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University of Washington
Abstract

Mechanics of Flow and Sediment Transport
Over Nonuniform Erodible Beds

by Jonathan Mark Nelson

Chairperson of the Supervisory Committee: Professor J. Dungan Smith

Geophysics Program

The morphology of erodible channels is intimately related to nonlinear interactions
between the flow field, the bed topography, and the transport of sediment. This dissertation
is directed toward understanding these interactions in terms of basic physical processes, and
toward the development of predictive techniques which characterize these interactions in an
appropriate manner. The approach taken herein divides the wide spectrum of possible bed
morphologies into two distinct categories: those whose genesis and finite amplitude charac-
teristics are explicitly dependent on spatial variations in the vertical structure of the flow
(bedforms), and those which depend primarily on horizontal nonuniformity in the flow field
(bars).

The development of bars in riverine channels is addressed by coupling a flow algo-
rithm, a bedload transport equation, and an expression enforcing conservation of sediment
mass. The flow model is based on an expansion about a lowest-order solution which
employs a similarity vertical structure for the streamwise velocity, thereby eliminating bed
deformations that are caused by changes in the vertical flow structure. Coupling of the flow
and sediment transport calculations allows prediction of the temporal evolution of a channel
bed with a prescribed sediment size and flow discharge. The evolution model is shown to
predict the growth and stability of a point bar in an initially curved channel, as well as the

development of alternate bars in an initially straight channel.

To investigate flow and sediment transport over bedforms, a predictive model for
velocity and boundary shear stress fields over finite amplitude two-dimensional bedforms is
presented. This flow model treats the production of wakes caused by separation of the flow
over the bedform crests, as well as the effect of near-bed spatial accelerations induced both

topographically and as a result of the diffusion of momentum into the wake deficit. Results

of the model are in excellent agreement with laboratory measurements taken over immobile




bedforms using a laser-Doppler velocimeter. The finite amplitude model yields accurate

predictions of the fluid dynamical effects ultimately responsible for the height, wavelength,

and shape of well-developed bedforms.
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Chapter 1: Introduction

The morphology of erodible beds is a direct result of a complicated nonlinear cou-

pling that exists between the fluid flow field, the topography of the bed, and the transport

of sediment. The goal of the work presented in this dissertation is to develop techniques
whereby this coupling may be investigated quantitatively and, by doing so, to generate an
understanding of the basic physical processes responsible for the production and equili-

brium morphology of bars and bedforms in natural channels with erodible bottoms.

In the past, a great deal of the research on the morphology of natural beds has been
focussed on the classification of various types of bars and bedforms, and on the empirical
determination of the flow regimes in which these bed irregularities may be expected to
occur. For the case of bedforms, this approach has led to the development of so-called bed
phase diagrams, wherein flume and field observations are employed to relate integral
parameters of the flow and sediment (e.g., depth, average velocity, average sediment size)
to the observed bed geometry. Similarly, a substantial portion of the work on channel mor-
phology has been directed toward the development of empirical "hydraulic geometry" rela-
tionships, in which observations are used as the basis for constructing empirical formulae
relating various parameters of the flow and channel geometry. While there is no question
that these approaches are both important and useful, they are ultimately unsatisfying in a
scientific sense, because they do not provide a physical understanding of the processes
which act to produce the observed morphology. Attempts to use these empirical results to
generate some integral understanding of fluvial systems has inevitably led to descriptions of
channel and bed dynamics which rely more on anthropomorphism than on physical princi-
ples. For example, stream meandering is often attributed to the stream "wanting" to lower

its gradient. The fundamental tenet of this dissertation is that the deformation of an erodible




bed is governed by the well-known conservation laws of physics, and that any attempt to
understand the processes by which bed evolution and stability occur must be based on the

application of these principles.

1.1. Approach to the Problem

In the work presented herein, the wide spectrum of topographic nonuniformities
observed on shear-erodible beds is separated into two basic categories. The first of these
consists of forms which are generated primarily by variation in the horizontal structure of
the flow field, while the second is made up of features which are generated by variation in
the vertical structure of the streamwise velocity field. Henceforth, these will be referred to
as bars and bedforms, respectively. Obviously, this classification is incomplete, since there
are features for which both vertical structure changes and horizontal nonuniformity are
important, as in the case of three-dimensional dunes. However, this distinction allows the

overall problem of erodible bed morphology to be divided into two separate problems that

are soluble at a reasonable level of complexity; this clearly is the first step toward a more

general theory. Separate treatments of each of these problems are provided in this disserta-
tion, with the idea firmly in mind that only keen physical insight into-the various elements
of the bed-flow-sediment coupling can ever lead to a comprehensive understanding of the

problem.

One alternative to the bipartite approach described above would be to obtain numeri-
cal solutions of the full govemning equations for turbulent flow and sediment transport over
an erodible boundary. Indeed, some investigators have attempted to do this; however, the
complexity of the interactions between the bed and the flow almost certainly precludes the
possibility of retaining any physical grasp of the salient processes if this approach is used.

Furthermore, it is not clear that a turbulent closure scheme currently exists which is capable




of handling the multiplicity of length scales present in the full problem. At any rate, the
goal here is the scientific task of discovering the physical effects that govem this problem,
not the engineering task of constructing models which simulate natural phenomenon. One
of the by-products of the attempt to understand the various facets of the problem addressed
herein is a set of numerical algorithms which reproduce important natural phenomena rea-
sonably well; however, it must be stressed that the goal of this work is not the development
of models, rather, it is the development of understanding through the use of concise,

physically-based models.

The methods used in investigating each of the two problems briefly delineated above
are essentially the same. In either the bar or bedform case, the first step in examination of
the interactions between the flow and the bed topography is the construction of a fluid
dynamical model that accurately predicts the flow and boundary shear stress fields over a
bed of known geometry. As a result, one of the elements of this dissertation research has

been the construction and verification of two flow models: one for the case of turbulent

flow in channels with nonuniform bed and bank geometry, and another for the case of flow

over well-developed two-dimensional ripples and dunes. These fluid dynamical com-
ponents of the investigation allow the examination of the response of the flow to given bed
topography. This is only half of the erodible bed problem; the other half involves character-
ization of the response of the bed to a given flow field. This latter part of the problem is
addressed by using the results of the flow calculations in sediment transport relationships.
By exploiting the separation of the temporal scales associated with the flow and the evolu-
tion of the bed topography, it is possible to isolate the fluid dynamical effects from the
response of the bed, a powerful and robust approximation that allows segregation of the

various physical processes active in the flow-bed coupling.

Because the investigation presented herein is directed at the processes responsible for




the morphology of well-developed forms, rather than just the genesis (initial instability) of
bed features, the flow models employed must incorporate finite amplitude effects. As dis-
cussed in Chapters 3 and 4, a great deal of the previous work on erodible bed deformation
has employed the technique of linear stability analysis. This method is based on the

assumption that the nonlinearity caused by topographic nonuniformity in the flow is rela-

tively weak, and that the governing equations can be linearized using a regular perturbation

expansion about a uniform zero-order flow. While this technique is unquestionably useful
for the identification of instability mechanisms and often yields accurate predictions of the
initial wavelength of bed disturbances, it generates very little information about the well-
developed features typically observed in nature, a point that will be addressed in more
detail in Chapter 3. Even casual observation of typical river channels in which bars have
formed clearly shows that the flow field does not consist of weak perturbations about a spa-
tially uniform flow. Convective accelerations are typically important contributors to the
overall momentum balance, as verified by the measurements of Yen and Yen [1971] and
Dietrich and Smith [1983]. Similarly, flow over well-developed bedforms is typically
affected strongly by the highly nonlinear effects of flow separation and wake formation.
To investigate the equilibrium geometry of bars and bedforms, and how these features
interact with the flow field, finite amplitude effects must be considered. As a result, a sub-
stantial part of the work presented in this dissertation has been directed toward the careful
construction and verification of fluid dynamical models which encompass the salient finite

amplitude effects for the cases of bars and bedforms.

1.2. The Bar Problem

The investigation of the development and stability of bars presented herein can be

divided into three separate parts. The first element is the construction and experimental




verification of a fluid dynamical model for flow in curved channels. The second part of the
investigation consists of utilizing the insight and techniques obtained in the development
and use of the meander flow model to construct a more general channel flow model. This
general model is capable of accurately predicting flow and bottom stress fields in a wide
variety of natural nonuniform channels. Finally, this general model is coupled to a
comprehensive sediment transport algorithm and then used to examine the salient interac-
tions between the flow and the bed that produce channel-scale topographic features. In the

next few pages, these three elements of this research are briefly described.

In Chapter 2, a method for calculating surface elevations, velocity fields, boundary
shear stresses, and bedload sediment fluxes in typical natural meander bends is presented.
This model is made up of two parts: (1) a numerical algorithm for predicting flow and total
shear stress in a channel with spatially varying bank curvature and bed topography, and (2)
a form drag partitioning algorithm that permits parameterization of form drag in terms of
local roughness lengths and provides a method whereby the total boundary shear stress
predicted by the flow algorithm may be reduced to the value of bottom stress responsible
for sediment transport. This second part of the model is of crucial importance in calculating
sediment fluxes accurately, and allows the bedform problem to be linked to the bar problem
parameterically, rather than dynamically. The meander flow model is a modified and
extended version of the theory presented by Smith and Mclean [1984]. The governing
equations employed are shown to proceed from a consistent scaling of the full equations
describing nonuniform turbulent flow. In accord with the discussion above, these equations
retain the convective accelerations associated with bed and bank variations at lowest order.
These terms are intimately associated with flow around point bars of finite amplitude in

meandering channels. Specifically, the streamwise convection of downstream momentum is

associated with the prediction of outward flow (toward the concave bank) over the point




bar [Dietrich and Smith, 1983], a phenomenon that is often neglected in discussions of
point bar stability. The vertical profile of the streamwise velocity is assumed to have a
similarity structure, the specific characteristics of which depend upon the functional form
chosen for the eddy viscosity. By employing a similarity profile, this model specifically

excludes changes in streamwise vertical structure associated with spatial accelerations.

To test both the meander flow model and the form drag partitioning arguments, calcu-
lations are performed for a bend in Muddy Creek, a well-studied natural meandering stream
near Pinedale, Wyoming. The field observations include high density measurements of
velocity, boundary shear stress, and sediment transport, as described by Dietrich [1982],
and thus provide an excellent opportunity to test the model. Comparison of measured and
computed values demonstrates that the theoretical approach is sufficiently accurate to
predict sediment fluxes in channels for which topographic and curvature-induced convective

accelerations are important.

The meander flow model can be used along with a specific sediment transport model
to predict the initial instability, growth, and equilibrium morphology of a point bar in a
channel with a typical meandering planform [Nelson and Smith, 1985]. However, since
this investigation is focussed on bar forms in general, rather than just the specific case of
point bars in curved channels, it is desirable to extend the techniques tested in the meander
flow model to a more general model capable of making accurate predictions of flow in a
wide variety of natural channels. With this in mind, the first part of Chapter 3 describes the
construction of a more powerful algorithm for calculating flow fields and shear stresses in
channels with arbitrary bed and bank geometry. This general model evolved from the ori-
ginal meander flow model described and verified in Chapter 2 and, although new physics

are incorporated, the approach relies heavily on insights and techniques developed in the

simpler algorithm. In fact, the general model essentially reduces to the meander flow




model for the case where the curvature of the primary flow streamlines is well-
approximated by the curvature of the banks, but it is also valid for the case of straight
channels containing alternate bars or braids. The general channel flow model is coupled
with sediment transport calculations in order to produce an algorithm capable of predicting
the instability, temporal evolution, and fully-developed morphology of a wide variety of bar
forms, including point bars and alternate bars. This is accomplished by noting that the time
scales associated with bed deformation are typically much longer than the time scales of the
flow. This means that the flow model can be employed in a quasi-steady sense to predict

the growth and stability of bars, as discussed in depth in Chapter 3.

In order to use the flow and sediment transport models to develop channel bathy-
metry, one assumes some initial bed geometry (typically flat), and employs the flow model
to predict the boundary shear stress on that initial bed. This bottom stress distribution is
then used along with a bed slope correction to calculate the streamwise and cross-stream
sediment fluxes, which in turn are used to calculate the rate of erosion and deposition on
the initial bed. This last step is accomplished using an expression that enforces the conser-
vation of sediment volume. With these rates of erosion and deposition, it is possible to
predict what the bed topography will be some small time increment later. The flow model
can then be run using the modified bed topography, and the whole process is repeated itera-
tively until a stable bed morphology is attained. This method of applying the flow and sedi-
ment transport models, referred to subsequently as the bar evolution model, is described
schematically in Figure 1.1. Since this model, like the meander model, is based on the
assumption of a similarity vertical structure for the streamwise velocity field, the evolution
model is specifically limited to bar type instabilities; bedform instabilities are suppressed.

This approximation allows the bar and bedform problems to be decoupled, thereby permit-

ting the isolation and inspection of the salient physical processes for the two different
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Figure 1.1. Flow chart depicting the iterative technique used in predicting equilibrium bed
morphology in channels. Quasi-stability refers to the condition in which any bars present
are not changing in height, wavelength, or shape; in some cases, these well-developed
features migrate in a streamwise direction.




cases.

In Chapter 3, the bar evolution model is shown to make accurate predictions of the
growth and equilibrium characteristics of various riverine bar forms. First, the approach
described above is shown to predict the formation and growth of point bars in a variety of
channels with initially flat beds and meandering planforms. Following the observations of
Langbein and Leopold [1966], the channel path for these cases is described by a sine-
generated curve, although results for some other planforms are also easily obtained. As
expected, the initial growth of a point bar in these channels is a result of near-bed flow
(and hence, bottom stress) directed obliquely toward the inner (convex) bank. This well-
known effect is a result of the production of helical flow in the bend, as discussed in more
detail in Chapter 3. The inward component of the bottom stress drives a sediment flux that
produces deposition near the inner bank and erosion near the outer one, resulting in the
growth of a point bar and pool. This simple idea is modified slightly due to the presence of
streamwise curvature variations, which induce streamwise convergences and divergences of
sediment transport, as discussed in more detail in Chapter 3. The eventual stability of point
bar and pool bathymetry is related to gravitational corrections to the sediment fluxes due to
bed slopes, as well as to the production of streamwise convective accelerations at the
upstream end of the point bar. The convective accelerations and the accompanying adjust-
ments in the pressure field produce outward flow over the point bar, in a process referred
to hereafter as "topographic steering”. This latter effect is ignored in models of point bar
stability which are based on well-developed bend flow. In the well-developed flow approxi-
mation, both the stream geometry and the flow field are assumed to be independent of
Streamwise position. This is a poor approximation in the majority of natural meandering

Channels, and models which employ this assumption are clearly only of limited value in

developing an understanding of natural channel and bed morphology.
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Comparison of the evolution model results with the experiments of Hooke (1975) and
Whiting (1987) demonstrate that both the growth rates and equilibrium morphology of
point bars are accurately predicted by the approach taken herein. Furthermore, by running
the evolution model for sine-generated curves of various amplitudes, it isvpossible to exam-
ine the connection between the planform of the channel and the spatial position and shape
of well-developed point bars. This process also links the problem of point bar evolution to
the case of alternate bar growth and migration. If the sinuousity is very low, the bar insta-
bility forced by the presence of curvature is overwhelmed by another instability which pro-

duces migrating alternate bars.

The alternate bar instability is distinct from the point bar evolution process in that no
planform forcing is needed to produce alternate bars. These features arise spontaneously
from any small perturbation to a steady, uniform flow in a straight channel. In order to
investigate the physics governing the initiation of alternate bars, a linear stability analysis
of the full equations used in the finite amplitude model is presented in Chapter 3. There are
two advantages to the preliminary use of this approach. First, the results of the linear
analysis allow the precise identification of the physical process causing the bed instability.
Second, comparison of the linear results with the results of the bar evolution model clarifies
the importance of the finite amplitude effects and demonstrates the failings of the linear
theory. As expected, the linear theory provides physical insight into the governing process,
as well as good predictions of the initial wavelength of alternate bars. As discussed in
Chapter 3, the growth of alternate bars from an initial perturbation is intimately tied to the
Same topographic steering response important in the stability of point bars. The prediction
of this instability is tied to the inclusion of streamwise convective accelerations in the flow

model, as shown using the linear theory.

While the linear theory provides an understanding of the basic instability and
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identifies a fastest-growing wavelength, the quantitative results of this approach are
incorrect for fully-developed alternate bars. For example, finite amplitude effects produce

an alteration in the wavelength as altemate bars grow to their equilibrium heights, a

phenomenon that has been carefully observed and quantified by Fujita and Muramoto

[1985]. Furthermore, the linear analysis yields no information about the height or shape of
fully-developed bar forms; this information can only be obtained using the full non-linear
modelling approach.

The results of the bar evolution model are shown to predict quite accurately the initia-
tion, growth, and equilibrium morphology of alternate bars in straight and weakly sinuous
channels. This is done in section 3.4, where model predictions are compared to measured
values for flume experiments performed by Whiting [1987] and Fujita and Muramoto
[1985]. The agreement between measured and predicted bathymetries clearly demonstrates
the validity of the techniques employed in the bar evolution algorithm. As in the point bar
problem, stability is found to be related both to the gravitational correction to sediment
fluxes and to spatial accelerations in the flow field induced by the bed topography. The
finite amplitude evolution model is also a viable way of examining the physical processes
which act to produce bar forms of a complex nature. Thus, this method is a powerful

predictive technique for examining bar forms in general.

1.3. The Bedform Problem

The technique used in the bar evolution model explicitly excludes the production of
bedform instabilities. As shown in the linear stability analysis presented by Smith [1970],
the instability mechanism that produces bedforms is associated with spatial changes in vert-
ical structure. These variations are produced by the interaction of a shear flow with

topographically-induced convective accelerations. Thus, by employing similarity vertical
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structure for the streamwise flow in the bar model, bedform instabilities are eliminated.
Similarly, it is advantageous to construct a fluid dynamical model for bedforms that is
decoupled from bar-type responses. This is accomplished by restricting the investigation to
the case of two-dimensional bedforms. This prohibits responses which depend on fluxes of
mass and momentum in the cross-stream direction, and thereby eliminates the bar instabili-

ties discussed above.

