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University of Washington

Abstract

Effects of Anisotropy and Lateral Heterogeneities on Elastic waves
and Mode Coupling in Shallow water

by Minkyu Park

Chairperson of Supervisory Committee: Professor Robert I. Odom
Geophysics Program

Effects of anisotropy and lateral heterogeneities on elastic waves and mode coupling in
shallow water is examined. Especially, the sensitivity of bottom interacting modes to
transverse isotropy, the most common type of anisotropy of most marine sediments,
is numerically studied based on the coupled mode theory of Maupin [Geophys. J.
93, 173-185 (1988)]. Effects of transverse isotropy on modal phase and group ve-
locities, mode energy and mode coupling is quantitatively evaluated by numerical
computation.

The range dependent shallow water signal propagation problem is also treated.
Computation codes, which include the effects of bottom shear, transverse isotropy and
general range dependence, are developed by an application of the invariant imbedding
to Maupin’s coupled mode theory. The mode coupling matrix and the reflection
and transmission matrices are computed and the forward propagating and backward
propagating waves in the frequency domain, and signals in the time domain are
numerically generated for a realistic range dependent shallow water model.

The theory for the elastic wave scattering is developed by incorporating the effect

of stochastic fluctuations of the interface boundaries into the elastic coupled mode



equations for 2-D range dependent media. Enforcing energy conservation on the
system of the first order perturbation leads to a Lippmann-Schwinger type integral
equation for the random medium propagator. These formal theoretical results are
valid to all orders of multiple scattering. From the Born approximation solution of the
Lippmann-Schwinger equation, the modal scattering cross section and the reciprocal

scattering quality factor is numerically computed.
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Chapter 1

INTRODUCTION

The shallow water environment probably shows the most variation in character
of all the various environmental ocean provinces. While some shallow water waveg-
uides have small or gradual range variation for which an adiabatic descripton of the
propagation is adequate, other shallow water regions can exhibit very strong range
dependence requiring the introduction of mode coupling to accurately model the
propagation process. It is the more strongly varying regions for which the adiabatic
approach is not appropriate, and for which bottom interactions must be considered
that we are concerned with in this thesis.

The range dependence of a strongly varying shallow water waveguide can be both
geometric and material in nature. Fluctuations in water depth and layer thicknesses
of bottom sediments impose geometric variations of the medium with range. Range
dependent gradients in elastic parameters and density of individual layers further
complicate the task of characterizing and understanding shallow water acoustic prop-
agation. Adequate modeling and understanding of shallow water signals that inter-
act strongly with the bottom require a proper treatment of the marine sediment and
basement properties. Marine sediments typically exhibit finite shear wave speeds that
are much less than the sound speed in the water column (Hamilton 1980; Ewing et
al. 1992). The vertical gradients of the shear speed can be quite large, and veloc-
ity anisotropy is an almost universal feature of marine sediments, with transverse

isotropy (TI) being the most common type of anisotropy (Bachman 1979; Bachman
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1983; Oakley & Vidmar 1983; Carlson, Schaftenaar & Moore 1984).

Strong range dependence causes energy in an initially unidirectional propagat-
ing signal to be redistributed among forward and backward discrete and continuum
modes. Inclusion of finite shear speed in the sediment is necessary to model the
Stoneley wave propagating at the water sediment interface and to properly account
for the component of transmission loss due to conversion to shear waves. Acoustic
energy can be scattered from the water column into the Stoneley wave by range de-
pendence of the water-sediment interface (Kuperman & Schmidt 1989). Assuming
that the bottom properties are isotropic when they are really transversely isotropic
can lead to underestimating sediment sound speed gradients, and overestimating sed-
iment thickness and shear velocity (Fryer & Miller 1986). Also, as will be seen below,
incorrectly assuming isotropy has a significant effect on the redistribution of acoustic
energy through range dependence induced mode coupling.

The original formulation of the coupled mode equations for sound propagation in
a range dependent ocean effected a local separation of the Helmholtz equation for
the velocity potential or, equivalently, the pressure (Pierce 1965; Milder 1969). The
pressure is represented as the superposition of a set of range varying basis functions,
the “local modes,” with range dependent amplitude coefficients. The elements of this
local basis are chosen to be the modes of the plane layered structure that corresponds
locally in terms of material properties and layer thicknesses to the range dependent
structure. This approach leads to another second order differential equation that must
be solved to obtain the range dependent modal amplitude coefficients. The right hand
side of this equation consists of source terms quantifying the strength of the coupling
between different local modes. The formulations presented by Pierce (1965) and
Milder (1969) yield first and second order coupling coefficients that depend on the
first and second order derivatives, respectively, with respect to the range coordinate
of the local mode functions.

The second order coupling coefficients are cumbersome to deal with analytically.



They can be shown to depend on the second derivatives and the squares of the first
derivatives with respect to the range coordinate of the boundary slopes and material
parameters. Consequently, the second order coupling coefficients have been routinely
ignored (Chwieroth et al. 1978; Rutherford and Hawker 1981; McDaniel 1982; Hall
1986).

It is interesting to note, however, that the presence of the second order coupling
coefficients is an artifact of the formulation. It is a consequence of working with the
Helmbholtz equation (a second order differential equation) rather than directly with
the coupled first order equations for the pressure and velocity. Odom (1980; 1986) has
derived a local coupled mode theory directly from the field quantities pressure and
velocity that contains all the modal interaction physics in a single coupling coefficient.
This formulation exhibits explicit dependence on geometric and material gradients,
and is mathematically and numerically more efficient. Boyles (1984) also derived a
well known coupled mode theory based on the first order equations for an ocean with
a range dependent surface and sound speed. Maupin (1988) extended the results of
Odom (1980; 1986) to take elastic effects including anisotropy into account. We have
applied Maupin’s extensions to the case of fluid-elastic media in order to examine the
mode coupling in a realistic shallow water model in Chapter 2.

One of the advantages of a coupled mode representation for propagation in a range
dependent medium is that the physics of the propagation process can be unravelled
mode by mode if desired. Since the coupled mode theory employs range independent
local modes as a range varying basis, we have included a number of numerical exam-
ples that illustrate the effects of transverse isotropy on the local modes in Chapter
2. It is important to understand which characteristics of the basis are affected by
the transverse isotropy in order to appreciate the effects on the mode coupling. The
main result of Chapter 2 is the quantitative evaluation of the effect of anisotropy on
the local mode basis and on the mode-mode coupling coefficients. Two particularly

important points are that rather small departures from isotropy (2.4%) can produce



rather large (15%) changes in the phase velocity of bottom interacting modes. In ad-
dition the presence of sediment anisotropy actually suppresses mode coupling, forcing
the interactions to be more nearest-neighbor like. .

Chapter 2 has been published as: Odom, R.IL., M. Park, J.A. Mercer, R.S. Crosson
and P. Paik, Effects of transverse isotropy on modes and mode coupling in shallow
water, J. Acoust. Soc. Am., 100, 2079-2092, 1996.

Chapter 3 treats computational aspects of modeling seismo-acoustic propagation
in shallow water at low frequencies. The model is one in which the frequency and
bottom geoacoustic properties are such that the bottom cannot be treated as either
a perfectly rigid reflector or as a simple bulk absorber.

The shallow water/bottom/subbottom system form a waveguide which, in the
most general case, may contain range dependent geometry and material properties.
The bottom may also be anisotropic, but we are limited here to the relatively simple
case of transverse isotropy (TI). The bottom may also be poroelastic. However we
do not include that in this work.

For our treatment of the range dependent shallow water signal propagation prob-
lem, we use Maupin’s (1988) formulation in terms of local coupled modes and we
have developed FORTRAN code which includes the effects of bottom shear, trans-
verse isotropy and quite general range dependence. A brief outline of the transforma-
tion of Maupin’s coupled mode theory to a numerically stable form by the invariant
imbedding technique is introduced in Section 3.1.

In Section 3.2, the deterministic and stochastic coupling matrices and the re-
flection and transmission matrices are computed and the foéwa.rd—propaga.ting and
backward-propagating wave in the frequency domain, and signals in the time domain
are numerically generated for a realistic range-dependent shallow water model.

Chapter 3 has been submitted for publication to J. Acoust. Soc. Am. as: Park,
M. & R.I. Odom, Effects of elastic heterogeneities and anisotropy on mode coupling

and signals in shallow water.
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In Chapter 4, the effect of rough surfaces on elastic wave scattering is studied
on the assumption that the models used to represent the earth for computational
elastic wavefield modelling are all idealizations on some scale. Typical idealized earth
models are the sphere or, on local or regional scales, a stack of constant velocity
layers. More accurate representations of the real earth are developed by incorpo-
rating deterministic perturbations into the basic idealizations. Examples are ellip-
ticity corrections to a spherical earth model or smooth velocity variations for plane
layered models. Beyond these and several other commonly employed deterministic
perturbations, the remaining deviations from the idealizations are usually assumed
to be random. One advantage of making this assumption of randomness is that
rather complicated perturbations, e.g., interface boundary roughness or volume ve-
locity or impedance heterogeneities can be characterized by just a few parameters
such as mean, variance, correlation length and, perhaps, some higher order statisti-
cal moments. In this chapter, we consider the effect of random interface boundary
fluctuations on a layered reference structure. We employ Maupin’s (1988) coupled
mode theory for layered elastic media, so the deterministic reference structure may
have rather arbitrary 2-D lateral heterogeneity or range dependence. We have in-
corporated the effects of random interface boundary fluctuations of strength ¢ into
Maupin’s theory using perturbation theory. In our perturbation expansion the O(1)
equations are identical to Maupin’s (1988) coupled mode equations. The O(¢) system
of equations describes wave propagation in a range dependent layered medium with
random interface fluctuations or roughness.

Many different methods have been used to study rough surface scattering. Re-
views of the classical asymptotic methods are summarized in a number of books.
Examples of those methods are perturbation theory (Bass and Fuks 1979), Kirchhoff
approximation (Beckmann and Spizzichino 1963; Bass and Fuks 1979). DeSanto and
Brown (1986) review the methods appropriate to the study of multiple scattering. A
recent review of the theory and literature is found in the book by Ogilvy (1991).



Quite a bit of work on rough surface scattering is available in the ocean acoustics
literature. Scattering from a rough sea bottom or ocean surface affects the perfor-
mance of any system using acoustic energy in the ocean either for communication
or oceanographic measurement. There is both experimental and theoretical evidence
that rough surface scattering plays a significant role in the generation of the ambient
noise field in the ocean and the microseimic noise field in the ocean bottom (Schreiner
& Dorman 1990; Liu et al. 1993). We mention a few investigators treating problems
similar to ours, or approaching the boundary roughness problem in a similar manner.

Kuperman (1975) applied a boundary perturbation method to seismo-acoustic
wave scattering at random interfaces. Kuperman and Schmidt (1986) presented nu-
merical results illustrating the effect of the generation of Stoneley waves as a loss
mechanism for water borne acoustic signals. Their reference structure was a plane-
layered fluid-solid medium. McDaniel and McCammon (1986) applied a coupled
mode approach to the acoustic wavefield in an inhomogeneous fluid waveguide. Their
theory is based on a 2"¢ order differential equation for the range dependent mode
amplitudes. Bahar (1978, 1980) developed a spectral approach he termed the full
wave method, and applied his method to acoustic wave scattering (Bahar 1990). He
expanded the unknown scattered field in a complete set of orthonormal basis func-
tions representing all possible modes, i.e., surface waves, head waves and body waves,
resulting in a set of first-order coupled differential (Telegraphist’s) equations. Bahar
also employed a plain layered medium as a reference structure.

There are fewer references in the seismic literature about scattering from rough
interfaces. Schultz & Toksoz (1993, 1994) studied enhanced backscattering from
integral expressions for the wavefield singly scattered from a rough surface. Most
research on seismic wave scattering is confined to volume scattering from the material
property fluctuations or from discrete point-like scatterers. Aki (1969) first suggested
that the seismic coda waves can be treated as single backscattered waves. Aki and

Chouet (1975) investigated S wave scattering by random heterogeneities as the cause
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for the seismic coda. The single scattering model was developed and used to model
scattering loss in time and space (Sato 1977). Problems of higher-order scattering in
2-D and 3-D media with isotropic scatterers were studied (Kopnichev 1977; Gao et
al. 1983a, b). Radiative transfer theory was used by Wu (1985) to study the seismic
coda.

Section 4.1 covers a statistical description of rough surfaces. Section 4.2 describes
the perturbation method we used to characterize the rough surface scattering. In
Section 4.3, we construct a unitary vector space with the local modes as the basis
vectors. In Section 4.4, we derive the propagating solutions for the primary field and
scattered field from the Green’s function for the elastic wave propagation problem.
Section 4.5 covers the derivation of the spatial evolution equations and coupling
matrices for the randomly perturbed medium. In Section 4.6, we derive the coupled
mode propagator for 2-D laterally heterogeneous media, and in Section 4.7, we prove
the unitarity of the propagator. In Section 4.8, we derive a Lippmann-Schwinger
integral equation for the coupled mode propagator and derive the Dyson equation
and Bethe-Salpeter equations for the mean of the propagator and its covariance,
respectively.

Taking the Born approximation solution to the Lippmann-Schwinger equation,
we derive an expression for the scattering attenuation Q3' after defining a modal
scattering cross section in Section 4.9. Section 4.10 describes an inverse problem for
the roughness variance and roughness correlation length again based on the Born
approximation to the Lippmann-Schwinger equation. The final section, Section 4.11,
presents a summary and conclusions.

Chapter 4 is submitted for publication to Geophy. J. Int. as: Park, M. & R.I
Odom, The Effect of Stochastic Rough Interfaces on Coupled-Mode Elastic Waves.



Chapter 2

EFFECTS OF TRANSVERSE ISOTROPY ON MODE
AND MODE COUPLING IN SHALLOW WATER

Most marine sediments exhibit transverse isotropy (TI) that can have a signif-
icant effect on the signal properties of strongly bottom interacting sound. Locally,
transverse isotropy has the greatest effect on the fundamental and near fundamental
modal overtones. The local shallow water TI modes have reduced amplitude in the
sediment relative to the corresponding shallow water modes for an isotropic bottom.
Even a small departure from isotropy (2.4%) can have a significant (15%) effect on the
phase velocity of bottom interacting modes. Calculations of mode-mode coupling co-
efficients for a range dependent medium indicate that mode coupling is more strongly
confined to modal nearest neighbors for a TI medium characterized predominantly
by shear wave anisotropy, when compared to the corresponding isotropic medium.
As the frequency increases, the strongest coupling occurs between higher overtones
and also becomes more strongly peaked around nearest neighbors. The coupled mode
theory of Maupin[Geophys. J. 93, 173-185 (1988)] is employed to model the coupling.
This theory can treat smooth gradients and sloping layer boundaries for all five of
the bottom elastic moduli in a TI medium, the densities, and the range dependence
of the water column itself. This coupled mode formulation also properly accounts
for the continuity of stress and displacement boundary conditions in an exact way at

irregular interfaces.



2.1 Theory

This section contains a brief, self-contained summary of the coupled mode theory for
layered fluid-elastic media as deveioped by Maupin (1988). This theory should have
wide applicability to bottom interacting ocean acoustics. A particularly important
point is the treatment of the boundary conditions at the interface between two geo-
metrically irregular layers. Rutherford and Hawker (1981) derived corrections to the
eigenfunctions for a plane layered medium that satisfy the boundary conditions at
irregular layer interfaces to first order in the interface slope. It is, however, possible to
satisfy the boundary conditions at the irregular interface exactly by transforming in-
homogeneous boundary conditions to homogeneous boundary conditions and adding
an additional source term to the governing system of differential equations (Maupin
1988). This has recently been rediscovered by Fawcett (1993) for fluid media. Gillette
(1994) introduced a local coordinate transformation that leads to a solution that ex-
actly satisfies the boundary conditions for the case of a single perfectly rigid range
dependent boundary. Gillette’s problem can also be solved with the local mode the-
ory described here without transforming to a special local coordinate system. In
fact the following treatment of the coupled mode problem leads to a solution which
exactly satisfies the range dependent boundary conditions at all interfaces with no
approximations or neglected terms. As will be seen below, it is not necessary to con-
struct depth functions satisfying boundary conditions involving normal derivatives
on a range dependent boundary. This exact solution is also numerically tractible,
and may be computed using any good normal mode code as the core program. The
treatment is valid for solid-solid as well as fluid-solid and fluid-fluid boundaries. It
is also valid for general anisotropic media. Qur specific examples are carried out for

transversely isotropic media with a vertical axis of symmetry.
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2.1.1 Mode coupling in solid elastic media

We use a Cartesian coordinate system in which the z axis ( or z; axis) is the direction
of the range dependence, y-axis (or z; axis) is the axis along which there is no variation
in medium properties, and z-axis (or z3 axis) is the depth axis and taken to be positive
downward. The particle displacement vector is w = (w., wy, w;).
For the elastic moduli, the matrix notation of Woodhouse (1974) is employed such
that
(Cii) = Ccraj- (2.1)

Note that this is not the same as the widely used abbreviated subscript notation
for the elasticity tensor as described by Auld (1990) for example. The individual
Ci;’s in Woodhouse’s notation are matrices, not individual matrix elements as in the
abbreviated subscript notation.

The equations of motion for an elastic medium are

2
%t—‘: = Vit +f, (2:2)

where p is the density, f is an external force and the traction vector t is defined by

a“’) : (2.3)

t;=Cy | —
’ (31'1'
where W = (wz, wy,w;) and t; = (7iz, Ty, Tiz)-

The displacement, Fourier transformed with respect to y and ¢, is represented as

wie,zpw)= [ [ We,y,z texplilpy — wi))dydt (24)

where p is the spatial wave number in the y-direction. The equations of motion can
then be written as
Ota

at
ptw = T8 gts
pwiwW £ ipty + 32 +f (2.5)
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where

ow . ow
t; = Cila—z - lpC;zW + Czsa—z- (2.6)

The same symbol w is used for both the transformed and untransformed displace-
ment. The subsequent development is carried out completely in the (z, z,p,w) do-
main, and there should be no confusion. The use of i as both an index and as /=1
should also be clear from context.

Introducing the 6-component displacement-stress vector u = (w, t)T where w is as
defined above and t = t; = (7zz, Tzy, Tz:z), the equations of motion can be written as
the first order system where the derivatives with respect to the propagation direction,
that is, the direction of the range dependence of the structure, appear only on the

left hand side of equation

Ou 0
a—z—Au—{f}. (27)
The differential operator
A=
( —CR'CiaZ + Ci'Craip C' )
—p? = £ (Qug) +iPQnZ + Z(Qwip) +1*Qn  ~ZCauC! +ipCuCii!
(2.8)

does not depend on the horizontal derivatives. The matrices Q:; are defined as

Qij = Cij — CaCH'Cy;. (2.9)

The boundary conditions require the continuity of traction and displacement

across interfaces. The free surface condition for an elastic (fluid) medium is that



the traction (pressure) vanishes and a radiation condition is assumed as z — oo. The
interfaces of the range dependent medium are taken to be of the form z = k(z) with

normal n. Thus the slope of m-th interface can be written as

dzm, Ohn .
& = oz (2.10)

By introducing the inclination angle 6,, = tan~!(k,,), the normal vector can be

expressed as

n = sin 61 — cos 0k. (2.11)

The continuity of traction T = t;n; across m-th interface can be written as

[T] = [tisin 0, — t3cos O]
! hontlm = 0. (2.12)

The square brackets []» indicate the jump of the enclosed quantity across the mth

interface, taken from bottom to top. Consequently, we have

[tslm = o [t]m- (2.13)

The continuity of traction normal to a sloping interface is then equivalent to a jump
in the traction along the vertical axis. The equations of motion (2.7) along with the
interface boundary conditions (2.13) and the free surface and radiation conditions
are an exact formal representation of the equations for the displacement-stress field
in a range dependent layered elastic medium. What makes a solution of the problem
difficult is the inhomogeneous form of the interface boundary condition Eq.(2.13).
Historically this inhomogeneous boundary condition has been dealt with by ignor-
ing the inhomogeneity (McDaniel 1982; Odom 1980; Odom 1986), and replacing it
with the approximate homogeneous condition. That is, the condition that the nor-
mal component of the traction be continuous across interfaces was replaced by the

condition that only the vertical component of the traction be continuous. A different
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approach taken by Evans (1983) was to approximate the medium with a series of
stepwise depth variations. Evans’ formulation conserves energy and is an exact solu-
tion to the approximate problem. He points out that when stepwise coupled modes
are applied to a problem with a semi-infinte halfspace bottom and a continuously
varying water-sediment interface, his method is approximate. It was pointed out by
Maupin (1988) that the traction discontinuity in the interface boundary conditions
can be converted to a localized volume force located along the interface. This follows
from a representation theorem for elastic media investigated by Burridge and Knopoff
(1964). The resulting equivalent volume force becomes a source term on the right
hand side of Eq.(2.7), and the interface boundary conditions become homogeneous.

Equations (2.7) and (2.13) can now be written in the absence of body forces as

Ju .
5 =Mt { [Eln6(z — hm(z)) } (&1
with the interface conditions
[ta}m = [W]m = 0. (2.15)

Equations (2.14) and (2.15) are a very important result. This first order system of
inhomogeneous equations with homogeneous boundary conditions formally describes
the evolution of the displacement-stress fields along the range direction. The solution
to this system will now be expressed in terms of coupled local modes. These local
modes, defined below, are the eigenfunctions of the range independent medium that
locally share the same depth dependence as the range dependent medium. This means
that locally at some point zo in range, the density p(zo,2) and the elastic moduli

Cij(zo, ) are taken to be functions of depth only so that

p(z0,2) = p(z) and Cij(zo,z) = Cij(2). (2.16)

The wave propagation problem for a 2-dimensional range dependent medium can
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be solved exactly in terms of the eigenfunctions of the range independent medium.
These eigenfunctions are the homogeneous solutions to Eq.(2.14) with homogeneous
boundary conditions Eq.(2.15). The boundary conditions at the irregular interfaces
are satisfied exactly by including the effective source term in Eq.(2.14). No approxi-
mations have been made.

Local homogeneous solutions of the equations of motion (Eq.(2.14)) which depend

parametrically on z are represented as

u(zo, z)exp{—ik"(zo)z} (2.17)

with u satisfying

—ik"(zo)u'(zo, Z) = Au"(:co, Z) (2.18)

and the homogeneous boundary conditions [W'], = 0 and [t}],, = 0 across interfaces.
The horizontal wave number in the z-direction is k£"(zo), and taken to be real.

The final definition required is the following scalar product between two local
eigenfunctions of index r and ¢q.

(i, u) =i / P (W — tTwW)dz (2.19)
0

where * indicates complex conjugation. The scalar product (2.19) is Hermitian, i.e.

(f,9)=(9,f)". (2.20)

The local modes at fixed values of frequency and p are orthogonal with respect to
this scalar product. The local modes are normalized such that

(u?,u") =46, (2.21)

Thus, they all carry the same energy flux across planes z = constant.
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The basic idea of the coupled local mode technique is to seek a solution for the
equations of motion as a coupled set of local modes whose amplitudes and phases vary
with laterally varying structure. The evolution of the range dependent amplitude
determines how energy is exchanged between modes as a signal propagates through
the medium. The solution of the equations of motion for the displacement-stress
field in the range dependent medium is represented as the sum over forward(+) and

backward(—) propagating local modes

u= {‘: } = Y (@) exp (i [ K(0)dc) { V(@) } . @)

t™(z, z)

where k(() is the local horizontal wavenumber. The local modes satisfy the homoge-
neous boundary conditions, Eq.(2.15), of a plane layered medium, and can therefore
be computed with any appropriate normal mode code.

