996]. The fundamental
assumptions include:

1. The ice deforms in plane strain; thus, the model best represents a ridge ice divide,
such as Siple Dome [Nereson et al., 1996] or Roosevelt Island [Conway et al., 1999].

2. The temperature field is specified.

3. The present geometry is specified.

4. The upper surface is stress free.

5. The horizontal-velocity profile on the flank boundary (at 30 ice thicknesses from the
divide) carries away the integrated mass balance from the divide to the boundary, in

order to satisfy mass conservation for a steady-state ice sheet. Because our boundary
is more than 20 ice thicknesses from the divide, the results for the region within ten
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ice thicknesses of the divide are insensitive to the details of the horizontal-velocity
profile on the flank boundary [Raymond, 1983; Schott et al., 1992]. In practice, we
begin with a laminar flow profile at the boundary, but as velocities within the ice sheet
are calculated, we update the shape of the horizontal-velocity profile at the boundary
(while maintaining the flux) to account for the unique rheological properties of the
anisotropic ice and the non-uniform temperature field.

6. Ice rheology is described by the two-term isotropic flow law shown in Equation 6.1
incorporated with the anisotropy description. The A, parameters is taken from
Paterson, 1994, Chapter 5 , while variation from this standard softness is expressed
in enhancement factors, Ej. The model is solved iteratively. First, an isotropic
effective viscosity (1/T") is calculated for each element from the effective strain rate
calculated during the previous iteration using Equation 6.1. Then this effective
viscosity is substituted in Equations (6.4) to (6.6), which are solved for the new
velocity gradients for the element, given the element’s cone angle. This process is
repeated for a specified number of iterations (typically 10) to achieve reasonable
convergence within a timestep. This two-step process allows us to combine the
nonlinear bulk flow of ice based on Glen’s Law with a description of anisotropy
(based on a linear rheology). Small uncertainties will be introduced where the ice
properties (such as cone angle) of adjacent elements are vary.

7. In these models the cone angle at the divide is extrapolated to the flanks as a function
of normalized depth (z/H(x)).

8. The model solves the flow equations on a grid of 9-node quadratic elements for
temperature, pressure, and velocity fields.

6.6 Field Site: Siple Dome, West Antarctica (81.65°S and 148.81°W).

Siple Dome is the site of the most recent deep ice core drilled by the United States Na-
tional Science Foundation Office of Polar Program’s WAISCORES Initiative. The ice-core
drilling was completed in January of 1999 and collaborating scientists are now completing
a comprehensive analysis of the ice-core and borehole data to reconstruct climate history.
In addition to the ice core, an extensive strain network provides surface flow; snow pits,
shallow cores, and radar provide spatial and temporal accumulation rate patterns, and
instruments buried in the ice provide vertical motion measurements.

Where pertinent, we have incorporated the available measurements in this study. The
measured divide geometry, borehole temperatures, and sonic log (a proxy for for crystal
fabric [Thorsteinsson, 2000]) provide inputs to the model, while the surface and depth
strain data, accumulation rates, and grain size provide constraints on possible solutions.
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6.6.1 Model inputs
Geometry

The surface topography along the cross section that we study (the line across the dome in
Figure 6.1) was measured using Global Positioning System (GPS) data [Raymond et al.,
1995; Scambos and Nereson, 1995; Nereson et al., 1996]. The bed topography come from
low-frequency ice-penetrating radar [Raymond et al., 1995; Jacobel et al., 1996]. Near the
divide, there is no evidence for significant flow perpendicular to the cross section [Nereson,
1998]; therefore we assume two-dimensional plane-strain flow.

Figure 6.3 shows the model geometry and the finite-element mesh. We placed more
elements near the divide and in regions of strong vertical gradients in ice properties.

Accumulation rate

The pattern of accumulation rate at Siple Dome is driven by the topography. Storms
generally approach from the north, ocean-ward, side of the divide, and deposit more of
their moisture on the north side, leaving the south side significantly dryer [Bromwich,
1988]. Nereson et al. [2000] observed this trend in the pattern of radar-detected internal
layers. They used a kinematic steady-state ice-flow model to predict internal-layer shapes
as a function of a steady-state accumulation pattern across the dome. The accumulation
pattern derived from the RES images provides only relative accumulation rates, since the
layers in the image are not dated (a depth-age scale for the ice core is just recently available
to complete this analysis Taylor et al. [accepted]). In our analysis of ice flow at Siple Dome,
we use this pattern, scaled to a point measurement of the modern accumulation rate (42 a
average) at the divide (0.132ma~!) determined by Hamilton [2001] using gross-3 analysis
on a shallow core.

Temperature

The temperature profile at Siple Dome was measured both in the deep borehole 500 meters
South of the summit by the University of Washington and in a hot-water-drilled bore-
hole at the summit by the California Institute of Technology [Hermann Englehardt,
personally communication, 2003]. Englehardt also measured a shorter profile to about
300 meters depth at the flank strain-gauge instrumentation site approximately 7 km North-
east (81.60°S, 148.69°W).

In a steady-state ice sheet, both advection and diffusion can contribute significantly
to the temperature field if the Peclet number is large. As we introduced above, near a
divide the vertical velocity field is altered by low-stress behavior such that an arch appears
in the isochrones. The process that produces this arch in the isochrones also produces
an arch in isotherms by affecting the advection term in the heat equation. We deter-
mine the temperature for our entire model cross section by adapting the 2-D steady-state
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Figure 6.3: Geometry for Siple Dome. Surface profile is from GPS measurements [Raymond et al.,
1995; Scambos and Nereson, 1995; Nereson et al., 1996] and bed topography is from ice-penetrating
radar [Raymond et al., 1995; Jacobel et al., 1996]. Bindschadler Ice Stream is to the right and Kamb
Ice Stream is to the left. The crosses are nodes, lines represent element boundaries. The grid is
finer where we expect the largest gradients in velocities (due either to proximity to the divide or
to gradients in the physical characteristics of the ice).
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advection-diffusion kinematic model from Nereson and Waddington [2002] constrained by
the measured temperature profile at the divide.

The Nereson-Waddington model uses a kinematic velocity field based on the shape-
function method of Reeh [1988]. Here, we apply this model using surface velocities derived
from the local accumulation rate. For a real divide, the temperature field is also dependent
on the history of surface temperature and ice flow. To account for Siple Dome’s history,
we adjust the bulk values of thermal conductivity, specific heat, and geothermal flux to
best fit the measured temperature profile at the divide. We, then, apply these values
to the entire ice-sheet cross section. We ultimately used 2.1 Wm 'K~ for conductivity,
1700 Jkg~'K~! for specific heat and 70mWm ™2 for the geothermal flux. (The generally
accepted values of the conductivity and specific heat for pure ice range from 2.1 Wm~!K~!
and 1741 J kg 'K~! for -50° C to 2.76 Wm~'K~! and 2097 J kg 'K~ for ice at 0°C.)

Although Siple Dome has been neither thickening nor thinning in the late Holocene
(see Chapter 5), there is evidence of slow divide migration in the recent past [Nereson
et al., 1998b]. The range of possible migration speeds found by Nereson et al. [1998b] is
0.05-0.50ma~!. We include a migration rate in the middle of this range (0.26ma~!) in
this calculation. Figure 6.4 shows the temperature field we used in our model. The range
of possible migration rates introduces some uncertainty in the temperature field.

The additional temperature measurements on the flank made by Englehardt provide
one location with which to check our temperature calculation. All of our calculated tem-
peratures in that location are less than 0.5° C from the measured values. We estimate,
using the Arrhenius temperature model, that this difference would result in at most a 5%
error in our strain-rate calculations.

Crystal size and orientation

Preferred crystal orientation can alter local strain-rate patterns by up to an order of
magnitude. Chemical and physical impurities also affect the flow [Cuffey et al., 2000a;
Paterson, 1991, e.g.], but the relationships are complicated and difficult to predict. Grain
size is suspected to be important where the grains are small [Goldsby and Kohlstedt, 2001;
Cuffey et al., 2000b]; however, it is unclear whether grain size is an independent factor or
whether it is driven by impurity content and the strain-rate field [de Bresser et al., 2001].
Here, we focus on crystal orientation. Flow enhancement due to grain size and impurity
content are smaller-scale effects that we incorporate through an enhancement factor.

Since we have coupled an anisotropic flow description with the finite-element model,
crystal orientation is an important input. We use results from borehole sonic logging (com-
pleted by the Desert Research Institute), which measures the speed of sound transmitted
through through approximately 7 meters of ice (thousands to millions of crystals). Sound
speed varies with the elastic anisotropy, which is related to the deformational anisotropy of
a crystal in a straightforward way. We use the method of Thorsteinsson [2000] to convert
the sonic log into effective cone angle.

The cone angle profile is shown in Figure 6.5, along with preliminary grain radius data
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Figure 6.4: Temperature field used as model input for the finite-element model. Bindschadler
Ice Stream is to the right and Kamb Ice Stream is to the left. The temperature field is derived
from measured temperatures at the divide and a kinematic flow model based on Nereson and
Waddington [2002]. The isotherms are elevated on the South side because low accumulation there
reduces advection.