The algorithm used herein for the calculation of velocity and boundary shear stress
fields over well-developed two-dimensional bedforms is based on techniques originally
presented by McLean and Smith [1986]. They developed a theoretical approach that expli-
citly treats the production of a wake due to separation of the flow over bedforms. Flow
separation occurs near the crest of most natural bedforms and is an important factor in the
determination of bottom stress pattemns on the surfaces of bedforms. In the theoretical
development presejnted by McLean and Smith [1986], the interaction of the wake region
with the near-bed flow was treated using a nonuniform internal boundary layer theory. This
boundary layer model includes the effects of spatial accelerations induced both topographi-
cally and as a result of the wake forcing. In the original McLean-Smith model, the wake
and boundary layer regions of the flow were coupled to the flow interior using a potential
flow solution in conjunction with a semi-empirical form drag closure. This latter part of
the model allows the parameterization of changes in vertical structure in the interior due to

the coalescing of wake regions generated by bedforms upstream.

In the bedform flow model presented in this dissertation, three improvements have
been made to the original McLean-Smith model. First, the need for a form drag closure has
been eliminated through the development of a theory that specifically treats the role of

wakes from upstream bedforms coalescing in the interior. Second, nonhydrostatic effects

associated with the inviscid response of the flow to the bedform are included both in the
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interior and in the wake region near the bed. This improvement permits more accurate cal-
culations to be made for short wavelength features, and is an important factor in the predic-
tion of the cessation of dune growth at some fraction of the flow depth. Finally, the boun-
dary layer formulation developed by McLean and Smith has been extended to the region
between the dune crest and the point of reattachment. This allows spatially complete pred-

ictions of flow and bottom stress, as are necessary for sediment transport calculations,

As in the case of the channel flow model, verification of the flow model for dunes
using carefully measured data is desirable, However, while previous work by other investi-
gators provided an excellent data set to test the channel flow model, available measure-
ments of flow over two-dimensional dunes were not comprehensive enough to serve as a
model test. Therefore, a simple flume experiment was carried out to obtain the necessary
data. This experiment involved making extremely dense measurements of the velocity field
over immobile two-dimensional dunes using laser-Doppler velocimetry. These measure-
ments include accurate velocity determinations a fraction of a centimeter from bed, as

required for studying the structure of the developing internal boundary layer on the stoss
side of a bedform.

Comparisons of measured and predicted velocities indicate that the theory presented
herein provides accurate predictions of the flow field over bedforms. These predictions
include the flow in the recirculation region in the lee of the bedform crest, and they expli-
citly include the effects of flow separation and wake formation. Boundary shear stress pat-
tems predicted by the model are also compared to values measured downstream of a back-
ward step by Jones [1978]. This demonstrates the accuracy of the technique employed for
coupling the wake region to the internal boundary layer. The comparison with experimen-

tal results shows that the flow model is capable of making predictions that are accurate

€nough to be used in sediment transport calculations.
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Using sediment transport considerations, but avoiding a specific sediment transport

model, the flow predictions are employed to explore the coupling between the fluig and the
bed. First, in conjunction with sediment transport arguments, the flow model is shown to

predict the initial growth of bedforms, Second, this method reproduces the fluid dynamical

effects responsible for the determination of the wavelengths of bedforms of finite ampli-
tude. This is related to the coupling between the wake and the internal boundary layer
downstream of the reattachment point, as discussed in more detail in Chapter 4. The
interaction between the flow and the bedform that causes the cessation of bedform growth
at some fraction of the flow depth is also predicted by the fluid dynamical theory. The

accuracy of this prediction is dependent on the inclusion of non-hydrostatic effects,

Finally, the shape and migration rates of bedforms can be predicted using the theoretical

results by applying well-known techniques for relating local topographic elevation of the

bedform surface to sediment flux rates (e.g., Fredsoe, 1982).

Preliminary results from coupling of the model for flow over bedforms with calcula-
tions of bedload and suspended load transport have been used to predict the wash-out of
dunes [Nelson and Smith, 1986a] and the dependence of lee-side slip faces of dunes on

weak suspended load transport [Nelson and Smith, 1986b]. However, a comprehensive

treatment of sediment transport over bedforms requires the inclusion of the effects of sedi-

ment inertia [Smith, 1970] and bed slopes on the sediment flux field. The bed slope correc-

tion employed in the bar evolution algorithm is, strictly speaking, only valid for relatively

small slopes, especially when the bed gradient is in the direction of the sediment transport,

Tather than transverse to it. This approach is inadequate for the case of bedforms.

Currently, the effects of bed slope on bedload transport are being addressed using the salta-
tion mode] of Wiberg and Smith [1985]. However, as of this writing, these techniques

have not been incorporated into the work presented here.




since the ultimate goal is to understand and make accurate predictions of the

deformation and stability of natural beds. Although the text deals primarily with the

theoretical development, verification, and results of these models, this research clearly has

important implications in the fields of hydrology, sedimentology, and geomorphology.

erodible bed phenomena in terms of basic physical processes,




The difficulty €ncountered in measuring boundary shear Stresses in nonuniform flows
indicates the desirability of 2 physically-based model which accurately predicts thege
values. Several investigators [e.g., Engelund, 1974; De Vriend, 1977; Ascanio and Ken-

nedy, 1983] have attempted to Characterize the flow and bottom stress fields in curyed
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laboratory flume and later by Dietrich and Smith [1983] in a natural meandering stream,

that the vertically-integrated convective accelerations described above are of the same order
of magnitude as the pressure gradient and shear stress forces in meandering channels with
typical bar-pool topography. It is clear from these field and laboratory observations that a
valid model of flow in curved channels with naturally-occurring bed topography must

include these terms in the lowest-order equations.

Recently, Smith and McLean [1984] developed a model for flow in meandering
streams based on a regular perturbation expansion about a zero-order flow that included the
convective acceleration terms described above. In order to demonstrate the validity of the
model, Smith and McLean compared predicted bottom shear stress and water surface
topography to values measured by Hooke [1975] in a curved laboratory channel. The good
agreement between the predictions of the model and Hooke’s data indicate that the salient
features of the flow are well described by the model. This is encouraging, especially
because Hooke’s flume had bottom topography and curvature characteristics similar to
those of a natural stream. The centerline of Hooke’s flume was described by a sine-
generated curve, which Langbein and Leopold [ 1966] identified as a trace that closely
defines the centerline of many naturally-occurring meanders. Furthermore, the bed of the
flume was in equilibrium with the flow and displayed the bar-pool structure typical of
natural sediment-transporting streams. However, while Hooke’s flume was similar to
natural meanders in these two respects, it also had features that were definitely not
representative of natural situations. For example, the flume had vertical sidewalls and was
of constant width, unlike natural meandering channels. In addition, the experimental run
Smith and McLean attempted to reproduce with their model was one in which the bed was
Stabilized, so there was no sediment transport and there were no bedforms on the channel

bottom. Thus, while the favorable comparison of the model results and measurements for
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this laboratory case is an important and encouraging first step, it is clear that a more

comprehensive verification must be completed if the model is to be employed in natural

streams, which are, after all, the ultimate domain of interest.

In this chapter, a consistent scaling of an appropriate set of momentum equations is
shown to produce a model similar to that of Smith and McLean [1984], and then this
model is extended to the case in which width varies slowly in the downstream direction
and depth smoothly approaches zero at the banks of the stream. The technique presented
also allows for the presence of bedforms and sediment transport, thus providing a model
that should be applicable to the majority of natural streams and rivers. In order to verify
this expanded version of the Smith-McLean model, we apply it to a bend (the so-called
IMR bend) in Muddy Creek, a sand-bedded meandering stream in Wyoming. This site was
studied extensively by Dietrich [1982], and the data from this location permits calculated
boundary shear stresses and other flow variables to be compared to values measured in a
system possessing the dominant characteristics of natural meandering channels. The calcula-
tions and subsequent comparision with data from the study site clearly indicate both the
importance of including appropriate convective accelerations at lowest order and the overall

veracity of the model.

2.1. Mathematical Formulation

2.1.1. Fundamental Equations

Since bottom slopes in streams and rivers are usually gentle and the time scale of
discharge variations is large compared to the time required for a parcel of water to traverse
a typical meander, it is reasonable to assume that the pressure distribution is hydrostatic
and the flow is quasi-steady. using these approximations, Smith and McLean [1984]

Obtained equations expressing conservation of mass and momentum in a "channel-fitted"
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_ |
orthogonal curvilinear coordinate System. Defining s, n, and z as the coordinates in the

downstream, cross-stream, and vertical directions, respectively, and defining R as the

centerline radius of curvature, these equations are as follows:

I1-Nds (A-MR " on 0z

0 (2.1)

24)

where u, Vv, and w are the velocities in the downstream, Cross-stream, and vertical direc-
tions, respectively,

and where E and B are the elevations of the surface and bottom. The

quantity 1-N=

(1-n/R) is simply the downstream metric associated with the channel coordi-

nate system, which was described formally by Smith and McLean [1984] and used exten-

Sively by Dietrich [1982] and Dietrich and Smith [1983].
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In the above equations, Tsss Tnss Togs Tps Ty, and T2z are the independent components

of the deviatoric stress tensor. Since rivers and streams are fully developed turbulent boun-

dary layers,

1 du
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1_ov u du (2.50)
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In order to calculate the boundary shear stress, it is necessary to average the con-
tinuity and momentum equations vertically by integrating them from the channel bottom, z

= B(s,n), to the water surface, z = E(s,n). Integral conservation of mass yields

1 _8_(<u>h)_ <v>h

2 _
-V as T-mr F ot =0 26)

where < > has been used to indicate vertically-averaged variables. Treating this equation
as an ordinary differential equation for <v>h and noting that this quantity must equal zero

at the banks of the stream, one finds the solution

n

-1 d
<y>h = —— j a—s(<u>h)dn

1 - N W (2'7)
2

where W denotes the stream width.

Vertical integration of the horizontal momentum equations yields the following equa-

tions:

1 4
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Equations (2.1) through (2.9) form the mathematical basis of the meander flow model

developed here. The complete formulation of the model can be divided into two distinct

parts and, for the sake of clarity, this approach will be taken here. The two parts of the

model are as follows:

(a) Using assumptions based on physical reasoning and observations, Smith

and McLean [1984] transformed equations (2.7), (2.8), and (2.9) into a single

integro-differential equation for (t,), , the downstream bottom shear stress,

which may easily be solved numerically. The work presented here demonstrates

that this equation may be arrived at directly from a consistent scaling of the

22
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full vertically-averaged momentum equations, and describes a simple and
efficient numerical algorithm for its solution. This solution to the vertically-
averaged equations will include effects due to downstream-varying radius of

curvature and bottom topography.

(b) A regular,perturbation expansion is constructed based on the correct order-
ing of the terms in the full horizontal momentum equations, (2.2) and (2.3).

The lowest order of this expansion corresponds to the solution of the

vertically-averaged equations found in (a), ie., only the vertically-averaged

convective acceleration terms are retained at lowest order in the downstream
momentum equation. Using this expansion, we are able to calculate approxi-
mate solutions for the complete stress distribution, surface elevation, and the
velocity field. These solutions include convective accelerations associated with
bed and bank variations and can be expected to be good approximations to the

flow found in natural meanders.

2.1.2. Scaling and Numerical Solution of the Vertically-averaged Equations

In order to scale the equations it is convenient to introduce scaled nondimensional
variables. We define mo , Wo , hy , and R, as length scales typical of meander length,
width, depth, and minimum radius of curvature, respectively. Furthermore, Uy is used to
Tepresent a typical streamwise velocity scale, /y is used to scale surface elevations, and 1, is
4 typical bottom stress value, Using these scales, the equations may be nondimensionalized

using the following definitions:
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Inserting these variables into the vertically-averaged equations and dropping the carets for

(2.11)
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The nondimensional numbers appearing in the equations must be ordered with respect
to each other so that it is possible to determine the important terms in the equations. The
first of these numbers is the depth-to-width aspect ratio defined by hy/W, . In natural
streams this ratio is typically a minimum of 0(10‘1), which will be denoted as O(g). The
ratio of average depth to minimum radius of curvature, /Ry, is also O(€) because Ry is of
the same order as the width in well-developed meanders. However, the ratio of hgy to my,
the meander length, will be 0(e?), since the lengths of meanders are typically an order of
magnitude greater than their widths. These three non-dimensional numbers describe the
geometry of the meander only. The dynamical balance present is described by the Froude
number, the ratio of the crossing-to-crossing drop in surface elevation to the meander
length, and the drag coefficient defined by ‘colpU%. Since the drag coefficient in geophysi-
cal flows of this nature is generally of 0(1072), this last number will be O(?). The combi-
nation Fr2 (lo/mp) must be of lowest order in the downstream equation since gravity is the

ultimate driving force for the flow. Similarly, Fr™2 (ly/Wo) must be of lowest order in the
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cross-stream equation in order for the cross-stream pressure gradient to balance the centri-
fugal force term. As a consequence of these scaling arguments, the lowest-order balances

in the dimensional vertically-averaged equations are given by

<UV>h

0 d _
§(<u2>h) = (<uv>h) - 2 d—MR =

1
1-N

—gh 0E _ 1
1-N os p(TZS)B

L2>h=_ 4 9E
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This scaling supports the observation that topographically-induced convective accelerations
must be retained at lowest order in the downstream momentum equation in order to
describe flow in natural streams. Smith and McLean [1984] include these acceleration
terms in the lowest order because observations of flow in meanders indicated that these
terms were of primary importance, but they did not present scaling arguments supporting
this result, However, the scaling presented here clearly demonstrates that their conclusion

Wwas correct,

Using the observation that <uv> = <u><v> and the simple closure assumption p<u?>
= p<us? = 0(T,5)p, Where o is the reciprocal of the drag coefficient, Smith and McLean

[1984] transformed equations (2.7), (2.13), and (2.14) into a single integro-differential

€quation for (1,,),:
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where E, is the surface elevation at the stream centerline.

The solution of equation (2.15) is subject to the constraint that downstream discharge
must be held constant. In order to apply this constraint, it is necessary to define a complete

velocity field as follows.

u= [ (e ")”] G0 = wfi (G2

where { = (z-B)/h and o = zy/h, where Zp 1s the overall bottom roughness parameter, The
%o used in this equation must be representative of all the drag effects present in the
meander, including sediment transport and form drag due to channel geometry and bed-
forms. This Pparameterization is based on the fact that these effects all occur near the bed,
S0 that the associated wake regions extract momentum from the flow in a manner analo-
80us to skin friction effects. A suitable manner for calculating the overall zy is given

below. In conjunction with the closure assumption, the equation above yields
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Using the assumed velocity profile the downstream flux constraint has the form
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Equation (2.15) is solved by treating the integral terms as quantities which may be
brought in iteratively as inhomogeneous terms in a simple first-order linear differential
€quation. In other words, we initially solve €quation (2.15) assuming the integral terms are
zero (thus reducing it to a simple differential €quation), then use the solution obtained
thereby to calculate the value of the integrals involving (1,,), on the right hand side. These
values are then inserted into the equation as inhomogeneous terms and the equation is again
solved, yielding an improved estimate for the bottom stress field. Obviously, this pro-
cedure may be repeated until the solution for (T,)p converges, usually about three or four
times. Thus, the complicated integro-differential equation is exchanged for a series of

first-order inhomogeneous ordinary differential equations of the form
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Although the solution of these equations can be written down immediately in terms of

integrals which may be evaluated numerically, it is simpler and more efficient computation- |

ally to solve these equations directly using a finite difference approximation.

Assuming that values for the downstream bottom stress are known at the entrance to

the bend, the finite difference form of equation (2.19) will yield the values of the bottom il

stress at the gridpoints immediately downstream, provided that some value for the center- “ i“ 1“
line surface slope is prescribed. Of course, these values will not satisfy the flux integral ‘
above, unless the initial guess for the centerline slope is an extremely fortunate one. How- “‘{!“ ‘
€ver, one may use the calculated discharge and the desired discharge values to improve the |
value of the centerline surface slope using a simple shooting method. In other words, the l 1 |
finite difference equation coupled with the flux integral yields discharge as a function of
centerline surface slope at each cross-section (s = constant). Therefore, as long as the true I |
fiver discharge is known, the solution is completely specified. The simple shooting method |
employed here generally converges on the correct slope in less than five iterations. Once i
this procedure is followed at each section, the differential equation is solved, so one may | H‘ |
Calculate the integral terms from the solution, reformulate the differential equation with i

improved values for the inhomogeneous terms and repeat the procedure. This continues



until the entire field of (t,,)p values has converged.

The procedure described above requires that the values of the boundary shear stress
be known at the upstream section of the numerical grid. Unfortunately, due to the
difficulty involved in measuring bottom stress, this upstream boundary condition is usually
unknown or only very roughly determined. However, the equations are not at all sensitive
to the upstream boundary condition, and the solution is essentially independent of the initial
prescribed values about one meander length downstream, provided that the initial values are
even remotely reasonable and yield the correct value for the discharge. Therefore, in order
to find the solution in a given bend, it is only necessary to know the geometry and topogra-
phy of the given bend and the bend immediately upstream. Then, even if the initial
upstream values of (T,,)p are inaccurate, the stress values calculated in the bend of interest

(or any subsequent bend) will be correct. If the geometric data for the upstream bend is

more or less similar in geometry to the bend of interest, it is sufficient to perform the cal-

culation through a few identical bends, each of which is the known bend or its reflection

about a line through the crossings.

This numerical procedure is well-posed for the case of constant width, in which the
banks of the stream correspond to lines of constant n. However, if the width varies, as it
does in most natural streams, the method by which the solution is marched downstream
along lines of constant n will no longer determine the solution in the entire domain of
interest. As long as the variations in the width are not abrupt, this problem can be avoided
by linearly straining the numerical grid used so that lines of constant n correspond to the
banks of the stream. The calculation is then performed exactly as described above, except

that the discharge integral is calculated across widths which vary downstream. This pro-

- Cedure ig only valid if width variations are such that convective accelerations due to them

4re small and can be neglected, which is the same as saying that taking d/0s outside the




the same order of magnitude as terms already dropped from the equation due to scaling
arguments. Since the limits of integration in this integral will be a slowly varying function
of s in the strained coordinate System, Liebnitz’ rule may be used to show that the error
incurred by this procedure is of higher order than the rest of the terms in the downstream
equation providing that width variations over the length of the meander are an order of

magnitude smaller than the average width. If this condition is not met, width-induced con-

procedure must be used. It is important to note that the basic equations of the model are

valid even for the case of abrupt width changes; there is a large class of problems, how-

ever, for which width is nearly constant and these are addressed here, chiefly for the sake

of numerical simplicity.

