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A 141m-deep ice-core was retrieved from Combatant Col (51.39° N, 125.22° W, 3000m), Mount 
Waddington, Coast Mountains, British Columbia, Canada.  Records of black carbon, dust, 
lead, and water stable-isotopes show that unambiguous seasonality is preserved throughout 
the core, despite summer surface snowmelt and temperate ice.  High accumulation rates at 
the site (in excess of 5 m a-1) limit modification of annual stratigraphy by percolation of 
surface meltwater.  The depth age scale for the ice-core provides sufficient constraint on the 
vertical strain to allow estimation of the age of the ice at bedrock.  Total ice thickness at 
Combatant Col is ~250m; an ice-core to bedrock would likely contain ice in excess of 200 
years in age.   Correlation between ice flow-corrected annual snow accumulation at the site 
and regional precipitation using the ERA-40 and ERA-Interim global atmospheric reanalyses 
shows that accumulation at Combatant Col reflects regional to large-scale precipitation 
variability. 
 

 

Introduction 

Numerous ice-core records have been obtained from polar ice sheets and high-

altitude tropical glaciers, and are well known for the paleoclimate information they contain 

(Thompson and others, 1995; Taylor and others, 1997; Fisher and others, 1998; EPICA, 2004).  

Ice-core records have also been obtained at mid-latitude sites, which provide information on 

local sources of anthropogenic and natural aerosols as well as records of regional climate 

that extend centuries beyond that provided by instrumental records (Schwikowski and 

others, 1999; Thompson, 2004; Rupper and others, 2004; Osterberg and others, 2008).   

The number of mid-latitude sites suitable for ice-cores is limited, and nearly all 

existing records have been retrieved from just two areas:  the coastal ranges of Alaska and 

the Yukon, and the European Alps.  North American ice-core sites include Eclipse Icefield 
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and several sites at Mt. Logan, Yukon (Yalcin and Wake, 2001; Shiraiwa and others, 2003; 

Fisher and others, 2008), and Bona-Churchill Col and Mt. Wrangell, Alaska (Urmann, 2009; 

Yasunari and others, 2007).  Ice-core sites in the European Alps include Fiescherhorn glacier 

(Schwikowski and others, 1999), Colle Gnifetti glacier (Thevenon and others, 2009), and Col 

du Dome (Vincent and others, 1997; Preunkert and others, 2000).   

All of these ice-cores were obtained from cold glaciers.  Sub-freezing ice 

temperatures are generally assumed to be essential for preservation of annual stratigraphy, 

and the difficulty of obtaining reliable data from temperate glacier sites is frequently noted 

in the literature (Naftz and others, 1996; Koerner, 1997; Schotterer and others 1997, 2004).  

Consequently, few ice-cores have been obtained from temperate glaciers.  Even at sites 

where the mean annual surface temperature is well below freezing, if summer surface 

melting occurs, infiltration of meltwater through the snow and firn may compromise or 

eliminate seasonal stratigraphy.  However, once snowfall is transformed through firn to 

solid glacial ice, little further alteration should be expected, because ice is highly 

impermeable (Lliboutry, 1971).  This suggests that at sites where surface melting occurs, it is 

the degree of meltwater infiltration through the firn, rather than the temperature of the ice, 

that is critical to the preservation of annual stratigraphy.  Ice-cores with intact annual 

stratigraphy may therefore be retrievable from certain temperate glaciers, provided the 

accumulation rate exceeds the infiltration depth.  We explore this idea in the Coast 

Mountains of British Columbia, a region characterized by very high precipitation rates and a 

number of high-elevation sites with ice thicknesses greater than 200 m.  

Here, we report results of an ice-core from Combatant Col (51.39° N, 125.22° W, 

3000m elevation), which is a broad, nearly flat icefield in the Waddington Range, southern 
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Coast Mountains (Figures 1 and 2).  We demonstrate that there is unambiguous seasonal 

stratigraphy preserved in the visual and chemical records from the ice-core, and that we can 

date annual-layers to a precision of ± 1 year.  The resulting accumulation history is 

comparable to precipitation records from regional weather stations and its covariance with 

climate reanalysis data is consistent with understanding of large-scale controls on 

precipitation in this region (e.g. Overland and Hiester, 1980; Rodionov and others, 2007).  We 

also show that, although we obtained a core through only sixty percent of the ice thickness 

at the site, the ice-core depth-age relationship strongly constrains the vertical strain due to 

ice-flow, providing sufficient information to estimate the age of the ice at bedrock.  Ice 

within ~20 m of the bed is very likely to be in excess of 200 years in age. Because of 

Combatant Col’s location at the southern extreme of the dipole pattern in precipitation 

along the coast of western North America (e.g. Bitz and Battisti, 1999), information from a 

deeper ice-core at this site would provide a useful complement to existing records from 

Alaska and the Yukon. 

