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University of Washington

Abstract

Theoretical Calculations of Magnetic Hysteresis and Critical Sizes For
Transitions Between Single-domain and Multi-domain Properties in

Titanomagnetites
by Andrew James Newell

Chairperson of Supervisory Committee: Professor Ronald T. Merrill
Geophysics Program

In this dissertation, I develop some theoretical tools to interpret measurements of
magnetization in rocks, sediments and soils. I show that the magnetization curve
for an ensemble of superparamagnetic particles depends only on odd moments of
the volume distribution ({(V'),(V?3),...). As long as the ensemble is isotropic, the
magnetic anisotropies of individual particles do not affect the curve. I derive ana-
lytical expressions for acquisition and loss of isothermal remanent magnetization in
single-domain (SD) particles with uniaxial anisotropy. These curves depend only on
the volume-average anisotropy. Plots of acquisition against loss of remanence can
be used to distinguish uniaxial anisotropy from cubic anisotropy. I show that ex-
isting multi-domain (MD) hysteresis models, including the theory of Néel [1955] for
thermoremanent magnetization, are internally inconsistent. I develop a simple self-
consistent two-domain model and show that the slope of the hysteresis curve is always
1/N, where N is the demagnetizing factor for a two-domain particle.

Using micromagnetic theory, I derive analytical expressions for the critical sizes

L,w, the upper limit for SD hysteresis, and L,, the upper limit for stability of the SD



remanent state. L., depends weakly on elongation and not at all on magnetocrys-

talline anisotropy, but

1/2 -1/2
Lo = Law (_A_,b_) 1— _ 2k
Na. .qusle

where N, > Np are demagnetizing factors and x depends on the combined magne-
tocrystalline and magnetoelastic anisotropy. Mainly because of the the difference in
Ms, L, is orders of magnitude larger for a particle of Fe; 4Tip 604 than for a particle
of magnetite with the same aspect ratio.

I develop a technique for eliminating unstable solutions of three-dimensional nu-
merical micromagnetic models. I show that nucleation theory can be extended to
non-ellipsoidal particles. The nucleation field H, for a cuboid can be precisely lo-
cated by a change in slope dM/dH and the appearance of curl in the magnetization.
For a cube with K; = 0, the plot of H, against 1/L? has the same slope as for a
sphere, but the intercept is lower, reflecting a smaller average demagnetizing field.

H, is not affected by the demagnetizing field in the corners of the particle.
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Chapter 1

INTRODUCTION

When I last did a magnetic ezperiment (about 1909) we were warned
against careless handling of permanent magnets, and the magnetism was
liable to change without much carelessness. In studying the magnetism of
rocks the specimen has to be broken off with a geological hammer and then
carried to the laboratory. It is supposed that in the process its magnetism
does not change to any important extent, and though I have often asked
how this comes to be the case I have never received any answer. In fact the
modern study started with the announcement that many old rocks showed
magnetism in opposite directions to the present field, but later work ap-
peared to show that the magnetism at neighboring geological dates appeared
to concentrate about a direction and its opposite; since then reversals have
been ignored, it being usually assumed that the Earth’s general field is li-
able to sudden reversal but not to intermediate shifts. The reason for the

reversal, it being supposed genuine, remains unknown. [Jeffreys, 1962]

As the above quote suggests, in its early days paleomagnetism was viewed with
skepticism by many reputable scientists. Today, it is well established that the Earth’s
field reverses and that paleomagnetism works - although we still don’t fully under-
stand how. Since the early contributions that helped establish plate tectonics, paleo-
magnetism has expanded into a major discipline with applications in many branches

of the earth sciences.



At first, earth scientists were mainly interested in magnetic minerals for their
remanence, or magnetization in the absence of an inducing field. This remanence
carried information on the field in which the remanence was acquired. The Earth’s
field in the past is an interesting subject in its own right, but the direction of the
ancient field is also used in tectonic reconstructions, and the polarity (normal or
reversed) is used in magnetostratigraphy. In addition, there is increasing interest in
the use of magnetic “proxies” for size, composition and concentration of magnetic
minerals. This information is used to deduce paleoclimate and other environmental
processes. Also, anisotropies in magnetic properties are used to infer the direction of
flow of lavas that formed volcanic rocks or the strain in rocks.

Ferromagnetic behavior can be roughly classified into three types. If a ferromag-
net is small enough, its magnetization is uniform but the direction of the moment is
constantly buffeted around by thermal fluctuations. In analogy to paramagnetism,
this phenomenon is called superparamagnetism and the particle is called superpara-
magnetic (SP). A single-domain (SD) is uniformly magnetized and the magnetization
changes by uniform rotation. A multi-domain (MD) particle is divided into magnetic
domains and the magnetization changes by translation of domain walls. As a particle
increases in size, it goes from SP to SD to MD, but the transitions are not abrupt.
Thermal fluctuations gradually decrease in importance. Many particles are consid-
ered to have both SD-like and MD-like properties. Verhoogen [1959] proposed that
there were small regions within MD particles that acted like SD particles. Stacey
[1963] called such behavior “pseudo-single-domain (PSD)”, although he proposed a
mechanism related to domain wall movement.

The size range for the different kinds of behavior depends on the composition and
shape of the particles. For a magnetite particle with nearly equal dimensions, the
SP-SD and SD-PSD transitions both occur between about 0.01um and 0.1um, so the
size range for SD behavior is quite narrow. Estimates of the PSD-MD transition in

magnetite depend on the criterion and range from 3um [Worm and Markert, 1987a]



to 100pm [Heider et al., 1992].

If particle size were the only factor that affected magnetic properties, it would
probably be easy to interpret magnetic measurements. The properties also depend
on particle shape, composition and concentration, and they are affected by inhomo-
geneities in particles. Unraveling the different effects is a major challenge for rock
magnetism.

In this chapter I will look at some applications of rock magnetism with emphasis
on particle size. In later chapters I develop theories for different particle sizes in an

effort to improve our understanding of magnetic properties in rocks.

1.1 Hysteresis

A system has hysteresis if its state depends on what has happened to it in the past.
For hysteresis to occur, there must be at least two possible states for a given set of
conditions and there must be points at which irreversible transitions between states
occur. For example, a ferromagnet! has a magnetization M that resides primarily in
electron spins. Interactions between spins tends to make them parallel or antiparallel,
and this gives rise to magnetic hysteresis. As the temperature of a ferromagnet
increases, thermal fluctuations decrease the alignment between spins, until at the
Curie temperature? T, there is no hysteresis. The solid is then paramagnetic, and
changes in magnetization are reversible.

The magnetization M changes in response to an applied field H. Both are vector

quantities, but in samples with a large number of randomly oriented particles M is

! Various kinds of magnetic order (ferrimagnetism, canted antiferromagnetism) exist in minerals
of interest to earth scientists, but the differences do not affect the work in this dissertation. I will
refer to them collectively as ferromagnets.

2 Strictly speaking, the critical temperature for ferromagnets is the Curie temperature while that
for ferrimagnets and antiferromagnets is the Néel temperature, but it is common to call both the

Curie temperature.



Figure 1.1: An example of a magnetic hysteresis loop (after Tauxe et al. [1996], Figure
4).

usually parallel to H. Often the only component of magnetization that is measured
is My, the component of M in the direction of H.

An example of magnetic hysteresis at a fixed temperature is shown in Figure 1.1.
The arrows indicate the direction of change. If the sample is initially demagnetized
(My = H = 0) and H is increased, the magnetization follows the curve that starts

at the origin. The initial susceptibility is defined as

o = M
o=
dH Mg=0,H=0

(1.1)

When H gets large enough, the curve levels off and My approaches the saturation
magnetization M,. If the field is then decreased to zero, the magnetization follows

the upper curve and the magnetization in zero field is a positive quantity called the



saturation remanence.? If the field goes negative (that is, H is now in the opposite
direction), the magnetization continues to decrease. The coercivity H. is defined by
My(—H.) = 0. If H continues to large negative values, My approaches negative
saturation.

The sequence from positive to negative saturation can be reversed, tracing out the
bottom curve in Figure 1.1. The upper and lower curves form a closed loop called the
major hysteresis loop, and they are called the ascending and descending branches of
the major loop. The major loop is unchanged if the variables My and H are replaced
by —Myg and —H.

If the field decreases to a minimum and then increases, the magnetization for the
increasing field moves along a new curve called the first order reversal curve. If the
minimum field is negative, the remanence M, on this curve is in general less than M,,.
The coercivity of remanence H,, is the field at which the first order reversal curve for

M, = 0 meets the major loop.

1.2 Interpreting Remanence in Rocks

1.2.1 Thermoremanent Magnetization

When an igneous rock cools from above the Curie temperature, it acquires a ther-
moremanent magnetization (TRM). If the TRM is not altered, it provides information
on the direction and intensity of the Earth’s field at the time of cooling.

Néel [1949, 1955] proposed two mechanisms for acquisition of TRM, referred to
as the Néel SD and MD theories. In the SD theory, the remanence is determined by
a transition from reversible to irreversible behavior, with an equilibrium distribution
“frozen in” at the transition. In the MD theory, the remanence is determined by
hysteresis.

In his SD theory, Néel [1949] assumes that at high temperatures a particle is

3 A remanence is a magretization in zero field.



superparamagnetic. At any given time, the moment can point in any direction with
a reasonable probability. Néel assumes a rotationally symmetric configuration for
which the energy depends only on the angle § of the moment with respect to the easy
axis. The directions § = 0 and 6 = 7 have the lowest energy (Figure 1.2).

If there is a field of magnitude H aligned with the easy axis, zhe probability
density p(6, H)sin 0d6 of the angle being in a range [0, + df] is determined by the
Boltzmann distribution:

p(0, H)  exp (%) 12)

where kg is the Boltzmann constant.

At higher temperatures, the moment can wander freely from one minimum to the
other. As the temperature decreases, the probable states become clustered near the
minima, and transitions between energy wells become unlikely. To a good approxi-
mation, the magnetization is either “up” or “down” with respect to the easy axis and
the distribution of up and down is “blocked”. The temperature at which this occurs
is called the blocking temperature Tg.

Of course, the energy (and therefore the probability distribution) depends on
the applied field. Paleomagnetists are also interested in the unblocking temperature
Tup at which a particle becomes superparamagnetic as it is heated in zero field. In
general, Typ > Tp [Enkin and Dunlop, 1988], but the Earth’s field is small enough
that Typ =~ T because the magnetostatic energy is a small portion of the energy
barrier.

In the MD theory, the magnetization is proportional to the displacement of the
domain wall from the center of the particle (chapter 2), which in turn is determined
by the balance between the magnetic field pushing the wall inwards and “pinning”
forces that resist the movement. At first, as the temperature decreases the magnetic
force increases faster than the pinning force, and the wall moves inward; if the push

from the field exceeds the local pinning force, the wall jumps to a new site where



Figure 1.2: An illustration of thermal blocking for a SD particle. The curve is a profile
of the energy as a function of the angle 8 between the magnetization and the easy
axis. The horizontal lines illustrate the probability density. (a) Above the blocking
temperature, any angle has a reasonable probability and the moment wanders from
one well to the other. (b) Below the blocking temperature, the moment is confined

to directions near the minima, and transitions between minima are rare.



the pinning force is greater. The temperature at which the last jump occurs during
cooling to room temperature is called the blocking temperature.

In the SD theory, the blocking temperature marks the transition from equilibrium
to non-equilibrium conditions. The transition can be reversed by re-heating the par-
ticle. In the MD theory, there is a series of irreversible jumps as the temperature
decreases, and the blocking temperature merely marks the last such jump. Further-
more, the jumps are irreversible: if the temperature increases, a different series of
Jjumps at different temperatures occurs. In other words, there is hysteresis. It is

therefore misleading to use the term “blocking temperature” with MD grains.

1.2.2 Other Kinds of Remanence

In sediments, the remanence is called detrital remanent magnetization (DRM) if it is
acquired during deposition, and post-depositional remanent magnetization (pDRM) if
it is acquired afterwards during the complex process of consolidation and compaction.
In any kind of rock, some of the remanence may be chemical remanent magnetization
(CRM). This may be either grain-growth CRM, formed when small ferromagnetic
particles become large enough to hold a remanence, or a change in remanence during
chemical alteration of a magnetic mineral. Another source of remagnetization is
viscous remanent magnetization (VRM), which is acquired gradually when a particle
is exposed for a long time to a weak field.

In the laboratory, two other kinds of remanence are commonly encountered.
Isothermal remanent magnetization (IRM) is the kind of remanence discussed in the
introduction to hysteresis. Anhysteretic remanent magnetization (ARM) is acquired
in a field with a DC component that is fixed and an alternating field (AF) with a
peak amplitude that is initially large enough to saturate the magnetization and de-
cays to zero. ARM has many similarities to TRM, and it is often used as a proxy for

it because it does not involve heating (which may cause chemical alteration).



1.2.8 Paleomagnetic Poles

As paleomagnetic techniques improve and the number of paleomagnetic poles in the
literature increases, authors compiling lists of paleomagnetic poles for interpretation
are using increasingly stringent criteria for including a pole. Still, even in the most
recent compilations [Van der Voo, 1993; McElhinny et al., 1996], the only rock mag-
netic criterion is that the remanence in each sample must be fully demagnetized and
separated into vector components. .

The remanence in a sample is rarely the pure, unaltered original component that
was acquired when the sample was formed. There are often secondary components
that were acquired later; generally each component is in a different direction, since the
Earth’s field and the location of the rock changed between acquisition events. Two
methods are commonly used to separate the components. Thermal demagnetization
involves heating the sample step by step in zero field, cooling it and measuring the
remanence after each step. Alternating field (AF) demagnetization uses an alternat-
ing field with an amplitude that decays to zero; the peak amplitude is increased in
steps.

If there is only one component, it can be represented by a vector A that is in
the direction the field was in relative to the rock; as demagnetization progresses, the
magnitude of A decreases. If there is a secondary component B, the total remanence
is A + B; as demagnetization progresses, the proportions of A and B will usually
change, so the direction of the sum will change. The components can be separated if
all of B is demagnetized before A, so that the direction of the combined remanence
approaches A.*

It was once assumed that secondary components were inherently easier to demag-

netize than the primary component. Paleomagnetists used a “blanket step” demag-

4 Examples of demagnetization and vector decomposition can be found in any book on paleomag-

netism, for example Butler [1992].
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netization, exposing the sample to a temperature or peak alternating field that they
considered enough to “clean” the sample of its secondary remanence. This does not
always work. In the 1980’s, paleomagnetists discovered that most Paleozoic rocks
were remagnetized, and the original remanence had not been isolated by blanket step
methods. Many paleomagnetic poles determined before the 1980’s are now considered
unreliable [McCabe and Elmore, 1989; Van der Voo, 1993].

The primary remanence can often be isolated in a remagnetized sample if the de-
magnetization is carried far enough to remove all the remanence. This does not always
work either: the secondary component can be more resistant to AF demagnetization,
thermal demagnetization or both [O’Reilly, 1984, page 196].

It would be easier to interpret the components of the remanence if each compo-
nent were associated with a distinct size or composition of magnetic mineral. Pale-
omagnetists often carry out rock magnetic and petrographic analyses to identify the
carriers. Stable magnetization in a variety of igneous rocks has been linked to the
presence of small, often submicron, magnetite grains [Strangway et al., 1968; Evans
and McElhinny, 1969; Larson et al., 1969; Hargraves and Young, 1969; Wu et al.,
1974; Morgan and Smith, 1981; Xu et al., 1997].5

It is generally agreed that the main carriers of stable remanence are SD and PSD
grains, but it is not clear what one can do with this information. The relevance of

rock magnetic measurements is aptly summarized by Van der Voo [1993], page 65:

This information is, obviously, of importance, but in general it does not
contribute to our knowledge about the reliability of a paleomagnetic pole
... any magnetic mineral can be primary or secondary and remagnetization

can be carried by all grain sizes.

5 Often a very small volume fraction of SD magnetite can produce the observed remanence, and
SD-size minerals are easily missed in petrographic studies; for example, the magnetic carriers
in Banded Series rocks of the Stillwater Complex were not found until electron microscopy was

used [Bergh, 1970; Xu et al., 1997].
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Stability of Remanence

The stability of magnetic remanence is a major concern of rock magnetists and much
of the work on size dependence of magnetic properties is related to stability. Stability
can be defined in many ways. In the field, stability is the resistance to remagnetization
by such processes as CRM and VRM, and field tests are commonly employed to check

whether remagnetization has occurred.

In the laboratory, the primary measures of stability are resistance to AF and
thermal demagnetization. The shape of the demagnetization curve tends to be dif-
ferent for SD and MD grains, with the SD grains showing little loss in small fields
while the MD grains show a large initial loss. A commonly used measure of stability
is the median destructive field H, /2, the peak alternating field required to remove
half the remanence; this appears to decrease rapidly as grain size increases [Bailey
and Dunlop, 1983; Levi and Merrill, 1978]. An analogous parameter for thermal de-
magnetization, the average blocking temperature (Tyg), does not have a clear size

dependence [Levi and Merrill, 1978].

Because the initial loss of remanence is usually greater in MD grains than in
SD grains, MD grains are considered less stable than SD grains; but it has long
been known that there tends to be a fraction of remanence in MD grains that is
much harder to remove. This inspired Verhoogen [1959] to propose that hysteresis
properties in MD grains are controlled by SD-like regions around defects. Ironically,
the samples he was interested in (titanomagnetites in basalts) may not have been
MD: many particles that appear to be MD-size high-Ti titanomagnetites are really
networks of SD-size magnetite particles separated by ilmenite lamellae [Strangway

et al., 1968; Evans and McElhinny, 1969; Larson et al., 1969].

The coercivity of remanence H,, is a measure of how difficult it is to remove all
the remanence. This has been measured for magnetites up to millimeters in size, and

it does not depend strongly on particle size [Heider et al., 1996].
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Another measure of stability involves low temperature demagnetization (LTD).
Magnetite has an isotropic temperature T7 = 130K at which the magnetocrystalline
anisotropy disappears. If a bulk sample is cooled below 77 and heated back to room
temperature, up to 90% of the remanence is lost; SD particles have little or no loss,
and the loss tends to increase with particle size [Heider et al., 1992].

Based on the stability of states after low-temperature demagnetization (LTD),
Dunlop and Argyle [1991] revived the idea of SD-like regions in MD grains. After
LTD, the AF demagnetization spectrum is SD-like (there is little loss in remanence
for small fields). The remanence has other properties, however, that are considered
MD-like, such as Tyg > Tp [McClelland et al., 1996].

This raises an important point. We must be careful when we interpret measures of
stability for a remanence, because the stability of the remanence depends very much
on how the remanence was acquired. A simple example makes this clear: suppose
we demagnetize a saturation IRM in an alternating field with peak amplitude H;.
The new remanence should be resistant to demagnetization in any field H < H;
(although there will probably be some loss), so this remanence is much “harder”
than the SIRM. This is true whether the sample is SD or MD. If a process such
as low-temperature demagnetization has a similar effect to AF demagnetization, we
can expect the remanence after LTD to have a “SD-like” AF demagnetization curve
whether or not there are SD-like regions in the particle.

A remanence can be stable by one measure and unstable by another. If a sample
is easily AF demagnetized, for example, it might seem reasonable to assume it can
be easily remagnetized, so it should not retain reliable field directions. Some such
samples do, however [Grommé and Merrill, 1965].

If a sample is easily remagnetized, one would think that the remagnetization would
be easy to remove. If this were true, and the primary magnetization was carried by
SD grains while the secondary remanence was carrier by MD grains, it would be easy

to separate them. It is increasingly apparent, however, that remagnetization in MD
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grains can be very hard to remove. Even a VRM acquired at room temperature in a
small field may not be thermally demagnetized until the temperature is nearly equal
to the Curie temperature [Dunlop, 1983b; Halgedahl, 1993].

1.2.4 Paleointensity in Igneous Rocks

If we are trying to use a remanence to deduce the intensity of the Earth’s at the time of
acquisition, our criteria for a good sample are more restrictive than for paleomagnetic
poles. Any isotropic sample will acquire a remanence in the direction of the inducing
field, but the intensity of the remanence varies greatly with composition and grain
size. To deduce the paleointensity, one must make some assumptions about the
acquisition of remanence. The two most commonly used methods are the modified

Thellier-Thellier method and the Shaw method.

Thellier- Thellier Method

The modified Thellier-Thellier method [Thellier and Thellier, 1959; Coe, 1967a,b] is
considered by most practitioners to be the most reliable way of deriving a paleointen-
sity a from lava flow or an archaeological artifact. The method involves two sequences

of heating and cooling:

1. In zero field, heat the sample to a temperature 7;. Cool to room temperature
To and measure the residual remanence NRM(T;,T.). Repeat for a sequence
of temperatures T; up to the Curie temperature. The sample should then be

completely demagnetized.

2. Expose the sample to a laboratory field and heat it to the same series of tem-
peratures T;; measure the partial thermoremanent magnetization pTRM (T, T;)

after each step.



14

Now plot the pairs (pTRM(T5, T:), NRM(T;, T..)) against each other. If they form
a straight line, the slope gives the ratio of the Earth’s field at the time of NRM
acquisition to the laboratory field.

Conditions for a successful paleointensity determination using the Thellier-Thellier

method are:

1. The NRM is a pure, unaltered TRM.

2. The pTRM acquired in one temperature interval is independent of the pTRM

acquired in a non-overlapping temperature interval (the Thellier additivity law).
3. TRM(H) « H for small fields.

4. A pTRM acquired at a given temperature can be removed by heating in zero

field to the same temperature.

Most samples fail at least one of the criteria and have a nonlinear Thellier plot.
The second criterion, the Thellier additivity law, works fairly well for small particles
or low fields [Levi, 1979], but gets progressively worse for larger fields and larger
particles [McClelland and Sugiura, 1987; Tucker and O’Reilly, 1980].

The fourth criterion is often stated in terms of the blocking and unblocking tem-
peratures: Tg = Typ. This appears to be satisfied by SD grains [Dunlop and West,
1969; Day, 1977; Hartstra, 1983], but Tyg > T in large MD particles [Bol’shakov and
Shcherbakova, 1979; McClelland and Sugiura, 1987]. Numerous authors have devel-
oped theories for the “anomalous” unblocking temperatures in MD grains [Halgedahl,
1993; Dunlop and Xu, 1994; Xu and Dunlop, 1994; McClelland and Shcherbakov,
1995; McClelland et al., 1996]. However, as I mentioned earlier, blocking and un-
blocking (in the sense of transitions from superparamagnetism to hysteresis and back)

do not occur in MD particles. TRM acquisition in MD particles is a hysteresis phe-
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nomenon, so it is not surprising there should be an asymmetry between acquisition
and destruction of remanence. No special mechanism is required.

This implies that the Thellier-Thellier method will not work once remanence is
acquired by a hysteresis mechanism. As the particle size increases, the blocking
temperature rapidly approaches the Curie temperature (e.g. [Dunlop et al., 1994]).
Levi [1977] found that sized magnetites with (L) < 0.25um had linear Thellier plots,
while larger particles did not. By most estimates, the SD critical size is under 0.1um,

so thermal blocking may occur in non-SD particles.

Shaw’s Method

If there is hysteresis in the acquisition and destruction of TRM, we cannot use de-
magnetization to reverse the process of acquisition. Instead, we must compare par-
allel processes of acquisition and demagnetization. This is the essence of Shaw’s
method [Smith, 1967; Shaw, 1974]. First, the NRM is demagnetized in an alternat-
ing field. Then a TRM is acquired in a laboratory field, and it is demagnetized in
an alternating field. As in the Thellier-Thellier method, the partially demagnetized
NRM and TRM are plotted against each other and the slope gives the field the NRM
was acquired in.

In principle, Shaw’s method may work for MD grains. The criteria for success are

analogous to those for the Thellier-Thellier method:

1. The remanence is a pure, unaltered TRM.

2. The remanence lost in an interval (H,, H,) of peak alternating fields is inde-

pendent of the remanence lost in a non-overlapping interval.

3. If H is the acquisition field, AM, o H in each interval.

The third criterion can be put another way: the normalized AF demagnetization

curve has a shape that is independent of the acquisition field (at least for small fields).
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This is certainly not true for all kinds of remanence (for example, IRM in SD grains
- see chapter 2), so it would be useful to know when this condition is satisfied.

One concern about a method involving acquisition of TRM is that the chemical
properties of the rock may change when it is heated. Shaw [1974] introduced a
consistency check: before heating and after, give the sample an ARM and demagnetize
it, and plot the partial ARMs against each other. If any chemical change has occurred,

the curve should be nonlinear.

1.3 Proxies for Particle Size

At first, paleomagnetists were interested in the size of ferromagnetic grains because
size was correlated with stability of remanence; but they gradually realized that the
size, composition and concentration of ferromagnetic particles carried information
on the processes that gave rise to them. Thus was born the field of environmental
magnetism [Thompson and Oldfield, 1986].

Magnetic “proxies” for particle size take advantage of the strong dependence of
some hysteresis parameters on particle size. It can be difficult, however, to deduce
a size from hysteresis parameters because they also depend strongly on other factors
including composition and elongation. This is usually handled by taking the ratios of
parameters, or plotting one against the other, or both. A collection of SD particles
of any composition and shape, with uniaxial anisotropy, will have M /M, = 0.5 and
H./H. = 1.09 (chapter 2). Partly because of this, these parameters are widely used
as indicators of particle size, and they are often combined on a single plot called the
Day diagram (Figure 1.3).

The Day diagram developed the way many proxies do: various parameters were
plotted against each other and a combination was chosen that showed a coherent
trend with particle size. Day et al. [1977] measured M/M, and H./H. for ti-

tanomagnetites covering the normal span of compositions that paleomagnetists are
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Figure 1.3: Classification of hysteresis parameters, after Day et al. [1977]. SD particles
are in the upper left corner, PSD particles in the middle and MD in the lower right.

interested in; the points fell along roughly the same curve in the Day diagram. By

contrast, a plot of M/M, against xo/M, showed a dependence on composition.

