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UNIVERSITY OF WASHINGTON
Abstract

SOURCE GENERATED ELECTROSTATIC WAVES IN A PLASMA-
WITH APPLICATION TO THE EARTH’S ELECTRON FORESHOCK REGION

by Michael Joseph Pangia
Chairperson of the Supervisory Committee: Professor George K. Parks
Department of Physics

The problem of electrostatic waves generated in a collisionless plasma by a
source of charged particles is formulated using the Vlasov description with an inho-
mogeneous term. A formal solution is obtained by use of the Green’s function for the
linearized case of a Maxwellian background plasma with a low density particle
source. Detailed analysis of the Green’s function shows the dynamic behavior of the
system as time progresses. In particular, in addition to the asymptotic time limit of
the Green’s function being described by the roots of the dielectric function, two other
limits are discussed. The short time limit of the Green’s function behaves approxi-
mately like a cold plasma, and the intermediate time limit of the Green’s function
behaves approximately like a plasma with thermal electrons and a cold ion distribu-
tion.

An equation for the discrete Fourier transform coefficients of the electric field is
derived without restricting to any particular time limit, and is useful for comparing
with measured spectra. The theory is applied to the region deep in the Earth’s elec-
tron foreshock where electrostatic waves are observed, and yet no beams to cause an
instability have been reported. It is postulated that the electrostatic waves in this
region are driven by the distribution of electrons coming from the bow shock, and
that this distribution varies spatially with a characteristic wavelength. The electric
field spectrum is calculated and shown to give agreement with the reported observa-
tions.
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ONE

Introduction

The linear kinetic theory of electrostatic oscillations in a collisionless, unmag-
netized plasma has been solved by Landau using the Vlasov equation along with
Gauss’ law [Landau, 1946]. These equations are homogeneous, and can be solved
for the first-order particle distribution functions and the resulting electric field once
having specified the particle distributions at some time. For later reference, the prob-
lem of solving this pair of homogeneous equations will be referred to as the Landau
problem. 1t is the purpose of this thesis to consider the more general case of an inho-
mogeneous version of the linearized Vlasov equation. The inhomogeneous term can,
for instance, be due to an injection of charged particles into the plasma. Appropri-
ately, the problem of solving the homogeneous Vlasov equation coupled with Gauss’
law is identiﬁed as the plasma source problem or simply the source problem. The
source problem will be restricted to cases where both the inhomogeneous term (or,
equivalently, the source term) and the first-order particle distributions vanish in the

infinite past.

The source term can represent many naturally occurring or experimentally pro-

duced (such as an injection experiment) situations. In practice, one may define an
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external supply of charged particles as a population of charged particles originating
from a region of space other than the space occupied by the plasma under observa-
tion. A case where the external supply is clearly identifiable is that of an active
experiment involving either the injection of particles into a plasma environment, or
the generation of an electric field by means of a transmitting antenna. Examples are
the Araks project which involved the injection of an electron beam into the magneto-
sphere from a rocket [Cambou et al., 1980], and the SEPAC (Space Experiments
with Particle Accelerators) experiment flown on the Spacelab 1 shuttle mission [Neu-
bert et al., 1986]. For these experiments the source region (region over which the
source term can be non-zero) would be defined by the space occupied by the respec-
tive spacecraft. As another example, the sounder experiment aboard the satellite
ISEE 1 generates an electric field by a transmitting antenna which later receives the
refracted signal [Harvey et al., 1978]. In this case, the antenna current during the
transmitting mode would be provided by the power supply aboard the spacecraft. One
would consider the power supply as the source of charged particles which make up
the current. And here again, the source region is confined to the spacecraft boundary
itself. Parenthetically, spacecraft charging, which occurs for injection experiments,

would also contribute to the source term.

A source term can also be used to represent physics that otherwise may be com-
plex for modeling. One such example exists when a portion of a flowing plasma is
diverted toward another region of the plasma. The diversion might be a result of the
plasma encountering a boundary which reflects a portion of the plasma back into the

oncoming flow. The region of the plasma into which the reflected particles enter

would then be subject to an external source of electric field (external in the sense that
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ted particles supply this region of plasma with an additional charge density).

the reflec

One can study the effect the reflecting boundary has on the main flow by using an
appropriately chosen source term. In particular, this use of the source problem would
be applicable to the upstream region of the earth’s bow shock. The bow shock
behaves like a source of charged particles (with respect to the upstream region) sup-
plying a population of reflected particles to the solar wind flowing toward the bow
shock [Klimas, 1985].

In applying the source problem, a greater variety of electric field behavior may
occur than for the Landau problem for several reasons. One reason is that an electric
field may be initiated with every injected parcel of charged particles. This means the
particles coming from the source bring into the plasma an electric field which was
not previously there. Consequently, the plasma experiences local accelerations result-
ing in an induced electric field. As established by the Landau problem for Maxwel-
lian plasmas, this induced or plasma generated electric field will damp away. But the
overall process is capable of recurring with the introduction of each parcel of injected

particles. The source would then be replenishing the electric field in competition with
the damping process.

Owing to the damping of the electric field in the plasma medium, a major con-
tribution to the total field at a given time is likely to be the portion of the electric
field which was most recently initiated by the source. In an effort to accurately
describe the recently produced portion of the electric field, this thesis will use the

results of the equations in their entirety. This approach is to be contrasted with the

solution of the Landau problem which, in practice, deals only with the asymptotic

UATERNARY LIBRARY

-




4

time behavior [Landau, 1946]. In the asymptotic time limit, the electric field has fre-
quencies (with corresponding damping rates) given by the roots of the dielectric func-
tion. Furthermore, the asymptotic limit describes the solution by the least damped of
these roots. (For an unmagnetized plasma, the possible least damped frequencies
correspond to the Langmuir and ion-acoustic modes.) But using an asymptotic
description for the source problem will poorly approximate a significant portion of

the electric field, and therefore this approach will not be used.

The more general approach will, enroute to solving the source problem, actually
enhance one’s understanding of the Landau problem. In fact, frequent comparison
will be made to the Landau problem, as it is closely related to the source problem.
That they are related is clear from the statement of the respective problems. The
Landau problem, on the one hand, finds the electric field in a source-free plasma
based on specifying the particle distribution at a given time (the initial condition).
On the other hand, the source problem determines the electric field from knowing the
source term. The source term, as noted earlier, introduces an electric field to the
plasma medium and the plasma responds. In this respect, the source term and the ini-
tial condition are similar because the initial condition determines the electric field that

the source-free plasma responds to.

To make the similarities more transparent, consider the form of the solutions,
starting with the Landau problem. The electric field for the Landau problem, Ei, is

commonly expressed by an inverse Laplace transform [Nicholson, 1983] (considering

the one-dimensional case with no external fields)

SR T




ooHG X .
~ E(tk)=4n | %_—i‘%e-m (1-1)

—ootiG

f(=0.k,v)

z—kv

pLzk) = -i¥q, [dv

The real parameter ¢ appearing in (1-1) is chosen to be larger than the imaginary part

of all poles in the integrand. f’,(tk,v) is the spatial Fourier transform of the first-order
distribution function of wave number k and velocity v for species a. Its normalization
will be defined in Chapter 2. Here, the time variable t is restricted to non-negative
values with =0 being the time at which the initial condition is specified. ¢ is the

dielectric function, and is independent of the initial condition f’,(0.k,v).

By applying the convolution theorem for Laplace transforms, (1-1) is cast in the

~ desired form for interpretation.

t

EL(UR) = 22 [dy (-0 puta o (1-2)
0

where ¢7(tk) stands for the inverse Laplace transform of 1/e(zk). Computing pr(tk)

- one finds

pLtk) = ¥q, [dvE,@=0kv)e™ . (1-3)
The meaning of p; can be easily identified by noting that £7,(0.k,v)e™*" is the portion of
the particle distribution that developed from the initial condition f’,(0k.v). The distri-
bution which appears as the integrand in (1-3) is.known as a free-streaming distribu-
- tion [Krall and Trivelpiece, 1973] because it evolves like a system which does not
experience any forces; namely,

@+kv)f,(0k,v)e ™ = 0 (1-4)
with o, denoting /3t. Then from (1-3), one clearly recognizes pi(tk) as the charge




density of the free-streaming distributions.

(1-2) illustrates the point made earlier that the initial condition is analogous to
the source term. The electric field of the charge density p. elicits a response from
the plasma, as does the applied electric field in the source problem. E; is the sum of
two electric fields: one is the field of the charge density p (the applied field), and the
other corresponds to the plasma response (the induced field). This implies e(tk) can
be expressed as a sum of a delta function in time plus a term describing the induced
electric field. The form of (1-2) is that of an integral of the product of the kernel
g(tt;.k) and the driving term py(t;.k), showing E; satisfies an inhomogeneous equation
as does the electric field for the source problem [Morse and F eshbach, 1953]. As a
kernel, £7'(t—t,,k) determines the contribution of the charge density pp at time t; to the
electric field at time t. There is, strictly speaking, a contribution to the electric field
at time t due to p(tk) for O<t <t, and the corresponding time range for the kernel
£l(t-t, k) behavior is t>t-t;>0. Therefore, using the asymptotic time expression for

(-, k) for a given time t may be a poor approximation if py(t) is not negligible.

The electric field for the source problem, E(tk) (with t taking on any value), can
be expressed in a fashion similar to (1-2) as will be shown in Chapter 2, or based on

a general knowledge of inhomogeneous linear equations [Morse and F eshbach, 1953]

E(tK) = [du GE-tuk)p(tk) (1-5)

= [dt G-t )Pt k)
The latter equality follows from the fact that G(-t;k) is a Green’s function, which

vanishes for t<t,. G(t-t;,k) obeys an equation similar to the equation satisfied by the

electric field except that p(tk) is replaced by a delta function in time. Analogous to




or, p(Lk) is the charge density of the particles coming from the source.

The only difference in form between (1-2) and (1-5) is the lower integration

limit because the initial condition for the source problem is specified in the infinite

Therefore, the discussion in a previous paragraph concerning the limitations on

past.
using the asymptotic expression for e7(t-t; k) applies to the kernel G(i-t,k). That is,

for time periods when the source charge density exists (or, is not negligible), the

asymptotic limit for G(t-t; k) may be a poor approximation.

An important similarity between (1-2) and (1-5) is established by considering a

farticular choice for p. Specifically, consider a source term (the inhomogeneous term

. added to the Vlasov equation) such that as t—0" the plasma has the same particle

configuration as a Landau problem at that time, and then for t>0 the source term is

zero. Here, t—0* indicates taking the limit of t going to zero while keeping t positive,

thereby allowing for a discontinuity. The electric field for the Landau problem and

the source problem would be the same for t>0 because then the two problems obey

identical equations with identical initial conditions in the limit t—0*. As a further

~ consideration, use the following source charge density p

. p(tk) = 6(OpLtk) (1-6)
with 6(t) being the step function (1 if t>0, 0 if t<0). For such a choice, (1-5) becomes

E(tK) = 6(0dt G-t KPR - (1-7)
0

Since this is equal to the solution of the Landau problem (1-2), one sees that kG(tk)

and 4ne!(1k) must contain common information for t>0.

The stronger statement that
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b ikG(tk) = 4nel(tk) ,t>0 (1-8)
s arrived at by noting this analysis must hold for all possible pi(tk). As anticipated,

the physics of the two problems have much in common. They differ in the time at

which an electric field is introduced into the system. For the source problem, with

h parcel of injected plasma there is an associated electric field brought into the

system. For the Landaw Problem, after =0 the system simply evolves without any

ernally supplied electric field.

Thus far, the importance of the source problem, relative to the Landau problem,
s been established. One would also like to compare features of the source problem
to reported observations. A quantity often measured is the frequency power spectrum
Lm‘ the electric field, which can be compared to the transform of (1-5). The time
‘dependence of (1-5) is easily Fourier transformed by applying the convolution
theorem to the first of the two equations, resulting in the relation
’ E(w,k) = G(ok)p(w0.k) (1-9)
‘th o as the Fourier transform variable, which is real. This equation shows the spec-
ﬁmm can be separately discussed in terms of the effects of the ambient plasma

@éescribed by G(wk)) and those effects associated with the source charge density.