 

Ice-core collection and analysis 

Ice at Combatant Col flows from a 4 km2 plateau through two large icefalls on 

opposing sides, feeding ice to Tiedemann Glacier to the southeast and Scimitar Glacier to the 

northwest (Figure 2).  A remote weather station maintained by the University of Northern 

British Columbia, located alongside Tiedemann Glacier 4 km southeast and 1 km below 

Combatant Col, indicates mean annual temperatures of -5ºC at the ice-core site (assuming a 

wet adiabatic lapse rate of 7 ºC km-1; Peter Jackson, unpublished).  Preliminary coring at the 

site, conducted in September 2006 to a depth of 65m, suggested annual accumulation rates of 
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3-5m ice-equivalent, and demonstrated preservation of seasonal cycles in soluble and 

insoluble chemical species throughout the firn and into the uppermost glacier ice.  Radar 

data collected in 2007 and 2010 indicate an ice thickness of at least 230m (Figure 3).   

The 141m Combatant Col ice-core was drilled in July 2010 using the Ice Drilling and 

Design Office (IDDO) 10-cm diameter electromechanical drill (formerly called the “PICO 

drill”) to a depth of 55 m, and the IDDO 8-cm diameter electrothermal drill from 55 m to 141 

m (Ice Drilling Design and Operations, 2011).  Thermal drilling became necessary once the 

presence of water in the borehole prevented evacuation of drill chips in the 

electromechanical drill sonde.  We measured the temperature of the ice with a thermal 

probe inserted into a small hole drilled in the side of each core retrieved within 5 minutes of 

retrieval; ice at the site was measured to be between -3 ºC and 0 ºC at depths below 20 m (Fig. 

3c), with consistent temperatures of 0 ± 1 ºC below 40m.  The region of transition from cold 

to temperate ice is clearly visible in the radar stratigraphy at 40 m depth, because the 

temperate firn is water saturated at this level (Figure 3a).  The firn-ice transition at 830 g cm-

3 occurs at ~45 m depth, based on density measured by weighing samples of each ~1 m length 

of core (see below).   Freezing of water in the borehole below 80 m depth resulted in partial 

closure of the borehole over hour- to day-long periods (for example, 2 cm of refrozen ice on 

the borehole wall developed during a 48-hour drilling shutdown period).  The addition of 

ethanol to the water in the borehole did not improve drilling progress, despite efforts to 

ensure consistent delivery of ethanol past the porous firn layers and to mix water and 

ethanol in the borehole thoroughly.  This complication stalled drilling progress at 118 m.  

Efforts to continue resulted in a diversion of the borehole at  ~113.5 m, as variance in drill-

tower leveling made reopening and precisely following the previously-drilled borehole 
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impossible.  The divergent borehole (~2-3° departure from initial borehole) reached a final 

depth of 141 m, after a second diversion at 124 m.  We collected overlapping sections of ice 

at both borehole diversions, in order to recover accurate depth information that was lost 

when continuous ice-core collection was interrupted.  Matching of chemical stratigraphy 

allowed for recovery of absolute depth correct to within a few centimeters.  No further 

progress could be made below 141 m due to continued refreezing of water in the borehole, 

leaving approximately 100m of ice between the final ice-core depth and the bedrock below.  

In the field, one-meter ice-core sections were cut, measured, photographed, placed in 

high-density polyethylene (HDPE) bags, and stored in a covered snow pit for up to four days, 

then taken by a ~30 minute helicopter flight to a freezer truck.  At the end of the drilling 

season (~30 days), the ice was shipped to storage facilities at the University of Washington in 

Seattle.  In November 2010, the core sections were shipped to the U.S. National Ice Core 

Laboratory in Denver, Colorado for sampling and allocation to laboratories.  Core sections 

were cut into five parallel longitudinal samples: a center core sample (3.5cm x 3.5cm x ~1m) 

for chemical measurements, a side sample for water stable-isotope analysis, and several 

archive samples.  Immediately prior to sampling, a slab of ice from the center of each core 

section was planed and scanned using a high-resolution digital imaging system (McGwire 

and others, 2008).  