(Larry Wilen, personal communication, 2003) and temperature (Hermann Englehardt,
personal communication, 2003) as a function of depth and age (Kendrick Taylor, personal
communication, 2003). We include grain size and temperature to highlight the structural
difference in the ice at different depths. The sonic log shows a distinct layer of extremely
tight vertical fabric, with large gradients in cone angle above and below. The upper
transition begins at 680 m and occurs over 16 m. This transition occurs between 17.4 ka BP
and 20 ka BP and it corresponds with a decrease in the grain size. A shift in grain size is
typical of the boundary between Holocene ice and deeper ice-age ice [e.g. Paterson, 1994,
p. 193], since ice-age crystals grow more slowly [Lipenkov et al., 1989]. This transition is
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slightly deeper than the transition to a warmer climate expressed by the stable isotopes
[Taylor et al., in prep]. This offset might arise because warmer temperatures of the early
Holocene we expect to affect the last 10 to 20m of ice age ice during its time within the
firn and normal grain-growth regions. With the low accumulation rates expected during
the ice age and early Holocene, the timescale for advection is several times longer than the
timescale for diffusion.

We estimate that the cone-angle transition between 756m (—10°C) and about
805m(—8° C), marks the upper bound of dynamic recrystallization, which occurs as the
ice warms near the bed.

In our model, we divide the ice into these three layers (Holocene, Ice Age, and Recrys-
tallized Ice) since they will likely have distinct deformation characteristics. For each layer,
we define the flow law coefficient I', (see Equation (6.2) as:

_ Enlenl

r, - Za (67

We use the value of A, that is recommended by Paterson [1994], based on data from
multiple studies. It represent an average for clean Holocene ice. We define E; as E,/dPn
for each of the three layers shown in Figure 6.5 (E; for Holocene Ice, E5 for Ice Age Ice,
and Ej3 for Recrystallized Ice). These three coefficients, along with the crossover stress, k,
are the unknown parameters in the flow law. We expect the E; for Holocene ice at Siple
Dome to be near 1, if it is similar to the Paterson’s average value, but we do not assume
that E1 =1.

In using the crystal fabric and other ice-core data in our analysis, we make one impor-
tant assumption, that the ice properties are uniform horizontally. Realistically, there will
be some variation in ice structure with distance from the divide, since ice properties are
advected along particle paths, but we assume that it is small compared to the vertical vari-
ations in the ice. The preferred crystal orientation for vertical compression at the divide is
similar to that for simple shear at the flank (a single maximum cluster of c-axes oriented
vertically). Asice flows from the divide to the flank, the shearing would tend to strengthen
the fabric and decrease the effective cone angle. Also, the particle paths are deeper with
distance from the divide. We estimate that this fabric variation would enhance the effect
of anisotropy that we are modelling, so our model at present may slightly underestimate
the role of anisotropy.

6.6.2 Data used to constrain model outputs
Horizontal velocities at the surface

Horizontal velocities at the surface of Siple Dome have been measured most accurately
using GPS to survey a network of stakes [Chapter 5 and Nereson, 1998]. Although there
are numerous horizontal velocity measurements at points across the divide, we focus on
those within 9km of the divide. Figure 6.6 shows the stake velocities as solid dots. The



1000

800

600

Height above bed (m)

200

Grain radius (mm)

0 2 4 6 8 10 12 14 16 18 2%
T T T T T T T T
Temperature
L 40.8
X
X
L 12.0
X
L R 34
X
L X Holocene Ice 154
. X
Grain  x
i X \
Size lgs
S
A
L —411.5
S 2
E % . —418.1
Ice Age Ice
TN o
,) 35.5
s ecrystallized Ice ?
- -154.0
L I I 1 X
0 18 36 54 72 90
Cone angle (degrees)
| L | | L |
-25 -20 -15 -10 -5 0

Temperature (degrees C)

Age (ka BP)

107

Figure 6.5: Cone angle is from the sonic log of the borehole, transformed to cone angle using the
method of Thorsteinsson [2002]. Grain size is from thin sections of the ice core (Richard Alley,
Matt Spencer, Carlos DiPrinzio, and Larry Wilen, personal communication, 2003). Temperature is
from a hot-water-drilled borehole at the summit (Hermann Englehardt, personal communication).
The approximate ages are given on the right vertical axis based on the combined timescale [ Taylor
et al., accepted]. Note the correspondence of the band of tight fabric with small grains between
700 and 800 meters depth. Our assignment of Holocene, Wisconsin, and Recrystallized Ice regions
is an estimate based on ice properties. See text for complete explanation.
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Figure 6.6: Horizontal surface velocities from GPS stake surveys (solid line, dots represent stakes).
Bindschadler Ice Stream is to the right and Kamb Ice Stream is to the left. Thin solid line is the
predicted surface velocities assuming continuity in 2 dimensions given the accumulation rate, ice

thickness, and velocity profile: us; = %bﬁ

thin solid line shows theoretical surface velocities predicted from the accumulation rate
and ice thickness using conservation of mass (the balance velocity): ug = %bﬁx ~ is the
ratio of the average velocity to the surface velocity and depends on the velocity profile; we
assume vy = 0.85 based on velocity profiles from an isotropic finite-element model. North
of the divide, the predicted velocities match well with the measured velocities. Among
other things, this implies that our assumption of 2D plane strain flow is valid. On the
south side, however, the balance velocities are too large. Nereson [1998] observed a similar
imbalance in calculating the flux divergence along the southward flow line. This imbalance
could be rectified by including ice-sheet thickening, flow-line divergence, or both. On the
other hand, the mass balance study presented in Chapter 5 suggests the ice is in balance.
Since our data and model results focus on the north side of the divide, this discrepancy is
of minor concern.

Vertical-strain rate data

The unique ingredient in our analysis is measurements of the vertical-strain-rate profile at
the divide (81.65°S and 148.81° W) and at a flank site (81.60°S, 148.69°W) 7km to the
northeast of the divide. We used two types of instruments, wire-resistance strain gauges
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(gauge length 1 meter) and optical-fiber position sensors (effective gauge lengths 174 and
178 meters).

The optical-fiber instrument, developed by Zumberge et al. [2002] of the University of
California, San Diego uses a pair of dual fiber optic cables, one short and one long, to
measure the total strain between the fiber endpoints. Each dual fiber cable consists of two
fibers spliced together at the bottom: a transmit fiber and a return fiber. It is anchored at
the surface and at depth, and the length between anchors is measured using an electronic
distance meter. Each fiber is housed in a stainless steel sheath, so that the fiber can move
and deform freely along the borehole, except at the anchors.

At each of the two sites (divide and flank), ten fibers were lowered into water-filled
boreholes and frozen into the ice. Five 80m fibers were paired with five longer fibers,
whose lower anchors were spaced evenly throughout the ice-sheet thickness. The fibers were
pre-stretched with a 20 kg mass, allowing us to measure subsequent vertical compression
within the ice. We monitored the length of each fiber using a specially adapted electronic
distance meter during a few weeks each summer for four years. Subsequently, the data
were corrected for temperature, optical-physical length ratio [Zumberge et al., 2002], and
horizontal shearing of the boreholes (see Appendix C). From these data [published in
Zumberge et al., 2002; Elsberg et al., in review], we determined the average annual strain
rate over an effective gauge length of 178 meters at the divide and 174 meters at the
flank. The average strain rate over 4years data are shown as open (flank) and closed
(divide) circles in Figure 6.7; the vertical bars represent the effective gauge length. The
uncertainties in these data are about 3 to 9 x10™6a~1.

The fiber-optic sensors measure strain over large depth intervals. We paired these
instruments with one-meter-long wire resistance gauges developed by Elsberg et al. [in
review|. These instruments use a Wheatstone bridge configuration with one “active” wire
that is one meter long and frozen into the ice, a return wire, and the three other wires in the
bridge coiled up inside the gauge housing. Similar to the fibers, the active wire was installed
under tension to allow us to measure subsequent vertical compressive strains. A data logger
on the surface recorded the voltage balance of the bridge every 30 to 90 minutes almost
continuously for four years. Thus, as the fiber instruments measure average strain rates
over time and space intervals, the wire strain gauges are essentially point measurements of
strain rate logged continuously. Although they exhibit some intriguing small-scale time-
dependent fluctuations [Elsberg et al., in review], in this analysis we use the average strain
rate over 4 years (after initial transients have dissipated), shown as squares in Figures 6.7.
The instrument uncertainties in these data are between 5 and 10x10%a~1.

Because these instruments measure strain over a short distance, they are sensitive to
inhomogeneities in the ice on scales of decimeters to 10 meters. These instruments may
measure small-scale flow unrepresentative of larger ice volumes, particularly where there
are large spatial gradients in ice properties. At three points, we installed two gauges within
10 meters of each other to observe this variability in the data. The results for both gauges
are shown in Figure 6.7; each pair of redundant gauges is circled. Observations from thin
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Figure 6.7: Data from the wire-resistance and fiber-optic strain gauges. Circles identify fiber data,
squares identify wire data. The open symbols are flank site measurements, while the closed symbols
are from the divide. The vertical bars represent the effective strain-gauge length for the fiber-optic
instruments. The 1-o errors for each gauges are less than 10x107%a~!; for most instruments, the
error is smaller than the size of the symbol. The three pairs of circles data points are redundant
wire gauges. The spread of these data represent the possible inhomogeneities in the ice on a scale
of less than 10 meters.
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sections suggest that structural variability exists (Richard Alley and Larry Wilen, personal
communication, 2003), but it is difficult to quantify with the available data, and the effect
on the flow is not well understood.