In Figure 1.3, SD particles are shown occupying a region with M,/M, > 0.5 and
H./H. < 1.5. Uniaxial SD particles lie right on the boundary of this region. Various
criteria for the PSD-MD transition have been suggested, but the choice is arbitrary;
Day et al. [1977) use Ms/M, < 0.05 and H../H: > 4.

Other combinations of hysteresis parameters that have been suggested include
Xo Vs xarMm (susceptibility of ARM) [Banerjee et al., 1981; King et al., 1982]; M,
vs xo [Tauxe, 1993]; and the dependence of susceptibility on frequency [Bloemendal
et al., 1985].

Most of these plots are combinations of the familiar parameters M, My, Hc, Her
and xo. Why use more than one parameter? Why not, for example, use M,,/M, and

leave it at that?

The reason for using multiple parameters is that there many other factors besides
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particle size and composition that affect the hysteresis parameters. Elongation, for
example, can be important. In SD particles, combinations of M,,/M, and H./H.
eliminate the effect of elongation - but we don’t know how these parameters depend
on elongation in larger particles. Another problem is that there may be a broad
range of particle sizes, and we wish to know something about the distribution. Each
parameter may be more sensitive to a particular fraction. Large particles dominate
M,, for example, because of their volume; SD particles have the largest coercivities,
so they dominate H. and H,.

Unfortunately, unless we know how all the factors influence the hysteresis param-
eters, we cannot make much use of the extra information in plots such as the Day
diagram. It is therefore crucial to have measurements of hysteresis parameters for
well characterized samples with narrow size ranges. At present, there is still a large
uncertainty even in the size dependence (see below).

If there are superparamagnetic particles in a sample, they can affect any parameter
that is measured in a nonzero field: M,, H. and especially xo. Tauxe et al. [1996]
showed that combinations of SP and SD particles can plot almost anywhere on a
Day diagram. Thus, even if we knew how hysteresis parameters depended on all
the factors mentioned above, the interpretation of a given set of parameters would

probably not be unique.

Size Dependence: Measurements

Magnetic properties have been measured in sized samples of titanomagnetites, ti-
tanohematites, pyrrhotite, goethite and hematite (for references, see Hunt et al.
[1995]). In all of these minerals, some magnetic properties are strongly dependent on
particle size.

The most heavily studied mineral is magnetite. Compilations of M/M; and H.
show a power-law dependence above the SD size range; both scale as L™, where

n =~ 0.6 — 0.7 [Heider et al., 1987]. However, the hysteresis parameters also depend
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strongly on the method of preparation of the magnetite particles. In most of the
samples (e.g. Dunlop [1973]), the magnetite particles are precipitates from solution,
and they remained clumped together even after they are mixed with a non-magnetic
medium and stirred vigorously. Particle interactions can decrease Ms/M, and H.
and H. considerably. Samples prepared by the glass ceramic method [Worm and
Markert, 1987b] appear to be well dispersed, but they may be under considerable
stress (Chapter 4). These samples have higher M;s/M, and H. than the precipitates.
In the earliest studies (e.g. [Parry, 1965]), magnetite was crushed and sieved in order
to obtain the desired size range. These samples have even higher M,s/M; and H,
than the glass ceramics. The particles in these samples have a broad, bimodal size
distribution [Heider et al., 1987] and they are highly nonuniform internally [Brown
and O’Reilly, 1996; Zitzelsberger and Schmidbauer, 1996], so they are probably not
useful for understanding the size dependence of hysteresis parameters.

The size dependence for the coercivity of remanence is unclear [Heider et al., 1996]:
there appears to be some decrease with particle size, but the decrease is no larger
than the scatter. On the other hand, there is a strong size dependence in many of the
individual studies. Either way, H./H. tends to increase as particle size increases.

The median destructive field /2 appears to have a strong size dependence [Bailey
and Dunlop, 1983; Levi and Merrill, 1978], but there are only two studies. Perhaps
with more measurements there would be a large scatter in this parameter as well.

The susceptibility xo is essentially independent of size [Heider et al., 1996]. This
makes xo useless as a particle size indicator, but all the more useful for determining

concentration.

Tests Involving Demagnetization

Also in use are some particle size proxies involving AF demagnetization curves. These
proxies are not affected by a superparamagnetic component (although they can be

affected by thermal fluctuations: section 2.3.2). Tests of this sort, it is argued, provide



20

information on the distribution of particle sizes, but they have the disadvantage of

being much more laborious than the hysteresis parameters.

The oldest such test is the Lowrie-Fuller test. Lowrie and Fuller [1971] compared
AF demagnetization curves (normalized by the initial remanence) for TRM and SIRM
and proposed the following test: if the TRM is “harder” than the SIRM (the AF
curve decreases more slowly initially), the particles are SD; if the TRM is softer, the

particles are MD.

The Lowrie-Fuller test soon ran into trouble. Schmidt [1976] calculated the AF
demagnetization curves for Néel’'s SD and MD theories of TRM, and discovered that
the theories predicted the opposite of what Lowrie and Fuller {1971] had obtained.
No one has yet proposed any mechanism that would make SD particles “SD-like”;
theoretical models have been proposed for MD particles [Bailey and Dunlop, 1983;
Xu and Dunlop, 1995], but even these models reinterpret the Lowrie-Fuller test as a
division between PSD and MD behavior. SD-like properties have been observed in
magnetite particles as large as 100pxm [Heider et al., 1992].

A different test looks at the shape of the demagnetizing curve for SIRM alone:
for SD particles, the curve has a plateau in small fields [Dunlop and West, 1969;
Bailey and Dunlop, 1983]. Unlike the Lowrie-Fuller test, this does agree with theory
(section 2.3.3). Bailey and Dunlop [1983] also argue that this test is correlated with
the Stoner-Wohlfarth theory, however, and they propose a quantitative measure of
the shape of the demagnetization curve that distinguishes between PSD and MD

grains.

More recently, Cisowski [1981] suggested comparing IRM acquisition (as a func-
tion of applied field) with AF demagnetization of saturation IRM. He proposed a
parameter R which is the remanence (as a fraction of STIRM) where the curves cross.
For SD particles with uniaxial anisotropy, R = 0.5. This parameter can be justified
by the Wohlfarth relations, which I will discuss in detail in section 2.3.2.
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1.4 Summary

The dependence of magnetic properties on particle size is important both for mag-
netic proxies of size that are used in environmental magnetism and for paleomagnetic
applications; for example, the mode of acquisition of TRM determines whether the
Thellier-Thellier method will provide a reliable paleointensity, while the dependence
of the AF demagnetization spectrum for TRM determines whether the Shaw method

can be used.

Hysteresis properties depend on other factors besides size, such as composition,
elongation and particle interactions. Some combinations of hysteresis parameters,
such as M, /M, and H/H., cancel out the effect of composition and elongation in

SD particles, but it is not known how they depend on elongation in larger particles.

Thermal fluctuations also affect hysteresis properties. Paramagnetic and super-
paramagnetic particles contribute to parameters such as My, H. and xo that are
measured in nonzero field, so these parameters can be misleading. Measurements of
remanence acquisition and destruction (DC or AF) eliminate the (super)paramagnetic
contribution, so they are potentially more reliable indicators of particle size. They
must still be used with caution: the usefulness iof the Lowrie-Fuller test is question-
able, the coercivity of remanence H,, does not have a strong size dependence, and
there are not many measurements of the median destructive field A, /2 for samples

with well defined particle sizes.

To understand how magnetic properties change with particle size, we must know
how the magnetization changes within a particle. The two main models for change are
the SD model (uniform rotation) and the MD model (domain wall motion). The SD
model is well established, but the MD model is more controversial. Since Verhoogen
[1959] observed that large particles appeared to have some “SD-like” properties (such
as a remanence that requires large alternating fields to remove completely), rock mag-

netists have called particles with apparently mixed properties pseudo-single-domain
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(PSD). It is supposed that there is a PSD size range where a transition occurs be-
tween the limiting cases of SD and MD behavior, but estimates of this size range vary
by at least an order of magnitude and depend strongly on the criterion used.

In this dissertation, I re-examine SP, SD and MD models, looking for robust
proerties that can be used to interpret magnetic measurements. I also use analytical
and numerical micromagnetic theory in an effort to develop a unified picture of how
magnetic properties change as particle size increases. The frame for this picture is

nucleation theory, which I introduce in Chapter 3.



Chapter 2

HYSTERESIS THEORIES

The SD and MD models are the two main models for changes in magnetization.
In the SD model, magnetization changes by uniform rotation. In the MD model, it
changes by translation of domain walls. SD and MD models are often considered end
members of the possible range of behavior, with PSD particles in between.

In this chapter, after reviewing the basic equations for all ferromagnets, I will
explore the SD and MD models, looking for hysteresis properties that distinguish the

two.

2.1 Thermodynamic Fundamentals

Magnetism is a quantum mechanical phenomenon. Niels Bohr proved that in a clas-
sical system at a finite temperature, in finite applied electric or magnetic fields, the
magnetization induced by currents vanishes in equilibrium [Mattis, 1988]. The source
of most of the magnetism in a ferromagnets is electron spin. Unfortunately, it is
still beyond our resources to calculate all the quantum mechanical forces (including
exchange coupling, magnetic dipole-dipole forces and spin-orbit coupling) in a fer-
romagnet. All the work in this dissertation is based on thermodynamic equations
whose form is justified by quantum mechanics but which have parameters that must
be measured for each substance. The thermodynamic theory is developed in numer-
ous textbooks such as Brown [1963] or Chikazumi [1964]; for a more fundamental
treatment, the reader should consult a book like Mattis [1988].

In a ferromagnet, the magnetization M has a direction which depends on position,
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but a magnitude which is assumed to be equal to the saturation magnetization M.

The equations can therefore be written in terms of the unit vector

Al\:, =ai+ ) +k (2.1)

m=

The direction cosines satisfy o + 52 + 7% = 1.
For a given temperature and external field H, the free energy G is a mini-

mum [Brown, 1963]. This energy is an integral over the volume of the ferromagnet:
G = / {A [(Va)? + (VB) + (V4)?] - 5‘221\4 ‘Hy — poM -H + g, + g,\} vV (2.2)

The first term is called the exchange energy density, and A is a temperature-
dependent parameter called the exchange constant.! This term is minimized when
the magnetization is uniform.

The second term is the magnetic self-energy density, or demagnetizing energy
density. The demagnetizing field Hy has the magnetization as its source. If the
contribution of currents to the magnetization is negligible compared to spins (a good
approximation in ferromagnets), then V x Hy = 0 and there is a magnetic scalar
potential ®ps such that

Hy=-Vdy (2.3)

From Maxwell’s equations, ®s is the solution to Poisson’s equation:
Vidy =-V-M (2.4)

Assuming Hg goes to zero at infinity, the solution can be expressed as an integral

over the volume and surface of the particle [Jackson, 1975]:

_ 1 veM(r) L, 1 M) R,
(I’M(r)“"mr/ Ir—r| dV+47rf Ir—r| d3 (2.5)

The prime in V' indicates the derivatives are with respect to the dummy variable r’;

n’ is the outward normal to the surface.

! Many authors use C/2 instead of A.
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Hj is called the demagnetizing field because the magnetic self-energy tends to be
reduced if the magnetic moment is reduced. More precisely, Brown [1963] derives the
“pole-reduction” principle, which states that the magnetic self-energy is minimized if
the volume and surface pole densities —V - M and M : fi vanish.

The term g, in equation 2.2 is called the magnetocrystalline energy density and
depends on the direction of magnetization relative to the crystal lattice. It is derived
by expanding the energy in powers of the di;'ection cosines a, 3,4 and keeping the
lowest order terms. Many combinations of powers vanish because of the symmetry of
the crystal. For hexagonal symmetry with 4 the component of magnetization alo::z

the c axis,

9 = Ki(1 —~7) (26)

If K; > 0, g, is minimized when the magnetization is along the c axis (a = 8 =
0,7 = 1). The c axis is called the easy axis, and this type of magnetic anisotropy
is called uniaxial. If K; < 0, the c axis is the hard direction (g, is maximized), and
the basal plane is an easy plane of magnetization However, if higher order terms are
included there is a unique easy axis.

If the crystal has cubic symmetry,
9a = K1(a?B? + 5%7* + v*a?) (2.7)

If K, > 0 (iron or high-Ti titanomagnetites), the easy axes are the three crystallo-
graphic (100) directions and the hard axes are the four (111) directions. If K; < 0
(magnetite), the easy and hard axes are reversed.

Finally, if there is a stress o;; on the sample,? there is an inverse magnetostriction
energy density:

3
g = —51\100 [0’1102 + 0’22,32 + 033"72] — 311 (01208 + o238y + 0317q] (2.8)

2 The sign of oij is chosen so at the surface, oijn; > 0 indicates an outward traction or tension.
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In general, o;; depends on position, and inverse magnetization can deflect the easy
axes locally away from the magnetocrystalline easy axes. The magnetization itself
strains the crystal, which contributes to the stresses in the above equation. This
nonlinear effect, called magnetostriction, is usually expected to be small, and I will
say little about it in this dissertation.

2.1.1 Micromagnetics

Brown [1963] defined micromagnetics as a model of magnetization on a scale where
the magnetization can be approximated by a continuous function - well above the
atomic scale but small enough to resolve the internal structure of domain walls.
Ideally, we would like to solve for the three-dimensional distribution of magneti-
zation M(r) by minimizing the free energy (equation 2.2) with the appropriate con-
straints and boundary conditions. Using variational calculus, Brown [1963] obtained

the equations

mXx Heg =0 (2.9)
with the surface condition
aa—’: =0 (2.10)
where (ignoring magnetostriction)
Hg=H+ Hy + 22 vom -~ 9% (2.11)

uOMs aﬁl

These are called Brown’s equations. The field H.g is called the effective field and
m x H.g is the local torque on the magnetization.
Brown [1963] shows that the hysteresis curves corresponding to equilibrium states

always have positive slope:

OMy
0H

The second half of this dissertation describes the results I obtain using a numer-

>0 (2.12)

ical algorithm to solve the micromagnetic equations. Much of the theory I describe
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in this chapter is not micromagnetic. Strictly speaking, SD theory is not micromag-
netic because it assumes the magnetization is uniform, but it can be shown using
micromagnetics (chapter 3) that SD theory is correct for ellipsoidal particles within a
certain size range. MD theory is not micromagnetic: the magnetization is not allowed
to vary continuously within the particle. Nevertheless, MD theory is still widely used

because the micromagnetic equations are very difficult to solve.

2.2 Superparamagnetic Grains

When the magnetic behavior in a particle is dominated by thermal fluctuations, and
all directions of the moment are in equilibrium with each other, the particle is called
superparamagnetic (SP). In an SP grain, changes in magnetization are reversible and
the magnetization is determined by the Boltzmann distribution. If there is no intrinsic
anisotropy, the energy is —uoM - HV, where V is the volume of the particle. If we
choose a set of polar coordinates so that H is along the polar axis, the probability
density P(0, ¢)sinf8dfd¢ for M to be at an angle (6, ¢) is given by

P(8,¢) = Z7'exp (—poM - HV/kgT) = Z~! exp (—a cos ) (2.13)
where a = poM;HV/kgT and Z is a normalizing factor:
2 ™ . .
Z = /0 /0 exp (—acos 8) sin 8dfd¢ = 2a sinh a (2.14)
The average magnetization is therefore
My = (cos ¢) = /0 o /0 " cos OP(0, $) sin 8d9dé = M,L(a) (2.15)

where L is the Langevin function that appears in the classical theory for paramag-
nets [Cullity, 1972]:

L(a) = coth(a) — -(1; (2.16)
Note that the result would be exactly the same if we fixed the direction of M and

averaged over all orientations of H.
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[Asimow, 1965] and Tauxe et al. [1996] made numerical calculations of the mag-
netization for materials with anisotropy, and obtained a dependence of the curve
on anisotropy. However, if the particles are randomly oriented and there is no net
anisotropy for the ensemble, the anisotropy should not affect the magnetization. In
general, the energy depends on the orientation (0ar, $ar) of the magnetization as well
as the orientation of the field, but the term —poM-HYV is the only part of the energy
that depends on the direction of the field. If we define G = G + #oM - HV, then the
probability density can be written

P(GM, QSM’ 07 ¢) = P1(0M7¢M)P2(0, ¢) (2.17)
where
Py(6nm, $nr) o exp(—G/keT) (2.18)
and
P5(8, ¢) < exp(—a cos ) (2.19)

These are independent probabilities, and P; does not depend on the angle . Thus
P, does not affect the average of cos, so the average magnetization is still given by

the Langevin function.
Suppose an ensemble of SP particles has a distribution p(V) of volumes. The

average magnetization for the ensemble is

(ﬁ;{) _ /0°° I (%‘_{) p(V)dV (2.20)

The Taylor expansion of the Langevin function is

z3

+ O(z®) (2.21)

wly

If we substitute this in the equation for the magnetization, we get

% ) = % (%) (VYH — % ("-I;—A;:)s (V3 H® + O(H®) (2.22)
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Thus the initial susceptibility is
Xo = (1/3)uo MZ(V) kT (2.23)

By fitting the magnetization curve to a polynomial in H we can determine the odd mo-
ments (V?+1) for the volume distribution. However, we cannot determine quantities

such as the standard deviation ((V?) — (V)2)"/2.

2.3 Single-Domain Theory

In this section, I have three goals. The first is to describe SD hysteresis in a
more three-dimensional and geometrical way than usual. Micromagnetic solutions
are three-dimensional, so it may help us to understand them if we first look at the
simplest three-dimensional ferromagnetic behavior. The second is to introduce the
Wohlfarth relations and show that they are more robust indicators of SD remanence
carriers than the usual parameters such as M,/M, and H,../H.. The third is to derive
some analytical expressions for SD hysteresis that have only been derived numerically

before.

2.8.1 Single SD Particle

The moment of a SD particle has a fixed magnitude and can only rotate in response to
an applied field. Within the particle, the magnetization is uniform and its magnitude
is the saturation magnetization M,. The direction of the moment in an SD particle
is determined by the applied field and the magnetic anisotropy of the particle. In an

ellipsoidal particle, Hq is uniform and there is a demagnetizing tensor N such that
Hi=-N-M (2.24)

If we include only magnetostatic terms, the energy density for a given external

field H and magnetization M is

1
E= EPOM.zﬁl -N. m— [loM,l’fl -H (225)
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If uniaxial magnetocrystalline anisotropy (equation 2.6) or inverse magnetostriction
(equation 2.8) are added, they can also be written in the form (1/2)uorh - N’ - th, so

the total energy has the same form as for pure shape anisotropy.

Since 1 - th = 1, the energy depends only on the direction of the magnetization.
This energy can be represented by a closed surface (Figures 2.1 and 2.2) with the
depressions corresponding to minima and the high points to maxima. Between any
two minima or maxima are saddle points. If the magnetization is represented by polar
angles (My, M), the minima, maxima and saddle points all have zero derivatives and
thus are stationary points.® In a large field (Figure 2.2), there is one minimum in
the direction of the field and one maximum in the opposite direction. In zero field,
there are two minima for magnetization along the short (easy) axis, two maxima for
magnetization along the long (hard) axis, and two saddle points for magnetization

along the intermediate length axis.

Some examples of a set of solutions are shown in Figure 2.3. The solutions are
for a particle with three unequal axes. In a large field, there are two solutions, a
minimum and a maximum. The applied field is not aligned with the easy axis, so
as the field decreases the minimum moves towards the easy axis and the maximum
towards the hard axis. In addition, new stationary states appear. In Figure 2.3c,
for example, there is a critical field (point A) where a second minimum appears. If
there are two valleys, there must be a mountain pass connecting them, so a saddle
point appears at the same field. Initially, the saddle point coincides with the new
minimum, but as the field decreases it moves toward the intermediate axis. Then
another maximum and saddle point appear (point B). In zero field there are six

stationary states corresponding to those in Figure 2.1.

As the field continues to decrease, pairs of stationary points approach each other

again, but the pairing is not the same as before. The saddle point that appeared

3 The stationary points can also be obtained using Lagrange multipliers (Appendix A).
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Figure 2.1: Energy surface for a SD particle in zero field. The particle is an ellipsoid
with three unequal axes. The energy depends only on the direction of the magne-
tization and is proportional to the distance from the origin. The depressions in the
+z directions indicate minima. There are maxima in the +z directions and saddle

points in the +y directions.



32

Figure 2.2: Energy surface for a SD particle exposed to a large field along the easy
axis. The conventions are the same as in the previous figure. The field is above the
switching field for the particle. The only minimum is in the 42z direction, and there

is a maximum in the —z direction.
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Figure 2.3: Examples of hysteresis curves for a triaxial SD particle which has a

demagnetizing tensor with eigenvalues [1/6,1/3,1/2]. The vertical axis is the mag-

netization, the horizontal axis is the applied field. Minima are connected by solid
lines, saddle points by dashed lines and maxima by dotted lines. Vertical solid lines

indicate jumps when the minima become unstable. Points A and B are referred to in

the text. The field directions are parallel to (a) (1,1,1) (b) (7,1,4) (c) (1,4,7) (d) (10,

1, 1).



34

with the minimum approaches the original maximum; when the pair meet they both
disappear. The other saddle point disappears with the original minimum. Finally, in
large negative fields there are just a minimum and maximum in directions opposite
to the original directions.

When a minimum is annihilated, the magnetization must jump to the other min-
imum. The hysteresis curve is a combination of the reversible curves and the ir-
reversible jumps. Where the magnetization changes are reversible, the slope of the
curve dMy/dH is always positive. This is an example of the more general theorem by
Brown (section 2.1.1). There is one exception, however, that Brown overlooked. If an
isolated, uniaxial SD particle is in a field that is parallel to the easy axis, My does not
change until the state becomes unstable. Brown assumes in his proof that My can
change continuously, but in this highly symmetric configuration the magnetization
can only be up or down.

Note also that the maxima always have negative slope. A maximum for an energy
functional F is a minimum for —F, so the same arguments that Brown used can be
adapted to show that energy maxima satisfy dMy/0H < 0. Saddle points can have
positive or negative slope.

Where a minimum and a saddle point approach each other, the slope of the
hysteresis curve approaches vertical (dMy/dH — oo). It is likely that this is generally
true (aside from special cases), but I have no proof of that. Schabes and Bertram

[1988] called the field at which the jump occurs the switching field H,.

2.83.2 Ensembles of Particles and the Wohlfarth Relations

In rock magnetism, we are interested in samples in which many grains contribute to
the moment, and the grains usually have a nearly uniform distribution of orientations.
There are some qualitative differences in magnetic behavior between single particles
and multiple particles. The moment of a single particle can be in any direction,

depending on the balance between the field and the internal anisotropy; the moment
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of an isotropié ensemble of grains is in the direction of the field. The moment of the
single particle has a fixed magnitude, but that of the ensemble can be anywhere from
positive to negative saturation. A single SD particle cannot be demagnetized, but an
ensemble can.

If particle interactions can be ignored, the bulk hysteresis properties can be ob-
tained by summing the single-particle contributions. Some parameters are easy to
derive: for example, the saturation magnetization for an isotropic ensemble of SD
grains is M;/M, = 0.5 (Appendix A). Other parameters, such as the coercivity H.,
have only been calculated numerically.

If we are interested in the remanence-carrying fraction of a sample, hysteresis
parameters such as M,, H. and xo can be misleading because they are affected by
paramagnetic and superparamagnetic particles. It is better to concentrate on irre-
versible changes.

In this section, I look at three kinds of remanence. The first, isothermal remanence
M_.(H), is acquired after a sample is exposed to a field H; it is assumed the sample
was previously demagnetized so the moments of individual particles are uniformly
distributed in all directions. The saturation isothermal remanence (SIRM) is M =
M, (co). The second remanence, MP®(oco, H), is obtained after an SIRM is exposed
to a negative DC field —H. The third remanence, MAF (oo, H), is obtained after an
SIRM is exposed to an alternating field with peak amplitude H.

Two common measures of the stability of a remanence are the coercivity of rema-
nence H.., the DC field required to reduce the remanence to zero, and the median
destructive field H; /2, the peak alternating field that removes half the remanence. A
third measure which is sometimes used is Hi"/'z, the acquisition field for a remanence

of Ms/2. In terms of the above remanences, these parameters are defined by

MPC(c0,H,) = 0 (2.26)
MAF (0o, Hys) = Mg/2 (2.27)
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M(Hf,) = My/2 (2.28)

Wohlfarth [1958] derived some useful relations between the above three rema-

nences for non-interacting, uniaxial SD particles:
MPC(co,H) = My —2M.(H) (2.29)
MA¥ (o, H) = M, — M.(H) (2.30)

The Wohlfarth relations hold for any mixture of uniaxial anisotropies and any ar-
rangement of particles (random or ordered). Wohlfarth does not derive the equations,
remarking that they are easy to show; but it is worth doing the derivation explicitly
to gain some insight into them. The key is that the relations are additive, so if it
works for each particle separately it works for them all together, as long as they are
not interacting. Thus it is sufficient to show the relations work for an arbitrary SD
particle.

Suppose we have such a particle and there is an initial field Hy at an angle § with
respect to the easy axis. The remanence has only two possible values +Mj, where
My = M,cos8. The saturation remanence is M. If the particle has a saturation
remanence and it is exposed to a field —H, the new remanence is
M, if H<H,

-M, if H> H,
An individual SD particle cannot be demagnetized. To simulate AF demagneti-

MP%(0o, H) ={

zation we must assume that if the peak amplitude of the alternating field is greater
than H,, the remanence has an equal probability of being +Mj, so on average the

remanence is zero. Thus

M, if H< H,
(MM (00, H)) =4
0 ifH>H,
The same argument in reverse gives
0 ifH<H,
(M(c0, H)) = ,
M, if H> H,
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If we combine the above expressions for tlie two cases (H < H, and H > H,), we get
the Wohlfarth relations.

From the Wohlfarth relations, Cisowski [1981] derived a diagnostic parameter R
for a SD source of remanence. From equation 2.30, if the IRM acquisition and AF
demagnetization curves are plotted against the acquisition field H, they are symmetric
about M = M, /2 (see Figure 2.7). Where they cross, MAF(co, H) = M. (H) =
M, /2, so equation 2.30 gives MPC(oco, H) = 0. Thus the crossing point is H = H,,,
the coercivity of remanence. Cisowski [1981] defined R = M,(oco, He)/M,s. For non-
interacting, uniaxial SD particles, R = 0.5. For most samples, R is well below 0.5;
this is attributed to particle interactions or larger particles. This parameter has the

advantage that it is not affected by a superparamagnetic component.