The ice-core was sampled continuously from the surface snow (0m) to the deepest ice 

(141m).  We analyzed 3.5 cm x 3.5 cm x 1 m samples from the center of the core at the Desert 

Research Institute (DRI) using a continuous-flow analysis system (McConnell and others, 

2002; McConnell and others, 2007).  Ice samples are melted vertically using a sectioned 

heating element, isolating the innermost ice from the sample and discarding contaminated 



 6 

outer surfaces. The DRI system employs two high-resolution inductively coupled plasma 

mass spectrometers for elemental determinations, laser-based instruments for 

measurements of black carbon and insoluble dust particles concentrations and size 

distributions, and a range of fluorimeters and spectrophotometers for chemical 

measurements.  This instrumentation yielded <1 cm effective depth resolution measurments 

of continental dust indicators, sea salt, volcanism, biomass burning, and industrial 

pollutants in the Combatant Col core.  Insoluble dust data presented here represent particle 

sizes of 2.4 to 4.5 nm.  Results from the black carbon, lead, and dust measurements, which all 

exhibit clear seasonality, will be discussed in this paper.  Density measurements were taken 

on each 3.5 cm x 3.5 cm x ~1 m core sample, by weighing and measuring dimensions; 

estimated uncertainty is ± 10%.  A density-depth profile was estimated from these data using 

a third-order polynomial fit (Fig. 3b), which we use to calculate the ice-equivalent depth and 

thickness of annual-layers in the ice-core. 

At the University of Washington stable-isotope laboratory, we cut 1416 samples at 

approximately 10 cm resolution for the length of the core, to be used for water stable-

isotope (δ18O and δD) analysis.  This sampling resolution results in an average of 35 samples 

per year.  Each sample was melted, decanted into a 20 mL HDPE bottle, and refrigerated until 

analysis.  Measurements of δ18O and δD were made simultaneously for every 10cm sample 

using a Picarro cavity ring-down spectrometer. 

 

Seasonality in chemical records 

Chemical records from the Combatant Col ice-core exhibit unambiguous seasonal 

extremes, coincident in black carbon, dust, lead, and water stable-isotopes.  Peaks in all 
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species occur in sections of core with higher incidence of melt layers, most obviously in the 

snow/firn section of the core (0-40 m), but do not appear to be preferentially concentrated 

in individual melt layers.  An example annual sequence from 17 to 21 m depth is shown in 

Figure 4.  

Black carbon, dust and lead in the ice-core demonstrate strong seasonality (5- to 10-

fold fluctuation in concentrations; Figure 4c, d, e).  Black carbon concentrations range from 

0 to 23.94 parts per billion (ppb) (2.4 ppb standard deviation), while minima typically range 

from only 0.1 ppb to 1.0 ppb (Figure 4c).  Dust concentrations range from 0 to 0.68 ppb (0.03 

ppb standard deviation), and show several extremely large peaks with concentrations up to 

0.4 ppb, while other maxima are as low as 0.05 ppb (Figure 4d).  Dust minima are less than 

0.02 ppb in all cases.  The record of lead from Combatant Col exhibits concentrations ranging 

from 0 to 2.65 ppb (0.11 ppb standard deviation).  Maximum concentrations are observed in 

the deepest 20 m of the core (121-141 m), with peaks as high as 2 ppb and typical peak values 

of 0.5 ppb, compared to peak values of ≤0.4 ppb in the upper 120 m (Figure 4e).  Stable-

isotope concentrations (δ18O) vary from more negative (-22‰ to -25‰) values in the melt-

free portion, to less negative (-18‰ to -14‰) in the melt-rich snow and ice (Figure 4f). 

We interpret the sequence shown in Figure 4 as follows.  Beginning in melt-free and 

impurity-poor winter snow at the base of this annual-layer, we observe gradual increases 

up-core (and thus through time) of all chemical species, building towards maximum 

concentrations and the presence of surface melt layers formed during spring and summer. 