There are three corrections applied to the wire data. First, the correction for horizontal
shear (Appendix C) applies to the wires as well as the fibers; it is larger for the wires than
for the fibers. It applies primarily to the deepest 4 wire instruments.

Second, compared to the fiber strain-rate data, the raw wire strain-rate data show a
systematic offset of about 12% at the divide and 16% at the flank. According to Elsberg
et al. [in review], this is a result of unexpected coupling between the wire anchor and the
bridge casing during the freeze-in process, that may increase the effective gauge length by
5 to 25%. Here, we report the adjusted data. We assume a random error in this correction
factor of 2% and add it (in quadrature) to the overall uncertainty for the instruments.

The final correction involves only the uppermost wire and fiber instruments. Near the
surface, the firn undergoes densification. Most, but not all, of this densification happens in
the upper 80 meters. Therefore, the wire gauge installed at 80 meters deep recorded some
measurable vertical strain rate due to densification of the ice. Densification also affected
the uppermost fiber gauge, but the error introduced is much smaller.

We calculate the rate of densification from the measured density profile (Joan Fitz-
patrick, personal communciation, 2003) and the measured depth-age scale [Taylor et al.,

accepted):

. 1 dpdz
edens(z) = —_p_ (6.8)

Cop(z)dzdt’

where p is the density at depth z and dz/dt is derived from the depth-age scale. The
two types of instruments have finite gauge lengths. To find the correction factor for each
instrument, we average the strain rate due to densification over the gauge length (1 m for
the wire instruments and about 180m for the fiber instruments). This correction factor
has a stronger gradient at 80 meters depth than deeper in the ice column. At that depth it
is sensitive to errors in the density profile, the depth—age scale, and the depth and effective
gauge length of the wire instruments. In Figure 6.7 we present the corrected data. It
appears, however, that this calculation has over-corrected the 80m wire gauge at the
divide by 20 to 30x10 %ea~!, and it may have over-corrected the flank 80 m instrument
by a smaller amount. Because of the large uncertainty associated with this correction
factor, we have given less weight to these data points in our model assessment.

6.7 The Inverse Problem

Our goal in this case study is to determine the relative importance of deformation due
to anisotropy and deformation associated with a transition to a more-linear viscosity at
low stress. We model the stress field and strain-rate field in a cross section across Siple
Dome, using measured geometry, accumulation rate, temperature field, and ice properties
as inputs. The ice flow law used in the model has an isotropic component and an anisotropic



112

component. The isotropic flow law includes a linear term and a nonlinear term. The
anisotropic component describes the effect of vertically oriented crystal fabric.

There are four unknown flow-law parameters. The crossover stress, k defines the relative
importance of the linear term. If £ = 0, nonlinear flow mechanisms dominate deformation.
We assume k is spatially constant; although, as defined in Equation 6.3, it can vary with
temperature and other ice properties [see Pettit and Waddington, in press, and Chapter 2
for more details]. The other three unknowns are the three enhancement factors (Eq, Fo,
and E3) for the three layers shown in Figure 6.5 (Holocene, ice-age, and recrystallized ice,
respectively). This factor includes enhancements due to grain size and impurities, as well
as the overall magnitude (but not the spatial pattern) of the anisotropic deformation. An
enhancement factor equal to unity defines clean, isotropic, Holocene ice, as recommended
by Paterson [1994]; as such, we expect our E; to be close to 1.

We determine the best model parameters such that the strain-rate field calculated by
from the model matches the strain rates measured by the fiber-optic and wire-resistance
strain meters. The forward model is finite element model that requires significant computer
time. This precludes the use of formal inverse theory techniques. Instead, we explored the
4-D parameter space systematically. We start with a coarse grid spanning the maximum
expected extent of parameter values, and naroow the grid spacing with successive series of
model runs.

The model calculates horizontal- and vertical-velocity fields. For the divide and flank
positions, we determined the vertical strain-rate profiles by taking the derivative with
respect to depth of the vertical-velocity profile (¢ = dw/dz). To determine the best models,
we selected the strain-rate profiles that were the smoothest, yet still maintain the structure
reflected by the gradients in ice properties. We choose a smooth model because in a real
ice sheet, strong gradients in the strain rate would be moderated by redistribution of the
stress.

We defined a misfit function to determine which models fit the data to within the
uncertaintites:

T m d\2
1 (s7" — s7)
J=- Ly ) (6.9)
T—-p o €
s“f and sj* are the measured data and the corresponding model outputs, respectively. €;

are the uncertainties in the data. w; is a weighting function designed to give more weight
to important data. (Although we tested several weighting functions, we ultimately used
w; = 1 for all but the uppermost wire strain gauges, where w; = 0.) T is the number of
data points, and p is one less than the degrees of freedom. In this formulation a misfit
index less than unity fits the data within one standard deviation, and a misfit of J = 2
fits the data within two standard deviations.

The primary data are the measured strain rates from both the wire-resistance and the
fiber-optic strain gauges, but we also include in our misfit index the difference between the
gauges installed at the divide and those installed at the flank because that difference is
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sensitive to the linear term in the flow law [ Waddington et al., 1996; Pettit and Waddington,
in press]. The calculated horizontal velocities at the surface are much less sensitive to the
deformation at depth in the ice sheet than is the strain rate profile. We included velocity
measurements in some misfit calculations, but not in these presented here; their impact
on the choice of best models was negligible.

6.8 Results and Discussion

Figure 6.8 shows the misfit index for the four-dimensional parameter space in the region
with the best solution. Each row of plots has a different crossover stress; each column has
a different Holocene enhancement factor. Each small plot is J(FE2,E3). Dark areas show
regions where the misfit index is J < 3. The thin black curve outlines the region within
which the misfit index is J < 2 (none of the models has a misfit index J < 1). White areas
reflect larger misfit indices (in most cases) or non-existent data.

The pattern of dark areas shows the resolution of our model. All of the models that
produce misfit indices less than two are valid models, and without more data we cannot
choose a best model among them. We chose a model that is in the center of the cluster of
valid models on which to focus our discussion:

Crossover Stress k = 0.22(+0.1)bar (6.10)
Holocene Ice E; = 1.3(+0.2) (6.11)
Ice — Age Ice E5 = 0.06(+0.03) (6.12)
Recrystallized Ice E3 = 0.20(£0.04) (6.13)

where the values in parentheses are the approximate resolution of our solution. It is
important to reiterate here that this model accounts for anisotropy explicitly through the
cone angle, so these enhancement factors reflect softening or stiffening due to impurities,
grain size, or other related effects, but not softening or stiffening due to anisotropy.

The flank and divide strain-rate profiles for this model are shown in Figure 6.9. They
are generally smooth, but maintain structure in the regions where there are large gradients
in the ice properties. The profiles follow the pattern expressed by the fiber data (vertical
bars) throughout most of the depth of the ice sheet. Only the divide profile fails to capture
the deformation measured by the lowermost fiber data. The modelled profiles fit the wire
data less well, most likely due to small-scale (<10m) inhomogeneities in the ice. This is
supported by the observation that the largest disagreements between the model and the
wire data occur in and near the band of tight fabric.

Near the bed at the divide the model predicts much larger deformation rates than the
instruments measure. Decreasing the enhancement factor for the recrystallized ice layer
(E3) results in stiffer ice and smaller deformation rates in that region, better fitting those
data, but the model then fails to fit the data in the upper layers. What may be required for
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Figure 6.8: Misfit index describing the model results for the four-dimensional parameter space.
Although we have explored the parameter space outside the range shown here, we show only the
region near the best solution. Each row of plots has a different crossover stress (from 0.19 to
0.25bar). Each column has a different Holocene enhancement factor (0.95 to 1.5). Each small plot
has E5 on the x-axis and F3 on the y axis. The scale for shading is 0 black to 3 white. Most of
the white areas have a misfit index much larger than 3; in a few places the white is missing data.



115

025

P
3 e 3 3 5 5 _
e b

x .