Another crossing point could be used in place of the R parameter. From equa-
tion 2.30, at the crossing point of the IRM curve and the DC demagnetization curve,
M = M /3. 1 will denote the field at this point by HDC.

Wohlfarth [1958] also generalized his relations to the demagnetization of an IRM
acquired in a field Hy. If we define MP°(Hy, H) as the remanence after M.(Hp) is
exposed to a DC field —H and MAF (Hy, H) as the remanence after M, (Hp) is exposed
to an alternating field with peak amplitude H; then

M.(Ho) — 2M.(H) if H < H

MPC(Ho, H) = (Ho) (H) i ° (2.31)
M.(Ho) — M.(H) if H < H

MAF(Ho H) = (Fo) — M(H) ° (2.32)
0 if H> Ho

From equation 2.32, an IRM acquired in a field Hy is removed by a peak al-
ternating field of the same magnitude. We can generalize the coercivity of rema-
nence to He(Hp), the DC field that removes M,(Hp); similarly, we generalize H; /2 to
H, /2(Ho) and H},, to H},(Ho) (the latter being the acquisition field for a remanence
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M.(Hy)/2). The above relations then give
He(Ho) = Hyj2(Ho) = Hiy,(Ho) (2.33)

for any H.

The stability of a remanence is often judged by plotting the demagnetizing curves
with the remanence normalized by the initial remanence. From the above equations,
the slopes are —2M,(H)/M,(Hp) for DC and —M.(H)/M,.(H,) for AF demagnetiza-
tion. The slope decreases as M;(Hy) increases, and therefore as Hy increases. Thus
by this measure IRM in SD particles increases in stability as the acquisition field

increases.

Thermal Fluctuations Affect Remanence

So far I have only mentioned thermal fluctuations in superparamagnetic particles,
where they maintain equilibrium between remanent states. In SD particles, thermal
fluctuations can still be important because as the field increases, the energy barrier
between minima decreases and the relaxation time for a transition decreases. In
section 2.3.3 I will describe the effect on remanence.

Thermal fluctuations do not affect the Wohlfarth relations, however. For a single
particle (2.3.2), the relaxation time is the same for a transition from —M;, to Mp in
a field H > 0 and for the reverse transition in a field —H. Thus the acquisition and
destruction of remanence are affected equally.

Henkel [1964] introduced the idea of plotting the remanences against each other
(Figure 2.4) using the more general version of the Wohlfarth relations (equations 2.32
and 2.32). This has not caught on in rock magnetism, but it has two advantages over
plotting remanences against the field. First, although thermal fluctuations change
the plots of remanence against field (Figure 2.7), they do not change the Henkel
plots. Secondly, if there is a low-coercivity fraction that does not obey the Wohlfarth

relations (for example, a cubic anisotropy), there may be a deviation from a straight
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Figure 2.4: Plots of IRM acquisition against (a) DC demagnetization and (b) AF
demagnetization; an augmented version of the plots in Henkel [1964]. Solid lines
follow the demagnetization of a remanence acquired in a field H; dotted lines are for

constant reverse or alternating field H.

line in small fields but a return to the line in larger fields. This would supplement
the R parameter of Cisowski [1981].

2.8.8 Stoner-Wohlfarth Theory

It is much easier to derive the magnetic properties of ensembles if we simplify the
problem as Stoner and Wohlfarth [1947] did, by assuming rotational symmetry about
the long axis (or pure magnetocrystalline anisotropy): then N;; = N,; and the
demagnetizing tensor can be represented by a single demagnetizing factor N = Ny, —
N33. The moment, the field and the easy axis all lie in the same plane, so the
magnetization can be represented by a single angle i between it and the easy axis,
and the field can be represented by the angle § between it and the magnetization
(Figure 2.5). The magnetization in the direction of the field is then My = M, cos ¢,
where ¢ = 0 + 1. If we define a normalized field A = H/NM,, the reduced energy
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Figure 2.5: The geometry of the Stoner-Wohlfarth model. All the angles are with
respect to the direction of the external field.

density is

E 1
n N MZ = —7 o8 2(¢p—0) — hcoso (2.34)

so the magnetization is determined by just two parameters, the normalized field

strength and the angle of the field 8. Stationary points satisfy
dn/d¢ = %sin 2(¢—0)+ hsing =0 (2.35)

and minima satisfy the additional condition d%n/d¢? > 0.

If an increasing negative field is applied, the moment rotates until it reaches a
critical angle ,(6) such that d?n/d¢® = 0, then it becomes unstable and jumps
to a new direction. The switching field can be given in terms of the angle of the
field [Stoner and Wohlfarth, 1947]:

— $2 4
vi-#+d (2.36)

he=—7%

where ¢ = tan!/3 . The critical angle 1, is always less than or equal to /4.
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Figure 2.6: Dependence of the reduced coercivity k. and the switching field k. on the
angle § between the field and the easy axis. The curves coincide for 8 < n/4. The
coercivity decreases monoténica.lly from 1 to 0, but the switching field has a minimum

of 0.5.

If § < m/4, the coercivity of a single particle is equal to the switching field. If
6 > m/4, the jump does not occur until cos ¢ is already negative. The coercivity
is then the solution of equation 2.35 for ¢ = 7/2 and is k. = (1/2)sin20. The
dependence of k, and h. on 8 are shown in Figure 2.6.

In a sample with many SD particles, the changes in remanence are determined by
the switching field and they are straightforward to calculate (see below). To calculate
the coercivity, the magnetization as a function of field must be summed up for all
the particles and this has only been done numerically. For a uniform distribution of

identical particles, Stoner and Wohlfarth [1947] obtained h. = 0.479.

If thermal fluctuations are included, the saturation remanence is unchanged, but

H. and H. both decrease, and the ratio H../H. approaches unity [Joffe, 1969).
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Remanence Calculations for Isotropically Oriented SD Particles

Remanence acquisition and destruction curves have been calculated before for the
Stoner-Wohlfarth model [Chantrell et al., 1985; Walker et al., 1988], but the calcu-
lations have been numerical. In the simplest case, where thermal fluctuations are
ignored, analytical expressions for the curves can be derived. I do that below.
Suppose we have an ensemble of identical particles with moments that are initially
distributed uniformly in all directions. Using the Stoner-Wohlfarth notation, suppose
a field h = H/N M, is applied to the sample. The magnetization is unchanged unless
h exceeds the switching field A,, in which case the particle acquires a remanence of

cos §. The remanence for the ensemble is

M.(h) (cos?9)
M, =~ 05

/2
=2 /0 F(8, k) cos 8 sin 88 (2.37)

where

0 if h < hy(8)

1 otherwise

f(0,h) = { (2.38)

When A < 1/2, the field is not large enough to reverse any particles (so M, = 0);
when h > 1, the magnetization is saturated (M; = My). For 1/2 < h < 1, it is
convenient to use the inverse relation for the switching angle 6, as a function of the
field [Stoner and Wohlfarth, 1947]:

san'/3p, = Y3E VAR T (2.39)

2v/1 - h?

There are two solutions 6%, with the = corresponding to the sign in equation 2.39;
they are related by 0 + 0; = n/2. For 8; < 0 < 6}, f(6,h) = 1. Thus for
1/2 < h < 1, using cos 20 = (1 — tan?9) / (1 + tan?4),

Mr(h) */2-67 . - 1—1t8
_—_ = = = 2 4
. 2 /a: cos @ sin 6d@ = cos 26, T (2.40)
where
— VaRZ —
t, =tan'/30; = v3 h' 1 (2.41)

2v1 —~h?
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Figure 2.7: Acquisition and loss of IRM, as a function of field, for non-interacting SD
particles with uniaxial anisotropy. The crossing point for IRM and AF demagneti-
zation of SIRM is 1/2, while the crossing point for IRM and DC demagnetization of
SIRM is 1/3.

In Figure 2.7, I plot the three kinds of remanence (with MAF and MPC obtained
from M, using the Wohlfarth relations). There is no change in remanence until
H =0.5NM,.

The normalized median destructive field A, /2(ho) can be calculated analytically
using the above equations. From equation 2.32, if MPC(ho,k;) = 0 then M, (h;) =
M. (ho)/2. If tyo = t,(ho) and t4; = t,(h1), equation 2.40 implies

3+15,

8, =
171+ 3t8,
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Figure 2.8: Relationship between acquisition and destructive fields for IRM in non-
interacting, uniaxial SD particles. If the acquisition field is H, the peak alternating
field (labeled AF) that removes it is also H, while the DC field is always between
0.5NM, and H, = 0.5240N M.

The peak alternating field required to destroy this remanence is equal to the maximum

switching field k;, so from equation 2.36,

i J1—8 + ¢
his2(ho) = - - (2.42)

143

The other important field parameters immediately follow from the Wohlfarth relations
(equation 2.33).

The relationship between acquisition and destructive fields is shown in Figure 2.8.
If the initial state is one of saturation remanence, t,o = 0 and ¢,; = 3'/6. This gives
the usual coercivity of remanence H/NM, = h.(o0) = 0.5240, which agrees with
Wohlfarth [1958].

From the Wohlfarth relations, the crossing point of the curves for IRM and DC
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demagnetization of SIRM is given by M;(co,k) = M;(kh)/3. In this case,

2 + 8,
1 4 218,

tfl =
For t, = 0,t, = 216 and the field at the crossing point is R2€ = 0.5098.

One aspect of the remanence curves in Figure 2.7 that is unlike measured curves
is the sharp takeoff at a field of 0.5N M,. In real systems there is some remanence
acquisition even in small fields. So far, SD calculations of the switching field that
include thermal fluctuations have used a criterion for the energy barrier between
minima such as AE = 25kgT to determine a new switching field [Gaunt, 1968; Joffe,
1969; Chantrell et al., 1985; Walker et al., 1988] so there is still a sharp beginning to
IRM acquisition for an ensemble of particles of the same size. In reality, as the field
increases the relaxation time increases continuously, so in a given time interval there
is an increasing probability of a transition. This spreads out the initial remanence
acquisition over smaller fields, and the IRM acquisition depends on how long the
sample is exposed to the field. Smaller particles have smaller energy barriers (because
the energy barrier is proportional to the volume) so a distribution of particle sizes
that extends into the SP range can enhance the small-field acquisition.

The analytical expressions I have derived should be useful for interpreting rema-
nence curves, although as I show below the information one can obtain is limited. The
expressions allow us to use DC or AF demagnetization. Most rock magnetists use
the latter, but this will often introduce a significant time component because of the
many oscillations of the field. For comparison with theory, remanence measurements

using short duration DC fields would reduce the time component.

The Effect of Mizing Elongations

Wohlfarth [1958] claimed that a sample of uniaxial SD particles with mixed elonga-
tions would have a ratio H../H. > 1.09, but he did not demonstrate this. I will show

that the ratio is always the same.
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Suppose we have a distribution p(NN) of demagnetizing factors (corresponding to
different particle elongations), and for any interval [NV, N+dN] the hysteresis behavior
is well approximated by the average for a randomly oriented ensemble of particles with
demagnetizing factor V.

For a given N, if we consider just the descending branch of the hysteresis curve

AAI{ =f(N5\IJ.)

The function f is single-valued, so it can be inverted to give

H a (M
% =V ()
Since the coercivity is defined by M(—H.) = 0, H. = NM,f~'(0). Similarly, the

back-field IRM curve is a single-valued function, and we can write

H . _ (M
A = e (M)

for H < 0, the curve has the form

and H., = NM,g~*(0).
If we now integrate over all elongations, the ensemble hysteresis curve is

L= [ e (55) av = )5 (o)

where (N) = [ Np(N)dN; similarly, the IRM curve is
(H) _ -1 (%)
1‘{s - (N>g Mg

H. g¢7'(0) Hq
Hc f—l(O) HC N=1

so H/H. is the same for any mixture of particle elongations. The same argument

Thus

applies to uniaxial magnetocrystalline anisotropy with varying Kj.
More generally, the main hysteresis loop and IRM curve have a fixed shape that

is scaled by the average anisotropy. Surprisingly, we learn no more about uniaxial SD
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particles from the entire curve than from a single parameter such as H.. However,
deviations from this curve may provide information about thermal fluctuations, non-

SD particles or cubic anisotropy (see below).

2.8.4 SD Particles With Cubic Anisotropy

In a uniaxial SD particle, with energy given by equation 2.25, there are at most two
minima that are minima (aside from degenerate cases).* If one direction becomes
unstable, the magnetization jumps to the other. Particles with cubic anisotropy are
more complex. Instead of one easy axis, there are six (for K; > 0) or eight (for
K, < 0), and there are as many as 26 stationary points. If a given state becomes
unstable, it is not obvious which of the other minima the magnetization will jump
to. As Johnson and Brown [1961] first pointed out, this makes some parts of the
hysteresis curve indeterminate. ’

We face the same problem in micromagnetic calculations, except that we usually
don’t even know all the minima. Ideally, we should simulate the dynamic response
of the magnetization to a change in the field, but this requires dynamic parameters
that are not well knan. In practice, we usually run our search algorithm for energy
minima and hope it chooses the correct minimum. This is the approach that has been
used in modeling particles with cubic anisotropy [Joffe and Heuberger, 1974; Geshev
et al., 1990; Geshev and Mikhov, 1992; Walker et al., 1993a,b].

The main hysteresis parameters for SD grains are summarized in Table 2.1. There
are minor disagreements in some of the parameters for cubic grains. The susceptibility
can be obtained using perturbation theory (Appendix A); the susceptibility of the
cubic grains are consistent with an effective uniaxial anisotropy of K;j for K; > 0 and
—2K,/3 for K; < 0. For K; <0, the values of H. and H,, are also roughly two thirds

those for K; > 0, but the latter are well under the values for uniaxial anisotropy.

4 The degenerate cases are Nj; < Na2 = N33 (oblate spheroid) or Ny3 = Naz = Nas3 (sphere).
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Table 2.1: Some hysteresis parameters for SD particles. The parameter is Hg is
2| K|/ o M, for magnetocrystalline anisotropy and N M, for shape anisotropy. Ref-
erences: a Joffe and Heuberger [1974], Walker et al. [1993a] b Geshev and Mikhov

[1992].
Uniaxial Cubic (K; > 0) Cubic (K; <0)

M, /M, 1/2 0.831 0.866
H./Hg 0.479 0.321%% 0.189%,0.193°
H./Hg 0.524 0.333%,0.341% 0.204°%*

Xo *2M,/Hgk 1/3 1/3 1/2

Geshev and Mikhov [1992] calculated Henkel plots (M, vs MPC) for particles with
cubic anisotropy. For both K; > 0 and K; < 0, the remanence at the crossing point is
above M;5/2 (recall that for uniaxial anisotropy it is M.s/3). They did not calculate
the crossing point for MAF, but it will be even higher. Thus the R parameter of
Cisowski [1981] is above 0.5. Since R is expected to be below 0.5 for MD particles
or interacting SD particles, this parameter may be a useful diagnostic for particles
with cubic anisotropy. In particular, it may help determine the origin of remanence

in mid-ocean ridge basalts [Gee and Kent, 1995; Tauxe et al., 1996).

2.4 MD Theory

The other widely used model for changes in magnetization is that of domain wall
motion. In this section I describe a simple two-domain model of wall motion by
Néel [1955] that has been widely used and adapted, especially for theories of TRM.
I then describe some of the attempts to construct more realistic models. Many of
these models either make assumptions for which the physical explanation is unclear
or make predictions that are inconsistent with the two-domain model. Many of these

problems can be traced to the internal field approximation. To give an idea of how
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the results change when the internal field approximation is not used, I describe a
crude model with a force on the domain wall that varies sinusoidally with position in
the particle. Finally, I discuss the demagnetizing factor that appears in MD theories

and how elongation may affect the magnetic properties.

2.4.1 The Landau-Lifshitz Model

Domain theories are united by some basic assumptions: the magnetization is divided
into domains, each of which are uniformly magnetized in an easy direction, and the
domains are separated by thin domain walls. In a classic model of a semi-infinite
grain with uniaxial anisotropy, Landau and Lifshitz [1935] proposed the structure
shown in Figure 2.9a, where most of the magnetization is parallel to the easy axis
but there are “closure” domains at the surface. The domain walls at the surface make
45 degree angles with the surface, so AM-1fi = 0 everywhere and there is no magnetic
field (an example of pole reduction - see section 2.1).

The magnetization does not really make a sharp transition between domains. Lan-
dau and Lifshitz [1935] derived an equation for the internal structure of the domain

wall. If 6 is the angle between the magnetization and the easy axis,

cos § = — tanh (i)
w

where w = \/X/?l is a measure of the width of the wall.

Observed domain patterns are often much more complex than the Landau and
Lifshitz model; ultimately, much of the complexity is due to the finite size of real
bodies. More complex domain theories have been reasonably successful in explaining

the observed patterns [Stewart, 1954; Craik and Tebble, 1965].

2.4.2 The Two-Domain Model

It is much more difficult to use domain theories to predict hysteresis properties. The

pole-reduction principle (section 2.1) is difficult to apply: instead of the poles V- M
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"

Figure 2.9: The model of Landau and Lifshitz for a particle that is infinite downwards
and perpendicular to the page. Directions of magnetization are shown by arrows. (a)
The magnetization in each domain is uniform. Lines indicate domain walls. (b) A

~ closer look at the magnetization within a domain wall.
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Figure 2.10: The two-domain model. The magnetizations in each domain is in the

direction of the arrow. The dotted line indicates the center of the particle.

and M - fi being reduced, they are arranged so as to produce an internal field that
opposes the external field. When there is a change in field, the magnetization can
respond by rotation within domains or by complex rearrangements of domain walls.

Most MD hysteresis theories assume there are two domains (Figure 2.10). The
magnetization in each domain is in the easy direction. The total moment is the sum
of the moments of the two domains. If the domain wall is displaced a distance z from

the center, the volume-average magnetization is®

M 2z
M- (2.43)

If the magnetic anisotropy in the particle is uniform, the lowest energy position of
the wall in zero field is in the middle of the particle, so the remanent magnetization

is zero. For nonzero remanence, there must be a non-uniform anisotropy, imposed

5 Most MD models derive expressions for the total volume-average magnetization M rather than
the hysteresis component My. If the field is at an angle 6, it is usually assumed the average

magnetization does not rotate and My = M cos#.
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on the main anisotropy, which opposes the motion of the domain wall towards the
center. The non-uniformity is usually attributed to inverse magnetostriction from the
stress fields around defects.

It is also assumed there is a MD demagnetizing factor N such that the demag-
netizing energy is (1/2)uoNM?; this is a reasonably accurate approximation for a
lamellar two-domain model, as long as the domain wall is not too close to the edges
of the particle.®

The energy of the particle is

E=—pVMH + %NW + Eo (M) (2.44)

where E, (M) is the spatially non-uniform part of the wall energy. Strictly speaking,
it is a function of the wall position, but since M « z, it can be expressed as a function
of M. Stationary states satisfy dE/dz = 0, which is a balance between forces. An

equivalent formulation in terms of effective fields is

1 dE
—_— = w = 2.4
rio dM H+ H;+ H, 0 (2.45)

where Hy = —NM and H, = —(1/poV)dE, /dM.
A stable state must also satisfy d?E/dz? > 0, or

1 &?E 1 d?E,,

e =Nt oo >0 (2.46)

Taking derivatives with respect to H in equation 2.45 gives

dM 1 &?E,\ "

The slope of the hysteresis curve is always positive, in agreement with the more

general prediction of Brown [1963] (section 2.1.1). As in the SD model (end of

6 Because the MD models do not work well near saturation, I only show part of each MD hysteresis

curve near the origin.
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Figure 2.11: A MD hysteresis model with a sinusoidal wall energy. The parts of the
curve that correspond to stable states are solid, while unstable states are dotted lines.

Arrows indicate irreversible transitions.

subsection 2.3.1), the slope approaches infinity as the field approaches an instability
field.

Formulating the equations in terms of the field makes it easier to interpret them in
terms of hysteresis. Since equation 2.45 gives H as a function of M, when combined

with the stability condition it gives the hysteresis curve directly.

A simple example of a MD model with a sinusoidal wall energy E,, is shown in
Figure 2.11. When H reaches a value for which d?E/dM? = 0, a jump occurs. As
the period AM/M, of the sinusoid decreases, the jumps get smaller and the model
approaches that of Néel [1955] (Figure 2.12).
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M, '
’ C/

Figure 2.12: Néel’'s MD hysteresis model with the magnetization plotted as a func-

tion of the external field H. The arrows on the ascending and descending branches
indicate irreversible change. If the particle is in state A and the field increases, the

magnetization does not change until it reaches the point C.
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Figure 2.13:

The remanence curves for Néel’s MD hysteresis model.

55
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2.4.3 Néel’s MD Model

In Néel’s model, all changes in magnetization are irreversible. H.. = H. = N M,, and
the initial susceptibility is xo = 0. The demagnetized state is at the origin. If the
particle is demagnetized and a field H is applied, it does not acquire any remanence
until H > H.. If it is in a saturation remanent state, the remanence loss in a DC

back field is AM, = —H/N.

The remanence curves are shown in Figure 2.13. This is an extreme example of
MD-style remanence curves (compare Figure 2.7). Remanence loss from the SIRM
state is the same for DC and AF treatments until H = H,, when the particle is
completely demagnetized. Greater DC fields drive the magnetization negative. The
R parameter of Cisowski [1981] is zero; H;/, = H./2 and Hf, = 3H/2.

In Figure 2.12, if the particle is in state B it does not lose any remanence in a
negative field until the magnitude of the field is greater than |H4|. Thus the AF or
DC demagnetization curve for a low-field remanence is horizontal until it touches the
demagnetization curve for SIRM, then it coincides with it. If, as is normally done, the
demagnetization curves for saturation remanence and M;s/2 are normalized by the

initial remanence, the curve for M,,/2 lies above the curve for saturation remanence.

Thus, in this model, the lower the acquisition field, the harder the remanence. This
is the opposite of what the SD model predicts (subsection 2.3.2), and it will seem
counterintuitive to many rock magnetists. The contrast between the SD and MD
models suggests an isothermal analogue of the Lowrie-Fuller test (section 1.3), where
the stability of a low-field IRM is compared with the stability of SIRM. This has the
advantage that IRM is easier to understand than TRM or ARM, and the stability
predictions for SD particles are robust because they are based on the Wohlfarth

relations.
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2.4.4 Other MD Models

The model of Néel [1955] is very simple, and it does not represent many of the
properties of real particles - for example, xo # 0 and H, > H..

There have been numerous attempts to refine the model. All begin by assuming
that one can remove the effect of the shape of the particle by looking at the response

to an internal field:

H;=H-NM (2.47)
The particle is assumed to have an intrinsic susceptibility

dM

= — 2.48
X dH; (2.48)
Combining equations 2.47 and 2.48,
dH
-1 - —_ -1 .

If the intrinsic susceptibility is low (x; < N) then xo & x:- As the intrinsic suscep-
tibility increases, xo approaches 1/N.

There is also an assumed intrinsic coercivity, but since it is defined by M = 0 it
is the same as the observed coercivity.

In Néel’s theory, H. = NM,, so the demagnetizing factor can be inferred directly
from the hysteresis loop. If the hysteresis loop in Figure 2.12 is shown in internal
field coordinates, the sides of the loop are vertical. Some authors argue it is not that

simple. Smith and Merrill {1982] assume the sides are not really vertical:

S = d—M <
T dH |y >
SO
Hc 1
N= M, S

and N cannot be determined without some assumption about S.
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Dunlop [1984] uses equation 2.49 and a heuristic relation first proposed by Kittel
[1949]
x;H. =~ constant (2.50)

In such heuristic theories, it is not clear what the physical mechanisms are that
give rise to S or Kittel’s condition. The demagnetizing factor N is no longer a
simple geometrical factor; because of the extra conditions, it depends indirectly on
the intrinsic inhomogeneity as well.

Other models calculate the stress fields around defects and use them to derive
the hysteresis properties. Such models can be very complex [Trauble, 1969; Xu and
Merrill, 1989]. Most of them concentrate on the coercivity, which in the internal field

approximation is
_ 1 |dE,
< /.loV dM

where the integral is over the volume of the particle.

(2.51)

maz

There have been fewer calculations of the susceptibility using defect models. Néel
[1955] himself used a “slightly more refined” model for the wall energy to derive
hysteresis properties of demagnetized particles in small fields. The effective field
(1/p0)dE,,/dM is approximated by a series of random steps with the end points hav-
ing a Gaussian distribution about a mean of zero. An example of such a distribution
is shown in Figure 2.14; it is left to the reader to imagine how this can be reconciled

with the sinusoidal model.

The MD Demagnetizing Factor

The magnitude - and applicability - of the demagnetizing factor in MD grains has been
the subject of many publications. Néel [1955] assumed that the demagnetizing tensor
was roughly the same as in SD particles, and subsequent calculations are consistent
with this assumption. One difference that is rarely pointed out, however, is that the

demagnetizing factor N that appears in equation 2.44 is not equal to the difference
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Figure 2.14: An example of a wall pinning model proposed by Néel. The effective
field (1/uo)dE,,/dM is a series of steps with the distribution of end points being a

Gaussian distribution about a mean.

between components of N, as in SD theory: it is equal to the component in the
direction of the magnetization. The demagnetizing tensor for a cube is N;; = §;;/2,
so the SD demagnetizing factor is N = 0, but the MD demagnetizing factor for the
same tensor would be 1/3. However, the MD demagnetizing factor for a two-domain
state in a cube is actually 1/6 [Dunlop, 1983a}. 7

As elongation increases, NV decreases for magnetization along the long axis and
increases for magnetization along the other two axes. This has some interesting
implications for the shape dependence of hysteresis. Let us suppose the long axis is
in the z direction. For a field in that direction, M, = H./N33 and N33 decreases as
the aspect ratio increases. The other diagonal components N;; and N;; decrease as

the aspect ratio increases. If H. does not depend on shape, the saturation remanence

7 A few models have attempted to estimate the demagnetizing factor for multiple walls [Merrill,
1977; Dunlop, 1983a; Xu and Merrill, 1987, 1990], although the assumptions on the initial wall

positions and movements are very restrictive.
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is an increasing function of the aspect ratio for a field aligned with the long axis and
it is a decreasing function of the aspect ratio for a field aligned with either of the
other two axes. Thus there is an increasing anisotropy in the remanence as the aspect
ratio increases.