The derivation of the evolution equation for the range dependent amplitude coef-
ficients c.(z) proceeds in the same fashion as previous coupled mode developments.
The representation Eq.(2.22) is substituted into the equations of motion Eq.(2.14).
The scalar product of the resulting expression is formed with the displacement-stress
vector of the qth mode u?, yielding:

d
a—‘;" = Byc, (2.23)
with the coupling matrix
du” . i wler . r
Ber = {~(u!, ) +i L hnw [} Jexp (z /: (k9 — k )d() (2.24)

In the case of very weak range dependence, we can set

B, =0, (2.25)
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indicating that individual modes propagate independently without interacting. This
is the adiabatic approximation (Pierce 1965; Milder 1969; Woodhouse 1974; Nagl et
al. 1978). The validity of the adiabatic approximation requires that the medium
properties change very slowly with range. The total change can actually be quite
large, but the rate of change with range must be small enough so that modes do not
exchange energy among each other and are able to adjust their shapes to the local en-
vironment. Backscattering is automatically excluded by the adiabatic approximation,
as is radiation to the continuum. A medium characterized by layer thicknesses or ma-
terial properties that change significantly over a mode equivalent ray cycle distance
will not be well modeled by the adiabatic approximation.

The form of the coupling matrix in Eq.(2.24) is not well suited to numerical com-
putation because of the presence of the range derivatives of the local mode functions.
The coupling matrix B,, can be transformed so that the only range derivatives ap-
pearing in the expression are of the density and elastic moduli within layers and of
the interface functions k,, (z) at layer boundaries. We have relegated to the Appendix
the lengthy expression for B,,, and a discussion of extra terms required at fluid-solid
interfaces.

The coupling matrix Eq.(A.1) involves an integral term related to the lateral
derivative of the elastic moduli and density inside the layers. The interface term is
a combination of an expression derived from the continuity conditions and another
arising from jumps in the lateral derivatives of the elastic coefficients. It is the former
of the these two interface terms that appears as the effective volume source term on
Eq.(2.14). There are no range derivatives of the local eigenfunctions, and there is
no need to introduce a special coordinate system. The expression(A.1) describes the
coupling in a fully anisotropic 2-dimensional medium. The form of the matrices C;;
and @;; for a transversely isotropic medium have been given by Maupin (1992) and
we do not repeat them here.

In order to synthesize a complete signal propagating in a strongly range dependent
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medium for which the adiabatic approximation is not valid, we must solve the evolu-
tion equation Eq.(2.23) for the mode amplitudes. A complete solution for a strongly
range dependent medium must account for the interaction of both forward(+) and
backward(—) propagating modes. The evolution of both the forward and backward
propagating components of a signal is described by

d [c*(=) B+ (z) B*(z)\ (c*(z)

8z (c-(z)) ) (B*(z) B--<z)) (c-(z)) 22
where c* and ¢~ are n-dimensional vectors whose elements are the amplitude coef-
ficients of n forward and backward propagating modes. The n x n matrices B+,
B*-, B~* and B~ describe forward-to-forward, forward-to-backward, backward-to-
forward and backward-to-backward coupling, respectively. The two point boundary
value problem described by Eq.(2.26) is not numerically stable. However, Eq.(2.26)
can be recast as a set of coupled Riccati equations for the reflection and transmission

coefficients of the range dependent region (Kennett 1984), which is stable. We are in
the process of doing this.

2.1.2 FEnergy conservation

As indicated by Eq.(2.21), the local modes are normalized to carry the same energy
flux across planes = constant. We can obtain a statement of energy conservation for
a lossless range dependent medium by substituting the local mode representation of
the displacement-stress field Eq.(2.22) into the scalar product Eq.(2.19) and setting
the derivative with respect to z equal to 0, yielding

i(u", u”)

oz

52 Tlee)?

= 5 (Zetolte) + ) o)

q
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= X (B + B,) crlz)es(2)
= 0. (2.27)

We have used the fact that

el (£ Brale) = Selo) (S B2600)) (225)
since the mode indices {g,r} are summed over the same set.

The only way for Eq.(2.27) to be satisfied generally is for the coupling matrix to

be anti-Hermitian, i.e.

By =—B,. (2.29)

This anti-Hermiticity is a necessary consequence of energy conservation in a lossless
medium. It can be seen by inspection that the coupling matrix B, given by Eq.(A.1)
is anti-Hermitian. The additional coupling terms for the fluid layer and interface,
Eq.(A.2) and Eq.(A.3) are also anti-Hermitian.

An obvious consequence of Eq.(2.29) is that

Re(B,,) =0. (2.30)

If we insist that the phase of the local modes be continuous from point to point in

the medium then we should also choose

Im(B,,) =0. (2.31)

In the abiabatic case where all cross branch coupling can be ignored, the phase of the

modes is just as shown in Eq.(2.22), which varies smoothly from point to point.
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2.1.3 Specification of a transversely isotropic medium

Elastic anisotropy is a well established geoacoustic property of marine sediments
(Bachman 1979; Bachman 1983; Oakley & Vidmar 1983; Carlson, Schaftenaar &
Moore 1984). The most common form of anisotropy observed in marine sediments
is transverse isotropy(TI) with a vertical axis of symmetry. In a TI medium prop-
agation in all azimuthal directions lying in planes including the symmetry axis is
equivalent. In TI marine sediments with vertical symmetry axes, horizontally po-
larized and horizontally propagating waves travel faster than vertically propagating
and vertically polarized waves. The primary mechanisms for transverse isotropy in
marine sediments are: 1. aligned cracks and pores; 2. recrystallization of anisotropic
minerals; and 3. compositional layering on a very fine scale. If isotropy is erroneously
assumed sound speed gradients are underestimated, sediment layer thicknesses can be
overestimated and shear velocity can be overestimated (Fryer & Milder 1986). The
most likely mechanism for the observed transverse isotropy of sediments at the water-
bottom interface is compositional layering. Recrystallization of anisotropic minerals
may be important for deeper lying sediments, but to depths of at least 1 km beneath
the ocean bottom, compositional layering is believed to be the dominant mechanism
(Carlson, Schaftenaar & Moore 1984).

In order to specify the anisotropy, we introduce the dimensionless parameters

and

A - 1.9
¢ = 1-¢ = 1-—, (2.33)

Values of

=0 and ¢ =0 (2.34)
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indicate isotropy. The departure from isotropy increases as ' and/or ¢’ change from
0.
The dynamic stability of a transversely isotropic medium requires that certain

conditions be imposed on the elastic moduli (Auld 1990; Postma 1955; Backus 1962):

A>N>0,
C>0,
L>0,

F2<C(A-N). (2.35)

The most plausible physical mechanism for TI with a vertical symmetry axis within
the interfacial sediments is fine compostional layering. This mechanism imposes the

additional constraints

N>L (2.36)

(Backus 1962). A final independent inequality constraint for compositionally layered
TI media is

(A-L)(C-L)>(F+L)? (2.37)

(Postma 1955; Berryman 1979).
When A = C = A+2u, L = N = p, and F = ) the medium is isotropic.
The relationship between the notation of Love (1944) and the abbreviated subscript

notation for the elastic moduli of a TI medium is

A = Ci11, F = C13, C = C33, L = C44, N = Cgg-



This concludes our summary of the complete 2-D coupled mode theory. This the-
ory incorporates an exact treatment of the boundary conditions at sloping interfaces
as well as being able to handle smooth gradients in density and all elastic moduli. We
have applied the theory to a transversely isotropic medium with a vertical symmetry
axis. The theory is, however, valid for general anisotropic media at the expense of
additional algebraic and numerical complexity. In a general anisotropic medium the
horizontally polarized shear waves do not decouple from the compressional waves and
vertically polarized shear waves. Consequently, the motion is represented by a single
6 x 6 system of equations rather than the separate 4 x 4(P-SV) and 2 x 2(SH) systems

required for isotropic and transversely isotropic media.

2.2 Numerical Results

In this section we numerically investigate the effects of transverse isotropy on the
modal dispersion, eigenfunctions and the coupling matrix B,, for a realistic shallow
water model. We have not performed calculations for a specific range dependent
model; we concentrate instead on the material properties.

We have examined the effect of transverse isotropy on the mode structure and
mode coupling of a bottom interacting signal propagating in shallow water. The
code used to generate the eigenvalues, eigenfunctions and kinetic energy integrals for a
plane layered fluid-elastic TI medium was DISPERS80 (Saito 1988). The computations
were carried out on a Sun SPARCstation LX, mostly in double precision. At the
highest frequencies it was necessary to employ quadruple precision for the first few
eigenvalues and eigenfunctions. Our shallow water model was taken from Berge et al.
(1991) who analyzed multi-component seismic data from an experiment conducted in
21 m of water about 10 km east of New Jersey.

The data analyzed by Berge et al. (1991) were collected in 1986 by Roundout
Associates Inc. and Woods Hole Oceanographic Institution. Initial attempts at mod-



eling the data assuming isotropy of the bottom material were not considered adequate
(1991), and led to further modeling efforts employing an anisotropic reflectivity pro-
gram. The resulting TT models estimated by Berge et al. (1991) provided a good fit
to their data and constrained four of the five elastic parameters necessary to describe
a TT medium. They did not have enough resolution to determine the compressional

wave anisotropy and assumed ¢;; = ¢33 (A = C in Love’s (1944) notation).

2.2.1 The shallow water model

The model, shown in Fig. 2.1, consists of a 21 m thick isovelocity water layer over
12.5 m of TI sediments, followed by 12.5 m of isotropic sediments with a steep gradient
in both compressional and shear speeds. The density of the sediments is taken to be
constant at 2100 kg/m3. The TI layer is characterized by 7’ = 0.012 and ¢’ = 0. The
base of the model is an isotropic elastic half-space with a shear speed of 1450 m/s, a
compressional speed of 3000 m/s, and a density of 2400 kg/m3.

We have explicitly focused on the qP-qSV component of propagation in the sedi-
ments. The excitation of horizontally polarized shear waves(SH) in the sediments by
a propagating acoustic signal in the water requires 3-D heterogeneity or anisotropy

of a more general nature than we treat.

2.2.2 Dispersion curves, eigenfunctions and normalization

Fig. 2.2 illustrates the phase velocity dispersion for the model of Fig. 2.1. The
modal phase velocities for the TI model are generally higher than for the correspond-
ing isotropic medium. This was apparently first noted by Stoneley (1949), and is a
consequence of greater material stiffness sampled by components of wave particle mo-
tion parallel to the bedding plane. The difference between the modal phase velocities
for the TI and isotropic media increases with increasing frequency. As the frequency

increases, the phase velocity of the TI mode can approach the phase velocity of the



Figure 2.1: The transversely isotropic shallow water model of Berge et al. (1991)
(Their Tablel.). The 12.5m thick sediment layer immediately below the water sed-
iment interface is transversely isotropic. We have terminated their model with an
isotropic half-space with a shear speed of 1450 m/s, a compressional wave speed of

3000 m/s and a density of 2400 kg/m>.
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next higher isotropic mode. This is also evident in the group velocity curves shown
in Fig. 2.3.

Despite a relatively small difference in the fundamental mode phase velocity be-
tween the TI and isotropic models, the eigenfunctions are substantially different.
Because the eigenfunction calculation depends on the inverse of the eigen-phase ve-
locity, small changes in the smallest eigen-phase velocity can have significant effects
on the computation of the corresponding eigenfunction. This is also the reason for
using quadruple precision at the higher frequencies for the first few modes. DIS-
PERS80 directly integrates the equations of motion which become quite stiff at high
frequencies. Efficient methods of generating the fluid-elastic modes are important for
high frequency applications.

The eigenfunctions for the vertical component of displacement at 10Hz and 20H =
are shown in Fig. 2.4 and Fig. 2.5, respectively. Although it is not visible on the
scale at which the modes are plotted, all eigenfunctions have been normalized such
that the vertical component of displacement is unity at the sea surface. The scale of
the other three components of the eigenfunctions is derived from this normalization.
This choice of normalization is somewhat arbitrary and merits discussion since the
energy integrals and their partial derivatives (Fig. 2.6(a-c), Fig. 2.7 and Fig. 2.8),
and the fundamental eigenfunctions in Fig. 2.9 are computed using this normaliza-
tion. The computations for Fig. 2.10 use the normalization specified by Eq.(2.21
with each mode normalized to carry the same energy flux across planes z = constant
as required by the derivation of the coupled mode equations. The purpose of Fig. 2.4
and Fig. 2.5 is to illustrate the effect of the transverse isotropy on the eigenfunctions.
The eigenfunctions could have been normalized so the isotropic and corresponding
TI eigenfunctions had equal energy, or so that they had equal peak amplitudes or
equal amplitudes at the water sediment interface. Although we have not computed
the Green’s function for the medium, which forces the selection of an explicit source

location, we are assuming that the source and receiver are located within the water



Figure 2.2: Phase velocity dispersion curves for the shallow water model of Fig. 2.1.
Note that the phase velocities in the TI medium are generally higher than in the
equivalent isotropic medium. As the frequency increases, the phase velocity of a TI
mode can approach the phase velocity of the next higher isotropic mode. This is also
true of the group velocities plotted in Fig. 2.4.
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Figure 2.3: Group velocities of the first three modes for the model shown in Fig. 2.1.
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column or at, or slightly beneath, the water-sediment interface. Qur chosen normal-
ization emphasizes differences near the water-sediment interface. Modes with a given
surface amplitude will have very different amplitudes at the water-sediment inter-
face depending on whether the bottom is isotropic or anisotropic. Had we chosen
a normalization such that the peak vertical displacement was unity, corresponding
amplitudes in the water column would be quite different. Our normalization yields
eigenfunctions with different energies in isotropic and corresponding TI media, but
because they have the same vertical displacement at the surface, the differences in
energy reflect the different amount of energy input into the medium required to pro-
duce the same surface displacement. The contribution of an individual mode to the
Green’s function for the medium is directly proportional to the mode amplitude at the
chosen source depth. Therefore our choice of normalization will emphasize differences
resulting from shallow sources.

Comparison of eigenfunctions between isotropic and anisotropic media is some-
what problematic in any case, since there is no simple method of establishing cor-
respondence between the two. Because of the constraint relations among the elastic
parameters listed earlier, it is not possible to arbitrarily perturb one elastic modulus
without corresponding perturbations to other moduli. Arbitrary perturbations to
elastic moduli can destroy the symmetry of the elastic stiffness tensor and produce
unphysical results in calculations.

In the 10-20 Hz frequency range the water depth is approximately /4, which
means that the bottom is near an acoustic radiation maximum. A propagating acous-
tic signal in this band will thus be dominated by the fundamental mode guided along
the water sediment interface. For frequencies greater than approximately 7 Hz for
the isotropic medium and 11 Hz for the TI medium, the phase velocity of the funda-
mental mode is less than the sediment shear speed at the water sediment interface.
The fundamental mode above the threshhold frequency is therefore a Stoneley wave.

At frequencies lower than the threshhold, the mode is more properly termed a pseudo-
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Figure 2.4: The vertical displacement eigenfunctions for the first four modes at 10
Hz. Notice that for mode 3, the isotropic and TI vertical displacements are virtually
identical, but that the amplitude of the TI displacement in the halfspace is slightly
greater than the isotropic displacement. Modes are normalized to have unit verti-
cal displacement at the water surface. At 10 Hz, the signal is dominated by the

fundamental (Stoneley) mode.



zZ(m)
120

160

z(m)
120

160 -

Vertical Displacement, w,

1 r

=] e =) S 3 s

- =

--.,.._,\—-*'
r/W)

Mode 2
ISQ ——
) | Q.

z(m)
120

160




Figure 2.5: The vertical displacement eigenfunctions for the first four modes at 20
Hz. The isotropic and TI modes are distinct. In fact, although not shown here, there

are significant differences between the isotropic and TI modes for the first five modes.
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Rayleigh wave.

It can be clearly seen from Fig. 2.4 and Fig. 2.5 that the fundamental carries
the most energy in this frequency band. The generally smaller peak amplitude of the
low order TI modes relative to the isotropic modes is a consequence of the greater
material stiffness for horizontally propagating waves in the TI medium. As the mode
number increases for a given frequency, the eigenfunctions persist to greater depths
in the structure. The fractional amount of modal energy within the 10 m thick TI
layer decreases, so the influence of the anisotropy on the eigenfunctions also decreases.
Also, as the frequency of a given mode increases the component of the mode in the
bottom becomes more and more like pure SV. It can be seen from Fig. 2.2 that as
the frequency of a mode increases, its phase velocity approaches the shear speed at
the sediment interface. The compressional speed is much higher than the sediment
shear speed, and so the compressional component of the mode is evanescent, leading

to the almost pure SV behavior of the modes at high frequency.

2.2.3 Mode kinetic energy

Fig. 2.6 (a-c) shows the relative mode kinetic energy as a function of frequency for
the first three modes. The kinetic energy E,, of the m*® mode is

E, = u? /0 o (WP W™ + W) dz. (2.38)

The energy in the Stoneley wave peaks at around 11Hz. Berge et al. (1991) have
plotted amplitude vs. frequency for the unfiltered vertical component of the data from
one of their profiles. (Their Figure 7, and here reproduced as our Fig. 2.6d.) The main
features of the lower frequency part of their spectrum are reasonably well represented
by our kinetic energy plots. The low amplitude maxima appearing at 1.8 Hz and
5 Hz in Fig. 2.6a and Fig. 2.6b, respectively, and the kink at approximately 8 Hz
in Fig. 2.6c occur at the knees of the modal dispersion curves(Fig. 2.2). These
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Figure 2.6: Kinetic energy as a function of frequency for the first three modes (a-c).
These match quite well the lower frequency part of the spectrum of some shallow water
data (d) shown by Berge et al.>® (Their Fig. 2.7, used by permission of Blackwell
Scientific Publications Ltd.) The Stoneley wave peak at about 11 Hz in Berge et
al.3® appears to be particularly well modeled by our mode calculations. Note that

the frequency ranges of (a-c) and (d) are not the same.
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knees occur at the frequency at which a mode becomes trapped in the sediment
layer. The mode dies out very rapidly in the underlying halfspace, and the phase
velocity drops abruptly towards the sediment shear wave speed. The peak at 4.5 Hz
in Fig. 2.6c corresponds to the very sharp minimum in the group velocity curve for
m = 2(Fig. 2.3). At this point the group velocity rises to meet the phase velocity
at the cutoff value. Our mode calculations show the increase of energy towards the
Stoneley wave peak, but we did not quite reach the energy maximum in frequency.
The comparisons between our model calculations and Berge et al.’s (1991) data is
not direct as we have not attempted to correct our modeling results in such a way

that would permit absolute amplitude comparisons with their experimental data.

2.2.4 Mode sensitivity to transverse isotropy

Berge et al. (1991) reported that their synthetic seismograms were quite sensitive
to small perturbations in the elastic modulus F (¢;3 in the abbreviated subscript
notation). The modulus F affects the the propagation of qP and qSV at angles inter-
mediate between the horizontal and vertical in a TI medium with a vertical symmetry
axis. In an attempt to illuminate the sensitivity of a bottom interacting acoustic sig-
nal to sediment anisotropy, we computed partial derivatives of mode energy with
respect to a parameter 7n’.

The dimensionless partial derivative of the mode energy is defined by

10Bn _ 1 0F3E. _ A-3LOE, 230
. on E.ow 0F = E. OF (2:39)

In Fig. 2.7 the partial derivative Eq(2.39) is plotted versus 5’ x 100 for the first three
modes at 10 Hz. Since a value of ' = 0 indicates isotropy, the anisotropy increases
with increasing values of the abcissa. The magnitudes of the derivatives for the
first three modes are relatively large and negative. The negativity of the derivatives

indicates that the energy of the modes will decrease with increasing anisotropy as
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measured by increasing 7’. Again, we mention that the vertical component of the
eigenfunctions are all normalized to have unit displacement at the surface.

Physically Fig. 2.7 illustrates that, as the elastic modulus F departs from its
isotropic value, less energy is required to produce the same vertical surface displace-
ment. (In an isotropic medium, F' corresponds to the Lamé parameter A.) Our
perturbation reduces F' from its isotropic value, thereby reducing the stiffness of the
medium somewhat at angles intermediate between the horizontal and vertical. The
effect is the same as reducing the spring constant of a mass-spring system. Less
energy is required to produce a given displacement of the mass suspended from a
weaker spring. The relatively large dimensionless magnitudes of the derivatives are
a measure of the sensitivity of the eigenfunction, and hence the acoustic signal, to
anisotropic medium perturbations. Since the fundamental has the largest derivative,
it will also be most sensitive to changes in F'. Although not shown in Fig. 2.7, at
10 Hz for the mode m = 3, F,,/dy’ is a very weak function of 7’ and nearly zero.
The mode m = 3 persists to greater depth into the bottom, and has relatively more
energy both in the water column and the underlying halfspace.

We also found for this model that a 2.4% change in 7’ could produce a 15% change
in the phase velocity of the Stoneley wave mode. Over the range of 7’ from 0 to 0.024,
the phase velocity of the fundamental increases from 145.57 m/s to 169.67 m/s.

The frequency sensitivity of the mode energy for a single value of the anisotropy
parameter 7' = 0.012 is illustrated in Fig. 2.8 by a plot of dFE,,/dn’ versus frequency.
The main thing to notice is, that over the 4 Hz to 20 Hz frequency range depicted,
the magnitude of the derivative is increasing. A shallow water signal with a strongly
excited Stoneley wave will become more sensitive to the anisotropy with increasing
frequency. Of course as the frequency increases still further, the excitation of the
Stoneley wave will drop off, and the influence of the anisotropy on that part of the
signal will also decrease.

We have not computed the corresponding partial derivatives with respect to ¢’,
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Figure 2.7: Nondimensional partial derivatives of mode energy with respect to the
parameter '. The negativity of the derivatives indicates that the mode energy for

the first three modes decreases upon departure from isotropy.
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Figure 2.8: The partial derivative of the fundamental mode energy with respect to 5’
evaluated at 7’ = 0.012 as a function of frequency. Note that the absolute value of
the magnitude of the derivative generally increases over the plotted frequency range.
Indicating an increasing sensitivity with frequency of the fundamental mode to the
anisotropy. A value of 7' = 0.012 corresponds to the best fitting TI model for the
long profile data of Berge et al.’s (1991) (their Table 1).
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which controls the P wave anisotropy, while holding ' = 0. This combination of
anisotropy parameters violates the condition expressed by Eq.(2.37), while the con-
verse, i.e. ¢ = 0 and 7' > 0 does not. We have, however, computed an example
that shows the effect of both 7’ > 0 and ¢’ > 0. As previously mentioned, Berge et
al. (1991) did not investigate the effects of P-wave anisotropy because their profiles
were not long enough to resolve it. The length of their long profile was about 200 m.
The P-wave anisotropy could be important for longer propagation paths, since values
as high as 40% have been reported in shale (1955), although 8% to 14% is probably
more typical of marine sediments (Bachman 1979).