- From (1-8) and the fact that G(tk) vanishes for t<0, one finds

|
kG(0K) = e(‘;”‘k) : . (1-10)

This states that the reciprocal of the dielectric function defined by a Laplace
. g

transform with the complex variable z replaced by the real variable o is proportional

to the Fourier transform of the one dimensional divergence of the Green’s function.

, Strictly speaking, this is different from using l/e(wk) (which is the Fourier transform
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‘;ﬂ' ¢i(p) for the following reason. The t<0 behavior of £(tk) needed in the Fourier
y. depends on what is said about the system during that time. In particular, if

y source term then the electric field would not be zero for all <0,

there was never an

"1scd on imagining the plasma system evolving backwards in time starting from a
non-trivial t>0 solution. Taking (1-2) as defining e(tk) for all values of time, then

> previous statement implies that, unlike the Green’s function, £7!(tk) does not van-

the
ish for all t<0; hence its Fourier transform differs from that of ikG(tk)/4n.

(1-10) is taken to mean that ikG(wk) is expressed by exactly the same function

- as 4m/ez k). But the utility of this function is different when used to study the fre-
quency spectrum, than its use in an instability analysis. The difference is that G(wk)
' helps to identify features of the electric field power spectrum, not just to determine
'éghe asymptotic frequencies.

Applying the results of an earlier discussion concerning the dielectric function to

‘the Green’s function, one concludes the Green’s function includes physics that

i@;scribes the response of the plasma plus a uniform frequency spectral contribution
' corresponding to the delta function in time. Both of these contributions to the power
@cctrum of the electric field are studied in Chapter 2. To further understand the
electric field behavior, Chapter 3 studies the time evolution of the Green’s functions.
"Therc is also the dependence the electric field has on p. Its contribution to the power
spectrum is considered for a specific application. Chapter 4 takes as the application

the upstream region of the earth’s bow shock where both reflected particles and con-

siderable electrostatic wave activity exist.




TWO

Electric Field Frequency Spectrum

Ly
1 Vlasov Description - The Source-Free Collisionless Plasma
To introduce the equations for the source problem, the Vlasov description of a
na is first reviewed. The Vlasov equation is based on kinetic theory, and applies
plasmas without any sources for which particle collisions can be neglected
; cholson, 1983]. The plasma can be affected only by externally applied electric
and magnetic fields and by the electric and magnetic fields generated by the plasma
}‘.J::' a whole. Considering the electrostatic case (curl-free electric and magnetic fields)
no externally applied fields, the Vlasov equation in one spatial dimension can be

written (using Gaussian units)

[at+vax+%E(t,x)av] f(tx,v)=0 , (2-1)

where f, is the particle distribution for species a with mass m, and charge q,. This
study considers a plasma consisting of electrons (a=e) and protons (a=i). Here x is the

al coordinate over which f, and the electric field E vary, and v is the velocity

coordinate. The unit vectors for x, v, and E are parallel and point in the same direc-

‘tion. The particle distributions are normalized so that f,(txv)dxdv is the particle
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smber within the infinitesimal phase space ‘‘volume’’ dxdv centered about the phase

space point (x.v) at time t.

The Vlasov equation is basically a statement of local particle conservation in

shase space. It €xXpresses the fact that the rate of change in the number of particles
an arbitrary control volume in phase space is balanced by the net flux of parti-
cles entering or leaving that ‘control volume.

-l
i

9.2. Vlasov Equation Extended to Include a Source

" With a source of plasma capable of injecting particles into the plasma system
anywhere in the phase space at any time, the right hand side of (2-1) is not zero.
er, the flux of particles supplied to the control volume will change the particle

number. Defining ¢, (tx,v) as the rate of particle injection of species a per phase

Al

“yolume’’ at (x.v), the particle distribution now evolves according to

TERN,

[at+vax+%1aav]f. =f . (2-2)

briefly discussed in Chapter 1, the inhomogeneous term, (,, can represent a

ety of physical situations. Besides the conventional case of having a source or

sink which is external to the system, this source term can represent the effect of phy-

not explicitly included in a model of the physical problem. The Introduction
mentioned that the effects of particles reflecting from a boundary or a flow obstacle
(like the earth’s bow shock) on the plasma system can be studied with a source term.
y

' This has the benefit of working with a simpler problem than one which describes the

reflection process at the boundary. Yet another application might be to study ioniza-

tion and recombination effects. This affects a plasma system by interchanging
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articles of different species, a process which alters the local charge density. By

aving a source term for each of the particle species, one can include the effects of

he ionization process.

£, in (2-2) has the same meaning as in (2-1). It is the phase space number den-

sity for particles of species a which are present in the system at time t. The electric

field at time t is determined from the spatial charge density in the system at that time

en by Gauss’ law

%EMX) = Y 4nq, [avE, (Lxy) . (2-3)
The range for the velocity integral is from —o to +0o. This equation along with (2-2)
stitute a non-linear inhomogeneous set of equations which, in principle, one

:fves for the electric field and the particle distributions in terms of the sources and

initial conditions for the particle distributions. An approximation to the equations can

be made for situations where the injected particle populations have densities which

are significantly less than the background plasma. This is the case in, say, the elec-

tron foreshock region of the earth’s bow shock, where an electron population,

ntified as coming from the shock (possibly due to particle reflection at the bow

shock), has a number density which is a factor of 100 (or more) times less than the

ar wind plasma density [Klimas, 1985]. For this case, the source is expected to

cause slight changes in the particle distributions, and perturbation theory could ade-

quately describe the plasma evolution. In the next section, the linear problem is intro-

CE= e = T
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.oles of different species, a process which alters the local charge density. By

g a source term for each of the particle species, one can include the effects of
e ionization process.

k.
£, in (2-2) has the same meaning as in (2-1). It is the phase space number den-

‘or particles of species a which are present in the system at time t. The electric

seld at time t is determined from the spatial charge density in the system at that time

by Gauss’ law

o,E(tx) = Y, 4nq, Idv f,(tx,v) . (2-3)

a=i,e

e for the velocity integral is from —e to +e. This equation along with (2-2)

he rang

itute a non-linear inhomogeneous set of equations which, in principle, one

al conditions for the particle distributions. An approximation to the equations can
be made for situations where the injected particle populations have densities which

are significantly less than the background plasma. This is the case in, say, the elec-

ron foreshock region of the earth’s bow shock, where an electron population,

tified as coming from the shock (possibly due to particle reflection at the bow

hock), has a number density which is a factor of 100 (or more) times less than the

olar wind plasma density [Klimas, 1985]. For this case, the source is expected to

cause slight changes in the particle distributions, and perturbation theory could ade-

ately describe the plasma evolution. In the next section, the linear problem is intro-




, Linear Problem

.;Separating out the background population F,, the particle distributions are writ-

Here, £/, denotes the deviation of the particle distribution function from

ol j=F- +'y

.@-‘*c packground plasma will be approximated by a Maxwellian velocity distribu-

E,(v) = —B—e 2% (2-4)

¢ both species have uniform particle number density n and respective velocity

pread v,. Substitution of f, into (2-2) and (2-3) results in

[at+vax+iﬁav]f;+im, =F (2-5a)
m, m,
3,E = Y4nq,[dvf, . (2-5b)

Assuming the source introduces fluctuations in the particle distribution that are

mall in comparison to the background, f’, is taken to be a quantity of first-order in

the perturbation scheme. Gauss’ law then indicates the electric field is of first-order.

sequently, to first-order, f’, satisfies

@cvdy) f’,+%EavF, - . (2-6)

For simplicity, the spatial coordinate will be transformed to a Fourier wave

number coordinate k. Using v (Y.x) to denote any function which depends on x and

ny other set of independent variables Y (such as t or (t,v)), the transformed function

¥(YX) is defined by
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V(YR =[S w (Yi0 (2-7a)

_d_li ikx
21|:e

sing the Fourier transform definition with this representation of the Dirac delta

& (x) = j (2-7b)

on 5(x), (2-6) and (2-5b) can be expressed in terms of the transformed functions

(O+ikv) 3 (tk,V) = ——:1’— E(tk)d,F, + (. (t.k,v) (2-8a)

ikE(tk) = Y4mq,|dviy(tky) . (2-8b)

 One can solve for f, and E using (2-8a) and (2-8b). In regard to measurements,

ore, the electric field, being most easily measured, will be the only function expli-
citly determined from the present set of equations. Assuming that fluctuations did not

sxist in the infinite past, (2-8a) can be solved to find

—ikv (t—tl)

£tk = [d @ (CREGOAF, + L k) (2-9)

this relation, (2-8b) becomes (upon performing the velocity integral containing

K E(tK)+k [ dt EQ K (k) = 4mp(tk)

=1 2
K (k) = Solte 2" - 2-11)

p(LK) = Tauffdt; dvo(-t)e ™ L (k) (2-12)
step function 6(t) was introduced in the definition of p to allow the integration to

e over all time. 2= 4ne’n/m, is the square of the plasma frequency for species a

® is the charge magnitude).
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Two types of charge density terms are evident from Gauss’ law in the form of
it

10). p is the spatial charge density of particles coming from the source. The other

e involves K convolved in time with the electric field. Such terms account for

Hations in the charge density due to the electric field accelerating the background il

asma. The electric field of these two types of charge density are, respectively, the

ed and induced fields discussed in the Introduction. To find the solution to (2-

0) for a general applied charge density p, it is appropriate to express the electric

eld in terms of an integral. As presented in the Introduction by (1-5),

E(tk) = [d'Gt—t k) p(t'k) . (2-13)

‘jfequiring the Green’s function G(t—t’k) to satisfy

|

e Gk [ G (4t ) B K (- J) = AT 8(-t) (2-14) "5 !‘

the electric field given by (2-13) obeys (2-10). The significance of the Green’s func- “}L:; |
ion is determined by noting that the inhomogeneous term in (2-14) is the spatial éf:
Fourier transform of 4rn8(t-t")8(x—x’). Therefore, the Green’s function is proportional ‘;%

0 the electric field produced in a plasma by a uniform sheet of charge located at x’ E% 1
with a surface charge density that varies in time as 8(t-t"). And the electric field for D

in arbitrary p, expressed by (2-13), can be viewed as the resultant field for an infinite

lumber of sheets of charge, with p(t’x’) specifying the surface charge densities of the

ts. This perspective is more apparent from the inverse transform of (2-13)

E(tx) = [[ddx’G—t'x—x") p(t'x")

explicitly shows the sum over all configurations of the ‘‘sheets’. This per- |

pective will be useful in understanding the results. Specifically, once having
Xplained the Green’s function behavior, the effects of a particular applied charge

Iensity are understood through summing over the ‘‘sheet’ contributions. Basic
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of the resulting electric field can be determined by studying the Green’s

¢on. This analysis will be presented in the following section.

‘P‘Electric Frequency Spectrum - The Green’s Function Contribution

‘H,
To study the frequency features of the electric field spectrum, a Fourier
orm on the time dependence will be performed. Using o as the transform vari-

le. the Fourier transform of the Green’s function is given by

G-’ k) = j.%;)-e'i‘”(“") G(wk) (2-15)
here the Fourier transform of the delta function is:
he convolution integrals appearing in (2-13) and (2-14) can be readily transformed

find

E(0k) = G(ok) p (0k) (2-16)
41 1

/T S 2-17

GOk = 4 TR @b @17

K(wk) = jdtei‘me(t)K tk) . (2-18)

he relationship between the Green’s function and the dielectric function & was
d in the Introduction. This relationship in the form of (1-10) can be verified by
eCalling that the dielectric function is [Fried and Culler, 1963]:

e(z k) = 1+K(z k) (2-19)
ith z being a complex frequency variable. As discussed in Chapter 1, the same

on appears in both the Green’s function and the dielectric function, but with a




17

jgnt argument in each case. Whereas the transform coordinate o of the Green’s
ction is real, the frequency argument of the dielectric function is in general com-
Furthermore, the Green’s function in this study will be used in a more general
1 than the usual application of the dielectric function. The most common use
the dielectric function is to determine the electric field frequencies (with
onding damping rates) in the asymptotic time limit from the roots of e
izolson, 1983], whereas the utility of the Green’s function is to determine features
f the electric field frequency spectrum, without restricting the spectrum to the
ptotic time limit.