/
o
005
o
0.05
005
005
005
005
0.05
—
o

0 q o 0 9 o 0 9 o w0 9 o s 9 o s 9 o °

005
005
0.05
005
005
005
005

025

0 o « 0 M B 0 @ ] 0 “ o s @ ] s @ o o
] & g 2 8 g e 8 3 2 8 3 e & g e & g 2

025

01
-
01
“
|
e
.
§
y

025

025

g g 8 8 g
. ¥ H H H
T -
o o g o > x v q o o o o o o o
° s 8 e s 8 S s 8 ° s 8 © s 8 ° s 8 ° e
Cl <

005
i
005

i
J

w o o s @ o @a o w0 o o s @ o s @ o @
° 8 s 2 & a e & a 2 & & 2 & a 2 & a @
s ° s ° ° ° s o o ° o ° s

.
.
-
]

]

]

o
o
&

H H - |8 H H
S
i i i
e 8 g e g g R g EE] S L] g ] 3 o
5 9 s 8 5 & s 8 5 & 5 & 3

025
02

e
0 o o © 9 B o o o 0 o o 0 w0 0 w0 o o
2 g S e 8 g e ] 3 e 8 S e & e & S 2
s s S s s s S s s ° s ° s

005 o.
005 o.
005 o.
005 o.
005 o
- 02
/
005 )
005 )
—_

025

015
025
02
015
025
02
015
025
02
015
025
02
015
25
2
015
25
02
015

025
02

.
Holocene Enhancement Factor

015
025
02
015
025
02
045
025
02
015
025
0
015
025
015
025
015

025

'///}% 02
L
o

i

G 5 = (??&\\\W . 11

8 8 8 8 8 8

° s s ° s - s s
0 w o S w o o @ o S o o 0 0 o 0 0 o
e 8 s 2 8 s e 8 a 2 Ed I 2 & s 2 & @

025

] 2 g ] g g 8
3 3 3 3 3 3 s
r w 0] r w o] r a 0] e o o 0 @ o r @ r
2 8 3 e 8 g e 8 g e 8 3 e & g e & 2

025
02

1.0

005
005
005
005
005
005
005

o.
)
o.
o.
°.
o1

02 % 02 % 02
o.

015
025
02
015
025
02
015
025
02
015
025
02
015
025
0.
015
025
015

025

b S S b S S S
8 2 8 8 2 2 8
H H s H s s H

w0

0.19 0.22 0.25
Crossover Stress (bar)

015
025
0.
015
025
0.
015
025
025
0.
015
025
0.
015
025
02
015



116

1000 T T T T

900 - ) b
800  Flank Divide 7

700

600 |
500

400

Height above bed (meters)

300

200 -

100

0 | | 1 |
250 200 150 100 50 0
Vertical strain rate (microstrain per year)

Figure 6.9: Flank and divide strain-rate profiles for solution shown in Equation 6.13. The data are
from Figure 6.7. The thick solid lines are the best-fitting model results. The thin dashed lines result
from the same model parameters but a surface profile that is in balance with the accumulation rate
derived from the radar internal layers (see discussion in text).

the model to fit all the data is an increase in the effect of anisotropy. This could be driven
by horizontal variation in the cone angle profile. As the ice undergoes deformation, the
fabric should tighten with distance from the divide. This would increase the flank—divide
difference in the lowest layers and possibly result in a better fitting model.

In Figure 6.10 we show qualitatively the sensitivity of the model to each input param-
eter, providing a sense for the influence of each parameter on the flow. In each graph,
the dashed curves are the best fitting model result (Equations (6.10) through (6.13)). The
solid line is the same model except for a change in one input parameter. Figure 6.10a show
that the crossover stress controls the separation between the flank and the divide profiles.
This difference is key to the special divide flow pattern that causes a Raymond bump to
evolve over time. A divide dominated by the linear term in the flow law (k > 1bar) has
no Raymond bump and little difference between the divide and flank vertical strain-rate
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profiles [Pettit and Waddington, in press, and Chapter 2]. Anisotropy also plays a role in
the difference between the divide and flank profiles. If our model were isotropic, a different
value of the crossover stress would best fit the data.

The three enhancement factors control the isotropic bulk softness of each layer of
ice (but not the directionally dependent anisotropic softness pattern). These are shown
in Figure 6.10. Since ice flow in the upper part of the ice sheet depends on the shear
deformation lower in the ice sheet, and, conversely, the deformation of the lower part of
the ice sheet depends on the softness in the upper part of the ice sheet (through longitudinal
stresses), a change in any one of the three enhancement factors affects flow throughout the
depth of the ice.

The enhancement factors that we find in this analysis have physical implications for
the ice flow. The Holocene enhancement factor, Fy = 1.3, implies that the upper part
of the ice sheet is about 30% softer than the softness parameter suggested by Paterson
[1994]. The lower two layers have much smaller enhancements, implying that the ice at
depth is much stiffer than Holocene ice. Thorsteinsson et al. [1999] found a similar result
for the deformation of the Dye 3 borehole in Greenland (they separated the softness due
to anisotropy from the overall enhancement factor). It is unclear why this deeper ice may
be stiffer, but there are several possible reasons. The deepest ice has large interlocking
crystals. During deformation, grain boundary migration allows these interlocked grains to
move with respect to each other, but the migration process may be slow, so as to create
“drag” in the flow. Ice-age ice also has a different level of impurities, which may act to
hinder flow, but since impurities typically enhance flow, the stiffness of this ice remains a
puzzle.

With only four adjustable parameters in our model, we are limited in how much detail
about the flow we can deduce. A more complete analysis would allow k& and E to be
functions of depth, and E would be further split into a linear-term enhancement factor
and a nonlinear-term enhancement factor. Resolving these functions, however, would not
only require much more intense computing, but also a more comprehensive data set.

In this analysis, the finite-element model calculates the modern deformation rates based
on the present geometry and the measured ice properties. This calculation does not involve
time evolution. Nor does it explicitly rely on an assumption of steady state. It is useful,
however, to run the model using the best-fitting parameters (Equation (6.13)) through
time and allow the surface to evolve until the flow is in balance with the accumulation
rate pattern. In Chapter 5, our measurements show that Siple Dome has been in steady
state for several thousand years. The thin dashed curves in Figure 6.9 show these model
results, and Figure 6.11 shows the horizontal and vertical velocity fields. Although close,
there is a measurable difference between the modelled vertical strain rates (Figure 6.9),
particularly in the upper part of the ice sheet. There is some error, therefore, in our
assumptions that the dome is not thinning or thickening, that our accumulation pattern is
realistic, and that the divide flows primarily in 2D plane strain (the first two assumptions
apply to the time-evolved version of the model, the third applies to both versions of the
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Figure 6.10: Sensitivity of the models to the four model parameters. The model is nonlinear;
therefore, these are local sensitivities in the region near the best solution. In the lower left figure,
the enhancement of the band of tight fabric produces a nonlinear response in the strain rate;
therefore, we show curves from both above and below the best fitting model.
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model). Without further data we cannot determine the dominant source of imbalance in
our model.

The horizontal velocity field (Figure 6.11) has an interesting kink in it about 300 above
the bed. This kink is a result of the strong vertical fabric of the ice-age ice. Because this
layer is soft in horizontal shearing, shear strain is concentrated within this layer instead
of near the base of the ice sheet. Although not stagnant, the ice below this layer supports
less shear stress and, therefore, deforms less than it would in a normal ice sheet. We call
this the false-bed effect, it was first suggested in analyses of flow properties and crystal
fabric in the ice core at Law Dome [Russell-Head and Budd, 1979].

It is also interesting to compare these results with the internal structure imaged by
radar shown in Figure 6.2. The inferred isochrones from the model (Figure 6.12) assume
that Siple Dome has been in steady state since the deepest layer was deposited. In reality,
the history of Siple Dome is reflected in its internal-layer structure. Nereson et al. [1998b]
used these radar layers to show that Siple Dome migrated slowly at least 700 m towards
Bindschadler Ice Stream over the last several thousand years. It may still be migrating.
Also, the dome probably had lower accumulation rates during the ice age. It is valuable,
however, to compare the isochrones predicted by the steady-state model with those ob-
served. For the top half of the ice sheet, the arch in the predicted isochrones is generally
broader, but does not have a significantly larger amplitude than the observed layers. The
radar-image layers are steeper on the northward side than the modelled steady-state lay-
ers. Nereson and Waddington [2002] predict this in their study of migrating divides. The
deeper layers, which show the greatest effect of anisotropy in the ice in the model, were
not detected by radar, and therefore, are not available for comparison.

6.9 Conclusions and Implications for Other Ice Divides

The results of this analysis provide insight into the deformation of ice near an ice divide.
Our initial goals in this study were twofold. First, we wanted to determined the importance
of a linear term introduced into the nonlinear Glen’s flow law. Second, we wanted to explore
the effect of the unique pattern of crystal orientations at Siple Dome.

6.9.1 Linear creep mechanisms

In Chapter 4, we showed theoretically that a crystal fabric similar to that seen at Siple
Dome can have a dramatic effect on divide flow and can produce a much larger Raymond
bump than the isotropic, nonlinear Glen’s flow law alone. The amplitude of the Raymond
bump imaged by ice-penetrating radar (Figure 6.2) for Siple Dome is smaller than predicted
when using an anisotropic nonlinear flow law, implying that the effects of anisotropy must
be moderated by other processes. One such process is the increased activity of linear or
near-linear creep mechanisms at low stresses relative to the non-linear creep mechanisms
(all deformation slows at low stress, its the relative activity of the mechanisms that is
important). In the models presented here, we used a two-term flow law, with a crossover
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Figure 6.11: Velocity fields from the best fitting model using a surface profile that is in balance
with the accumulation rate derived from the radar internal layers. Bindschadler Ice Stream is to
the right and Kamb Ice Stream is to the left. The dashed lines are velocity contours. Note the
kink in the horizontal velocity contours which results from the false-bed effect (see text).
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Figure 6.12: Isochrones inferred from the best-fitting model (Figure 6.9) overlaid on the ice-
penetrating radar data shown in Figure 6.2.
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stress , k, defined as the stress at which the linear and Glen terms contribute equally to
the strain rate.