Fig. 2.9 is a plot of the vertical displacement component of the fundamental
eigenfunction for the isotropic case #’ = 0 and ¢’ = 0 (solid line), and for the two
transversely isotropic cases corresponding to 7' = 0.012 and ¢’ = 0 (dashed line),
and 7' = 0.012 and ¢’ = 0.012 (dotted line). A value of 7’ = 0.012 corresponds to
Berge et al.’s (1991) long profile model (their Table 1). The vertical components of
the eigenfunctions are all normalized to have unit displacement at the surface. The
amplitude of the fundamental for the case 5’ = 0.012 and ¢’ = 0.012 lies between
the the amplitude for the isotropic case and for the case 7’ = 0.012 and ¢’ = 0. The
inclusion of this very modest amount of P-wave anisotropy draws the appearance of
the fundamental back towards isotropy. It may be possible to increase the P-wave
anisotropy enough so that there is essentially no detectable difference between the
shapes of the isotropic and anisotropic eigenfunctions, but, in reality the P-wave
anisotropy near the water-sediment interface is likely to be even smaller than the
value used for our calculations (Fryer & Miller 1986). The phase velocity of the
fundamental for the case ' = 0.012 and ¢' = 0 is 159.83 m/s, which is actually
slightly higher than the horizontally propagating qSV speed (158.26 m/s).



37

Figure 2.9: Vertical displacement component of the fundamental eigenfunction for
the isotropic medium(solid line, phase velocity = 145.57 m/s), and for TI media
characterized by n’ = 0.012(dashed line, phase velocity = 159.83 m/s) and ' = ¢' =
0.012(dotted line, phase velocity = 153.73 m/s). They have all been normalized to
unit displacement at z = 0. The frequency is 10 Hz. The speed of horizontally
propagating qSV waves (\/E) at the water sediment interface is 158.26 m/s.
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2.2.5 Medium effects on mode coupling

Our ultimate goal is to improve our ability to model and predict shallow water acoustic
signal propagation in a range dependent medium. We have computed the coupling
matrix B, (Eq. A.l) including the fluid-solid boundary interaction terms described in
Eq.(A.2) and Eq.(A.3) for the isotropic model (7' = 0 and ¢’ = 0) equivalent to Berge
et al.’s model (Fig. 2.10a,b); for the TI model of Berge et al. (1991) (' =0.012 and
¢' = 0) (Fig. 2.10c,d); and for a model (p’ = 0.012 and ¢’ = 0.012) incorporating the
weak P-wave anisotropy (Fig. 2.10e,f). The calculations were done at two frequencies
10 Hz and 20 H=.

Berge et al.’s (1991) TT model is a range independent model. What we have
computed is the coupling matrix for a model with the same local vertical structure
as Berge et al. (1991). The absolute values of the coupling matrix |B,,| in Fig. 2.10
represent the effects of the geometric medium properties only. The layer boundary
slopes, h, = dh,/dz, have been set equal to 1. All material parameter horizontal
gradients such as p have been set equal to 0. The absolute values of the elements of
all six coupling matrices depicted in Fig. 2.10 have been normalized by dividing all
elements by the largest matrix element of the entire set so comparisons can be made
between frequencies and between the isotropic and both TI media. The diagonals
have been intentionally left blank. Referring back to Eqs.(2.30) and (2.31), we see
that the diagonals are zero.

As the frequency increases, the shallow water structure can support a greater
number of modes, so there are more modes to participate in the coupling. Comparing
Fig. 2.10a and Fig. 2.10b for the isotropic medium, it is clear that the coupling is
stronger at 20 Hz than at 10 Hz, and that a fairly large number of modes participate
almost equally in the coupling at 20 Hz. There is also fairly strong coupling among
non-nearest neighbor modes for the lower order modes.

Comparing Fig. 2.10(c,d) with Fig. 2.10(a,b), it can be seen that at 10 Hz there
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Figure 2.10: The absolute value of the elements of the coupling matrix B, Eq.(A.1)
for the model in Fig. 2.1. Layer boundary slopes k have been set equal to 1, and all
horizontal material parameter gradients such as p have been set to 0. This empha-
sizes the effects of geometric (boundary) heterogeneities. The absolute values of the
elements of the six coupling matrices have been normalized by the largest matrix ele-
ment of the entire set so comparisons can be made between frequencies and between
isotropic and TI media. The array elements have been normalized so that dark red

is unit coupling and dark blue is zero coupling. The diagonals have been purposely
left blank to reflect our choice of phase for the local modes (Eq.(2.31)).
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is little difference between the isotropic and the TI medium, but that at 20 Hz,
the differences are much greater. The coupling is confined more strongly to nearest
neighbors and at 20 Hz there is a preferred mode pair {4,5} in the TI medium (Fig.
2.10d). The coupling strengths are much more uniform for the isotropic medium at
20 Hz. Coupling strength decreases away from the diagonal and also away from the
preferred mode pair. This latter effect illustrates the most striking difference between
the TT and isotropic media, and is a qualitative indicator of the difficulties that may
be encountered by ignoring sediment anisotropy when attempting to model range
dependent shallow water acoustic propagation. Away from the diagonal, other mode
pairs participate nearly equally in the coupling process. This indicates that a careful
examination of the coupling matrix is necessary before deciding on a truncated mode
set to employ when synthesizing complete propagating signals in a range dependent
medium. Use of too small a mode set will alias the coupling, and affect the amplitude
and phase of a synthesized signal, but also, it may occur that coupling is confined to
a small number of model configurations leading to more efficiency in calculations.

We have also computed the coupling matrix for a TI medium containing weak
P-wave anisotropy in addition to the S-wave anisotropy of Berge et al.’s (1991) model
(Fig. 2.10e,f). The addition of weak P-wave anisotropy to the model has only a
slight effect, and Fig. 2.10(e,f) look very similar to Fig. 2.10(c,d). This is not
too surprising, since the particle motion of the Stoneley wave and pseudo-Rayleigh
waves that comprise the sediment modes is mostly shear motion. This explains why
addition of S-wave anisotropy has a greater effect than addition of P-wave anisotropy.
Also because of the almost order of magnitude difference between the shear and
compressional wavelengths at the water-sediment interface, the effects of the shear
wave anisotropy will accumulate much faster for a strongly bottom interacting shallow
water acoustic signal.

The results shown in Fig. 2.10 are quite general, because they indicate the de-

pendence of mode coupling on the medium properties independent of any specific
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range dependent model. Fig. 2.10 represents the excitation of the modal spectrum
and it’s sensitivity of the excitation to any imposed range dependence. To get a
complete picture of propagation in heterogeneous media, the actual range dependent
structure of the medium must be imposed and the evolution equation Eq.(2.26) for

the heterogeneous region must be solved.

2.3 Summary and Conclusions

We have summarized a coupled mode theory for fluid-elastic media that is formulated
as a coupled set of first order equations, and accounts exactly for the inhomogeneous
boundary condition due to range dependent interface irregularities (Maupin 1988).
We have applied this theory to a realistic shallow water model derived from experi-
mental data. A particular feature of this work is the inclusion of transversely isotropic
bottom sediments.

Our modeling results show that there can be significant qualitative and quanti-
tative differences between the eigenvalues and modes in shallow water models with
an isotropic and a tranversely isotropic bottom. A 2.4% departure from isotropy
can result in a 15% change in phase velocity for a bottom interacting mode. These
differences are also reflected in the mode coupling induced by range dependence.
Transversely isotropic sediments will exhibit somewhat suppressed mode coupling in
comparison to the equivalent isotropic sediments. The Stoneley wave at the water sed-
iment interface is particularly sensitive to the transverse isotropy of the sediments.
Conversion to Stoneley waves has been shown to be an important loss mechanism
by Hawker (1978). In light of the sensitivity of the Stoneley waves to the transverse
isotropy of the bottom, and the apparent ease with which they can be excited by bot-
tom roughness (Kuperman & Schmidt 1989), some care should be taken regarding
interpretations of strongly bottom interacting acoustic signals derived from models

that assume isotropic sediment properties.



Chapter 3

EFFECTS OF ELASTIC HETEROGENEITIES AND
ANISOTROPY ON MODE COUPLING AND SIGNALS IN
SHALLOW WATER

Coupled mode theory is applied to acoustic/elastic wave propagation in shallow
water to examine the effects of lateral heterogeneities and transverse isotropy on
mode coupling and signals. A numerical code is developed by applying the invari-
ant imbedding technique to the coupled mode theory. From the code, the reflection
and transmission matrices and the forward/backward propagating wavefields in the
frequency domain are generated for a deterministic range-dependent medium. The
effect of transverse isotropy of bottom sediment layers is also considered. Time do-
main signals are synthesized with a 2-Hz bandwidth between 10 Hz and 12 Hz for the
excitation by a unit line force and for an incident fundamental mode. The generation
of higher overtones and the decay of the fundamental mode propagating in a range
dependent medium are clearly shown. First order perturbation theory is applied to
the coupled mode theory to incorporate scattering from stochastic boundary rough-
ness. The stochastic coupling matrix describing the coupling from the primary field
to the scattered field, is computed. Numerical results show the strong scattering of

the Scholte wave (fundamental mode) to other higher modes.

3.1 Theory

In this section, we present the method based on Maupin’s (1988) coupled mode the-

ory. First, we briefly summarized the coupled mode theory for layered fluid-elastic
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media (Maupin 1988). Next, we introduce the invariant imbedding technique (IIT)
as applied to coupled mode theory by Kennett (1984). The evolution equation is
converted to coupled differential Riccati equations for the transmission matrix and
the reflection matrix. The transmission matrix accounts for the interaction between
the modes of the incident wave and those of the transmitted (or forward propagat-
ing) wave, and the reflection matrix describes the coupling to the the reflected (or
backward propagating) wave. In the third subsection, we represent the source as a
decomposition of local modes. In the last subsection, we apply perturbation theory
to the coupled mode theory to derive the evoluticn equation for the secondary field

scattered from a randomly rough boundary.

3.1.1 Mode coupling in deterministic range-dependent media

Because our shallow water model consists of a fluid layer over an elastic bottom, we
employ the coupled mode theory based on the local mode representation, as formu-
lated by Maupin (1988) for fluid-elastic media. Only a brief outline of the theory,
required for the development in the following subsections, is therefore given in this
paper. Details are given in Maupin (1988) or Odom et al. (1996). For the numerical
implementation in the following section, the range-dependence is assumed to be con-
fined in the interval [z, zg] as illustrated in Fig. 3.1, and the boundary conditions
for the equation of motion are set according to that interval.

The particle displacement vector w = (w,,w,,w,) is Fourier transformed with

respect to y and ¢:

+00
wiz,zkw) = [ [ wiz,y,z t)exp(iky — iwt)dydt (3.1)
The stress is
T=(T() T(X) T(ks))=(¢t t, t;), (3.2)
where the unit vectors of coordinates are (%;,%2,%X3) = (X,¥,%) and the traction

vector is t; = (Tiz, Ty, Tiz)? for ¢ = 1,2,3. By introducing the six-component
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displacement-stress vector u = (w, t)T, the equation of motion and the constitutive

law for elasticity can be written as the first-order system:

M o Au—FS +F° (3.3)
oz
with the boundary conditions
(tslm = [W]m =0, (3.4)

where the traction vector on the vertical plane whose surface normal is X, t = t; =
(Tzzs Tzy, Tzz)* and the external source F and the effective source F° resulting from

non-planar boundaries are

0
F° = {fs }, (3.5)

0
: (3.6)
{ (t] 6 (2 — hm(z)) }

The source F? is a localized volume force located along the interface which is converted

FO

from a traction discontinuity at the interface by the representation theorem (Burridge
& Knopoff 1964). The square brackets [-], in eq. (3.4) indicate the jump of the
enclosed quantity across the mth interface, taken from bottom to top. The range
coordinate, z in eq. (3.3) represents the propagation direction and the differential
operator A on the r.h.s. of eq. (3.3) contains only the derivatives with respect to
the depth coordinate, z. For horizontal transmission in transversely isotropic elastic

media, the displacement-stress vector can be written as
u = ( wy 0 w, 7oz 0 T )T for Rayleigh (P-SV) waves, (3.7)
u = ( 0 wy, 0 0 = O )T for Love (SH) waves, (3.8)
and in a fluid layer

T
u= ( T:.,'Vr 00 p 00 ) for acoustic waves, (3.9)
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where the symbol P represents the compressional waves, SV the vertically polarized
shear waves, and SH the horizontally polarized shear waves. In eq. (3.9), p is the

pressure, V; is the x-component of the velocity. The matrix differential operator A is

Au A12
A= . (3.10)
A21 A22
For a TI elastic medium, the submatrices of the differential operator A are
([ o ik, AN E 2
All . ikg 0 0 (3.11)
\ 2 0 0
(L 0 o
A? = 1o L oo (3.12)
\0 0 %
( —puw? 0 0
AT = 0 —pw’—;’—,(L%) ik, WE2 4 2 (ik L) (3.13)
\ 0 lkyLaz'f‘ (kyzNF) —pw? — aaz (AC-F2 a) +k2L
(0 i
A® = | ik 428 o o |, (3.14)
\ “=x 0 O

where the elastic parameters in a TI medium are defined for horizontal transmission

as (Takeuchi & Saito 1972)

\/—%- = ap  for P-waves (3.15)
L

\/; = By for SV-waves, (3.16)
N

\/—; = Pp  for SH-waves, (3.17)

and for vertical transmission, they are given by

C

; = av for compressional waves, (3.18)
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\/g = Bv for shear waves. (3.19)

The a and S represent the compressional and shear velocities, respectively, and the
subscripts H and V denote horizontal and vertical. For a fluid layer, the differential

operator A is

($2(:8)+7 0 0

A = 0 00 (3-20)
\ 0 00
{—wzp 00

AT = 0 00 (3-21)
\ 0 00

A' = A2 =), (3.22)

where p is the density and 7 is the compressibility such that the sound speed ¢ =
(#) %. In 1-D range-independent and 2-D range dependent media, the matrix dif-
ferential operator A can be written in block diagonal form indicating the separation
of the P-SV terms from the SH. This block diagonal form is also possible for TI
media.

We represent the solution of the equation of motion (3.3) as the superposition
of forward(+) and backward(-) propagating local modes u”(z; z, k") multiplied by
the range dependent mode amplitude ¢.(z), where a set of local modes at z = z’
are computed from the locally equivalent depth-dependent but range independent
structure:

u= { iy } = S ete) o (% [ (0) ) { ‘;((::)) } (3.23)
where k(() is the local horizontal wave number, and z, denotes the source point.

By substituting eq. (3.23) into the equation of motion (3.3), the evolution equation

for the range-dependent mode amplitudes is expressed in terms of both forward(+)
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and backward(-) propagating modes (Marquering & Snieder, 1995):

8 (c*(z)) _ (B“""(z) B"“(z)) (c*(z)) . (3.24)
0z \ e~ (z) B™*(z) B~ (z)/ \c(2)
with the boundary conditions

at =1z (3.25)

c =0 at Iz =ZzR. (3.26)

The matrices B¥*, B+—, B+ & B~ are the n xn matrices of complex values and de-
scribe forward-to-forward, forward-to-backward, backward-to-forward and backward-
to-backward coupling, respectively. The vectors ¢t and ¢~ are n x 1 column vectors,

where n is the appropriate number of modes required to accurately model the signal.

3.1.2 Invariant imbedding

If we specify a geometry defined by a heterogeneous region sandwiched between two
homogeneous (plane layered) regions, and assume a signal incident from the left onto
the heterogeneous region, Eq.(3.24) defines a 2n x 2n boundary value problem (BVP)
for the amplitudes of the forward and backward propagating modes. A schematic of
a range dependent medium is shown in Fig. 3.1. The boundary values are c*(zr),
known at z = z; on the left side of the heterogeneous region, and ¢~(zr) = 0 on the
right side of the heterogeneous region at z = . Stable numerical solution of the
two point boundary value problem defined by eq.(3.24) and the two boundary values
is problematic due to the presence of both growing and decaying mode amplitudes
within the heterogeneous region. This situation is exacerbated if the heterogeneous
region is extended in range. Kennett (1984) and Marquering & Snieder (1995) applied
the invariant imbedding technique (IIT) to the evolution equation (3.24) and its
boundary conditions (3.25) & (3.26). The main strategy of IIT is to reformulate the
original BVP in terms of the associated initial value problems (IVP’s) via the Ricca.ti

transformation (e.g. Dieci 1992).
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The procedure (Marquering & Snieder, 1995) is to define a transmission matrix
T(zr,zL) that connects the c*(zL) on the left side of the heterogeneous region with

the c*(zg) on the right side of the heterogeneous region
c+(:z:R) = T(zg, z[,)c+(z[,). (3.27)

In addition a reflection matrix R(zg,z) is defined that relates the backscattered
component ¢~(z.) from the heterogeneous region to the forward propagating com-

ponent ct(z.) at the left side of the heterogeneous region
¢ (zz) = R(zg,zL)ct(zL). (3.28)

We differentiate eqs.(3.27) and (3.28) with respect to zr,

9 + _ 9 s 0+ -

ach (zz) = 6:1:[,Tc (z[,)-i-Taz_Lc (z£)=0 (3.29)
0 _ A a .

. (zL) = 92 B¢ (zL)+R_3z[,c (zc) (3.30)

The derivatives of the amplitude vectors are replaced with their expressions from
Eq.(3.24), and ¢~ (zL) can be removed from the equation using Eq.(3.28). After
removing a common factor of c*(zg), we arrive at coupled matrix differential Riccati

equations (DRE) for the reflection and transmission matrices for the heterogeneous

region:
—Q—R =B *4+B"R-RB** —RB* R (3.31)
drr
and
iT = -TB** — TB* R. (3.32)
dzr
with the initial conditions
T(:BR, .'L‘R) =1 and R(:L'R, .’L'R) = 0. (3.33)

I is the n x n identity matrix.
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Now we investigate the existence and the stability of the solutions of coupled
matrix DRE’s (3.31) & (3.32) from the properties of the coupling matrix B. We can

decompose the coupling matrix into the amplitude and the phase:

Bt = pphten{i [ k@ -k ©) 4}, (334
By = b e {i [ k@ +r@©) d}, (3.35)
Byt = —bten(i [(b@ -k &), 330
By = —orpbe oo {i [(—Fe)+ k@) g} (3.37)

The amplitude qu is a function of material properties and the eigenfunctions of ¢**
and r** modes. Since the eigenfunctions of ¢** backward propagating mode equals
that of the forward propagating mode, and the eigenwavenumber &, is merely replaced

with —k, for the backward propagating mode, the amplitude B becomes

-

R++ — B+ — B—+ = B—
Bft =B~ =B+t =By

B,r, (3.38)

From the anti-Hermicity of the coupling matrix B (Maupin, 1988),

{B+}' = B+, (3.39)
{B+}' = B, (3.40)
{B-}' = -B—, (3.41)

it can be proved that the amplitude B is also anti-Hermitian, e.g.,

Bt} = —pephea(i [BE@-FE©) &) e
Bt = ipBeen (i [ (O - () &), (3.43)

where { represents the adjoint. Therefore, by equating eq. (3.42) and eq. (3.43),

Bt = —B. (3.44)
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If we assume that there is no wave propagation in the y-direction, i.e., the wavenumber
ky, = 0, and there is no mode coupling between Rayleigh waves (P-SV) and Love
waves (SH), then the elements of B become pure real (see eq. (25) of Maupin, 1988)

and the amplitude matrix B becomes antisymmetric:
BT = —B, (3.45)

where T is the transpose. From the antisymmetry of B, the following properties can

be derived:

{B—-} = -B*+, (3.46)
{B+}" = B+, (3.47)
{B-+}" = B, (3.48)

i.e., the coupling matrix B(z) is the particular (pointwise) Hamiltonian (Dieci, 1992):

. ( B+ B+ )
B(z) = ) (3.49)
B

-+ _B++T

and B*~T = B+~, B—*T = B~+. When the coupling matrix B(z) is the particular
Hamiltonian, the DRE for the reflection matrix (3.31) becomes the symmetric DRE.
Under the condition (3.49), all solutions of (3.31) are symmetric (Dieci 1992):

{R(zr,z1)}’ = R(zp,zL), (3.50)

and existence and monotonicity properties are guaranteed, which do not generally
hold for other DRE’s. The symmetry of the reflection matrix reduces the number of
matrix elements to be numerically solved from N? to N(N + 1)/2. It also provides a
useful check on the accuracy of computation for the test.

For numerical computation of the transmission and the reflection matrices, the
DRE for the transmission matrix eq. (3.32) must be solved after the DRE for the
reflection matrix eq. (3.31) is numerically integrated backward from the point Xg.
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One advantage of the invariant imbedding approach is that there are built in
checks on the accuracy. The reflection matrix R can be checked for symmetry. In

addition, energy conservation demands that
R+ T’ =L (3.51)

Other numerically stable techniques for solving the coupled mode evolution equa-
tion (3.24) are Mattheij’s (1985) continuous decoupling transform, employed by Evans
(1986) for a range dependent fluid medium, and the very powerful Lanczos method
used by Knobles (1994).

Mattheij’s continuous decoupling transformation was used by Evans (1986a) to
stabilize the Thomson (1950)-Haskell (1953) propagator matrix technique. The de-
pendert variables in the Thomson-Haskell method are usually the stress and dis-
placement, whereas the IIT takes R and T as the dependent variables. Because the
two methods are solving the same boundary value problem, it is of course possible
to transform one method to the other (Buchen & Ben-Hador, 1996). There are,
however, significant algorithmic differences between Mattheij’s stabilized Thomson-
Haskell method and the IIT (Evans, 1986b). Knobles (1994) found Lanczos’ method
to converge rapidly, and it appear to have numerical advantages for very large prob-
lems. Although we have found the computation of the local mode bases to be the
most time consuming aspect of the problem.

We have adopted the IIT because of the built in numerical checks stated above,
and physical relevance of the reflection and transmission matrices R and T. These
matrices are easily accessible as intermediate products at any point in the solution of

the matrix Riccati equations (3.31) and (3.32).