Because maximum precipitation in coastal British Columbia occurs from October to March 

(1971-2000 climatology; Environment Canada, 2011), we interpret the deeper portion of the 

sequence in Figure 4 as a package of snow deposited during these winter months. The 
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increasingly impurity-rich upper portion of this snow sequence indicates the gradual 

addition of impurities to the developing snowpack, coincident with spring and summer 

months of warmer surface air temperatures and maximum trans-Pacific dust and pollutant 

fluxes from Asia (Merrill and others, 1989; Bey and others, 2001).  Individual trans-Pacific 

transport events have been observed with diverse compositions; sometimes with 

components exclusively of industrial origin, though more they comprise mixes of industrial 

emission and mineral dust sources (Jaffe and others, 2003).  Local contributions of these 

aerosols are likely also important, considering that Vancouver, British Columbia is only 280 

km distant.  Local forest fires may also contribute to the seasonal maximum in black carbon.  

Finally, occasional storm activity in summer deposits small amounts of snow with high 

impurity content and less negative δ18O and δD values.  The seasonality in isotopes is 

consistent with data compiled by Bowen (2008) from the IAEA/WMO Global Network of 

Isotopes in Precipitation (GNIP) stations and other sources, showing that there is strong 

seasonality in water isotopes along coastal British Columbia (largely due to the temperature 

effect). 

Maximum temperatures during summer months (June-August) partially melt surface 

snow layers—which were deposited in winter and spring—and meltwater from these layers 

penetrates into the snowpack.  Due to extremely high accumulation rates at Combatant Col, 

this meltwater penetrates only part way through an annual-layer.  Thus, the seasonal cycle 

of water stable-isotope values and impurity concentrations is preserved. This interpretation 

of spring/summer stratigraphic horizon formation is the basis for our annual dating of the 

ice-core.   
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Dating  

Dating of the core was performed iteratively using a multiparameter approach; 

adding independent data sets sequentially after counting subjectively-determined annual 

peaks.  The visual, geochemical and isotope stratigraphy are plotted versus the final age-

scale in Figure 5.  Initial age-scales were developed using the records of melt layers, black 

carbon, and dust only.  We quantitatively analyzed melt layers in the ice-core by averaging 

the grayscale pixel intensity of the approximate longitudinal centerline from every core 

section image taken during laboratory sampling.  This record of pixel intensity clearly 

demarks transparent, bubble-free melt features as dark horizons, due to the black 

background and overhead lighting of the imaging system we used.  Clean winter snow and 

firn scatters the overhead lighting and appears very bright.  Visual analysis was helpful in 

dating the snow and firn section of the core, showing that closely spaced high-concentration 

excursions represent individual spring/summer aerosol deposition events.  In the glacier ice 

below 40 m, quantitative visual analysis was not as useful because of reduced contrast 

between melt layers and melt-free glacier ice. 

The records of black carbon and dust (Figure 5a, b) provided a preliminary age-scale 

for the entire core, but there is some ambiguity in certain sections of these records.  For this 

reason, incorporating lead into the dating scheme proved valuable, as extremely low 

background values of lead provide an independent marker for winter snow (Figure 5c).  

Additionally, the dated lead time series corresponds well with known histories of lead 

emissions from North America, giving us confidence in the accuracy of our dating (see 

below).  The extreme lead concentrations in the deepest 20 m of the core correspond with 

the 1970s, when leaded gasoline use in the United States and Canada was near its maximum.  



 10 

Subsequent regulation by both countries halved the amount of lead in gasoline in 1982, and 

eliminated it altogether by the early 1990s (Bülhofer and Rosman, 2001).  We see this 

decrease in lead at Combatant Col, with concentrations sharply dropping off in the early 

1980s and remaining low through the 1990s.   

Comparison with lead records from two other ice-cores also suggests that our dating 

is sound, and provides the additional information that lead aerosol deposited at Combatant 

Col is primarily from North American sources, in contrast to the interpretation of lead 

deposition in the Mt. Logan ice-core record (Osterberg and others, 2008).  Figure 6 shows 

annual lead concentrations from four sites: Combatant Col (Figure 5a), southwest Greenland 

ACT2 (Figure 6a; 66.0º N, 45.2º W, 2410 m; McConnell and Edwards, 2008), Greenland Summit 

(Figure 6a; 72.6° N, 38.5° W, 3210 m; J. McConnell, unpublished), and Mt. Logan Prospector-

Russell Col (Figure 6b; 60.6° N, 140.6° W, 5300 m; Osterberg and others, 2008).  The 

Combatant Col lead record correlates well with both the Greenland ACT2 (period 1972-1998, 

r = 0.82, p < 0.02) and Greenland Summit (period 1972-2009, r = 0.62, p < 0.02) lead records.  