The above conclusion may change if H. does depend on elongation. As I will show
in subsection 2.4.6, the coercivity is affected by the length scale of the pinning field,
and a smaller N can enhance the effect. Also, a wall with a greater area intersects
more defects; if defects are providing the pinning force, the coercivity may increase
or decrease with wall area depending on whether the defects interfere constructively
or destructively.

We can at least say, however, that M.,/ H. increases with aspect ratio if the field
is parallel to the long axis, and it decreases with aspect ratio if the field is parallel to
one of the shorter axes.

The susceptibility xo should also depend on the direction of the field. If the
pinning forces are weakly dependent on orientation of the wall, xo should be larger
for a field parallel to the long axis because the demagnetizing factor is smaller. By

contrast, in SD particles xq is largest parallel to the easy axis.

2.4.5 Critique of the Internal Field Approzimation

All MD models use the internal field approximation, where the response to an internal
field H; = H — NM is determined first and then the observed hysteresis properties
are derived from a coordinate transformation. It is not obvious that this is an ap-
proximation because some of the terms are not defined precisely. For example, in
the definition of x; (equation 2.48), the field at which it is evaluated is not given
- although by analogy to xo, one would expect H; = 0. A more precise version of
equation 2.49 is

, _ dH

-1 — —_ -1
s ELET S .52
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This is only equal to x; if H; = 0 when H = 0, which implies the remanence is zero.

In the internal field approximation, the field exerts a force 2uoH; M;A on the
wall (where A is the wall area). The wall moves until the force is balanced by the
pinning force dE,,/dz. The wall position changes continuously with increasing H; as
long as dE,,/dz increases monotonically with decreasing z; but if dE,,/dz reaches a
maximum, the wall jumps to a new location where dFE,,/dz is large enough. A series
of such jumps (Barkhausen jumps) may occur before the force on the wall exceeds
the maximum pinning force in the particle, and then the magnetization reverses. The
coercivity is therefore determined by the maximum pinning force as in equation 2.51.
In this model, the coercivity is not affected by the location of the largest pinning
force or the spacing of the maxima.

When dE, /dz is a maximum, d?E, /dz? = 0; equivalently, &> E/dM? = 0. This
does not agree with the instability criterion based on the total energy (equation 2.46):

1 &’E 1 &?E,,
o dM? =N+ o AMZ =0

The reason for the difference is that the stability criterion in the internal field ap-
proximation is based on the assumption that H; is independent of M. The true
independent variable, however, is H, and H; = H — NM.

In Figure 2.15 I illustrate how different the predictions of the internal field ap-
proximation can be from those of the correct solution. The correct coercivity is only
affected by the forces on the domain wall near the center of the particle.

Implicit in the internal field approximation is the belief that there are “intrinsic”
hysteresis properties that are characteristic of a material and can be separated from
the effects of shape. The magnetic response to the internal field is often thought of
as the response that an infinite magnetic body would have. It is assumed the infinite
body, having no surfaces, would have all its demagnetizing factors equal to zero.

In reality, if we try to determine the limit of the demagnetizing tensor N as the

pé.tticle size approaches infinity, the tensor is conditionally convergent (it depends on
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Figure 2.15: Hysteresis predictions for the same wall energy E, (M) based on (a)
the internal field approximation and (b) the correct equations. In the internal field
approximation, instability occurs at point A, and this determines the coercivity (to
get the observed hysteresis curve, the line with the arrow must be skewed to get a
slope of 1/N). In (b), several jumps occur and the coercivity is determined by the
peak at B. The dotted line is the vertical plumb from (a), skewed to the applied field

coordinates.
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how the dimensions of the particle approach infinity). If the magnetization is uniform
and the shape is fixed, then in the limit as the size goes to infinity the demagnetizing
tensor is equal to the SD demagnetizing tensor for a finite body of the same shape.
In any case, an infinite body should not have domain walls. When Landau and
Lifshitz [1935] derived the structure of a domain wall in an infinite medium, they noted
that the lowest energy state for an infinite body should be uniform magnetization: this
makes V- M = 0, and the poles M - fi are removed to infinity, so the demagnetizing
energy is minimized. They had to constrain the magnetization to be in opposite
directions at z = +o00. Brown [1962] showed that a one-dimensional domain wall is
unstable in an infinite medium. Thus the domain wall owes its very existence to the

finite size of real particles.

2.4.6 What Does the Two-Domain Model Really Predict?

The above discussion makes it clear that there is a need for a self-consistent solu-
tion for the magnetic properties of a two-domain model. This model assumes the
domains are lamellar and the domain wall is thin compared to the particle size. The
hysteresis properties predicted by a two-domain model depend on the wall energy,
which can be a complex function of position. To predict hysteresis properties for an
ensemble, we need to average the response for many particles with defects in random
positions. I will not attempt this here. We can get a qualitative idea, however, of
how the magnitude and spacing of extrema affect the response by looking again at
the sinusoidal model (Figure 2:16). The dashed lines are the tangents to the points
where d?E,,/dM? = 0, so they represent the hysteresis curve predicted by the in-
ternal field approximation. The actual hysteresis curve has a much lower coercivity,
and H. = H.. If the phase of the sinusoid is shifted so point A travels down the
dotted line, the coercivity is equal to the field at point A until A reaches M = 0. The
coercivity and coercivity of remanence are therefore néa.rly equal.

In the limit of vanishing period AM/M,, the hysteresis curve approaches that



64

Figure 2.16: The effect of spacing of maxima on hysteresis properties in the two-
domain model. The dashed lines represent the hysteresis curve predicted by the
internal field approximation. The actual hysteresis curve is shown as the vertical

jumps and the reversible sections in between.
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predicted by the model of Néel [1955]. As the period increases, the susceptibility
increases and the coercivity decreases (a qualitatively similar trend to that predicted

by the heuristic relation x;H. = constant of Kittel [1946]).

If the period of the sinusoid gets too large (with the definition of “large” depending
on the amplitude of dE,,/dM and the slope 1/N), the peaks get so far apart that
the jumps no longer overlap, and the main hysteresis loop gets split into sub-loops
connected by reversible curves. In the limit of infinite period or zero amplitude, the
curve is fully reversible and xo = 1/N. Thus the upper limit for x, is the same as
it is in the internal field approximation, but it is only attainable if the hysteresis

disappears entirely.

If we have an ensemble of particles that are identical except that the phase of
E,(M) has a uniform distribution, the set of hysteresis curves maps onto itself under
a translation that preserves H = N M; the average hysteresis curve therefore has a

slope of 1/N.

We can expect some of these relationships to remain true for more complex wall
energies. In particular, if there is an ensemble of particles that are identical except
for the location of defects, and the defects have equal probability of being in any

location, the hysteresis curve will have a slope of 1/N and therefore H. = N M.

If particles with different shapes (and therefore different demagnetizing factors)
are mixed together, then far from saturation the combined hysteresis curve is a
volume-weighted average of straight lines - so it is also a straight line with slope

1/(N), where (N) is the average demagnetizing factor.

Thus the relation H. = N M, appears to be a robust feature of MD models,
contrary to the predictions of the heuristic models described in subsection 2.4.4.
Similarly, the remanence acquisition curves should be linear, although in general the

slope will be less than 1/N.
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2.4.7 The Two-Domain Model and TRM

As I mentioned in Chapter 1, SD particles acquire thermoremanent magnetization
(TRM) at the transition from superparamagnetism to hysteresis. As particle size in-
creases, the temperature for this transition approaches the Curie temperature (Chap-
ter 3) and TRM acquisition is dominated by hysteresis. In the MD model of Néel
[1955], as the temperature decreases the demagnetizing field H; and the inhomoge-
neous field H,, increase. If Hy increases faster than H,,, the wall moves towards the
center.

Néel [1955] used the internal field approximation and also assumed that the coer-

civity had a different temperature dependence than the saturation remanence:
H(T) ~ Mo(T) (2.53)

Néel used p = 2; Dunlop and Waddington [1975] calculated the thermoremanence
M..(H) and found that
M..(H) o< H'/? (2.54)

In the MD model, however, H. = NM, and N is a geometrical factor, so p should
equal 1. The assumption that p # 1 is another example of a2 heuristic model that
contradicts the physical model (subsection 2.4.4). Measurements of the hysteresis
parameters for sized magnetites show that H. and M, do have the same temperature
dependence [Heider et al., 1987].

If p = 1, equation 2.54 predicts that the TRM does not depend on the inducing
field. A correct solution of the MD equation without the internal field approximation
will probably recover the field dependence.

In Chapter 1, I proposed that the Thellier and Thellier [1959] method should
give the correct paleointensity for SD particles but not for larger particles, while
the method of Shaw [1974] may work for larger particles. For the Thellier-Thellier

method to work, it must be possible to reverse the process of acquiring TRM by
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heating the sample. For a two-domain particle, this would mean that the domain wall
should move back out towards the edge of the particle as the temperature increases.
This is not what happens. If a two-domain particle is heated in zero field, the only
magnetostatic energy term is the demagnetizing energy, and this is a minimum if the
wall is in the center of the particle. As the temperature increases, the pinning forces
decrease, and the wall moves towards the center. As long as there is some pinning
force left to oppose this motion, there will be a remanence. It is hardly surprising,
therefore, that in large particles not all of the remanence is demagnetized until the

Curie temperature is reached.

2.5 Summary

In this chapter, I extended existing theories for superparamagnetic (SP) and single-
domain (SD) particles in order to make more robust interpretations of magnetization
curves. For SP particles with no magnetic anisotropy, the magnetization fits the
equation M = cotha — 1/a, where a = poM2HV/kgT. Previous authors, using
numerical calculations, found a change in the magnetization curve when they gave
the particles some magnetic anisotropy. I show that the above equation still applies
to an ensemble of particles with any internal anisotropy, as long as there is no bulk
anisotropy. A fit to the magnetization curve can determine the odd moments (V2¥+1)
of the volume distribution. The standard deviation cannot be determined because it
depends on an even moment.

Using Stoner-Wohlfarth theory, I derived analytical expressions for the acquisition
and loss of isothermal remanent magnetization (IRM) in ensembles of SD particles.
These expressions apply only to non-interacting SD particles with uniaxial anisotropy.
I also showed that the remanence curves and the main hysteresis loop have fixed
shapes that are scaled by the average anisotropy. For example, if the anisotropy

is pure shape anisotropy, the curves are determined by the volume-average demag-
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netizing factor (N). No other information on the particles can be inferred from
the magnetization curve. However, if there are particles with cubic magnetocrys-
talline anisotropy, they can be detected by plotting acquisition of IRM against loss of
IRM Henkel [1964]. The Wohlfarth [1958] relations predict straight lines for particles
with uniaxial anisotropy, and the relations are not affected by bulk anisotropy or
thermal fluctuations. Non-interacting SD particles with cubic anisotropy have the
opposite curvature on these plots to MD particles or interacting SD particles. The
Henkel plot may therefore be a robust tool for identifying the remanence carriers in
fine particle systems such as basaltic glasses and some carbonates and soils.

In MD theory, the physical model is a two-domain model. The effect of shape
is represented by a dimensionless demagnetizing factor NV that depends only on the
geometry. Theoreticians have attempted to generalize the two-domain model by
adding heuristic assumptions, but the assumptions contradict the initial assumption
that N is dependent only on the geometry. In particular, in his MD theory of TRM,
Néel [1955] assumes H.(T) ~ M(T)?, where p must be greater than one to get a
remanence that increases with the inducing field - but both the assumption about N
and measurements of hysteresis parameters require p = 1. In addition, all MD models
use the internal field approximation, which incorrectly represents the relationship
between hysteresis properties and the forces on the domain wall.

I develop a very simple two-domain model and argue that some of the predic-
tions of Néel’s MD hysteresis model are robust features of MD models - particularly
H. = NM,. Because the number of defects a domain wall intersects depends on the
orientation of the wall, the susceptibility and coercivity H. probably depend on the
direction of the field. Since M, = H./N and N depends on elongation, M, should
also be anisotropic, but the anisotropy depends on the balance between the pinning
and demagnetizing forces.

In both SD and MD models, the slope dMy/dH of the hysteresis curve approaches

infinity as the field approaches an instability. This becomes an important criterion
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Chapter 3

SINGLE-DOMAIN CRITICAL SIZES AND NUCLEATION

As I stated in the Introduction, the main purpose of this dissertation is to identify
transitions between “SD-like” and “MD-like” hysteresis properties, and examine their
relevance to paleomagnetic problems. In this chapter I will look at some critical sizes
for SD hysteresis that can already be found in the literature.

The lower bound for the single-domain state is the size L,, at which the transi-
tion from superparamagnetism to SD behavior occurs. Strictly speaking, this is the
size at which SD remanence first occurs. As the particle size increases, the relative
importance of thermal fluctuations decreases and the hysteresis loop approaches that
predicted by the Stoner-Wohlfarth theory.

For the transition from SD to non-SD hysteresis, there are at least three definitions
of the critical size. To avoid confusion, I give them different names. Most authors in
rock magnetism use the global critical size Lo: this is the size below which the lowest
energy remanent state is SD.

Two other critical sizes are mostly found in the physics and engineering literature.
One, which I call the nucleation critical size Ly, is the upper limit of stability for the
SD state (nucleation is the term used in micromagnetics for the initial deviation from
uniform magnetization). In particles with L > L,, the remanent state is never SD.
In smaller particles, the remanent state may be SD even if some other state has lower
energy; Halgedahl and Fuller [1980] argue that remanence in PSD-size particles is
dominated by such “metastable” SD states (section 3.1.2).

At the Stoner-Wohlfarth critical size L.y, the first deviation from pure SD hys-

teresis occurs. For particles with size I < L,w, the magnetization is uniform in any
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field and it always changes by uniform rotation. It is only below this critical size
that the theory of Stoner and Wohlfarth [1947] applies. In larger particles, reversals
occur by nucleation (non-uniform rotation), and the coercivity is lower than the SD

coercivity.

The critical sizes L,w and L, are related to the nucleation field H,, which is
the field at which the first non-uniform rotation occurs as the field is reduced from
saturation. The definition of the nucleation critical size is equivalent to H,(L,) = 0,
while the Stoner-Wohlfarth critical size is defined by H,(L,) = H,, where Hy is the
switching field predicted by Stoner-Wohlfarth theory (Chapter 2).

There are some rigorous calculations of critical sizes in the micromagnetic litera-
ture, but they can be difficult to interpret. Each author normalizes lengths, fields and
magnetizations in a different way, and the term “critical size” is applied indiscrim-
inately to Lo, Lgw or L,. One must look closely at the method to determine which
critical size is calculated. Another problem is that the critical size for an ellipsoid
is given as a radius or diameter, while the size of a cuboid! is usuallythe shortest or
longest side. This inconsistency in definition makes it difficult to compare theoretical
predictions with each other or with observation. In this dissertation, I define the
size of a particle as the cube root of the volume L = V/3. This has the advantage
of being appropriate for any shape, it separates shape effects from volume effects,
and it makes possible meaningful comparisons between the hysteresis properties of
ellipsoids and cuboids (Chapter 5). If I quote a result in the literature, I first convert

the length to the cube root of the volume.

In this chapter, I extend published micromagnetic calculations of critical sizes
to include magnetocrystalline anisotropy, and I explore their implications for rock

magnetism.

1 A cuboid is a rectangular parallelepiped.
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3.1 Critical Sizes in Rock Magnetism

8.1.1 The Global Critical Size

Calculations of the global critical size go back a long way in rock magnetism (for
example, Stacey [1963]), but I begin with the paper by Butler and Banerjee [1975].
Their Figure 7, showing the dependence of critical size on elongation, is reproduced in
many of the recent textbooks on paleomagnetism [Butler, 1992; Thompson and Old-
field, 1986; Opdyke and Channell, 1996] and biomagnetism [Kirschvink and Walker,
1985).

In a model of a cuboid particle, Butler and Banerjee calculate the energy of a
two-domain state with variable domain wall width. The energy density of this state
decreases as the size increases, while the energy density of the SD state remains
constant. The point where the energies cross is the global critical size Lq.

The calculations of Butler and Banerjee are not self-consistent. For the mag-
netocrystalline and exhange energy, they use an expression for a Bloch wall in an
infinite medium [Lilley, 1950], while for the demagnetizing energy they approximate
the wall by a region with magnetization perpendicular to the magnetization in each
domain [Amar, 1958].

As Brown [1945] pointed out, one of the problems with domain theory is that its
predictions depend on the ingenuity of the theorist. There is always the possibility
that there is’ some lower energy state that has not been considered. Butler and
Banerjee also try to estimate the energy of a circular, or “curling” spin configuration
(Figure 3.1a). They conclude that this state will always have a higher energy than
the two-domain state. A curling state does look inappropriate for a square particle,
but three-dimensional micromagnetic models [Schabes and Bertram, 1988; Williams
and Dunlop, 1989] find the lowest energy state is often a “vortex” state which looks
quite similar to the curling state. Perhaps Butler and Banerjee would have refected

the two-domain state if they had estimated the energy of a closure domain state
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Figure 3.1: (a) A curling state, after the equation for the infinite cylinder [Brown,
1963, equation 5-37]. Each arrow indicates the direction and magnitude of the magne-
tization within the plane; the total vector has unit magnitude. (b) A closure domain

state, after Kittel [1946]

(Figure 3.1b); this state has zero demagnetizing field, so the demagnetizing energy is

much lower than that of the two-domain state.

Some one-dimensional micromagnetic models [Moon and Merrill, 1984; Enkin and
Dunlop, 1987; Newell et al., 1990] are at least self-consistent, although they cannot
represent the curling mode. Fabian et al. [1996] use a three-dimensional micromag-
netic model to calculate the global critical size as a function of elongation for mag-

netite.

Most of the theoretical work has focussed on the global critical size Lg, but I will
show in this chapter that Lo has little relevance to hysteresis properties. The critical

sizes Ly and L, are the important ones.
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3.1.2 Local Energy Minima

Before 1978, rock magnetists assumed that above the global critical size Lo, the SD
state became unstable and jumped to the new lowest energy state, usually assumed to
be the two-domain state. It was difficult to explain the observed size dependence of re-
manence using a two-domain model, although there were numerous attempts [Stacey,
1963; Stacey and Banerjee, 1974; Dunlop, 1977]. However, as Brown [1962] pointed
out much earlier, the magnetization does not have to be in the lowest energy state -

indeed, if it always were, there would be no hysteresis.

Levi and Merrill [1978] were the first rock magnetists to recognize that the SD
state could remain stable for I > Ly because an energy barrier could separate it
from lower energy states and prevent nucleation. Halgedahl and Fuller [1980] found
evidence for inhibition of nucleation in z = 0.6 titanomagnetites (TM60) by looking at
Bitter patterns on particles with saturation remanence. Some particles did not have
domain walls even though much smaller particles did. Halgedahl and Fuller [1983]
showed that depending on the history of the applied field, a given particle could have
different numbers of domains; for example, new walls could nucleate in back fields
and remain when the field was removed. Even identical thermal or AF treatments of

a particle could give rise to very different numbers of domains [Halgedahl, 1991].

Theoretically, materials with large magnetocrystalline anisotropy should never
develop domain walls, yet very large particles almost invariably do. The experimental
evidence suggests that defects can cause nucleation, particularly near surfaces. Large
particles have a lot of defects, so they almost always nucleate walls before the field
is reduced to zero. Smaller particles have fewer defects on average, so they are more
likely to have a saturation remanent state that is SD.

Halgedah! and Fuller [1983] distinguish between two kinds of nucleation. “True”
nucleation is the initial departure from uniform magnetization, so it can only occur

if the particle is saturated to begin with. In some particles, a domain wall seems to
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be trapped at the surface and requires a surprisingly large field to remove. When
the field decreases, there is a critical field where the wall jumps to the middle of the
particle: this is false nucleation.

If the particle is really saturated to begin with, the nucleation ﬁeld should have
the same magnitude in both directions and the wall should appear in the same place
(ultimately, this is due to the time-reversal symmetry of Maxwell’s equations). When
a wall is trapped at the surface, it is not always visible and the magnetization can be
indistinguishable from saturation, but we can sometimes infer its presence from an
asymmetry in the wall movement.

Moon and Merrill [1984] introduced the term “local energy minimum (LEM)” for
a domain state which remains stable even though it does not have the lowest energy.
Using a one-dimensional model of magnetite, Moon and Merrill [1985] calculated the
size range for stability as a function of the number of domains. One-dimensional
calculations are highly constrained, however, and they cannot represent nucleation

as it occurs in real particles.

3.2 Rigorous Micromagnetic Calculations

Although critical sizes calculated using three-dimensional numerical micromagnetic
models are an improvement over domain calculations, they also have problems. An
accurate numerical solution of the micromagnetic equations is difficult and consumes
a lot of CPU time. The result of a micromagnetic simulation depends on the initial
guess, and we cannot be sure we have found all the solutions - or even the lowest energy
solution (Chapter 4). In particles of most shapes the magnetization is never uniform
in equilibrium, so even the definition of the SD state is ambiguous (Chapter 5).
Finally, it is difficult to demonstrate that a state has become unstable (Chapter 6).
The ellipsoid is the only known shape for which the demagnetizing field is uniform

when the magnetization is uniform [Morrish, 1966, section 1.5]. This makes it possible
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for a state of uniform magnetization to be stable, and it has been proved rigorously
that it is stable in a large enough field [Shtrikman and Treves, 1963].

Theorists have managed to determine analytical conditions for the stability of
the SD state in ellipsoids of rotation. For the limiting cases of the sphere and the
infinite cylinder, they have calculated the nucleation fields for all possible modes of
nucleation; for the general cylinder of rotation, they have explored a broad class of
modes (the curling modes) that are the nucleation modes in the sphere and cylinder
except for a very small size range in the cylinder. They have also calculated a lower
bound on the global critical size Lo by placing rigorous bounds on the energy of any
non-uniform state and comparing the bounds with the energy of a SD state.

Thus the calculations for ellipsoids have some advantages that numerical models
cannot have: they are not subject to numerical inaccuracies and they involve an
exhaustive exploration of possible solutions. The calculations below should be the
baseline for any numerical calculations, and in later chapters I will be comparing my
numerical results with them.

The published analytical calculations are for zero magnetocrystalline anisotropy.
I extend them to include magnetocrystalline anisotropy, and I show the modified

equations have some important consequences for rock magnetism.

3.2.1 The Nucleation Field

To prove a state is stable, one must show that any variation §M(r) of the magneti-
zation will increase the energy. In general, this is extremely difficult to do. To prove
a state is unstable, it is enough to find one variation that reduces the energy. In the
ellipsoid, uniform magnetization is stable if the applied field is large enough. As the
field decreases to zero and changes to the opposite direction, the SD state eventually
becomes unstable. If the mode of instability is non-uniform, the instability field is
called the nucleation field.

The nucleation field is determined by linearizing the micromagnetic equations as
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follows [Brown, 1963]. First, a reference state of uniform magnetization is chosen
which is stable in a large field. Solutions have only been obtained for the simplest
configuration where the moment, the field, the long axis of the particle and the
magnetocrystalline anisotropy are all aligned.

Suppose the applied field is in the z direction. The energy is then expanded
to second order in the transverse components o and 3, using a2 + 82+ 9% =1 to
eliminate 4. With a variational calculation, one obtains eigenvalue equations [Brown,

1963, egns. 5-18, 5-19]

—2V3%a + (2611 — A) @ + 21208 + M.%g- =0 (3.1)
—2V2ﬂ + 2&120 + (2522 - /\) ﬁ + M,%% =0 (32)

where U is the magnetic potential due to the deviations « and 3, and the coefficients
ki; are the coefficients of a2, 32 and af obtained by eliminating v from the expression
for the magnetocrystalline energy. If Ao is the smallest eigenvalue for the above equa-
tions (with appropriate boundary conditions), the instability field is H = —Ag/poM,.

For the sphere [Aharoni, 1959] and the infinite cylinder {Aharoni and Shtrikman,
1958], the entire spectrum of eigenfunctions has been explored and the nucleation
field rigorously determined. There are only three instability modes; the main two
are uniform rotation or a curling mode, which in cylindrical coordinates (z,p, )

is [Brown, 1963, equation 5-33]

A third mode, the buckling mode, occurs in a narrow size range in infinite cylinders.

For prolate ellipsoids of rotation, Aharoni [1959] calculated the instability fields
for uniform rotation and generalized curling modes (where the magnetization depends
on z as well as p). If the demagnetizing factors are NV, for the long axis and N, > N,

for the short axis, then the nucleation field for the curling mode is
H, kL2,

-

(3.4)
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The dimensionless parameter k is 22.5 for a sphere and decreases monotonically to
17.6 as the elongation increases to infinity. It is possible that there is a larger nucle-
ation field corresponding to the buckling mode for some range of aspect ratios and
particle sizes. Aharoni [1986] showed that uniform rotation and curling are the only
instability modes for aspect ratios up to 4.6, so the buckling mode cannot be ruled
out for more elonated particles - but this mode is not very important in the infinite
cylinder, so it is probably safe to ignore it.>

Aharoni [1959] neglected magnetocrystalline anisotropy. For a few simple cases,
the solutions are easily modified. In equations 3.1 and 3.2, if ;2 = 0 and k;; =
K22 = K, then we can solve for A with x = 0 and then replace it by M = X + 2k to
include the effect of magnetocrystalline anisotropy. If H, is the nucleation field for
zero magnetocrystalline anisotropy, then H, — 2x/uoM, is the nucleation field with
nonzero magnetocrystalline anisotropy.