2.13. The Non-averaged Equations

The solution of the vertically-averaged equations above yields the downstream boun-
dary shear stresg field, the downstream transport field, and the centerline and cross-stream

Surface slopes, all based on the assumption of 3 vertical structure function for the down-

Stream velocity. In order to calculate the Cross-stream bottom stress and velocity, as well

as the error associated with the assumption of a vertically similar downstream velocity

profile at each point in the stream (ie., that u= g, f( £,80 )), one must retumn to the non-

- averaged horizontal momentum equations, (2.2) and (2.3). To s
COHecﬂy,

cale these equations

it is necessary to examine the nature of vertical profiles of horizontal velocity in

 typical Streams and rivers,
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vertical average is small compared to that average. For example, in a logarithmic velocity

profile it is easy to show that the deviations from the vertical average are of order 107!

times the vertical average above a height d, where d is of order 107! times the the flow
depth. This is the same as assuming u./<u>=0(10‘1) or, equivalently, that the square root

of the drag coefficient is 0(1071), which is generally true in most boundary layer flows.

In scaling and expdnding the full momentum equations, the assumption that u = <u>
+ &u'(z) is employed, which is equivalent to assuming that deviations from the vertical
average are small, as described above, Using this reasoning and the definitions for the
geometric parameters as given above, it is appropriate to to define the following set of non-

dimensional variables:
u=Ugi v=Uy
E=lE  5=my
2= hot

K = kuazx(z) = eugho® % = aiz [<u> +- eu’(z)] - Hoa

hy 9%

Using these nondimensional quantities along with the scaling for the various aspect

Iatios yields the following equations:
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The quantities Fr 2 (ly/e’mg) and Fr2 (ly/ewy) will be 0(1) in natural streams since

the pressure gradient terms provide the ultimate driving force for the flow. Substitution of i

 typical values also shows that these terms are (1), thus demonstrating the validity of the i
scaling used. The terms which are multiplied by 1/¢ and 1/e? will not produce terms of “‘\‘“
- lower order than the pressure gradient and stress terms because the cross-stream and verti-
-~ cal velocities are smaller (higher order) than the downstream velocity, consistent with the i
aspect ratio scaling used in the vertically-averaged equations. Before introducing the pertur- il

bation expansion, the fact that deviations from the vertical average are small may be used “y“w |

into a vertically-averaged part and a remainder which will be of higher order. For exam- Ll

Dle,

the first convective acceleration term in the downstream momentum equation may be ul

- Written as follows:
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Using the scaling for the vertical profile of downstream velocity described above, it is easy
to show that the quantity in brackets on the right-hand side of the equation above is small
compared to the first term on the right-hand side or, in other words, that convective

accelerations not associated with topographic steering enter the equations at one order

2

higher than those which are. This same scaling justifies the approximations <u >=<u>? and i

<uv> = <u><v> used by Smith and McLean [1984] in the solution of the vertically aver-
aged equations. Using similar reasoning on the other lowest order convective acceleration

terms in the equation yields

1 d<i®h | 1 d<i><i>h _ 1 2<i><v> i
h(1-N) of eh oA € (1-NR 1
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A regular perturbation expansion employing € as a small parameter is applied at this

point. The flow variables are expanded as follows:

B=uy+eu +euy - - -

\?=vo+ev1+£—:2v2---

w=W0+€W1+82W2"'

E=E0+€E1+82E2"‘

KA=K0+£K1+€2K2“'

|
I I
where vy = wy = w, = 0 from the simple aspect ratio scaling. The lowest-order equations H |

in dimensional form will be

1 a<u0>2h . l a<u0><v1>h 3 2<u0><V1> — (227)
h(1 - N) s h on (I -MNR
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Consistency between equation (2.13) and (2.26) requires that

-

0 ' (A
T = (501 = 2h) = Ul = ) = oKy 5> (229) |

~ where (T,)p is the solution to the vertically-averaged equations found above. This allows

the velocity profile assumed to be related to the lowest-order eddy viscosity. Using K, = I |

uxhx(€) in the above equation, where () is the non-dimensional eddy viscosity, yields the il il

following relationship between the lowest-order vertical velocity profile and the eddy Il

~ viscosity:

_¢ 2 9 |
lK_Q =a_JZ or fllLy = jc OI—Kng 2.30) i

. Thus, by assuming a vertical velocity profile (or alternatively, a nondimensional eddy

 Viscosity) solutions are found for the lowest-order downstream boundary shear stress, velo- i

- City, and centerline and cross-stream surface slope, as detailed above in the solution of the

Mﬁrﬁcaﬂy-averaged equations. The non-dimensional eddy viscosity used in the calculations

Performed to obtain the results presented here is given by \“‘

o



(2.32)
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correct due to the presence of sediment transport, ripples, and dunes, the effects of which

are included here only parametrically, through the specification of z,.

In order to calculate the lowest order cross-stream velocity and bottom stress, it is

necessary to resort to the 0(¢) equations, which are given by

2 " 0
m 2P (<u0><u1>h) +

%ain-kulxvp + <uUg><vy>h)
<UPS<V> + <UP<V> 1 9
(1-N)R 1-N os

(U3 — <u>? + a—an(uovl — <UP<v;>) +

(2.33)
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2K oug ) duy
= - K,
(1-N?R* (A-NR "on

2<up<u> (U — <ug>?)
+ =—g— 4+ 2
a1 -MR 1 —MR an

The cross-stream equation may immediately be integrated twice with respect to z, since

i Uy(z) is known, Using the boundary conditions that the surface is unstressed and v=0 at

- the bottom ang Ky = uxh(C), this procedure yields




)
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Since the value of <v;> is known from equation (2.7), equation (2.35) may be integrated to

set the value of the terms multiplying f; in equation (2.35). This yields

AEg+E)  2<up<up> B F,

n (1-MR ~1-MR 1~
o

S 1 [W%(u*haz)dn
(1-MHra? =

where we have defined

1
Fy= fcfde

gllbstituting the above solution back into (2.35) yields the solutions for the Cross-stream

Velocity and stress, given by
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Thus, without resorting to the 0(¢) downstream momentum equation, it is possible to calcu-
late lowest-order solutions for all flow variables. The O(¢) downstream equation will yield ‘ ‘
corrections to these lowest-order solutions. Although this equation may be solved in a rela-
tively straightforward manner, it is worth examining the veracity of the lowest-order solu-
tion before adding this complication. The higher-order corrections brought in through the
. solution of equation (2.33) are principally associated with the redistribution of downstream
momentum by the helical part of the cross-stream velocity, the changes in vertical structure

associated with local accelerations in the flow, and the effects of lateral friction.

- 22. Specification of the Roughness Parameter and Form Drag Partitioning

In order to specify f({ , {), the non-dimensional velocity profile, it is necessary to

d i - . 1
~ determine a value for Zy , the roughness parameter. In simple flows where the effective | \“ i %'1

: \
Toughness of the bottom is only due to the actual geometric roughness, zy may be deter- i

mined easily using the experimental results of Nikuradse as presented, for example, by
i‘—S"hlinlnz‘; [1979, p. 620]. However, this technique is rarely suitable for natural streams,

:.ﬁue 10 the presence of channel nonuniformity, bedforms, and sediment transport. Each of
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these tends to increase the effective roughness of the bottom acting on the flow outside the

region where they have a direct dynamic influence on the flow. Thus, a method is required
whereby the total effective roughness of the channel can be accounted for in terms of an
overall zp. The boundary shear stress resulting from the calculations using these values for
the roughness will include the actual skin friction shear stress as well as the momentum
losses due to pressure distributions on bed and bank irregularities (e.g., ripples, dunes, bars,
slump blocks, channel constrictions, and organic debris). Sediment transport depends upon
the skin friction shear stress, and since one of the principle goals of this work is to make
accurate predictions of sediment fluxes, clearly a general method for reducing the overall

boundary shear stress to the skin friction value is necessary.

To treat both the determination of roughness lengths and the form drag partitioning, a
generalized version of the technique presented by Smith and McLean [1977] is employed.
Following their formulation, the total boundary shear stress as a sum of skin friction and

form drag components:
T =Tsr+ Tp + Tey (2.39)

| where 15 is the magnitude of the total boundary shear stress vector, Tgz is the skin friction
- bottom stress ( the stress acting to move sediment on the bed), 1p is the boundary shear

Stress equivalent to the dune or ripple form drag, and Ty represents the form drag associ-
\

- ated with any other channel nonuniformities. The general relationship between form drag

4nd an equivalent bottom stress may be written as follows:

i
‘ A

‘~ T= 1/2PCDUr2 X

>, AB

.
|
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In this expression, p is the fluid density, Cp, is a drag coefficient which must be set empiri-
cally, U, is an appropriate reference velocity, Ay is the cross-sectional area of the obstacle
perpendicular to the principal flow direction, and Ay is the area of the bed covered by the
obstacle. The reference velocity is usually defined as the average over Ay of the velocity
field that would exist if the obstacle were not present in the flow (the unperturbed velocity).
For the case of obstructions on a channel bed, vertical shears and pressure forces generated
normmal to the boundary by vertical accelerations are expected to be much larger than those
associated with lateral responses. In keeping with this, the reference velocity for a given
obstacle is defined here to be the vertical average of the unperturbed velocity over a two-
dimensional obstruction with cross-sectional area equivalent to the original obstacle. For the
case of a two-dimensional dune, this definition of the reference velocity reduces to the
average of the unperturbed velocity over the cross-section of the dune, as expected. In
contrast, for the case of a three-dimensional obstruction, the reference velocity is taken to
be the vertical average of the unperturbed velocity over an equivalent two-dimensional
obstruction. For example, in the case of a channel constriction, the reference velocity is

taken to be the vertical average of the unperturbed velocity over a two-dimensional bump

across the channel bottom. This height of this bump is chosen such that the cross-sectional

- area of the bump is equivalent to that of the original constriction. This approach, which is
. entirely consistent with the inclusion of the form drag effects through a total boundary
shear stress and roughness length, permits the use of empirically determined drag

Coefficients for two-dimensional obstacles to be employed in all cases.

Using data measured over two-dimensional sand waves in the Columbia River, Smith

- Cp= 84 for unseparated flow. Although these values were originally computed from data

Tﬂsmg a slightly different formulation for the reference velocity, subsequent work has shown
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that the approach described herein is essentially equivalent, and their values for the two-
dimensional drag coefficients are appropriate. Clearly, more experimental verification of
these values is in order, especially for the unseparated case, but these values are employed
in the calculations presented here.

For the case of two-dimensional bedforms in a turbulent flow, the unperturbed velo-

city is simply a logarithmic profile characterized by the skin friction shear stress and rough-

ness. This follows from the fact that, if the bedform Were not present in the flow, the near-

bed velocity profile would be given by

k (z0)sr

where (zp)sr is the actual grain roughness if the sediment is immobiie, and is a roughness
length proportional to the height of the saltation layer if bedload transport is occurring, A
theoretical method for calculating the thickness of the bedload layer and an experimental
! determination of the relation between that thickness and the effective roughness length has
» been provided by Dietrich [ 1982]. Averaging €quation (2.41) over the dune height in order
| 10 obtain the reference velocity and noting that Ax = Hpb and Ap = Ab, where Hp, A, and b
~ are the height, wavelength, and cross-stream width of the bedform, from equation (2.40)

the following expression is found for the form drag associated with bedforms:

Cp H,
Tp = 1 2/370 (1] e’ (2.42)

Above the region in which the dunes have a substantial effect on the spatial structure

Of the flow, the velocity profile will be Quasi-logarithmic. This outer profile will be
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characterized by a shear stress equal to the sum of the skin friction value and the dune
form drag, along with a roughness length which describes the extraction of momentum
from the flow by both skin friction and form drag. This roughness length is determined by
matching the velocity profile given by equation (2.41) with the outer velocity profile at the

height of the obstacle. Thus, one obtains

k (Z 0) SF k (Z O)D

which leads to the following expression for (zy)p:

—2
HD J Yo

(z0)p = Hp [ s

2]
TSF'I"TD C HD
=|=£= 2] _ 1+—— In(—2_

Equations (2.42) and (2.44) provide the relationships necessary to reduce the total
boundary shear stress to the skin friction shear stress and to compute the total effective
"“ghness of a channel, respectively, provided that bedforms are the only source of nonuni-

formity. This is rarely the case in natural channels, where form drag associated with bars
'~ bank variations typically is a significant proportion of the total channel drag. To
dccount for this effect, the form drag on each channel-scale non-uniformity must be calcu-

lated using €quation (2.40). The drag coefficient must either be chosen as that of an
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equivalent two-dimensional obstruction, as described above, or it must be found by analogy
with laboratory results obtained for certain special geometries. For example, in the case of
a log obstructing the flow, well-known classical results for the drag coefficient of a circular
cylinder at various angles of attack may be employed. It is important to note that, by
extracting the form drag of channel-scale irregularities in this manner, this technique expli-
citly concentrates on accounting for the total drag of the channel in a spatially-averaged
sense; no attempt is made to distribute the drag force over the obstacle, which requires a

much more complicated approach.

In the case of a meandering stream with smooth banks and a nearly constant cross-
sectional area, the channel form drag is essentially that associated with the point bar. The
reference velocity for the channel-scale features producing form drag is the outer velocity
profile over the bedforms, as described above, averaged vertically over the cross-section of
a two-dimensional bump with the cross-sectional area of the point bar. If H, and A, are the
height and wavelength of the point bar and the cross-sectional shape of the point bar is

approximated as a triangular wedge, the bottom stress equivalent to the form drag of the

point bar is given by

3 Cp Hp Hp :
Tcy = [TSF + TD] 2k2 2},3 [m[(ZO)D] - 1] (246)

Because the flow typically does not separate over point bars, Cp, = .84 is employed. This

€xpression allows the channel form drag to be related to the skin friction form drag. To

L Calculate the field of overall roughness lengths in the channel, the process used in obtaining

‘ €quation (2.44) is used, with one minor difference. Rather than matching at the height of

the point bar or the height of the equivalent two-dimensional obstruction, the matching is

i
b enforced at the water surface. This is to avoid matching at points above the water surface,
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which would typically occur over much of the meander bend if the height of the point bar
was used. Physically, this matching enforces the fact that the free surface inhibits the

growth of wakes associated with large scale obstructions. The matching yields

_ TCH+TD+TSF %_ CD HB n HB 1 "
Yo = Tsr + Tp T 22 22 | | oo

Equation (2.47) predicts values of the total roughness length at various locations in a
meander bend. This effective roughness includes the form drag of both the dunes or ripples
and the point bar. In cases where other types of nonuniformities are important, expressions
similar to equation (2.46) must be developed using geometrical arguments. The resulting
expressions for the various types of channel form drag are summed, and equations (2.47)

and (2.48) are employed to calculate the field of roughness lengths in the channel.

An important by-product of the determination of the overall roughness is an expres-
sion relating the overall boundary shear stress to the skin friction value. From equations

(2.45) and (2.48), we find

T
T—B = By (2.49)
SF

This €quation allows the boundary shear stress values predicted by the numerical model

E
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described above to be reduced to the value of boundary shear stress responsible for the sed-
iment transport on the bed. This value may be used in any of various bedload equations to
predict sediment fluxes. Although the procedure described here may seem complicated, the
mathematical structure of equations (2.44) through (2.48) is such that many simple approxi-
mations may be made allowing computations of the overall roughness and form drag parti-
tioning even in cases where the dune and point bar geometry are only very roughly known.
~ The quantities in brackets in each of these equations tend to vary only weakly in typical
natural streams. Thus, equation (2.47) is nearly equivalent to holding {, constant, a result
~ that has often been used without theoretical support. Other simplifications are addressed

below in the context of a specific meander bend, but the full approach described here is of

general validity, and is applicable to a wide range of bed and bank geometries.

' 23. The Study Site

Muddy Creek is a sand-bedded stream in western Wyoming characterized by the
strongly meandering structure typical of many natural streams, as shown in Figure 2.1.
Between 1976 and 1982, a comprehensive field investigation was undertaken in one of the
imeander bends of this stream, the so-called IMR bend. Some of the results of this study
;lave been presented by Dietrich [1982], and by Dietrich and Smith [1983,1984]. As a
consequence of this work, a comprehensive set of data exists for this site, consisting of
careful measurement of the stream geometry, as well as detéiled measurements of velocity,
Surface elevation and sediment transport rates; this makes the Muddy Creek site a perfect

test case for the model described above.

The values of the mean depth, width, and meander length in the bend of interest are

about 40, 5.0, and 25 meters, respectively. These values yield a depth-to-width aspect
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ratio of 0.08, which is 0(107), and a depth-to-meander length ratio of 0.016, which is

2). A typical value for the discharge is 1.0 m’fs, so the value of the Froude number
(gh®)Y? will be 0.25. The crossing-to-crossing drop in the surface elevation in the
in Muddy Creck was about 4.0 cm., so the non-dimensional number Fr2 (ly/my) is
2), These observations clearly demonstrate that the scaling employed is valid in this
al natural meander.

The topography of the IMR bend is characteristic of stream meanders, with fairly flat

eas near the crossings (where R approaches infinity) and well-developed bar-pool struc-

ure in the region of the minimum radius of curvature. A contour map of the IMR bend is

hown in Figure 2.2. The topography was measured by making many cross-stream tran-
ects and averaging them together to remove the effect of bedforms migrating through the
ction of interest, as described by Dietrich [1982]. This procedure was repeated at enough

lownstream positions to ensure that the bathymetric structure was well resolved.

The radius of curvature of the centerline was calculated from the channel centerline
gitized from maps constructed from surveys of the channel banks. The resulting radius
L Curvature as a function of downstream position, shown in Figure 2.3, is quite close to a

e-generated curve, identified by Langbein and Leopold [1966] as the curve most accu-

Ty describing typical natural meanders.