Consistent with this correlation, lead-isotope data indicate that North America is the 

dominant source of lead in Greenland (Rosman and others, 2000).  There is no significant 

correlation between the Combatant Col and Mt. Logan lead records. 

Water stable-isotopes, δ18O and δD, were the final component included in our multi-

parameter dating of the Combatant Col ice-core.  For the purposes of dating, δ18O and δD are 

nearly identical, so we report only δ18O here (Figure 5d).  The initial time scales, based on 

visual and chemical stratigraphy only, agree well with the δ18O data.  Data from the shallow 

ice-core drilled at the site in 2006 provide additional, definitive validation for our dating of 

the most recent five years of the 2010 ice-core  (see Figure 7).  In the 2006 core, the top of 
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which represents the snow surface during summer of that year, we see anomalously 

negative δ18O (-29.58‰) 2.3 m below the surface, deposited during winter 2005-2006 or 

spring 2006.  This same 2006 annual-layer from the more recent and longer Combatant Col 

ice-core, now buried at a depth of ~36 m, exhibits nearly identical minimum values—the 

most negative of the entire record.  We are confident that these are the same annual-layer, 

and we further note that the δ18O values are well-preserved at depth, showing no evidence of 

alteration of the original surface layers deposited in 2006 through the subsequent five years.  

This is significant, because alteration of water stable-isotopes, including diminished 

seasonality and an overall decrease in summertime values, is commonly observed even at 

cold glacier sites (Koerner, 1997; Moran and Marshall, 2009).  In the Combatant Col core, we 

observe seasonal isotope variation of roughly constant amplitude throughout the record, 

including in the deepest ice. 

 

Annual-layer thickness and ice-flow corrections  

Annual-layer thicknesses from the Combatant Col ice-core (Figure 8) indicate 

extremely thick snow and ice sequences from the most recent (and least flow-altered) layers 

at the site, up to 12 m ice-equivalent at the thickest.  These layers gradually thin with depth, 

due to ice-flow, to reach annual-layer thicknesses of 1-2 m ice-equivalent at depths below 

~100 m.  We calculate uncertainties in layer thickness by considering the standard error of 

the thicknesses from four sequentially developed age scales. 

To obtain annual accumulation rates, we correct annual layer thicknesses for 

dynamic thinning using the one-dimensional ice-flow model of Dansgaard and Johnsen 

(1969).  This model uses a simple piecewise-linear approximation of the horizontal-velocity 
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profile, assumed to be constant at value us from the surface down to some distance h above 

the bed, and then decreasing linearly towards a value ub, which is the sliding velocity, at the 

bed. The depth-age relation for constant accumulation and steady state flow is given as 

follows, where H is the total ice thickness, b  is the sum of the surface accumulation rate and 

the basal melt rate, us is the surface velocity, and z is the distance above the bed.  
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Assuming that there is no long-term trend in accumulation rate, we can estimate the 

parameter h and the ratio ub/us by minimizing the difference between the calculated and 

observed age-depth relationship over a range of plausible values of surface accumulation 

rate b  and total ice thickness, H.  That is, we minimize the root mean square difference 

tm(z)- t(z)( )
2

å where tm is the measured timescale and t is the calculated timescale at ice-

equivalent heights z.  Note that although it is virtually certain that there is melting at the 

bed, it is negligible in this setting even at very high geothermal heat flux, because the 

surface accumulation rate is so high.  For example, a geothermal heat flux of 120 mW m-2, 

about twice the regional average (e.g. Lewis et al., 1985), would result in basal melt rates of 
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order only 1 cm a-1 (e.g. Paterson, 1994); thus b  is approximated simply by the surface 

accumulation rate.  