3.1.3 Mode amplitude initial values and source representation

For our 2-D range-dependent model, a unit line source is used to represent the wave

excitation. Its normal mode decomposition will be derived from the product of the
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Green’s function and the sources in this subsection. The general solution for a range-
dependent medium is represented as an integral of a product of the Green’s function
for a local depth-dependent structure and the external source and the effective source
excited by range-dependence. The dyadic form of the Green’s function for a six-
dimensional displacement-stress vector is (Park, & Odom, 1997b)

Gij(r,r') =) uf(z; 2, w)uf (2 z',w)ei(¢'(‘)+§), (3.52)
where
¢r(e) = [ F(©)de. (3.53)

Following Park & Odom (1997b), the integral of the product of the Green’s func-
tion (3.52) and the sources F¥ of (3.5) and F? (3.6) yields the solution for a range-
dependent medium:
u(z, 5w) = / Y Gii(r,r) (FF + FP) v,
J

= Y ca(z)u’(z;7,w)e ), (3.54)
[+ 4
where the range-dependent modal coefficient c, is

ce(z) = - <u'(Z;z'),F* > dz’ + - <u'(«;z'),F° > dz’, (3.55)
zL

Ts

the Hermitian inner product is defined as (Maupin, 1988)

o0
<u,v>= /0 u'Xvdz, (3.56)

and the matrix X is

0 i 100 0 -
x:( “)@ 010 =(_ "). (3.57)

t 0
001



54

The initial condition on ¢, is

e(z =zL)

Tz
<u'(Z;2"),F* > dz’
Zs

- [
[llweaeaaje o

I

The initial condition on ¢, (3.58) is a representation of the source in terms of the

modal decomposition. For a unit line source in the spectral domain,

f
f*(z,zw) =4 £, §w)s(z - z.)8(z — z,) (3.59)
f

Z

where the source time function is Fourier transformed:

gjw) = ’ g(t)exp(—iwt) dt. (3.60)
The representation of the source becomes

el = i{wl(zsTs,w)fr +w)(2s2s,w)f:} §(w)  for Rayleigh waves, (3.61)

-

¢} = iw)(z;Tsw)fy§(w) for Love waves, (3.62)
¢ = %V;(z,; Zs,w)fr §(w)  for acoustic waves, (3.63)

3.1.4 Stochastic mode coupling due to boundary roughness

In this subsection, we consider the problem of acoustic and elastic wave scattering
from a stochastic rough boundary like the seabed. We assume a rough surface to be
described in terms of its deviation from a smooth reference surface (see Fig. 3.2). The
interface depth h(z) is partitioned into a deterministic part and a small stochastic
part (DeSanto & Brown, 1985):

h(z) = (h(z)) g + ev(x), (3.64)



(]
o

Figure 3.2: Schematic representation of the true boundary and the mean boundary.
N is the normal vector to the true boundary and ﬁo is the normal vector to the mean

boundary.
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where (...) indicates the ensemble average over all possible realizations and (< 1)
is a relative amplitude. The stochastic process, 7(z), are defined as a zero-mean

process:

(e =0, (3.65)
and the normalized autocorrelation function is defined as

N -nl) = %Z;Z»ﬁ (3.66)

where (y(£)7(n)) g is the covariance function and < 4 > is the variance of 7(z).
We look for a solution of the equations of motion in the form of an expansion in

power of € (Sobczyk, 1984):
u(z, z) = ug(z, 2) + euy(z, z) + e2uz(z, 2) + ... (3.67)

We employ the 1st order perturbation of the coupled mode method of Park & Odom
(1997b). Substituting eq. (3.67) into the equation of motion (3.3) and the boundary
condition (3.4) and applying lst order perturbation theory to both the equations of

motion and the effective source converted from the jump in the boundary condition

yields
O) : Z0 = Aug+F*+F, (3.68)
[To(2)], =0,
3111 1
0(6) : 6_1: = Alll + F ’ (3.69)

[T1(2)],. =0,
where the sources F° = (0, f°) and F* = (0, f1)T are

£°

3= (hn)  [To(%)], 8(z — (hn) g), (3.70)

£ = 3 (ha) (B, + gy [ToN)] 82— (ha)g). (371)
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The 0% order system (3.68) describes propagation in a deterministic range-dependent
medium with the mean structure. We refer to the 0% order solution ug as the primary
field, i.e., the field when there is no random boundary perturbation in the reference
medium. The effective source F! in the 1% order system (3.69) consists of two terms.
The first term represents the effect of the slope of the mean boundary on the 1% order
solution uy, and the second term describes the excitation of the 1% order solution of
the wavefield due to the scattering of the the primary field by rough surfaces. We
refer to the 1** order solution u, as the scattered field.

The equations of motion for the primary field (3.68) and for the scattered field
(3.69) have the same form but the source terms are different. We can express the
solution of the scattered field as an integration of a product of the 1% order body-
force equivalent F! and the Green’s function for the primary field. Therefore, as in
eq. (3.23), the displacement vector for the scattered field u,; is also represented as a

sum of local modes with stochastic mode amplitude d,(z) (Park & Odom, 1997b):

ni(z,2) = S d5(a) exp (Fi [ K(6)ck) {:’:((z_”)) } (3.72)

The evolution equation for the stochastic mode amplitude d.(z) can be derived in

the same fashion as the deterministic mode amplitude c,(z):

ad
7::‘ = Z qudr + ; SqrcH (3’73)
where the matrix S,, is defined as
S =Dy +Y_ EuB,r. (3.74)

The coupling matrix By, in the eq. (3.73) has the same form as eq. (3.24), and
similarly, it governs the mode coupling between the scattered field due to the deter-
ministic range-dependence. The matrix S,, describes the mode coupling from the

primary field ug to the scattered field u; due to the boundary roughness, i.e., surface
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scattering from uo to u;. We refer to S;, as the 1st order stochastic coupling ma-
trix. To more clearly illustrate the origin of the stochastic (incoherent) part of the

wavefield, we rewrite the evolution equation (3.73) as
ad,
y Z B.d, = Z Sgrcr. (3.75)

The term on the r.hs. of eq. (3.75) is the source of the stochastic part of the
field. We can therefore interpret the term Y, S;.c. as the stochastic effective source.
The matrices D and E for Rayleigh waves in a transversely isotropic medium are

calculated in the Appendix.

3.2 Numerical Results

In this section we study the effect of the transverse isotropy, and the range dependence
on the coupling matrix, the transmission matrix, the reflection matrix, the forward
propagating and the backward propagating wavefields in the frequency domain, and
the synthetic signals for a range-dependent shallow model. We also examine the effect
of the boundary roughness on the stochastic coupling matrix. The code DISPERS0
(Saito, 1988) is used to generate the eigenfunctions of the local modes, from which the
coupling matrix B,, is computed. By numerically integrating the coupled DRE egs.
(3.31) and (3.32), the transmission matrix T and the reflection matrix R are com-
puted for a given frequency. The forward propagating and the backward propagating
wavefields in the frequency domain are generated from the the matrices T and R.
Signals in the time domain are synthesized from the inverse Fourier transformation
of the spectral wavefield. The stochastic coupling matrix is also computed.

The computation were carried out on a Sun SPARC station LX. The numerical
process consists of four steps. The first step is calculating the eigenfunctions of the
local modes for each point in range at one fixed frequency. The eigenfunctions for a set
of local modes for our test problem require 2.6 Mbyte disk storage when only the first

four modes are computed. A disk space problem may be encountered when generating
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multiple modes at multiple frequencies. This problem can be overcome because the
eigenfunctions are no longer necessary after computing the transmission/reflection
matrices at a particular frequency. That is, all local normal modes, except at the
receiver point and the source point, can be deleted at the end of the first step. For
our computational model (Fig. 3.3), it takes 20 seconds of cpu time to compute
a set of four eigenfunctions at a single range point for one frequency using double
precision. We found that at higher frequencies (20 Hz) for our low shear speed
model, quadruple precision was necessary to generate accurate eigenfunctions. This
significantly increased the computation time. At the second step, the coupling matrix
B is computed from the eigenfunctions. The reflection/transmission matrices R & T
are computed by numerical integration of the coupled DRE, which takes 143 seconds
cpu time for one frequency for our test model. Next, the wavefields in the frequency
domain are generated from the matrices R and T. As the last step, the signals in the
time domain are synthesized by inverse Fourier transforming the wavefields generated
for multiple frequency points. The third and the fourth steps take relatively less cpu
time than the first and the second steps.

3.2.1 Computational model

Our computational model consists of a heterogeneous region (0 m < z < 76 m) and
two homogeneous (plane layered) regions (z < 0m) and (z > 76 m). The slope of the
interfaces in the heterogeneous region varies up to 45°, and the material properties in
each layer are assumed constant. All of the numerical results are computed from the
deterministic model except the stochastic coupling matrix in the last subsection. The
material properties of the homogeneous region (z > 76 m) are the same as the model
of Odom et al. (1996) which was taken from Berge et al. (1991). The model structure,
the velocity and the density profiles are illustrated in Fig. 3.3. The model consists
of an isovelocity water layer over sediment layers followed by the hard bottom. The

thickness of a water layer varies from 44 m to 20 m as z increases from 0 m to 76
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m. The sediment layers are made of 12.5 m thick TI upper layers, followed by 12.5
m thick isotropic lower layers. There is a large contrast in the velocities and the
density between the sediments and a hard bottom. The TI layer is characterized by
n' = 0.012 and ¢’ = 0, where the dimensionless parameters (Takeuchi & Saito 1972)

are:
, F
mlep=1— 2 3.76
"=l-g=1-—2—m (3.76)
and
C
f=1—¢g=1—-—=— 3.77
F=1-4=1-7, 3.77)
Values of
7=0 and ¢'=0 (3.78)

indicate isotropy. The departure from isotropy increases as 7" and /or ¢’ change from
0. In Fig. 3.3, the vertical displacement eigenfunction of the first four local modes
are plotted against depth at 10 Hz. The first mode, whose phase velocity is 145.6
m/s, propagates along the water/sediment interface, i.e., a Stoneley wave (Scholte
wave). The energy of the second and the third modes are mainly confined within the
sediment layers, while the fourth mode radiates into the hard bottom.

The coupling matrix B is computed from the eigenwavenumbers and eigenfunc-
tions of the local modes. These coupling matrices become the coefficient matrices of
the coupled matrix DRE which will be solved in the following subsection. The plots
of B are presented in Odom et al. (1996).

3.2.2 Reflection and transmission matrices and forward and backward propagating

wavefields

In this subsection, we describe the numerical solution of the matrix DRE’s eqs. (3.31)
and (3.32). We solved for the reflection and transmission matrices with FORTRAN

code written for the direct numerical integration of complex matrix DRE’s. The code
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is built around a module CDRIV2 from the SLATEC library, which solves the initial
value problem for systems of first order ordinary differential equations (Gear, 1971).

First, the matrix DRE (3.31) for the reflection matrix R is numerically integrated
backward from zgp = 76 m to z1, = 0 m with the initial value (3.33) at zg. From the
computed coupling matrices and reflection matrix, the matrix DRE (3.32) is similarly
solved for the transmission matrix T.

From the transmission and the reflection matrices, the range-dependent mode
amplitudes cf(z.) and c;(z,) at the receiver point (r = r,) are computed by the

relations (3.27) & (3.28) and the initial values ¢ of (3.58):
C:(.‘L’,-) = z: qu(zkv .’B[,)Cg = Z Tq"’(zﬂv IL) {iW"(Z,; I,,) - fs} * (379)
c; (zr) = zRq,(zR, ) = z Ry (zgr,zL) iw™(2zs; z5) - £°},  (3.80)
where the source f* is assumed to be located at the point r =r, = (zs,0, z,) and the
receiver point and the source point are assumed to be placed outside the heteregeneous
region, i.e., T, < zr < 7z < z,. Then the spectral wavefields at the receiver point

are generated as a function of depth with a given frequency:

2

wt(zznw) = L glkaRe} @ut()exp (—i [ k(€ de)
- ig(qu)qu(za, z2) {iw™ (2 24) - £} u(2)
X exp (—i /= ’ k() dg) , (3.81)
w(zmanw) = TelkR)G e ut)exp (i [ k() de)
= é;g(kqﬁ)&,(za, 2r) (W™ (z4i2.) - £} u(2)
x exp (i /,,. "' k9(£) d{) , (3.82)

where g(R) represents geometric spreading function (Aki & Richards 1980):

7 5
9(kR) = \/wqu = \/wkq(x, —z) (3.83)
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The computed reflection matrices are shown in Fig. 3.4 for both an isotropic model
and a TI model. In the case of an isotropic model, the most prominent elements are
Ra3 or Rj3;, which describe mode coupling from ¢} to ¢ or from ¢ to ¢;. Those
two modes, the 2nd and the 3rd modes, propagate just above the sediment-basement
boundary, which has a large impedance contrast. The large impedance contrast,
and relatively high amplitude of the 2nd and 3rd modes at the sediment-basement
interface result in the strong coupling produced by the rising basement.

Addition of transverse isotropy to sediments suppresses the reflected energy of all
the elements Ry, for ¢ & r = 1,2,3,4. The greater material stiffness for horizontally
propagating waves in the TI medium generally reduces the amplitude of the low-order
TI modes, {cf,cf,cf,cf}, whose energy mostly propagates in the sediments, more
than the higher modes (Odom et al. 1996). The element R44 therefore becomes
relatively stronger. As the fractional amount of modal energy in sediments decreases,
the reflection from the range dependence in sediment layers also decreases.

Fig. 3.5 shows the transmission matrices for both an isotropic and a TI model.
The diagonal terms of the transmission matrices, which describe the self-coupling
of modes, are much stronger than the off-diagonal terms. Especially Ty (coupling
from ¢} to c}) is stronger, which means that the fourth mode is transmitted through
the heterogeneous region almost without disturbance. That is because the fourth
mode mostly propagates in the homogeneous hard bottom, which is placed below the
heterogeneous sediments. The T3 and T5; elements indicate coupling between ¢ and
¢t for the same reason that R,3 or Ray are strong.

The computed reflection matrix R is symmetric to machine precision as demanded
by eq. (3.51). In addition, the off-diagonal terms of [R|? + |T|? are on the order of
10~5 as required by energy conservation.

The generated wavefields at 10 Hz are presented for the two cases when the inci-
dent wave is a fundamental mode (Fig. 3.6) and when the excitation is a unit line

force (Fig. 3.7) for both an isotropic model and a TI model. In Fig. 3.6, the shape
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Figure 3.4: The reflection matrices computed at 10 Hz for (a) an isotropic model and
(b) a2 TI model. The real parts are plotted. Columns and rows represent incident

modes and outgoing modes respectively.



(a) R, ISO

b)R, TI
0 1 2 3
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Figure 3.5: The transmission matrices computed at 10 Hz for (a) an isotropic model
and (b) a TI model. The real parts are plotted. Columns and rows represent incident

modes and outgoing modes respectively.



(@) T, IS0

)T, T
0 1 2 3
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of the wavefield in an isotropic model is changed from the fundamental mode form to
the oscillating form indicative of mixed modes after the transmission. This indicates
that some amount of the fundamental mode energy is converted to the higher modes
after transmission. The energy is spread over a greater depth range. The incident
Stoneley wave along the water sediment interface is partly converted to higher order
modes propagating in the sediment. For a TI model the effect of the lateral hetero-
geneity on the transmitted wavefield is less than for the equivalent isotropic model.
For both cases the conversion to backward propagating waves is quite small. (Note
that the backward propagating wavefield in Fig. 3.6 (a) and (b) have been multiplied
by a factor of 10.)

The spectral wavefields are also generated for the excitation by a unit line force,

which shows more complicated coupling among all four modes (Fig. 3.7)

3.2.3 Synthetic signals

Signals in the time domain are synthesized by inverse Fourier transforming the spec-

tral wavefields

ut(t; z,,2) = /oo ut(z;z,,w) 8(z — z) exp (iwt) dw. (3.84)

For that purpose, the spectral wavefields are generated at from 10 Hz to 12 Hz with
0.2 Hz increments. The time domain signals are 5 seconds long with a 2-Hz bandwidth
between 10 Hz and 12 Hz.

Spectra with such a narrow bandwidth exhibit significant sidelobs in the time
domain. To suppress the sidelobs and to generate realistic signals, a Hanning window
is applied to the spectra before the transformation.

In Fig. 3.8, the arrival preceding the fundamental mode appears after transmission
through the range-dependent region, which clearly indicates the mode coupling from
the fundamental mode to higher modes with higher group velocities. Synthetic signals

for the excitation by a unit line force show both mode coupling and dispersion of



Figure 3.6: The vertical components of the displacement wavefield are generated for
an isotropic model and for a TI model when incident wave is a fundamental mode.
The solid line is used for the incident wave w}(z;z = zr, f = 10 Hz), the broken line
for the forward-propagating wave w}(z;z = zg, f = 10 Hz), and the dotted line the
backward-propagating wave w; (z;z = zr, f = 10 Hz). The backward-propagating

waves are ten times magnified for comparison.
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Figure 3.7: Same as Fig. 3.6 except that excitation is a unit line force.
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modes (Fig. 3.9). Due to mode coupling among the multiple local modes, the shape of
the signals becomes very complicated after transmission through the range-dependent
zone and the presence of propagation induced dispersion, and it is much more difficult

to interpret those signals.

3.2.4 Stochastic coupling matriz

To illustrate the effects of randomly rough interfaces on the mode coupling, we as-
sume that the stochastic coupling matrix S can be decomposed into a product of the

deterministic part § and the stochastic process ¥(z):
S = 4(z)$ (3.85)

By adopting this decomposition, we have assumed that all boundaries have the
same statistics. If this were not the case, the decomposition given by eq.(3.85) could
not be carried out. We should compute the mean square of the stochastic coupling
matrix (S?); to include the effect of multiple rough boundaries with different statis-
tics. The matrix § is deterministic and contains the effects of the material properties
and the local normal modes.

The deterministic part S of the stochastic coupling matrices S for rough surface
scattering are presented in Fig. 3.10. The columns and the rows of the plot of the
matrix S represent the primary field modes and the scattered field modes, respectively.
The first column, 5’1,. for r =1,---,4, is much stronger than the other columns. The
elements 3;, describe the stochastic mode coupling from ¢f to dy, d;, d3 & ds. The
Stoneley wave (the first mode cf) is particularly strongly affected by rough boundaries
because it is confined to the vicinity of the interface. There is significant scattering
from the Stoneley wave to higher order modes due to interaction with the rough

surface.
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Figure 3.8: Synthetic signals (a) at (z,z) = (0m,40m) and (b) at (z,z) =
(800 m, 20 m) with a 2 Hz bandwidth between 10 Hz and 12 Hz when incident wave

is fundamental mode.
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Figure 3.9: Synthetic signals (a) at (z,z) = (0m,40m) and (b) at (z,z) =
(500 m,20m) with a 2 Hz bandwidth between 10 Hz and 12 Hz when a unit line

force is excited at (z,z) = (0m,20 m) in water.



(a) Signals at x = 0 m
2 4 6 8 10
t [second]
(b) Signals at x = 500 m
2 4 &5 8 10

t [second]




Figure 3.10: Stochastic coupling matrix § computed (a) for an isotropic model and
(b) for a2 TI model. Columns and rows represent the modes of the primary field and

the modes of the scattered field, respectively.
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3.3 Summary and Conclusions

We have developed a numerical code for simulation in range-dependent media from
the coupled mode theory for fluid-elastic media. A realistic range-dependent shal-
low water model, which may also include transversely isotropic sediment layers, is
introduced. We have computed the transmission and the reflection matrices, the for-
ward/backward propagating wavefields, and the time domain signals for a realistic
deterministic range dependent model. The numerical results reveal the various and
complicated effects of the range-dependence and transverse isotropy on the shape of
the wavefield in the frequency domain and the signals in the time domain. The effects
are caused by the energy conversion to different modes due to coupling, broadening
of the energy propagation channel (waveguide) and the change in geometry of the
propagation channel.

The stochastic coupling matrices are also computed for random rough boundaries.
The results show that stochastic boundary roughness plays an important role in
scattering of the fluid/solid interface waves.

Probably the greatest advantage to employing coupled modes for investigating
range dependent wave propagation is the physical insight provided. There are five
different computational products that can be examined: 1. The coupling matrices
B and S describe how much of mode r is mixed into mode ¢; 2. The reflection
and transmission matrices R and T give information on which modes have been
transmitted or reflected by the structure essentially defining the spatial pass bands
and the stop bands of the structure; 3. Single mode results in transform (mode)

space; 4. Multi-mode results in transform space; 5. Time domain signals.



Chapter 4

THE EFFECT OF STOCHASTIC ROUGH INTERFACES
ON COUPLED-MODE ELASTIC WAVES

The effect of stochastic fluctuations of the interface boundaries has been incorpo-
rated into the elastic coupled mode equations for 2-D range dependent media. We
assume the medium to be characterized by some deterministic range-dependent lay-
ered structure superposed with stochastic boundary fluctuations. The deterministic
range-dependent structure defines the reference structure, and the reference struc-
ture with superposed stochastic fluctuations defines the true layer boundaries in the
medium. The boundary conditions on the true boundary are expanded about the
reference boundary, and 1st order perturbation theory is applied to the boundary
conditions as well as to the equation of motion. The Oth order system and the
1st order system represent wave propagation in the deterministic model and in the
stochastic model with the first order perturbation of roughness, respectively. The
solution of the O(1) system is referred to the primary field. The solutions to the
first order system (O(e)) relate the coherent field and the scattered field. The two
wavefields of the O(e) system, the coherent field and the scattered field, are repre-
sented as vectors in an abstract local mode space, i.e., as the superposition of local
modes multiplied by the stochastic modal amplitudes. Propagation of coupled mode
elastic waves in a 2-D deterministic range-dependent medium is represented by a
unitary coupled-mode propagator. The evolution equation for the stochastic medium
and the stochastic coupling matrices, which acts to convert the coherent field to the

scattered field, is derived. Enforcing energy conservation on the O(¢) system leads



to the requirement that the propagator for the stochastic medium must satisfy a
Lippmann-Schwinger type integral equation, whose solution can be represented by
a formal perturbation series for the multiply scattered wavefields. The Dyson equa-
tion for the mean propagator and the Bethe-Salpeter equation for the covariance of
the propagator are derived using diagram methods. These formal theoretical results
are valid to all orders of multiple scattering. In the second part of the paper the
Born approximation to the Lippmann-Schwinger integral equation is used to extract
information about attenuation due to rough surface scattering and in the design of
an inverse problem for the boundary roughness variance and correlation length. By
defining the modal scattering cross section, the formula for the scattering Q! from
the Born approximation for the scattered field is derived. The modal scattering cross
section and scattering @, for a range dependent model with stochastic roughness are
computed for both exponential and Gaussian correlation functions. Finally, a formula
for the power spectrum of the coherent field is derived from the Born approximation,
and an inversion for the roughness variance and correlation length is designed by

power spectrum fitting.

4.1 Statistical Description of Rough Surfaces

To characterize the medium, we define the boundary roughness function 4(z) as the
deviation of the boundary function of the exact structure h(z) from the boundary

function of the reference structure A%(z):
h(z) = b(z) + ex(z), (4.1)

where (< 1) is a relative amplitude of the RMS height of roughness compared with
the overall variation of the reference boundary. The function A%(z) is deterministic
and assumed to be known. A schematic of the relation between the exact boundary

h(x) and the reference boundary h%(z) is presented in Fig. 4.1.
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Figure 4.1: Schematic representation of the exact boundary and the reference bound-
ary. N is the normal vector to the exact boundary and Nj is the normal vector to

reference boundary.
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The statistical moments and parameters of the random roughness function v(z)
relate directly to those of the boundary function A(z) because the reference boundary
function h°%(z) is deterministic. Hereafter, we will use the roughness function to study
the effect of the exact boundaries on scattering and their statistical characteristics.

We assume the reference stucture is already known from either direct measure-
ment or indirectly, e.g., by solution of some inverse problem. We allow it to be
any deterministic range dependent structure, e.g., a shallowing ocean, a thinning or
thickening crust, or a mountain root.

We summarize the statistical properties of the stochastic process v(z). Most of

the properties are quite standard. However, we include them here for later use.

1. ¥(z) is assumed a zero-mean (or centered) process:

(7)E = 07 (4.2)

where (...) indicates ensenble average over all possible realization.

2. The averaged quantities (y(z1)v(z2) - - -¥(z:)) g depend on the configuration of
the points z;,z2,...,z; because for most random media there exists a corre-
lation length (a scale length of heterogeniety) a, i.e., the values of v at points
of separation larger than the correlation length a are uncorrelated. To express
the dependence of the averaged quantity on the correlation length, we introduce
the l-point correlation functions I'i(zy, z2,. .., z;) and we expand these averaged
quantities in the following cluster expansions in terms of the /-point correlation

functions (Frisch 1968; Nayfeh 1973):

(v(z1)1(22))g = Ta(z1,22)
(y(z1)v(z2)v(z3))g = T3(z1,22,73)
(Y v(e2)v(z3)r(2a))g = Ta(z1,72)l2(23, 24) + Ta(z1, 23)T2(22, 24)
+ Lo(z1, z4)T2(22, 23) + Ta(z1, 22, T3, 74)(4.3)



(z)¥(z2) - vz))g = Y. Tulzr,-..oq)Thlz, .. oozy) -
li4-tl,=l

X Fl,(zlv ey 1:1,)

where [; > 2. Thus the summation in the last equation is extended over all
possible partitions of the set z1,z3,...,z into clusters of at least two points.
In the case of a centered Gaussian stochastic function, only the two-point cor-
relation function I';(z,, z2) is nonvanishing; moments of 2/, (y(z1) - - - ¥(z21)) g,
can be written as sums of %f%! terms, each of which is a product of two-point

correlation functions; moments of odd order vanish.