To determine «;;, as I mentioned above, the magnetocrystalline energy must be
expanded in terms of the coordinates perpendicular to the SD moment; «;; is then
the coefficient for a2, ks, for 3%, and k5 for aB. There are some simple cases where

this approach can be applied (see Appendix A):

1. Uniaxial anisotropy with K; > 0 and the [001] easy axis in the z direction:
K= Kl.

2. Cubic anisotropy with K; > 0 and the [001] easy axis in the z direction: x = Kj.

3. Cubic anisotropy with K; < 0 and the [111] easy axis in the z direction: k =
—2K,/3.

4. Cubic anisotropy with K; < 0 and the [001] hard axis in the z direction: x = K;.

2 Aharoni [1966) also showed that uniform rotation and curling are the only instability modes for

oblate spheroids of rotation.
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The fourth case is different from the others because the [001] direction is not the easy
axis, so it will not be the direction of remanence unless there is a stress or shape
anisotropy in the [001] direction that is larger than |Kj|.

With magnetocrystalline anisotropy added, the equation for the nucleation field

is given by
H, - kL2, 2K
M, =N T 39)
From Stoner-Wohfarth theory, the critical field for rotation is
H, 2K
A (Na — Np) — o M? (3.6)

The magnetocrystalline anisotropy enters in the equations for H, and H, in the same
way; this is to be expected, since uniform rotation is also a solution of equations 3.1
and 3.2.

If H. > H,, the magnetization is uniform in any field and it can only change by

rotation. At the Stoner-Wohlfarth critical size, H, = H;, so

k 1/2
st = ('N;) Lez (37)

The nucleation critical size is obtained from equation 3.5 by setting H, = 0:

& 1/2 9% -1/2
Ln‘(‘ﬁ) (l‘m) Lex (3:8)

Again, k is 22.5 for a sphere and 17.6 for an infinite cylinder.

3.2.2 Rigorous Bounds on the Global Critical Size

The first rigorous bounds on the global critical size were calculated by Brown [1968]
for a perfect spherical crystal with uniaxial magnetocrystalline anisotropy.
Since one can rarely calculate rigorous bounds for the critical size, it is worth

describing Brown’s approach. The most difficult parts of the micromagnetic equations
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are the constraint o + 82+ 4? = 1 and the calculation of the demagnetizing energy.

Brown relaxes the former condition, requiring instead that
1
L) = as

where the integral is over the volume of the particle. This increases the set of possible
states, so if the SD state has the lowest energy in this set, it also has the lowest energy
among solutions to the micromagnetic boundary value problem. Brown also shows
that a lower bound on the magnetostatic energy is the energy of a uniformly mag-
netized particle with the same total moment. These approximations reduce Brown'’s
equations to a differential equation, and the lowest energy solution is easily identified.
The critical size for this calculation is therefore a lower bound on the global critical

size. Aharoni [1988] extends this lower limit to prolate ellipsoids of rotation :

< _ k 1/2
L2Li=|+) L (3.10)

For small x, Brown calculates the energy for a particular nucleation mode. The
nucleation critical size in equation 3.5 provides a better lower bound because it is the

most favorable nucleation mode:

Lo <L, (3.11)

Since L, diverges as x/uoM? approaches N,, L, is not a useful upper bound for
high-anisotropy materials. It is difficult to obtain good constraints. For a sphere,
Brown [1968] calculates an upper limit for the energy of a two-domain state, and
obtains an upper bound on the global critical size:

E\Y? r K 1/2
. — - ex 12
L051380(N.) (1+2#0M3> L (3.12)

This leaves an uncertainty of an order of magnitude or more for Ly, and no one has

calculated a rigorous upper bound for other shapes.
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For a prolate ellipsoid of rotation with elongation ¢ = a/b > 1, the demagnetizing
factors are [Chikazumi, 1964, pg. 21]

N, = ?%I[%m(\/q_z—_uq)q]

%(1 —N) (3.13)

Ny

Forg=1, N, = Ny, =1/3.

3.3 A Reassessment of Critical Sizes in Rock Magnetism

The critical size calculations described above are a great improvement over previous
calculations, for a few reasons. First, they are rigorous. They are for a specific shape
- the ellipsoid of rotation - but I will show in Chapter 5 that they can be extended
to more general shapes. I will be exploring some extensions in chapter 5.

Secondly, the expressions for the critical sizes are very simple. The only parameter
that is difficult to calculate is k in equation 3.5 for the nucleation field: the calculations
by Aharoni [1959] involve expansions of prolate spheroidal functions. However, it
is the square root k!/? that appears in the expressions for the critical sizes, and the
upper and lower bounds on k!/2 only differ by 10%. For most calculations I use k = 20
so k1/2 is close to its mean value.

The ease of calculation is important because the magnetic parameters are gener-
ally not well constrained. They are reasonably well known for magnetite, but in the
rest of the titanomagnetite series (Fe3—;Ti:04,0 < z < 1) there is considerable uncer-
tainty because the parameters are sensitive to differences in stoichiometry [O’Reilly,
1984]. Indeed, the exact composition of a titanomagnetite is often uncertain because
there is inconsistency between different methods of determining the oxidation param-
eter z and there tend to be small scale chemical inhomogeneities [Moskowitz, 1987].
Often, theorists are tempted to understate the uncertainty because it is too labori-

ous to repeat numerical calculations with different parameters; but with the simple
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expressions that I have developed in this chapter, it is easy to assess the effect on the
critical sizes of changing parameters.
I will give a short review of each constant for two substances of particular impor-

tance: magnetite and TM60 (Fez 4Tio.604).

Curie temperature For magnetite, T, =~ 580°C. For TM60, the range of Curie
temperatures is (150 — 220)°C for a range of oxidation parameters z = 0 —

0.1 [O'Reilly, 1984].

Saturation magnetization For magnetite, M; = 4.8 x 10°Am~'. I use a range of

(1 — 1.5) x 10°Am~? for TM60 [O’Reilly, 1984].

Exchange constant In principle, A can be determined from inelastic neutron scat-
tering and other methods, but for ferrimagnets the interpretation of the mea-
surements is complex and the values of A do not always agree well. Moskowitz
and Halgedahl [1987] and Heider and Williams [1988] both analyze the litera-
ture and obtain A = 1.3x10711Jm™!; this value is twice that used by Butler and
Banerjee [1975] because of a correction to the model for the interactions between
sublattices. Moskowitz and Halgedahl [1987] point out that the uncertainty in
A could still be 50%.

For titanomagnetites other than magnetite, A can only be estimated indirectly
with assumptions about the dependence of A on composition and tempera-
ture [Moskowitz and Halgedahl, 1987]. Fortunately, A appears inside a square
root in the expressions for the critical sizes. I will take a conservative approach
and use a range A = (1072 — 10~!)Jm™!. It is reasonable to assume the cou-
pling is weaker than in magnetite because M; and the Curie temperature are

both smaller.

Magnetocrystalline anisotropy constant For magnetite, K; = —1.1 x 10*Jm™3.
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As titanium content increases, there is a general trend from negative to positive
K, but the dependence of K, on z is complex and there is considerable scatter
in the measurements. Somewhere between z = 0.56 and z = 0.6 this con-
stant changes sign. Moskowitz and Halgedahl [1987] estimate K; = 4000Jm™3
for TM60 by interpolating the measurements of Syono [1965], while Sahu and
Moskowitz [1995] measure K; = 2000Jm™2 for TM61.

So far I have ignored magnetostriction, but it becomes important as titanium
content increases. In SD particles, the effect of magnetostriction is similar
to that of magnetocrystalline anisotropy. One can easily take it into account
by using a “zero-stress” constant K instead of the “zero-strain” constant K.
Fortunately, most methods for measuring anisotropy actually measure K] [Ye

et al., 1994].

If the magnetization is non-uniform, magnetocrystalline anisotropy and magne-
tostriction are decoupled and it is much more difficult to determine the effect
of magnetostriction. At the nucleation field, however, the expressions for H,

and L, are probably still accurate if we replace K; by Kj.

Magnetostriction constants For magnetite, Ajgo = —19 x 107 and A;;; = 78 X
10~ [Fletcher and O’Reilly, 1974]. For TM61, Aj00 = 140 x 107® and A;;; =
95 x 10~° [Sahu and Moskowitz, 1995].

3.8.1 The Stoner-Wohlfarth Critical Size and Isothermal Hysteresis

The Stoner-Wohlfarth critical size does not depend on magnetocrystalline anisotropy,
and it is only weakly dependent on elongation: as the shape changes from a sphere to
an infinite cylinder, L,y increases by only 40%. The other critical sizes are strongly
dependent on elongation, so only L,y can be stated as a single number for a material.

A particle with L < L, is truly single-domain. If it has uniaxial anisotropy,
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its hysteresis properties are given by Stoner-Wohlfarth theory (although the effect of
thermal fluctuations can be important). The hysteresis parameters M,;/M,, H. and
H have their maximum values, and the R-parameter of Cisowski [1981] is 0.5.

The critical size L,y is also, in effect, a lower bound for non-uniform remanent
states. In principle, one could calculate lower limits for non-uniform states in the
same way as the upper limits on the SD state, but in practice it is far more difficult.
If there are non-uniform states in particles with L < Ly, however, there is no way of
getting to them in a hysteresis cycle (see Chapter 6).

For L > L,w, the hysteresis curves begin to deviate from the predictions of Stoner-
Wohlfarth theory. As particle size increases, the nucleation field increases and we can
expect to see changes in the coercivity while H, is still negative. Levi and Merrill
[1978] measured the hysteresis properties of highly elongated acicular magnetite par-
ticles synthesized by Toda Industries; M /M, was 0.44 —0.45 (nearly equal to the SD
value), but the coercivity was less than one sixth of the SD coercivity (H. = 0.5u0M,).
Halgedahl [1995] measured hysteresis curves for single platelets of hematite which
spanned more than a decade in length; H. decreased as L=%€¢ while M,;/M, remained

near the SD value over the entire size range.

3.3.2 Critical Sizes and Metastable SD States

The arguments for the importance of metastable SD states has mainly come from
experimentalists who base their arguments on domain observations of high-Ti ti-
tanomagnetites and pyrrhotite [Halgedahl and Fuller, 1980, 1983; Metcalf and Fuller,
1987, 1988; Halgedahl, 1991]. These results appear to disagree with micromagnetic
models of magnetite [Williams and Dunlop, 1989; Newell et al., 1993b] which consis-
tently obtain global critical sizes below 0.1um and predict the remanence will decrease
rapidly above this size. The theorists cast doubt on the interpretation of Bitter pat-
terns [Williams and Dunlop, 1989; Williams et al., 1992; Newell et al., 1993b] or

proposed that some important effect such as inverse magnetostriction from an ap-
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plied stress was missing from the theoretical model. In this section I will show that
we can reconcile theory and experiment if we take into account the dependence of
the critical sizes on composition.

For this discussion I will need the critical size L,, for the transition from super-
paramagnetic to SD. The critical volume V, satisfies the blocking criterion for a given

temperature T

v, =Bl (1) (3.14)

Ae T0

where kg is the Boltzmann constant, 7, is the time scale of interest, 7o is a char-
acteristic relaxation time, and Ae is the difference in energy density between the
minimum and the saddle point or maximum separating the minima. The critical size
is Ly, = V13,

The critical size is not very sensitive to the choices of 7y and 7, because they appear
in the logarithm. I will use 70 = 10™® seconds and 7, = lyear &~ ™ x 107seconds.

In deriving an expression for the energy barrier, Butler and Banerjee [1975] con-
sider cubic particles and elongated particles as two disjoint cases. For K; < 0 and the
[111] easy axis aligned with the long axis of the particle, the saddle point between the
[111] and [111] directions is the [110] direction, which coincides with the direction of
maximurmn magnetostatic energy. We can simply add the two energy barriers to get

1]

= (3.15)

Ae = ‘-‘22(Nb-N.)M3+

For K; > 0 with the [001] easy axis aligned with the long axis, the saddle points
between easy axes are < 111 > directions, which do not coincide with the magneto-
static barrier. The above expression is still an upper bound for Ae; it can be used to
give a lower bound on L,, which approaches the correct barrier for equant or highly
elongated particles.

In Figure 3.2, I show the dependence of the room temperature critical sizes on
elongation for magnetite and TM60. The lengths are well defined for magnetite,

but there is a considerable range in some of the parameters that go into the critical
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sizes for TM60. The exchange length L.x = (A/ poMf)I/ ? for TM60 may be between
0.006pm (the same as for magnetite) and 0.028um. In Figure 3.2, I use the larger
Lex to put a strong limit on the SD size range. For magnetite, k = —2K;/3 and
2k /po M2 = 0.06; for TM60, x = K, and 0.14 < 2x/poM? < 0.64.

Figure 3.2 illustrates the advantages of using V'/3 instead of the long axis for
the particle size. So defined, the critical sizes L,p, and L4y have a weak dependence
on elongation. In Figure 7 of Butler and Banerjee [1975], the superparamagnetic
threshold length decreases then increases to infinity as ¢ — oo - but this increase is
in g%/3, the ratio between the long axis and V/3. Another advantage of using V'1/3 is
that its relationship to the volume, and therefore the total moment, does not depend
on elongation.

In both magnetite and TM60, the Stoner-Wohlfarth critical size decreases slightly
as ¢ — oo; thus in both substances, the size range for purely SD hysteresis is fairly
narrow and weakly dependent on elongation. The global critical size, on the other
hand, is a steeply increasing function of 1/q, as it is in earlier studies.

The biggest difference between the two materials is in the upper bound for stability
of the SD state. For magnetite, L, has an asymptote at ¢ =~ 5, but until q is very
close to 5 there is very little difference between L, and L§ (the lower bound on Ly).
The stability range can be much larger for TM60: for an equant particle, L,/Lo can
be from 1.3 to infinity, and even for the smallest estimate of the anisotropy L, — oo
at an elongation of 2.4.

L, can be increased by adding a uniform stress, although the effect depends on
the direction of the principal stress components. We can get some idea of the range
of response by considering cases 3 and 4 in section 3.2.1. Surprisingly, if there is a
uniaxial tension or compression in the [111] direction, the inverse magnetostriction
energy (equation 2.8) is constant and contributes nothing to the anisotropy. If there
is a uniaxial compression o < 0 in the [100] direction, the anisotropy is equivalent to

a uniaxial magnetocrystalline anisotropy of —(3/2)A1000 (which is positive because
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Figure 3.2: Critical sizes as a function of elongation for (a) magnetite (b) TM60. Lg§ is
the lower bound to the global critical size. For TM60, Ly, Lew, and L§ are calculated
with the parameters chosen to maximize them (A = 10~*Jm~!, M, = 10°Am™!, and
K, = 4000Jm™3). For most values of the constants, L, is well above a micron. For

magnetite, the asymptote for L, are shown as a dotted line.
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A100 < 0). This is added to the magnetocrystalline anisotropy x = K;. In TM60,
K, > 0 and the magnetostriction constants are large, so the combined anisotropy
can be considerable. In magnetite the [100] axis is a hard axis and &k = K; < 0,
so the two anisotropies are in opposition. For a remanence in the {100] direction to
be stable, K; — (3/2)A1000 must be positive, and this requires a stress of 440MPa.
Clearly, stress does little to increase the SD stability range in magnetite.

Thus nucleation theory is consistent with the metastable SD states that Halgedahl
and Fuller [1980, 1983] observe in large TM60 particles. Where nucleation occurs for
L < L, it may be induced by imperfections. In addition, the bounds shown in
Figure 3.2 are for the most favorable orientation of the easy axes; an unfavorable ori-
entation can reduce the nucleation critical size considerably. Finally, the probability
of a SD remanent state will depend on the type of remanence.

In magnetite, there is no mechanism (aside from elongation) that will allow SD
states in magnetite particles larger than 0.1um. Enormous stresses would be needed
to increase the SD range significantly. It is worth noting, however, that as = increases
from zero, K, initially becomes increasingly negative, reaching a minimum of —2.5 x
108Jm™3 at z = 0.1 [Syono, 1965], while M, decreases roughly as M,(z = 0)(1 —
1.125z) [O’Reilly, 1984]. Thus for TM10, £ & 0.07. This does not increase the SD
size range much for equant particles, but the asymptote for L, moves to ¢ = 2.3.
SD states could occur in anomalously large magnetite particles if the magnetite is
non-stoichiometric.

Some observations seem to contradict this theory: Boyd et al. [1984] see appar-
ently SD states in magnetite particles 30 — 40um in size - far larger than the critical
sizes for magnetite. These observations have not been reproduced in other mag-
netites, however. Even in submicron magnetites down to about 0.5um [Smith, 1980;
Geiflet al., 1996], no SD states have been observed. The samples of Boyd et al. {1984]
come from a granodiorite in the Tatoosh complex, and magnetites in felsic plutonics

are generally nearly pure magnetite [Frost and Lindsey, 1991, page 437]; but natu-
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ral samples are inherently complex. A re-examination of these samples would be a
valuable contribution to rock magnetism.

Thus the apparent disagreement between theory and experiment over metastable
SD states may be just a difference in the properties of magnetite and high-Ti titano-

magnetites because of the sensitivity of L, to magnetocrystalline anisotropy.

3.4 Summary

I have derived rigorous expressions for three SD-PSD critical sizes: the Stoner-
Wohlfarth critical size L4w, the global critical size Lo and the nucleation critical size
L,. The expressions are based on micromagnetic critical size calculations by Aha-
roni [1959, 1988] which I have extended to include the effect of magnetocrystalline
anisotropy.

The Stoner-Wohlfarth critical size Ly is the upper limit for which hysteresis is
fully SD, with a dependence of magnetization on field that is predicted by Stoner-
Wohlfarth theory. For L > L,,, we can expect the hysteresis parameters (especially
H.) to change. This critical size is nearly independent of elongation and magne-
tocrystalline anisotropy.

The nucleation critical size L, is the upper stability limit for a SD remanent state,
and it is strongly dependent on elongation and magnetocrystalline anisotropy. With
most plausible estimates of M,, A and K; for TM60, L, is well above a micron and can
even be infinite, in agreement with the observations of Halgedahl and Fuller [1980,
1983]. For magnetite, L, can be large in very elongated particles (¢ > 5), but for
equant particles the upper limit for SD remanence is well under 0.1um. Even a stress
of 400MPa has little or no effect on the range. Thus the apparent disagreement be-
tween theory and observation can be resolved if we take into account the dependence

of the critical sizes on composition.



Chapter 4

THE NUMERICAL MODEL

Since the first three-dimensional numerical micromagnetic models [Fredkin and
Koehler, 1987; Schabes and Bertram, 1988; Williams and Dunlop, 1989], several
groups in rock magnetism and the magnetic recording industry have developed codes.
In 1996, group at the National Institute of Standards and Technology invited re-
searchers to calculate a hysteresis loop for a specific particle size, shape and com-
position and a specific field direction. So far, there have been seven anonymous
submissions.!. Some of the hysteresis curves look smooth, while others have several

jumps. The coercivities and remanences differ by as much as two orders of magnitude.

Much of the effort in developing codes has gone into optimizing the calculation
of the demagnetizing energy, which is very time consuming because of the non-local
interactions [Fredkin and Koehler, 1990; Ramstdck et al., 1994]. The most popu-
lar method is to use fast Fourier transforms [Mansuripur and Giles, 1988; Yuan and
Bertram, 1992]. This allows users to run models with larger grid sizes. The demag-
netizing energy should be more accurate if the resolution is finer, but no one knows
how accurate they are because there are no analytical solutions. The calculation of
the demagnetizing energy is a problem in quadrature, and a difficult one because the
integrand has a third order singularity (equation 2.5). The usual approach to this
problem is to replace the continuous function M(r) by a stepwise constant function
(Section 4.2). A quadrature method of this sort, essentially a lowest order Simpson

method, does not converge quickly even for much more well behaved one-dimensional

! http://cobalt.nist.gov/mumag/probl/problreport.html
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quadrature problems [Acton, 1990], so it is unlikely to be an efficient method for
calculating the demagnetizing energy. However, the expression for the energy calcu-
lation is exact for uniform magnetization, and near the SD size range it should be
reasonably accurate. For most of my simulations, I use a grid with 5 x 5 x 5 points
and stay near the SD size range.

The methods that have been tried for solving the micromagnetic equations include
iterative methods [Aharoni and Jakubovics, 1986], dynamic methods [Schabes and
Bertram, 1988], energy minimization using the conjugate gradient method [Williams
and Dunlop, 1989] and energy minimization using simulated annealing [Fukuma and
Dunlop, 1997]. There is no guarantee that any of these methods can reliably distin-
guish a stationary point from a minimum. Around a stationary solution, the energy
surface in configuration space is flat (the first derivatives of the energy are zero), and
it can be difficult to find a search direction that reduces the energy. This problem
may get worse as the grid size increases. In this chapter I develop methods to identify

and eliminate the unstable solutions.

4.1 Solving the Micromagnetic Equations

I have extended the algorithm described in Newell et al. [1993a,b] to three dimensions
and reformulated the energy in a more elegant way, which I have since discovered is

very similar to that of Berkov et al. [1993]. If we define

h = H/M, (4.1)
hd = Hd/M, (4.2)
2A
he = Vi 4.3
F‘OMa m ( )
—_ Kl aga.
b = o (4.4)

then the free energy can be written in a dimensionless form [Berkov et al., 1993]

v = 30 [ mle) 2h(e) + ha(e) + hee(e) + WAV (45)
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where n = 2 for uniaxial anisotropy and 1 = 4 for cubic anisotropy.

If Cartesian coordinates are used, Lagrangian multipliers must be added for the
constraint m-m = 1. [ have used polar coordinates 6, ¢ such that o = cos ¢sin 8,58 =
sin ¢sin 8, = cos 6.

The gradient of the energy is needed for the optimization algorithm. It can be

expressed very simply as

1 oG om

HMZV 96 — Dt g (4.6)
1 0G om
WMIV 03~ N 38 (4.7)

where h.g = h + hgq + hx + h,.

4.2 Numerical Implementation

The model has N x M x L grid points in the x, y and z directions, with indices (z, j, k).
If the size of the particle is X x Y x Z, each grid point represents the magnetization
at the middle of a cell with volume AV = Az x Ay x Az = X/N x Y/M x Z/L.
As described above, I represent each magnetization vector by angles (6;;x, #:jk), but

I still express the energy in terms of the direction cosines:

Qijk = COS ¢ijk sin 0.-J-k
Bijx = sin ¢ijksin b5k
Yijk = cosbijk

The dimensionless energy is

G=- Zg,-,-kAV (4.8)
ik
where

Gijk = %mijk - [2(h)ijx + (ha)ijk + (hez)ije] (4.9)
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The exchange field is discretized using a three-point formula:

Oaije _ Ciy1jk — 205k + i1k
Oz (Az)?

(4.10)

At the boundary, not all these terms exist (e.g. for ¢ = 1, there is no agjx); but
since dm/0n = 0 (equation 2.10, a reasonable approach is to pretend that there is a
mirror at the boundary (e.g. for i = 1, replace a;_1x by aiy1jk)-

The demagnetizing field can be written [Newell et al., 1993a]

(ha)iie = — 30 NiZ* - my (4.11)

Ty

Each tensor N::;-j,:k' depends only on the shape of each cell and the relative positions
(z' — 1,3’ — 3, k' — k); since these remain fixed, it need only be calculated once, at the
beginning of the simulation.

To search for energy minima, I used the conjugate gradient method [Powell, 1977],

which only requires the gradient of the energy for selecting search directions.

4.3 Strategic Considerations

4.3.1 The Problem of the Initial Guess

Regardless of the algorithm for finding a solution, one must provide an initial guess for
the magnetic structure. The micromagnetic problem is nonlinear and there are often
many minima, only one of which can be obtained at a time. Clearly, the solution will
depend on the initial guess. One of the challenges of micromagnetics is to come up
with an intelligent way of sampling the configuration space to find all the minima - or
at least the minima corresponding to states that are likely to occur in real particles.

Theorists have used various strategies to find micromagnetic minima. Williams
and Dunlop [1989, 1990] began with randomly oriented magnetization vectors in one
octant of the particle; they obtained the magnetization in other octants by requiring

that the magnetization was symmetric or antisymmetric with respect to the first
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octant. This strategy was used in part to save CPU time, but they were also hoping
that by trying all the symmetries, they would find all the possible minima.

Xu et al. [1994] used initial guesses that were mostly inspired by domain theory
(uniform magnetization and lamellar two- and three-domain states), although a curl-
ing state was another initial guess. Fabian et al. [1996] used uniform magnetization
and a curling state as initial guesses.

In the above papers, the authors tried to cover configuration space with a few
widely spaced initial guesses, hoping the minimization algorithm is robust enough to
go from the initial guess to a low energy solution that is often very different from
the initial guess. Algorithms like the conjugate gradient method assume that the
initial guess is close enough to the solution that the energy can be approximated by
a quadratic expansion in the model variables about the minimum, and a bad guess
can lead to a bad solution.

The simulated annealing algorithm [Press et al., 1992] is more robust than the
conjugate gradient method because it attempts to find the lowest energy state (as
opposed to a local energy minimum). Fukuma and Dunlop [1997] applied it to the
same initial guesses as Xu et al. [1994], and their results confirm the shortcomings of
the conjugate gradient method. They obtain states with much lower energies than
Xu et al. [1994].

I use a different approach: I model an isothermal process, such as hysteresis
beginning with saturation. In a large enough applied field, we can be reasonably sure
that there is only one solution - nearly uniform magnetization with the moment in
the direction of the applied field. This makes the choice of initial guess easy. After I
obtain the solution for the saturating field, I use it as an initial guess for a minimum
energy search in a slightly smaller field. The solution for that field is used as the
initial guess for the next smaller field, and so on.

" For more information on the size dependence of remanent states, I simulate a

different isothermal process, that of grain growth in zero field [Newell et al., 1993b].
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This process is interesting in itself, and it also provides another independent source of
remanent states for comparison with those from hysteresis simulations. Many of the
same considerations apply to grain growth and hysteresis simulations: for example,
there are vertical jumps in the grain growth curve, and new curves can be obtained

by reversing the direction of change in size.

4.3.2 Hysterestis Curves

An example of a hysteresis loop is shown in Figure 4.1. Most of the curve is continu-
ous; at each step, the initial guess is close to the solution, so the conjugate gradient
method works well. I can also check that the smooth parts of the curve are reversible,
and they satisfy the general thermodynamic condition dMy/dH > 0 [Brown, 1963].