Unfortunately, the topography and radius of curvature of the meanders upstream of
bend were not measured, so the upstream conditions were not well specified. However,
‘bend immediately upstream of the IMR bend is quite similar to it in form and so this
d has been replaced with an image of the study bend reflected about a line through the
: ' 8. The justifications for this approach are described above in the discussion of the

erical solution, Thig approximation is also justified by the fact that the cross-sectional

| profile of the upstream crossing is nearly identical to that of the downstream crossing




Figure 2.2. Depth contours in the IMR meander bend in Muddy Creek after the removal of mobile bedforms

by time averaging. Depth contours are shown at 20 centimeter intervals.
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¢ 2.3. Centerline radius of curvature for the study bend in Muddy Creek.
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reflected about the centerline, as shown in Figure 2.4. Since the topography and the flow

" are in equilibrium, and the topography and stream geometry are nearly identical at the two

crossings, it is reasonable to assume that the boundary stress fields at the two crossings are

similar and, therefore, that the solution at the downstream crossing provides a good initial

L condition at the upstream one. Furthexmore, the results of the calculations support the vali-

- dity of this approximation.

2.4. Results of the Model

2.4.1. Boundary Shear Stress and Sediment Transport

The magnitude and direction of the overall boundary shear stress calculated using the

model are shown in Figure 2.5. The highly nonuniform structure is dominated by the pres-

ence of a jet-like region of bottom stress which traverses the meander, following a path

which is near the bar-

side bank in the upstream part of the meander, crosses the stream in

the central region, and exits the meander along the pool-side bank. This structure is typical

of meandering streams, and is Clearly present in the data presented by Yen and Yen [1971],

Hooke [1975], and Dietrich [1984].

Measurements of sediment transport published by

Dietrich [1984] are also indicative of this type of structure in the boundary shear stress dis-
tribution,

Simple models of meandering streams that neglect streamwise variations in topogra-

Phy and curvamyre predict cross-stream boundary shear stresses that are everywhere directed

oward the inner or bar-side bank. This conclusion has been used extensively in theories of

point bar Stability, in which inward shear stresses are often balanced against an outward

\L€. down the face of the point bar) gravitational force. However, as is clear from our cal-

Culations ang from the observations of Dietrich [1982], Yen [1967], and Onishj [1972], the
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poundary shear stress over the point bar is actually directed downstream or even slightly
outward. This is easily explained by the presence of topographic steering, as discussed in
detail by Dietrich and Smith [1983]. As the flow approaches the point bar, shoaling of the
pottom and deceleration of the fluid both act to produce a large negative downstream con-
vective acceleration. As can be seen from equation (2.13), this tends to reduce the down-
stream surface slope, which in turn causes a relaxation of the cross-stream surface slope.
The result is an excess of centrifugal force over the bar that forces the flow outward
throughout the entire water depth. This clearly demonstrates the importance of using a
model that includes topographic steering terms in the lowest-order equations. The magni-
tude of the downstream nonuniformity also requires that the full equation for sediment
- mass conservation be employed in calculations of point bar stability, rather than an equa-

tion expressing some cross-stream balance.

It is important to note that the boundary shear stress values shown in Figure 2.5

~ include the form drag effects of bedforms and meander geometry. To determine values of

the boundary shear stress responsible for sediment transport, it is necessary to remove these
- form drag effects using the model discussed above. In applying this technique to the IMR 1 ‘ |
bend, several simplifications were made. In order to apply the form drag and overall rough-
ness model described above, a value for the skin friction roughness ( (zp)sp ) must be \‘ w |
sSpecified. In Muddy Creek, the value of this parameter is primarily related to the height of
’ ‘ﬂle saltation layer, since most of the momentum extraction very near the bed is associated I
; i;wth grain saltation. A theoretical model for the height of this layer has been presented by H‘i I ‘
Dietrich [1982], but the calculation of the thickness of the bedload transport layer requires i M
- that the skin friction stress be known. However, the value of dp, the thickness of the salta- i |
- ”“ on layer, is usually between one and three grain diameters, depending on the ratio of the i :;

S€I0 friction shear stress to the critical shear stress. Postulating a linear relationship

i3 |
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petween Op and (zo)sp based on dimensional arguments, Dietrich empirically found a

coefficient of proportionality of 0.08. Subsequent theoretical work by Wiberg [1987] and
further measurements by Dietrich [personal communication] indicate that this value is about
0.10. Since equations (2.42) and (2.44) depend only weakly on the value of (zp)sp, and the
ratio between the saltation layer height and the grain diameter only varies slowly in the

IMR study bend, the following approximation is employed:
(20)sF = .18 = .2D

This approximation removes the necessity of iteration of the form drag model, and is valid
- if active bedload transport (i.e., Tz > T,) occurs over most of the bed, as is the case in the
M bend. If transport only occurs in isolated parts of a channel, then the form drag calcu-
: lfation requires iteration. In practice, one begins by guessing reasonable values for the skin
@'iction roughnesses (e.g., the Nikuradse values), and then calculates the ratio given by
'uaﬁon (2.49) using (2.42) through (2.48). This ratio allows the skin friction boundary
Iu ear stresses to be calculated and inserted in the expression for the bedload layer height
Pprovided by Dietrich [1982]. Thus, an improved value of (zy)sx is obtained and the process
Is repeated. This iteration is well-posed and converges rapidly. However, as discussed
above, this process is not always necessary, and nearly identical results are obtained in the

€ of the IMR study bend using equation (2.50), which does not require knowledge of
fﬂ.l‘f skin friction stress in calculating the skin friction roughness.

To apply equations (2.42) through (2.49), the heights and wavelengths of the dunes or

§ present on the bed must be known. However, these quantities are rarely measured in

» 80 a simple closure for these values is desirable. For the case of fully-developed

Uasi-two-dimensional dunes, the heights of the dunes may be approximated as a constant
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pmportion of the water depth. Both experimental [Yalin, 1977; Jones, 1978] and theoretical
work (see Chapter 4) show that dunes tend to grow to a height of about one sixth to one
fifth of the flow depth. Although the dunes in the IMR bend are often oriented somewhat
obliquely to the streamwise flow direction [Dietrich, 1982], they are quasi-two-dimensional

in the sense that the near-bed flow tends to go over them, rather than being steered around

them as in the case of true three-dimensional dunes. Thus, in applying the form drag Il ‘

model to the IMR bend, it is reasonable to use :

H = —_— ’ “\ i
D=3 (2.51) ‘

The wavelength of the dunes may be approximated either of two ways: the ripple index it
' may be assumed to be roughly constant, or the average dune wavelength in the meander i
may be employed. In the IMR bend, observations of the dune geometry indicates that the | i

- second of these assumptions may be more valid. This is a result of the fact that the dunes

often have a cross-stream extent reaching from the deepest part of the pool to well up the
- flank of the point bar. Thus, the flow depth changes by a factor of two or three, but the “i
Wwavelength is nearly constant. The dune heights decrease as one moves up the flank of the
point bar in response to the shoaling of the flow; however, since the wavelength varies only il | |
- slightly, the ripple indices (Hp/A) change substantially. In fact, all the form drag calcula- }};‘
- tions were performed using both of the assumptions described above for the wavelength of :i‘: I |

~ - i
the dunes, and only very minor differences in the skin friction bottom stress values were L.

noted. All results shown herein use the bend-averaged value of the dune wavelength, which i
Was 147 cm.

, Dietrich’s measurements of the boundary shear stress responsible for sediment tran- l

SPOTt were made at six sections in the bed, as shown in Figure 2.6. The numbering system
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of the sections is the scheme used by Dietrich, and is employed here to allow easy com-
parison of the model results to Muddy Creek observations published in other papers. The
methods used to measure the boundary shear stress, flow velocities, and surface elevations
are described in detail by Dietrich [1982]. The measured values of sediment transport
boundary shear stress are shown with the model results in Figure 2.7. It is clear from this
figure that the model predicts the structure of the sediment transport boundary stress fairly
well, especially considering the rough assumptions used in the reduction of the overall
stress to the sediment transport value. This, of course, indicates the desirability of this type
of model for calculations of bedload transport. However, while the predictions are reason-
L ably accurate, there are some systematic discrepancies. For example, at section 18, the
predicted skin friction bottom stress is low near the inner bank and high near the outer
' ‘bank. Near the inner bank, there is substantial streamwise shoaling of the flow. This shoal-
~ing produces a change in the streamwise vertical structure of the flow and, more
specifically, produces enhanced shear near the boundary. The effect of this vertical structure
change, which appears in the model at the next order in the perturbation expansion, is to
enhance the bottom stress. Near the outer bank, there is relatively rapid streamwise
- deepening of the flow, which results in less shear near the boundary, and a diminished
boundary stress. Thus, some of the differences between the measured and predicted bottom
Stresses are associated with the assumption of a spatially invariant similarity structure for
the streamwise velocity. However, these errors may be accounted for by solving the pertur-
| bation equations to one higher order and, by doing so, treating the effects of spatial

accelerations on the vertical structure of the streamwise velocity and shear stress.

In order to calculate the downstream sediment flux fields from the sediment transport

. bounda.ry shear stresses discussed above, it is necessary to employ a bedload equation. The

Fs'llts Presented here are from the equation presented by Yalin [1963], which is given by
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0, = 0.635u.DS [1 - 71S-1n(1 + 75)] 2.52)

where D is the particle diameter, S is the local excess shear stress defined by (Tgr - T/,
and 7 = 2.45 (ps/pSH('co/(ps - p)ng.}; Since by far the majority of the sediment in Muddy
Creek is make up of quartz sand grains, the sediment density p, is given by 2.65 gm/cm3 :
The grain diameters used in the calculations are the median sizes measured and presented
by Dietrich and Smith [1984], which vary from about .03 to .20 centimeters in Muddy
Creek, depending upon location in the stream. The critical shear stresses T, were found

from the grain size data using Shields’ diagram as presented by Smith [1977].

The calculated downstream sediment flux field is shown in Figure 2.8, along with
measurements of bedload transport taken in Muddy Creek using a bedload sampler (from
Dietrich and Smith, 1984). Although there are some discrepancies, it is clear that the gen-
eral structure of the bedload transport field is reproduced well by the model results and the
Yalin equation. The total downstream discharges of sediment at each section calculated
from the model results were fairly close to constant, with about a 10% variation about the
mean value. This is consistent with the observation that no net erosion or deposition was

occurring in Muddy Creek during the period when measurements were taken.

24.2. Velocities and Surface Elevations

The Muddy Creek observations presented by Dietrich [1982] also include values for
the vertically-averaged downstream velocity. This data is shown with the model results in
Figure 2.9, This comparison clearly demonstrates that the lowest-order vertically-averaged
‘ ations employed in the model represent the salient physics well. The only noteworthy

- discrepancy between the measured and calculated vertically-averaged velocities is found
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‘ts are those given by Dietrich and Smith [1984], while the solid line is the value calcu-
- using the skin friction bottom stress from the model in the Yalin bedload equation.
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near the inner bank from sections 19B to 22. In this region, the model tends to under-

predict the velocities. This minor error is almost certainly due to the exclusion of vertical

1 structure changes over the point bar. By holding the vertical structure constant in the

lowest-order equations, but including the effect of topographic steering, the model tends to
slightly underpredict the volume flux over a three-dimensional obstruction. In reality, the
routing of the flow over an obstruction consists of a component of steering, which routes
the flow around the obstacle, and a component of vertical structure variation, which is pri-
marily associated with the flow going directly over the obstacle. By neglecting vertical
structure changes, the model underpredicts the flux of water up over the point bar. How-

ever, this is only a minor error, as is consistent with the model scaling and, in general, the

flow field is predicted accurately. This conclusion is also supported by comparison of the
measured and calculated .centerline surface elevations, shown in Figure 2.10. The structure
~ of the centerline elevation is typical of natural meandering streams, with relatively small
- slopes near the crossings joined by a region of much steeper slope near the minimum
- radius of curvature. This structure is clearly produced by the presence of the topographic
forcing terms, since flat-bedded channels have essentially constant centerline surface
~ slopes, as shown experimentally by Yen and Yen [1971] and verified using the model
presented here. The match between the measured -and predicted overall head loss through
the bend indicates that the form drag is well-predicted by the model for the total channel
Toughness presented above. Using the Nikuradse roughness values or the sediinent tran-
Sport zp values yields much lower total head loss through the bend, which indicates the

importance of including the form drag effects associated with bars and bedforms using the

Simple model described above.

Equation (2.14) yields the cross-stream surface slope which may then be used to con-

Stuct the overall surface elevation, which is shown in Figure 2.11. Both the measurements
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and the model show a region upstream of the pool where the downstream pressure gfadient

1 is zero or even slightly positive but the boundary shear stress is still downstream. The

principal balance in this area is clearly between the pressure gradient and the convective

| accelerations included in equation (2.13), which again demonstrates that it is inappropriate

to introduce these terms as perturbation quantities.

Figures 2.12 and 2.13 show’ sectional contours of the downstream and cross-stream
velocities obtained from the model and measurements, respectively. The production of out-
ward flow throughout the water depth over the bar due to the presence of large fluid

~ accelerations is clear in both cases. Furthermore, the lateral position and value of down-

stream and cross-stream velocity maxima are in quite good agreement. The most notice-

| able discrepancy between the model results and the data is found in the vertical position of

the downstream velocity maxima. The observations indicate that the peak velocity is often
below the water surface, while the model can only predict velocity maxima at the surface.
The submersion of the velocity jet is almost certainly due to the momentum redistribution
effect of the cross-stream circulation terms, which only appear in the model at the next
order. Nevertheless, the overall agreement and the fact that the surface velocities above
Submerged velocity maxima are only about 10-20% lower in magnitude than the maximum
indicate that the circulation-induced convective acceleration terms are correctly placed at
ll‘ligher order. At any rate, this error is a minor one, especially in light of the fact that it
has only a very small effect on the sediment transport, which is the most sensitive and

important field one hopes to predict.

2.5. Summary of the Meander Flow Model

In summary, it has been demonstrated that the simple model for flow in curved chan-

with typical topography presented in this chapter does an admirable job of reproducing
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 yelocities, surface elevations, boundary shear stresses, and sediment transport fields meas-

ured in a natural meandering stream. The primary reason for this accuracy is the inclusion

. of convective accelerations due to downstream-varying topography and radius of curvature
\
\H

 included at the lowest order in order to construct a model which is applicable to naturally- W

occurring curved channels. This result has important implications in the areas of sediment HW

HH
il \
hm “H | U
appropriate sediment transport algorithm will provide interesting information on the forma- ”H\ |

in the lowest-order equations. The scaling presented here indicates that these terms must be ‘H

. { |

transport and meander stability, and it is certain that the coupling of this model with an

tion and evolution of meandering streams and rivers, as will be described in the following

 chapter.




Chapter 3: Evolution and Stability of Beds in Natural Channels

3.1. Overview

By definition, a stable channel morphology is attained when no net deposition or ero-
~ sion is occurring on the channel bed for a prescribed flow and sediment discharge. This
condition is reached when the amount of sediment arriving in a given length of time at
each location on the bed is precisely equal to that departing from that point or, in other
words, when the divergence of the sediment flux is zero everywhere on the bed. If the
channel geometry or flow is modified in a manner such that the flow is not in equilibrium

with tl;e channel, erosion and deposition will occur on the bed until stability is reinstated.
| Both the mechanism by which the channel adjusts to a perturbation from equilibrium and
| the time scale over which adjustment occurs is of fundamental importance in several prob-

~ lems of concem to hydrologists and geomorphologists.

In order to investigate the evolution and stability of natural channels, the interactions
between the flow field, the channel bathymetry, and the sediment transport must be charac-
:ierized in a realistic manner. These interactions may be loosely divided into three
f:ategories. First of all, there is a strong coupling between the flow and channel geometry
d-ue to topographic forcing of the flow field. The spatial distributions of velocities and
Eoundary shear stresses are strongly affected by bathymetry through the production of con-
”I:Vecﬁve accelerations associated with channel nonuniformity. These effects are perhaps the
"OSt often neglected in previous work on stable channels configurations, and yet, as is
made clear below, they are of primary importance in many, if not most, natural channels.

-

the second type of interaction considered herein is that between sediment transport over

4

‘f' bed and the slope of the bed. Clearly, both cross- and downstream slopes modify

\‘ ‘
H ‘ ‘\\ ‘h\‘
‘ \
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sediment fluxes over the bed through the gravitational forces that act on the sediment parti-

cles as they move. These forces are important in the determination of stable bar and bank
slopes. Lastly, and perhaps obviously, there is a strong coupling between the flow over the
bed and the transport of sediment. For the case of bedload transport, only the boundary
shear stress pattern is important, while in the case of mixed or suspended load transport,
the bottom stress, velocities, and turbulent diffusivities all are important for predicting pat-
terns of erosion and deposition. Any attempt to understand the basic processes by which a
channel adjusts to its equilibrium form must include a physically-based sediment transport
"~ model which includes the effect of bed slopes, as well as a fluid dynamical model that

- accurately treats the response of the flow to topographic nonuniformities.

In this chapter, a method whereby predictions of the evolution and stability of natural
channels may be made is presented. The basic idea behind the approach presented here is
Il shown in the form of a flow chart in Figure 1.1. To predict the temporal development of
channel morphology, one begins by assuming that the flow discharge and the initial
- geometry of the stream are known. Using these values, a numerical flow model is
employed to obtain the distributions of velocity and bottom shear stress in the flow through
I, initial channel. Since the time scales associated with the flow are much shorter than the
| time scales associated with the slow evolution of the bed topography, the fluid dynamical
‘model can be constructed using the assumption that the flow is steady. However, in order
‘ treat topographic steering of the flow by channel nonuniformities, appropriate convective

accelerations must be retained in the model equations. This is discussed in more detail

below in the context of specific flow calculations.

The boundary shear stresses and velocities obtained from the flow model can be used
along with the particle size distributions in order to predict the flux of suspended load and

Bedload. As mentioned above, the effect of the bed slopes on the bedload sediment fluxes




must be included. As shown in the Figure 1.1, these sediment fluxes can be used along
with an expression enforcing the conservation of sediment mass in order to predict erosion
and deposition on the bed. This pattern of scour and fill can then be employed to predict
how the bed will change in form in a specified time interval. Thus, the calculated rates of
erosion and deposition are employed to predict what the bed will look liké at some small
increment of time later. The flow- over this new bed geometry is calculated using the fluid
dynamical model, and the entire procedure is repeated. The procedure is continued until the
I flow variables calculated over the evolved topograph.y yield sediment fluxes for which no

erosion or deposition occurs, or until all the erosion and deposition goes into migration of

the bar forms on the bed. When this condition is met, the topography has evolved to the

equilibrium condition.