. The l-point correlation function has the following property (Frisch 1968):
['i(z1, z2,.-.,zi) vanishes whenever the points z;,...,{ are not inside a com-
mon sphere whose diameter equals the correlation length a. Observe that the

moment,

(‘7(-’31)‘7(-’52)‘7(133)‘7(1?4))5 = Fz(-‘b‘u l‘z)rz(l‘s, 14) + Fz(zl, zs)rz(zz, Z4)
+ La(z1, 24)T2(22, 23) + Tu(z1, T2, 23, 24 (4.4)

do not satisfy this condition. If, for example,

|$1 - .’Bgl <a; l23 - I4| < a; |$1 - :z:3| >a, (4.5)

then
(v(z1)¥(z2)7(23)7(24)) g = ['2(Z1, 22) (23, T4) # 0, (4.6)

or if
Ty —T3| < a; [z2—z4] <@; [z1—23| > g, (4.7)

then

(v(z1)v(z2)7(z3)7(24)) g = Ta(21, 23)T2(z2, 24) # 0. (4.8)



4. Especially, the 2-point correlation functions I';(z1,z2) is defined as a product
of the variance of ¥(z), (¥%)g, and the normalized autocorrelation function
N(|z1 — z3|):

Ta(z1,22) = (72>EN(|:1:1 — z3)). (4.9)

The autocorrelation function N(|z; — z,|) has the property that N(r) = 1 for
T = |z1 — 25| = 0. As r increase N(r) will usually decay to zero, with the
shape of this decay being dependent on the type of surface and with the rate of
decay being dependent on the distance over which points become uncorrelated

(Ogilvy 1991).

5. v(z) is assumed to be a spatially stationary process. The definition of a station-
ary process is that any statistical properties do not depend on their absolute
position, i.e., the statistics of one section of the surface will be the same as the

statistics determined from a different section of the same surface.

6. 7(z) is assumed to be ergodic. A stochastic process is ergodic if any statistical
average taken over many different parts of one surface realization (spatial av-
eraging) is the same as an average over many realizations (ensemble averaging)
as long as the area over which the averaging takes place is sufficiently large for

a statistical description to be meaningful.

The fifth and the sixth properties may be assumed only for local wave propagation,
i.e., wave propagation through the media where the lateral change of the reference
boundary is smooth and continuous, the environment and the history of the material
evolution are similar, dynamic process on the interfaces are ignorable, and drastic
variations of material properties (types) do not occur over the propagation path. For
the global wave propagation, the fifth and the sixth properties may be assumed as
local concepts, i.e., 7(z) may be assumed locally stationary and locally ergodic.
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Rough surfaces can be characterized by their statistical moments. The first-order
moment, the mean value, of v(z) is always zero in our case. The second-order mo-
ment, the covariance, is the most frequently used among those statistical moments
for studying the characteristics of a stochastic process. The second moment provides
information on the dispersion, or spread, about the center of gravity of a distribution
(Rytov, Kravtsov & Tatarskii 1987). The covariance function can be determined by
the autocorrelation function and two statistical parameters, i.e., the variance (y2);
(or RMS height M) and the correlation length a.

The extent to which this roughness affects wave scattering behavior is the main
subject of this paper. Such effects can be studied by comparing the profile of the
surface with different autocorrelation functions as well as changing the statistical
parameters. Two convenient choices for the correlation function are Gaussian and
exponential. The Gaussian autocorrelation function is

2
N(r) =exp (-2—2) the Gaussian autocorrelation function, (4.10)

where a is a correlation length.

An alternative form of correlation function is exponential:
N(r) =exp (—2) the ezponential autocorrelation function. (4.11)

Fig. 4.2 shows two surfaces of the same correlation length. The upper surface has
a Gaussian correlation function, and the correlation function of the lower surface is
exponential (Ogilvy 1991). We use both the Gaussian autocorrelation function and
the exponential autocorrelation function for the numerical computation and compare
them.

Another important factor affecting wave scattering are two statistical parameters,
the variance and the correlation length. Each surface in Fig. 4.3 has a Gaussian
height distribution and the same RMS height. However, the surface profiles are very
different because of the different correlation lengths (Ogilvy 1991)
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Figure 4.2: Rough surfaces of the same correlation length (0.3 mm) but different
autocorrelation functions. (a) Gaussian autocorrelation function, (b) exponential

autocorrelation function (permission for use has been requested from IQP Publishing

Ltd.).






Figure 4.3: Gaussian rough surfaces of the same RMS height (0.5 mm) but different
correlation lengths. The correlation length a controls the rate of change of surface
height with distance along the surface (permission for use has been requested from

IOP Publishing Ltd.).
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4.2 1st Order Perturbation Theory Applied to Coupled Equation of
Motion and Boundary Conditions

The effect of stochastic boundary fluctuations from the reference structure has been
incorporated into the elastic coupled mode equations for 2-D range dependent media
by applying first order perturbation theory. The first order perturbation gives fairly
good results as long as the ratio between the RMS height of the roughness and the
overall variation of the reference boundary is small.

The equation of motion for an elastic medium can be written as a set of first-order
coupled equations for the 6-component displacement-stress vector, v = (u, T(%X))!

(Maupin 1988):

v .
a—z = Av + Fe. (4.12)

The boundary condition on the exact boundary is
[T(N)]n =0 for the n** interface, (4.13)

where
u t
V= =(u UV W Trx Tay T:z)? (4'14)
T(x)
0

F’ = ( ] ) §(r —ry), (4.15)

and the square brackets [...], denote a jump in the enclosed quantity at the ntt
interface. The external line force f* is applied at r = r,, and the matrix A for
a general anisotropic elastic medium is derived in Maupin (1988). The superscript
(...)! represents the transpose of a vector or matrix. Here the displacement-stress

vector v is assumed time-harmonic:

v(z, z, ky,w) = /_: /:: v(z, 2, y,t) exp(—iwt) exp(ik,y) dy dt. (4.16)

In Fig. 4.1, the exact boundary h(z), and the reference boundary h°(z), are

described schematically. A unit vector N is the vector normal to the true boundary
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h(z), and N, is the vector normal to the reference boundary. We will expand the
boundary conditions on the exact boundary about the reference boundary h%(z), and
apply perturbation theory to the boundary conditions as well as to the equation of
motion. The O(e) perturbation of the boundary roughness will be included in the
O(e) order system of equations.

Now we look for a solution of the equation of motion (4.12) along with the bound-
ary condition (4.13) in the form of an expansion in powers of ¢ (Bass & Fuks 1979;
Sobczyk 1984):

v(z,z) = vo(z, z) + evi(z, 2) + €va(z, 2) + ... (4.17)

Substituting eq. (4.17) into the equation of motion (4.12), and collecting terms by

their order in € yields

0(1):%% = Avo+F°, (4.18)
v
0(5):-3?‘ = Av,. (4.19)

We also apply the same perturbation procedure to the boundary condition eq. (4.13).
Expanding the boundary condition eq. (4.13) about the reference boundary h9(z)

yields
[TR), + (o) g7 [PO0] |y + 37 61 gz [TV |+ =0, (220
where
a?v,, = NV
- 1 #2,0,1) (5%’%’3%)

B 1 8 ,0
= s (62 hnaz), (4.21)



and

ilO

9 .o
'
We also express the traction as a power series in &:
T(N) = To(N) + eT1(N) + 2T (N) +

Substituting eq. (4.23) into the boundary condition eq. (4.20) gives

a9 2
Jo, (L@ [_, +0E) =0
Now the O(1) and the O(e) boundary conditions are

[TO(NO)]n +e€ [Tl(lqo)]n + (571;

o@) : [TO(N,,)L =0
= [To(2)], = A3 [To(X)],,

d
ON,

=> [T1(2)], = A2 [T1(X)], + 7

O(e) : [TI(NO)]n+7n [TO(N)]I

z—h°

a

3N, [To(No)L-
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(4.24)

(4.25)

(4.26)

By converting the traction discontinuities in the boundary conditions eqs. (4.25) &
(4.26) into the body-force equivalents (Burridge & Knopoff 1964; Maupin 1988), the

O(1) and the O(¢) equations of motion and boundary conditions can be written as:

(0)
o(1) a;: = Av{" + F* + F°(v{"),
[T @)]_ =0,
(1)
o) + Fh = Avil L F(D, V),
[T@)], =

where

I ( foo ) . ( [T(O)O 1 )a(z-hg),

(4.27)

(4.28)

(4.29)
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0
P, i) )

=3 ( 0 , ) 8(z — h2). (4.30)

B [TO®)] + a8 [TOE)]

The superscripts of the wavefields have been introduced for bookkeeping. They rep-
resent the systems that they belong to, i.e., the superscript (0) for the zeroth order
system and the superscript (1) for the O(¢) system. Note that the boundary condi-
tions are now homogeneous. The inhomogeneous terms in eq. (4.25) and eq. (4.26)
have been mapped to equivalent body force terms in the equations of motion, eq.
(4.27) and eq. (4.28). The body-force equivalent F in the O(1) system (4.27) repre-
sents the effect of the slope of the reference structure, so the O(1) system describes
wave propagation in deterministic range dependent media with the reference struc-
ture. Hereafter, we will refer to the wavefield v((,o) as the primary field, i.e., the field
when there is no boundary fluctuation from the reference structure.

The body-force equivalent F! in the O(g) system (4.28) consists of two terms.
The first term represents the effect of the slope of the reference boundary on the
wavefield v{"), and the second term describes the excitation of the wavefield vit)
due to the scattering of the the other wavefield vt(,l) by rough surfaces. The O(¢)
system, therefore, means that the energy loss of the wavefield vf,l) during scattering
corresponds to the generation of the other wavefield vgl) as waves propagate through
the range dependent media with randomly rough boundaries. We will refer to the
wavefield v{" as the coherent field and the wavefield vl as the scattered field.

Note that the O(¢) system includes the roughness function v,(z), but not its
derivative. So we are not required to introduce another independent stochastic process
for the derivative of v,(z).

Replacing the coherent field v{' with the primary field v in the O(e) system
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gives the Born approximation which does not satisfy energy conservation. The Born
approximation makes algebra much easier, but it can be used only with the assump-
tion that the scattered energy is ignorable as compared with the total energy. The
Born approximation is used to derive the formula for scattering @~! and the power
spectrum of the mean squared signals in the last two sections of this paper.

The Green'’s functions for the equations (4.27) and (4.28) have the same form but
the source terms are different. Therefore, we can express the solution of the scattered
field as a product of the body-force equivalent for the O(¢) system, F* and the Green’s
function for the primary field. In section 5, we expand the Green’s function in terms
of the depth-dependent normal mode solution, which is equivalent to the solution of

the homogeneous forms of differential equations (4.27) and (4.28).

4.3 Unitary Local Mode Spaces

The wavefield in a deterministic range-dependent medium is represented as a sum
of reference modes (Kennett 1984) or local modes (Odom 1986; Maupin 1988) with
laterally varying modal amplitude coefficients. Here we construct the abstract vec-
tor space spanned by the normal modes for a local deterministic depth-dependent
medium, the local mode space, and we show that the wavefield scattered by stochas-
tic heterogeneities can also be represented as a vector defined in the local mode space,
i.e., a sum of local modes with stochastic modal amplitude coefficients. The abstract
vector representation provides the foundation with which we can express the alge-
braic functions describing propagation in terms of operators defined in the local mode
space.

Normal mode vectors of the displacement-stress vector in depth-dependent media

v* satisfy the homogeneous equation of motion:

a

-a—zv"‘ = Av® = ik, v* with [T*(2)], =0, (4.31)
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and they can be written as (Aki & Richards, 1980):
t
vi(z,ke) = ( 0% 00 g 0 ) for Love waves, (4.32)
t
vi(z,ks) = ( rf 0 &g irf 0 r§ ) for Rayleigh waves. (4.33)

Note that Greek indices are used to represent mode numbers throughout this paper.

For convenience, new eigenfunctions I and rZ are defined :

I8 = koplf, (4.34)
d o
r§ = AZE 4 k(A + 2. (4.35)

Using those normal modes v*(z, k,), we can define local-mode vectors v*(z, ka; z) for
range-dependent media. These are the local depth-dependent eigenfunctions whose
boundary depth functions are equivalent to those of a range-independent medium at
a local point x.

Next we will define a local mode space W, which is an abstract vector space whose
element vectors are linear combinations of the local modes, i.e., 3", cov*, where c, is
a complex number.

For every vector pair v and w such that v,w € W, we introduce the Hermitian

inner product (Maupin 1988):
< V,W>= / = viXwdz, (4.36)
0

where

t

0 ] Loo o 1
—1 -1
X = 0’2®I= ® 010]|= . (4.37)
;0 14
001
Here { represents the Hermitian conjugate, i.e., the complex conjugate transpose. The

matrix o, is the 2nd Pauli matrix and I is an identity matrix. The complex linear

space W consisting of the local mode vector v* with the Hermitian inner product
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(4.36) defines a unitary space (Shilov, 1977). We also introduce the norm (or length)

of the vector in the local mode space using the Hermitian inner product:
vl =< v,v >% (4.38)

A set of linearly independent local modes form the orthonormal basis of the local
mode space W. The orthogonality of the local-mode vectors is proved in Maupin
(1988):

< v, VP >=§,p. (4.39)
The local mode vectors should be normalized such that they have unit length in the

local mode space W. Therefore the normalization factor for the at* mode is its norm:
[ve]l =< v&,v* > . (4.40)

The normalization factor for Love waves in 2-D media can be derived by applying

the Hermitian inner product to the local mode vector for Love waves (4.32):

. o 0 —iI
vell = /o(ozgoo-izgo) 1 o

2

t
X(o I 0 0 ilg O)dz}

=/ /0°°2Iflgdz
- \/41:0 (-;- /0°° y(l{‘)zdz)
= \f4k,I§

= \[4koc U I? for Love waves in 2-D media. (4.41)

Here c, and U, are the phase velocity and group velocity of the a** mode respectively.
I? and I3 are the first type and the second type of kinetic energy integral, and they
are defined in eq. (7.66) and eq. (7.74) of Aki & Richards (1980). The normalization
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factor for Rayleigh waves in 2-D media can be derived in the same way:

VIl = \/4kacaUalf for Rayleigh waves in 2-D media. (4.42)

From a practical standpoint, an appropriate number of discrete modes must be
chosen to achieve an acceptable degree of numerical accuracy. Maupin and Kennett
(1987) studied the effect of the truncation of the modal expansion, and they suggest
that the proper number of discrete modes must be chosen to cover the desired range of
phase velocities. Harvey (1981) and Nolet, et. al. (1989) suggest using a locked mode
approximation by introduction of a perfect reflector which is placed deep enough to
exclude the reflection outside of the time window of interest. This approximation
locks the energy into the medium between the free surface and the perfect reflector,
and forces eigenvalues to be real if there is no attenuation. Maupin (1996) has re-
cently derived an elegant dyadic representation for the radiation component of the
elastic wave Green’s function which would allow the locked mode approximation to
be dispensed with. In this paper, we consider the discrete modes only.

In the following section, we show how the solution of elastic waves in a determin-
istic or stochastic range-dependent medium can be represented by the basis of the

local mode space W by analytical derivation of the Green’s function.

4.4 Local Mode Decompositions of General Solutions and Their Modal
Amplitude Coeflicients

In what follows, we derive the propagating solutions for the primary field and the
scattered field from the Green’s function, and represent them by local mode vec-
tors with range-dependent modal amplitude coefficients. The 6-dimensional coupled
equation of motion for depth-dependent media with the arbitrary external source f*
applied at r=r, is

av
5 =AV+F with  [T°(3)], =0, (4.43)
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which can be written in terms of its 3-dimensional element vectors:

) (a2 () ()
_— - = é(r —ry)
0z \ 1(x) Ar, Arr | \ T(®) —f°

o oo
Ar, I-aa; — A7t T(X) —f

where the 3 x 3 element matrices of A are derived in Maupin (1988). Employing

Gauss elimination, eq. (4.44) can be written in block diagonal form:

(Lu 0 ) ( " ) (f;)
= , (4.45)
0 LT T(x) fs

where

L* = Ii —Arr | AR Ii A, A 4.46

= 9z TT oT oz - u | = ATuy ( - )
LT = Ii—A Ia —Arr| —AA 4.47

= az uy a_z TT T 3T u, ( . )
f; = f°6(r—r,), (4.48)

s a ]

fr = - ( oy Auu) f°é6(r —r,). (4.49)

The operators L* & LT are 2nd order differential operators. The block diagonal
form of eq. (4.45) is the matrix representation of decoupled 2nd order equations
for the displacement u and the stress T. Note that an additional source f§ appears
for the stress. This is because the equation for stress and displacement have been
decoupled. The source f* has been transformed into the traction source f} while
f, is the form appropriate to the displacement. Now we have two independent and
completely equivalent representations. We can choose either one to solve, and must
use the form of the source appropriate to the representation, i.e., the displacement or
the stress (traction). Its solution can be represented by an integration of the product

of the source and the 3-dimensional Green’s function.
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We would like to solve the coupled equations (4.44) for the 6-dimensional vector
v (= (u, T(%))*), which means that the displacement and the traction must be solved
simultaneously. To accomplish this, we introduce the 6-dimensional dyadic form of
the Green’s function G(r, r’) for the displacement-stress vector which is similar to the
3-dimensional dyadic form of the Green'’s function for the displacement alone (Snieder
1986):

Gi(rF) = P vf(z kai ol (2, kaja)e(=H3), or
a

G(r,r') = Y ie®Eve(zz)vel(2; o)
[« 4

. ay ot aTaf
= Tieeta | T , (4.50)
p Taua‘l’ TaTaf
where
¢ala) = [ Ea(6)de. (4.51)

Note that either source can be used for the coupled equation unlike the decoupled
case, and that our dyadic form of the Green’s function eq. (4.50) is appropriate to

either source: For the displacement source,
t aqat s
Y [ ieit= ufut T L) av
o Teut TeTet 0

=y / jeital=) ( u® ) {uet-£2}av. (4.52)

TQ

For the stress source,

Y [ e ututt w0}
Z Toust ToTet | \ £2

=3 / jeialz) ( u* ) {Tet-£2} v, (4.53)

Ta
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Though either source can be used to represent the solutions of the coupled equation,

we choose to use the displacement source f] throughout this paper. The solutions are

rewritten in terms of the Hermitian inner product (4.36):

-0

viz,zw) = Y vi(z z)e"""’("')/zdz' {/0 vl )i ( : ) §(r —r,)dz'}

= Y v¥z;z)e®® [ d7’
a ZTs

X {/_io vel(2'; 2') ( :; -OiI ) ( _(;s ) 6(r—r,)dz’}

= Y vo(z;z)eel® /1 <v*;2"),F* > dg'.
o T

(4.54)

Here, F* is defined in eq. (4.15). According to eq. (4.54), we can represent the

primary field of the O(1) system v((,o) and the scattered field of the O(e) system v{"

as the Hermitian inner products of the Green’s function (4.50) and the source terms

F?*, F® and F! in eq. (4.29) and eq. (4.30):

vo(z,zmw) = P vi(zz)el
[= 4

x /z (< v¥(;2'),F* > + < vo(¢';2"), F° >) dz', (4.55)

vil(z,ziw) = zva(z;z)ei%(z) < v*(;z"),F! >dz’.
o

Ts

(4.56)

Egs. (4.55) and (4.56) can be rewritten as sums of local modes with the range-

dependent modal coefficients, c(® and d,:

vi(z,z;w) = Y O z)v*(z, ka; x)e™=?),

v{l)(z, zw) = E da(z)v"‘(z, ka; z)ewa(”)’

where the modal coefficients ¢, and d, are

Oz) = - <v%(Z;z),F* > dz’ + /r < v*(;2"),F° > dz,

Ts Ts

do(z) = [ <vo(z2),F' > dz'.

Ts

(4.57)

(4.58)

(4.59)

(4.60)
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The first integration on the r.h.s. of eq. (4.59) is the modal decomposion of the
external source f*, and it can be rewritten by the Hermitian inner product (4.36) and

the external source (4.15)

- <v*(;2),F* >d = _/tdx' {/Ooo v*(2; z')XF’dz}
= u(zs, ka; Z,) - fP€'Z, (4.61)

and the initial conditions on ¢, and d, are

Nz ==z,) = u™(zs ka;zs) - €5, (4.62)
dy(z=1z,) = 0. (4.63)

We shall show that the coherent field vt(,l) is also represented by the local modes
from the total energy conservation condition for the O(¢) system. The norm of the
wavefield defined in the local mode space represents the energy it carries. The norm of
the sum of the coherent field v,(,l) and the scattered field v{l) should be a propagation
invariant, and should be equal to the initial norm of the primary field for energy
conservation, which enables us to represent the coherent field as a vector in the local
mode space. More discussion on this topic is detailed in section 8. The coherent field,

therefore, is represented as
vil(z, z3w) = Y- ca(Z)V(2, ko z)e™), (4.64)
a

The point here is that the solution for the coherent field and the scattered field, as
well as the primary field, can be decomposed into the local mode basis with the
range-dependent modal amplitude coefficients. The modal amplitude coefficients
(¢1,¢2,--.,6,)° are the coordinates of v((,l) in the local mode space while the coor-
dinates of v((,l) in the configuration space are (ug, iy, Uz, Toz, Tey, Tzz)'. Therefore, the

column vectors ¢, ¢ and d represent the abstract vectors of the wavefields v((,o), vV

and v{l) in the local mode space, respectively.
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From the exact formula for the modal amplitudes egs. (4.59) & (4.60), we discuss
the physical meaning of each coefficient. First equation (4.60) means that d,(z) is
the projection of the effective source due to the O(e) perturbation of the boundary
roughness in the range (z,,z) onto the local-mode space. We also see that d,(z) is
a stochastic modal amplitude coefficient because the body-force equivalent F! in eq.
(4.60) includes the stochastic process ¥(z).

The amplitude coefficient c%)(z) of eq. (4.59), on the other hand, is the projec-
tion of the external source and the effective source due to the slope of the reference
boundaries in the range (z,,z) onto the local-mode space, and is deterministic.

Therefore, the dyadic form of the eigenfunction expansion of the Green’s func-
tion eq. (4.50) can be interpreted as a projector of the source onto the local-mode
space. The range varying modal amplitude coefficients can be interpreted as the local
mode space projection of the effective source due to the deterministic and stochastic

boundary heterogeneities.

4.5 Spatial Evolution Equations and Coupling Matrices

The spatial evolution equation for the deterministic laterally heterogeneous medium
was derived in the earlier works (Kennett 1984; Odom 1986; Maupin 1988). Their
equations and boundary conditions are exactly same as the O(1) system of ours, eq.
(4.27), i.e. their spatial evolution equation is equal to the evolution equation for the
primary field in this paper. Then, following Maupin (1988), the spatial evolution
equation of the primary field can be written as

ac® o OVP X 70 [ae mB/s i($s—da) L (0)
2yt el wl o)

= 3 Bascy - (4.65)
8

The evolution equation for the primary field is the same as that of the earlier works.