~ Relating K to tabulated functions, it is found to be proportional to the derivative
' the plasma dispersion function of real argument [Fried and Culler, 1963]. How-

to explicitly display the real and imaginary parts of K, it is more convenient to

v};w' duce the Dawson integral D(y) [Abramowitz and Stegun, 1972] defined as

y
D(y) = e'yzgdw e
e y can take any real value. In what follows, the small and large argument
ions for the Dawson integral are required. For small values of its argument

<1), the exponential functions can be expanded to obtain

]
3

DY) = y(1-2)

he asymptotic expansion for the Dawson integral [Fried and Conte, 1961] is given

1 3
2 D = 1+—+_
yD(y) 2 Ay

Introducing u= w/(\ZIklv,), K is:
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2

= W, . —u2
Rk =Y— {I—ZuaD(ua)ﬂ\f—iuae ‘} . (2-20)
a kva

. this expression important symmetry properties can be identified. Noting the
of K is an even function of u, and that the imaginary part is an odd function
. the modulus of the Green’s function spectrum is an even function of «. Also,
_dependence u, has on k involves only the absolute magnitude of k. K is therefore
n function of wave number, indicating the Green’s function is an odd function

k. This translates into a spatial symmetry property for the Green’s function

G(t-t’ x—x") = -G(t-t",x"—x)

~ However, to perform the spatial inverse Fourier transform, more needs to be

concerning the factor of 1/ik appearing in (2-17). Formally, l/ik is the Fourier

ansform representation of integration, since ik arises from the Fourier transform of

>

x

et
i

S8 |

e divergence of the Green’s function. Solving for G-t x—x") for a simple case will

APV
)

ine the necessary modification of the factor lik. It is convenient to consider

TERNA

CUA

he particular case of the zero temperature limit. This limit can be easily taken in the

me domain from (2-14). After taking two time derivatives of (2-14), the zero tem-
e Green’s function, G,(t-t’k), is found to obey

K@2+02)G(t-t" k) = 4n 2 8(t-t") (2-21)

Flm @2=Y w2 Applying the causality condition that the Green’s function must van-
for t<t’, (2-21) has the solution

G, (—t" k) = ‘,1—11’: [S(t—t')—u)osin mo(t—t')] . (2-22)
he factor 1/ik appearing in this equation is not sufficiently defined for computing
tt'xx". However, this difficulty can be resolved by recognizing the term involv-

g the delta function is the applied field for the Green’s function problem.
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sidering the Green’s function as the field due to a sheet of charge located at x’
ieh surface charge density varying as 8(t-t), the applied field would be
,;- x—x") &(t-t") as determined from Gauss’s law. Here sgn(x) is the sign function

_ 1 for x>0 and sgn(x) = -1 for x<0). This indicates 1/ik needs to be replaced by

2+02), where the limit of a—0 gives the correct inverse transform based on

M Cedk kg
2 800 = 0 )i 2
nsequently,
—4rik ol
G, (k) = ol [1+ mz—mz] (2-23)

the limit of o approaching zero is performed when necessary. For later refer-
the two terms in (2-23) are identified, respectively, as the applied and induced

r the Green’s function problem. For the general temperature case, one has

_ TAmik 1 2
Glaky= k% o2 e(wk) =

iere g(w,k) is taken to mean &(zk) evaluated at z=o.

fﬁlduced Portion of the Green’s Function

At the end of the last section it was shown that the induced portion of the
‘_"s function for the zero temperature plasma can be separated from the applied

eld. This section will emphasize the induced portion of the Green’s function for

itrary kv,. Analogous to (2-23), one would write for the general case

G(ok) = ;—z‘%wmm (2-25)

S(fﬂ,k) being the induced contribution to the Green’s function. Using (2-24) to

JATERNARY LIBRARY
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ress g in terms of e, one finds

_ —4mik .
g(m7k) - k2+ (1,2 h(mrk) (2 26)

(2-27)

by = e(ul),k) -1
The relevance of g(ok) to observations should be established. Specifically,
pk) is the induced contribution to the Green’s function frequency spectrum associ-
.d with the wave number k. However, the process of making observations does not
out a particular wave number. Measurements are more accurately described as
made at a point x in space, and the electric field frequency spectrum at that
jint, E(wx), would be meaningful. g(ok) appears in E(®x) through the inverse
nsform of (2-16), with g(o ke p(wk) as a term in a sum over k contributing to the
Jduced electric field. Therefore, much can be understood about the frequency spec-
um of the induced field at a point x by studying the dependence g(wk) has on the
ave number. The other factor, p(wk)e**, can be thought of as being a weighting
mnction for the sum over k. For example, if p(wk) were proportional to 3(k-k), the
duced field would be proportional to g(m,ku)eﬂ‘“‘, where only the wave number k,
a non-zero contribution. In addition to this role of selecting the important k

alues, p also has frequency dependence.

- The induced electric field e(wx) is related to g(wk) by

3 o) = [ eFg(@) pk) - (2-28)

IS equation is useful in identifying basic features of the induced electric field fre-

ey spectrum e(w,x), since it provides a framework for discussing the induced por-
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1 of the Green’s function and the source term separately. The remainder of this
ter will focus on the behavior of the induced portion of the Green’s function by
g h(@k) of (2-26), which avoids placing undue significance on the spectrum
hen k is near zero. One can assign a significance to h(wk) by noting that it is pro-
srtional to ikg(®k) (for a—0) from (2-26). Since ikg(wk) is the Fourier transform of
_ﬁivergence of the induced Green’s function, h(wk) is proportional to the charge

ty induced in the background plasma for the Green’s function problem.

Basic features of h(wk) can be established by applying some known properties
bout the dielectric function. As is well-known, weakly damped frequencies are
termined from the roots of &(zk). These roots correspond to peaks in h(wk), since
»k) then approaches zero for o nearly equal to the real part of z, (Where e(z,k) =0
r Im z,<Re z,). To analytically see how the weakly damped roots of the dielectric
unction relate to the frequency spectrum of h(wk), the high and intermediate fre-

iency limits will be examined.

The High Frequency Limit (u>>1)
An interesting limit arises when one considers the frequency spectrum of the
duced portion of the Green’s function for large values of @ ( uX>1). Using the

ymptotic expansion for the Dawson integral, e(w,k) determined from (2-19) becomes

2 2 2 2
€= 1+2{ 0); [1+3 kv, ]+i~l— O -“'} . (2-29)

N
® w? nkzvfu
ICE & approaches 1 in the limit of w—ee, h(wk) vanishes in the infinite frequency

The asymptotic behavior of h(wk) is equal to the zero temperature expression

€n by the second term of (2-23), indicating the asymptotic frequency behavior is




22

citive to the plasma temperature.

1n this high frequency limit it is also possible for a peak to appear in the h fre-

cy spectrum. This is evident from observing from (2-29) that ¢ is able to
ieve small values for frequencies within the range of validity of the approximation

is small. The constraint on kv, arises from maintaining the high frequency

roximation (uZ>1) and allowing the range for the values of o to include the fre-

acy that makes the real part of (2-29) vanish (when w=w,). This results in requir-

2<m?l. For such a combination of values of wave number and thermal speeds,

exponentially large at the peak frequency pew, where approximately

2

(3

0Ly =02 [1+3k:)v°2] . (2-30)
30) is the well-known Langmuir dispersion relation [Nicholson, 1983]. The Lan-
u damping rate associated with this frequency appears in the imaginary part of (2-
and is important for determining the height of the peak, with a small damping

e corresponding to a large peak.

The Intermediate Frequency Range for vi<v?

 Different from the high frequency limit, which always has some range of appli-
*,”ﬂfﬂ the intermediate frequency case applies only if v?<vZ. In terms of T,, the tem-
ature for species a, the squared thermal velocity ratio is v¥v2=(m.T)/(m;T.). This
is much less than 1 for physical systems in which T;~Te, since m.«m;. One can
N speak of an intermediate frequency range given by 2k*vi<w’«2k’v. Using the

fmptotic expression for terms depending on u? and the small argument expression

terms depending on u? in (2-19) yields
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2 ?, 2
s(m,k)~1—9—+P—<1 —2u2p+ivn szule i i u(l-ud) | . (2-31)

Tm, determine if a peak may be present in this frequency range, consider

'ely the real and the imaginary parts in (2-31). Note that for finite u,, the ima-
part is not likely to be exponentially small because of its polynomial depen-
on u,. The unagmary part is essential in determining the height of the peak.
ghcrcfore expects the peak to be modest in comparison to the pronounced peak
ch can occur in the high frequency regime for small k*? from (2-29). Roughly
aking, the location of the peak in the intermediate frequency range is determined
3?.»u frequency value for which the real part of (2-31) vanishes. Using the condi-
1 2«1, the peak frequency is given by

PP (2-32)
Opeak = O 1+k\3
ere Ap is the Debye length, Ap=vJ/w.. This relationship between the frequency
ak and wave number is identical to the dispersion relation for the ion-acoustic
de [Krall and Trivelpiece, 1973]. Therefore, this frequency peak in the induced

rtion of the Green’s function is the ion-acoustic wave.

A frequency spectrum which meets the requirement vi<v? is expected to display
cak determined from (2-32). In addition, the same Green’s function may exhibit a
nounced peak in the high frequency regime, since the condition 2k*v2« w2 may be
mpatible with the condition v2<vZ2. But, as mentioned above, the peak in the inter-
diate frequency range is less pronounced than this high frequency peak. Hence, the
ffrequency peak dominates the behavior of the induced portion of the Green’s

ICHon when vZ2«v?2 and 2k*vZ< 0?2
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rhe Spectrum for Arbitrary kv,
Tn the limits previously considered, the weakly damped frequencies were shown
e associated with peaks in the spectrum of the induced portion of the Green’s
ion. Now consider arbitrary values of kv,. There is one immediate effect that
be anticipated from the degree of damping for a given wave number. That is, for
ma parameters which result in waves that are moderately damped, one expects
local maxima to be less pronounced than the peaks previously considered because
nced damping. This diminished frequency peak would occur for parameters
ch are not included in the limiting cases.

The degree to which the limiting cases approximate the exact frequency spec-
1 is anticipated by reviewing the conditions on which the limits are based. In for-
ating the various frequency limits, the conditions were always stated by compar-
the square u? to 1 rather than simply u,=a/Iklv,. Therefore, the various limits are
ble for a good portion of a linear frequency scale. For frequency ranges such
 u, is comparable to 1, the limiting cases will be a poor approximation to the
°t frequency spectrum.

Figure 2-1 displays |hlI% as a function of positive frequencies determined from
and (2-19) for the temperature ratio TyT.=1, and values of k’A3 ranging from
0 04. From this figure, one can identify the features corresponding to the high
uency limit. There is the feature that all the graphs asymptotically approach the
e function as computed in the high frequency limit. Also sharp peaks occur near

). for the smaller values of k2. The shift in the location of the high frequency

(8 1S accounted for by the thermal correction term given in (2-30).
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Another interesting observation comes from the moderate electron thermal

ds or wave numbers (kA2 = 02 and 04). For these values, the low and high fre-
]

cy ends of the spectrum are much closer in intensity than for smaller K%A3.
re is an overall tendency to a broad frequency spectrum. The decrease in the
frequency peak is a result of the appreciable damping that occurs for these ther-
‘

To study peaks associated with the ion-acoustic wave in comparison to the high

uency peak, Figure 2-2 uses a logarithmic frequency scale and a temperature ratio

WT=0.1. In agreement with findings of the two frequency limits, the ion-acoustic
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are less pronounced than the large high frequency peaks. The more pro-
w of the ion-acoustic peaks are for the larger values of k’A3, in agreement with
‘
showing a reduced imaginary part for decreased u.. The effect of increasing
j’;protqn temperature is seen in Figure 2-3 using TyTe=l, where the ion-acoustic

ks are no longer significant. That a small proton to electron temperature ratio

Ids significant ion-acoustic peaks is predicted from the near-zero behavior of & in

- The spectrum weakly depends on the temperature of the proton population

ri;‘?» for the low frequencies. This is a consequence of the proton’s sluggish
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J to the generated electric field, as can be seen immediately from (2-14), since
is 1836 times smaller than 2. The proton charge density does not change nearly
ast as that of the electron population. For the same k?A3, the result shown in Fig-
22 differs from Figure 2-3 only in the extremely low frequency end of the

hs. A good portion of the frequency activity is therefore due to the electron

Having studied the Fourier transform of the induced portion of the Green’s

tion, Chapter 3 considers its temporal behavior.
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Green’s Function - The Temporal Behavior

In the previous chapter the frequency Fourier transform of the Green’s function
studied for various wave numbers. Its features were compared with the well-
n results of the Landau problem. For wave numbers corresponding to the
‘ modes, sharp frequency peaks exist, and these peaks are considerably
pronounced for the moderately damped modes. This chapter will study the fre-
spectral behavior for finite time intervals. It will be established that the fre-
characteristics change in time, as seen from comparing the short time limit

he asymptotic time limit of the Green’s function.