The form of the flow law reflects the nature of ice, not the geometry of the ice sheet in
which the ice flows. The crossover stress is, in a sense, an intrinsic property of ice, which
may depend on temperature, grain size, and impurity content, as defined in Equation 6.3,
but not on geometry or boundary conditions of the ice sheet. In general, however, the
value we determined as best-fitting for Siple Dome, k& = 0.22bar is applicable to other
divides as well. This result agrees with a study on Taylor Dome [Morse, 1997] that used
velocities measured on an extended surface strain network as the primary data set. Our
best-fitting value for the crossover stress is dependent on the divide migration rate that
we used in modelling the temperature field (Figure 6.4. A smaller migration rate would
require a larger crossover stress to fit the data (more active linear creep mechanisms).

A first step in modelling the divide region of an ice sheet more accurately would be to
use the flow law suggested here (Equation 6.1 with k¥ = 0.22). An important point that
we show in this study, however, is the large effect of anisotropy on the flow, that modifies
the effect of the linear creep mechanisms in the divide region.

6.9.2  Crystal fabric

Compared to other divides, the crystal fabric at Siple Dome appears to have stronger
vertical gradients. The sharp vertical transition in the fabric from a cone angle of over
30° to under 5° occurs within 16 meters of ice and creates a “false bed” effect (described
in more detail in Chapter 4). Shear strain on the flank of the ice sheet is concentrated
in this band of ice, since its crystals are aligned for easy deformation in shear. It follows
that the vertical compressive stresses reflect this false bed by concentrating the vertical
strain higher in the ice column than in an isotropic ice sheet (Figure 6.9). This will affect
accumulation-rate histories derived from depth-age scales.

Strong crystal fabrics, such as that at Siple Dome, are not uncommon in ice sheets. The
sonic logs for both GRIP and GISP2 boreholes in Greenland, also show fabric with less
than 5° cone angles (Throstur Thorsteinsson, personal communication, 2003), but there
are no sharp transitions in cone angle in those profiles. In Chapter 4, we show that fabrics
with cone angles greater than 30° do not measurably impact modelled ice flow compared
to the isotropic case, whereas fabrics tighter than 20° have significant effect on ice flow. To
accurately model ice flow, therefore, a sonic log or other measure of anisotropy is essential.

6.9.3 Other divides

None of the analysis presented here hints at the reason that a dome such as Siple Dome
should have such a crystal fabric. Indeed, it is intriguing and many other puzzling results
are coming from analysis of the Siple Dome ice core [Taylor et al., in prep] hint that Siple
Dome may have an uncommon history. It is possible, that Siple Dome is representative
of small ice sheets. There are no other small ice sheets for which we have such extensive
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data. Radar cross sections exist for Roosevelt Island Conway et al. [1999] and Fletcher
Promontory Vaughan et al. [1999], for example, but no accompanying sonic logs. The
larger divides where radar data exist (Greenland [Jacobel and Hodge, 1995], Inland WAIS
[Conway et al., 2003], Dome Fuji [Fujita et al., 1999], for example), do not show evidence
of a Raymond bump in the radar profile.

There are several reasons why a divide may not form a Raymond bump. First, it
may have wandered over its history, smoothing out the divide flow pattern [Marshall and
Cuffey, 2000]. Second, the stresses within the ice may be low enough that the linear term
dominates flow [Pettit and Waddington, in press|. Third the base of the ice sheet may be
sliding [Pettit et al., 2002]. And fourth, in Chapter 4 we showed that strong anisotropy
coupled with a nonlinear flow law produces the largest bumps. The amplitude of Raymond
bumps under divides without strong anisotropy will generally be smaller than those with
strong anisotropy.

For large ice sheets, such as Greenland, another factor may play a role. The divide-flow
pattern does not scale directly with ice-sheet thickness. Greenland and Siple Dome have
similar characteristic response times (7 = H/ b, for Greenland 7 = 3000/0.3 = 9ka~! and
for Siple Dome 7 = 1000/0.12 = 8 ka~!). Continuity requires that the ice flux past a point
must equal the accumulated snow upstream:

aH = bz (6.14)

. At one ice thickness from the divide, x = H, the average velocity equals the accumulation
rate. Thus, for equal response times the ice flux at one ice thickness is bH, a much large
flux for a larger ice sheet. In a larger ice sheet, the ice moves more quickly through the
“divide zone” (within about two ice-thicknesses of the divide). This implies that a thicker
divide is more sensitive to perturbations in boundary conditions than a smaller divide;
therefore, it may wander more easily, dampening the Raymond bump.
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Chapter 7
CONCLUSION

This study of ice divide dynamics is part of the larger question of how ice sheets
respond to changing climate. Past environmental boundary conditions (from temperature
to accumulation of snow on its surface to fluctuations of a nearby ice stream) leave an
imprint on the structure and properties of ice within an ice sheet. For example, the
temperature field reflects past flow as well as temperature, the grain size and crystal
orientation reflect past deformation, and the annual layering reflects past flow patterns and
accumulation rates. Understanding the process by which these histories are recorded in
the ice permits the inversion of modern structure and behavior for historical environmental
patterns.

In this dissertation, I used the dynamic behavior of ice divides, both modelled and mea-
sured, to investigate the constitutive relationship between applied stress and deformation
rate of the ice, given the ice properties and the modern boundary conditions. Chapters 2
through 4 are numerical modelling studies of ideal ice divides, focusing on the effect of low
deviatoric stress, basal sliding, and crystal anisotropy on the special divide flow pattern.
Ultimately, I bring these theoretical findings together with observations and inferences
from other studies in a study of Siple Dome. The results not only impact the local and
regional history of Siple Dome and the interpretation of the Siple Dome ice core, but also
constrain the parameters of a flow law for ice that is applicable to other ice sheets. My
conclusions and questions for future research fall into three categories: the constitutive re-
lation for ice, sliding or deformable till as a basal boundary condition under an ice divide,
and the local and regional history of Siple Dome.

7.1 A Flow Law for Ice

Ice deformation is inherently a small-scale process. Each grain deforms according the
stresses it experiences in its immediate surroundings. Large-scale ice deformation is the
accumulation of many grain-scale deformations, with feedback processes that distribute the
stress and deformation in order to minimize internal energy stored as flaws in the crystal
structure. Many researchers have measured or modelled the deformation of small blocks
of ice in the laboratory and inferred small-scale flow laws. Many others have measured
flow of ice sheets and inferred large-scale flow laws.

In Chapter 2, I extrapolate knowledge of small-scale flow to ice-sheet scale flow in a
way that is useful for ice flow modelling. This reformulated flow law (Equation (2.7))
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contains a linear term that dominates at low deviatoric stress. The inclusion of the linear
term is necessary because at low deviatoric stresses, the dominant micro-scale mechanism
for ice deformation most likely changes to one that is more linear. The crossover stress
is the stress at which the linear and Glen terms contribute equally to the strain rate; it
is a function of ice properties, independent of the geometry of the ice sheet. This linear
term will be important for ice sheet modelling only for ice sheets with effective deviatoric
stresses smaller than or equal to the crossover stress (Q < 1).

I present a series of models for three idealized ice divides with different characteristic
stresses. These show that when the linear term dominates, the special divide flow pattern
disappears and no Raymond bump forms in the isochrones. This flow pattern results in a
different depth-age scale, with younger ice deeper in the ice column, when compared to a
more conventional Glen divide.

In order to move from modelling ideal divides to investigating the flow of real di-
vides, I needed to assess the effect of anisotropy on the ice-divide flow pattern. Based on
Thorsteinsson [2001], in Chapter 4, I used an isotropic finite-element model coupled with
an analytic representation of anisotropic ice flow of an ideal ice sheet. I showed that a
vertically symmetric preferred crystal orientation interacts with the divide stress pattern
(dominated by pure shear at the divide and by simple shear on the flanks), to produce a
flow pattern similar to that produced by nonlinear isotropic constitutive relation. When
nonlinear rheological properties are coupled with a strongly anisotropic fabric, the Ray-
mond bump is enlarged. Interestingly, the effect of anisotropy is limited to situations where
the nonlinear term in the flow law is dominant. Crystal fabric has little effect when the
linear term dominates deformation rate.

After exploring theoretically in Chapters 2 and 4 the effect of a two-term anisotropic
flow law on flow near an ice divide, in Chapter 6, I use measured deformation data from
Siple Dome to determine the relative importance of these two processes. I find that both
are important to flow at Siple Dome. The crystal fabric is strong enough to induce a
large increase in the Raymond bump as compared to the isotropic flow pattern. To fit the
measured strain-rate data, the linear term must be active to effectively soften the ice that
is stiffened by the alignment of crystals. We found that a crossover stress of 0.22bar is
necessary to fit the measurements at Siple Dome, and that may be an underestimate if the
divide is not migrating as fast as we assumed.