The results show that lowest rms values are found with b  ~ 7 m a-1 and H ~ 240 m (ice 

equivalent), both very consistent with the observations.  As shown in Figure 9a, optimal 

values of h/H and ub/us are h/H ~ 0.6-0.7, ub/us < 0.1, consistent with typical values for flow 

near an ice divide (Waddington et al., 2001).  We note that somewhat lower rms values can be 

obtained for b  = 8 m a-1 and H = 260 m, if h/H is >0.9.  However, H > 250 m is unlikely on the 

basis of the radar data (Figure 3a), although it cannot be ruled out. Basal sliding rates 

greater than ub/us = 10% would also require ice thicknesses that are likely ruled out by the 

radar data, strongly indicating that basal sliding is a small fraction of the total sliding.  In 

any case, corrections to the annual layer thickness using a range of plausible choices are 

essentially identical to those for b  = 7 m a-1 and H = 240 m, because higher accumulation 

rates and/or high sliding rates require greater thinning at depth (and therefore a greater 

value of h/H) to be consistent with the observations.  Conversely, low values of accumulation 

rate imply smaller values of H and h/H.  However, depths <230 m are inconsistent with the 

observed depth-age relationship, regardless of the values of h/H and ub/us used.  We conclude 

that the observed depth-age relationship strongly constrains the layer-thinning profile with 

depth, allowing us to convert the measured layer thicknesses to original annual 

accumulation rates at the surface.  For simplicity, we use b  = 7 m a-1, h/H = 0.65, H = 240 m, 

and ub/us = 0.  Figure 9b compares the calculated timescale for these parameters, compared 

with the observations.  Note that the implied age at depth is well in excess of 200 years; we 

discuss the implications of this for future work later in this paper. 



 14 

The time series of ice flow-corrected net annual accumulation from Combatant Col is 

shown in Figure 10.   Maximum annual accumulation rates of 10-11 m a-1 ice-equivalent are 

observed, with minima no lower than ~4 m a-1.  Annual accumulation rates of this 

magnitude, averaging 6.8 m a-1 over this 38-year record, place Combatant Col among the 

wettest places on Earth (see National Climatic Data Center, 2008).  Accumulation at the site 

shows a standard deviation of 1.64 m, which eclipses entire annual average precipitation 

rates at nearby coastal weather stations.  For instance, lee-side stations on Vancouver Island 

average annual precipitation of 1.0-1.5 m a-1 from 1971-2000 (Environment Canada, 2011).  

We estimate uncertainty in the accumulation data by taking into account estimated 

uncertainty in the timescale, based on the sequence of four depth-age relationships 

developed iteratively as individual stratigraphic time series (i.e. records of melt layers, 

geochemistry, isotopes) were incorporated into our multiparameter dating (described in 

”Dating” section above).  This translates to an average uncertainty of ~12% in accumulation 

for each year, or, equivalently, an age uncertainty of ~1 year. 

 

Relationship between accumulation rate at Combatant Col and regional precipitation 

Time series of annual snow accumulation developed from alpine ice-core records 

have been used previously as indicators of past climate variability.  A central challenge to 

using ice-core records in this way, however, is that the accumulation rate at a specific high-

altitude site may reflect only very regional climate, or even microclimatic conditions.  

Nevertheless, previous studies have had some success: the Mt. Logan accumulation time 

series has been used to examine variability in the strength of the Aleutian Low (e.g. Moore 

and others, 2003), although Rupper and others (2004) argued that the Mt. Logan record 
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could be meaningfully related to the large-scale precipitation variability only for the largest 

winter storms.  A longer record from Combatant Col could potentially be used to extend 

observations of such variability well beyond the length of the instrumental climate record.  

While it is beyond the scope of this paper to examine the controls on regional precipitation 

region in detail, it is nevertheless of interest to examine the extent to which the Combatant 

Col record may similarly reflect regional or large-scale climate variability.  

Comparison with both local precipitation records (sites shown in Figure 1) and large-

scale climate reanalysis suggests that the Combatant Col record does meaningfully reflect 

regional-scale precipitation.  We calculated the correlation between the annually-averaged 

accumulation from Combatant Col and the annual mean precipitation rates from British 

Columbia weather stations (Environment Canada, 2011), using seasonal (3-month) averages 

for all seasons, starting in July (the nominal beginning of each accumulation year in the 

core), for lags of up to one year (Figure 11).  We find that correlations are maximized with a 

lag of one year, and are statistically highly significant at that lag (p < 0.05 to p < 0.01, 

accounting for autocorrelation in the data following Bretherton and others, 1999).  Although 

a lag of one year is obviously not physically meaningful, this lies within the expected dating 

uncertainty for the core.  Furthermore, if this is correct, it provides confirmation that the 

dating of this core is incorrect by only one year.  Although we cannot fully rule out chance 

correlations, several lines of evidence argue that this reflects a real, physically meaningful 

relationship between Combatant Col accumulation and regional precipitation.  First, the 

maximum correlation occurs when the station averages are centered on the winter 

accumulation season, November though January.  Second, significant correlations are found 

only with the weather station records to the west of the Coast Mountains—at Port Hardy, 
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Tofino, and Campbell River on Vancouver Island, plus Powell River on the mainland (Figure 

11c)—and not with stations further to the east, north or south (e.g. Tatlayoko, Prince Rupert, 

Lillooet; see Figure 11c).  This pattern of correlation is to be expected, because Mt. 