Temporal Behavior

the time domain, the relationship between the Green’s function and the

iced portion of the Green’s function obtained from (2-25) is:

. .
i G-t k) = =il [8(t—t’)+h(t—t',k)] (3-1)

K*+a?

h, representing the induced charge density, is used instead of g. Substituting

to (2-14), h must satisfy
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h(t—t K+ [ dih(t—t JK (=t k)=—8(t-K(E-k) . (3-2)

nation can be simplified using the causal relation that exists between the

 5(t—t) and the response h(t-t,k). Since h(-t'k) is zero for t<t, (3-2) reduces to

1 h(e k) [duh(e-11 KT k) = —K(@k) 5 10 (3-3)
b 0

the substitution t=t-t’, and a change of integration variable has been made.

following subsections will solve (3-3) for three different time regimes: short,

ediate and long (asymptotic).

hort-Time Limit
Consider the time interval 0<1<T such that k’vJT’«2. This defines a short-time
d where K(t,k) is approximately equal to wZt, yielding as a solution to (3-3)

h(tK) = —0,sin 0T (3-4)

—y'w2. This approximation is identically equal to the zero temperature case,

K@k)=02r for v,=0. Thus the Green’s function for a given plasma background
lly responds at the undamped frequency o, independent of the thermal speed.
agrees with a result obtained by Weitzner [1964], where the Laplace transform

entation was used.

symptotic Time Limit

In Chapters 1 and 2, it was discussed that the Green’s function can be approxi-
1 by frequencies given by the complex roots of the dispersion function in the
tic time limit, based on knowledge of the Landau problem. Here, this will

onfirmed and an order of magnitude estimate will be made as to when the
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mptotic time limit applies.

The procedure which will be employed is akin to that used in determining the
o] modes for a linear homogeneous differential equation with constant
ficients. This method entails saying h(tk) is a sum of terms that vary as Ae™=,
1z as 2 complex frequency to be determined, and A a constant in time. There is
r ner aim to determine when this functional form approximately satisfies (3-3).
nstraint on the time is determined by requiring (3-3) to be approximately

nogeneous and for the frequency z to be fairly insensitive to the actual value of .
h of these requirements are satisfied by t such that -;—kzvf't2>l. With this restric-
I

“and by making the prescribed substitution for h(tk) into (3-3), one finds that the

nplex frequency is determined from

1+[dt e#K(tk) = 0 G
0
simply,

: ezZK) =0 . (3-6)

s expression can readily be solved for the weakly damped modes discussed in
apter 2. The weakly damped modes are defined by wg»y with z=wgHy. Following
holson [1983], the approximate solution to (3-6) can be found by expanding this
ation to first-order in y and setting its real and imaginary parts to zero. The Lang-
iIr mode has the solution

1 mez
ty 2 2 —T
3 29 2 |2 (O (O 2k2v.2 _
zZ= (De(1+—k l[))“l [_8 ] E > 32 Kl 9 (S (3 ;)

a

Kv;<202. And for the ion-acoustic mode, one has
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R = w?ﬁ (3-8)
T 1+k2AS
1 ,
- T |2 2 W, 2k7'v.2
¥ [8] Z TIEE

vZisvi.

From comparing the results of the short-time limit in (3-4) to the results of the
aptotic time limit in (3-7) ‘and (3-8), it is concluded that the frequency charac-
ies of the Green’s function must vary in time. For a given wave number, the
n’s function oscillates at the plasma frequency a, for times 12«2k 2v;2. In partic-
the Green’s function does not experience damping in the short-time limit. But,

\
he system progresses, damping and a shift in oscillation frequency of the high fre-

cy peak occurs as confirmed by examining the asymptotic limit.

rmediate Time Range for vi<v?

Consider an intermediate time interval 2/k*vZ«t«2/k?, which exists for vievl.
m (2-11), the approximate expression for K(tk) is

-1 2

vk
Ktk =o2e? ° +oX
that the ion thermal effects are negligible in this limit. This is contrasted to the

t-time limit where both electron and ion thermal effects are negligible, and to the

otic limit where the thermal effects of both species are significant.

I

Setting the above expression for K(tk) into (3-3), and taking two derivatives

IESpect to 1, h(tk) approximately obeys

2 e ek
92h(t.k) + oh(t.k) + mfjdtl 32h(t—1, k)tie 2 =0
0

L to the initial conditions h(0,k)=0, and 9.h(0k)=-w2 Then, analogous to the
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. used to solve the asymptotic time limit case, h(tk) for the intermediate

1.
(LU

range is shown to consist of frequencies z which must satisfy

o? : L2y

i 1——'2—+m3.fdr eirre?2 ° =0 . (3-9)
A 0

relation, as well expected, is ezk)=0 in the limit of v;—0. The result means that
t_acoustic waves are damped only by the electron thermal effects for the

mediate-time range.

inite Time Behavior - The Time Power Series

The inverse Fourier transform of (2-24) provides an integral expression for

—4mik pdo e7*
12+ 027 21 (@) (3-10)

ever, this is a formidable integral to perform. One might try relating this integral

G(tk) =

1e contour integral of exp(-izt)e(z,k) along a closed contour consisting of the real
from -R to +R and a semicircle of radius R in the lower half plane where the
4,_).,, is taken. This enables one to apply Cauchy’s integral formula which
sses the integral in terms of the residues of the integrand. However, it is com-
to determine the zeros and the order of the zeros of &(zk). From (2-18),
) can be expanded in a power series in ®, which from (2-19) shows e(zk) is a
:sexies in z with an infinite number of terms. Consequently, ¢ may well have an
number of roots of various orders, and the method of residues becomes
ictical for studying the finite time behavior without a good knowledge of the

Structure of e. Therefore, a different means of solution will be used. Another

finding the temporal behavior is to solve (3-3) by expressing h(t,k) as a power
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0 1. Unfortunately, this method suffers from truncation error [Dahlquist and

¢ 1974], meaning the power series solution is of limited utility. Nonetheless,

Jution will be instructive.
i

"proves convenient to introduce an intermediate function, q(1k), defined by

T

q(tk) = Jo'd’rlh(rl,k) +q(0k) | (3-11)
¢ the 1=0 value q(0.k) is as yet unspecified. With h(tk) = d,q, (3-3) may be rewrit-

s

R {q(t,k)+£d‘cq(1:—‘c, JK(T1,k) } = [q(O J-1 ]K(‘c k. (3-12)

a judicious choice of q(0.k)=1, (3-12) integrates to
-

:
i

q(':,k)+£dtq(1:—’tl,k)K(rl,k) =1 . (3-13)
an readily be expanded in a power series from (2-11), yielding

‘r .
| s 1 —kzva +
K(tk) = ZZO‘)‘ZF [——] gl (3-14)

i m=0 a 2

m (3-13) and the fact that K(t,k) is a series involving only odd powers of t, q(tk)

I = T En(@g0)™ (3-15)
m=0
here are no odd power terms. Substituting (3-15) and (3-14) into (3-13) yields

tiion
\

. a2 [, "
i 1 Et =_m§=;0§‘*_‘ 23 [—20)—3] I—IIITB(2m+2,2n—2m+1)§,,_m n>0 (3-16)

€ &=1 and B(jm) is the beta function [Morse and Feshbach, 1953]. Using the
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. 1 1
J

 the binomial coefficients are denoted by

(3=
m!(j-m)! ’
) then becomes
_1 —k2V2 1 2042 -1
E— Z:o;(ﬂo [ P ] D! m+2] Epm 1n>0 . (3-17)

From (3-17), the coefficients (&) can be determined sequenﬁaliy, and the power
s solution would be applicable for times wZt’<R. Here,R is the radius of conver-

. of the series [Morse and Feshbach, 1953], and can be calculated from

R = lim &l (3-18)

n—e | an+l l

*ately, the recursion relation in the form of (3-17) does not lend itself to
t computation of R. It will be determined by finding a bound for the coefficients

r a restriction on k. Define another set of coefficients {B;} by

L (3-19)

relation substituted into (3-17) determines the recursion relation
¥

1802 (K2 |7 (42 (2042 )
ey et [or | () Bl o 020 320
€ Bo=1. It will now be proven that BB, for restricted values of k*2. First note

(3-20) that B,=1/2. Hence, consider the difference of two sequential coefficients

w2 (kv | 2 ) 2n-2m-
(5 2] () b e 2

an‘Bml = %Z

°N

H! I}
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1 [z 1KV
+5 —2033 2- 2l o n>0 . (3-21)
) N
ng (3-21), the summation convention that Y A,=0 for N<0 is adopted. From
m=0

1
one can ensure that B>Bn. for all n by choosing k*vZ so that B;>B,. This
the constraint k?vZw2<5/3, which is not a severe limitation. Under this restric-

SES

the radius of convergence ‘is readily found from (3-18) and (3-19) to be infinite.

words, the power series converges for all values of 1.
In Figure 3-1, h(zk) is plotted as a function of 1 for v;=0. The various curves
ond to different values of kA2 The curves which are terminated before

5 (5 plasma periods) were done so to avoid the eventual instability due to

T,/T, = 0.0

o — | \
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' “' ,\.'I /\ ;' ' ' I:
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A A .
' 7 H |’ ' )
oAl (oY b,‘-. P
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he oy l :
A /\ -/ 4( ; 1-1 |
VIV B 5, 0
Vi N T T ‘:
Yo |l ; .
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\ \ " | ’ ! { '
\{ AN Y ;o a
h \yod \ :
Vi ‘a i
W, T/2 T

i Figure 3-1 n(ckyo, versus o,v2n (2)k?\3 = 0.01 (b)k%A = 0.1 (k3 = 0.2.
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;On error in evaluating the power series. Figure 3-1a (kA$=001) shows slight
with an average frequency of slightly higher than the plasma frequency .
« wre 3-1b and Figure 3-1c (increased k%\2) the curves show noticeable damping
r frequencies. These results are in agreement with the features determined
 the short and asymptotic time limits with 12=2/k*\% as the relevant scale time for
\a the two limits. .In particular, all the curves start off approximately
1, as expected from the short-time limit.

As an additional comparison, Figure 3-2 shows both h(tk) and the envelope of

asymptotic solution, e’ with y given by the imaginary part of (3-7), for KA3=0.1

T,/T, = 0.0

W, T/2 T

gure 3-2 h(rk)/, versus o,u2n shown with the envelope of the asymptotic
solution for kK*A3 = 0.1.
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ne a variation of this technique.
time power series of the previous section can be derived formally by
ding in 2 time ordering parameter A. This is accomplished by replacing every

Ree of t by At (and similarly for the integration time t;) in (3-13), which
:

ats to rescaling the measure of time. One solves for q(Atk) in the form

‘q(?»r,k) - f‘;vn(r,k)ﬁ““ (3-22)
. the desired result q(tk) is obtained by setting A=1. The function v,(t,k), deter-
rfmm (3-13), depends on t™*, since v,(tk) has the coefficient A=*! in (3-22).
establishes the expansion as a pOWer series in .

Since g also depends on k, the general procedure of expanding the series in
s of an ordering parameter suggests ordering in terms of the wave number. The
tion is to obtain a physical description of the Green’s function response. Conse-
tly, the form rather than the quantitative result will be emphasized. Specifically,

he ordering in wave number defined by

QA = TuAB (3-23)
b n=0

form of the function n(tk) is desired. (3-23) involves only even powers of A
use (3-13) indicates q(t,\k) has the same A dependence as K(t,Ak). Substituting the

er series in A for q and K into (3-13) leads to

Bn(E K02 1,1 J0(E-5) = ~ 3 Aufdtib @ ROE? 050 (3-24)
0

m=1

Ho(T.kK) = cos T
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12,2 |
ey

* m!

teorals in (3-24) can be eliminated by taking 2n+2 derivatives with respect to 1.

form of the solution for these differential inhomogeneous equations is more
arrived at by imposing a limiting process. In particular, replace w, appearing
e left side of (3-24) with w,, defined by

w2, = o+n%? (3-25)
in the limit a—0 the desired equations result. Taking 2n+2 derivatives of the

ified (3-24) one obtains

[a§+(on20]Yn(1,k = 3 @mH1) ApYam(Tk) 030 (3-26)

m=1

fe Y,=021,. Note that Yo=p.