The evolution equation for the stochastic modal amplitude coefficients can be derived
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in a similar manner for the wavefield scattered by the stochastic boundary roughness.
Substituting the local mode representation of the scattered field eq. (4.58) into the

equation of motion (4.28) for the O(¢) system gives
B
aaﬁvp its 4 dgaav—e ‘s 4 lkpdpvﬁ its — dﬁAVﬁ its 4 FL. (4.66)

Note that the summation convention is used in eq. (4.66). Taking the inner product
with v* and eq. (4.66), and applying the orthogonality of the local modes and the

relation < v, Av? >= ikg < v, v# > yields
6:1: = Z ( ﬁ > e'(‘"’"‘”"))) dg+ < v, F! > e =, (4.67)

The second term on the r.h.s. of eq. (4.67) is
< v F! > e % = jy*= . fle~%a (4.68)

where the body-force equivalent for the O(g) system is

fl = ; (hg [TO®)] +mar a?v [TE(N,)] ) 8(z — h2). (4.69)

We also substitute the local mode representation of the coherent field eq. (4.64) and
the scattered field eq. (4.58) into f!. Then eq. (4.68) becomes

<v:,Fl>e % = E (i Z hﬁ [u‘” . T‘G(i)]ne'“") dg
8 n

Jc,
+3 Dases + 3 Eeay 2 (4.70)
B B8

where the matrices D,g and E,g are

) 1 an BT"(NO)] 70 [ae MBI
D, = S — 00 ikgh . o
3 i Eﬂ 5 . (;’,g)’ {[u 9z | ikgh [u T(N )]n

B . 0)
T



97

o ITA(N,)
- lzn:"/n /1+(h°) {[u s

+ (k) [uaa_ a'13“’(1(4'0)] _ "lﬁif?; [0 TO)]

] — ikgh? [u"" . T‘*(ﬁo)]n

0z 1+ (9)
+ hgizg _ [u"‘ T8 ().c)] }ei('ﬁp—tﬁa)’ (4.71)
1+ (k2) i

hO

Ep = —1;%@

Here the matrices D,s and E,g contain the stochastic process v, as well as the de-

[0 - TA(N,)]_ef#o=e), (4.72)

terministic slope of the reference boundary A9, while B, includes only deterministic

slope hg Note that while deriving the final form of D,g in eq. (4.71), the transfor-

mation, g%]n = —h? [g—:]n for a continuous quantity e along the interfaces, and the

following relations are used:

aTﬁ(No)] d 1 T8(3) — 0T
——| = 7|7 (T°(2) -k, T(X)
[ oz |, Oz m( )
;"?z \ i aTB(No)
= —=2— |T%N, h9 [——]
14 (h.?‘) [ ( )]n+ 0z n
____i‘o = [T°(%)] . (4.73)

By substituting eq. (4.70) into eq. (4.67) and using the evoution equation for the
primary field eq. (4.65), the spatial evolution equation for the coherent field and the
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scattered field becomes

ad, ovP e . o i(ba—
5 = ; {(< v, B > +z;hﬂ [u"‘ . T”(x)]n) e'(¥s 4"')}(13
ac,;
+ Z Dygcp + z Eap-a—z (4.74)
B B
or
ad,
B Y _Bagds +Y_ Dagcs+ Y EayBypcs. (4.75)
T B ] By

The first term on the r.h.s. of eq. (4.75) has the same matrix B,s as the evolution
equation of the primary field with dg substituted for cg)). It can be interpreted
as the coupling between the modes of the scattered field due to the deterministic
heterogeneities (the range dependence of the reference structure). We will call it the
deterministic mode coupling of the scattered field. The second term of eq. (4.75),
on the other hand, has a new stochastic coupling matrix D,g which relates d, to
cg. It describes the coupling from the coherent field modes to the scattered field
modes due to the stochastic boundary roughness, which will be called the stochastic
mode coupling from the coherent field to the scattered field. The third term has both
a stochastic coupling matrix E,s and a deterministic coupling matrix B,g, which
can be interpreted as the mixed interaction of the stochastic mode coupling after the
deterministic mode coupling to the coherent field, i.e., the mized mode coupling to the
coherent field. The meaning of each term in eq. (4.75) and eq. (4.65) is illustrated
by the diagrams in Fig. 4.4. Even though the matrices D,s and E,s are not the
same, they are represented by the same symbol in Fig. 4.4 because they have similar
interactions with the wavefield, i.e. converting the coherent field to the scattered
field. The derivations of matrices D,g and E,z for Rayleigh waves in a 2-D isotropic

medium are given in the appendix.

Also note that matrix D,g will still contribute even in plane layered media if the
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Figure 4.4: Schematic diagram notation for coupling matrices.
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layer boundaries are rough:

Bz E , Doges, (4.76)
8

where A2 = 0 and
B(3 .
D.g = iz:'y,, [u“' . a;ra—z(i)—] e'ks—ka)z  for plane layered media. (4.77)

The phase term for the range-independent medium replaces the phase integral in eq.
(4.77). For rough but plane layered media, there is no coupling between the coherent
field modes, or between the scattered field modes. There can be only coupling from
the coherent field to the scattered field, i.e., stochastic coupling.

We have derived the spatial evolution equation for the coherent field and the
scattered field from the O(e) equation, and also show that the result from the O(1)
equation is equivalent to the evolution equation for a deterministic range-dependent
medium. The evolution equation (4.65) for the primary field and the evolution equa-

tion (4.75) for the coherent field and the scattered field are rewritten in matrix form:

9c®

= (0)
- Bc©), (4.78)
ad
3, = Bd+(D+EB)c. (4.79)

The matrices B, D & E are v x v matrices of complex values, and ¢ (z), c(z) &
d(z) are v x 1 column vectors in the local mode space, where v is the appropriate

number of modes required to accurately model the signal.

4.6 Coupled-Mode Propagator for the Deterministic Media

In earlier work, the invariant imbedding technique is employed to solve the evolution
equation (4.78) for the primary field (Kennett 1984). It results in a set of coupled
nonlinear differential equations (Riccati equations) containing the coefficient matrix
Bag which consists of the slowly varying amplitude and the rapidly varying phase.

For numerical integration of coupled Riccati equations, the coefficient matrix must
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be computed frequently because B,s is rapidly varying. Especially when we use
many sets of local modes for a strongly varying structure, the phase term will greatly
decrease the efficiency and the stability of the computation (Park & Odom 1997a).
In this section, we remove the phase factor and apply the product integral method
of Gilbert & Backus (1966). This leads to a matrix form of the propagator that is

numerically stable and computationally efficient.

4.6.1 Transformation of the evolution equation

To derive the propagator for the primary field, we proceed in the following manner.

First, the matrix B is decomposed into the amplitude and the phase :
Bog = iByge'¥e=%e) (4.80)

where the matrix Bap is (eq. (17) of Maupin 1988)

. avh .
Bop = i < v, = > + L b u™ T*(%)], - (4.81)

The matrix Bap is Hermitian and contains only off-diagonal terms (egs. (13) and
(18) of Maupin 1988):

B! = B, (4.82)

By = 0 for a=45. (4.83)

Second, the modal amplitude coefficients ¢()(z) can be transformed with the phase

factor:

0 = 0g=ita (4.84)
Then the displacement-stress vector is rewritten as
Vo (ziw) = 30 EVO (% 2,0). (4.85)
[+ 4

In eq. (4.85), new coefficients é® implicitly include the phase varying factors. Sub-
stituting eqs. {4.80) & (4.84) into (4.78) yields a new transformed evolution equation
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from which the rapidly varying phase factor has been excluded and the numerical

computation can be made more stable:

¢
oz

= iHe®, (4.86)
where a new coupling matrix H is defined as
Hag =1 (Kag + Bag) and Kag = kg&aﬁ, (4.87)

ie.,

-~

kl Bl2 Tt Blu

By ke - By
H=| " 7 7 (4.88)
Bul BVZ T ku

Here, k, denotes the wavenumber of the o* mode. The diagonal terms of the ma-
trix H consist of the local wavenumbers and the off-diagonal terms are equal to the
elements of the coupling matrix. The matrix H is a Hermitian matrix for the real

eigenwavenumbers:
H 5 = (kgbap + Bag)t = k361 5 + Bl 5 = k3bup + Bap = Hag, (4.89)

and the matrix B is a function of the material properties, the slope, and the local

modes without the phase:
H,3 = Hyp (p, vp,Us, h'?n ve, Vﬂ) s (4.90)

where dot represents :—z, p is the density, vp is the P wave speed, vs is the S wave
speed, A2 is the boundary function of the n'* reference boundary, and v* & v#
represent the local modes. The new transformed evolution equation (4.86), therefore,

becomes a differential equation with slowly varying coefficient matrices.
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4.6.2 FEvolution operator for an infinitesimal interval

We seek an evolution operator, i.e., propagator which is defined as
é(o)(-"") =U(z, zo)é(o) (o)- (4.91)

Now let us calculate the evolution operator for eq. (4.86) between two points sepa-
rated by dz. To do this, write eq. (4.86) in the form (Cohen-Tannoudji, Diu & Laloé
1977):

de(z) = &O(z + dz) - & (z)
= iHe¢O dz (4.92)
that is,
& (z + dz) = {I + iH(z) dz} &O(z). (4.93)
The evolution operator for the infinitesimal interval [z, z + dz], the infinitesimal evo-
lution operator can be obtained from eq. (4.93) and the definition (4.91):
U(z +dz,z) =1+ tH(z) dz. (4.94)
Since H(z) is Hermitian, U(z + dz, z) is unitary:
U'U = (I+iHdz)'(I+iHdz)
= I+i(H-H!) dz
=1 (4.95)
It follows that U(z, zo) is also unitary since the interval [z, zo] can be divided into a

very large number of infinitesimal intervals. A detailed proof will be given in Section
4.8.
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4.6.8 Definition and properties of product integral

The product integral f, which was first introduced to the elastic wave propagation
problem by Gilbert & Backus (1966), is used to represent the propagator of the local

mode for the range-dependent medium. As the solution of the differential equation

OP(z,a)

5 = iH(z)P(z, a), (4.96)

the product integral is defined as

-

Pa,a) = | exo{iH(e)}de

L
Jim JTexp {iH(&) G} (4.97)

=1

where the range interval (a,z) is divided into L parts, by introducing the mesh points

) Lz L - <y, a =z and z = zf. In the interval z;_; < z < zy, the

intermediate point § = (z;—; + z;)/2 and the length of the subinterval (; = z; — z;_;,
l=1,2,---,L.

The product integral notation makes concise statements of rigorous results possi-

ble which otherwise would be cumbersome. We introduce some principal properties of

the product integral (DeWitt-Morette, Maheshwari & Nelson 1979; Schulman 1981):

Property 1
P(z,z) = I, (4.98)
P(z,y) = {Bu,o)} (4.99)
Property 2
PBEY) _ H(a)B(a,9), BEd) - by, @w100)
Property 3

P(z,y) = P(z,2)P(2,y) (4.101)
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Property 4 In the case that H(z) and 2H(z) commute for every x such that a <

z < b, then
B(b,a) = exp /a ’ iH(e) de (4.102)
Property 5 (The sum rule). Let P4(z,a) = [Zexp{iA(£)} d¢, then
[ exotiace) + o)) de
=Pu(z0) [[exp (PFHENBEOPAE )} d,  (4103)
[ eliace) + B} de

= /:z exp {PA(% £)iB(E)P3'(€,a)} dEP4(z,a). (4.104)

From the definition and the properties of product integrals, several different forms
of propagator can be defined. Each form emphasizes different aspects of propagation

and allows different interpretation.

4.6.4 The first form of the propagator

We represent a propagator for a general range-dependent medium from the definition
of the product integral following Gilbert & Backus (1966):

P(z,z,) = Lané ;ljl: {I+:H(&) G} (the first form), (4.105)
where the range interval (z,,z) is divided into L parts and z, = 2o & z = z;. The
coupling matrix H in eq. (4.105) consists of the matrices K and B. The off-diagonal
matrix B represents mode coupling between the different branches (i.e., intermode
coupling) and the diagonal matrix K governs the phase variation of each mode.
While the first form of the propagator allows only Born-approximation type first-
order intermode coupling in each subinterval (see figure 3 of Marquering & Snieder
1995), it gives an exact solution with multiple coupling effects in total as the number

of subintervals goes to infinity.
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4.6.5 The second form of the propagator

According to our definition eq. (4.97), the propagator is written as

L
P(z,z,) = Jim [ exp {{H(&)¢1} (4.106)

=1
Assuming that the slowly varying coefficient matrix H in a short subinterval is

represented by the mean coefficient yields
H(z)~H(§) for z,<z<l3z, (4.107)

Then, the [] approximant to the product integral (4.105) becomes (Gilbert & Backus
1966)
L
P(z,z,) ~ [] exp (iH(&)G} (the second form). (4.108)

=1
The propagator P in eq. (4.108) denotes all possible higher-order coupling along
the same dispersion branch and between the different branches in each subinterval.

Based on its properties, we call it the coupled-mode propagator. Also note that the
coupled-mode propagator P governs both the amplitude and the phase of each mode.

4.6.6 The third form of the propagator

We can also express the coupled-mode propagator in another form by using the re-
lation between the unitary operator and the Hermitian operator and the relation

tan £ = 151 (Morse & Feshbach, 1953, Vol. I pp 84-85):

P(z,,z,) = :+ :: (the third form), (4.109)
where the operator
1 L
Z(zra .'L‘,) = tan {5 Z (.'L'[ - zl—l) H({l)} ’ (4'110)
=1

and I is the identity operator. If we consider the &(z,) as an input and &(z,) as an out-
put, the operator Z can be interpreted as an impedance due to lateral heterogeneities

located between z, and z,.
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4.6.7 The fourth form of the propagator

From the definition eq. (4.97) and property 5. the sum rule eq. (4.103), the propa-

gator is represented as

3

B(zz) = [ expl{iH(e)}dg
= [ eoliK(©) + BE) it
= P(zz) [ exp{PR(6a)iBOPK(E )} dg,  (4111)

where y
Pr(z,2.) = [ exp{iK(e)}dt. (4.112)

Because the diagonal matrices K(z) and £K(z) are commutative for every z, P

can be rewritten by property 4 eq. (4.102):

Px(z,z,) = exp {i L ” K(¢) d{} , (4.113)

The propagator of eq. (4.111) becomes

v

B(z,2.) = exp {i [ K(€)de} [ exp{B©)}de (4.114)

where the following relation is used

{13,"(1(2:, z,)iﬁ(m)f‘x(z, :L'.)}aﬁ
-Tew (=i [ k@) de} 6B exn [ [ k(61 e} 5

= iBapexp{i [ (ks = ka(€)) de}
= Dag- (4.115)

By the definition of the product integral, the second term on the right hand side of
eq. (4.115) is written as
v L

/z' exp{B(£)} d¢ ~ [J exp {B(&) G} - (4.116)

=1
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Finally, the fourth form of the propagator becomes

~

P(J.', z,) = UB(z[n zL-l)UK(zL) zL—l) st
x UB(z,, 2, )UK (,, 21)UB (21, 20)UX (21, z0)

(the fourth form), (4.117)

where the operators Ux & Uk for the subinterval [z;_;, z;] are defined as

-1

UP(zy,711) = exp{B(&)&}- (4.119)

UR(ay,z1) = exp{i [ K(c)de} (4.118)

The operator UX (2, z;_;) represents the phase integral of each wavenumber in the
subinterval, and the operator UB (i1, z1~1) denotes the transition from one mode to
another mode. It is computed from the lateral heterogeneities in the subinterval and
applied at the end of each subinterval. The magnitude Uzaz(zz, z;—1) is an amplitude
for the transition from a mode a; to ay, i.e., the transition amplitude. To interpret
the product integral of the propagator we present a schematic figure showing two
possible paths with fixed starting and ending point in wavenumber space in Fig. 4.5.
The horizontal thick solid lines denote the phase integral and the vertical arrows
represent the spectral transition.

The product integral representation for the propagator eq. (4.117) is very impor-
tant, because it provides a clear physical picture of the mode coupling process when
it is carefully interpreted. Mode coupling in a laterally heterogeneous medium is a
continuous process. However, eq. (4.117) approximates the continuous process in
the heterogeneous medium as a sequence of processes in homogeneous subintervals
within which the infinitesimal evolution operators UK*® are defined. The evolu-
tion operator U® allows for transitions (coupling) between modes with different local
eigenwavenumbers (a say). The operator UX is a diagonal operator of phase integrals
of the form [I! ik,(£) d€. Notice that the phase integral 27 ik(€) d€ is a functional

of the discrete wavenumber functions k,(£), i.e., the value of the phase integral does
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k(z)
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-

Figure 4.5: Two possible paths are shown with fixed starting and ending points in the
discrete wavenumber space. The horizontal thick solid lines denote the phase integral

UX(z;,71_,) and the vertical arrows represent the spectral transition UB (z1, z1-1)-
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not depend on the intermediate variable € (z; < £ < z,). Rather it dependends on
the shape of the wavenumber function k(¢) and the endpoints (z,,z,.). Because of
the presence of mode coupling (transition) through the presence of the operator U2,
the propagator P represents the phase integral computed along all possible paths in
the discrete functional space of wavenumber [~ ik(£) d€.

For a slowly varying structure, the coupling matrix B may be disregarded, then
the coupled-mode propagator becomes

Bloe) = Jim [Tew{[" Ke)ac)

=1 -1

= exp [ {iK(9) de} (4.120)

The coupled-mode propagator of eq. (4.120) denotes the phase integral of each
wavenumber from the source point to the receiver point without transition, i.e., the

WKBJ approximation for surface waves (Woodhouse 1974):

4.6.8 The fifth form of the propagator

The improper eigenfunctions for the continuous spectrum have been derived for acous-
tic waves for a simple structure (Odom 1986) and for elastic waves for a general
layered medium (Maupin 1996). In this subsection, we seek a form of the propa-
gator appropriate for both discrete spectrum and continuous spectrum. The matrix
multiplication of the coupled-mode propagator is done by summation over discrete
eigenwavenumbers at each mesh point. The summation can be transformed to an
integration, which will give an appropriate form of propagator for both discrete spec-

trum and continuous spectrum:

- {baat + iBaarkar ()G + i Baar(6)C1}

x4+ 7

)y —:z:,_l)} dki6(R(K)),
(4.121)

= /{1 +ik{($l - 1'!—1) + ié(kla
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where the scalar function B(k;) dk; = ém,(fi;';!), and ky = ki & ko = ki + dki.
The term [ dk; 6(R(k;)) - represents the integration over the discrete solutions of the
dispersion equation. The matrix summation or integration in eq. (4.121) is non-
vanishing only for wavenumbers k; satisfying the dispersion relation R(k;). This
is the reason for the presence of the § function with R(k;) as its argument. The
dispersion function R(k;) becomes the Rayleigh function for Rayleigh waves. Then,
the first form of the propagator (4.105) is represented by integrations over continuous

wavenumber space:

L
Pz,2) = Jim [I]dki6(B(k)) {1+ k(o — z11) + iB(k)(m1 ~ zir)}
=1
L L
= Jim / gdk,6(R(kz))exp{ik;(zz—z1_1)+iB(k1)(z1—z1_1)}

L
= Jim / T] dk: 6(R(k:))

=1

X exp {f: izt — z11) + iB(ka) (21 — 21 )]} . (4.122)

I=1
To convert the propagator for both the continuous and discrete spectrum, first, the
dispersion function is dropped. The continuous spectrum represents waves radiating
away as body waves while the discrete spectrum represents waves trapped in the
waveguide. The propagation direction of the discrete spectrum is horizontal. The
continuous spectrum propagates along an arbitrary ray path (i.e., z = z(z) in 2-D).
Therefore, the propagator is a functional of the ray path (ie., z = z(z)) as well
as wavenumber (or horizontal slowness), i.e., P = P[z(z),k(z)]. The propagator
P(z,,z,) does not depend on the variable z such that z, < z < z,, but it depends
on the shape of the wavenumber function k(z) and the shape of the ray path z(z)
in the interval [z,,z,]. While depth integration for B(k) = [ i)(kz,z) dz is separately
done for a discrete spectrum, path integral (functional integration) should be applied
for a continuous spectrum in a range-dependent medium. Imagine that the points

Zsy21,..-4ZL-1,% are connected by lines, where z; = z(z;). An integral along that
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path can be represented as a Riemann integral, i.e.,
exp { / b(z) dz}
= exp{ 5 b(z) (%) dz}

Lt Lhoat+aa, (20— 24
~/Hdz, exp {Z [b ) ) ( )] (z1 -zl—l)}- (4.123)

=1 =1 Ty — Ti-1

The propagator for both continuous and discrete spectrum becomes

P(z,z,) =
L-1 L
Jim [ [T da: [T
X exp {XL: [ikz(zl — 1) + ib(ky, 2 +2Zz-1 Wzt — 21—1)] }
(the fifth form). (4.124)

The summation for the dz is done from 1 to L—1 with the assumption that the source
point z, = 2(zo) and the receiver point z, = z(zr) are fixed while only the initial
value of the wavenumber function is assumed known. The propagator of eq. (4.124)
has the form of a phase space path integral (Schulman 1981). While the wavenumber
jumps at each mesh point with some transition amplitude, the ray path is stepwise
continuous from subinterval to subinterval. For a weakly range-dependent medium,

by applying the variational principle to
T=| H(k,zz)dz, (4.125)
Zo
the phase term can be numerically integrated along the Fermat path (classical ap-
proximation).
4.6.9 The solution for the primary field

In terms of the coupled-mode propagator eq. (4.108), the solution of the evolution

equation (4.78) is represented as

&z) = P(z, z,)8(z,), (4.126)
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Hence, we obtain the solution of the displacement-stress vector of the primary field:

viz,, zZrw) = Y vz zr,w) 3 B.s(z., z,)ég’)(z,)
a B

=L
x u?*(z,; z,) - £, (4.127)

= z: v*(zr; z,,w) {H exp[iH(z1 — 11 )]}
a8 af

where the source point z, = zo and the receiver point z, = zr. The initial condition

for the transformed amplitude coeficients é(z,) is also used:

&(z) = P z.)e*E) = O(z,) =u(ziz,) - FFeF (4128)

4.6.10 Transformation of the evolution equation for the O(g) system

The rapidly varying phase factor is excluded from the evolution equation for the O(¢)
system eq. (4.79) by transforming the modal amplitudes of the coherent field and the

scattered field:
Ca = Coe e, (4.129)
dy = d,e ™=, (4.130)

and decomposing the matrices D and E into the amplitude factors and the phase

factors:
Dog = D,gei®s—2a) (4.131)
Ewg = E,pei¥a—%e) (4.132)

The transformed evolution equation for the scattered field can be obtained by sub-

stituting eqs. (4.80), (4.84), (4.129), (4.130), (4.131) & (4.132) into eq. (4.79):

g_: = iHd + (D + iEB) ¢ (4.133)
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The second term on the r.h.s. of eq. (4.133) represents the excitation of the scattered
field from scattering of the coherent field, i.e., eq. (4.133) is an inhomogeneous

equation. The propagator can also be used to solve the system with a source:
d(z) = B(z,20)d(z0) + [ P(z,E)g(€)de, (4.13¢)
To

where the source term is

g(z) = S(z)é&(z)
= (D +iEB) &(z). (4.135)

The source term g(z) in eq. (4.134) can be interpreted as the stochastic effective
source of the scattered field, which represents the excitation of the scattered field due
to the the coherent field scattered from the stochastic roughness located at z. The
transformed evolution equation (4.134) for the O(&) system will be used to derive the

integral equation for the propagator in the O(¢) stochastic medium in section 9.

