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UNIVERSITY OF WASHINGTON

Abstract

SOURCE GENERATED ELECTROSTATIC WAVES IN A PLASMA­
APPLICATION TO THE EARTH'S ELECTRON FORESHOCK REGION

by Michael Joseph Pangia

Chairperson of the Supervisory Committee: Professor George K. Parks
Department of Physics

The problem of electrostatic waves generated in a collisionless plasma by a
source of charged particles is formulated using the Vlasov description with an inho­
mogeneous term. A formal solution is obtained by use of the Green's function for the

case of a Maxwellian background plasma with a low density particle
Detailed analysis of the Green's function shows the dynamic behavior of the

svstem as time progresses. In particular, in addition to the asymptotic time limit of
Green's function being described by the roots of the dielectric function, two other

are discussed. The short time limit of the Green's function behaves approxi­
like a cold plasma, and the intermediate time limit of the Green's function

behaves approximately like a plasma with thermal electrons and a cold ion distribu-

An equation for the discrete Fourier transform coefficients of the electric field is
derived without restricting to any particular time limit, and is useful for comparing

measured spectra. The theory is applied to the region deep in the Earth's elec­
foreshock where electrostatic waves are observed, and yet no beams to cause an

instability have been reported. It is postulated that the electrostatic waves in this
region are driven by the distribution of electrons coming from the bow shock, and

this distribution varies spatially with a characteristic wavelength. The electric
spectrum is calculated and shown to give agreement with the reported observa-
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Introduction

The linear kinetic theory of electrostatic oscillations in a collisionless, unmag­

netized plasma has been solved by Landau using the Vlasov equation along with

Gauss' law [Landau, 1946]. These equations are homogeneous, and can be solved

for the first-order particle distribution functions and the resulting electric field once

having specified the particle distributions at some time. For later reference, the prob­

lem of solving this pair of homogeneous equations will be referred to as the Landau

problem. It is the purpose of this thesis to consider the more general case of an inho­

mogeneous version of the linearized Vlasov equation. The inhomogeneous term can,

for instance, be due to an injection of charged particles into the plasma. Appropri­

ately, the problem of solving the homogeneous Vlasov equation coupled with Gauss '

law is identified as the plasma source problem or simply the source problem. The

source problem will be restricted to cases where both the inhomogeneous term (or,

equivalently, the source term) and the first-order particle distributions vanish in the

infinite past.

The source term can represent many naturally occurring or experimentally pro­

duced (such as an injection experiment) situations. In practice, one may define an
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external supply of charged particles as a population of charged particles originating

from a region of space other than the space occupied by the plasma under observa­

tion. A case where the external supply is clearly identifiable is that of an active

experiment involving either the injection of particles into a plasma environment, or

the generation of an electric field by means of a transmitting antenna. Examples are

the Araks project which involved the injection of an electron beam into the magneto­

sphere from a rocket [Cambou et al., 1980], and the SEPAC (Space Experiments

with Particle Accelerators) experiment flown on the Spacelab 1 shuttle mission [Neu­

bert et al., 1986]. For these experiments the source region (region over which the

source term can be non-zero) would be defined by the space occupied by the respec­

tive spacecraft. As another example, the sounder experiment aboard the satellite

ISEE 1 generates an electric field by a transmitting antenna which later receives the

refracted signal [Harvey et al., 1978]. In this case, the antenna current during the

transmitting mode would be provided by the power supply aboard the spacecraft. One

would consider the power supply as the source of charged particles which make up

the current. And here again, the source region is confined to the spacecraft boundary

itself. Parenthetically, spacecraft charging, which occurs for injection experiments,

would also contribute to the source term.

A source term can also be used to represent physics that otherwise may be com­

plex for modeling. One such example exists when a portion of a flowing plasma is

diverted toward another region of the plasma. The diversion might be a result of the

plasma encountering a boundary which reflects a portion of the plasma back into the

oncoming flow. The region of the plasma into which the reflected particles enter

would then be subject to an external source of electric field (external in the sense that
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