It is necessary to specify the initial conditions for these differential equations.
e are derived from evaluating (3-24) and its derivatives at t=0. It follows that
initial conditions are

oMy (0k)=0 M<2n+2, n>0 . (3-27)
ject to these initial conditions one can solve (3-26) for p,(tk). Consider as an

mediate step determining Ya, which has as initial conditions Y,(0k)=0,Y,(0k)=0.

ecomes clear that in conjunction with Yo(tk)=cosag, the solution of (3-26) has the

Y, = ib,,,mcos 1) WO, S (3-28)

m=0

Brating 2n times, one has
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=1 _ n _ n
b ASED [ [;m;— ] Dy mCOS W T + c,,,mtz“‘] + [Ei ] by 1COS W7 (3-29)
m=0 o o

J limit a—0 is understood. The integration constants associated with the odd
s of 7 are zero based on the initial conditions for the odd derivatives of p,. The
tion constants Cnn are determined from the remaining initial conditions.

With the integration constants chosen to satisfy the initial conditions (3-27), it
vs that the lowest order term in a t expansion of p,(tk) varies as 7. This means
inctions () contribute sequentially in time. In other words, as the plasma
ise progresses, more terms in the expansion become significant for some
measuring accuracy. The response consists of oscillations which are
ally close to the frequency ,, and an additional portion associated with the
ration constants. These facts motivate a physical explanation of the results by
lizing the motion of the plasma particles. To facilitate this, consider the appli-

an impulsive electric field that varies sinusoidally in space. Specifically, say

r'charge density that gives rise to the applied field varies as coskex 8(t-t,), Or

p(Lk) = 2rB3(t-t,) {B(k_ko)+8(k+ko)} (3-30)
B, t, and k, as constants. Substituting (3-30) into the appropriate transformation

the induced electric field, e(tx), is

o(t) = S h(-loksinkx (3-31)
For the case of a zero temperature plasma, only the term y, contributes to (3-
ding e(t,x)=—(4nB/k,)0.sin 0(t-t)sinkx, t>t,. This result is particularly easy to
derstand in terms of the particle motion. First, the minus sign is in accordance

&(tx) being an induced field. The induced field arises because the applied force,
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t, {=t,, imparts a momentum to the particles which, for i<t,, are all at rest.

quently, the system executes oscillations in time because the particles experi-

'\Iestoring force from the electric field created by the spatially varying charge
ity of the relocated particles.

A useful perspective to cast the cold plasma result is to regard the particles as
- distributed over an infinite number of rigid sheets with constant surface charge
ty. The distribution process is done by considering the t<t, configuration of par-
Namely, the electrons and ions at a given point x are assigned to respective
; and ion sheets, and these sheets are uniformly arranged during t<t,. Subse-
t to the application of the impulse, the density variations are accounted for by
ve positioning of the sheets. It is evident that a particle never leaves its
. In other words, a particle always remains with the same group of particles. The
llation is visualized by the sheets moving back and forth across the nearest elec-
node. This picture emphasizes the salient points that lead to an understand-
0 . a thermalized plasma.

For v, #0, the particles at a given point x do not all have the same velocity, since
particles have a Maxwellian velocity distribution. Therefore, if one were to
tl_lc rigid sheet description, a given sheet will be comprised of different parti-
as time progresses. Furthermore, the charge density of a sheet, in general, varies
me. The sheets can be uniformly spaced for t<t,, during which time the surface
g€ densities are constant, and they superimpose to give a zero net charge. How-
' the thermalized particles move to different sheets, even though the charge den-

. are constant during this time. And for t>t,, both the charge density and the
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on of the sheets vary.

The differences between the sheet descriptions for cold and thermalized plasmas
st the wave number expansion, in effect, accounts for the adjustment of the
Jocations and charge densities as particles of even higher velocities become
x‘ant. The qualitative features can be readily identified. For times immediately
';Ig t,, the response is dominated by o41, the cold plasma response, because the
sles which were initially at rest dominate in number and travel the least distance
he given infinitesimal time period. In traveling the least distance these particles
_,I induced electric field evolve the least, whereas the thermalized particles, in
ling longer distances, see the induced electric field vary in a more complex
This complexity corresponds to higher order corrections of the field. The
s of the wave number ordering, in succession, take into account the adjustment
‘electn'c field due to particles of progressively higher velocity and due to
sctions in motion of the particles of lesser velocity.

With this acquired understanding, the overall electric field damping which the
ma experiences is explained by the particles traveling over different lengths. In
ral, the particles in responding to the developing electric field attempts to cancel
ield out, but the inertia of the particles cause the field to persist. The damping is
the particles canceling the field in the overlapping regions that span across the
al nodes. This has the effect of redistributing the original induced charge density
all space to an eventual zero charge density configuration. A characteristic time

is redistribution to be significant is 2m/k.v, which roughly corresponds to the

it takes for the thermalized particles to travel across the spatial scale. This esti-
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tent with the analytical study of the various time limits, which

g consis

24

es Kv2T22 as determining which limit is applicable.

rete Power Spectrum

In summary, the Green’s function has been studied in various forms. Chapter 2
I';_ed the frequency Fouri‘er transform, which was helpful in putting the well-
.'v?results of the Landau problem in perspective with the source problem. The
al evolution of the Green’s function was at issue in the previous sections of this
er, where it was shown that the frequency varies as time progresses. There
ns one more computation to perform for the purpose of comparison with
ed space plasma observations. Measurements of the electric field are made by
mining its amplitude for a given frequency band. Therefore, the calculation of
liscrete frequency Fourier transform is quantitatively relevant, since the transform
ts are the amplitudes of the corresponding frequency bands.

discrete Fourier transform requires specifying a time period, To<t<Ta+T, over

h the transform coefficients are computed. The duration of the observation, T, is
in comparison to the plasma period to give good frequency resolution. This
out employing the power series solution, as it is not practical for large times.

ad, matrix relations for the field amplitude (the transform coefficient) will be
€d, and then solved by computer.
a finite observation period T,<t<T,+T, the total electric field, E(tk), is separ-

0 a portion, Etk), generated by the activity of the source charge density,

_before the observation interval, and a portion, E.(tk), generated by the activity
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The equations for E. and E, are found by substituting the relation

(19 for t>Ta-

E(tk) = E«(tk)+Ex(tk)

Ta
ik E(tk)+k [ dt Bt KK (-t1.k) = 0

ikE>(t,k)+ikJ dt; E.(t K (t-t, k) = 4np(tk) . (3-32)
A

contribution of E< tO the total field will be neglected on the ‘grounds that the

significant effect will be due to the more recent activity of p during the finite

rvation interval.

The discrete Fourier transform is defined by the equations

B = 3 Ea®e

n=-—oce

, T ASI’.ST A+T

Tp+T

_ E —io t
B = [ FE(Ue

A

@,=2rn/T. The discrete Fourier transform of (3-32) entails taking the 3‘,1

form of a convolution integral, which is evaluated in Appendix A. With the use

quation (A-4), the transform of (3-32) is

B [WTK 0K, |- T 2 (K] = S o (3-33)

m#n 1mn—m

_ Td’t i@t
Ka(k) = he K(tk)

T .
(K0 = [Se™ 1K aR)
0
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Tp#T

Poalk) = 1] ETt-p(t,k)em“t

A

1

Equation (3-33) represents a linear matrix equation for the coefficients {E.,}. To

w how to solve such an equation in practice, the analogous equation will be

ived for the induced portion of the Green’s function. The discrete Fourier

sform of h(t.k) is

T
dT ot
h,(k) = |[—e ® h(tk
(k iT )

mbining (1-5) and (3-1), the relationship between E,(tk) and hy(tk) is:

K2+ o

Tp+T
B, (tk) = K [p(tm | dtlh(t—tl,k)pal,k)] . (3-34)
A

“-discrete transform of (3-34), making use of (A-4), is

K+ o e} £, T8

B, =tk [p>n A [hn—m]]

- Again appealing to (A-4), the equation for {h,(k)} from (3-3) is

by (T KAEK), - 3 e [Kka) =50 (3-35)

men 1 Op-m

) solve (3-35), numerical techniques are employed for computing {K;) and { tK);},

118'olving for (h) (-iy<i<iy). This means approximating h(tk) by a finite number

coefficients, which will be a good approximation provided iy is chosen so that w;,

least a few plasma frequencies, w,.

y

Figure 3-3 presents Ih,(k)/w,!2 for k?A3=0.001 and T;=T,.. Associated with this
m is the value k2T%2=12 indicating the Green’s function has progressed
t"@- the short-time behavior (the value T=50n/a, is used). It is expected that the

St correction 9., should account for much of the frequency broadening in Figure
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Figure 3-3 |h,(k)/w,|? versus o,/o, for k%A = 0.001.

. The solution to (3-24) for n=1, and v;=0 is

K*ve
Onli (T k) = % -

(o]

[sin 0,T— 0T COS 0)01:]
€ term tcos w7 is responsible for the thermal broadening of the frequency peak.
Flgure 3-4 considers larger values of k?A3. It is evident that the discrete fre-
NCy spectrum provides a more sensitive measure of the Green’s function than
.Figure 3-1. For example, the appearance of the off-peak frequencies in Figure
difficult to observe in Figure 3-1a.

Increased values of wave number result in situations where the asymptotic limit

‘ quickly attained. This leads to a reduction in the w, amplitude and an overall
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10° ] T |
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0.0 ©.5 1.0 1.
W/ W,

Figure 3-4 1h,(k)/a,1? versus o/, (A)k*A3 = 0.01 (b)k*A = 0.1 (c)k?AJ = 0.2.

5 2.0

i
sad frequency spectrum, as seen in Figure 3-4. Furthermore, the ion-acoustic

plitude which contributes to the lowest frequency range (0 to o) increases with k.
s can be explained using the simple picture developed in the previous section. For
k%T%2, the ions approximately remain on the same sheet, and a component of
¢ ion sheet’s motion will oscillate at the low frequency of the ion-acoustic mode.
' electrons, on the other hand, are highly thermalized and damp the electric field.
1€ damping of the ion-acoustic mode can be diminished by reducing the wavelength
- the oscillation (increasing k). This diminishes the effectiveness of the highly ther-
alized electrons because the low frequency, short wavelength induced electric field

Pears to these high speed electrons as oscillating rapidly. Hence, on the average,
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hermal electrons contribute less for decreased wavelengths because these elec-

7S sense a decreased mean field.

" To check the effects of an increase in ion temperature, Figure 3-5 uses an ion to
ctron temperature ratio of 10. There is a noticeable differcncé between Figure 3-
¢ and Figure 3-4¢ (k%A23=0.2) in the lowest frequency range where the ion-acoustic
ak is diminished in Figure 3-5c. This agrees with the conclusions of the previous

stions. In particular, for the study of the asymptotic time limit, the ion thermal

fects are significant for k2v2T%2>1, which is the case in Figure 3-5c.

10° T |

10—6 | | |
0.0 B.5 1.0 1.
C‘)/Q‘)o '

Figure 3-5 Ih (k)/o, 12 versus ay/o, (a)k?A3 = 0.01 (b)kA3 = 0.1 (k3 = 02.

5 2.0
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Application to the Earth’s Electron Foreshock
Region

A region where the source problem will be applied is deep within the Earth’s
ectron foreshock shown in Figure 4-1, where the distance Diff defined in the figure
roughly 20 earth radii. To account for the observed electric waves in this region,

e beam-plasma theory of Fuselier et al. [1985] assumes an electron particle distri-

)

Spacecraft

Bow
Shock

Figure 4-1 Electron foreshock region.
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“,. which makes the electric field unstable to small perturbations and hence grow
_plitude. However, the unstable distribution used by Fuselier et al. [1985] is not
pported by the particle observations.

~ Section 4-3 will apply the theory developed in this thesis to account for the
ic wave observations in the foreshock region. First, the observations and the
stability calculation of Fuselier et al. [1985] will be summarized in Section 4-1.
4.2 follows with a summary of the previous chapters needed for the present
pplication. Finally, Section 4-4 compares the source theory to the beam-plasma
ieory for the case where a low density beam is present. This is relevant near the

ige of the electron foreshock region (diff<5 earth radii).