7.2 Basal Boundary Conditions

In Chapter 3 I took a step away from the details of the constitutive law for ice to look at
the effect of a sliding boundary condition on the pattern of flow at an ice divide. Although
Siple Dome is presently frozen to its bed, it is possible that it had a wet bed and was
sliding in the past (if it were significantly thicker during the last ice age, for example).
Other divides may have a wet bed presently.

I modelled basal sliding for ideal divides with a layer of linearly-viscous till at the
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ice—rock interface in the finite-element model. The amount of sliding is controlled by the
effective viscosity of the till layer. The details of this constitutive relation for till in most
cases are not significant because the motion is limited by longitudinal stretching of the ice
rather than by shearing of the till layer.

Model results show that basal sliding tends to redistribute the longitudinal stresses
within the ice. A small amount of sliding can have a significant effect on the stress pat-
tern. When all of the ice flux is carried by sliding, the longitudinal stresses are uniformly
distributed with depth and the ice near the divide behaves more like a spreading ice shelf
with a horizontal velocity that is uniform over the depth. Isochrones are flat and the ice
at a given depth is younger compared to the frozen bed model.

This model relies on the assumption that the till layer (or thin water layer) beneath a
sliding divide will always have an effective viscosity that is less than the viscosity of the
ice at all horizontal positions. This assumption leaves out the case where the till/water
layer is highly nonlinear. A plastic till layer defined with a yield stress could be more stiff
than the ice (mimicking a frozen divide) for a finite distance from the divide, then be much
softer than the ice on the flanks. The resulting flow pattern within the ice would depend
on the yield stress in the till layer.

A major conclusion from this study of sliding under ice divides is that the history of
basal sliding is an important factor in the interpretation of deformation measurements and
radar images near an ice divide. A divide that was sliding, then froze will reflect this in
its Raymond bump pattern; similar in character to the isochrones produced when a ‘new’
divide appears as an ice sheet thins. For example, the isochrone pattern is not sufficient to
say that Roosevelt Island is a new divide or an older divide that froze to its bed [Conway
et al., 1999]

7.3 Siple Dome, West Antarctica

The goal of Chapter 5 was to answer the question: “Is Siple Dome in Steady State?” and
to examine the constraints the answer puts on the local dynamics and regional deglaciation
history.

The answer is Yes, at least within about 10 ice-thicknesses from the divide. I compared
results from three independent methods of measuring the vertical surface motion. None of
the three could detect significant surface imbalance within 10km of the divide; to within
the uncertainties of the methods, the surface is lowering at the same rate as snow is
accumulating. The uncertainties in these methods restrict the resolution to thinning rates
greater than about 2.5cma~!. Assuming a maximum modern thinning of 2.5cma™"!, the
dome could not have been more than about 40 meters thicker 2 to 3ka BP. At 30 km from
the divide there is some measurable thinning.

This result has two main implications. First, if Siple Dome has been a dome for 10 ka
and in steady state for two to three thousand years, then the ice streams that flank it,
Kamb and the Bindschadler Ice Streams, must change their behavior on timescales either



127

longer than 1 to 2ka or shorter than about 300a, the time it takes the divide to notice
and record a change in the boundary conditions. Also, the apparent stability of the divide
implies that the ice streams are somewhat coherent in their behavior (if one ice stream
thickened and the other thinned, then the divide would move one way or the other more
quickly than is evident in the radar images). This is an intriguing result considering that
Kamb Ice Stream stopped flowing fast less than 200 years ago. Either events like these
occur rarely so that memory of older ice stream stoppage events has been lost or they
exhibit short-period fluctuations that are not recorded in the slower-responding divide.

In Chapter 6, I explored the pattern of flow in the divide zone. The profile of sonic
velocity from the borehole reveals a band of ice between 680 and 810 m depth that has
very strong vertically symmetric fabric. My flow models and the vertical strain-rate mea-
surements show that this band of ice acts as a false bed, with much of the deformation
happening within and above this band of ice, instead of in the warmer ice below it. The
observed and predicted isochrones (Figure 6.12) match reasonably well in the upper lay-
ers, but the large arch in the isochrones predicted by my model are not seen in the real
divide. This is most likely because the layer of tight fabric was thicker and higher up in
the ice column (if it is ice-age ice), and its effect on the flow field had a distinctly different
character.

This effect of this layer on the flow pattern is intriguing enough, but it leads to the
questions: How did it form with such distinct upper and lower transitions in the first place?
How does the transition compare with transitions in other properties of the ice? How has
it evolved over time? Do other small ice caps have a similar layer? Do any large ice sheets
exhibit similar crystal fabrics?
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Appendix A
NOTATION

Flow-law softness parameter (Pa="s™!)

Temperature-independent softness parameter for clean, isotropic, Holocene

ice (Pa™"s7!)

Elevation of ice sheet bed (m)

Enhancement factor relative to Holocene ice
Ice-equivalent ice-sheet thickness (m)

Misfit

Number of data points

Rate of excess thinning/thickening (ma~!)

Thermal activation energy for creep (Jmol™!)

Gas constant (8.314 Jmol ™1 K1)

Elevation of ice sheet surface (m)

Temperature (K)

Surface temperature (° C)

Ice-equivalent accumulation rate (ma~1!)
Accumulation rate expressed in mass units (Mgm?a~
Coeflicients in anisotropic flow description (functions of cone angle)
Average grain diameter (m)
Acceleration due to gravity (ms~
Dansgaard-Johnsen model parameter (m)

Crossover stress (Pa)

Stress exponent in flow law

Grain-size exponent in flow law

Pressure

One less than the degrees of freedom

horizontal ice flux (m3a—1)

Velocity vector (ma~!)

Horizontal velocity along flow line (function of depth, ma™!)
Horizontal velocity along flow line averaged over depth (ma™!)
Horizontal velocity at the surface, along flow line (ma~1)

1

2

Horizontal velocity perpendicular to the flow line (function of depth, (ma~!)
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Horizontal velocity at the surface, perpendicular to the flow line (ma~1)
Vertical velocity along flow line (function of depth, (ma~1)
Weighting function in the misfit function

Vertical velocity at the surface, along flow line (ma~!)
Horizontal position along flow line (m)

As subscript, identifies partial derivative with respect to x
Horizontal position perpendicular to the flow line (m)
Height above bed (m)

Height above bed relative to local ice thickness (m)

As subscript, identifies partial derivative with respect to z
Coefficient of Glen term in flow law (equal to coefficient for “normal” Glen
flow when p = 0)

Non-dimensional effective deviatoric stress

Characteristic €2 for a particular divide

Cone angle (degrees)

Ratio of @ to the surface velocity us

Length scale for deformation of 10% strain (m)
Strain-rate tensor (s~1)

Characteristic strain rate (s~!, equals b/H)

Effective strain rate (s7!, second invariant of ¢)

Scaled height above bed

Effective viscosity (Pas)

Effective viscosity relative to 10! Pas

Stress tensor (Pa)

Horizontal velocity shape function

Vertical velocity shape function

Ice density (Mgm?)

Density of the firn at a particular depth (Mgm?)
Characteristic H/b timescale

Deviatoric stress tensor (Pa)

Characteristic stress for a particular divide (Pa)

Effective shear stress (Pa, second invariant of 7;;)
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Appendix B
DERIVATION OF THE GLEN FLOW LAW

The constitutive relation for any isotropic material is a physical property of the material
and cannot change with the coordinate system. Therefore the most general form for an
isotropic flow law is [Glen, 1958]

éij = A(X1,22,33)0i5 + B(X1, X0, 33)045 + C (X1, X2, X3) 0380k, (B.1)

where € is the strain rate tensor and o is the stress tensor. A, B, and C are functions of
the three invariants of the stress tensor:

Y1 =01+ 03+ 03 =0y,
1
Yo = —(0'10'2+O'20'3+O'30'1) = 504044, (B.Q)
1
Y3 = 010203 = 50j0jk0ki,

where o1, 09, and o3 are the three principal stresses.
This flow law can be simplified by making four assumptions:

1. Strain rate is independent of hydrostatic pressure. Aslong as the temperature
is measured relative to the pressure melting temperature, any effect of hydrostatic
pressure is small enough to be ignored [Paterson, 1994]. With this assumption, we
define a deviatoric stress tensor as 7; = 0;; — %21 and the corresponding invariants
in Equation (B.2) are 17, T, and T5. Equation (B.1) can be rewritten with these
invariants in place of X; and, since 77 = 0, it no longer dependent on the first
invariant.

2. Ice is incompressible. The first invariant of the strain rate tensor, é;;, describes a
change in volume, which must be zero for incompressibility to be true. This allows
A, in Equation (B.1) to be a function of C. (Refer to Glen [1958] for details.)

3. Components of the strain rate tensor are proportional to the respective
components of the deviatoric stress tensor. The function C describes uncom-
mon behavior such a dilation of a material under shear stress. Most studies on ice
show no evidence of this type of behavior, so there is no reason to make a flow law
more complicated than it needs to be. Therefore, C' = 0, as was first suggested by
Nye [1953].
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4. The second invariant of the strain rate tensor is a function of the second
invariant of the stress tensor only. Thus, the flow is independent of T3, which
describes the anisotropy of the stress tensor. This assumption may break down for
anisotropic ice [Budd and Jacka, 1989)].