Waddington clearly receives precipitation almost exclusively due to orographic effects as 

westerly storms encounter the Coast Mountains, rather than from easterly flow originating 

in the dry British Columbia interior.  Finally, we find that if we shorten the total length of 

the record by one year, by combining the annual accumulation total of two randomly-

chosen adjacent years (e.g. the 5.9 m in 2004 and 7.4 m in 2005 becomes 13.3 m in 2005)—a 

reasonable possibility as annual stratigraphy in some years is not entirely unambiguous—

significant correlations remain, but with zero lag. 

Further evidence that the Combatant Col time series meaningfully reflects large-scale 

precipitation variability is found in the relationship with regional precipitation and 

geopotential heights as determined from the ERA40/ERA-Interim climate reanalysis data 

(Upalla and others, 2005; Dee and others, 2011).  We find that for one-year averages of 

Combatant Col accumulation, the correlations for both precipitation and 500 hPa 

geopotential heights are not significant (p > 0.1).  However, if 3-year averages are used (to 

account for possible dating uncertainty) significance levels are moderately high (p<0.1) 

where expected: over Mt. Waddington itself, and over Vancouver Island to the immediate 

west (see Figure 12).  Furthermore, the correlation pattern with both precipitation and 500 

hPa geopotential heights is consistent with previous understanding of large-scale controls 

on precipitation variability in this region (Overland and Hiester, 1980).  In particular, 

positive correlations with precipitation extend westward along the climatological trajectory 

of westerly wind, while there is a negative correlation with precipitation in coastal Alaska, 
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similar to the characteristic South-North dipole pattern associated with the Pacific/North 

American pattern (Wallace and Gutzler, 1981).  The correlation with 500 hPa geopotential 

height is characterized by negative correlation (associated with low geopotential heights) 

over the Gulf of Alaska, and positive correlations (associated with higher than average 

geopotential heights) over the Aleutians (moderately significant at p < 0.1).  This is the 

configuration of geopotential height associated with greater than average storminess and 

precipitation along the west coast of British Columbia (Rodionov and others, 2007). 

These correlations are based on a relatively short record, only 38 years, while the 

ultimate goal of this ice-core project is to gain insight into regional conditions extending 

beyond the instrumental period.  This should be achievable at Combatant Col, because, as 

suggested above, ice ages in excess of 200 years near the bed are very likely based on our 

current knowledge of depth-age relationships at the ice-core site.  Additionally, a longer 

record should allow for more precise dating, because the age of deeper ice would likely be 

constrained by deposits from the Katmai, Alaska (1912), and Tambora, Indonesia (1815) 

eruptions, which are seen in the Eclipse Icefield and other ice-cores (Yalcin and Wake, 2001).  

 

Conclusions 

Retrieving ice-core paleoclimate records from temperate glaciers has been attempted 

only rarely, because it has often been observed, and consequently often assumed, that 

annual stratigraphy—critical to dating the records—will not be preserved.  Our results from 

the Combatant Col ice-core demonstrate that annual-layers can be preserved in temperate 

ice, provided that annual snow accumulation rates exceed the depth penetrated by summer 

surface meltwater.  In addition to allowing for accurate dating, preserved chemical 
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stratigraphy provides valuable information about the deposition of natural and 

anthropogenic aerosols at remote sites (e.g. McConnell and others, 2007).  Furthermore, the 

accumulation time series from the Combatant Col ice-core appears to meaningfully reflect 

regional-scale climate variability.  These results suggest that there is more potential than 

previously thought in exploring additional ice-core sites at mid-latitudes where cold glaciers 

are relatively rare.  Although the high-accumulation criterion limits the age of ice preserved 

at depth in relatively shallow alpine glaciers, ice with an age of several hundreds of years is 

likely preserved at Combatant Col.  A deeper ice-core from this site would complement other 

existing ice-core records in the North Pacific, and would add much-needed spatial detail to 

the study of regional climate variability on decadal to centennial scales.  
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FIGURES 
 