Another consistency check is based on a symmetry of Maxwell’s equations [Jack-
son, 1975]. The equations are invariant under time reversal, but H and M both
change sign under time reversal. Thus the hysteresis curve should ke the same if it
is inverted (M — —M,H — —H). When I calculate the hysteresis curve, I only
calculate each branch for one direction of change of the field (aside from reversibility
checks) and then I include the inverse curve on the plot. As we see in Figure 4.1, the
curves do connect with each other. |

There are two vertical jumps in the curve. At the jump, the energy surface around
the minimum is flat, since both the first derivatives and the Jacobian are zero at an
instability. There is no guarantee that the conjugate gradient method will choose
the right direction to search for the minimum - and there is generally more than
one choice for the minimum. After each jump, the magnetization state has changed
cbnsidera.bly, so the initial guess is not close to the solution. Usually, however, the
correct minimum should be closest to the instability, so it is most likely to be chosen.

Vertical jumps are common in micromagnetic solutions and real hysteresis curves.
When I began this work, I wondered what would happen if I reversed the direction of

change of the field after a jump. I tried it, and obtained a first order reversal curve
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Figure 4.1: A hysteresis loop for a particle with X = 1.5Y = 1.4Z and volume
(0.084pm)? in a field with direction (8, 1,4). The calculated points are shown by the
crosses: note the increased density near jumps. The other half of the hysteresis curve
is obtained by the inversion M — —M,H — —H (see text). On the right is the first
iteration: the main curve, descending field. On the left is the second iteration: the

reversal curve.
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(Figure 4.1). Surprisingly, no one has done this before with a micromagnetic model.

In addition to adding some interesting complexities to the magnetic hysteresis,
reverse curves are a rich source of remanent states. In this example, the saturation
remanent state is a curling state with moment along the long axis. The remanent
state on the first order reversal curve is another curling state, but with moment along
the shortest axis. Typically, with a hysteresis simulation for one field direction, I
obtain two or three distinct remanent states. With hysteresis simulations for two or
three field directions, I obtain all the remanent states I am going to obtain, and there
is more than one example of each remanent state.

The redundancy of the remanent states is advantageous. In a micromagnetic
simulation, there is no objective criterion for terminating the search for the minimum
energy state, and no way of estimating the precision of the moment or the energy.
With two or more independent solutions for the same state, however, I can compare
the moments and energies. In subsequent chapters, I often check all the solutions for
a given particle size by comparing the moments and repeating the minimization until
they agree to a given accuracy. This comes at a cost: I often have to run the program
several times, and for a given number of significant figures in the moment, I typically
need agreement in the energy to twice as many significant figures. In one case, to
get five significant figures in the moment, I needed thirteen significant figures in the
energy!

These comparisons only indicate the precision of the results, not the accuracy -

but they do reassure us that the solutions are reproducible.

4.8.8 Identifying Unstable Solutions

As I discussed in Chapter 2, the slope dMy/dH should approach infinity just before
the jump. This can be seen in all the curves in Figure 4.1. Unfortunately, a very
fine spacing of points is often necessary to show the curvature. For example, the

hysteresis curve for L = 0.076um in Figure 6.3 required repeated refinement of the
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initial curve. On the first pass with a field decreasing from positive saturation, I got a
sequence of SD states and a jump to negative saturation just beyond H = —0.04M,,
but there was no curvature indicating an approach to an instability. I started at a
lower magnitude field and tried smaller steps, and obtained a jump before —0.04M,.
This suggested that the state at —0.04 M, was not really stable.

After repeating this process a few times, I obtained the curve shown in Figure 4.2a.
There was still no approach to an instability, but now there was a small jump to an
intermediate state with some curl. Starting with the intermediate state, I added
positive increments to the field and obtained a curve that met the upper curve at
—0.01M,. Continuing the curve downwards in very small steps, I finally obtained a
smooth approach to an instability (Figure 4.2b). The resolution I needed to see this
jump was 0.0001M,!

As the upper and lower curves converge, so do the curling and SD states. Since
at the meeting point the curling state is obtained by a small perturbation from the
SD state, and the curling state has lower energy, the SD state must be unstable.
I frequently encounter this situation, where nucleation has occurred and yet I still
obtain the SD state at more negative fields.

There are two good reasons for thinking the SD state is unstable beyond the
nucleation field. First, I often get an apparently stable solution at one field, and then
get instability at a more positive field. Secondly, the SD state does not approach an
instability smoothly. Since for a 5 x 5 x 5 grid there are 250 variables in the energy
minimization, it is hardly surprising if the minimum-seeking algorithm cannot always
find the instability mode.

In this dissertation, I refine the hysteresis curves using the above procedure of
pruning unstable branches; this often simplifies the hysteresis considerably. At the
same time, it is easy to identify transitions such as nucleation when an unstable
branch meets a stable one. Unfortunately, this is quite time consuming, and it has

limited the number of good hysteresis curves I could obtain. I also developed this
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Figure 4.2: An example of the procedure for identifying the true instability field. (a)
After a process described in the text, a curve with a jump from an SD state to a
curling state is obtained. (b) The curve for the curling state is extended to more
positive fields, and a step size of 0.0001M, is used for more negative fields to get a

smooth approach to the jump.
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method long after I had already done a lot of simulations; unfortunately, most of

those simulations now appear untrustworthy.

4.4 Comparison with Fukuma and Dunlop

Using the simulated annealing method, Fukuma and Dunlop [1997] obtained states
with much lower energy than those found by Xu et al. [1994] using the conjugate
gradient method with the same initial guesses. There were two pairs of solutions:
two curling states which are different only in the corners, and two three-domain
states (again, with minor differences). The curling states have significantly lower
energies than the three-domain states.

A good test of my method is to try it on the same problem - a two-dimensional
model of a one micron cube with magnetocrystalline easy axes oriented as in Fukuma
and Dunlop [1997]. To save CPU time, I used a 25 x 25 grid (theirs was 50 x 50).
[ calculated hysteresis curves for two field directions, H || (7,4,1) and H || (1,7, 4);
the directions were chosen so as not to coincide with any easy axis or symmetry axis
of the cube. Since my goal was only to find remanent states, I did not refine the
hysteresis curves using the approach described in the previous section, so they are
not shown.

For H || (7,4,1), the saturation remanent state is a curling state that looks like
Figure 4e of Fukuma and Dunlop [1997]. Both states have the magnetization per-
pendicular to the zy plane in the center and all four corners, and the magnetization
in each corner is in the same direction as in the center. The volume-average magne-
tization for both states is M = 0.012M,. The energy of my state is 0.055Esp, where
Esp = uoM2V/6; their state has energy 0.053Esp. The energy difference is small
enough that it is probably due to the difference in the grid size; for comparison, the
energy of the curling state in Xu et al. [1994] is 0.062Esp.

After cycling through a reverse field H = —0.05M,, I get a new remanent state.
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This is also a curling state, but two corners have magnetization in the opposite
direction to that in the center. This is the same as the state shown in Figure 4a of
Fukuma and Dunlop {1997], and both states have M = 0.001M,. The energy of my
state is 0.055FEsp, while theirs is 0.052Esp.

Thus in one hysteresis cycle, I obtain the two lowest energy states that Fukuma
and Dunlop [1997] obtained using the simulated annealing method. Clearly, my
method solves the problem of choosing a good initial guess for the conjugate gradient
method.

In addition to finding the remanent states, I obtain information about the hystere-
sis properties of the particle - including how a given hysteresis state may be obtained.
Fukuma and Dunlop [1997] claimed a three-domain state was the saturation remanent
state, but their reasoning was indirect, whereas I got my saturation remanent state
directly from a hysteresis simulation. When I use a field in the (1,7,4) direction,
much closer to the easy axis, I still do not get a three-domain state. Instead, I get
a third curling state, this time with three corners magnetized in the same direction
as the center (Figure 4.3). The energy is 0.055Esp again, and the volume-average
magnetization is 0.011M,.

The differences in the corners between the curling states may be an artifact of the
discretization. The state in Figure 4.3 is very similar to the closure domain state in
Figure 3.1. In the latter figure, the demagnetizing energy is equal to zero because
M i =0 on all surfaces and domain boundaries. In the micromagnetic model, the
cube is divided into rectangular prisms that cross the diagonals of the particle, so the
magnetization cannot change across the diagonals. In the corners, the magnetization
cannot be parallel to all surfaces. With a triangular discretization, the remanent
state might be even closer to a closure domain state.

As a method for finding remanent states, my hysteresis method is even more
discriminating than previous methods using an initial guess in zero field. Of course,

one could try using the simulated annealing method to calculate a hysteresis loop,
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in a field parallel to (1,7,4). The arrows indicate the magnitude and direction of the
component of magnetization in the plane. In the lower left corner, the magnetization

Figure 4.3: The remanent state for the two-dimensional model of a one micron cube

points down, while in the other four corners it points up.
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but it is much less efficient than the conjugate gradient method because it searches a
larger region in configuration space in an attempt to find the global energy minimum.
Worse, if the simulated annealing method were perfect, it would always find the global
energy minimum and there would no hysteresis. Fukuma and Dunlop [1997] get a
different remanent state for each initial guess, so the algorithm is clearly not perfect,
but it is still quite likely that the method would jump to the lowest energy state

prematurely and miss part of the hysteresis loop.

4.5 Controversy Over the Number of Domains

The controversy over the size range for stability of the SD state (Chapter 3) is part of
a broader question about the number of domains as a function of particle size. Models
with lamellar domains [Moon and Merrill, 1985] and one-dimensional micromagnetic
models [Enkin and Dunlop, 1987; Newell et al., 1990} predicted many more domains
than were actually observed [Worm et al., 1991].

There have been many attempts to explain the discrepancy. One was based on the
concept of local energy minima: the domain states with lower numbers of domains
happened to be inaccessible in ordinary hysteresis processes. Unfortunately, many of
the domain states that are commonly seen in particles above a micron in size were
predicted to be unstable in one-dimensional models. Some authors cast doubt on the
Bitter pattern images: either some walls were not meeting the viewing plane [Heider
and Hoffmann, 1992] - or, if they were, they were not always imaged by the Bitter
technique [Williams et al., 1992; Newell et al., 1993b]. Ye and Merrill [1995] tried
including a macroscopic stress in a quasi-two-dimensional model, but they decided it
would not have much effect on the domain structure of magnetite.

One theory predicted fewer domains than were observed, but it seemed to attract
little attention. Worm et al. [1991] calculated the energy of a two-domain state with

closure domains and compared it with the energy of lamellar domain states; they
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concluded this should be the lowest energy state for all sizes above the global critical
size!

With the two-dimensional models of Xu et al. [1994] and Fukuma and Dunlop
[1997], theory and observation for magnetite seemed to have converged. When the ini-
tial guess was a lamellar domain structure, closure domains appeared spontaneously
there were far fewer domains than in one-dimensional models. The two-dimensional
models obtained curling states that were very similar to the closure-domain structure
predicted by Worm et al. [1991], and they were the lowest energy states. Thus to
explain the greater number of domains in real particles, Fukuma and Dunlop [1997]
had to invoke the concept of local energy minima (section 3.1.2). They predicted the
three-domain state would be the saturation remanent state.

Now my results close the LEM loophole. Not only do the curling states have the
lowest energy, but they are the only kind of remanent state I obtain. So now the
question is why are more domains seen than the theory predicts. The closure domain
structure is very effective in reducing the magnetostatic energy (because of the pole
reduction principle); adding more domains increases the total area of the domain walls
(and hence the domain wall energy) without reducing the magnetostatic energy.

Worm et al. [1991] suggested that magnetostriction might increase the number
of domains (an idea that was first considered by Lifshitz [1944]). If there are no
surface tractions on a body, a uniform magnetization causes the body to deform
uniformly in the direction of the magnetization. If adjacent domains are magnetized
perpendicular to each other (as with closure domains), the strains are incompatible
and stresses appear in the crystal. Increasing the number of domains may decrease
the energy by decreasing the volume of the closure domains.

Unfortunately, it is very difficult to solve the boundary value problem for mag-
netostriction and the existing calculations only provide upper bounds for the mag-
netostriction energy that are probably well above the true energy, so we don’t know

whether increasing the number of domains will really reduce the energy.
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Before worrying about the number of domains, we should answer the zero-order
question: when do closure domains occur? If domain states with closure domains are
the lowest energy states for magnetite, why are they often not seen?

One possibility is that many particles are under stress. Magnetite particles syn-
thesized by the glass ceramic method [Worm et al., 1991; Geifiet al., 1996; Pokhil and
Moskowitz, 1997] tend to have curved domain walls and lack closure domains. The
magnetite particles in glass ceramics share welded boundaries with a silicate matrix
which is believed to have a significantly higher coefficient of thermal expansion than
magnetite [Worm et al., 1991]. The particles are synthesized at 900°C, and as they
cool a considerable compressive stress can develop. Indeed, some of the structures
observed by Pokhil and Moskowitz [1997] (especially their Figure 11) look like the
branching structures that are characteristic of a large uniaxial anisotropy [Lifshitz,
1944]. However, it is not clear what would give rise to a large uniaxial anisotropy:
as we saw in Chapter 3, a prodigious stress would be required to produce a large
anisotropy.

Another possibility is that in many studies, the crystallographic orientation of
the surface is not known [Ozdemir et al., 1995]. It is well known that there can
be enormous differences in the surface domain pattern depending on the orientation
of the surface; it is often supposed that these patterns mask a much simpler pattern
below that is the “true” domain structure, but we don’t really know. If any orientation
for magnetite reflects the internal domain structure for magnetite, it is likely to be
the (100) plane because it contains two of the < 111 > easy directions. Textbook
examples of closure domains were seen in a set of studies where the crystallographic
orientation of the viewing plane was carefully controlled [Ozdemir and Dunlop, 1993;
Ozdemir et al., 1995].

Even when the orientation is known, most domain observation techniques can
only be used on flat, highly polished surfaces, and the polishing stresses the surface.
Two exceptions are Lorentz force microscopy [Smith, 1980] and the dried colloid SEM



106

method [Soffel et al., 1990]. It is probably significant that in the papers that use this
technique, the two-domain state with closure domains is common.

Thus before we try adding magnetostriction to domain models, we should prob-
ably explore the effect of changing the orientation with respect to the surface of the

magnetocrystalline easy axes, and see whether this can inhibit closure domains.

4.6 Summary

I have developed an approach to solving micromagnetic problems that uses a combi-
nation of field-based hysteresis simulation and grain growth simulation to get reliable
results. I show that stable solutions should lie on a hysteresis curve with a slope
dMpy/dH that approaches infinity near an instability. Back continuation of such
curves to the nucleation field is a powerful method for eliminating unstable solutions.

I use a hysteresis method to find the remanent states for a two-dimensional model
of magnetite. The remanent states are consistently as low or low as those obtained for
the same configuration by previous methods. My results reinforce the closure domain
paradox of Worm et al. [1991]: the two-domain state with closure domains appears to
have the lowest energy of all remanent states, and it is the only kind of remanent state
I obtain in hysteresis simulations. In real particles, many more domains can be seen.
Since the closure domains appear to be the reason there are so few domains, future

theoretical work should focus on the conditions for formation of closure domains.



Chapter 5

NUCLEATION IN MAGNETICALLY ISOTROPIC
CUBOIDS

Before computers were fast enough for theorists to solve two- or three-dimensional
micromagnetic equations numerically, there was a gap between domain theory and
nucleation theory. In MD models, magnetization changed by motion of domain walls,
but there was no mechanism for the walls to enter the particle. In nucleation theory,
the curling mode was a perturbation that led to instability of uniform magnetization,
but it was not clear what happened after nucleation occurred. Most theorists assumed
the instability caused a domain wall to appear or the moment of the particle reversed.
Some even assumed that the moment reversed in internal field coordinates, so there

was a hysteresis curve with slope 1/N.

One of the most common solutions of three-dimensional numerical models looks
like a curling mode [Fredkin and Koehler, 1987; Schabes and Bertram, 1988; Williams
and Dunlop, 1989]. For a cube, Schabes and Bertram [1988] obtained a state like that
in Figure 5.1. They described it as a “type of generalized curling,” but because of
the association of the curling mode with instability they called it a vortex state. This

name has been adopted by most researchers in magnetics.

Schabes and Bertram [1988] did not call their solution a curling state because the
curling mode is a mode of instability, and it has often been assumed that when uniform
magnetization becomes unstable, there is a sudden reversal of the magnetization (this

is true for the infinite cylinder [Aharoni and Shtrikman, 1958]}).

The term instability has two meanings. One is a discontinuity such as the jump



108

X /‘ 4_}\/
ot ’
y
z —N 77—\ / =\
Ly<\-\> M <//>
\N\—/ \\N—// \N—~"/
N~ "/ N ~—— \ N\——_ "
x \*\\\: A N A B :':':::

T e e L o it e e e

Figure 5.1: The curling state: magnetization vectors for a particle with L = 12.4L,
(0.084um in magnetite). At the top is a schematic. The middle three plots show
the magnetization as seen looking down from the z direction (the direction of the
moment). The bottom three plots show the magnetization as seen from the y or z
direction. Going from left to right, the cross-sections are the back, middle and top of
the particle as seen by the eyes in the top diagram. The vectors show the component
of magnetization in the plane; where they are small, the perpendicular component is

large.
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that occurs at the switching field (Figure 2.3). Above the switching field, the magne-
tization (and the corresponding local energy minimum) changes continuously with the
field. At the switching field, the minimum disappears entirely and the magnetization
must jump to a new minimum. In the other sense, a precisely defined state becomes
unstable, but there is not necessarily a jump. For example, a uniformly magnetized
state with its moment in a particular direction is destabilized by a field in some other
direction. However, this may just lead to a small rotation of the moment, as in SD
theory.

Often nucleation appears to be the latter kind of instability. In micromagnetic
models of ellipsoids, the curling perturbation is added to uniform magnetization to
form a curling state [Fredkin and Koehler, 1988, 1989; Aharoni and Jakubovics, 1990).
This state evolves continuously away from uniform magnetization.

In a cube, the magnetization is non-uniform even in the SD size range (Figure 5.2).
Schabes and Bertram [1988] called this state the flower state, because of the way
the magnetization vectors open outwards at the ends. The magnetization is nearly
uniform, but there is a small transverse component which is inward at the bottom
(the end where M - 1i < 0, 11 being the outward normal to the surface) and outward
at the top. As the field increases, the magnetization in the flower state approaches
uniform magnetization, but it never becomes perfectly uniform. Nevertheless, it is
sufficiently close to uniform that it might be considered uniform magnetization with
a perturbation added.

Models of the approach to saturation in ferromagnets often invoke local deviating
forces exerted by non-uniformities in the crystal. If the deviating forces are local
and small, it is possible to treat them with linear perturbation theory Brown [1940].
If the flower state can also be considered a perturbation of uniform magnetization,
with the deviating forces coming from the normal component of magnetization at the
surface (subsection 5.1.2), we would expect the mode of nucleation to be similar to

that in ellipsoids. We would also expect that nucleation theory could be adapted to
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cubes.
In this chapter, I show that the flower state plays the same role as the SD state

in ellipsoids, and the theory for nucleation in ellipsoids can be adapted to cuboids.

5.1 The SD (Flower) State in the Cube

5.1.1 The Demagnetizing Field and the Flower State

Since the difference between the sphere and the cube is in the demagnetizing field, I
begin with a description of this field. In a cube with magnetization that is uniform
and perpendicular to two surfaces, the only magnetic poles (M-n) are surface charges
+ M, on one surface and — M, on the other. The equations for the demagnetizing field
are then identical to the more familiar equations for an electric field between capacitor
plates [Dunlop et al., 1990].

In an ellipsoid of rotation, if the field is along the symmetry axis of the particle,
the demagnetizing field is parallel to the moment, and instability can only occur
when the sign of the total field H + Hy changes in some region of the particle. In
the cube, there is also a perpendicular, or transverse, component. Because of this
component, there is a non-uniform torque oM Xx Hy on the magnetization. Since
there is nothing to balance this torque, uniform magnetization is not stable in any
applied field. Instead, there is a flower state as in Figure 5.2.

The magnetization in the flower state curves the opposite way to the demagne-
tizing field in Figure 5.3. It is instructive to look for a reason. In an equilibrium
state, Brown’s equation (2.9) implies the magnetization must be parallel to the total
effective field, which in the isotropic cube is the sum of an exchange field and the
demagnetizing field. If there is a non-uniform perturbation in the magnetization, the
exchange field increases in opposition to it.

I tried creating an “anti-flower” state by changing the sign of the transverse com-

ponent of the magnetization in the flower state. The magnetization and effective
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Figure 5.3: The demagnetizing field for uniform magnetization. The demagnetizing

field has the opposite sign to the magnetization. Same conventions as in Figure 5.2.
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field are nearly parallel, indicating a possible solution to Brown’s equation - yet the
energy of the anti-flower state is much higher than that of the flower state, and the
anti-flower state is unstable.

The flower state has lower energy than the anti-flower state because the magnetic
poles are the same or smaller everywhere in the particle. Consider the top half of the
particle, going from the middle to the +% face: the z component of the magnetization
decreases because it rotates away from this face, so dM,/dz < 0. The magnitude of
the pole |V - M| is therefore reduced if both dM, /dy and dM;/dz are negative. In
the lower half of the particle, dM./dz > 0, so |V - M| is reduced if the other two
derivatives are positive. This is consistent with the flower pattern, and the opposite
of the anti-flower pattern. Since the anti-flower state appears to be stationary, it may
be a saddle point or maximum.

For the flower state, the demagnetizing field still curves inward, as it does for
uniform magnetization, but its magnitude is much smaller in the corners than the

demagnetizing field.

5.1.2 Approach to Saturation

When we say the magnetization is saturated, we imply chat it has reached its max-
imum value. In real particles, the magnetization continues to increase as the field
increases, although dMy/dH decreases. Even in simple theoretical models, the mag-
netization approaches saturation asymptotically.

For an isotropic ensemble of Stoner-Wohlfarth particles, the magnetization in the
approach to saturation is well approximated by [O’Reilly, 1984, page 73]

=t (1 2) -

where b = N2M?/15 for shape anisotropy. For cubic anisotropy with K; > 0, b =
(8/105) K} /ua M.
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In large particles, defects and inclusions add other terms to the expansion. In-
clusions give rise to a —1/H term [Néel, 1948]; concentrations of defects add H—"/2
terms, with n = 1, 2,3 for point, line and plane concentrations of random deviating
forces [Brown, 1940].

It seems reasonable to think of the demagnetizing field of the cube as a deviating
force concentrated near the poles M - ii at the surface of the particle. I tried fitting
the approach to saturation for the cube to the above power laws; it agreed well with
an H~!® law (Figure 5.4), the same as for the equation of Brown [1940] for plane
concentrations of random deviating forces. His assumptions are very different from
the conditions of my simulations, but the law is consistent with deviating forces that

are concentrated at the surface.

5.2 Nucleation in the Cube

5.2.1 Particle Size Dependence of the Nucleation Field

In the cube, the demagnetizing field could promote or discourage nucleation: the
transverse fields in the corners could destabilize the SD state by forcing the magneti-
zation to rotate, or the antiparallel demagnetizing field in the center could be smaller,
thus making the SD state more stable. In Figure 5.5, I plot the nucleation field as a
function of particle size for the isotropic cube and sphere. The demagnetizing field

for the sphere is predicted by equation 3.5:

H, kL2,
w=-N

with N, = 1/3 and k£ = 22.5. The nucleation fields obtained by the numerical model of
Aharoni and Jakubovics [1990] (circles) agree well with this equation. The nucleation
fields for the cube are also a good fit to this equation if N, is replaced by an effective
demagnetizing fa.ctor N, = 0.26.t

1 This result also shows that it is appropriate to compare particles of different shapes by their

volume. This is not obvious. Since the curling pattern is two-dimensional, Hy, could be determined
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Figure 5.4: The approach to saturation for a particle with L = 9.03L¢, (0.061um in
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Figure 5.5: A plot of nucleation field as a function of particle size for an isotropic cube.
The dotted line is the theoretical nucleation field for a sphere of equivalent volume,
and the two circles are the nucleation fields obtained by Aharoni and Jakubovics
[1990]. The crosses are my nucleation fields for the cube; the solid line is the best
fitting line with slope k£ = —22.5, the theoretical slope for the sphere.
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Since the nucleation field is smaller in the cube than in the sphere, it is probably
determined primarily by the antiparallel component. The effective demagnetizing
field of 0.26 M, at the nucleation point is well below the maximum antiparallel com-
ponent (0.50Mf,) and well above the minimum component (0.18M, for L = 9.03L.x
and 0.20M, for L = 12.4L.y) - but it is fairly close to the volume average (0.30M,).

This implies that conditions for nucleation are not local - hardly surprising given
the non-local magnetostatic interactions and the small size of the particle. Indeed,
the term “nucleation” is misleading: it implies a change that starts locally (from
a nucleus) and spreads. Instead, the curling perturbation occurs throughout the

particle and increases outwards from the center.

5.2.2 Dependence of the Nucleation Field on Grid Size

We must be careful how we interpret the result for the nucleation field, because it
depends on the accuracy of the demagnetizing field. In the numerical model, the
demagnetizing field at a grid point is the average over the volume element around the
grid point [Newell et al., 1993a). Since the demagnetizing field depends on position,
the volume average depends on the shape and size of the volume element.

In Figure 5.6, I plot the extrema for the antiparallel and transverse components
of the demagnetizing field for uniform magnetization. For a grid size of one, the
transverse field is zero and the maximum and minimum parallel fields are equal to
the average field M;/3. As the grid size increases, the maximum and minimum
parallel fields initially diverge quickly and then are nearly independent of grid size.
The transverse component, by contrast, increases rapidly with grid size.

Fortunately, the demagnetizing field does not seem to depend significantly on the
transverse field. In Figure 5.7, the nucleation field is shown as a function of grid size.

by the cross-sectional area perpendicular to the moment. If so, the nucleation fields for the cube
and sphere would have the same slope if the square root of the area was used for the length; in

Figure 5.5, the slopes would be different by a factor of about 1.2.
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For a grid size of three or more, the nucleation field does not change significantly,

and it is best predicted by the mean demagnetizing field.