1. Earth’s Electron Foreshock Region

| Summary of Observations

" Electrons directed upstream, coming from the earth’s bow shock have been
bserved in the electron foreshock region (see for example Filbert and Kellogg
979]). These electrons may originate from a small fraction of solar wind electrons
1at reflect when encountering the earth’s bow shock and move upstream along the

lar wind magnetic field lines to form the electron foreshock. The following sum-

1ary of observations in the electron foreshock is taken from Fuselier et al. [1985].

] The entire range of frequencies for the plasma oscillations (electrostatic wave
activity) measured in the electron foreshock region is from less than 0.1f, to
slightly above the plasma frequency (f=w./2r). Within this range, there is,

predominately, either a high frequency component (~f) or a low frequency
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component (- 15 kHz). The plasma frequency, f., in the electron foreshock region
s typically 25 to 30 kHz.

' The bandwidth of the oscillations can be as much as 4 kHz for the low frequency

‘@ﬁvity (~ 15 kHz) and a few hundred Hz for the high frequency activity (~f.).

'fﬂ’hc wavelengths are on the order of a few Debye lengths Ap for the low fre-

\
quency activity and much greater than Ap for the high frequency activity. Ap is

.
typically 10m in the electron foreshock region.

~ Low frequency plasma oscillations are observed deep (~20 earth radii) in the elec-

tron foreshock region, far downstream of the foreshock boundary.

" The plasma oscillations shift from the high to the low frequency activity. Corre-
lated with this frequency shift is an increase in the flux of energetic electrons
] "streaming from the bow shock. The minimum energy of the electrons streaming

|
from the bow shock decreases as the frequency shifts downward.

. Beam-Plasma Theory of Fuselier et al.

To account for the observations, Fuselier et al. [1985] used the following

,;th-ordcr electron distribution F.(v) from which the dielectric function was calcu-

ny, Gy

T (v-Vy)C2 “-1)

Fo(v) =Fe(V)+
() is a Maxwellian distribution used to describe the solar wind electron distribution.
he second term describes the upstreaming electron distribution (electrons coming

om the bow shock) as a Lorentzian beam with n, C,, and V, as the beam density,

ermal speed and beam velocity, respectively. This choice was motivated, in part,
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from the guiding center theory which requires that the upstreaming electrons have
energies above some cutoff energy in order to reach a particular observation point
f‘ilbert and Kellogg, 1979]. V, is identified as the cutoff velocity. Fuselier et al.
[1985] solve for the complex frequency roots of the dielectric function and show that
1 growing mode can exist for reasonable values of n, V, and C,. The features of this

mode are shown to be consistent with the electric wave observations for tl}e entire
electron foreshock region (from near the foreshock boundary to deep in the foreshock
region). For instance, for 1Vyl/ve>2, (v is the thermal speed of the solar wind elec-
trons) the oscillation frequency is close to the plasma frequency f. and the
wavelength for maximum growth is much larger than Ap. As IV,! is made smaller,
the oscillation frequency decreases to below f. and the wavelength for maximum

growth decreases to a few Ap.

" Fuselier et al. [1985] apply the results of the instability calculation to explain
the wave activity in the following manner. The particle observations (observation
point 5) along with the fact that the low frequencies are observed deep in the electron
3reshock region (observation point 4) determine that the minimum energy of the
Iiﬂpstreaming electrons decreases as the observation point progresses deeper into the
foreshock. This means IV, | decreases as Diff increases, since V, is being identified as
the cutoff velocity. (Note that there is also an increase in the density of the
;*ﬁPstreaming electrons, but only V, needs to be considered for this discussion). With
an increase in Diff, the results of the instability indicate that for the corresponding
::ﬂccrease in v, the wave frequency and wavelength decrease (provided 1V,1<2v,),

Which accounts for observation points 3-5.
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~ The observed bandwidths (observation point 2) are explained by saying the
beam velocity changes during the observation period so that the oscillation frequency
«ccps across the frequency range. Consider two values of beam velocity, V, and
‘$+5Vb where 8V, denotes the difference of the two velocities and is identified as the
iation in the beam velocity. There is a corresponding pair of frequencies, @ and
+80, determined from the dielectric function. The dispersion relation has the pro-
perty that for fixed &V, the variation in frequency 8w is larger for smaller 1V,!, which
counts for the low frequency wave activity being broad band.

Fuselier et al. [1985] recognize the main weakness in the beam-plasma theory is
the lack of evidence for the existence of electron beams deep in the foreshock region.
A beam, if present, would show up in the electron distribution as a peak near the
beam velocity. This secondary peak (the primary peak is due to the solar wind elec-
trons) is necessary for there to be an instability [Ichimaru, 1973]. The measured
electron distributions presented by Fuselier et al. [1985] show a peak for an observa-
,o made near the foreshock edge (Diff ~6 earth radii) and a plateau for an observa-
tion made near the middle of the foreshock region (Diff ~16 earth radii). But deep in
the foreshock (Diff ~30 earth radii) neither a peak nor a plateau is present. Instead, the
distribution of the electrons there shows a suprathermal tail (Figure 4-2). For the
cases where no beam is seen, Fuselier et al. [1985] suggest a beam does exist, but
the beam is not continuous possibly because the electrons come in bursts. Therefore,
the beam would not be detected if the temporal resolution of the particle detector is
not high enough to monitor the bursts of electrons. Furthermore, the properties of the

beam (v, n,, and C, in (4-1)) may vary during the observation period and make the

Peak undetectable. For example, the cases where a plateau is present would
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Figure 4-2 Electron distribution deep in electron foreshock region showing a
suprathermal tail [F uselier et al., 1985].

espond to the beam velocity varying between the velocity limits of the plateau.
For observations deep in the foreshock, the beam density and velocity would both

have to vary in order to prevent peaks or plateaus from being detected.

The analysis of Fuselier et al. [1985] requires a beam to exist deep in the
foreshock region. However, this is not substantiated by data. Section 4-3 makes an
alternate proposal for producing the waves. This proposal is based on the theory stu-
died in the previous chapters and does not require a beam to be present where the
aves are. The analysis assumes that charge fluctuations exist in the upstreaming
electron distribution which drive the solar wind plasma, thus resulting in electric
activity. A possible origin of the assumed fluctuations will be identified in

€ cﬁon 4-4 .
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2. Summary of the Source Problem

The essential points concerning the solution of the source problem were deter-
w ed in the preceding chapters and are summarized below.

, In general, the Green’s function can not be approximated by its asymptotic form
for time periods when a source charge density exists (see discussions in Chapter 1
preceding and following equation (1-5) ).

, The solution to the source problem has three types of behavior corresponding to
the three time limits of the Green’s function (see Section 3-1; equations (3-4), (3-
' 7), and (3-9) ). These three limits can be present all at the same time because the
' resultant electric field at time t depends on the source behavior at times before t
' (see the previous summary point).

» The electric field spectrum will, in general, be non-zero at all frequencies for a
| thermal- plasma, and can be calculated from a matrix relation for the discrete
Fourier transform coefficients for a given source charge density (see Section 3-3;
~ equation (3-33)).

Expressions for the Fourier transform coefficients of -the electric field were

derived in Section 3-3. For completeness, (3-33) is presented here

K] = ez o (4-2)

K+ o?

E., [1+T K.t K)n] -y B

men ! Onm

T .
K, = | QTl M K(1K)
0
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T
(tK), = z[ETT- e TK(1k)
T A+'1‘

Pon = %p(t,k)e“"“‘
A

J

The total field E-q(k) is due to the activity of the source charge density p.,(k) for the

‘ pcriod TA< t< TA+T.

(E.,} is used for comparison with the measured electric field spectrum. Once p.,

has been specified, the procedure is to solve (4-2) as a matrix equation for a finite
number of terms {E.,} (see Section 3-3, where (h,} were calculated in the same

\
fashion). A suitable choice for p,, can be based on the observations, as will be

shown in Section 4-3.

4-3. Fluctuations in the Upstreaming Electron Distribution

ha. Formulation

When formulating the source problem, one must identify the charge density
EP(M) of the source. This charge density consists of the electrons traveling upstream
from the bow shock showing up in the measured suprathermal tail of the electron dis-
tribution. The specification of the x axis is based on the polarization study of Ezcheto
E.«and Faucheux [1984], which shows the electrostatic waves are polarized along the
magnetic field. Therefore, the x axis runs parallel to the solar wind magnetic field,

‘ and the direction of increasing x is chosen to be from the bow shock into the electron
foreshock. Although, the observations are not refined enough to explicitly specify the
functional form of p(tx), it was shown by Etcheto and Faucheux [1984] that no

- dependence exists between the upstream wave activity and the distance from the bow
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<hock measured along the interplanetary magnetic field line which is tangen: to the
bow shock ( Dist defined in Figure 4-1). This observation implies that the proximity
; the observation point relative to the bow shock along the magnetic field direction

is not a relevant length scale. Consequently, the only length scale that will be con-

sidered is a fluctuation length scale (wavelength of fluctuation) in the x direction.

b. Upstreaming Distribution F unction

The upstreaming electron distribution is assumed to consist of a constant uni-
form portion and another which accounts for the spatial and temporal variations of
the distribution. The effect of the constant uniform portion on the electric field can be
neglected for three reasons. One is that the uniform portion of the solar wind plasma
and the upstreaming electron distribution is assumed to be in equilibrium (no net
charge density). Therefore, the uniform portion of the plasma will not contribute an
lcctric field. Second, it is assumed here that deep in the electron foreshock region
§here is no secondary peak in the electron distribution (no beam) and, consequently,
the upstreaming electrons do not excite a beam instability. Finally, the number den-
sity of the upstreaming electrons deep in the electron foreshock is a small fraction
— 0.001-0.01) of the solar wind density. Equilibrium of the uniform portion of the
plasma means that the fractional difference between the uniform portions of the solar
wind ion and electron number densities is also ~ 0.001-0.01. An amount which can be

neglected. Hence, only the fluctuating portion of the upstreaming electron distribu-

1
tion will be considered.
.

Observation points 3 and 4 state that the electric waves deep in the electron

‘%foreshock region exist for a narrow range of short wavelengths (on the order of a few
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Ao). This information serves to identify the fluctuation length scale. For the present IR §

surpose, the following form of p(tx) is used

p(tx) = —ede cos( kx—k,v(t-T,) ) f(v) . 4-3)

‘This charge density is representative of fluctuations in a flow of electrons which vary

on a short spatial scale of 2wk, with particle distribution f(v). t appears in the form

T, because the charge density activity during the observation interval TA<t<Ta+T is

of interest.

An estimate of f(v) is based on the uniform portion of upstreaming electron dis-

tribution, f,(v). The average total electron distribution fr(v) is

£r(v) = Fe(v)+£u(¥) (4-4) i

‘where F.(v) is the Maxwellian distribution associated with the solar wind particles. To :w,“}‘

approximate the suprathermal tail of fr(v) illustrated in Figure 4-2, f,(v) contributes

only to the electron distribution at velocities greater than the cutoff velocity v, (v.>0

for the defined coordinate system), and fi(v)) is zero to enforce the condition ;;;”

fr(v)=F.(v,) (continuity of the electron distribution). Therefore, f,(v) is chosen to be

V=ve

£,(v) = e(v—vc)% [v—vc]e Ya (4-5)

which enhances the total electron distribution at velocities v>v, with upstreaming

electrons of density n, and velocity spread v..