As of this writing, there have been two attempts to construct fully nonlinear flow and
bed deformation models similar to the one presented here. The first of these is presented by
Shimizu and Itakura [1985], while the second is very briefly discussed by Struiksma et al,

| [1985]. Each of these two formulations considers only the solution of the vertically-
averaged equations, while the model presented herein treats the vertically-averaged equa-
Iﬁons as well as the vertical structure of the flow. As a result of this, these other models
mlust employ theoretical expressions for fully-developed bend flow to calculate the helical
part of the cross-stream velocity distribution. Thus, the near-bed veering of the shear stress
Vector is treated in the models presented by these other workers using results obtained for
Wwell-developed bend flow. This is inappropriate and, although it may perform adequately in
i;"'" eander bend calculations, clearly it does not account for the production of helical circula-
tion in Straight channels, as discussed below. Furthermore, these models do not provide
any information about the vertical structure of the flow, so they cannot be employed

Without modification to examine any phenomena related to the variations of velocity and
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stress in the vertical (e.g., suspended load transport). Nevertheless, they clearly represent
substantial improvements over the use of linear theories for predicting bed topography and,
as such, are a step in the right direction.

The work described herein begins with a discussion of the fluid dynamical and sedi-
ment transport models that are to be utilized. After building this framework, the general
scheme for predicting bed evolution and equilibrium topography described above is applied

in two fundamental and relatively well-understood cases in order to strengthen confidence

" in the technique. First, the method is used to predict the evolution and stability of a point

bar and pool in a curved channel with an initially flat cross-sectional shape. Second, this

' technique is shown to predict the formation and eventual stability of alternate bars down-

stream of a perturbation in an initially straight, uniform channel. In conjunction with the

~ finite amplitude alternate bar evolution, a linear stability analysis of the govemning equations

is presented, both in order :;o clarify the physical processes responsible for alternate bar for-

I
mation, and to demonstrate the failings of the linear theory.

'32. The Fluid Dynamical Model

The numerical flow model used in the bed evolution calculations is a generalization of
the meander flow model described and tested in the previous chapter. In the meander
model, the technique of solution is centered upon a perturbation expansion about a
Simplified set of vertically-averaged equations. Simplification of the vertically-averaged
"quations arises from careful scaling arguments specifically valid for typical natural

g ader bends. In order to construct a model of general validity, the scaling constraints

*mployed in Chapter 2 are relaxed. However, most of the physical assumptions employed

1 the meander model are also used in the more general flow model developed in this
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chapter. These are restated briefly here:

(1) Streamwise velocities are assumed to be much larger than cross-stream
velocities, which are, in tum, much greater than vertical velocities. This
assumption is valid in natural streams, except perhaps near very abrupt obstruc-

tions and vertical banks.

(2) The pressure field is assumed to be hydrostatic or, in other words, vertical
accelerations are assumed to be negligible in the vertical momentum equation.
As in the case of assumption (1), this is valid except perhaps near abrupt

obstructions in the flow or in the vicinity of steep banks.

(3) The flow is considered to be fully turbulent and the exchange of momen-
tum associated with the turbulent fluctuations is described using a physically-
appropriate scalar kinematic eddy viscosity. This eddy diffusivity depends only
on the local shear velocity and the distance from the boundary; thus, produc-
tion and dissipation are assumed to be in balance locally and any advective
influences on the turbulence field are neglected. This assumption specifically

excludes the local effects of wakes in the model solutions.

(4) The total roughness of the channel is assumed to be representable in terms
of a field of values for zp the roughness length. These values represent
momentum extraction associated with grain roughness, as well as that due to
sediment transport and form drag on channel nonuniformities (e.g., bedforms

and bars), as discussed in Chapter 2.
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(5) The lowest-order structure of the velocity field is assumed to be character-

ized by strong shear near the boundary and relatively weak shear (nearly con-
stant velocity) in the region away from the boundary. Thus, the downstream
velocity is assumed to be nearly equal to the vertically-averaged velocity over
most of the flow depth. This leads to an assumption that the vertically-averaged

convective accelerations in the downstream momentum equation are reasonable

approximations to the full convective acceleration terms (see Chapter 2). In
conjunction with (2) and (3) above, this assumption yields the result that, to

lowest order, the velocity profile measured along the direction of a vertically-

averaged streamline is well-described by a similarity velocity pfoﬁle.

(6) The effects of lateral friction are neglected in the model formulation. These

terms clearly have an influence on the flow very near the banks, but since most

rivers and streams are wide relative to their depth, this effect is not of zero-

order importance in determining the overall flow field. Furthermore, these
terms are not related to the genesis and growth of bars, although they may

have some weak effect on finite amplitude bar morphology.

These assumptions form the foundation of the flow model employed herein and will

be adhered to henceforth.

32.1. Solution of the Routing Problem

As in the meander model, the first step in this theoretical model is the solution of the

'canY-averaged equations. Employing the channel-fitted coordinate system presented by
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Smith and McLean (1984) in conjunction with assumptions (1) and (5), the full vertically-
averaged equations expressing conservation of mass and momentum (equations 2.6, 2.8,

and 2.9) are reduced to the following balances:

1 9 <v>h 0 _
T-Nas P T-mr ¥ 2P =0 a1

12 K _ 2<uvsh _ _—gh 3E _ 1 i
T a5 P 3 - R = Ton s ~ e (D)
Il

i
18 2 =P 0E 1 il
o () + = (<v>h) + TR -5, p('cz g (33) i

Following the conventions employed in Chapter 2, s and n are the streamwise and cross- |
stream coordinates, respectively, R is the radius of curvature of the channel centerline, and 1
1 - N is the downstream metric of the coordinate system. Furthermore, u and v are the |
. streamwise and cross-stream velocity components, respectively, E is the surface elevation

above some arbitrary datum, and (1,,)z and (t,,)p are the streamwise and cross-stream com- i

Iepresent vertically-averaged quantities.

- ponents of the bottom stress. Surface stresses are assumed to be zero and < > is used to
\“

\ In order to solve these equations, it is necessary to specify a closure between the
I

- velocity and the components of the bottom stress. Extending the approach taken in the

Streamwise equation of the meander model, the following closures are utilized:
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i | ‘ velocities has been employed to simplify the full drag closure. \“MHW\ M\ |
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I‘! 1 ~ The specification of o proceeds in a manner analogous to that used in the meander ““‘H\‘” \‘ I ;
‘i : : | ‘
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A Hm H h\
- flow model. In that model, the fact that vertically-averaged convective accelerations are ”\‘H
i \
} good approximations to the full convective accelerations over most of the flow depth was ”‘\H\m ‘U\

- employed in obtaining a linear stress profile at lowest order. The linear stress profile along

with the definition of the eddy viscosity was used to arrive at a similarity structure for the

| lowest-order streamwise velocity field. This similarity profile was shown to depend only on
the functional form chosen for the eddy viscosity and the roughness of the bed. In the
i‘more general model developed here, the same physical ideas are used to argue that a linear ‘
iisu«ess profile is a good lowest-order approximation to the stress profile measured along the
direction of the vertically-averaged streamlines of the flow. In other words, the vertical
structure of the velocity field along the direction of the vector defined by these two com- u‘;\‘“‘“
,‘ ents of averaged velocity is well-described by a similarity profile. This reasoning along I
with the definition of the eddy viscosity immediately leads to the following equations: Ul H:‘ij‘

1

‘ I T
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these equations, the subscript 0 on the streamwise velocity shows that, following the
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conventions used in Chapter 2, this is the lowest-order streamwise velocity. The subscript
s on the cross-stream velocity component indicates that this quantity is the similarity part of
vy, the first-order cross-stream velocity. This point will be made clearer below. Nondimen-

sionalization of the lowest-order eddy viscosity using Ky = us«hx({) yields

g
A= [1=ba €E)
%

~ Thus, as in the meander model, specification of a non-dimensional eddy viscosity and the
bed roughness provides the lowest-order vertical structure for the velocity field. Unless
otherwise noted, the eddy viscosity used in the calculations presented here is given by
- equation 2.30, and the drag partitioning algorithm described in the previous chapter is
l employed to calculate local roughness lengths. Using equations (3.4), (3.5), and (3.6), it is

i' easy to show that

2
1
a=| | fi|GCo|dC (3.8)
[ (o)
and that
> .
Us = " V. o 3.9

Equation (3.4) above allows the components of the boundary shear stress in equations
- (32) and (3.3) to be expressed in terms of the components of the vertically-averaged velo-

. ﬂ“}’ and a. The value of o proceeds directly from the specification of a lowest-order eddy
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Qiscosity or, equivalently, the choice of a similarity vertical profile for the velocity. How-
ever, in order to solve the vertically-averaged equations, the quantities <u*>, <uv>, and
<v>> must be expressed in terms of the vertically-averaged velocities, <u> and <v>. This is
accomplished by expanding the horizontal velocities in terms of their vertical average and
the deviation from that average, and then inserting these expansions in the various vertical
averages appearing in equations (3.2) and (3.3). Using primes to denoted deviations from

the vertical average, the following results are obtained:

<> = <us<u> + <UD <> = <us<v> + <UV'> <> = <ys<y> + <v'S (3.10)

In the meander model, the last terms on the right-hand sides of the above equations (the
vertical correlation terms) were assumed to be small, and were neglected in the vertically-
averaged solution. As a result of neglecting these effects, correction terms appeared in the

perturbation equations for the vertical structure (the last four terms on the left-hand side of
| equation (2.33)). This approach was justified by the measurements taken by Dietrich
(1982), which demonstrated that this approximation was reasonable in typical meander
bends. Here, this same approximation is used in the solution of the vertically-averaged
equations, but a technique whereby higher order corrections to this closure may be made is
also described. It is worth noting here that, if the similarity structure were exactly correct,
setting the vertical correlation terms equal to zero would be a very good approximation. For
the case of a logarithmic vertical profile and typical values for (g, the value of these terms
. 1S typically a maximum of 5% of the value of the uncorrelated part of the vertical averages.
: However, the deviations from similarity weaken this assumption somewhat, making a tech-

- Dique allowing for the inclusion of these effects of some value.

As detailed below, dropping the vertical correlation terms allows the vertically-

averaged equations to be solved in a straightforward manner. These solutions along with
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the similarity vertical structure are then inserted as forcing terms in the full (non-averaged)
mo;nentum equations in order to calculate the deviations about the linear stress profile and
the similarity velocity profile. As developed more fully below, the variations about the
similarity assumption can be used to reformulate the vertically-averaged equations incor-
porating the vertical correlation terms as forcing terms. In contrast to the original meander
flow model, this procedure effectively moves the entire flow routing problem to the
vertically-averaged equations, and does not require corrections to the local streamwise or

cross-stream discharge in the non-averaged equations.

Inserting the drag closure and separating the correlated and uncorrelated parts of the

~ vertical averages in the equations (3.2) and (3.3) produces the following results:

1 9

2
9 2<u><v>h + = _—8h OE  <u>
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N obtaining solutions of these equations, the vertical correlation forcing terms F’ and G’
€ nitially set to zero but may be brought in iteratively. In order to solve these equations,
€ also needs the integral form of the equation expressing conservation of mass given by
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(3.13)

The three equation immediately above are easily solved numerically using any of a
vaﬁety of techniques. Primarily for historical reasons, the solutions shown here are found
using the same method described in detail in Chapter 2 for the meander flow model. In
short, equation (3.12) is used to rewrite the pressure gradient in (3.11) in terms of the
centerline surface slope and various integral terms. Equation (3.13) is then employed to
eliminate the vertically-averaged cross-stream velocity. Using the drag closure, the final
result of these manipulations is an integm-differemial equation for (t,)z. This equation,
along with an integral constraint on the streamwise discharge, is easily solved using a sim-
ple finite difference approximation in conjunction with an iterative scheme for determining
. the integral terms (see Chapter 2 for a complete description of this approach). This tech-
nique offers some advantage over more standard numerical techniques in that, because the
iterative scheme exploits the fact that the vertically-averaged streamwise velocity is typi-

cally substantially greater than cross-stream velocity, it tends to be much more cost

 effective than a full finite difference or finite element solution. However, this advantage is

' galned at the expense of some generality in a geometric sense. For instance, the technique

is Inappropriate for the case of very rapid width variations in the streamwise direction. It i is

'ﬁmponant 1o point out, however, that equations (3.11) to (3.13) are valid in general, and
that specific solution techniques can easily be constructed for even the most complicated

geometries. The only inputs required to obtain a solution to this set of equations are the

Stre

“M geometry, the discharge, and the distribution of roughness lengths on the bed.

Solution of the vertically-averaged equations yields values for < u >, < v >, (1,)p,

B and the surface elevation, E. Using the similarity velocity structure and the linear
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stress profile predicts values for both velocity and stress throughout the flow. In some
sense, this lowest-order model corresponds to pure topographic steering; the solution
predicts the routing of flow over a complex nonuniform bed, but it does not yield predic-
tions of variations in the vertical structure associated with spatial accelerations. In order to
calculate the deviations about the similarity structure, it is necessary to resort to the full

momentum equations:

3.2.2. Deviations From Similarity

Although deviations about the similarity profile may be relatively small, these effects
are often of primary importance in determining depositional patterns. For instance, the heli-
_ cal flow typically observed in parts of meander bends clearly plays a critical role in the ini-
tial growth of point bars. By definition, helical circulation is flow with no net cross-stream

discharge, so this important physical effect is not predicted by the solution for < u > and <
I V > described in the previous section. In the meander flow model, this problem was
rectified by using a perturbation expansion about the vertically-averaged equations. The hel-
ical component of velocity and the associated cross-stream stress term were found from a
~ balance of the cross-stream stress divergence, first-order pressure gradient, the first-order
- averaged centrifugal force term, and the deviation from the vertical average of the zero-
- order centrifugal force term, as shown in equation (2.34). Using the more complete solution
‘ﬁD the vertically-averaged equations described above essentially moves the entire flow rout-
mg problem to zero order, so the vertical average of the streamwise perturbation velocity is

2€10. In this case, equation (2.34) reduces to the following balance:

2 _ 2
o= <) OB, DM (3.14)

A-MR _ an T 20,
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Adding the zero-order balance given by equation (2.28) to the above equation yields the

it
result that, to first order, the cross-stream momentum equation is given by i

u(z) oE 0 X vy

. N B i 3.15 |
QMR %an T30, (3.15) |

Using the similarity solution for uy and <v;> in conjunction with the boundary condi- ‘
tions that the free surface is unstressed and the velocity goes to zero at the bed, this equa-

tion is easily solved for the cross-stream velocity and stress (see Chapter 2). The expression

for the cross-stream velocity is of the form

uxh

"= TR 8160 + —ACLo (3.16) |

In equation (3.16), the function f; is the similarity velocity profile defined in equation 1
1‘@3.7), and g, is a vertical structure function describing the well-known helical part of the
- Cross-stream velocity, as given by the first term on the right-hand side of equation (2.37).
'i‘he integral of g; from z, to the water surface is zero; by definition, there is no net cross-

Stream discharge associated with the helical circulation. Note that the second term on the

Tight hand side of equation (3.16) is simply the similarity part of the cross-stream velocity

fIeld, as defined in equation (3.6).

There are two interesting asymptotes to equation (3.16). If no streamwise variations

occur in the topography or curvature, then from equation (3.13) it is clear that <v;> =0,
which results in a cross-stream velocity field which is entirely helical (i.e., there is no net

T0Ss-Stream discharge). This solution corresponds to the classical case of well-developed
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bend flow, wherein streamwise variations in topography and curvature are considered negli- i

|
gible (cf., Rozovskii, (1957); Engelund, (1974)). The orientation of the velocity vector is “; I

inward (i.e., toward the center of curvature) near the bed, and is directed outward near the

free surface. The production of inward velocity and, therefore, inward boundary shear

stress, is intimately connected to the production of point bars on the inner banks of curved e

bends, as discussed in detail below.

The second case of interest is that of a straight channel ( R — ). In this case, the

vertical structure of both the downstream and cross-stream velocities are given by the simi-

larity profile f;. For a typical choice of the eddy viscosity, f; = 2.5 ln[C/CO], so the direc-

tion of the velocity vector is constant in the vertical, and its magnitude is distributed in a
._, logarithmic manner. This solution corresponds to the case of "pure" topographic steering,
wherein the flow is steered by downstream variations in the topography, but, in contrast to
- the case of well-developed bend flow, the orientation of the velocity vector does not vary
in the vertical.

The mathematical model which led to equation (3.15) is specifically designed for
application to meander bends, and the argument which leads to this formulation is inap-
propriate for the case of straight or weakly sinuous channels with streamwise topographic

nonuniformities. In this situation ("pure" topographic steering), the inclusion of the effects

Of streamline curvature solely through the specification of the channel radius of curvature

omits the production of helical flow and the associated perturbation boundary shear stress.

Thi

is a consequence of assuming that the curvature of the channel centerline is a good

approximation to the curvature of the streamlines, a hypothesis that is relatively accurate in

the case of fully-developed meander bends, but which is a poor approximation in straight

Cna;

els with irregular bathymetry. As the flow is steered around the bars or other topo-

8Taphic obstructions in a straight channel, the induced streamline curvature will produce
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- convective accelerations in the cross-stream equations that are not included in equation
(3.15). These convective accelerations produce cross-stream surface slope and a helical
- component of cross-stream velocity, just as the centrifugal force term in equation (3.15)

produces Cross-stream superelevation and helical circulation in a meander bend.

In order to develop a more general model, which includes the salient physical effects
in both curved and straight channels with irregular bathymetry, it is useful to examine the
ordered equations which result from the perturbation expansion employed in Chapter 2 for
the situation where the radius of curvature is infinite (a straight channel). For this case, the
three lowest-order cross-stream momentum equations in the perturbation expansion are

en by

d d d oE d
U v V1 Y1 2,9 Ko% +
Z

5 N N J .. oV
1-N 95 V‘an w’az‘gan 0

3z oz

B O(e%):

When R — oo, the 0O(1) solution tells us nothing about the flow field, it only provides the
‘OWest-order value of the cross-stream surface slope, which is zero. The O(g) equation may
lved immediately using the boundary conditions described above; the result is simply

milarity part of the cross-stream velocity.