 
Figure 1. Map location of Combatant Col drill site (starred), with inset picture showing local 
setting (E. Steig photo). Other ice cores and weather stations mentioned in the text are 
marked by black and white circles, respectively. 
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Figure 2. Detail of drill site (starred) and ice-surface topography.  Gray lines show 20 m 
digital-elevation map (DEM) data.  Black contours in the shaded area are derived from GPS 
surveys conducted during field campaigns and are plotted with a 2 m contour interval.  
These new surface-elevation data correct 20-40 m errors in the original 20m DEM at 
Combatant Col.  
 
 

 
Figure 3. a) Radar data (80 MHz center frequency) from a transect across the center of 
Combatant Col, perpendicular to ice flow.  Arrows indicate the location of water-saturated 
firn, near 40m depth, and a bedrock reflector at ~250m. b) Ice-core density measurements, 
made in the laboratory, fit with a 3rd-order polynomial used to calculate ice-equivalent 
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depths.  The firn-ice transition at 830 g cm-3 occurs at a depth of ~45 m.  c) Ice-core 
temperature, measured in the field, shows ice reaching ~0ºC at a depth of 40 m. 
 
 
 
 
 

 
Figure 4. Example section from 17 to 20 m depth in the combatant Col ice core, depicting 
seasonality in records of a) visual appearance, b) pixel intensity (melt layers, c) black carbon 
(BC), d) dust, e) lead, and f) δ18O.  All data show lower concentrations/values during winter, 
gradually increasing to a spring/summer maximum, highlighted by grey box. 
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Figure 5. Concentrations of a) black carbon, b) dust, c) lead and d) δ18O in the Combatant Col 
ice core, plotted vs. age. 

 
Figure 6.  Comparison between Combatant Col annual lead concentrations (a, black line) and 
ice-core lead records from the Greenland Ice Sheet (a, dotted and dashed lines) and Mt. 
Logan PR Col (b).  Both the Combatant Col and Greenland ACT2 (dashed line) and Summit 
(dotted line) records show high lead concentrations in the 1970s, followed by sharp 
decreases in concentration in the early 1980s.  In contrast, lead concentrations at Mt. Logan 
show a steady rise from the 1970s to the most recent years of the record. 
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Figure 7. Comparison of δ18O in the 2006 and 2010 cores.  The nearly identical extreme 
minimum in δ18O, dating to winter 2005-2006, demonstrates the preservation of seasonality 
through firn and into ice. 
 

 
Figure 8. Annual layer thickness from the Combatant Col ice core record.  Error bars indicate 
± one standard error calculated from four agescales (see text for details). 
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Figure 9. a) Root mean square difference between measured depth-age relationship for the 
Combatant Col core and that calculated with a Dansgaard-Johnsen flow model for all possible 
values of h/H and of ub/us.  b) Measured and modeled depth-age relationships, using ub/us = 0, 
h/H = 0.65, b  = 7 m a-1 and H = 240 m. 
 
 

 
Figure 10. Ice-flow-corrected annual accumulation, with a ± 12% uncertainty threshold 
marked by the gray dashed lines.  
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Figure 11.  Correlation between Combatant Col accumulation timeseries and precipitation 
data from nearby weather station precipitation data (a). Significance levels are plotted in 
(b), indicating that with ~1 year offset correlations become statistically significant between 
Combatant Col accumulation and weather-station precipitation data. Map (c) shows weather 
stations used for precipitation data: Port Hardy (PH), Campbell River (CR), Tofino (TOF), 
Powell River (PR), Prince Rupert (RUP), Bella Coola (BC), Tatlayoko Lake (TAT), and Lillooet 
(LIL). Weather stations that correlate with Combatant Col accumulation data are marked 
with white circles; those that show no correlation are marked with a black ‘x’. Combatant 
Col is starred. 
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Figure 12.  Correlation between Combatant Col accumulation and ERA-40/ERA-Interim 
precipitation and 500hPa geopotential heights.  Colors indicate correlation (r) with 
precipitation.  Contours indicate correlation with 500 hPa geopotential height (contour 
interval is 0.1, with zero and negative values dashed).  Combatant Col location is starred.  
 