5.2.8 Brown’s Paradoz

It has long been known that nucleation typically occurs much more easily in real
particles than the theory for perfect crystals predicts. For an ellipsoidal particle
with non-uniform intrinsic anisotropy, Brown [1945] derived a rigorous bound on the

nucleation field:
2Kmin

poM;

Hn
_—< — .
M, = (5.2)

where Knmin is the minimum magnetocrystalline anisotropy in the crystal. This has the
same form as equation 3.5 in the limit L — oo with N, = 0 (for infinite elongation).
In experiments on iron whiskers [Bozorth, 1951, page 561], the nucleation field was
much larger than this upper limit: to resolve the discrepancy, Kmin Would have to
be a factor of 5000 smaller than the predicted coercivity. This discrepancy is called
Brown’s paradox.

Imperfections, for example dislocations or cavities, can reduce the local value
of k by inverse magnetostriction, or they destabilize the magnetization by exerting
transverse forces on it. However, no one has been able to demonstrate theoretically
that such local deviations are enough to resolve Brown’s paradox. The forces required
are sufficiently large that the linear approximation breaks down [Brown, 1959].

Shtrikman and Treves [1960] predicted the field at edges and corners could cause
nucleation, and proposed that it might be a solution to Brown’s paradox. The con-
tinuous demagnetizing field approaches infinity near the edges of the cube. Clearly,
numerical models cannot determine the effect of this on the magnetization. It is
possible, however, that at a moderate grid size there might be a qualitative change
in the magnetic behavior the transverse field gets bigger.

Hartmann [1987] measured the hysteresis curve for single-crystal iron whiskers be-
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Figure 5.7: The nucleation field for a 0.084 micron cube as a function of grid size.
For comparison, I include nucleation fields predicted using the mean demagnetizing

field and the minimum parallel demagnetizing field in equation 3.5
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fore and after polishing the corners. When a crystal had sharp corners, the hysteresis
curve was very narrow; after polishing, it was a nearly rectangular loop with a coer-
civity very close to the theoretical nucleation field. Thus sharp corners can increase
the nucleation field considerably. This particular solution to Brown’s paradox may
not be common in nature, however. Aharoni [1989] estimates that if the corners are
smoothed by as little as the radius of an atom, the demagnetizing field only reaches
about 1.5M,. Hartmann examined his crystals with an electron microscope and found
they were “bounded by perfect sharp corners,” so his result may be consistent with
this estimate, but most particles may be better represented by rounded edges and
corners.

Thus micromagnetic models with their present resolution probably do a reasonably

good job of representing nucleation in real particles.

5.2.4 Field Not Aligned With a Symmetry Azis

All the above work is for a field that is aligned with a fourfold symmetry axis of the
cube. In Figure 5.8, I show an example of nucleation for a field in a direction that
breaks the symmetry. The vectors are the difference by vector subtraction between
the states before and after nucleation. As is true for a field aligned with the symmetry
axis, nucleation is associated with the appearance of curl, but the curl is centered

around an axis that is roughly in the same direction as the field.

5.3 SD States and Nucleation in a Triaxial Cuboid

In this section, I model the magnetic behavior of a triaxial cuboid - a particle with
rectangular faces and three unequal sides. The ratios of the sides are X = 1.4Y =
1.5Z, so the X axis is the long axis, the Y axis is the intermediate axis, and the Z
axis is the short axis.

I use a combination of hysteresis and grain growth simulations to find the remanent
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Figure 5.8: The difference between magnetization vectors before and after nucleation.
The view is from the z direction, and the vector shows the direction of the field in
the y — z plane. There is a curl centered around the direction of the field. The same

conventions are used as in Figure 5.1.

states for the triaxial cuboid as a function of size up to 0.15um. I restrict myself to
this size range because the grid size I am using is not large enough to represent
the small-scale changes of magnetization in larger particles. As I will show, the size
range near the SD critical sizes is worth a careful exploration because the magnetic

properties are changing rapidly.

As I mentioned in Chapter 4, I checked the remanent states at a few particle
sizes (0.09,0.11,0.13 and 0.15um) by comparing the moments derived from hysteresis
curves with those from grain growth simulations. Each component of the normalized
volume-average magnetization, if given in the form z.zzzz, was reproducible to four

decimal places.
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5.8.1 Remanent states and Nucleation Sizes

In zero field, an ellipsoidal ferromagnet in the SD size range has two energy minima
for magnetization aligned with the long axis; the intermediate and short axes corre-
spond to saddle points and maxima (Figure 2.1). The cuboid also has a flower state
with moment along the intermediate axis (but not the short axis). I obtained the
intermediate-axis state by the other method I described in Chapter 4: simulation of
changes in particle size. In 0.09um particles, curling states occur with moment along
the intermediate and short axis. By decreasing the size, I obtained a sequence of
states for the intermediate axis that turned into flower states. The short-axis curling

state becomes unstable at 0.067um.

In a plot of magnetization against particle size, the nucleation critical size L, can
be identified by a sudden change in the slope dMy/dH. In Figure 5.9, I show the

magnetization as a function of particle size in the region where the nucleations occur.

An example of a long-axis remanent state just above nucleation is shown in Fig-
ure 5.10. At nucleation, the magnetization does not change suddenly; a small amount
of curl is added to a flower state. As particle size increases, the component in the z

direction decreases and the state looks increasingly like a pure curling state.

Above the nucleation size, I continue to get the flower state. As I showed in
Chapt;ar 4, this state is unstable, so I represent it in Figure 5.10 by dotted lines.
When the long-axis flower state becomes numerically unstable, it turns into the state
shown in Figure 5.11. This looks similar to that in Figure 5.10, but the curls at
the top and bottom of the particle are in opposite directions. It appears that the
corresponding M vs L curve should continue back to join the curve for the flower
state, but the state becomes unstable before they join (Figure 5.9). The state also

becomes unstable at 0.094um.

Schabes [1991] observed a similar state in models of hematite particles with a

large aspect ratio; he called it a +— vortex state. As with the curling state, this state
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Figure 5.9: Volume-average magnetizations of the remanent states in the region where
nucleation occurs. The solid lines are for the triaxial cuboid; for comparison, the
magnetization for the cube is shown as a dashed line. Where nucleation occurs, there
is a sharp bend in the magnetization; the continuation of the flower state is shown as
a dotted line because it is probably not stable. Also shown with the +— label is the

+— vortex (second order curl) state: this state is probably also not stable.
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-has a precedent in nucleation theory. The curling mode described in equation 3.3 is
just one of a set of modes that in general depend on the vertical coordinate as well:

in cylindrical coordinates [Brown, 1963],
drhyg = drng(p, z), Om, =0 (5.3)

In my coordinates, z is replaced by z. If we take the vector difference between the
magnetization vectors of the state in Figure 5.11 and those of the pure flower state
(Figure 5.12), the result is a perturbation mode that is well described by equation 5.3.
The z dependence is such that M || £% at the surface, thus reducing the surface poles.

In the nucleation theory for ellipsoids (Chapter 3), the higher order nucleation
modes never occur because the lowest order mode destabilizes the SD state before
they can occur. This is true for the cuboid as well, and I have not obtained this state

in the field-based hysteresis simulations. Thus the state is probably unstable.?

5.4 Nucleation and Curling

Since the magnetization is never uniform in a cube, there cannot be nucleation in the
strict sense of a change from uniform to non-uniform magnetization. If we could not
generalize the concept of nucleation, it would have little relevance to real particles.
Fortunately, as I showed in Section 5.3, there is a well defined nucleation field where
a sharp change in the slope dMy/dH occurs. If the change in magnetization is
continuous, there is a topological change in the magnetization. Above the nucleation
field, the flower state has zero curl; below it, there is a combination of curl and flower
state. Similarly, in ellipsoids after nucleation, there is a combination of uniform
magnetization and a curling perturbation.

Schabes and Bertram {1988] made this statement quantitative by defining a he-
licity A that is proportional to a line integral of the magnetization along an oriented

2 The short-axis curling state also appears suddenly at 0.067um, but it then has the lowest energy

of all states and it appears in field-based hysteresis simulations, so it is undoubtedly stable.
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% ° 5-4

They showed that A is zero for the flower state and nonzero for the curling state.

We can express the above integral in another form using Stokes’ theorem:
fM-d=§VxM-da
c s

where S is any surface bounded by the curve C and within the volume where M is
continuous.

The curl V xM is zero throughout the particle in the flower state and nonzero after
nucleation. We can also say, in analogy to fluid mechanics, that the magnetization
has vorticity.® It probably also has helicity, although helicity is usually defined as
M - (V x M) [Merrill et al., 1996].

Thus curling and vortex are appropriate names for the state after nucleation has

occurred. I prefer curling because of its continuity with earlier micromagnetic theory.

5.5 Transitions in Remanent States

As I described in Chapter 5, the long-axis and intermediate-axis curling states nu-
cleate at 0.058 and 0.08 microns, while the short-axis curling state first appears at
0.067um. Near 0.11pm, further transitions occur in the magnetic states. These
transitions are associated with changes in the curl. I will begin the discussion of
transitions with the z axis (short axis) curling state. Up to L = 0.112um, this state
is a combination of a flower component and some curl. As the particle size increases,
the component of magnetization in the z direction decreases, but otherwise the state
looks the same. The state at 0.112um is shown in Figure 5.13.

Just above L = 0.112um, the moment starts to rotate towards the z axis (Fig-
ure 5.14), and there appears to be a slight curl around the z axis. This curl probably

3V x M is also called an effective current density [Jackson, 1975, equation 5.79).
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Figure 5.14: The intermediate axis curling state at 0.113um, just after the transition

occurs. The moment now has an z component, and there is also some curl about the

T axis.
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Figure 5.15: An illustration of the calculation of the £ component of the normalized
curl parameter A. The y components of M in the zy planes and the z components

of M in the zz planes are added in a right-handed screw sense.

reduces the energy by reducing the surface poles on the +§ surfaces.

To investigate topological changes in the magnetization, I generalize the A pa-
rameter of Schabes and Bertram [1988] to a vector quantity A. For a direction X;,
I choose circuits 1(z;) L %X; around the outside of the particle (with a right-handed

screw sense), and I average the component of M along I;:

Ai= [dz; f M- di(z:) / [ dz: f digas) (5.5)

An example for the component of A in the z direction is shown in Figure 5.15. The
components of A can be thought of as normalized volume-average curls about each
axis; the normalization is such that the maximum possible value is 1.

In Figure 5.16, I show the components of the volume-average magnetization and

of the curl parameter A as a function of particle size. In Figure 5.16a and c, the 2
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components are shown. At the nucleation point L = 0.058um, a curl develops about
the z axis. The volume average curl is roughly constant at 0.055, but as particle size
increases the curl becomes more localized around the central z axis. In Figure 5.16b
and d, [ show the x components. Both have a vertical takeoff just above L = 0.112um.

The intermediate-axis curling state (Figure 5.17) has a similar behavior with par-
ticle size, except that it begins by nucleating at 0.058um. The curl about the y
axis takes off vertically and rapidly reaches a plateau at about 0.65, higher than
the value for the short-axis state. At 0.11um, an = component appears in both the
magnetization and the curl.

There is also a transition for the long-axis curling state at L = 0.11um, but it is
strikingly different in two ways (Figure 5.18). First, there is a discontinuous change
in the main component of magnetization and curl (Figure 5.18a,c). Secondly, the new
component along the short axis starts large and decreases (note, however, that the
curve starts out vertical, as do the curves for the other nucleations).

Together, Figures 5.16, 5.17 and 5.18 indicate that there are transitions in all
the remanent states at L = 0.11um. These transitions reduce the symmetry of the
states, and this has the result of removing some of the constraints on the direction
of the moment. Instead of being in a fixed direction, the moment of each state is
confined to a plane: the zz plane for the short-axis curling state, the yz plane for
the intermediate-axis curling state, and the zz plane for the long-axis curling state.
This is an indication that the shape of the particle is having a decreasing effect on

the magnetization.

5.6 Nucleation and Bifurcations

When a curl is added, the sense of the curl is chosen arbitrarily. In Figure 5.1, for
example, the curl is right-handed (the moment being upwards out of the page). It
could equally well be left-handed, with the same moment; the energy would be the
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Figure 5.16: Components of normalized volume-average magnetization M/M, and

normalized volume-average curl A for the intermediate-axis curling state. The curling

state nucleates at L = 0.058um, as indicated by a vertical takeoff for the curl around

the intermediate axis (figure ¢). At L = 0.11uym, an £ component is added to the

magnetization and the curl. Again, there is a vertical takeoff.
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Figure 5.17: Components of normalized volume-average magnetization M/M, and

normalized volume-average curl A for the short-axis curling state. The curling state

appears suddenly at 0.067um and long-axis components of magnetization and curl

appear at 0.11ym.
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Figure 5.18: Components of normalized volume-average magnetization M /M, and
normalized volume-average curl A for the long-axis curling state. The curling state
nucleates at L = 0.08um, as indicated by a vertical takeoff for the curl around
the intermediate axis (figure c). At L = 0.11um, a new state appears. This state
begins with a comparatively large z (short axis) component, and then the component

decreases with particle size.
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Figure 5.19: Models of bifurcation, after Nicolis and Prigogine [1989]. As the variable
on the horizontal axis changes, the variable on the vertical axis has only one possible
value at first, but a new state arises at a critical point. (a) Pitchfork bifurcation: two
new and symmetric states arise. (b) Bifurcation for broken symmetry: one branch of

the bifurcation is selected. The dotted line indicates an unstable state.
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same. Since there is no such pair of flower states, nucleation doubles the available
states.

This phenomenon is known as bifurcation. An analogous bifurcation in fluid
mechanics is the onset of Rayleigh-Bénard convection [Tritton, 1988]. In a highly
symmetric configuration as in Figure 5.1 the choices of curl are equally likely, and
small fluctuations will determine the choice. This is known as pitchfork bifurcation,
and is shown schematically in Figure 5.19a. Many of the curves in the previous
section look like one of the branches of a bifurcation, with a vertical initial slope to
a component of the curl.

In a real particle, the symmetry between states is usually broken and the bifur-
cation is more likely to look like Figure 5.19b. As the variable along the horizontal
axis (field or particle size) changes, the state follows the upper curve and changes
continuously. At a critical point, a pair of stable state and unstable states appear.
This is called a limit point bifurcation; examples can be seen in the SD curves in
Figure 2.3. In particles where the symmetry is broken, we may see the upper curve
and not know there is another branch unless we know there is a bifurcation in the
symmetric case.

With each transition involving a new component of curl, the number of distinct
remanent states is doubled. I can show that these states are related to each other by
symmetry transformations that map the particle onto itself, but the proof requires a

significant amount of background material, so I have left it out of this dissertation.

5.7 Summary

In this chapter, I have looked at SD states and nucleation in cuboids and put them
in the context of older micromagnetic theory. I showed that the flower state is a SD
state that is perturbed by the non-uniform demagnetizing field. The magnetization

fits a H~%2 law of approach to saturation, consistent with perturbation forces that
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originate in the surface poles M - ii.

The nucleation field H, for the cube has the same dependence on particle size as
it does for the sphere, except that the effective demagnetizing factor is smaller. Since
the demagnetizing field is destabilizing, this makes nucleation more difficult in the
cube.

I also found that (fortunately) the nucleation field does not depend significantly
on the grid spacing in the numerical model, even though the transverse demagnetiz-
ing fields in the corners increase rapidly with grid size. Since the fields in the corners
perturb the SD state, they could plausibly destabilize it - but the SD state is actually
more stable in the cube than in the sphere. The nucleation field seems to be deter-
mined by the average demagnetizing field, which is smaller than in the cube. The
reason the nucleation field does not depend on the local value of the demagnetizing
field is that the magnetostatic forces are non-local and the structure of the curling
perturbation is also non-local.

In a triaxial cuboid, there are SD states with moments along the axis of inter-
mediate length. No such states occur in ellipsoids of rotation. The states change
continuously with particle size, and both the long-axis and intermediate-axis states
have a curling mode nucleation at well defined critical sizes. At 0.067um, a short-axis
curling state appears suddenly and then is seen at all larger sizes.

The common feature of nucleation in ellipsoids and cuboids is the appearance of
a curl around some axis. I use a normalized volume-average curl A for a quanti-
tative measure of the change in magnetization. At 0.11xm, all three curling states
(corresponding to the long, intermediate and short axes) develop a new component
of curl and a corresponding component in the volume-average magnetization. These
quantities appear with a vertical takeoff.

Thus a generalized concept of nucleation can be applied to the initial transition
from SD to non-SD states as well as further transitions at larger particle sizes. Each

such transition reduces the symmetry of the state and doubles the number of distinct
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remanent states, and indicates a reduction in shape control over magnetization.



Chapter 6

HYSTERESIS PROPERTIES ABOVE THE CRITICAL
SIZES

Both volume and shape have a strong effect on hysteresis properties and their
effects are not easily separated. In the SD size range, the aspect ratio has no effect
on M, but a large effect on H., while the volume only affects the hysteresis proper-
ties through its role in thermal fluctuations. By contrast, MD models predict that
shape only affects H. through the number of defects a wall intersects, while M, is
determined by a combination of H. and the shape-dependent factor N. Thus the
effect of shape is very different for SD and MD grains. Complicating this picture still
further is the strong dependence of the nucleation critical size L, on aspect ratio. On
the other hand, the expression for the nucleation field H, is a linear superposition of

the effects of size, aspect ratio and magnetocrystalline anisotropy.

In addition, other details of the shape besides aspect ratio affect hysteresis prop-
erties. As we saw in Chapter 5, a cube has a lower nucleation field than a sphere.
Schabes and Bertram [1988] calculated hysteresis loops for cubes with uniaxial mag-
netocrystalline anisotropy and found that the cubes had larger coercivities than were
predicted for the sphere. They attributed this difference to the deflection of the mag-
netization in the corners of the cube: as the field decreased, the deflection increased.
This increase in the degrees of freedom of the state appeared to make the state more

stable. Schabes and Bertram [1988] called this effect configurational anisotropy.

A different effect has also been attributed to configurational anisotropy. In a cube
of magnetite with easy axes along the body diagonals, Williams and Dunlop [1989]
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obtained a curling state with moment in a kard direction (perpendicular to a face).
They attributed this to configurational anisotropy as well. In a cube, there is clearly a
difference between the center of a face and a corner, and one would expect the energy
of the curling state to depend on its orientation, with symmetry axes of the cube being
likely directions for minima. Indeed, Williams and Dunlop [1989] did not find states
with moments in the easy directions. They argued that configurational anisotropy
was far stronger than magnetocrystalline anisotropy. However, Newell et al. [1993b]
and Fabian et al. [1996] did find states with moments in the easy directions, and
these states had the lowest energy. The difference was in the choice of initial guess.
Finally, Enkin and Williams [1994] modeled a cube with uniaxial anisotropy. One of
the states they obtained had 2 moment in the hard direction (perpendicular to the
easy axis).

In this chapter, I will attempt to improve our understanding of the effects of shape
and volume using the numerical model described in Chapter 4. To isolate shape
effects, I neglect the magnetoelastic and magnetocrystalline energies. I call such a
material magnetically isotropic; while it may seem unrealistic, it may be a reasonable

approximation for amorphous ferromagnets [Aharoni and Jakubovics, 1990].

6.1 The Magnetically Isotropic Sphere and Cube

When studying the effect of some variable, it is useful to look at extreme cases. For
shape anisotropy, one extreme is the sphere, because it has no shape anisotropy. If in
addition the sphere is magnetically isotropic, the only remaining source of anisotropy
is the external field (if there is one).

At absolute zero, the moment of a magnetically isotropic sphere will always be in
the direction of the field. When the field crosses zero, the moment will immediately
switch to the opposite direction. Thus the sphere will have infinite susceptibility and

zero coercivity.
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Using a numerical micromagnetic model, Aharoni and Jakubovics [1990] calcu-
lated the magnetization curves for magnetically isotropic spheres with sides 9.33 L.
and 12.4L.,; for comparison, L, = 8.22L.. (equation 3.8). As long as the field is
not zero, the minimum energy state is well defined. The magnetization is uniform at
large fields and the nucleation field is in agreement with nucleation theory (Figure
5.7). Below the nucleation field, the magnetization decreases linearly with the field.
As the field crosses zero, the magnetization jumps to a negative value. There is no
hysteresis.

Aharoni and Jakubovics [1990] did not consider the effect of thermal fluctua-
tions. Since there is no energy barrier separating different directions of the moment,
the particles are superparamagnetic at all sizes. For small particlés, the magneti-
zation is given by the Langevin function (equation 2.15). Above L = L,, there
are more degrees of freedom, but as a first approximation we may suppose that
M = Mo L(poMoHV/kgT) where Mo(H) is the magnetization in the absence of ther-
mal fluctuations. It turns out that for the two particle sizes they model, the curve
rises extremely sharply, so the overall curve is well approximated without considering
thermal fluctuations.

For comparison with the spheres, I calculated the hysteresis curves for cubes with
the same two volumes (Figure 6.1). The field is perpendicular to a face of the cube,
so the symmetry constrains the moment to be parallel or antiparallel to the field.

As I showed in Chapter 5, the nucleation field of the cube is displaced by about
0.06 M, compared to the sphere. The slope of the M(H) curve is steeper, however,
so that the 12.4L., cube has a lower remanence than the sphere of the same volume
even though it nucleated at a lower field.

The most dramatic difference between the sphere and the cube is that the cube
has hysteresis and the sphere does not. The coercivity of the larger cube is 0.044 M,;
for comparison, the coercivity for a SD magnetite particle is H. = 0.38| K} |/puo M, ~
0.016 M, (table 2.1).
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Figure 6.1: Comparison of the magnetization curves for magnetically isotropic cubes
and spheres. The field is perpendicular to a face of the cube. In each plot, the solid
line is a hysteresis curve for a cube while the dotted line is for a sphere of the same
volume [Aharoni and Jakubovics, 1990]. (a) L = 9.33L.x (in magnetite, 0.063um).
(b) L = 12.44L.x (in magnetite, 0.084um).
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Unlike the sphere, the cube has hysteresis properties that depend on the direction
of the field (perhaps this is the most appropriate use of the term configurational
anisotropy). This is most striking in the SD size range (Figure 6.2). For a field
perpendicular to one of the faces, the cube has a coercivity of about 0.2M, - about
ten times the SD coercivity for magnetite. For a field at an angle to the symmetry
axis, the coercivity is only 0.005M,. This suggests that in the latter case the mode
of reversal is uniform rotation, against which the shape of the cube is not much of a
barrier, while for the field along a symmetry axis the mode of reversal is non-uniform.
This result must be viewed with caution, because the curve does not show a smooth
approach to the jump (after considerable effort, I was unable to find it). The program

may simply be overlooking the uniform reversal mode.

6.2 Hysteresis Curves for the Triaxial Particle

In this section, I look at the effect of adding lower order shape anisotropy by calculat-
ing hysteresis curves for the triaxial cuboid (X = 1.4Y = 1.5Z). In Figure 6.3, I show
a set of curves for a particular field direction H||(8,1,4) and different particle sizes.
These curves show that the change from SD to non-SD behavior is a progression, not
a single sharp transition. In large fields, the magnetization initially follows the SD
curve, with the moment rotating as the field changes. The larger the particle, the
more the curve is displaced downwards relative to the SD curve; but it approaches
the SD curve as the field increases. At a well defined field, the slope of the hysteresis
curve changes suddenly and the curve diverges from the SD curve.

The outer curve is for L = 0.07um: it is still perfectly SD. Between 0.07um and
0.076um, nucleation begins and the curve gets narrower. Thus the Stoner-Wohlfarth
critical size L,y is in this range. At about 0.08um, the nucleation field crosses zero,
so this is the nucleation critical size L,.

Up to 0.08um, the hysteresis curve is quite simple: the state is initially an
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Figure 6.2: Two hysteresis curves for a magnetically isotropic cube in the SD size

range (L = 0.05um for magnetite). When the field is perpendicular to one of the
faces, the coercivity is about 0.2M,. For most field directions, it is two orders of

magnitude smaller.
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Figure 6.3: A sequence of nested hysteresis curves for triaxial cuboids of varying sizes

in a field with direction H||(8,1,4). The sizes in microns are marked on the curves.
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SD (flower) state; nucleation occurs and the slope of the hysteresis curve changes
abruptly!; the resulting curling state approaches an instability; the moment then
reverses.

At L = 0.084um, a new phenomenon occurs: when the curling state becomes
unstable, the moment jumps to the Z axis (the short axis). If the field is then
increased, a first-order reversal curve is obtained (Figure 4.1), and the remanent
state is a curling state with moment along the short axis. This state has a lower
energy and a moment that is one fifth the moment of the long-axis curling state.

An unusual feature of the short-axis curve in Figure 4.1 is that when the field is
continued to positive values, the short-axis curve crosses the main hysteresis loop.
The short-axis curling state is more stable than the long-axis curling state. This
cannot happen in Stoner-Wohlfarth theory or MD theory, because in both theories
the magnetization only depends on one variable (the angle 8 or the position of the
wall).

Another example of a hysteresis curve is shown in Figure 6.4. For this particle
size and field direction, the remanent state has its moment along the short axis.

All of the curves except for the curve for L = 0.084um in Figure 6.3 satisfy the
conditions for the Wohlfarth relations: there are two symmetrically placed switching
fields. By most measures, the hysteresis loops are SD, but the coercivity is as much

as a factor of three lower.

6.3 Critical Sizes

In Chapter 3, I derived expressions for three critical sizes - the Stoner-Wohlfarth
critical size L4w, the global critical size Ly and the nucleation critical size L,. In this

1 The change in slope is abrupt, but it may be small: at L = 0.076um, the nucleation at H =
—0.01M, is not easy to spot - but it can be identified as the meeting point for the stable solution

and an unstable solution (Figure 4.2).
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Figure 6.4: A hysteresis curve for a magnetically isotropic triaxial cuboid with size
0.09um in a field with direction (0.22,0.96,0.19). The dashed lines show the SD

hysteresis curve for the same field direction.
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section I will compare the equations with the results for cuboids.