- This solution is identical to the non-helical component of the cross-stream velocity
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field given by equation (3.16). However, in the case of a straight channel, the production of
a helical component of the cross-stream velocity occurs at one order higher in the perturba-
| tion expansion, in equation (3.19). The first two terms in equation (3.19) make up the
- lowest-order convective accelerations associated with the curvature of the streamlines in the
horizontal plane. As such, they are directly analogous to the centrifugal force term in equa-

 tion (3.15), as can be verified using either a coordinate transformation or simple formulae I W /

N 6or ihe geometry of curves in space. The third term on the lefi-hand side of equation h‘h‘{
(3.19) is associated with streamline curvature in the vertical, while the right-hand side of

- the equation encompasses the momentum fluxes associated with the higher-order pressure

- gradient and stress divergence.
\‘\‘MHH‘

To include the effects of helical flow in the case of a straight channel, the first two e

' terms on the left hand side of equation (3.19) are moved down one order. By doing so, the

effect of streamline curvature in a straight channel is brought into the model in the same

-manner that it is included in the case of the meander bend calculations. Note that, in doing 1‘ .

@his, the perturbation expansion is not violated; if the meander scaling presented in Chapter ‘

ﬂ had been carried out in a cartesian coordinate system, these terms would have appeared

in both the vertically-averaged equations and equation (3.15), essentially replacing the cen-

(

trifugal acceleration terms. Employing equations (3.5) and (3.6), it is easy to show that
5

ovmg these cross-stream spatial accelerations to O(g) yields the following replacement for

€quation (3, 15):

Uy v, av, u%

e — — —3

0E | 3 . 9v
1-N os +vsan+(1—N)R—— an o

Ky—

3 (3.20)

*I'dCtice, €quations (3.11), (3.12), and (3.13) are solved for the values of <up> and <v;>,
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and then these values are employed to find u, and v, using equations (3.5) and (3.6). Insert-
ing these expressions in equation (3.20) and integrating employing the boundary conditions
described above yields analytical expressions for the cross-stream velocity and stress. The

equations for the velocity and stress are given by

B h Ovx Ve v« hus
and
It av. Vs hu%
[1,,,]1 = puwa(l = §) + [ T e _N)R]gz((;,co) (322)

where v« = <v1>/on"ﬁ and g, is given by analogy with equation (2.38).

In typical meander bends, the first two terms in the bracketed expression in equation
(3.21) above are much smaller than the last term. Thus, equation (3.21) is essentially
equivalent to equation (3.16) for meander bends with typical sinuousity. However, in the
base of very low sinuousity or straight channels, the first two terms in the bracketed expres-
sion will be larger than the last term. In this case, the dominant part of the cross-stream
:*velocity will be the component associated with topographic steering, but the effect of
Sﬁeamline curvature in producing helical flow is not neglected, as it would be if the
@emder model described in Chapter 2 was applied without modification. As will be made
::élnar below, the helical circulation generated by the curvature of the primary flow stream-
131138 plays a significant role in determining the morphology of alternate bars in straight

Channels. Thus, by including the convective accelerations in the cross-stream equation in

the manner described above, a model is formulated which includes the salient physical




processes active in both low and high sinuousity channels.

The above- solution for the cross-stream velocity may be used along with the similar-

| jty streamwise velocity to calculate the forcing terms originally set to zero in the

vertically-averaged equations. If these terms are calculated and inserted in equations (3.2)

and (3.3), the resulting solutions for the boundary shear stress and vertically-averaged velo-

city will include the effects of helical redistribution of streamwise momentum. Although

this effect may only be important in ‘few, if any, natural streams, it has been shown to be

operative in certain specialized laboratory experiments. For example, in extremely long

bends with constant curvature and no streamwise bathymetric variations, this effect is

responsible for the tendency of the high velocity core to move toward the outer bank as the
- bend is traversed. In general, however, this weak effect is totally overwhelmed by convec-
tive accelerations stemming from the streamwise nonuniformity present in most natural

- streams.

There is also a vertical structure equation describing the deviations of the streamwise
velocity and stress from the similarity profiles. This equation predicts changes in the
streamwise vertical structure associated with accelerations and decelerations, as well as with

the redistribution of downstream momentum by the helical component of cross-stream velo-

city. Although this equation may be solved via simple vertical integrations, as in the case

of equation (3.20), there are important physical implications which must be considered. By

bringing in this equation, a perturbation streamwise stress is produced. Unlike the bottom

stress that is predicted by the vertically-averaged solution, this perturbation stress is not

phase locked to the vertically-averaged velocity field. This allows the prediction of bedform

instabilities, as explained by Smith (1970). Since the primary aim of this chapter is to

ivestigate the formation and evolution of bars, there is some disadvantage in adding this

Complicating effect. Furthermore, it is not at all clear that the assumption of local
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equilibrium used in the turbulence closure is accurate enough to be employed in predicting
the streamwise perturbation velocity and stress. Wake effects must be present in flow over

pars, and the spatial adjustments in the turbulence field may be as important as accelera-

tions and decelerations in setting the deviation vertical structure for the streamwise flow.
One possible rectification of this last problem is to formulate a higher order closure
wherein the similarity flow structure is used to advect the turbulence field and thereby cal-
culate the errors associated with the simple eddy viscosity formulation. Thus, the simple
eddy viscosity is used at lowest order, but a k—€ type formulation is used to correct this

assumption at next order. This would allow the decoupling of the momentum equations

from the equations describing the advection of the length and velocity scales of the tur- i
' bulence, an enormous numerical advantage. However, before applying this technique, phy- e

sical insight into the interaction of wake turbulence and the vertical flow structure is highly

desirable, which succinctly describes the original motivation for the work presented in
Chapter 4 of this dissertation. At any rate, the equation for the perturbation velocity and 1

stress in the streamwise direction is not solved here for two reasons. First, it is advanta-

|
|
.~ geous to consider the bar problem completely separate from the bedform problem and i

i
- second, the accurate treatment of some of the effects appearing in this equation may require I !}M;}‘

a more sophisticated turbulence closure than that employed herein.

In summary, all flow calculations presented in this chapter are based on the numerical

solution of equations (3.11), (3.12), and (3.13). These solutions, which are obtained using ”‘lw

¥ |
w“values for the streamwise surface slope, velocity, and boundary shear stress, as well as the i

‘«'a Prescribed channel geometry, discharge, and roughness distribution, yield the lowest-order
|
|

Value of the vertically-averaged cross-stream velocity. These values are inserted in equa-

i . “ I
tions (3.21) and (3.22) in order to calculate the cross-stream velocity and stress. Convec-
b i

HVE accelerations associated with streamwise nonuniformities are included in the lowest-
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order downstream momentum equations, as required by a consistent scaling of the full
momentum equations (as discussed in Chapters 1 and 2). The flow solutions obtained from

the algorithm described may be expected to be good approximations of the flow fields

present in natural channels.

3.3. The Sediment Transport Algorithm

The results of the flow model described above may be used to calculate sediment
fluxes associated with bedload transport and suspended load transport. In the case of
bedload transport, in which case the particles making up the bed travel by rolling or salta-
tion, the sediment fluxes are calculated using an bedload equation. This empirical equation
predicts the flux given the particle size, the critical shear stress T, and the skin friction
| boundary shear stress acting on the bed. For the case of transport by in suspension, the
sediment fluxes must be found by the numerical solution of an advective-diffusion equation
employing the diffusivities and velocities from the flow model. This requires knowledge of
the settling velocities of the particles in suspension, which may be found using the results
of Dietrich (1982). Specification of a reference flux lower boundary condition, wherein the
upward flux of particles off the bed into suspension is calculated as a function of the boun-
dary shear stress, is also a requisite part of this technique. The solution of the advection-
' diffusion equation will yield both the horizontal and vertical distribution of suspended sedi-
ment, as well as the exchange of sediment with the bed (i.e., the erosion and deposition). In

Cases where the vertical stratification of the water column by sediment is large enough to

damp the turbulence in the flow, a stratification correction such as that presented by Smith
~ad McLean (1977) and subsequently tested by Gelfenbaum and Smith (1987) must be

€mployed and the flow and suspended sediment models must be coupled iteratively. In the
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present work, the evolution of bed morphology in the case where sediment transport occurs
i exclusively as bedload is examined; however, it is important to note that the approach
described is of general validity, and may be extended to the case of mixed or suspended

load transport.

The results presented in this paper are based on the use of the bedload equation
presented by Yalin (1963) in conjunction with a simple algorithm for including the effect
of bed slope on the sediment fluxes. If Tgp is the magnitude of the vector skin friction
boundary shear stress on the bed, then the sediment flux in the vector direction of the stress
is given by the Yalin equation as

1%

o =0635|-£| ps|1 - Lina
O S ST

where D is the particle diameter, S is the local excess shear stress defined by (Tsp - T,
and y = 2.45 (p,/p) (t/(p, - p)gD). The variables p and p, are the density of the fluid and

the sediment, respectively, and are taken to be 1.0 gmicm® and 2.65 gmicm’® .

For the case in which the downstream bottom stress is much greater than the cross-
stream value, as is consistent with the model scaling presented above and with measure-
Nts made in natural rivers and streams, the components of the vector sediment flux in

Hi€ Cross- and streamwise directions are given by
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where the subscripts n and s refer to the streamwise and cross-stream direction, respec-

tively, and (T)sr and (T,)gp are the downstream and cross-stream skin friction boundary
shear stresses. In the sense used here, "skin friction" denotes the value of the boundary
shear stress after the form drag associated with various types of channel irregularities has

been removed ( see Chapter 2).

If the actual bottom stress values predicted by the flow model are inserted in equa-
tions (3.24) and (3.25), the calculated sediment fluxes will not include the modification of
those fluxes by gravitational forces, since the bedload equation does not take the effect of
bed slope into account. The slope effect is expected to be relatively large in cases where
the boundary shear stress is only slightly larger than the critical shear stress for the initia-
tion of particle motion (i-e., low transport stages). This is due to the fact that, at these low
fransport stages, sediment particles tend to roll, rather than saltate, and therefore remain in
contact with the bed most of the time (Wiberg and Smith, 1985). Conversely, we expect
the gravitational correction to be relatively small in the case of saltation (higher transport

Stages), wherein the direction of travel of the moving particle is almost entirely determined w\“w{“
‘h\w

the direction of flow. While the actual numerical error incurred by neglecting the effect
Of bed slope may be negligible compared to the total sediment flux, the small variation in
the direction of the sediment flux vector on the bed can be important in the calculation of

table channe] morphologies, especially in the case of low transport stages.

The effect of gravitational effects on bedload sediment fluxes is often invoked in the
S of well-developed bend flow. In this situation, which has been studied in detail both

Perimentally ang theoretically (Rozovskii, 1957; Engelund, 1974; Odgaard, 1981),
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channels bends are approximated as circular arcs and bathymetry is assumed to vary only
in the cross-stream direction. The constraints that streamwise changes in the radius of cur-

vature and topography are negligible are typically satisfied only near the apices of very

long meander bends, and are inappropriate in many reaches of natural channels. However,
this relatively simple case does demonstrate the importance of gravitational effects. In the
meander coordinate system described above, the equation relating bedload sediment fluxes

on the bed to the rate of erosion and deposition is given by

9B _ _ L[V.Q-’] - _L[ 190 90 2 (3.26)

1-N 35 @ on T (1-NR

where B denotes the elevation of the bed with respect to an arbitrary datum and where cp
is the concentration of sediment in the bed (c,=.65). If the bed is in equilibrium, the lefi-
hand side of equation (3.26) will be zero. Furthermore, for the case of well-developed bend
flow, all derivatives with respect to s will be zero, since there is no streamwise variation in
the flow. For this case, equation (3.26) reduces to a simple first-order ordinary differential
equation for Q, Applying the boundary condition that there be no sediment flux at the
- Stream bank yields the result that, if the bed of a well-developed bend is stable, Q, must
everywhere be equal to zero. However, noting thét v« is zero for the case of well-
iﬁeveloped bend flow, it is easy to see from equation (3.22) that the cross-stream bottom

: stress will always be non-zero and directed toward the inner bank.

This result appears paradoxical. The boundary shear stress and the resulting sediment
flux Clearly have an cross-stream component directed toward the inner bank; however, the
}f‘i

bility criterion requires that the cross-stream sediment flux be zero. This calculation indi-

Cates that there will continuously be a flux of sediment away from the pool side bank and
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toward the inner or point bar side bank, resulting in an ever-deepening pool and a point bar
~ which grows until the critical shear stress is not exceeded at its top. In reality, the pool will
deepen and the point bar grow only until the gravitational effect associated with the sloping
face of the point bar is great enough to make O, = 0. This line of reasoning leads to the
coﬁclusion that the bar is stable when the fluid drag force up the face of the bar (toward
. the inner bank) is precisely balanced by the gravitational force down the face of the point

bar, a balance that has been used extensively in simple models of point bar stability in the

case of well-developed bend flow (cf. Engelund, 1974; Zimmerman and Kennedy, 1978).

It is crucial to note that this balance is obtained only in the very special and restricted case
of well-developed bend flow; in most natural channels, the presence of streamwise nonuni-

formity, troughwise flow in the lee of bedforms, and multiple grain sizes may invalidate
. this result, as discussed by Dietrich (1982). Nevertheless, the gravitational modification of
 the sediment flux on the bed can be of considerable importance in the determination of the
- stable channel morphology. Simply inserting the boundary shear stresses obtained from the

flow model into the bedload equation neglects this effect and is undesirable for the work

: presented here.

iy

To include the effects of bar and bank slopes in the calculations of channel evolution,
? gravitational forces acting on sediment particles are parameterized in terms of an
uivalent gravitational shear stress vector, T,. This psuedo-stress is defined as a vector in
the local plane of the bed directed along the line of steepest descent. On a slope equal to
the bulk angle of repose of the sediment (¢ = 30°), the gravitational psuedo-stress is
10 be equal to the critical shear stress. Thus, even if there is no fluid mechanical
shear stress acting on the sediment particles, motion will occur if the slope of the bed is
greater than the bulk angle of repose. Using the fact that %, = 0 on a flat bed and postulat-
Ng that T, like the gravitational force, depends linearly upon the sine of the angle of bed




slope, one obtains

sinay B

T, =7, —2.VB

¢ “sing, IVBI

Og = Arctan [IVBI] (3.28)

If water surface slopes are much less than the local slopes of the bottom topography, as is
- often the case in natural alluvial streams and rivers, then B, the bed elevation, may be

- replaced by h, the local flow depth, in equations (3.27 ) and (3.28).

To include the gravitational psuedo-stress vector in calculations of bedload.sediment
fluxes, this Quantity is added in a vector sense to the fluid dynamical boundary shear stress
predicted by the flow model. This is shown in schematic form in Figure 3.1. The resulting

bottom stress vector is used to calculate sediment fluxes on the bed from equations (3.24)
- and (3.25). By using the generalized vector form for T, this model explicitly treats the
effect of bed slopes in both the streamwise and cross-stream directions. For example, if the
I,ﬂl‘lid dynamical boundary shear stress is oriented in the direction of steepest descent on a
Sloped bed, the addition of 7T, produces an enhanced sediment flux in that direction, as is
Physicauy appropriate. This effect is not included in models for making gravitational
Corrections to sediment fluxes which consider only the slope of the bed perpendicular to the
flow direction (e.g., Odgaard, 1981; Kikkawa ef al,, 1976; Parker, 1978). In addition, this

Stmple approach only requires the Specification of two relatively well-known empirical con-

Stants, the pyjk angle of repose and the critical shear stress, This model has also been
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employed for investigating the migration of channel banks. If the bank slope exceeds 30,
this simple gravitational correction will predict some small sediment flux down the bank,

even if the fluid stress is zero. This flux continues until the bank slope is decreased to the

mass angle of repose. Thus, this model has the effect of maintaining the bank slopes at
about the mass angle of repose. For cases in which stabilized vertical banks are present,
the gravitational psuedo-stress is set equal to zero, but in the case where the banks are con-
structed of cohesive (but not fully stabilized) material, the value of ¢ is set equal to the
observed bank angle. Thus, the cohesivity of the banks is characterized entirely by the bulk

angle of repose.

In the results presented here, the critical shear stress is set using the results of Shields
[as shown in Wiberg and Smith, 1985] for the case of a single grain size, and is specified
using the theoretical model of Wiberg and Smith [1987] for the case of mixed grain sizes,
| :
while the bulk angle of repose is taken to be 30° for noncohesive sediment. Although
other models for making slope corrections to sediment fluxes are available in the literature,
| they are typically' more complicated than the one offered here, often rely on the determina-
. _tion of empirical constants which are specific to each application, and do not address the
. Ibasic physical problem in a mechanistic manner. Clearly, future work in this area must be
;aimed at developing a fiieoretical model for calculating sediment fluxes due to rolling and
l b‘if!ﬁltation on an arbitrarily-sloping (i.e., sloping both in the direction of and perpendicular to
\’the fluid stress vector) bed made up of natural grains. Because results of this nature are
@mnﬂy unavailable, the simple, well-defined technique discussed above is used, rather

than employing techniques with more degrees of freedom which, although they may yield

more accurate results in specific cases, parameterize the physical processes incorrectly.

In summary, the sediment transport algorithm employed in the evolution model is

ed on the calculation of streamwise and cross-stream sediment fluxes using equations
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(3.24 ) and (3.25). The components of the stress used in these equations are calculated from
he vector sum of the fluid dynamical boundary shear stress predicted by the numerical
, el and a gravitational psuedo-stress, given by equations (3.27) and (3.28). The calcu-
ted sediment fluxes are inserted in equation (3.26) in order to determine the rate of
hange of bed elevation. These erosion and deposition rates predict the temporal evolution
m e bed topography. By using suitably small time increments, this calculation can be
ed to predict the adjustment of the channel to an equilibrium condition, as described in

e introduction to this chapter.