. Constraint

A constraint must be placed on the total distribution to ensure there is no peak

due to the upstreaming particle enhancement, as required by observations. The con-

straint requires that 9,f; not vanish for v>v.. The velocity derivative of (4-4) for
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velocities v>Ve with (4-5) gives the following restriction on possible plasma parame- |

ters for the upstreaming particles

e ol V=V
-n v 2 My TTvo V=V, |
——=—e “+—e " |l- =120 . (4-6) i
eoZvi Va I

Here, n and v, are, respectively, the particle density and thermal speed of the back- i

g ound solar wind electrons. In‘ general, (4-6) must be satisfied for all velocities | }
.eatcr than the cutoff. This condition is obviously satisfied for v>vetv,, since the two
terms of (4-6). would then have the same sign. Therefore, for f, to be considered a I
possible upstreaming distribution function, its parameters need only be shown to

satisfy (4-6) in the velocity range ve<v<v+v. i

Approximating f(v) by (4-5), the result of integrating (4-3) is il

p(tx) = —en, [Bmt—TA)cosacox—kovc(t—m)+Bz<t—msin<kox—kovc(t—m)] (4-7a) i

where W
Wi

1-k2v2e2 il

PO = vy it

2Kkt I

b0 = rvzey |

' The spatial Fourier transform of (4-7a) yields
_ kv (t-T,) d(k—k,) . d(k+k,) :
PER) = —snue (TP (kTR | i

'From Section 4-2, equation (4-2) requires p,,(k) to calculate E.,(). Equation (4-2)

defines p,,(k) as I
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TA+Td
t iog
Pl = [ Te PR

A

which will be evaluated by numerical integration. The qualitative features of the
charge density spectrum is that it is peaked at the frequency o, =k, with a charac-
teristic width kov. If other functional forms were chosen for the fluctuating portion

the upstreaming electron distribution with qualitatively the same features, the fre-

quency peak and spread for the éharge density would still be mainly determined by

the characteristic cutoff velocity, thermal speed and fluctuation scale length of the
upstreaming distribution. Consequently, (4-7b) has a general significance in regards

to the qualitative effect v, v, and k, has on the electric field spectrum.

d. Results

In the figures to be presented, the plotted electric field amplitudes have been
adjusted to correspond to a sine and cosine Fourier series rather than the exponential
Fourier series used in the calculations. This permits easy comparison with the
ported range of 0.03-0.3 millivolts per meter (mV/m) for the peak electric field
amplitudes [Lacombe et al., 1985]. To determine the transformation, one simply

compares the two series. The equality

E,(tX) = Eo(x)+ X [Em(x) coSW,t +Eqq sinmnt] = ZE>ne'i"’n‘
n>0

n

provides the relationship

E2+E2=4IE,,1? ,n>0
It is this quantity which will be graphed.
The solar wind plasma parameters used in this study are: density n=10cm™, ther-

mal speed v.=1200km/sec, and T;=T.. The x coordinate is permitted to take on any
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value of kx=2mm (m is any integer), and the starting time of the observation period,
T,, is taken to be an integral multiple of the observation time, T, where T=50m/a, is
used. This choice for x and T, is sufficient for studying the main features of the

electric field spectrum. The upstreaming electron velocity parameters v, and v, are

speciﬁcd indirectly by taking the characteristic source frequencies, kv, and k.v,, to be

an integral number of the frequency «=2mT (the frequency resolution associated with

the observation time T).

i. Effect of Temperature (v,)
Figure 4-3 considers kp= 0.32 (k224=0.1) using a density for the upstreaming

electrons of n,=0.00In, a cutoff velocity v.=2v, (kov=16a,), and two values for the
thermal speed of the upstreaming distribution, v,=0.13 and 0.25v, (k,v,=1 and 2a,).
The graph with the lower value of v, clearly displays two dominant frequency peaks
 corresponding to the characteristic background solar wind response (high frequency
peaks present in the Green’s function), and a peak associated with the driving fre-
' quency (activity below the plasma frequency). Increasing the thermal speed, v,
~ affects the spectrum by broadening the low frequency activity and reducing the
amplitude due to the wave energy being distributed over a broader frequency range.
Based on the reported range of 0.03-0.3 mV/m for the peak electric field amplitudes
~ [Lacombe et al., 1985], Figure 4-3 provides an estimate for the thermal speed of the
~ upstreaming electrons. The lower value of v,=0.13v, used in Figure 4-3 is a good
estimate because it gives amplitudes that agree with the reported range of Lacombe et
- al. [1985]. The constraint (4-6) provides a lower limit on allowable values for v, by
- Considering when (4-6) is not satisfied. From (4-5), the upstreaming distribution will

be peaked at v near v, for small v,. Hence, an estimate for the lower limit is found by




" For the constraint not to be satisfied, (4-8) must equ
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the upstreaming electron distributi

expanding (4-6) about v=v, which gives to lowest order the expression

2

s
o0 e
@n? V2

-v,

(4-8)

al zero, which is then solved for

~ the minimum allowable value for v,

2
c

V\% _ 1 n, Ve eZ\le2
vez min (2 15)”2 n vc

v,

- For the parameters of Figure 4-3, (Vo)emin~ 0.04 v, placing the v, values used in Figure




4-3 safely above the estimate on the minimum allowable v,.

ii. Effects of Density and Cutoff Velocity (n, and v.)
The three graphs in Figure 4-4 represent spectra from different observation i

ts in the electron foreshock region. The graphs are distinguished by three | i l

poin

different values of the cutoff velocity, v=2.0,15,1.0v,, with respective values of

~ increasing upstreaming electron density, n,=0.001,0.003,0.0035n. These correspond to

three observation points each progressively deeper into the foreshock region (larger

Diff), in accordance with the particle observations stated in point 5. As the number

of lower energy electrons increases, the spectrum peak associated with the driving

10°

kZAE=0.1

|

.0 J .

5 1.0
v o/ W
Figure 4-4 Electric field spectrum comparing three sets of plasma parameters

for the upstreaming electron distribution with k22=0.1 and v, = 0.127v, : (2)
ve=120v,, n, = 0.001n (b) v,=1.5v,, n,=0.003n (c) v, =10V, 0, = 0.0035n.




64

source charge density shifts in frequency from near (but still below) the plasma fre-

- quency t0 increasingly farther below the plasma frequency while maintaining a

‘ significant intensity. Therefore, the present theory does show a shifting of the fre-

quency activity from high to low frequencies (see the wave observations stated in
point 5) with maximum amplitudes within the range reported by Lacombe et al.

[1985]. Finally, Figure 4-5 demonstrates the shift in frequency for a different wave

_qumber, k2A\2=0.2. Here it is noticed that the amplitude of the low frequency peak is

actually larger than the high frequency peak, meaning the driving frequency is dom-

inant.

2 . 5

5 1.0 1.
@/ Wo
Figure 4-5 Electric field spectrum comparing three sets of plasma parameters

for the upstreaming electron distribution with k2A3 = 0.2 and v, = 0.089v, : (a)
Vo= 14v,, n, = 0.001n (b) v, = 1.1v,, n,=0.0013n (¢) v, = 0.7 v, n, = 0.0015n.

u




¢. Discussion

The results of this section show that including small fluctuations in the
gpstreaming electron distribution can lead to measurable electric waves without the
electrons being organized as a beam. Moreover, the features qualitatively agree with
the observed wave activity using source properties inferred from the observations.
There remains to be considered tWo important issues. One is to identify a possible
origin of the assumed fluctuations. The other is to apply the source theory for the
wave activity observed near the electron foreshock edge (diff<S5 earth radii), where a
low density beam is present and is likely to cause an instability. Both of these issues
will be discussed in Section 4-4 by comparing the source and beam-plasma theories

in greater detail.

4-4. Comparison of Source Theory and Beam-Plasma Theory

For the case where the plasma includes a low density beam (such as near the

edge of the electron foreshock), there are seemingly two perspectives on which to

base one’s analysis. On the one hand, one may consider the beam as part of the

ambient (or zeroth-order) plasma, which is the basis for beam-plasma theory. Given
that an instability exists, this theory then may account for the wave generation. The
other perspective is motivated by the present development of the source problem.
Since the beam is a small contribution to the plasma as compared to a large Maxwel-
lian background (such as the ambient solar wind), one may consider the beam as a
source of injected charge effective in driving electric wave activity. To relate these

two theories, a closer look at their basic limitations and applicability will be taken.




. 4. Ordering for Beam-Plasma Theory

Under consideration are two linear approximations to the same basic non-linear
gquations with the exception that the Vlasov equation was extended to be inhomo-
geneous for the source problem. The approximation made is different in each case,
as seen by identifying the zeroth-order quantities. For the beam-plasma theory, both
the Maxwellian background and the 11niform beam distribution are components of the
zeroth-order plasma. In regards to the spatial particle densities which determine the
electric field, the approximation means that the first-order density for a given particle
species is much smaller than the individual components of the ambient plasma. This
sets the scale of the first-order density contribution as much smaller than the zeroth-
order beam density. Formally introducing an ordering parameter A to keep track of

the density scale in an expansion, Gauss’ law becomes

9,E(t,x) = 41th,jdv f,(tx,v) = 411:{)» pM+A2p@+ - - - } (4-9)
where p™ is the order m contribution to the total charge density. No zeroth-order
term appears in (4-9) because the ambient plasma is assumed to be charge neutral.
Terms of second-order and higher are neglected in the linear approximation. From
this, one can estimate that the minimum amplitude electric field to which the theory
is sensitive (the degree of accuracy of the theory) is of order A%, since this is the
lowest order charge density that is neglected. This estimate really only has meaning
while the non-linear terms (m>1) are ne_gligible. Under the assumption that the
zeroth-order plasma is responsible for an instability, the non-linear terms will eventu-

ally be significant, marking the breakdown of this linear theory.
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p. Ordering for Source Theory

The linear approximation made for the source theory differs from the beam-
~ plasma theory in that the zeroth-order plasma consists of just the Maxwellian back-

- ground. Densities on the scale of the beam are taken to be of first order, with a

corresponding ordering parameter, 4. Comparison to beam-plasma theory shows that

" the charge density term of order ‘% (from source theory) is much larger than the term

of order A appearing in (4-9). The sensitivity of source theory is estimated to be of
order 42, directly analogous to beam-plasma theory. The distinction between the two
theories is now clear. Beam-plasma theory is capable of describing wave activity in
the amplitude range from orders A2 to A, whereas the source theory applies to activity
from orders A2 to . Therefore, the two theories are compatible in that they describe
different intensity levels in the plasma. The source theory describes a higher inten-
sity level than the beam-plasma theory because the density of order X is greater than
the density of order .. To estimate the two intensity levels, consider the density
ranges for the two orderings using a beam density of 102n (n is density of Maxwel-
lian background). With this beam density, the approximate density range for which
the source problem applies is 10°5-102n. Gauss’ law provides the corresponding
~ electric field intensity range of 107%-10°(2enl), where L is a characteristic
wavelength. For example, using a characteristic wavelength of L=500m and n=10cm™,
the range of electric field intensity is 0.015-15mV/m. This gives an estimate that
defines the higher intensity range. The lower intensity range is estimated by recalling
that the density of order A of the beam-plasma theory is much less than the beam

- density. If the density of order A is, say, a factor of 102 times the beam density, the

lower intensity range is 1.5x107-1.5x107' mV/m.




68

Although the two theories do not directly trace the wave activity as it might
develop from low to high intensities, it is expected that the transition does occur
pased on the above estimate for the intensity levels of the two theories. Electric field
amplitudes in the electron foreshock region near the foreshock boundary, where a

beam is present, are typically a few millivolts per meter [Etcheto and Faucheux,

1984], which places the measurement “in the high intensity level (described by source

theory). This motivates the picture that the wave activity originates at the low inten-
sity level by means of an instability as given by beam-plasma theory. While the
ctivity is described by beam-plasma theory, it lies below the threshold intensity at
which the source problem is applicable. The wave activity then increases into the
high intensity level, the domain of the source theory. Therefore, the source theory
can be used to compute the field spectrum with the source charge density being gen-
erated by the wave activity that arises from the beam-plasma instability. Here, the
source theory is used to describe the final stable state of the wave activity. Chapters
1 and 2 discussed many uses of the source term for the source problem. There it is
stated that the source term can be due to particles injected into the ambient particles,
or it can represent a variety of physical processes that has the effect of driving the
plasma. The present application belongs to the latter category and describes the intro-
duction of particle distribution effects from terms neglected in the linear approxima-

tion. This statement is more clearly understood in what follows.

Consider the ordering of the distribution function. Of interest is the situation
here the uniform portion of the beam distribution is already present and established,
hich means the uniform portion of the beam is not part of the particle source term

L. This is in contrast to a study of the initial injection of a beam, which monitors the
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equﬂibration of the uniform plasma components. Therefore, the ordering of the dis-

gribution function is:

£,(t.x,v) = FOW) + AFO) + A ) + lemf§m>(t,x,v) : (4-10)
Notice the first three terms of (4-10) are spatially uniform plasma components.
FO4AF® is the uniform distribution of the solar wind plasma for the case of the elec-
tron foreshock region. Af§) is the uniform beam distribution for species a, which for
the source problem is a first-order quantity. The first-order term for the solar wind
plasma, AE®, is necessary so that the uniform portion of the plasma can be in equili-
prium. Equilibrium is arranged by assuming the uniform portion of the plasma is

charge neutral.