4.7 The Unitarity of the Coupled-mode Propagator and the Reciprocity

Theorem

While B is anti-Hermitian, i.e., Bt = —B (Maupin 1988), H is Hermitian (eq. (4.89)).
From the Hermiticity of H, we show directly that the coupled-mode propagator P is
unitary using the second form eq. (4.108):

Pf(z, -’1—':) — {efﬂ(z-zb_l)eil{(z;_,—z;_,) . eiH(zz—-xl)eiH(z;-zu)}f
= e-m'(-’tl —to)e-mt(zz-fl) - e"'int(-"»‘t.-x -IL-z)e-'n' (z—zr-1)

= eH(@o—z1)gil(z1~23) ., oiH(zL-2—2L-1)giH(zL-1-7)

= P(z,,z)
= P~(z,z,). (4.136)
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The last step in eq.(4.136) follows from property 1 eq. (4.99) of the product integral.
The definition of unitarity is that

Pi(z,z,) = P~Y(z,z,). (4.137)

A unitary transformation is a generalization of an orthogonal transformation to
a complex space. Rotation matrices are well known examples of orthogonal trans-
formations. When we consider the propagation from z, to z in the deterministic
range-dependent medium, the unitary propagator can be thought of as performing a
rotation in the local mode space with the rotation operator P(z,z,). The determin-
istic modal amplitude coefficient c{%)(z) in eq. (4.126) after the propagation can be
interpreted as a new coordinate component of the primary field vector v(%(z,) after
the rotation in the local mode space. The operator P(z, z,) rotates the vector c®(z,)
to c®)(z) in the local mode space, where c¢{0(z,) and c{°)(z) are the abstract vector
representations of the primary field v{%(z,) and v(®(z). Therefore, the norm of the
primary field vector is a propagation invariant for the deterministic range dependent

medium (i.e., the O(1) system, when 4(z) = 0).

V(@) = < vQ(z),v¥(z) >
= Z< & (z?, &0 (z)ve

= ch’) (2)é0(z) < V8, v >

= E“°"(z &9(z)bap

= ZI & (z)?

= Zl &(z,)?

= Ilc:fo(z,)llz, (4.138)

where the orthogonality of the local modes and the unitarity of the coupled-mode
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propagator are used:

Zlégn(x)lz = &O(z)el)(z)

i = &OYz,)P(z,z,)P(z, z,)e0 (z,)
= &0z, )BP(z, z,)B(z, z,)e0(z,)
— é(O)f(z’)é(O)(zs)

= 210z (4.139)

Eq. (4.139) represents the conservation of the total energy for the O(1) system (the
deterministic model). The local modes are assumed to be normalized to carry the
same unit energy. Note that the propagation invariant and the energy conservation
are for the primary field of the deterministically range dependent elastic medium. For
the stochastic model, the condition for the total energy conservation should include
the effect of the energy conversion between the coherent field and the scattered field,
i.e., the generation of the scattered field should be related to the loss of the coherent
field. This problem is detailed in the following section.

For the case of the amplitude coefficients d,(z) of the scattered field from the
rough-surface scattering, the situation is slightly different. The integral term in
eq.(4.134) corresponds to a translation in the local mode space. The new Ja(z)
after propagation is a combination of a rotation and a translation. Therefore, the
length of the scattered field vector is no longer invariant. Here, the rotation is due to
the deterministic mode coupling and the translation is due to the rough-surface scat-
tering, so the change of energy of the scattered field is governed by the rough-surface
scattering (the stochastic mode coupling).

The reciprocity theorem for the deterministic range-dependent medium can be
written in terms of the coupled-mode propagator from its unitarity (Morse & Feshbach
1953, Vol. I p 84):

Pl(z,,z,) = P(z4, z,), (4.140)
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Eq. (4.140) means that if a local-mode decomposion of the source c? applied at z = z;
evolves to the modal amplitude ¢, measured at z = z,, then the same decomposion
2 when applied at = = z, will evolve to the modal amplitude which is measured c,
at z = z;. It is the reciprocity relation for surface waves including mode coupling.
That reciprocity theorem does not imply that a source at z, yields the same response
at r; as a source at z; produces at 2 because of the difference between the local
modes at z; and z,. ]
Numerical operations with unitary matrices are particularly efficient and stable,

because numerical inversion is accomplished merely by taking the adjoint.

4.8 Mean and Covariance of the Propagator for the O(¢) System

4.8.1 Fnergy conservation for the O(g) system

In the preceding section, the energy consevation for the purely deterministic model is
demonstrated from the unitarity of the coupled-mode propagator for the deterministic
medium. In this subsection, we present the condition for total energy conservation
for the first-order stochastic perturbation, O(¢) system (eq. (4.28)). The mode
amplitude of the coherent field are derived in terms of the coupled-mode propagator

from the energy conservation condition and the mode amplitude of the scattered field,

d(z) = P(z, zo)d(zo) + /1 P(z,£)S(€)e(¢) de. (4.141)
Zo .
The norm of the sum of the coherent field and the scattered field in the local mode

space must be a propagation invariant in order that the total energy for the O(e)

system is conserved. Let a be a vector defined in the local mode space such that
a(z) = &(z) + d(z). (4.142)
Then, the condition for the total energy conservation of the O(¢e) system is
a(zo) = &O(x). (4.143)

a(z) = P(z,z0)a(zo). (4.144)
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The total energy conservation condition egs. (4.143) & (4.144) for the O(¢) stochastic

medium can be rewritten as
&9 (z) = é(z) + d(z). (4.145)

Substituting eqs. (4.141) & (4.142) into eq. (4.144) yields the formula for the coherent
modal amplitude &(z):

&(z) = B(z, 20)é(zo) ~ [ :f’(z,E)S(E)é(z) de. (4.146)

4.8.2 The Lippmann-Schwinger integral equation for the O(e) propagator

First, we shall define the propagator for the stochastic medium with the O(e) per-

turbation:

é(z) = Pz, z0)é(z0) for the O(¢g) system, (4.147)
while the coupled-mode propagator for the deterministic medium is
&O(z) = P(z, z0)&(zo) for the O(1) system. (4.148)

Substituting the propagator for the O(e) system eq. (4.147) into the evolution equa-
tion (4.144) yields

P(z,20) = B(z,20) - [ B(z,6)(6)P(€, 70) de (4.149)

zo

The equation (4.149) is an integral equation for the O() propagator P. The integral
equation is formally equivalent to the Lippmann-Schwinger integral equation used in
quantum mechanics to describe scattering from a potential. For the case of rough
surface scattering, DeSanto & Brown (1986) also arrived at a Lippmann-Schwinger
type integral equation from the Fourier transformed integral equation for the scattered
part of the Green’s function. Note that eq. (4.149) includes a scattering operator
S(z) instead of the scalar function for random fluctuations commonly included in the

Lippmann-Schwinger integral equation for scalar wave (or potential) scattering. To
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solve the Lippmann-Schwinger equation by formal perturbation series (or successive

approximation) (Frisch 1968; Morse & Feshbach 1953), Eq. (4.149) is rewritten as
P=P-PL,P, (4.150)
where L, is the random operator, defined such that

LiP = ["S(€)P(¢,a0) . (4.151)

Eq. (4.150) is solved for P by formal iteration:

P = (I+PL,)" P
=3 (-8L)" P (4.152)
n=0

The formal perturbation series solution of the propagator for the O(g) system is

written as

P(z,z0) =
P(z,z0) — L:P(x, &1)S(&)P (61, 20) d&
+ (—1)2/:: P(z,£)S(&)P(&, &)S(&)P (&1, zo) d€; dEz

+ (=17 [ B(e,£S(6)P(6s, £)S(E)P (6, ) (4.153)
x S(&1)P(£1, 7o) d&; dé; dés

vy

where P is the coupled-mode propagator for the range-dependent medium in the
absence of the stochastic roughness (y(z) = 0). The operator S represents rough
surface scattering at z, i.e., it converts the coherent field & to the scattered field d.
The matrix representation of the scattering operator S is derived for Rayleigh waves
in an isotropic medium in the appendix. Note that retaining the first two terms
on the right hand side of eq. (4.153) is the Born approximation for P(z,mo) (the

single scattering approximation). The averaged quantity of the Born approximation



120

vanishes for the centered random fluctuation. On the other hand, averaging the formal
perturbation series eq. (4.153) yields the nonvanishing mean propagator (15>E, which

can be related to the mean coherent field, i.e., the mean field:
(@) = T v {E@a)s

Za: ve {(’ﬁ(zr, zs)é(xs» E}a

= Zve{(Planz)), e, (4.154)

The mean field of eq. (4.154), including the effects of multiple scattering, enables us

to generate signal spectra and to predict the amplitude and the phase fluctuations of
each mode.

Frisch (1968) derived the Dyson equation for the ensemble averaged Green’s func-
tion for scalar wave scattering by diagram methods. However, the formal series
solution of the propagator, eq. (4.153) includes the scattering operator S(z) instead
of a scalar random function. To derive the mean propagator, we need to express
the explicit correlation relations between values of the scattering operator at dif-
ferent points. Because the scattering operator S(z) is linearly dependent on the
random roughness function 7(z), we can decompose the random operator S(z) into
a product of the centered stochastic process y(z) and the deterministic operator S.
The averaged quantities of the centered random operator S, (S(z)S(z2)- - - S(z:)) g,
also depend on the configuration of the points z,z,,...,z; in the same way as the
averaged quantities of the random function ¥(z). Then, by means of the cluster ex-
pansions of the stochastic process v(z) eq. (4.3), we can also expand the averaged

quantities of the random operator S(z) in the following cluster expansions:

(S(21)S(22))y = Ta(z1,72) 8(z1) S(z2)
(S(21)S(22)S(z3))g = Ts(z1,%2,73) S(z1) S(z2) S(z3)
(S(21)S(72)S(23)S(z4)) g = {T2(z1,22) T2(z3, Z4) + 2(Z1, 23) Ta(z2, 74)

+ [2(z1,24) D2(z2, 3) + Tu(z1, 22, 23, 24) }
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x §(z1) $(z2) S(z3) S(z4)
(4.155)

The summation over interfaces should be done for the cluster expansion eq. (4.155)
when the model includes multiple rough interfaces. Note that, unlike the random
scalar function, the scattering operator S and the propagator P must be ordered for
the averaged quantity. Averaging the formal series eq. (4.153) yields the expression
for the mean propagator <15> B in terms of the cluster expansions of the random

operator S(z):

(P(=,20)), =
P(z, zo)
+ (=17 [ Bz, )8(6)P (6, )5(60)P (6, 20) T (61, )6 de
+ (=17 [ Bz, £)8(6)P(6s, £)5(6)P (6, &)
x 8(&1)P (&1, 7o) Ts(b1, &2, £5)d6r dE2 dfs
+(-1)* [ Bz, €08 (6P (6, £)8(6)P (66, )
x S(&2)P(&2, &) S(61)P (€1, %0) {T2(€1, £2)T2(Es, £4)
+ T2(61, €3)T2(€2, €4) + T2(€1, €)T2(E2, E8)Talbr, €20 €3, 64) }
d§, d&; dés d&,
o (4.156)

Note that averaging the second term on the right hand side of eq. (4.153) vanishes for
the centered random operator, i.e., (S(z)); = 0. For the centered Gaussian stochastic
process y(z), all statistical moments of odd order vanish, and statistical moments of
order 2n can be written as sums of % terms, each of which is a product of two-point

correlation functions. Then the mean propagator becomes

<'ﬁ(:z:,:z:o)>E =



13(:1:, Zo)
+ /z: P(z,£2)S(62)P(E2,6)S(61)P (€1, 20) T2(61, £2)dEy dE;

+ [ P 6)8(60P (L 6)5(E)P(E &)
x 8(&)P(£2, &) S(6)P (&1, o)
X {Fz(fh £2)T2(€5, &) + D261, &a)T2(62, &) + T2(&1, Ea)T2(62s 53)}
d&, d&z d&s d&y
(4.157)

4.8.3 The diagram method and the Dyson equation for the mean propagator

To give a graphic idea of the structure of the expansions eqs. (4.156) & (4.157), we
represent their elements by Feynman diagrams. The diagram method was introduced
by Feynman to quantum electrodynamics to provide a simple way for handling all-
order formal perturbation series of the Green’s function including the effect of the
scattering potential. The method owes its success to its compact form as compared
to the analytical representation. We will apply the diagram methods to our for-
mal perturbation series of the propagator which is operating on the abstract vector
representations of the wavefields defined in the local mode space.

We point out that the following diagram representation is a calculation tool, and
not just a graphical representation of the equations. Diagrams can be manipulated
by well defined rules based on their topology. The diagram method allows us to
represent the terms in equations for the mean and covariance of the propagator in
the form of an integral equation with a kernel, which would be extremely difficult to
do using ordinary analytical methods.

The diagram method can be introduced in a very elementary way. Following
Frisch (1968), Bass & Fuks (1979) and Rytov, Kravtsov & Tatarski (1989), the dia-
gram method for the propagator P is developed. First, the following connection is

introduced for the representation of bare diagrams (Frisch 1968; Rytov et al. 1989):
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1. The propagator for the deterministic medium (the deterministic propagator) is

represented by a thin solid line:

P(z,zq) = z Zo (4.158)
2. The random operator (—L;) is represented by a dot:
—LI = ° (4-159)

Then, the perturbation series solution of the propagator in eq. (4.153) is represented

as

ﬁ($, :L‘o) = + - + o o— +... (4.160)

The series of eq. (4.160) has a multiple scattering physical interpretation. The nt?
term corresponds to a n'* order (n times) scattered wave which propagates freely
from x4 to &, is scattered at £; by roughness, propagates freely to &, is scattered at
&2, and so on. Here, the free propagation must be interpreted as propagation without
scattering.

We now turn back to the calculation of the mean propagator <75>E. The cluster
expansions of the mean propagator can be represented by a dressed diagram with the

following conventions (Frisch 1968):
1. Points belong to a given cluster are connected by dotted lines.

2. To every bare diagram involving ! factors S, are associated as many dressed
diagrams as there are different partitions of the set z;,z,,...,z; into clusters

of at least two points.

3. To calculate a dressed diagram, the solid lines are replaced by deterministic
propagators, the cluster of dotted line ending at &;,...,& by factors
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$(&)---S(&)Ti(&1,-- -, &), and integration is performed over all intermediate

points.

The expansion of the mean propagator eq. (4.156) can now be written in terms

of dressed diagrams:
(Be = — + oo+ Fin b _aa 4 I
1 2 3 4 5
+ S b _EEA T F e e
6 7 8
e Y .." ..... NS
+ P P N + S o -~ + - B T
9 10 11
S A G U N R S N (4.161)
12 13

The following are the examples of some simple dressed diagram representations used

in eq. (4.161):

—~ = [Bz&)8EP & &)
zT & & @ xS8(6)P(6,zo) a6, &) dEr dEs  (4.162)

o~ P = / P(z,£)S(6)P (64, &)
cTTE & & & % x$EPE. 56
x P(&2,£)S(61)P (&1, o)
x T'2(£s,&a) T2(61, &2)
dé; d§> d€3 déy (4.163)
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For a centered Gaussian roughness y(z), there are no clusters of more than two
points, hence diagrams (3) and (7) in eq. (4.161) disappear. Note that the number of
terms of n** order series in eq. (4.161) increases very rapidly with n, at least as g.—"g
This is another reason for the divergence of the perturbation expansion of the mean
propagator (Frisch 1968). A technique for making such expansions more uniformly
valid will be briefly discussed at the end of this section.

For example, when considering the analytical expression in eq. (4.163) for a

T, T,
5 " o

diagram such as , it can be written as the product of the following

five diagrams:

e %, (4.164)

It is obvious that this factorization property is related to the topological structure
of the diagram. To obtain an integral equation for P with a kernel consisting of an
infinite series, we introduce the following definitions based on the topology of the
diagrams:

1. A diagram without terminals is a diagram which has been stripped of its exter-
nal solid lines, such as <= of diagram 2 in eq. (4.161) or 25% of diagram
5 in eq. (4.161).

2. A diagram without terminals is connected if it cannot be cut into two or more
diagrams, without cutting any dashed lines, in other words if it is not factor-
izable. Diagrams 2, 3, 5, 6, 7, 12 and 13, after stripped of their external solid
lines, are connected, while diagrams 4, 8, 9, 10 and 11 are not connected. There-
fore, any unconnected diagram can be factored into some lower order connected

diagrams.

3. The mass operator (the name was borrowed from the quantum field theory) is

defined as the sum of all possible connected diagrams contributing to (P . It
gr g E
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is denoted by M or the symbol @

@ :. .JA.'.
= &4 LS+ S e s e (4.165)

4. The symbol for the mean propagator (’ﬁ)z is introduces as

<'ﬁ($, .’Bo))E = T T (4.166)

By those definitions, all unconnected diagrams are factored into connected diagrams
and the diagramatic expansion of <13>E in eq.(4.161) is represented by the sum of all

possible connected diagram, the mass operator:

= + @ (4.167)

Eq. (4.167) is an integral equation for (73>E with the kernel of mass operator, which

is called the Dyson equation. Note that the Dyson equation (4.167) is for the modal
amplitude propagator not for the Green’s function as in other areas, like quantum
electrodynamics, many-body problems, statistical mechanics, etc. The analytical

form of the Dyson equation is

‘(ﬁ(z,zo))E, =B(z,20) + [ Blz, M6, &) (Pln,20), dirdes|  (4.168)

4.8.4 The Bethe-Salpeter equation for the covariance of the propagator

We investigate the second statistical moment of the propagator <15*15>E, i.e., the
covariance of two propagators (fields). The importance of the propagator covariance
is that it enables us to synthesize the envelope of the mean squared signals (e.g.,

envelopes of bottom interacting seismo-acoustic signals, seismic coda envelope, etc.),
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and analyze the effect of the multiple rough surface scattering on the envelope decay.
First, the product of the propagator P and its Hermitian conjugate is written in

terms of the bare double-diagrams (Frisch 1968):

Pz, zo)P(2', zh) = + + + +

+ + + + .-, (4.169)

\ 2 o < >—

where we make the convention that each double-diagram is the product of the propa-
gator corresponding to the lower line and of the Hermitian conjugate of the propagator
corresponding to the upper line. For the propagator covariance, which is the mean

double propagator, a similar expansion holds in terms of dressed double-diagram:

(Pl(z,20)P(e",2p)),, = + +

E —_ —_———

+ + i 4, (4.170)

———p—— —_——

We also give the examples of the analytical representation for some simple dressed

double-diagram used in eq. (4.170):

T _%_30
: = /ﬁt(za él)sf(fl)Pf(glrzo)

2'—6’1_36 x P(z',£)8(&)P(&, zh)
x [a(€1,&2) dé d&; (4.171)

GG T = [P 6)81 6PN &)
x §1(&;)P* (2, zo)
' g zh x P(z’, £3)8(&3)P (&3, zh)
x T2(€1,&3)T2(€2, €3) d&y d€a d&s. (4.172)
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Similarly, all unconnected double-diagrams are represented by the connected double-
diagram by the factorization property, and all double-diagram which are not con-
nected between the upper line and the lower line can be represented by the product
<’ﬁf>5 (’ﬁ)E By introducing the symbol for the propagator covariance,

T To

(P!(z, 20)P(e,20)) ; = , (4.173)

7

v 4
z T

the diagramatic expansion of the propagator covariance is written as the integral
equation with a kernel which is the sum of all possible connected double-diagrams

contributing to (’ﬁf'ﬁ>E:

T Zo T Zo T 1 ) o
_ + & (4.174)

Eq. (4.174) is called the Bethe-Salpeter equation and its kernel is the intensity operator
(Frisch 1968; Rytov et al. 1989) denoted by K or the symbol @ The infinite series

of K represents the sum of all possible connected double diagrams. Its diagram

representation is

b L I ] ' — s

S iy o %
e IR R A s (4.175)
2 4

The Dyson equation and the Bethe-Salpeter equation are a major result of this
paper which enable us to analyze the phenomenon of elastic wave multiple scatter-
ing. However, the expansions obtained in this section were shown to be divergent by

Frisch (1968). Moreover, he also showed that these expansions contain secular terms
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AylS
AS.E°
IS
AzE°’

where AS, = AzAy, and E? is the incident energy flux density. The relation between

(4.176)

the energy flux across the unit strip I° and the energy flux density E° are:
I°

E°= oo (4.177)
where D, is defined as the reference depth chosen such that all the energy crossing
a vertically oriented rectangle of area Ay D,. For the reference depth, a reasonable
choice is to use the turning depth of the deepest turning mode. Note that eq. (4.176)
is dimensionless unlike the scattering cross section for volume scattering. I is the
energy flux density of scattered field of the a** mode across the plane z = constant

with unit width in y-direction, i.e., AyIS is the energy flux across the plane S;. With

the assumption that each mode is normalized to carry unit energy flux, IS becomes
5 2
I5(z,w) = Ida(z,w)l ) (4.178)

Applying the Born approximation to the evolution equation for the O(g) system eq.
(4.134) and the initial condition d,(z,) = 0 to the evolution equation eq. (4.134)
yields

da(@w) = T Puolwo)dale) + 3 [ Puale O0s(e)ie

2
B
Zg'rn /: Pog(,€)g5(£)dE, (4.179)

where the stochastic effective source is rewritten as
g = (D+iEB)é
~ (D +iEB)e®
Y 7.(D" + iE"B)&©

> g (4.180)

1
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Figure 4.6: Model geometry for defining the scattering cross section per unit area of
rough surface.






The summation is done over all rough surfaces. The modal amplitude of the coherent
field for the stochastic medium € is approximated by the primary field é(® for the
deterministic medium, i.e., the Born approximation. The matrices D" and E™ in
eq. (4.180) are the purely deterministic parts of D and E, and 4, is the stochastic
roughness of the n* interface. Substituting eq. (4.179) into eq. (4.178), and taking

the ensemble average yields the energy flux of the scattered field of the a** mode IS:

z+AT +Az
Clew) = L [ (ﬁ)zgyjzv,,(el,&)
X 95 (62) Pha(z + Az, £2) Py (z + Az, £1)90(61) dErdé
TH+AT 00
= 2
= ;/’: dz <7">E/o dr
{E Mr)gzi@+n)
B
X Pao(z + 1,z + Az) P, (z + Az, z)g,’,‘(z)}, (4.181)
where N,(r) is the normalized autocorrelation function of v,(z) and r = | — &|.
Exponential or Gaussian autocorrelation functions are often chosen to model stochas-
tic processes of physical interest (Chernov 1960). If we assume that the scale length
of the heterogeneity is much smaller than the propagation distance, i.e., a < R, then

the autocorrelation N,(r) will have small side lobes and the scattered energy flux can

be written in a simpler form (Wang & Herrmann, 1988):
Baw) = 5[ (02), Top @) e + A2,2)
{ /0 % No(r) Boalz + rz+ Az)dr} dz (4.182)
For a small segment Az (< 1), IS becomes

E o~ Az Y (1), 951 (2)00(@) Par(2,2) [ Nalr) Baalz + 7, z)dr
n Bu

= 83 (1)p 05 (@) [ NalrPrale +riaddr, (4189
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where the relation 150,,(1:, z) = bq, is used. Finally, the modal scattering cross section

can be written as
1 2 nt n had p
0a = 55 2 (1) 95'@)62(2) [ Nu(r)Paalz +r,2)dr. (4.184)
n B 0

Using the modal scattering cross section, the total scattering cross section per unit

area of the rough interfaces can be written as:

o=)_ 0a, (4.185)

where the sum is over all modes. For the short distance Az, the relation between the

modal scattering cross section o, and the total energy flux IS is

F = Y18

= AzE’) o.. (4.186)

The generation of the scattered field is interpreted as the energy loss of the coher-
ent field. We assume here that the direction of maximum attenuation of amplitude
is along the x-axis, which is also the direction of propagation. Then the spatial de-
cay of power during the propagation through a wavelength-distance becomes (Aki &
Richards 1980; Sato 1984)

AS
AI—EI,

= E°) Auoo (4.187)

where A is the wavelength given in terms of w and phase velocity ¢ by A = 2% = 2z,
and R = z, —z,. Scattering Qs can be derived from the definition of spatial Q: (Aki
& Richards 1980):

spatial Q3' = —

= za: Dk (4.188)
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From equation (7.92) of Aki & Richards (1980), the relation between the spatial and
the temporal @ for surface waves is

temporal Q7' = % x spatial Q7!, (4.189)

where c is the phase velocity and U is the group velocity. The temporal Q3" can also

be written as

=3 Z";j‘ (4.190)
P =TT (n), o == 5(@)92(2) [ Na(r)Bra(z +r,2)dr (4.191)

af n

where U, is a group velocity of the o** mode. Hereafter, we employ the temporal
Q35" only and the word temporal is dropped for convenience. Hoshiba (1991) has
sunmarized the functional form of Q3' derived by previous workers. The results
he summarized employed ray theory with a single or multiple scattering model, or
radiative transfer theory, and were restricted to volume scattering. Note that eq.
(4.190) for the modal Q3! is functionally equivalent to the result obtained from the
single scattering model, but it requires a summation over mode number to obtain the
total contribution to Q3! for scattering from rough interfaces.