. Evolution and Stability of Point Bars

- The salient features of point bar development on a flat bed are related to the fact that
nnel curvature forces both streamwise and cross-stream convergences of sediment tran-
The cross-stream sediment convergences and divergences are initially forced by the

on of helical circulation, as has been well-described by others (e.g., Rozovskii,
7). The streamwise effects are produced as a result of variations of the radius of curva-

in the downstream direction. This variation produces a change in the cross-stream sur-

slope which, due to coupling through the elevation field, inevitably forces a change in

mwise surface slope (and boundary shear stress).

relative importance of cross-stream divergences to streamwise divergences of sed-
f determines the position of the point bar in a curved reach. As the point bar
S, large spatial accelerations are produced as a result of the topographic nonuniformity.
play a crucial role in the finite amplitude stability. Essentially, the Bernoulli response
to the point bar produces a surface elevation rise over the upper end of the

ar. This elevation change weakens the helical circulation, as well as the associated

idary shear stress. Thus, the point bar grows until topographic steering effects
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Mome large enough that the flow (and sediment) is steered around the upstream end of

{he point bar. This idea was discussed in detail by Dietrich and Smith [1983].
i In Figures 3.2 and 3.3, bottom topography and shear stress fields are shown for a typ-
k-

i0a] evolution run using the finite amplitude model described above. For the case shown,

the planform geometry of the channel is given by a sine-generated curve, which was
jdentified by Langbein and Leopold [1966] as a simple shape which adequately character-
izes many natural channel bends. The radius of curvature for a sine-generated curve is

en by

-1
R =TT
My M,

M, is the meander length along the channel centerline, s is the streamwise distance,
d Q is the angle in radians between the downvalley direction and the channel centerline

t the crossings (where R is infinite). For the evolution case shown in these figures, M, was

S8 10 critical shear stress) is about three.
;'The evolution of the point bar and pool bathymetry shown in Figure 3.2 is typical of
Int bar formation in general. The growth of the bar on the initially flat bed is primarily

uced by the convergence of sediment toward the inner bank. This convergence of sed-

t flux arises as a result of the production of helical circulation, as described above. The

M of deposition is only weakly modified by the occurrence of streamwise conver-

S and divergences of sediment, which result from modification of the streamwise
|
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e 3.2, Evolution of
S given by a sine

bottom topography for a typical point bar cage. The
Valley meanq

-generated curve with O = 45°, the width-

€r wavelength is about 10 widths. The
bout 3. The contour interval is

channel plan-
to-depth ratio is 12.5, and

Froude number is 0.6 and
one fourth of the mean depth.




323 Evolution of the vector boundary shear stress field for the conditions given in
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I pressure field by the varying radius of curvature. If the depositional features were pro-
. _

duced only as a result of the helical circulation (or more correctly, the cross-stream stress
I associated with the helical flow), the point bar would grow most rapidly at the minimum
Imdius of curvature, which is located at the bend apex. However, the fact that the radius of
curvature decreases as the apex of the bend is approached from upstream and decreases
downstream of the apex results in increasing streamwise stress (erosion) near the inner

M in the upstream half of the bend, and decreasing streamwise boundary shear stress

(deposition) near the inner bank in the downstream half of the bend. When this pattern of l
erosion and deposition is superimposed on the much 1arger depositional pattern induced by

the cross-stream stresses all along the inner bank, the final result is that the point bar tends

to grow most rapidly slightly downstream of the bend apex. In other words, the streamwise
effects tend to augment point bar deposition downstream of the bend apex, and tend to

en the deposition along the inner bank upstream 'of the bend apex.

The skewing of the bottom stress vectors toward the inner bank is clear in the lowest

boundary shear stress map in Figure 3.3, which is for the initial flat bed. These predictions

50 show the streamwise variations in bottom stress discussed above, with increasing stress

lear the inner bank upstream of the apex, and decreasing stress along the inner bank down-

ream of the bend apex. The shear stress distribution on the flat bed also shows the weak
ndency for the high velocity core to cross the channel. In this train of bends, the high

ty core enters each bend near the inner (point bar side) bank and slowly crosses the
©am as the bend is traversed. The high velocity core does not actually cross the channel

nterline until the downstream crossing is reached. This is in marked contrast to the situa-

i found in the case of equilibrium topography.

As the point bar grows (both upward and outward), convective accelerations and

lification of the surface elevation field are inevitably produced in reponse to the
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topographic nonuniformity this feature presents to the flow. As described above, and in

more detail by Dietrich and Smith [1983], the result of this modification is, in simplest

terms, the "steering” of the flow around the point bar. This steering causes the high velo-
 city core to cross the channel centerline further upstream and more abruptly than in the

flat-bedded case, as is clear from Figure 3.3. In fact, for the equilibrium case, the high

 yelocity core crosses the stream just downstream of the bend apex, rather than at the down-

 stream Crossing.

In Figure 3.4, expanded plots of the equilibrium bathyfnetry and boundary shear stress

are given along with the equilibrium sediment flux field. The steering effect has important

plications for the production of equilibrium morphology in channel bends. In the past,

,odels of point bar stability have been almost exclusively based on balancing the the com-
m nent of inward boundary shear stress associated with the helical circulation against a
=v1tationa1 force that is directed down the face of the point bar (e.g., Allen, 1970;
Engelund, 1974; Kikkawa, et al, 1976). These models are predicated on the existence of

‘well-developed” bend flow, wherein all streamwise variations in topography and curvature

are neglected. Unfortunately, both simple scalings and measurements taken in natural

Streams indicate that this is commonly a very poor approximation (see Chapter 2), except

erhaps in very limited segments of meander bends. The steering effect produces outward

over the upstream end of the point bar; thus, both gravitational and fluid drag forces

Ct t0 move sediment outward in this locale. Clearly, the balance producing stability in this

a is one between the streamwise convergence of sediment flux and the cross-stream

ergence of sediment flux, rather than a purely cross-stream balance. In other words, the
of the high.velocity core forces steering of the path of high sediment flux, as one

SHi@ expect. Balancing circulation-induced inward boundary shear stress against a

Mslope gravitational force for a single sediment size results in particle trajectories with




34, Pquﬂibﬁum bathymetry and boundary shear stress calculated from the model
> Conditions given in the caption of Figure 3.2.
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no cross-stream component, which is inappropriate.

In Figures 3.5 and 3.6, contours of streamwise and cross-stream velocity are shown at
five equally spaced sections through the predicted equilibrium bend. The section at the bot-
m of these plots corresponds to the upstream crossing, while the top section represents
the downstream crossing. The inner bank is located on the right-hand side of these sections,
as is clear from the topographic profiles. In the contours of the streamwise component of
velocity, the steering of the high velocity core is readily apparent. The highest velocity
' ion is near the inner bank at the upstream end of the bend, crosses the channel relatively
abruptly near the bend apex, and exits the bend near the outer bank. In accord with this
prediction, the cross-stream flow contours exhibit helical flow only in the deeper part of the

1 region, rather than uniformly throughout the bend. Since the principle sediment flux

ability depends primarily on the gravitational effects, as is the case in well-developed
nd flow. However, this balance is restricted to a very small region of the bend, and the
s e of including Streamwise nonuniformity should be clear. The balance in this

on is also strongly controlled by physical effects which have been included only

ametrically through the gravitational correction. For example, the complex near-bed flow

' Induced by bedformg exerts a significant influence on the channel-scale bed morphol-

a8 described by Dietrich [1982]. More precise predictions of channe] morphology

f_.cruciauy upon the development of physical models which specifically treat the

S 0f bed siopes op sediment transport, both for the case when the bed is locally
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The

at in
aged
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in

sections are equally spaced in the bend, with the lowest plot representing the
1 section. Velocity values are normalized by the mean velocity, and contours are

intervals of 0.2. The vertical coordinate is nondimensionalized with the reach-
depth, and the cross-stream coordinate is normalized with the width of the chan-
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- uniform and in the case when bedforms are present.

To build confidence in the evolution model, it is necessary to reproduce bathymetry

and flow fields measured either in laboratory flumes or natural channels for which equili-
~ prium conditions have been obtained. The next few paragraphs describe model predictions
and their comparison to measured data for several cases. First, model predictions are made
| for the mobile bed experiments performed by Hooke [1974, 1975]. Hooke’s experiments
were performed at four different discharges in a laboratory bend. The planform of the
; flume was given by a sine-generated curve with Q = 55°. After presenting and discussing
%{mese cases briefly, model predictions are shown along with experimental results obtained
‘gby Whiting and Dietrich [pers. comm.]. Like Hooke’s flume, the planform of their flume is
igjven by a sine-generated curve. However, in this latter case, the amplitude of meandering
I very small, with Q = 10°. These five different situations offer a comprehensive test of _

the model, and allow both its strengths and weaknesses to be examined.

| In the experiments performed by Hooke [1974,1975], a mobile-bedded laboratory

flume was used to investigate the adjustment to equilibrium topography in a meandering

nel. Experimental runs in this laboratory bend, which is shown schematically in Figure

3./, were completed at four different discharges: 10, 20, 35, and 50 liters/sec. In Figures

3.8 through 3.11, results of the evolution model are shown for each of these runs. The

flow conditions for each run are given in the captions of these figures. The plots show cal-

ulated values for the bed topography, the helix strength, the normalized boundary shear

HESS, and the normalized sediment fluxes. Also included are vector plots of the boundary

€ar stress and sediment flux fields. The normalization factors employed in the contour

-

53‘ Of stress and sediment flux are the average values measured by Hooke, rather than the

1age of the values calculated here. Thus, these plots indicate both the spatial structure of

€ fields and the overall comparison with the magnitude of the measured values. To
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SUre 3.7. Schematic diagram of the flume used in the Hooke [1974, 1975] experime_nts.
€ the presence of the upstream control section, which may have precluded the establish-
1t of a "natyral" upstream boundary condition.
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facilitate the comparison with Hooke’s measurements, his graphs are shown in Figures 3.12

through 3.15. In these model runs, the overall roughness was constrained such that the
' experimental water surface slope was reproduced in the numerical solution, thus ensuring
 that all of the form drag effects were taken into account. This roughness was distributed
' spatially according to the approximation Co = constant, which is generally a good approxi-

mation (see Chapter 2). The form drag was removed from the predicted total boundary

~ shear stress using the form drag model described in Chapter 2.

In general, the comparisons between the measured and predicted topography is rea-
sonable. Although there are clearly some local discrepancies in each of the four cases, the
only consistent difference between the predicted and measured topography is in the location
of deepest scour. All of the Hooke results indicate that this point occurs slightly upstream
of the apex of the bend, while the model results place this point somewhat downstream of
the bend apex. This is true even when the agreement for the shape and location of the point

bar is quite good, as in the 35 I/s case.

There are two potential reasons for this discrepancy, although neither of them is
dtrely conclusive. First, the results of the model were found assuming periodic boundary
nditions and an initially flat bed in all four cases. However, as is clear from the
hematic of Hooke’s flume, the upstream condition in these bends probably were not
Presentative of the situation obtained if a train of bends were located upstream of the test
0d. The flow passes over a control section halfway through the bend immediately

Stream, and cannot be expected to adjust to the appropriate upstream condition in only

If of a meander bend. However, a computational run performed for the 35 1/s case using

Mom upstream condition half a bend upstream of the study bend still did not produce W
h M‘

01 as far upstream as that found in the experimental case. Further investigation was not

© without a more detailed description of the upstream conditions present in the




Bed Topography

® 3.12. Experimental measurements taken by Hooke for the 10 liter/sec case. See Fig-

T run conditions. Boundary shear stress and sediment fluxes were not given for
Scharge. Reproduced from Hooke [1975].
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13. Experimental measurements taken by Hooke for the 20 liter/sec case. See Fig-
22 for run conditions, Reproduced from Hooke [1975].
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e 3.14. Experimental measurements taken by Hooke for the 35 liter/sec case. See Fig-
3.10 for run conditions. Reproduced from Hooke [1975].
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i

e 3.15. Experimental measurements taken by Hooke for the 50 liter/sec case. See Fig-
>11 for run conditions, Reproduced from Hooke [1975].
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- experimental runs. Another possible reason for the difference in the position of maximum

' scour may be that the initial bed conditions for the experimental runs were not the same as
those employed in the calculations. Computed evolution Sequences began with an initial
~ bed that was completely flat. This was probably not the case in the experiments, since
Hooke reports that a rounded radius was constructed of cement at the intersection between
' the bed and the outer bank. Furthermore, he reports that this region was often exposed
-when the bed reached equilibrium and, in fact, that the cement floor of the flume was occa-
sionally exposed in dune troughs. Thus, there may have been some extemal control on the
I scour depth. In the computations, the scour depth was not allowed to exceed the depth at
‘which the flume bottom would be exposed, but this end result may not have been achieved

in the model in the same manner as in the flume.

Helix strength is defined as the angular difference between the near-bed velocity vec-

-and the surface velocity vectors. In general, the predicted values of helix strength are
about the same in maximum amplitude as those measured. However, there is a consistent
difference in the spatial distribution of helicity. In the measurements, the helical flow tends
10 be confined to the region near the outer bank, while the calculations tend to predict heli-
cal flow over most of the point bar. It is important to point out that a positive value of
helix strength does not imply inward flow near the bottom, since this represents only the
Tence between the angular orientations of near-bed and surface velocities, The noted
iscrepancy may be at least partially associated with the near-bed flow modification by bed-
Orms, as well as changes in streamwise vertical structure due to spatial accelerations and
“Clerations, effects that were not included in the fluid dynamical model. Credence is led

' the idea of bedformsg effecting the flow by measurements Hooke made of flow over a
.i ilized bed The bedforms were removed from the bed before stabilization, so their

ffect on the helical flow was removed. Measurements over the smoothed, immobile bed
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: showed higher helix strength present over a larger portion of the bend than found in an
identical case where bedforms were present. However, some of these differences may also
| be associated with the difficulty in measuring small angular deviations in the flow over the
~ water depth. Hooke estimated that the error in these measurements varied from +1° to £5°%
depending on the turbulence level. The face of the point bar was covered with bedforms, so

it may have been quite difficult to make accurate measurements in this region due to the

boils. If the measurements were only accurate to +5°, the lower values of helix strength
may have been essentially unobservable. However, this helicity may explain the location of
the scour pool in the ﬁleasurements relative to the predictions, and certainly should not be
discounted. At present, this issue can probably be resolved only experimentally, or perhaps

by inclusion of the streamwise vertical structure changes in the model.

Overall, the agreement between the predicted bottom stress and sediment fluxes and
those measured is quite good. The most notable differences are associated with lateral
boundary layer effects. Typically, the numerical results predict high stresses (and sediment
fluxes) right up to the bank whereas the measurements show the maxima to be slightly

ay from the bank. This is not surprising, since the development presented herein neglects
Hi€ momentum exchanges associated with lateral friction. A careful treatment of the lateral
layers requires both consideration of the lateral diffusion of momentum by tur-
bulence and the characterization of bank roughness. This task is not part of this disserta-

10, although it is clear that these effects must be considered in the future if this model is

0 be extended to investigate planform evolution of channels,

Although there are clearly some discrepancies which point out important areas of

R g e

Search in the future, the comparison to Hooke’s measurements indicates the power of the

Olution technique. In order to explore the predictions of the model in a somewhat

=] e

fferent Case, model runs were also done for the low amplitude meander bends studied by




t experiment was given by a sine-generated curve with Q = 10°. Various other geometric
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Whiting and Dietrich [pers. comm.]. As shown in Figure 3.16, the flume planform for this

\mdd

ure 3.

ynamic parameters pertinent to Whiting and Dietrich’s run S-25 are also given in Fig-

16. In contrast to Hooke’s flume, which had a bend wavelength of about 10.5

- widths, this experiment was performed with a bend wavelength of only 8 widths. Further-

g ore1

while the ratio of minimum radius of curvature to width in the Hooke flume was 2.2,

 this parameter was 7.3 in the Whiting and Dietrich experiment. Thus, one expects stream-

wxse

variations in boundary shear stress and sediment flux to be larger relative to cross-

txeam effects in the Whiting and Dietrich case than in the Hooke case.

In Figure 3.17, the predicted topographic evolution of run S-25 is presented. The ini-

bed was taken to be flat and, since significant bedforms were absent, form drag effects

e

neglected. Equilibrium topography was predicted to occur after roughly one hour in

this small scale experiment. As expected from the simple scalings in the previous para-

graph, the point bars tend to form well downstream of the bend apices. In the discussion

point bar stability above, it was noted that on a flat bed the initial effect of cross-stream

rour

MEM

ent convergences due to helical flow was to produce deposition near the inner bank
d the apex of the bend. In contrast, the streamwise convergences and divergences of

ent flux associated with the streamwise variations in the radius of curvature tended to

uce erosion near the inner bank upstream of the bend apex, and deposition down-

m. The short, low-amplitude bend used in run S-25 is a case where the streamwise

°IS dominate the cross- stream convergences. This produces a point bar downstream of

bend apex, forced primarily by the streamwise convergences of sediment transport,

‘r4

J

T than by inward boundary shear stress associated with helical flow.

In Figure 3. 18, the predicted equilibrium topography is shown along with the bathy-

C contours measured by Whiting and Dietrich. As in the Hooke cases, the agreement

‘ ‘\‘m il |
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petween the predicted and measured topography is reasonable, but there are some
noteworthy discrepancies. First, the numerical model underpredicts the steep slopes of the
bars at the upstream end of the pool regions. The measured slopes approach 20°, which is
high enough to expect that grain flow mechanisms may play a part in the sediment tran-
sport. These slopes also are high enough that changes in vertica_l structure of the flow are
almost certainly important. Neither the flow or sediment transport models employed are
appropriate for these steep slopes. The model also fails to predict some of the small scale
~ structure observed near the upstream end of the pool region. This is probably a result of the
grid scales employed, rather than a failing in the model formulation. The computational
grid for this case consisted of thirteen points in the cross-stream direction and eleven sec-
tions per bend in the streamwise direction. Thus, while the cross-stream structure should be
well-resolved, some detail in the streamwise variations may have been neglected. Despite

these problems, the general shape and location of the bars are predicted fairly well.

In Figure 3.19, various flow variables are plotted for the equilibrium case. The boun-

dary shear stress is normalized by the reach-averaged value of 10 dynes/cm?®. Sediment

lownstream of the bend apex. This demonstrates the importance of treating streamline cur-
ure in low amplitude bends, rather than just channel curvature. As is clear from the vec-

Or bottom stress plot, the flow curvature is actually greatest downstream of the bend apex.