For the sphere, equations 3.7, 3.8, 3.10 and 3.11 predict that Lyw = Ly = Ly =
(3k)"/? Loy, where k = 22.5 (the demagnetizing factors are N, = N, = 1/3). In
Chapter 5, I showed that the nucleation field is a good fit to the equation

H, kL2
i, =N

with N, = 0.26. Solving for H, = 0 gives L, = (3.8k)1/ % Lex, which is 0.62um for
magnetite. Since I did not find any non-SD states for L < L,, Lo is probably equal
to Lp.

It is more difficult to determine the Stoner-Wohlfarth critical size. Equation 3.7 is
obtained by solving H,, = H,, where H. is the critical field for uniform rotation. For
a sphere, H; = 0, but for a cube H; is nonzero for most field directions and possibly
quite large for H || (0,0,1) (Figure 6.2). I obtained a couple of negative nucleation
fields (Figure 5.5), but I did not find nucleation in particles with sizes below 0.06xm.

For an ellipsoid of rotation, the nucleation size L, increases as (N,)~'/? (equa-
tion 3.8). This is the nucleation size for magnetization aligned with the long axis
; there are no nucleation sizes for the shorter axes, since there is no SD state with
a moment along a short axis. This is evident from the symmetry: the only unique
direction is the long axis. .

For the triaxial cuboid, the principal values of the demagnetizing tensor are N, =
0.2557, Ny, = 0.3596 and N,, = 0.3847. If N,, was equal to N.,, we could compare
the nucleation size with that for an ellipsoid using Na = N;; and NV, = N, = N,,. For
a triaxial cuboid, we can make a rough comparison of critical sizes using N, < N, <
N... The predicted nucleation critical size is then L, = 0.062/(3N,)'/? = 0.071um,
which is significantly smaller than the actual critical size of 0.08um. The prediction
for Lew is even further off: 0.058um < L,y < 0.060um, while it is actually above
0.07um. It is not clear what the reason for the difference is.

Another unexpected result is that the curling states with moments along the
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shorter axes do not appear in hysteresis loops until above the critical size for nucle-
ation of the long-axis curling state. Thus even though they appear to be stable in
much smaller particles, they are not accessible.

The energy densities of the remanent states for the cuboid are shown in Figure 6.5.
The energy densities for the intermediate-axis and long-axis states approach Ny, /2 and
N;./2 in the SD limit, and they increase smoothly through the nucleation points. The
intermediate-axis and short-axis states both have higher energies than the long-axis
state until the latter has already nucleated. From Chapter 3, the global critical size
Lo is defined as the size below which the SD state has the lowest energy. Since
the SD state has already become unstable at the size where the energies cross, the
global critical size is equal to L, (0.08um). This is consistent with nucleation theory
for ellipsoids, which predicts that Lo = L, for zero magnetocrystalline anisotropy
(equations 3.10 and 3.11).

6.4 Size Dependence of Hysteresis Properties

In Figure 6.6, I show the total moment of the remanent states on a log-log plot. For
comparison, I include some results from other micromagnetic simulations. We must
be careful in comparing them. The points from Williams and Dunlop [1995] are for
cubes with easy axes along the body diagonals; they calculated hysteresis curves for
fields in the (111) and (100) directions, and argued that these should be upper and
lower limits for the volume average remanence (My). The points from Fabian et al.
[1996] are for an aspect ratio of 1.52 and they are the magnitude of the volume-
average magnetization (as are mine). Thus the contribution to the remanence in the
direction of a field will tend to be smaller than shown; the same is true for my results.

Williams and Dunlop [1995] noted that their remanences did not depend strongly
on the field direction, and argued that magnetocrystalline anisotropy does not affect

the remanence much. Within the size range for which I have made calculations, this
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Figure 6.5: The normalized energy density for each stable remanent state of the
magnetically isotropic triaxial cuboid. The normalization factor is (1/2)uoM?2. The
energies for the intermediate and long axis states approach the SD values of N,,/2

and N,./2.
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Figure 6.6: The total moment of each remanent state for the magnetically isotropic
triaxial cuboid (solid lines). The length scale is based on the constants M,, A for
magnetite, but K; = 0. For comparison, some results are shown for micromagnetic
models of magnetite particles with magnetocrystalline anisotropy included. The as-

terisks are from Williams and Dunlop [1995]; the circles are from Fabian et al. [1996].
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seems to be true: the results of Fabian et al. [1996] fit between the extremes of my
remanences. My remanences decrease with particle size roughly as V!, so the total
moment does not change. This implies that the source region for the remanence is
fixed in size. Indeed, the magnetization is aligned with an axis in the center of the
particle and then relaxes into the perpendicular plane away from the center, with a
scale length L.,. The moment may be concentrated near the center of the top and

bottom faces.

Judging by the results of Williams and Dunlop [1995], the decrease of remanence
with size slows down considerably as particle size increases. This suggests that,
contrary to the claim of Williams and Dunlop [1995], magnetocrystalline anisotropy
may dominate the remanence in large particles. I have shown above that shape
anisotropy becomes negligible by about 0.15um, so something must take its place.
However, we must be cautious interpreting their results, because some of the solutions

may not be stable.

It also appears that without magnetocrystalline anisotropy, both the coercivity
and the coercivity of remanence decrease rapidly with particle size. While coercivity
in real samples also decreases rapidly with particle size, the coercivity of remanence
has only a weak size dependence [Heider et al., 1996]. Again, magnetocrystalline

anisotropy may be responsible.

One of the most common proxies for particle size is the plot of M,s/M, against
H[/H., called the Day diagram (Section 1.3). In Figure 6.3, the coercivity decreases
from the SD value of 0.067 M, to 0.023M, at the nucleation critical size L, = 0.08um,
but the hysteresis curve crosses My = 0 with a large vertical jump, so H../ H. = 1 over
this size range. Of course, the remanence M,,/M, is also equal to the SD remanence
up to the nucleation critical size. Thus there can be a considerable departure from

SD hysteresis before the change is apparent on a Day diagram.
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6.5 Summary

In this chapter, I looked at some effects of particle shape and size on hysteresis.
To learn more about configurational anisotropy, I compared magnetically isotropic
spheres and cubes. The shape of the cube gives rise to some hysteresis where there is
none in the sphere, but the effect is small for most field directions. When the field is
nearly perpendicular to a face of the cube, the coercivity I obtained is much larger,
but this may be an artifact because I was unable to demonstrate a smooth approach
to vertical of the dM/dH curve. The symmetry of the configuration may make it
difficult for the program to find the nucleation point.

I compared the size dependence of remanence for my magnetically isotropic cuboid
with the results of Fabian et al. [1996] for magnetite particles of a similar elongation.
The magnetocrystalline anisotropy in the latter model seems to make little difference.
Above L = 0.2um, however, Williams and Dunlop [1995] obtain a weaker dependence
on particle size. There may be a change in the size dependence as shape anisotropy

becomes less dominant in larger particles.



Chapter 7

CONCLUSIONS

The goal of this dissertation was, where possible, to develop hysteresis theories
to the point that they could be used for robust interpretations of magnetic measure-
ments. I had some success with SP and SD particles. For larger particles, I tried
to identify the robust features of the two main types of hysteresis model, MD and
micromagnetic.

Ideally, we would like to have a systematic picture of how magnetization states
and hysteresis properties depend on shape, size, composition and so on. Because
there is a multidimensional space of such factors, and because it is computationally
expensive to run micromagnetic models, it is impractical to simply calculate hysteresis
parameters for all combinations. We need to have some framework to guide us. Such
a framework is provided by nucleation theory.

In the sections below, I organize my results by the classes of theory (SP, SD,
MD and micromagnetic) and then I suggest a few possible implications for paleomag-

netism.

7.1 SP and SD Hysteresis Theories

In some systems, such as basaltic glasses [Pick and Tauxe, 1994], limestones [Channell
and McCabe, 1994] and soils [Maher and Taylor, 1988], the magnetic particles appear
to be primarily superparamagnetic (SP) and single-domain (SD). For such systems,
we may be able to use magnetic measurements to extract reliable information about

the magnetic particles. In Chapter 2, I developed the theory of SP and SD particles
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with this goal in mind.

I showed that the magnetization curve for an ensemble of SP particles does not
depend on the symmetry or magnitude of the intrinsic anisotropy, as long as the
sample as a whole is isotropic. Furthermore, the magnetization curve depends only
on the odd moments of the volume distribution ({(V'), {V3)...). The standard deviation
and other distribution parameters that depend on even moment are not constrained.

If there is a mixture of SP and SD grains, hysteresis measurements in nonzero
field have a non-unique interpretation because both the SP and SD grains contribute.
To isolate the SD particles, one can measure changes in remanence. For SD particles
with uniaxial anisotropy, I derived analytical expressions for IRM acquisition and for
loss of IRM in DC and alternating fields. These expressions should make it easier to
model IRM curves in real systems.

I showed that for ensembles of SD particles, both the main hysteresis loop and
the IRM acquisition curve have a fixed shape and are scaled by the volume-average
anisotropy. This has the surprising consequence that there is no more information
contained in the entire hysteresis loop than in a single parameter H. or H;.

Thus the information that can be obtained on SP and SD particles is strictly
limited. It remains to be seen whether one can use this information to place limits
on some important quantities such as the critical size for the SP-SD transition.

The above predictions for SD particles must be modified to take into account ther-
mal fluctuations, which enhance both remanence acquisition and loss and also change
the hysteresis curve. The effect of thermal fluctuations can be removed by using a
Henkel [1964] plot of IRM acquisition against IRM loss. These plots can be justified
by the Wohlfarth [1958] relations, which follow from very general assumptions.

In some recent papers [Gee and Kent, 1995; Channell and McCabe, 1994] there
have been claims that for some materials of geological interest the primary remanence
carriers are particles with a dominant cubic anisotropy. For samples with M,,/M, >

0.5, this claim seems well founded, although M,,/M, does depend on the maximum
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field used and the zlgorithm for removing (super)paramagnetic contributions. For
the rest of the samples, the arguments are mainly based on Day diagrams and have
no theoretical justification. On the Henkel plot, SD particles with cubic anisotropy
have a distinctive signature, and such a plot can be used as a robust test of the above

claims.

7.2 MD Hysteresis Theories

As I described in Chapter 2, the basic MD model is a two-domain model in which
the demagnetizing energy enters as (1/2)NM?, where N is a dimensionless factor
that depends only on the geometry. The movement of the wall is determined by the
magnetostatic forces and a force due to internal variations in anisotropy. This latter
force tends to "pin” the wall away from the magnetostatic minimum and gives rise
to hysteresis.

Most models that give the internal energy explicitly solve only for the coercivity
- and the internal field approximation is used, which causes the coercivity to be
overstated. For the susceptibility, different internal energy models are used that
are not obviously related to those for the coercivity. Models that predict both the
coercivity and the susceptibility do not solve for them directly using the internal
energy. Instead, they use heuristic assumptions that contradict the initial assumption
of a dimensionless demagnetizing factor.

I argue in Chapter 2 that when a two-domain model is solved correctly, it has
some robust properties. The slopes of the ascending and descending branches of the
main loop are always 1/N, so H. and M,, have the same temperature dependence (as
is indeed observed). It also appears that H./H,. is always close to 1, although this
conclusion is tentative.

Lamellar domain models may not be applicable to magnetite. Because of its

low magnetocrystalline anisotropy, magnetite should have closure domains. In a
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two-dimensional model of micron-size magnetite particles, the lowest energy states
I obtain are closure domain states, to a good approximation. It is true that many
particles do not have closure domains, particularly the magnetite particles in glass
ceramics. A major problem for micromagnetics is to determine-the conditions for
closure domains to occur.

It might seem that there is no point in devoting so much attention to MD hys-
teresis models when we can now solve three-dimensional micromagnetic models. Such
models still have limited resolution, however, and are not always the best choice. In
particular, hematite has a large uniaxial anisotropy. This confines the magnetiza-
tion to the basal plane and makes domain walls very thin. It would be difficult to
accurately represent the internal structure of the domain walls in a micromagnetic
model of a hematite particle, but a lamellar domain model may work fairly well. The
single hematite platelets studied by Halgedahl [1995] are an exciting opportunity to
investigate how particles with lamellar domains really behave, and possibly even how

domain walls interact.

7.3 Micromagnetics

Numerical micromagnetics offers the promise of greater realism at the expense of
a considerable increase in computation time and some difficult numerical problems.
The problem that has received the most attention is the accurate calculation of the
demagnetizing field. Less attention has been devoted to distinguishing between real
minima and saddle points, although it is recognized that minimization routines can
be fooled. It has been my experience that a calculated hysteresis curve can change
drastically as the step size for the field is decreased, and the curve can end up looking
complicated.

I have developed a method that is effective in identifying unstable solutions. This

method has two parts: an M (H) curve corresponding to a stable solution is identified
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by a smooth approach to vertical before a jump. Often I find this curve after a jump
from another branch with larger M. I continue the stable curve back until it meets
the unstable one. This is the nucleation point (see below). Having identified the
nucleation field, I know the upper branch is unstable and I can prune it.

An unusual feature of this method is that the nucleation field is obtained by
backward continuation of the stable branch. To my knowledge, no one has previously
thought of reversing the direction of change of the field after a jump, although intu-
itively one would expect that a jump is an irreversible change in magnetization. This
method is also useful for finding physically meaningful remanent states.

The results of numerical micromagnetic modeling are most naturally discussed
in the context of nucleation theory, yet the connections between the two have been
little discussed and much misunderstood until now. Major contributions of this the-
sis include extending nucleation theory for ellipsoids to include magnetocrystalline
anisotropy, extending nucleation theory to non-ellipsoidal bodies, and developing the

relationships between nucleation theory and hysteresis properties.

7.8.1 The SD State

In ellipsoids, the SD state is uniform magnetization. Many authors have claimed that
there is no corresponding state in particles of other shapes, because the magnetization
is never uniform. On the other hand, the flower state Schabes and Bertram [1988] has
nearly uniform magnetization. I showed that for all practical purposed, this is the SD
state. It may be thought of as uniform magnetization perturbed by magnetostatic
forces concentrated at the surface. The H~!® approach to saturation is consistent
with this interpretation. In addition, as Lederman et al. [1994] showed, for most field
directions the magnetization curve predicted by Stoner-Wohlfarth theory is a good
approximation.

The SD state can be described as a state with zero curl. Numerical models often

obtain the flower state and “vortex” states in the same particle, but the flower state



161

is not stable.

7.8.2 The Nucleation Field

For ellipsoids, I generalized the published expression for the nucleation field to include
the effect of magnetocrystalline anisotropy:

Ho_ o kL% 2w
M,” "7 L " poM?

In this equation, the effects of shape, size and magnetocrystalline anisotropy are
added. It might be possible to gain a systematic knowledge of the dependence of
hysteresis properties on these parameters by exploring each of them separately.

In ellipsoids, nucleation is defined as the first departure from uniform magnetiza-
tion. This definition is not useful for other particle shapes, since the nucleation field
would then be infinite. However, I show that there is a more appropriate generaliza-
tion of nucleation.

I show that in a cuboid, the nucleation field can be precisely identified as the point
where a curl appears in the magnetization. Indeed, as a function of field or particle
size the volume-average curl has an infinite initial slope. In general, the direction of
the curl is parallel to the field (V x M || H) even when the field is not aligned with
a symmetry axis of the particle. Another consequence of nucleation is a bifurcation:
the state with the opposite curl has the same energy. Thus nucleation doubles the
number of possible states.

I plotted the nucleation field for a magnetically isotropic cube against 1/ L2, where
L is the cube root of the volume, and it fit a straight line. The line has the same
slope as that for nucleation in a sphere, but a smaller intercept. The nucleation field
appears to be related to the volume-average demagnetizing field; it does not depend
significantly on grid size, although the transverse demagnetizing field in the corners
increases rapidly with grid size. This behavior is consistent with the non-local pattern

of the curling mode.
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7.8.8 Critical Sizes

In the rock magnetic literature, most of the critical size calculations are for what I
call the global critical size Lo, below which the SD state is the lowest energy remanent
state. This critical size does not have a direct relationship with hysteresis properties.
More useful are the Stoner-Wohlfarth critical size L, and the nucleation critical size
L,. Below L,, the hysteresis properties are fully SD, while L, is the upper limit for
stability of the SD remanent state.

While rigorous calculations have been made for L,, and L., they were never
clearly distinguished or compared with each other, and little was said (or known)
about their relationship to hysteresis properties. I extended the expressions for the

critical sizes to include magnetocrystalline anisotropy:

k 1/2
st - (Fb) Lex
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The parameter « depends on the type of symmetry (uniaxial or cubic), the magnitude
and sign of the magnetocrystalline anisotropy constant K;, and the orientations of
the easy axes.

The critical size L,y is weakly dependent on elongation and not at all dependent
on magnetocrystalline anisotropy, while L, is strongly dependent on both. This is

important for titanomagnetites, as I describe below.

7.8.4 The Nucleation Field and Hysteresis

Before numerical solutions were feasible, almost nothing was known about what hap-
pened after nucleation occurred. Usually, it was assumed either that there was a
jump or that the hysteresis curve continued with a slope of 1/N, where N is the SD
demagnetizing factor. The coercivity in the latter case was H. = H, — NM,. This
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was a very different mechanism for the coercivity than the domain wall pinning of
MD theory.

With some hysteresis simulations, I showed that there is a sudden change in
slope of the hysteresis curve at nucleation, but the change can be very small at first.
With a further change in field, the curve approaches a jump, with the slope dM/dH
approaching infinity just before the jump. As particle size increases, the change in
slope and the length of the curve after nucleation increases.

For magnetically isotropic particles, the Wohlfarth relations appear hold at least
to the nucleation critical size. The assumptions behind the relations break down only
when the magnetization starts to jump to a first order reversal branch corresponding

to the remanent state with moment along the short axis.

7.4 Possible Implications for Paleomagnetism

7.4.1 Thermoremanent Magnetization

The two main theories for thermoremanent magnetization (TRM) are the SD and
MD theories of Néel [1955]. In the SD theory, TRM is acquired by “blocking”, a
freezing of the equilibrium distribution of moments as particles make the transition
from superparamagnetic to single-domain. In the MD theory, TRM is acquired by a
hysteresis mechanism. As I pointed out in Chapter 1, we must keep the distinction
between these mechanisms clear. In particular, it is misleading to use the term
“blocking temperature” for the MD model, because this implies that the acquisition
of remanence can be reversed. The essence of hysteresis is irreversibility. Numerous
papers have been published on the “anomalous” unblocking temperatures in large
particles, but in reality no special mechanism is required.

For extracting a paleointensity from a rock, the modified Thellier-Thellier method
is considered the most reliable. For this method to work, the TRM must be acquired

by blocking in the correct sense. The temperature at which blocking occurs is deter-
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mined by the energy barrier against a transition from one remanent state to another.
In the theory of Néel [1955], the transition occurs by uniform rotation. This is ex-
pected to occur in the smallest SD particles, but in larger particles the mechanism may
be non-uniform rotation [Levi and Merrill, 1978]. Some estimates have been made of
the size range for these mechanisms [Dunlop et al., 1994; Enkin and Williams, 1994],
but the critical size expressions I have derived can be used to calculate more rigorous
bounds as a function of elongation and magnetocrystalline anisotropy.

I showed in Chapter 4 that existing MD models are not self-consistent. A particu-
larly important example is Néel’s MD model, which cannot predict a field dependence
of TRM without making an assumption that contradicts both observation and the
underlying assumption about the demagnetizing factor. A self-consistent MD model
for TRM should be developed. In such a model, the intensity of the TRM would
depend on both the amplitude and spatial distribution of the wall pinning forces.
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Appendix A

SD CALCULATIONS USING LAGRANGE MULTIPLIERS

In this appendix I describe a polynomial method for solving for the magnetization
in SD particles. This method can be applied to any particle with triaxial anisotropy,
whether the origin of the anisotropy is magnetocrystalline, magnetoelastic or magne-
tostatic. It calculates all the stationary points, including saddle points and maxima,

and classifies them.

A.1 Calculating Stationary Points

For calculating a hysteresis curve, it is convenient to e;cpress the applied field as
H = Hh, where H is the magnitude of the field and h is the unit vector in the
direction of the field. The normalized energy density is

E | . .
n=ﬂoM3V—§m-N-m—Hh-m (A.1)

where m is the unit vector in the direction of the magnetization. We choose the
coordinates so that N is diagonal and the diagonal components are N; > N, > Ns.
The magnetization of a stationary state is a minimum of the energy n on the
surface ®(a, B,7) = a® + B2 + v® = 1. The derivatives (0®/9a,3%/303,8%/07) are
never zero simultaneously, so we can use the method of Lagrange multipliers. The

stationary points satisfy d(n + A®/2)/drh =0 and th-th =1, or
Nia— Hhyj+Xda = 0 (A.2)

NaB — Hha+ 78 = 0 (A.3)
N3y —Hhs+XAy = 0 (A4)
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+p4+9 =1 (A.5)

For H = 0, the solutions are th = (%1, 0,0) (maxima), rh = (0, £1, 0) (saddle points)
and h = (0,0,%1) (minima). For H # 0, substituting the first three equations in
the third gives

2[Rl h3 h3
H [(Nx T+ T e ,\)2] =1 (A-6)
Rearranging, we get a polynomial
6
Zp;/\i =0 (A7)

1=0

where (using h? + h3 + h2 = 1)

po = NININZ — H? [h2NZNZ + h3NZ N2 + hZN?ZNZ]
p1 = 2N;N;N3(N1N; + NoNs + NaNy)
—H? [R2N;N3(N; + Ns) + hZNyN3(Ny + Ns) + k3N No(N1 + M)
p2 = NIN? + NZNZ + N2ZN? + 4tr(N)N, N, N3
—H? [h3(NZ+ N2+ 4Ny Ns) + h3(NZ+ N2+ 4AN; Ns) + h3(NE + NZ+ 4N N;))|
ps =tr(N)(tr(N)? — N} — N3 — N3) + 2N, N, N,
~2H? [tr(N) — hINy — hZN, — h3Ng]
ps = 2tr(N)?2 —2(N? + N2 + N2?) — H?
ps = 2tr(N)

pe =1

where tr(N) = N; + Nz + N3 is the trace of the tensor N. If N is a pure demagnetizing
tensor, tr(N) =0.

I solve for the roots of the polynomial using the MATLAB routine ROOTS, which
creates a companion matrix for the polynomial and solves for the eigenvalues. The

type of solution is determined by the closest axis: (+1,0,0) for a maximum, 0,+1,0)
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for a saddle point, (0,0, £1) for a minimum. The stationary points should satisfy the
following theorem for a differentiable mapping on a sphere [Arnold, 1973, page 262]:

#(minima) — #(saddlepoints) + #(mazima) = 2 (A.8)

A.2 Using Perturbation Theory to Calculate Susceptibility

Second-Order Anisotropy (Uniazial or Triazial)

Let us assume that N is diagonal and N, > N; > N3, so in zero field the remanent
states are m = +2. Consider the +2 remanent state. Now suppose a small field
H = eJ (¢ < 1) is applied. This will rotate the magnetization vector. The new
perpendicular components are @« = eu and 8 = ev, while vy = VI -a2 -2 =

1 — O(€?). The equations for the new stationary state are

(M+New = ey
(N2 + Nev = eJo

N3+ = eJs
Thus
A= -—N3+O(e)
so
u = NlJ oA + O(e)
v = NgJ N3+0(e)

and the initial susceptibility tensor is

(Ny — N3)t 0 0
(X0)ij = 75 = 0 (Ny = Na)=! 0 (A.9)
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The average susceptibility for an isotropic distribution of orientations is

1 1 1
o =5 [7 =5+ Wowe) (A.10)

If N; = N, (as in an ellipsoid of rotation) and N = Ny — N3, (xo) = 2/3N. For
magnetocrystalline anisotropy, (xo) = poM2/3K;.

Cubic Anisotropy

The above linearized equations can also be obtained by expanding the energy to
second order in u and v and keeping terms up to second order. This approach can
also be used for cubic particles if we expand to second order about the minimum
energy.

At first sight, it would seem more difficult to calculate the average susceptibility
for particles with cubic anisotropy, because the remanent state can be in any of six
or eight easy directions, depending on the sign of K;. If, however, the sample is
demagnetized, and if we consider each particle separately and choose the coordinates
so the remanent state points in the +% direction, then the applied field is equally likely
to be in any direction relative to this axis. Thus we can average the susceptibility by
integrating over all field directions in the same way as for uniaxial anisotropy.

If K; > 0 and the z,y, z directions are the (100) crystallographic directions, the

z direction is still an easy axis. To second order,
K, [a2ﬁ2 + 3% + 72a2] = 2K, [u2 + v2] + O(e?) (A.11)

Thus, as for uniaxial anisotropy, (xo) = poM?/3K;.

If K; < 0, the easy axes are the (111) directions. If we choose the z axis in
the (1,1,1) direction, we must choose the z and y axes in perpendicular directions,
for example (1,—1,0) and (1,1,-2). If a,b, c are the direction cosines in the z,y, z

directions, then

a = a/V2+b/V6+c/V3
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B = —a/V2+b/vV6+c/ V3
v = —2b/V6+¢/V3

Then
4 b4 4 2b2 b
o2 + B27* + v’ ‘az+ ) +c +—+\/'2b +‘/_ c

If we eliminate c using ¢ = 1 — a® — b? and substitute a = eu,b = ev, then (ignoring

constant terms)

K, [a2ﬂ2 + B + 72a2] = € (_2TK1) [u2 + v2] + O(e3) (A.12)

Thus the effective uniaxial anisotropy is —2K;/3, so (xo) = poM?/2K,. This can
also be derived using small-angle expansions of the energy [Chikazumi, 1964, page
138].

For uniaxial particles, the susceptibility of the saturation remanent state is the
same as the susceptibility of the demagnetized state, because the demagnetizing ten-
sor is symmetric and the field directions are still averaged over half the unit sphere.
For cubic particles, the susceptibility for the saturation remanent state will be lower
than the susceptibility for the demagnetized state because the field directions are

more restricted.
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