Substituting (4-10) into Gauss’ law then gives

3,E(tx) = 4nY, )3 Q@ JavATE™ x,v) (4-11)

am=1

indicating the electric field expansion has the form

E(tx) = X A"E®(tx) . (4-12)

m=1

The inhomogeneous Vlasov equation with (4-10) and (4-12) becomes

@rvaA D + 4 %E‘l)avF,(") =T (4-13)
where symbolically
T, = AL+ Higher Order . (4-14)

It is useful to distinguish between two types of terms in (4-14). First, there are the
terms coming from the 4 expansion of the particle source term g,. Since the uniform

portion of the beam is treated as already present in the system, ¢, pertains only to the
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injection of a fluctuating portion of a particle distribution. The other terms in (4-14)
are the higher ordér terms arising from the functions ff and E®™. Both types of
terms contribute to higher order in (4-14), and would normally be neglected alto-
gether in the linear approximation. But in light of the instability that exists at the
low intensity level, the possibility that the cumulative effect of the higher order terms
results in a contribution of order A is proposed. This statement represents a gross
simplification of the non-linear effects that describe the wave activity as it progresses
from the low intensity instability level to a stable plasma configuration. Nonetheless,
such a premise will serve to link the two linear theories, with the source theory
describing the stablé plasma configuration from which the wave spectrum is calcu-
lated.

To pursue this analysis the first-order term (" is taken to be zero. This restricts
the study to waves which originate solely from the higher order effects. Therefore,

the basic first-order relations from (4-11) and (4-13) are precisely the same equations
studied in Chapters 1-3 with T, as the source term. However, the complication exists

that T,(tx,v) is not known. Even though it is in principle calculable in terms of an

expansion, there is no guarantee that such a route would prbve fruitful. The aim of

this section is not to determine Z,, but to establish one simple and informative fact.
This fact has to do with the ability to solve for a portion of the particle distribution
function. The inversion of (4-13) for £ (tk,v) is given by (2-9). In particular, the

following term appears
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t .
J' dtl e—lkV(l-tl )~a(t1 ,k,v) (4' 1 5)

which is the part of the particle distribution function due to the source term and i

determines the source charge density, p(tx). Consider the activity of ¢, before the i

observation time t=T,. Then for t2Ta, its contribution to (4-15) is

Ta . [

J e VT k) (4-16) 1

which satisfies the free-streaming Vlasov equation given by (1-4).

T
—ikv(t-t,

A
@+ikv) Jane "k =0 . (4-17)

Equation (4-17) is the same equation satisfied by the fluctuating portion of the ‘
upstreaming electron distribution used in Section 4-3 for the region deep in the elec- i
tron foreshock ( the distribution function appears in the integrand of (4-3) ). In fact,

a further point is that the same qualitative form assumed in (4-3) is expected to apply

in this case of a low density beam causing an instability. For one thing, the instabil-

ity has the largest growth rates for some characteristic wave number. It is this wave

number that gets identified as k, in (4-3). With a given k, for which the beam-plasma in
theory is unstable, a wave with predominantly one phase velocity results [Ichimaru, \
1973]. In regards to (4-3), this means that #(v) serves to specify the velocity distribu- |
tion corresponding to the phase velocity distribution.

It should be emphasized that the non-linear effects, which here are being
ignored, may change the details of these statements. Consequently, these results apply ‘ ‘,
only if the main features of the instabilities here discussed are preserved as the wave

activity progresses into the high intensity level. Further note that the frequencies
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given by the beam-plasma theory do not directly influence the portion of the wave
activity due to (4-16). This is because (4-16) only includes the activity of T, before
=T, and evolves according 10 (4-17) during the observation period To<i<To+T. Only

the spatial and phase velocity properties of the instability directly affect this portion

of the wave activity.

An overall description of ‘he wave activity in the electron foreshock region is
arrived at from the relationship between source theory and beam-plasma theory, and
the similarity between (4-16) and the fluctuating distribution used in the region deep
in the electron foreshock region appearing in the integrand of (4-3). Recall that the
region for which no beam is observed (deep in the electron foreshock region) the
wave activity was shown in Section 4-3 to be well described by including 2 fluctuat-
ing distribution with its assigned properties. An explanation for this driving distribu-
tion follows from assuming that a beam exists nearer to the bow shock (smaller Dist
in Figure 4-1) than the observation point. Then, at the location of the beam, the
application of beam-plasma theory determines if an instability is at work. Assuming
an instability exists, the instability initiates the fluctuations in the distribution function
that drive the source theory. The explanation for why a beam is not present deep in
the foreshock region is that the higher order terms in (4-14) include the effect the
waves have on dispersing (spreading or smearing out) the velocity distribution of the
electrons. Therefore, the peak in the electron distribution assumed to exist at small

Dist (defined in Figure 4-1) disperses to 2 suprathermal distribution (Figure 4-2) with
a fluctuating portion as each parcel of upstreaming electrons progresses into the elec-

tron foreshock region.
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This reasoning helps to understand the parameters used in Section 4-3. Again,

k, is related to a wave number that corresponds to the maximum growth rates calcu-
Jated from the beam-plasma theory [Fuselier et al., 1985]. As for the thermal speed
v,, a result of the computations in Section 4-3 was that v, of about 0.1v, is needed to
account for the observed level of wave activity. Recalling that f is a measure of the
phase velocity distribution of the driver, this v, is consistent with thefe being only a
small range of phase velocities that are unstable in the beam-plasma theory. Finally,
the constraint placed on the parameters to ensure no beam was present represents the
effect the higher order terms have on dispersing the beam, which results in the

suprathermal tail.

For the region where a beam is present (near the edge of the electron foreshock

region), the source theory indicates there are two effects of the driving term £.. One
is analogous to the behavior derived for the region deep in the foreshock, which is
due to the driving fluctuation in (4-16). Based on the results of Section 4-3, the peak
in the wave activity due to this portion of the driver occurs at the frequency
Opea =kove. Roughly, v, is close to the peak of the phase velocity distribution t for
small v,, This means that f peaks at a phase velocity approximately equal t0 ®pes /Ko
Recall that, this peak in f corresponds to the phase velocity of the wave with the
largest growth rate from beam-plasma theory. Therefore, @pea 18 approximately equal
to the oscillation frequency determined from beam-plasma theory because the phase
velocity is the angular frequency divided by the wave number. Relating this to an
earlier comment, it is noted that even though the frequency given by beam-plasma

theory does not directly influence the wave activity due to (4-16), the corresponding
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frequency spectrum calculated from the source theory has a peak at approximately
the beam-plasma frequency. As for the effect of the activity of the source term dur-
ing the observation time T, <t<Ta+T, this may directly depend on the frequency given
by beam-plasma theory. Therefore, this latter activity may also drive the plasma at

approximately the same peak frequency as does (4-16).

In summary, the point that the beam-plasma frequency is approximately the fre-

‘quency for which the source theory has a spectrum peak means the strong points of

beam-plasma theory to account for the measured frequency peak applies here to this

overall description of the electron foreshock. The shortcoming of the beam-plasma
theory, that it is not able to explain wave activity where no beam is observed, is
resolved by assuming that the beam Which causes the instability does not penetrate
the electron foreshock because it disperses in velocity to a suprathermal tail with a
fluctuating portion. It is this fluctuating portion with its characteristic wavelength that
drives the wave activity as calculated by source theory, and marks an important
difference from the beam-plasma theory which assumes the upstreaming electron dis-
tribution is spatially uniform.

As for the activity near the foreshock boundary, the velocity dispersion of the
beam is expected to be less effective here because its large beam speed is in a velo-
city range where few solar wind electrons contribute to the distribution. Therefore,
the dispersion process is expected to take a longer time to blend the beam into the
solar wind distribution in order to eliminate the electron distribution peak. This
explains why a beam can exist in the edge of the electron foreshock but not deep in

the foreshock region. Some details can not be determined from this combined
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theory. These mainly have to do with the specifics of the velocity dispersion of the 1

peam. This matter is a prime candidate for future study.
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Conclusion

This thesis defined and formulated the source problem in a precise manner.
Comparisons were made to the Landau problem, showing in Chapter 1 that the Lan-
dau problem is obtainable using the formalism of the source problem with the
appropriate source charge density. Chapters 1 and 2 introduced the Green’s function
emphasizing its relationship to the dielectric function of the Landau problem. In par-
ticular, the limitation of simply considering the roots of the dielectric function is that
the effects of a source charge density would not be properly described for periods
when the source charge density is non-zero. Chapter 3 confirmed this by studying
the Green’s function in three temporal limits: short, intermediate and asymptotic,
which showed that the characteristic frequency of the Green’s function changes in
time.

The result that there are characteristic time scales which distinguish the frequen-
cies of the different time intervals may have important consequences to plasmas other
than the equilibrium plasma considered in this thesis. It was shown that thermal
effects were less significant in the short-time and intermediate time behavior than for

the asymptotic time behavior. Consider applying this to, for example, a plasma that
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has an ion compon;ant that drifts relative to the other plasma components so as to
cause an instability. The growth rate should be greater for the short-time and inter-
mediate time behavior because the thermal effects of the plasma components have
not fully developed to the level that exists in the asymptotic limit. Taking the exam-
ple one step further, if the temperatures of the plasma components were such that an
instability were prohibited in the asymptotic limit, it still is possible for an instability
to exist in the other time limits because thermal effects are less significant.

Chapter 3 derived relations to calculate electric field spectra. These relations
were applied to the region deep in the Earth’s electron foreshock in Chapter 4 to find
spectra that generally agreed with the reported observations. The major contribution
was the suggestion that wave activity can be caused by fluctuations that drive the
plasma. This explains how waves can exist in regions where no apparent instability is
present.

This thesis restricted itself to the case of electrostatic waves in an unmagnetized
plasma. A natural extension of the source problem for future work would be to
include an ambient magnetic field and to study electromagnetic as well as electros-

tatic waves.
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APPENDIX A

Discrete Transform of Convolution Integral

In this appendix the discrete Fourier transformation of a convolution integral
needed in Chapter 3 is evaluated. For an arbitrary pair of functions of time, say oft)
and B(), the following operation defines the transform of the desired convolution
integral

T

. t
(@), = [ S ana(o-t) (A-D)
0
with T and ©, defined in Chapter 3. Owing to the symmetry of the convolution

integral:

jdtla(tl)ﬁ(t—tl) = jdtlﬂ(tl)a(t“t1) s
0 0

it is noted that (A-1) is symmetric with respect to interchanging o and B
(a’B)n = (B’a)n
A delta function can be inserted into (A-1) to give

T

T L
(0B)a = 1[9% e z[dtl J(;dt;a(tl)[i(tz) 3(t-t-t)
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hind T dt; e, 1 —imt
=Y Bﬁ'“l[_Tl_e ﬁn‘la(tl)'[dte i (A-3)
Y

j=—o

where the latter equality is gotten by substituting the discrete transform representation

of the delta function

j=—se

and by interchanging the summation and integration operations. Performing the t

integration, the form of (A-3) used in Chapter 3 is:

Td it ian— O :
(0B = Taan—B,,!-%e“’“tla(zl)+ Y [ﬁﬁﬁ“ﬁ—*“’E] . (A-4)
J

j=0
Equation (A-4) does not manifest the symmetry stated in (A-2). Another form
which readily shows this symmetry is obtained by eliminating the summation in the
following expression in favor of an integral
Bitn Tdt it o
—_—=—]=e ) — A-5
iy e D (A-5)
where the B,,, were substituted in terms of the inverse transform. By noting that the

discrete Fourier representation of the variable t is

—I(Djl

t=-§+z

j=0 10

one can write (A-5) as

Bim _ Tyt o
o i(l)j = 2Bn—0Te tB(t) . (A'6)

Substitution of (A-6) into (A-4) gives an alternate expression for the discrete

transform of the convolution integral
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@B = 2T [FE™: B0+ B0 ) - 2

which is manifestly symmetric with respect to interchanging o and p.
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(A-7)
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