Opographic Steering near the bend apex essentially compensates for the channel curvature,

in relatively weak curvature of the flow. As will become clearer in a subsequent

Cussion, the stability in this low amplitude case is actually somewhat similar to that




-_—
—_—

—
- i
- e
= -
= -
= -

HELIX STRENGTH

3.19. Predicted flow variables for run S-25 at equilibrium conditions. Contours inter-
0T topography, normalized bottom stress, normalized sediment flux, and kelix strength
02 cm, 0.1, 0.2, and 5°, respectively. ‘
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found in the case of alternate bars, with the exception that the channel curvature tends to

~ {rap the bars and prevent migration. .

3.5. Evolution and Stability of Alternate Bars

In this section, the initial development and the finite amplitude growth and stability of
alternate bars are treated. In some sense, these features are the fundamental ones related to

. par instability in river channels, since they arise spontaneously from any small perturbation
to a straight, uniform channel. In order to investigate the genesis of these forms, the first

part of this section contains a linear stability analysis of the governing equations.

'3.5.1. Linear Stability Analysis

In the case of point bars, the initial instability of the flat bed is produced by the cur-

|

vature of the channel planform. Thus, for that case, curvature essentially acts as to force

J ?‘w observed instability. In the case of alternate bars, this is no longer true. Alternate bars
n a manifestation of a fundamental instability in the coupled flow-sediment transport

ons - no forcing is required. By analogy with harmonic oscillations, the alternate bar

nstability is the "free" response of the system, while point bars are a forced response. Of

ourse, these two problems are not decoupled - there is a genetic link between the alternate
Dars and point bars. Examination of that link, however, requires the incorporation of a bank

e10sion calculation into the bar evolution model, which is beyond the scope of this disserta-

!
UI1.

- To investigate the physical effects responsible for the initiation of the alternate bar

Stability, and to determine the initial wavelength of these features, it is useful to employ

‘hniques of linear stability analysis. This analysis is performed using the vertically-

faged equations expressing mass and momentum conservation for the fluid in conjunc-

1 With the €quation expressing conservation of sediment mass and a bedload equation.
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The analysis presented here_uses equations (3.1), (3.11), (3.12), and (3.26) in conjunction

~ with the modified Meyer-Peter-Mueller bedload equation, which is given by

Q0 =1t~ )**

8
p%(ps - p)g

In this equation, Q is the volume flux of sediment per unit width along the direction of the

vector boundary shear stress, the magnitude of which is t,. The choice of this bedload

‘equation rather than the Yalin equation, which is used in the evolution calculations, is due

to the mathematical simplicity of the modified Meyer-Peter-Mueller equation. This choice
simplifies the formulation of the linear stability analysis without removing any salient phy-
effects. The five equations listed above are linearized about a steady uniform flow in

straight channel using

<u>= Uy + euy(s,n) + ...
<v> = ev(s,n) + E2vy(s,n) + ...
E=Ey+ €E(s;n) + ...

h= Ho + €h1(S,n) + e

, leads to the following set of coupled linear equations :




avl _ 8E1 C Ug
s %on %vl

a[
-c E; -
b5 [F1 T o

- sl e
where 7y = Cf, and the fact that B=E — k has been used to eliminate B from the
is. Note that either h or E could have been eliminated instead, but the choice of B
esults in slightly simpler algebra, and the final result is clearly unaffected by the choice
: J.';", e here.
To examine the growth and migration characteristics of alternate bar perturbations of
S wavelengths, the perturbation quantities are expressed in terms of complex
ntial functions, as shown in equation (3.35). This is equivalent to perturbing a flat

| with a small amplitude doubly harmonic wave, as shown in the three-dimensional plot
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Figure 3.20. Three-dimensio




where the circumflex designates a complex amplitude. Inserting these in the system of four

] equations above yields an algebraic system of four equations in four unknowns. To obtain a

| nontrivial solution to these equations, a condition relating ¢ to the drag coefficient, the

streamwise wavelength of the bars, the transport stage, and the width-to-depth ratio must be
i

::Eatisﬁed. Before finding this relation, it is useful to define the following nondimensional
|

 quantities:
3

T

ligebraic system below.
, ,

i+ 2Cy 0 -Ci  jouFP
0 i+ Cy 0 iBIFr?
3a BT ® -

(3.37)

& =<l =

homogeneous system only yields nontrivial solutions if the determinant of the matrix

OVe is zero. This condition yields the desired expression for the growth and migration

s of the infinitesimal alternate bar perturbations as a function of dynamic and geometric

Cters. The equation for the nondimensional frequency is given by




(3a? + of’D) + iB(B? - 0)C, - 3p*C,D

o + B2 + FPB3C% - o) — i(aCﬁZ-%z C, - 40CFP)

The growth rate and migration velocity of the alternate bar perturbation are given by
0; and Ac,/2T, respectively, where the subscripts r and i refer to the real and imaginary
;parts of 6. Equivalent nondimensional growth and migration rates are given by ®; and

‘@/Jo, respectively. Since o is positive definite, the sign of the migration rate is always

determined by ®, and the wavelength for which no migration occurs corresponds to ®, = 0.

i’hus, it is possible to ascertain the fastest-growing wavelength and the migration charac-

lisﬁcs of alternate bar perturbations simply by examining ®; and ®,. The values of these
nondimensional parameters are plotted versus A/b for a typical case in Figure 3.21. As
expected, a fastest-growing wavelength is found foi‘ the alternate bar perturbations,
corresponding to the peak in ®; Since ®, is positive at the selected wavelength, the

est-growing features will travel downstream.

The primary purpose in presenting the linear stability analysis is to ascertain the phy-
processes responsible for the initial instability of alternate bars. To pursue this goal, it
'Tuseful to introduce "switches", denoted s, and s,, in the equation for ®. The switch s is
€L equal to zero when results are desired for the case in which the streamwise convection

- Streamwise momentum (the first term in equation (3.32)) is neglected in the analysis, and

€t equal to one otherwise. Similarly, s, is set equal to zero when results of the stability

lalysis are desired that do not include the streamwise convection of cross-stream momen-

m (the first term in equation (3.33)), and is set equal to unity otherwise. Using this tech-
que, it is possible to precisely identify the roles of the various terms in creating the

S€IVed instability. Using the definitions for s, and s,, the equation for @ becomes




006
(1-T,/7,)=5
Fr=0.8

3.21. Real and imaginary parts of ® plotted versus the ratio of bar wavelength to
for typical values of the width-to-depth ratio, drag coefficient, transport stage, and
number. These results are predicted by the full linear analysis, including the per-

it convective accelerations and the free surface effects.




135

(3o’s; + aP?Tsy) + iB(R% - 0AC, — 3B2C,T)

o= 2 3.39
aZs, + Bsy + FP(3C% - o®sys,) — i(aCﬁZ%Cd — OCFrP (355 + 51)) (3.39)

fsy=5=1 equation (3.39) reduces to equation (3.38), as expected. If both of these tWo
swiﬁ:hes and the Froude number are set equal to zero, the expression for ® is pure real.
Thus, if the rigid lid approximation is made and both streamwise and cross-stream convec-
 tive accelerations are neglected, the alternate bar instability is removed from the analysis. In
order to explore the roles of these three effects in producing the alternate bar instability,

- results of the stability analysis are presented which include each of these effects separately.

In Figure 3.22, results of the stability analysis are shown for the same conditions as
the results shown in Figurt", 3.21, but with the convective accelerations removed from the
_problem (s; = s, = 0). Thus, this case includes only the destabilizing effect of the free sur-
ce response to the bed perturbation. An instability is found, with the fastest-growing
'»avelengﬂl at about four channel widths. The instability is quite weak compared to that
found in the full analysis and, because ®,<0, the fastest-growing features propagate

upstream, rather than downstream.

In Figure 3.23, the real and imaginary parts of @ are shown for the case in which the
lid approximation is employed and the convective acceleration in the cross-stream
ﬂ ation is neglected (s; = 1, 5, = Fr = 0). Again, an instability is found, the fastest-
growing wavelength of which occurs at-about six or seven widths. Although this is slightly
dnger than the wavelength defined from the full analysis (Figure 3.21), the growth and
ation curves for this case are very similar to the full analysis and are, in fact, asymp-
i 0 the curves in Figure 3.21 as the ratio of wavelength to width becomes large. If the
analysis is applied neglecting the free surface deformation, eliminating the stream-

8¢ convective acceleration term, and including the cross-stream term (s; = Fr =0,




Ire 3.22. Results of the stability analysis for the case in which the linearized convective
€rations in the cross and downstream momentum equations are neglected.
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‘ 3.23. Results of the stability analysis for the case in which free surface effects are “ M
>cted (Fr=0) and the streamwise convection of cross-stream momentum is neglected. W
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5= 1) the results shown in Figure 3.24 are obtained. As in the other two cases an insta-
' bility is found with a fastest-growing wavelength near the one selected in the full analysis.
The magnitude of the growth rate in this case is much larger than that found in the full
analysis (note the change in scale on the vertical axis), indicating that the neglected terms
| have a damping effect on the instability produced by the streamwise convection of cross-

stream momentum. As in the case of the full analysis, the fastest-growing features pro-

pagate downstream.

The important conclusion from these three cases is that any of the three effects

described above is sufficient to produce an alternate bar instability, and each selects a

fastest-growing wavelength near that found in the full analysis. These features are not par-

ticular to the values of the parameters chosen for these runs, rather, they are typical of the

entire range of conditions found in natural streams. The analysis performed including only

the streamwise convection of streamwise momentum yields results most similar to the full

analysis, and clearly dominates the large response found including only the cross-stream

"‘mction. However, the selected wavelength in the full analysis is dependent on all three

of these effects, and all must be retained in order to make correct predictions of the

wavelength of infinitesimal alternate bars.

The figures presented and discussed above provide some insight into the fluid dynam-
cal effects that play a role in the alternate bar instability, and this insight can be used to

provide a simple, physical understanding of the instability. This may be obtained by con-

ing the response of the flow to a single perturbation located on one side of a straight

hannel. In other words, one considers the flow around a symmetric bump with some

ecified streamwise length and a cross-stream width of half the channel. As the flow

proaches the bump, the convective accelerations induced by the spatial nonuniformity

' oduce an alteration in the pressure gradient (surface elevation) field. This is precisely




ure 3.24. Results of the stability analysis for the case in which free surface effects are
lected (Fr=0) and the streamwise convection of downstream momentum is neglected.
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the same effect one observes upstream of any obstacle, and is analogous to a stagnation
pressure. Thus, the surface elevation increases on the upstream side of the bump in a pro-
cess which is intuitively understood in terms of the Bernoulli response of the flow to the
obstruction presented by the bump. This effect produces a streamwise deceleration of the
flow on the upstream side of the bump, and an accompanying production of cross-stream
~ flow. The production of the cross-stream flow is an inevitable result of the surface eleva-
tion increase on the upstream side of the bump, which produces a cross-stream pressure
gradient force. This reasoning reduces to the fact that the flow is "steered" around the
bump, just as flow is steered around a stick inserted vertically into flowing water. Since the
streamwise flow decelerates on the upstream side of the bump and the cross-stream flow
increases away from the bank, one expects a convergence of sediment flux due to the
lfsmamwise flow field, and a divergence of sediment flux due to the cr(;ss-stream flow. For
relatively long bumps, the streamwise convergences are greater than the cross-stream diver-
es of sediment, and one expects deposition on the upstream side of the bump. The
;I}:'-:u argument leads to the fact that erosion will occur on the downstream side of the

';-Jn This means that the longer features will migrate upstream, in accord with Figure

In the case of shorter features, the cross-stream steering is such that cross-stream

gences of sediment outweigh the streamwise convergences on the upstream side of the

ump. This results in downstream migration, with erosion on the upstream part of the

mp and deposition on the downstream side. In either case (relatively long or short
atures), the pattern of sediment fluxes is such that one expects a transition from erosion
deposition (or vice versa) near the apex of the bump. The location of this point relative
e top of the bump determines whether the bump will grow or not. For very short
» the streamwise advection of cross-stream momentum will be such that there is still

ificant Cross-stream velocity and sediment flux at the apex of the bump. Thus, in this

* €rosion will occur at the crest, and the bump will not grow. As the wavelength is
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' increased, the point ot_' transition from erosion to deposition shifts upstream. This is essen-
i tially due to the lessening of the inertial lag between the topography and the flow. For
sufficiently long wavelengths, the results is deposition on the crest of the bump and, there-
fore, growth of the bump. However, as the feature becomes even longer, the rate of growth
wﬂl begin to decrease asymptotically to zero, since the topographic steering effect becomes
L’!i.rc"t',aker and weaker. Thus, one expects a maximum rate of growth at some intermediate
ﬁavelengttx. This wavelength is short enough that the topographic steering produces
;gniﬁcant adjustments in the pressure and velocity fields, but long enough that the inertial
effects do not act to shift the locus defining the transition from erosion to deposition
beyond the obstacle crest. These simple arguments are in agreement with the results of the
linear stability analysis and are obtained primarily through insight gained from ﬂﬁs analysis.

e linear theory also provides a method whereby the dependence of the alternate bar
growth and migration on flow and sediment transport parameters may be investigated. In

e 3.25, the real and imaginary parts of ® are plotted versus the ratio of wavelength to

4« for several values of the drag coefficient, C,. These values for the drag coefficient

‘1‘, chosen to cover the range of values typically found in natural streams and rivers. In all
568, a fastest-growing wavelength is identified, but this wavelength tends to increase as
€ stream roughness decreases. Thus, for C;= .01 the wavelength of fastest growth is
Out four widths, and in the case of C4=.002, this wavelength is about seven widths.
rthermore, the wavelength of fastest growth is more poorly selected as the bed becomes
Oother, as evidenced by the flattening of the curve of ®; as C, decreases. This analysis

‘ S that, in streams that are relatively smooth, the wavelength of alternate bars may be
"~ Susceptible to alteration as a result of finite amplitude effects or some external forc-

S point can be further developed by examining the dependence of the fastest-

111: Wavelength on the ratio of width to depth.




Cp=.002, .006, .01
T=.8
Fr=0.5

u € 3.25. Results of the full stability analysis for three values of the drag coefficient,
*dIng other variables constant.
5
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m' Figure 3.26, the results of the linear analysis are shown for several values of the
width-to-depth ratio. The value of the fastest-growing wavelength is only weakly dependent

on the ratio of width to depth, with the longer features being associated with the relatively

narrow, deep streams. This wavelength tends to be more poorly selected in streams with

low width-to-depth ratios. In conjunction with the result described above, wavelength selec-
tion is expected to be quite weak in relatively smooth streams with low ratios of width to

depth, and is expected to be much more robust in rough streams that are wide and shallow.

As further discussed below, this has important implications for meander development.

The dependence of the linear results on the transport stage, T, is shown in Figure

3.27. Clearly, the value of T has only a weak effect on the specification of the fastest-

owing wavelength, although it does have a substantial effect on the migration rate. This
has two important implications. First, this means that the transport stage of the sediment is
not very important in calculating the infinitesimal alternate bar wavelength. Second, this

means form drag is not an important factor in the determination of the wavelength. In the

linear analysis, the boundary shear stress available for sediment transport was explicitly

| .
assumed to be equivalent to the total boundary shear stress given by the drag coefficient

losure. In fact, if ripples or dunes are present on the bed, some of this friction is associ-

ted with momentum extraction by pressure forces on the bedforms. If a form drag correc-
on factor relating the overall boundary shear stress to the skin friction shear stress is

ded in this analysis, it appears only in the expression for T. Because T has only a

*ak effect in determining the wavelength of instability, this complication is unnecessary.

I the cases shown on Figure 3.27, the transport stage (defined as the ratio of boundary to
ttical shear stress) varies from 1.25 to o, with only a very small variation in the fastest-
Wing wavelength. For typical streams, the variation in T with and without the form drag

:'»—'011 I quite small (about 10% for the Muddy Creek site described in Chapter 2), so

DI &




B/H=10, 20, 30
CD=.006
T=.8
Fr=0.5

Ure 3.26. Results of the full stability analysis for various values of the width-to-depth
» holding other parameters constant,




e E_’:.27. Results of the stability analysis for various values of T, where T is defined as
‘inus the inverse of the transport stage.




the effect on varying the selected wavelength is negligible.

In Figure 3.28, the effect of Froude number variations on the determination of alter-

nate bar wavelengths is depicted. For all three cases, which span the range of Froude

. pumbers typically found in natural flows wherein bars occur, the migration of the fastest-
growing features is downstream. The selected wavelength increases with increasing Froude

number, corresponding to the increasing dominance of inertial effects. Interestingly, the

Froude number only effects the flow and pressure gradient patterns in a smoothly varying
|

way; there are no sudden transitions or critical values of the Froude number. This is due to
|

the predominance of the three-dimensional nature of the flow around alternate bars. Intui-

tion based on the extension of two-dimensional theories (wherein steering of the flow is

disallowed) clearly would lead to erroneous results.

Figures 3.25 through 3.28 yield information that can be used to approximate the

‘stest-growing alternate bar wavelength in most, if not all, natural situations. However, it

is of paramount importance to note that the selected wavelength is the one associated with
the infinitesimal perturbations, and may be altered by finite amplitude effects. This has been

neglected in almost all previous treatments used to identify the wavelength of alternate bars

(e.g., Callander, 1968; Parker, 1976). Previous analyses assume that the wavelength

dentified by the infinitesimal amplitude theory is the length of the well-developed bar

orms. This has been shown, however, to be incorrect experimentally; observed alternate

IS often change in wavelength as they evolve.

In Figure 3.29, predicted bar wavelengths from the linear theory are shown along
th values measured in flume experiments by Whiting (pers. comm.), Fujita and

ramoto (1985), and Fukuoka (1983). This same relationship is shown in nondimensional
|

M in Figure 3.30. As is clear from these figures, the linear theory systematically under-

ICIS the finite amplitude wavelength for these cases, typically by 30-40%. The linear

-
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Sure 3.29. Predicted versus measured values of alternate bars for the experimental results
Fujita and Muramoto [1985], Fukuoka et al. [1983], and Whiting and Dietrich [pers.
IM.]. Predicted values are found from the linear stability analysis.
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theory presented by Blondeaux and Seminara (1984) also underpredicts the observed
wavelengths for these cases, although their analysis used a different sediment transport rela-
~ tion and included a gravitational correction. In fact, using data from a wide va<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>