Next, we derive the final forms of the scattering cross section and the scatter-
ing Q3' analytically for a range-dependent medium with weakly varying reference

structure. First, the integration in eq. (4.191) for a plane scalar wave becomes
0o .
I(z) = / No(r)e'* dr. (4.192)
-0
For the exponential autocorrelation function, Z(z) is

I(z) = /oo e et dr
2a
T Trak (4.193)
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and for the Gaussian autocorrelation function, Z(z) is
© 2
I(z) = / e~of ¥ dr
= Vrae (87, (4.194)

where a is the roughness correlation length.

For the weakly varying reference structure, the off-diagonal terms of the trans-
formed coupling matrix B can be ignored (WKBJ approximation):

Hop = Kag = kobag. (4.195)

If the scale length of the boundary roughness is assumed much smaller than the
propagation distance, the autocorrelation N,(r) will have small side lobes, and then

the integration over a few correlation lengths can be approximated as
/Nn(r)f’ga(z +r,z)dr = /N,,(r) exp {tKgor} dr. (4.196)
There is a direct mapping between the diagonal matrix and its function:

{f(K)}, = f(Kap), (4.197)
P.s(z +r,z) = exp {iKupgr} (4.198)

For the weakly varying reference structure, the modal scattering cross section is

0, = E02<73> lg™(x) 1+ TR for N(r)—exp(—la—l) (4.199)

) lal(z 2exp{— (k;—“)z}

for N.(r) =exp (—;;-) , (4.200)

O =

and the scattering Q3! is

= S () Ll
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for N,(r) =exp (—I—:I—) , (4.201)
2
s = ﬁoa ;;(ﬁ)z Ua |93 (2)|* exp [—- (k;—a) ]
2
for N,(r) =exp (-a_z) . (4.202)

From egs. (4.201) & (4.202), we can numerically synthesize scattering Q3" for the
range dependent medium with given statistical properties and at a given frequency,
and generate a Q3! curve in the frequency domain. The temporal decay of the signal
envelope can be predicted from the synthesized @35'. On the other hand, we can
retrieve the statistical properties of the boundary roughness from the fact that Q3!
is an explicit function of the roughness variance (¥2); and the correlation length
a. If we assume that the stochastic roughness v,(z) is a stationary process, i.e., the
statistical properties of v,(r) do not depend on their absolute position, we can design
an inverse problem for the variance and the correlation by fitting the spectral Q3!
curve, predicted by the model vector of ((vZ)z, a), to the observed data in a least
squares sense (Scherbaum & Sato 1991). The temporal decay of the envelope can be
measured by means of an analysis of peak and half-maximum amplitude arrivals of
the envelopes of signals filtered by a narrow band pass filter.

For numerical computation, first we choose a simple depth dependent model which
consists of a fluid layer over solid half space. The sound speed in water is 1500 m/s and
the compressional and the shear wave speeds of the half space are 3270 m/s and 1620
m/s, respectively. The water depth is 200 m. In Fig. 4.7, the first 5 modes computed
at f = 50 Hz are shown. Their phase velocities are 1310.7 m/s, 1504.3 m/s, 1517.1
m/s, 1538.8 m/s and 1569.5 m/s, respectively. Their horizontal modal wavelengths
range between 26.2 m and 31.4 m. The fundamental mode is a Stoneley wave and the
next four higher overtones are confined mostly to the water layer. There exists only
one rough boundary between the fluid layer and the solid half space. Note that the

choice of 1m for the roughness variance is only a convenience for the computations.
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Figure 4.7: Simple computational model. The vertical displacement eigenfunctions
of first 5 normal modes are computed for a depth-dependent model at f = 50 Hz.
The model consists of a water layer over solid half space. The dotted line indicates

the water depth (200 m).



Vertical Displacement u, (meter)

4.0E-06

3.0E-06
2.0E-06

1.0E~06

T

~1.0E-06

—-2.0E-06

™

-3.0E-06

-4.0E-06

i 1 1

0

100

200 300 400
Depth z (meter)

500

600



138

Figure 4.8: Semi-log plots of the modal scattering cross sections computed with the
Gaussian autocorrelation function for the correlation length a = 1 m and the variance

(‘73)1; =1lm.
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Figure 4.9: Log plots of the scattering Q5" computed with the Gaussian autocorre-

lation function for the variance (y2)p = 1 m.
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The curves for Q3! are computed from the Born approximation and the roughness
variance enters only as a scale factor. The shape of the curves do not depend on the
roughness variance.

The modal scattering cross section is computed with a roughness variance of 1 m
and a correlation length 1 m using the Gaussian autocorrelation function (Fig. 4.8).
The modal scattering cross section of the Stoneley wave (m=0) is larger than those of
other higher modes. That means that the interface wave is more strongly affected by
the interface roughness than the water waves. Also the scattering Q3! is computed for
the same model with a variance of 1 m and employing the Gaussian autocorrelation
function (Fig 4.9). The peaks of the scattering Q3' curves are correlated with their
modal wavelengths. In fact the maxima occur at the values ap,z = 7'5\-; for the
Gaussian autocorrelation function.

As a second example, we have computed the modal scattering cross section and
scattering Q5! for a realistic shallow water environment. In Fig. 4.10, the model
structure, the velocity and the density profiles, and the mode functions are illustrated
for a frequency of 10 Hz. The model can be characterized by an upper water layer,
low-velocity sediment layers, and a high-velocity hard bottom with two-dimensional
range dependence. The range dependence is assumed to be confined between z =
0 m and z = 76 m, and the slope of the interfaces varies up to 45°. The first 9
modes are used for computation. The energy of the first four modes, whose phase
velocities range between 145.6 m/s and 815.3 m/s at 10 Hz, is mainly confined in the
low-velocity sediment layers (depth 40 - 80 m at z = 0). The next five modes, whose
phase velocities range between 1015.6 m/s and 1162.2 m/s at the same frequency,
propagate in the hard bottom (depth 200 - 600 m at z = 0).

The modal scattering cross section, normalized by the variance, is computed with
unit incident energy flux density. Each mode is assumed to have equal amplitude ¢?
upon incidence. In Fig. 4.11 and Fig. 4.12, the modal scattering cross sections are

computed at two different point in the medium, point A (5.7° slope) and point B
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(45° slope) (see Fig. 4.10) using the exponential autocorrelation function with two
different correlation lengths ¢ =1 m and @ = 10 m. In Fig. 4.13 and Fig. 4.14, the
Gaussian correlation function is used.

The somewhat complicated dependence of the cross section on mode number
becomes clear on examination of Figure 4.15 and 4.16, which show the scattering
@3' for the exponential and Gaussian autocorrelation functions, respectively. The
two vertical lines indicate the correlation length values for which the cross section are
shown in Figures 4.11- 4.14.

There are two groups of curves in Figures 4.15 and 4.16. The solid curves are for
the first four modes and the dashed curves are for the next five modes. Generally, the
first four modes, which are mostly confined to the layers between the water and the
hard bottom, scattered more strongly than the higher modes, while higher modes,
propagating deeper in the hard bottom, scattered less. The fourth mode scattered the
least and the modal scattering cross sections of the higher modes gradually increase
because the energy, propagating along the deep interface (z ~ 600 m), increases as
the mode number increases. The relatively smaller scattering of the fourth mode
is the reason for the pronounced minimum in the cross section, Figures 4.11- 4.14.
Especially affected by boundary roughness are the first, the fifth and sixth modes.
The first mode is the Stoneley (Scholte) wave at the water-sediment boundary. The
third and the fourth modes propagate just above and along the boundary between
the softer sediment and hard bottom. Therefore, scattered intensity is sensitive to
the magnitude of the impedance contrast across a boundary. However, the slope of
the reference boundary does not have a large effect on the scattered intensity. This is
likely due to the very long correlation length of the mean structure compared to what
was chosen for the boundary roughness. The weak dependence of the scattering cross
section on the reference structure can be readily seen by comparing Figures 4.11 and
4.12, which are computed at two different point A and B in the reference structure

(Fig. 4.10). This is also apparent upon comparison of Figures 4.13 and 4.14.
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Figure 4.11: Semi-log plots of the normalized modal scattering cross sections com-
puted with the exponential autocorrelation function for the correlation length a = 1 m

(dots), and for @ = 10 m (circles) at point A on Fig. 4.6, where the slope is 5.7°.
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Figure 4.12: Same as Fig. 4.11 at point B on Fig. 4.6, where the slope is 45°, with
the exponential function.
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Figure 4.13: Same as Fig. 4.11 at point A on Fig. 4.6, where the slope is 5.7° with

the Gaussian autocorrelation function.
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Figure 4.14: Same as Fig. 4.11 at point B on Fig. 4.6, where the slope is 45°, with

the Gaussian autocorrelation function.
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Now concentrating on Figures 4.15 and 4.16, it can be seen that the correlation
length for which @Q3' reaches a maximum increases with mode number. The maxi-
mum correlation length an.- for a particular mode linearly depends on the horizontal
modal wavelenth A. The analytically derived relation is @pmqer = 7’-;-—; for the Gaussian
autocorrelation function, and @,z = 5‘\; for the exponential autocorrelation function.
The horizontal modal wavelengths of the first four modes at 10 Hz are Ao = 14.6 m,
A1 =25.0 m, Az =34.9 m & X; = 81.5 m. The horizontal modal wavelengths of the
higher modes have a rather narrow range (101.6 m < A < 116.2), which makes the
locations of the maximum for the higher modes appear nearly the same.

The scattering Q5' must be computed assuming a Gaussian correlation function
(Fig. 4.16) falls off much more rapidly after reaching a maximum than does Q3!
for the exponential correlation function. However, the slopes of the Q3! curves prior
to their maxima are independent of the form of the correlation function for our two
choices. Also the Q3! curves are more sharply peaked for Gaussian correlations than
for exponential correlations. This is an indication that boundary roughness with
exponential correlations is a more efficient scatterer than boundary roughness with
Gaussian correlations. The final thing to notice is that the first four modes, confined
mostly to the sediment, are scattered more strongly than the last five basement modes.
The maximum of the Q3! curves for the first four modes occur at shorter correlation
lengths because the horizontal modal wavelengths are shorter as mentioned.

For a strongly varying reference structure, we cannot disregard the off-diagonal
terms of the transformed coupling matrix H, i.e., we cannot ignore the deterministic
mode coupling. The relation eq. (4.198) is no longer valid for the general coupling
matrix. Therefore, the scattering cross section and the Q' curve must be computed

by numerical integration of eqs. (4.184) & (4.191) instead of by analytical integration.



148

Figure 4.15: Log plots of the normalized scattering Q3' of the first nine modes
computed with the exponential autocorelation function at a frequency of 10 Hz .
Solid lines are for the first four modes, and broken lines are for the next five modes.
The unit of the correlation length a is meter and scattering Q35! is dimensionless.
The vertical dashed lines mark the two values of the correlation length a for which

the cross section are shown in Figures 4.11 - 4.14.
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Figure 4.16: Same as Fig. 4.15 with the Gaussian autocorrelation function.
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4.10 An Inverse Problem for the Roughness Variance and Correlation
Length

In the preceding section, we proposed that the inverse problem can be solved by a
least-squares fit of the predicted Q3! curve to the observed data in the frequency
domain. However, for the case when we cannot assume that the stochastic roughness
is a locally stationary process, we cannot retrieve the laterally varying statistical
properties from only the measurement of Q3'. For the case of a locally stationary
roughness, we have derived an expression for the power spectrum from the Born
approximation of the coherent field, and designed a power spectrum inversion by
iterative fitting of the synthetic power spectrum to the observed signal’s tail (e.g.,
seismic coda waves). The purpose of this section is to describe how to retrieve the
local variance and the correlation length of roughness by spectrum fitting, with the
assumption that the material properties of the reference structure are known. Using
the orthogonality of the local modes, the total power carried by the coherent field
across planes r = z,, can be written as (Aki & Richards 1980, ch. 13)

vz, ) = < v (z,w), vi (zs,w) >

= < v((,o)(zr,w),vt(,o)(z,.,w) > =< v{”(z,,w),v{”(z,,w) >

= P°P-1°
= 3 [80(z,,w)[* ~ Y |da(zr, w)[2 (4.203)

Substituting eq. (4.179) into eq. (4.203), and taking the ensemble average yield the

power spectrum of the mean coherent field I€:

Clznw) = (V@)%
= S-S [T
X {(73)5 ; Na(61,62)95"(62) Bha(e, &2) Pas (2, & )g:(sl)} dé,dE;
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= Tl -2 [ (), [ ar

X { ﬁZ Na(r)g5'(z +r)Pau(z + 1, 2)g} (-'L')} - (4.204)

To derive the last form of eq. (4.204), the properties of the coupled-mode propagator

are used:

Z pga(z"'l 62)130,,(:1:,, El) = Z Pﬁa(fb zr)Pow(zry El)

= Pg(&2,6). (4.205)

To design an inverse problem for the roughness variance, eq. (4.204) is written in

terms of the variance mutiplied by its sensitivity kernel:

C(z,,w) =1° — )3 /: (1), Kn(a)dz, (4.206)
where the sensitivity kernel K, (z) is defined as
Kn(@) =X [ Nalr)gat(@ + 1) Pas(z +7,2)g3() dr, (4.207)
a.B
where
g'(z) = (D" +iE"B)i(z)
~ (D" +iE"B)&(z)
= (D™ + iE"B)P(z, z,)&(z,), (4.208)
and
eO0(z,) = u(z,, z,;w) - f*(w)e's. (4.209)

Note that the sensitivity kernel K, (z) has the form of a spatial convolution of the
stochastic effective source weighted by the autocorrelation function N,(r) (the cen-
tered Gaussian function). K,(z) depends on the interface number n and the horizon-
tal coordinate z while the sensitivity kernel for the perturbation of the material prop-

erties in 2-D is a function of z and 2. In the sensitivity kernel, the correlation length



in the autocorrelation function N,(r) plays a role similar to the resolution length of
the Backus-Glibert inversion method (Backus & Gilbert 1970). The Backus-Gilbert
method is designed for a deterministic mathematical model, it considers the variance
as the error of deterministic properties which can be reduced by decreasing resolu-
tion. Whereas, for the inverse problem of the stochastic process, the variance and
correlation length are model variables that we wish to estimate. Therefore, there is
no trade-off relation between the variance and the correlation length.

First, the variance of the boundary roughness (y2); can be parametrized (Nolet

1990):
L
(72, = i fil), (4.210)

=1
where the model vector 7 is defined as B = (pi,nl,---,7*) and fi(z) is a set of L

basis functions of the horizontal distance z. N}, is the number of interfaces. Using

eq. (4.210), eq. (4.206) can be written
¥(n,w) = Kn, (4.211)

where ¥(n,w) = (Is (1), B(wy),---,I (wM)) . The signal may be fit in the frequency
domain by minimizing the objective function F(n) (Nolet 1987; Scherbaum & Sato
1991):

M
F =33 [ [tmw) - si@) do, (4212

=1

where M is the total number of spectra available, Q2 is a sufficiently large frequency
span, ¥; is the synthetic power spectrum corresponding to the i** signal time series,
and s; is the observed power spectrum. The objective function F(n) can be minimized

by the Hessian matrix H and the conjugate gradient d (Nolet 1987):
H(m)An = —-V,F(n)

= i /on Vo ¥; [P, w) — 8i(w)] dw, (4.213)

i=1

and

d't' = —(V,F)*! + gid’, (4.214)
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where
; _ (Vo P+
=" F g (4.215)
(V. F)P °
a‘ denotes the value a for the i** iteration model n‘, and
a 8 a\
Vo=o—=—, -, —] . 4.216
! (3771 a2 317[.) ( )

From the least-squares fit of the predicted Q3' curve to the observed data in the
preceding section, the constant variance n* and the constant correlation length a*
over the region are assumed to have been retrieved. Then the correlation length a*
may be applied over the whole propagation region, and the variance 7* can be used
as an initial background value for the model parameter with unit block functions:
L

(), = Z‘;n*ﬂ(z), (4.217)

where

fi(z) = H(z — z1—1) H(z: — z) (4.218)

and H(z) is the Heavyside unit step function.

The advantage of the power spectrum inversion compared to the inversion from
the measurement of Q3" explained in the preceding section is that range-dependence
is considered in a parametrization of the variance, i.e., the range-dependent variance

can be retrieved segment by segment.

4.11 Summary and Conclusion

The elastic wave scattering from stochastic rough surfaces has been treated in this
paper by applying 1st order perturbation theory to the coupled mode equations. We
have derived the evolution equation which describes the coupling from modes of the
primary field to the modes of the scattered field.

The coupled-mode propagator is defined in the local mode space by applying the
product integral to the evolution equation for the primary field. The coupled-mode
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propagator is shown to be unitary, and the reciprocity theorem for the coupled-mode
surface waves is demonstrated from the unitarity.

An integral equation formally identical to the Lippmann-Schwinger equation is
also found for the propagator of the O(e) system. By the diagram method, the Dyson
equation is obtained for the mean propagator which enables us to synthesize the mean
field including the effects of multiple scattering. The Bethe-Salpeter equation for the
covariance of the propagator is also obtained, which can be used to analyze the effects
of the multiple scattering on the envelope decay of the siganls.

We derived the expression for the modal scattering cross section and scattering
@, from the Born approximation of the scattered field, and compute them for weakly
varying reference structure. Based on numerical computations, first, we can conclude
that the scattered intensity is sensitive to the magnitude of the impedance contrast
across a boundary. That is, roughness between layers with similar impedance cannot
greatly contribute to scattering. The slope of the reference boundary does not have a
large effect on the scattered intensity because the reference structure can be thought
as a stochastic process with an infinitely long correlation length. Also, each mode
has the minimum Q3" value at a different correlation length because of the different
sampling by different modal wavelengths.

For the acoustic wave scattering problem in shallow water, the rough seabottom
plays an important role in scattering of coherent signals through the interaction with
the interface wave. Synthesis of Q3' and the envelope of signals enable us to predict
the temporal decay rate of signals.

The formula for the power spectra is expressed from the Born approximation of
the coherent field and the inveerse problem is designed by iterative fitting of the
synthetic power spectrum to the observed signals.

There should be futher work to study the Dyson equation and the Bethe-Salpeter
equation for the propagator to study the multiple scattering problem. Solution of

those equations applied to specific problems enable us to generate the mean field
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signals and to predict the envelope decay including multiple scattering effect.
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Appendix A

MAUPIN’S COUPLING MATRIX FOR A RANGE
DEPENDENT FLUID-ELASTIC MEDIUM

We give the explicit expression for Maupin’s coupling matrix for a fluid-elastic

medium.
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The first integral is over the water column only, where k,;(z) is the water-sediment
interface, A is the incompressibility of the water, and the overdot indicates the deriva-
tive with respect to range. There are also two additional terms that must be added
to the summation over the interface terms. These two terms arise from the bound-
ary conditions the water-sediment interface. An ideal inviscid fluid does not support
shear, so the boundary condition at the fluid-solid bottom boundary requiring con-
tinuity of the tangential component of displacement is relaxed and replaced with a
free slip boundary condition. This free slip boundary condition results in a physically

unrealistic discontinuity in the tangential component of displacement w., which can
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be remedied by including a small nonzero viscosity in the equations of motion for the
fluid. The details are given by Maupin (1988).
On the solid side of the interface it is necessary to add

—ih(K? — K ) (wT T, + T w" (A.2)

r "zz zz T

to the terms which already hold for a purely solid medium. On the fluid side of the

interface it is necessary to add the term

Ch(2EE L e (L2 )y wrptur ). (A.3)
A pw?

where ¢ is the scalar pressure, A is the fluid incompressibility, and p is the spatial
wavenumber in the y (cross-range) direction. These additional interface terms must

of course be multiplied by the global term:

(kTik—r)ezp (i / Tk - k')d() (A.4)
Note that the first integral extends from the surface to the ocean bottom k;(z), and
the second integral is over the semi-infinite halfspace comprising the sub-bottom from
hi(z) to infinity. It would also be a simple matter to incorporate an additional solid

layer at the surface to model the mode coupling in an ice covered sea.



Appendix B

STOCHASTIC COUPLING MATRICES FOR RAYLEIGH
WAVES IN A TRANSVERSELY ISOTROPIC MEDIUM

The stochastic coupling matrices, D and E for Rayleigh waves in a transversely
isotropic medium are calculated as an example. We substitute the appropriate trans-
versely isotropic eigenfunctions into the expressions for D and E which are derived

in Park & Odom (1997).

Dy = TwDpe{i [ (6~ £€) &}, (B.1)
Er = Lmbpexpfi [ (k6K () de}. (B:2)
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n
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r= < ) £, [ o Ysys + Yy — yi‘yi] (B-4)
1+ <h">s

where the elastic parameters A, C, F, L & N for transversely isotropic media are
defined in the main text. The eigenfunction notation of Takeuchi & Saito (1972),
{yi;i = 1,2,3,4} is used. The square brackets indicate the jump across the interface,

e.g.,
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Appendix C

SCATTERING OPERATOR AND STOCHASTIC
COUPLING MATRICES FOR RAYLEIGH WAVES IN AN
ISOTROPIC MEDIUM

The matrix representations of the scattering operator S and its components D &
E are derived for Rayleigh waves in an isotropic medium in terms of the deterministic
coupling matrix B and the stochastic coupling matrices, D and E. We substitute the
appropriate isotropic eigenfunctions into equations (4.71) & (4.72). The phase term
is omitted (see eqgs. (4.131) & (4.132)).

S(z) =D +EB, (C.1)
Do = Y 1Dz, (C.2)
Eaﬁ = Z7nE:ﬁ’ (C'3)
where
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where the elastic parameters A, B, C, & D are defined as

1
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D =
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(C.5)

(C.6)
(C.7)
(C.8)

(C.9)

The deterministic coupling matrix B is derived in Maupin (1988). Here, we use

the eigenfunction notation of Aki & Richards (1980), {ri;;: = 1,2,3,4}. The square

brackets indicate the jump across the interface:
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