As a result of these assumptions, Equation (B.1) becomes
&y = B(r2)m, (B.3)
where 7.4 is the ’effective shear stress’ and 7.4 = TQ1 /2 = ( %7'@,-7'@,-)1/ 2,

For the past several decades, most authors have assumed B (Tgf f) for isotropic glacier
ice has the form of a power law, similar to many polycrystalline metals [Glen, 1955; Nye,
1953]:

B(r3) = EA(D)(7%)"7 (B.4)
Including the Arrhenius relation for temperature dependence, the full expression for Glen’s
Law that most researchers now use is

n—1

¢y = EAge 1 (12) "5 1, (B.5)

n is a constant (usually equal to 3). A, is typically considered a constant that describes
clean, isotropic, Holocene glacier ice (it is often called the softness parameter and has
units of kPa~"s™!). E is the enhancement factor. It is a non-dimensional multiplier
describing the increase in flow caused by variations crystal size, impurity content, and
crystal orientation; it is typically a function of depth.
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Appendix C
BOREHOLE DEFORMATION CORRECTION

Both the optical-fiber and wire-resistance strain gauges measure along-borehole strain,
which is a combination of vertical compression and the horizontal shear strain due to
horizontal flow of the ice. The horizontal flow is only significant at the flank site. Therefore,
the flank data must be corrected for strain due to horizontal deformation of the borehole.

We model the deformation of the borehole and calculate a correction factor using two
different horizontal velocity profiles extracted from finite-element model runs: isotropic
nonlinear steady-state flow and a more complex profile based on preliminary modelling of
flow with anisotropy.

C.1 Isotropic Flow Correction

Figure C.1 shows the evolution of an initially straight borehole at 1 year intervals driven by
a horizontal velocity profile from a finite-element model of isotropic nonlinear steady-state
ice flow for Siple Dome.

Because the boreholes were drilled vertically rather than bed-normal, the borehole ini-
tially shortens in length until it rotates past the bed-normal orientation, then it lengthens
with increased deformation. This makes the correction factor not only depth dependent
but time dependent.

Figure C.3 shows the measured strain rates due to horizontal shearing expected at each
depth for the 1 meter wire-resistance gauges. Figure C.2 shows the results for the optical-
fiber instruments and Figure C.3. The instruments near the bed have the largest correction
because that is where the shear strain is concentrated. Also, the fiber instruments have
smaller total correction factors because the gauge length of the instruments is longer than
the length scale of the shear zone; the peak strains are distributed over the long gauge
length.

C.2 Anisotropic Flow Correction

The above calculation of the correction factor assumes the simplest horizontal velocity pro-
file. The deformation of the borehole, however, is sensitive to the details of the horizontal
velocity profile. Elsberg et al. [in review| noticed a temporal trend in the optical-fiber data
for the two deepest gauges at the flank site that could not be explained by instrumentation
artifact or expected deformation of the ice. It is possible that this temporal trend is the
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Figure C.1: Evolution of borehole with time. Plot is tilted to make gravity vertical on the
page.

results of a real process occurring within the ice; however, the more likely cause is the
horizontal shearing. Figures C.2 and C.3 do show a temporal trend for instruments close
to the bed. If our correction factor calculation is in error, then that temporal trend may
be measurable higher up in the ice column as well.

The properties of the ice at Siple Dome are not homogeneous. Preliminary results
from the ice core show unexpected jumps in profiles of oxygen isotopes and gases [Taylor
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Figure C.2: Vertical strain rate correction due to horizontal shearing of the borehole for
the optical-fiber gauges (gauge length is 174 meter) after 1 to 5 years of deformation. Note
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Figure C.3: Vertical strain rate correction due to horizontal shearing of the borehole for
the wire-resistance gauges (gauge length is 1 meter) after 1 to 5 years of deformation.
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et al., in prep]. And, more important for this study, the borehole sonic log shows two
discontinuities in the crystal fabric, such that there is a band approximately 100 meters
thick of fabric whose crystals are so tightly aligned vertically that one could interpret it
as a single crystal of ice. Clearly, Siple Dome has an interesting pre-history (before the
Holocene history presented in Chapter 5), but for this analysis, it is the effect of a band
of nearly-single crystal ice on the horizontal velocity profile that we focus on.

As we discussed in Chapter 4, a tight vertical fabric is hard to compress vertically
but soft to horizontal shearing. Using the model developed in Chapter 4 we calculated
the horizontal velocity profile based on estimates of the ice properties. Figure C.4 shows
the profile on the right, and the corresponding profile of cone angle versus depth derived
from the sonic log. For now this profile is just an approximation to show what we can
learn from a more detailed analysis of this type. We assume that this profile applies at
all distances from the divide; in reality, the ice on the flank may have even tighter fabric
than the divide, as the horizontal shearing process tends to rotate crystals to the vertical
[Paterson, 1994].

The band of tight fabric (from 700m to about 820m) behaves somewhat like a false
bed. As compared to the isotropic horizontal velocity profile, the shear in this profile is
concentrated in this band of unusual ice. Using this velocity profile, Figure C.5 shows how
the borehole will deform over time.
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Figure C.5: Deformation of the borehole due to horizontal motion for the first 5 years.

With this borehole evolution, the corrections for the optical-fiber and wire gauges are
presented in Figures C.6 and C.7. The largest corrections are now shown higher off the
bed, within the band of tight fabric, as expected.
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C.3 Synthesis

For the present work, we continue to use the correction factor based on the simple hori-
zontal velocity profile, while we acknowledge the uncertainties in those strain rates for the
lower instruments. It may be difficult to determine an accurate correction factor without a
measurement of the borehole deformation. The anisotropic model for borehole deformation
depends on many assumptions about the properties of the ice and the effect of anisotropy
on ice flow, some of which we have approached in Chapters 4 and 6, which rely on these
vertical strain rate data, making the argument somewhat circular.

Interestingly, this more advanced model for borehole deformation may lead to more
direct assessment of the flow properties of the band of tight fabric. If we assume the
temporal trends in the optical-fiber data is due solely to the deformation of the borehole,
then we can estimate the shear deformation necessary to cause the temporal trends. With
known shear strain rates at depth, we can infer the flow properties of the ice.

It may be possible, as well, to learn more about the properties of the ice on an even
smaller scale by comparing the wire-resistance gauge data, which was collected up to 48
times a day throughout the year, with the total strain predicted by the ice low model at
the gauge depth. Figure C.8 shows the predicted total strain accumulated as a function
of time for each of the gauges. The upper gauges all show the expected linear trend that
Elsberg et al. [in review] assumed in determining the vertical strain rates from these gauges.
The bottom two gauges, however, show a very different trend.

In a future analysis, we will examine the raw data from the instruments more closely
with the modelled horizontal shearing of the borehole to study the ice flow properties at
depth under Siple Dome.
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Appendix D

ANISOTROPIC ICE FLOW

This appendix is unpublished work by Throstur Thorsteinsson and H. Paul Jacobson. It is included
here with their permission because this material is necessary to fully describe the finite-element ice-flow

model that I use in Chapters 4 and 6. I have added some text for flow and clarification only.

D.1 Background

This analytical description of anisotropy described is based on the Sachs [1928] assumption
of homogeneous stress, with deformation occurring as slip on the basal planes. Under this
assumption, the applied stress is the same on all crystals within the aggregate. The
deformation is determined by the crystal orientation through the resolved shear stress, the
component of the applied stress acting on the three slip systems of the basal plane (the
three a-axes of the hexagonal ice crystal).

According to Thorsteinsson [2001], for a single crystal, the strain rate based on these
assumptions is:

¢ = BA(T) > RE, (D.1)

where [ is a constant, A(T) is the temperature dependent coefficient of Glen’s Law for
isotropic ice, and n is the power-law exponent. R(®) = (S +87)/2 is the symmetric part
of the Schmid tensor (S = b ® n) for each slip system, s, where n is the normal to the
basal plane and b is the Burgers vector. 7(,), the resolved shear stress for a particular slip
system, has the general form:

7(s) = nlbgs)all + nzbés)azz + n3b;(),8)033 + (mbés) + nzbgs))alz + (nlbés) (D.2)
+TL3()§S))013 + (ngbgs) + n3bgs))0'23. (D.3)

The bulk strain rate for the material results from the integral:
i~ [ [ew.0r0.00000, (D.1)

where F(6,¢) is the c-axis-orientation distribution function.([ [ F (6, ¢)d0d¢ = 1).
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D.2 Analytical Derivation

From this point, we make the assumptions that n = 1 and the fabric can be described by
a vertical cone angle (). We incorporate the nonlinearity of the isotropic Glen flow law
through 7., which is the effective viscosity from Glen’s Law (Equation (2.3)):

n—1

N = [2EAge™ 7 (12) "5 1. (D.5)

We assume that 7.s is constant over a finite-element for each timestep. When g = 30
(this parameter becomes part of the enhancement factor when it is incorporated into the
finite-element model; its value is not important for this derivation), Sach’s law can be
written:

1 |aon +coa+ boss3 do2 €013
63 = doig co11 + aogs + boss €093 , (D6)
ff
"le eo13 €03 b(o11 + 022 — 2033)
where

%(100+95C0804—|—36COS204—|—9COS30¢ ) sin (2)

—=5 (20 4+ 25 cos a + 12 cos 2a + 3 cos 3av) sin (

12(19+1800sa—|—3008204)sm (%),

Lii( 20+5cosa+12c082a+3c0s3a)81n2(%

—(20+15c0sa+40082a+cos3a)81n (2),
(10+4cosa—|—3(3052a—|—2€053a—|—cos4a)

) (D.7)

a =
b=
c=
c= )
d=

e =

These coefficients are plotted as a function of cone angle in Figure D.1. Note that ¢ can

be written in two forms (¢ = —a — b). In the limit of isotropy (lima—gpe), a = 377%,
— 1 _ 1
b=c= e and d = €=
This matrix can also be written as vectors:

G [a ¢ b 0 0 O] [o11]
€59 ca b 00 0f [o2
S
el e |00 0 e 0 0| |0’ (D-8)
é5s 00 0 0 e Of o
€75 ] 00 0 0 0 d] |ow]
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with the inverse:

011
022
033
013
023
012 ]

2a+b b+2c¢

2(a—c)(a+b+c)  2(c—a)(at+b+c)
b+2c 2a+b

2(c—a)(la+b+c) 2(a—c)(1a+b+c)

2(a+b+c) 2(a+b+-c)
0
0 0
0 0

2(a—|—1b+c) 0 00 _6:21_

2(a—i(—llzi:|—cc) 0 00 6%2

“ Sty 0 0 0 KN (D.9)
0 % 0 0 6}93
0 0 ¢ O] |3
0 0 0 4 Leral

This inverse is impossible, however, since for all angles, a + b+ ¢ = 0.

When we substitute the deviatoric stress in Equation (D.8), the pressure (the trace of
the stress tensor) drops out:

Tij = 045 + 0ijp

P = —1/3Ujj (DlO)
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(D.11)

(D.12)

Since the trace of the deviatoric stress tensor is zero, this version of the constitutive
equation can be inverted if we multiply the trace by a constant, which makes the inversion

possible. First, multiply the trace by g:
G (@ ¢ b 0 0 0] [m11]
€59 c a b 0 0 0| |19
é51 L |b b =20 0 0 0f |733 1
3] M |0 0 0 e 0 0| |73 +g77eff
€5, 00 0 0 e Of [ms
€75 ] 00 0 0 0 d| |r2]
[a+g c+g b+g 0
ct+g a+g b+g O
1 |b+g b+g —2b+g O
e | O 0 0 e
0 0 0 0
0 0 0 0

SO0 OO oo

o

QU O O OO

T11
T22
733
713
T23

L 712 ]

(111 + 22 + T33)

(D.13)

(D.14)

When g = 1/3 and a = 90° (isotropic), this matrix reduces to the identity matrix (the
tensor components are shown in Figure D.2):

.S -2 1
1 37173
&S 10
& t, 1
6%3 _ I |—5+3
61S3 Tefr 0
6%3 0
€12 L 0

R
33 3t
~3t3 3t3

0 0

0 0

0 0

SO OO0 o

S 00 OO OO

QU O OO oo

711
T22
733
713
723

712

B neﬂ

T11
T22
733
713
723

L 712 ]

(D.15)
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For angles other than o = 0 (where only e is non zero), the matrix in Equation D.14
is invertible. First, we can make a + b + ¢ = 0 explicit by rewriting the matrix (from
Equation (D.14), omitting the shear terms):

a —b—a b
M2=|-b—a a b (D.16)
b b —2b

Its eigenvalues are [0,b + 2a, —3b]. The eigenvalues for the corresponding M2 + g are
39, + 2a, —3b].



The inverse of M2 + g is:

[ (4b—a) g+b*+2ab _(5b—|—a)g—b2—2ab g+b |
(90?2 +18ab) g (902 +18ab) g 9bg
_(5b+a)g—b2—2ab (4b—a) g+b*+2ab g+b
(902 +18ab) g (902 +18ab) g 9bg
g+b g+b 2g-—0
9bg 9bg 9bg |
(4b—a) g+b*+2ab (5b+a) g—b>—2ab
- g+b
1 b+2a b+2a
=950 _(5b+a)g—b2—2ab (4b—a) g+b*+2ab b
g b+2a b+ 2a g
g+b g+b b—2g
—4b a+5b
4b—a 5b+a a 1
(bi)g —M‘f’b g+b 2a+b 2a+0
1 +2a b+2a 1 1
=— | (5b+a)yg Ub-a)g | =9 a+5b a—4b +oe
917 b+ 2a b+ 2a g 2a+b 2a+b 9
(D.17)
Finally, the vertical-cone anisotropic constitutive equation is:
(711 [a11 a2 a3 0 0 O] [én]
T92 aiz ain a3z 0 0 Of [éx
733 1 |aiz a3 a3z 0 O Of [éas
T3] ne |0 0 0 1 0 0] |és (D.18)
Ta3 0 0 0 0 L 0f|és
|12 [0 0 0 0 0 2] [&2]
—la—4b 1 —la+5b 1
11=— — 12=——+ — D.19
T 924+ 99 T 902a1b " 9g (D.19)
1 1 —2 1
13=—+4 — 33=—+— D.20
W= te, P T 9 Ty (D-20)
Now we assume plane strain, ézp = €12 = €23 = 0, and Equation (D.18) reduces to:
[711] [a11 a13 O]
T22 a2 a3 0 e
T33| a1z azz O |.
Ti3 - neff 0 0 % 233 9 (D.21)
T3 0 o0 ofLt™h
| 712 ] 0 0 0]
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which can also be written

all al3 O .
T11 €11
T33| = Neg |13 a33 0] |és3 (D.22)
713 0o o0 1 €13
Tig =793 =0 Too = al2 é11 4 al3 é33. (D.23)
Using é17 = —é3g the transverse stress term can be written
-1 a+2b
E— : D.24
278 20+ b M (D-24)

For isotropic ice 12 = 0; for general anisotropic ice it is not. The main implication of
this, is that 717 # —733. For an anisotropic material, different (deviatoric) stresses may be
required in all three directions to keep the flow constrained within the plane.

For incompressible plane strain (é1; = —és3) the 2D matrix in Equation D.22 can be
diagonalized by subtracting al3 from 4 of the terms (because é;; = —és3 this subtraction
does not change the value of the deviatoric stress tensor):

all —al3 0 0 all al3 O ald al3 O
0 a33—al3 0 =|al3 a33 0O ald al3 0 (D.25)
0 ¢ %
all —al3 0 0 .
€11
T33 | = Negt a33 —al3 0| |és3 (D.26)
0 1| [€13
-1 a—-0» -1
11 —al3 = 33 —al3 = — D.27
R Y A b (D-27)

When we substitute velocity gradients for the strain rates, the constitutive equation is:

Uy = €11 W, = €33 (uz + wa,)/2 = €13 (D28)
“tazb o,
11 3b 2a+b . Uy
733 | = T 0 o 0 w, (D.29)
713 1| Lluz 4+ ws)/2
0 0 -

The final step in this derivation is to incorporate this constitutive equation into the
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stress-balance equations for the ice sheet. The stress-balance equations are:

87'11 87'13 87'13 87'33

e Tho P PP (D-30)

Substituting the constitutive relation for the deviatoric stresses leads to:

Olgh sarptial | OL(us +wy)/2 Op
T ( ar 1 oz Tox I (D-31)
1 a—5b 1
<3b 2a+b Ugg + (Uzz + wa:z)) — Pz = fl (D-32)
-1 a—b 1
<3b 2a+b Uga + (uzz - umm)) — Pz = fl (D33)
(D.34)
for the first stress-balance equation and for the second:
8[ (uz +wg) /2] b“’Z] Op
- == D.
et < ox * 0z 0z fo (D-35)
o (tza + 0gy) + Syw0ss ) — 2 = f (D.36)
Test % Uzy T Weg 3bwzz b= J2 .
(s wga) ) —pe = (D.37)
Nest % Wyz T Weg 3 bwzz b= J2 .
The resulting 2-dimensional partial differential equations are
-1 a—b» 1 1
B Uy — Py = D.
neﬂ<3b 2a+0b 2e> um-i_neHQeuzz pr =0 (D-38)
1 -1 1
neffz a:a: + neff <3 b %) wzz - pZ = pg (D‘39)
Uy +w, =0 (D.40)

Figure D.3 shows the coefficients for each of the terms as a function of cone angle.

These equations reduce to a Laplacian for isotropic ice, a = 2/3, b= —1/3, and e = 1,
n;ﬁuxx + %um —p, =0 ngﬁwx:v + %wzz — Pz = pg. (D.41)

This derivation for Equations (D.38) to (D.40) assumes spatially uniform cone angle
functions (a through e) and a constant 7. This assumption applies to an individual
element, not to the flow field as a whole. Errors may be introduced when adjacent elements
have different cone angles or enhancement factors; we assume that these are negligible
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compared to the overall uncertainties accompanying our other model assumptions.
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