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University of Washington
Abstract

THE RELATION BETWEEN SURFACE AND BASAL
VELOCITY VARIATIONS IN GLACIERS,
WITH APPLICATION TO THE MINI-SURGES OF VARIEGATED GLACIER

by Michael John Balise

Chairperson of the Supervisory Committee: Prof. C. F. Raymond
Geophysics Program

The relation between surface and basal velocity variations in glaciers is systematically
studied, so that basal velocities of glaciers can be deiermined from measured surface velo-

cities. Linear viscous, visco-elastic, and non-linear power law rheologies are used.

For the forward problem (prescribed basal velocity anomaly), the surface response
depends on the length scale of the basal velocity anomaly as compared to the thickness of
the ice. Four different length scales are defined: very short, short, intermediate, and long.
At short and intermediate scales (anomaly lengths between 1 and 10 ice thicknesses) a
cross-component effect allows normal motions at the surface to be caused by longitudinal
motions at the base, and the spatial form of the longitudinal component at the surface may
be very different from that component at the bed. The magnitude of the surface response

increases as the length scale increases.

These length scales apply to both the linear and non-linear rheologies, although the
magnitude of the surface response is less and the scales shift towards longer wavelengths
for the non-linear rheology. Importantly, the anomalous solution is coupled to the steady-
state solution for the non-linear rtheology.

The inverse problem (prescribed surface velocity anomaly) is solved exactly for linear
rheology. The solution for the basal velocity anomaly becomes infinite in amplitude as the
wavelength of the prescribed surface anomaly goes to zero. This is dealt with by reducing

the short wavelength components of the surface velocity. The non-linear inverse problem



is solved numerically.

When data from Variegated Glacier are used for the surface velocity anomalies, the
calculated basal velocities have greater amplitude than the surface velocities. The structure
is of similar roughness between surface and bed, but the velocity maxima and minima are
often in different spatial positions. Multiple peaks in the surface velocity may be associ-
ated with only a single peak in the basal velocity. Substantial normal motions at the bed
are calculated, but the uncertainties of the solution process do not allow definite conclu-
sions about basal cavitation. Better spatial-resolution surface data is necessary to more

accurately calculate the basal velocity anomalies.
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CHAPTER 1

GENERAL DESCRIPTION OF PROBLEM AND ORGANIZATION OF DISSERTATION

The measurement of velocities at the bases of glaciers or ice sheets is a fundamental
observational problem. A method to determine these velocities is necessary for developing
an understanding of the sliding process, and the testing of sliding laws for practical predic-
tions of glacier speeds. Although the bases of glaciers can be reached by various means
for direct observation of sliding speed and factors affecting it (e.g, Engelhardt and others,
1978; Vivian, 1980), these techniques are difficult and usually very expensive.

For this reason it is natural to attempt to estimate sliding speed from measurements
made at the surface. There are a number of cases involving various spatial and temporal
scales where this has been attempted (e.g. Haefeli, 1970; Hodge, 1974; Bindschadler, 1983;
Raymond and Harrison, submitted). Some of the most exciting recent discoveries and pro-
gress in understanding the sliding process have resulted from careful measurement of both
the horizontal and vertical components of velocity at the glacier surface on a daily or
shorter time scale, by standard surveying and photogrammetric methods (Tken, 1977; Iken
and others, 1983; Kamb and Engelhardt, 1987). This kind of approach involves the estima-
tion of velocity differences between the surface and the bed caused by ice deformation.

In the case where the changes happen on a seasonal or longer time scale and glacier
geometry and associated internal stresses obviously vary, changes in ice deformation rate
have been estimated from changes in depth and slope using results derived assuming defor-
mation in simple shear parallel to the surface (Nye, 1952). In the case of short-scale varia-
tions for which glacier geometry is essentially constant, it has been assumed that the
changes at the surface are nearly equal or at least proportional to those at the base. While
this approach gives useful zero-order estimates of the relation between surface and basal
velocity variations, it is clear that there are errors arising from uncertainties about the ice
theology and changes in stress distribution. In particular, if the spatial scale of the velocity
variations is short, longitudinal interactions associated with longitudinal stress gradients
will affect the form of this relation. Although the effect of these longitudinal stress gra-
dients on the relation between basal topography changes, surface topography changes, and



2

internal motions has been studied (Langdon and Raymond, 1978; Hutter and others, 1981;
Whillans and Johnsen, 1983), the relation between surface and basal velocities has not
been systematically examined for short spatial-scale velocity variations. In addition, if the
time scale of the velocity variations is short, visco-elastic effects may be important. These
visco-elastic effects have not been well examined for glacier flow. This dissertation pro-
vides an analysis of the relation between surface and basal velocity variations, with careful
consideration of these problems which may be caused by short spatial and temporal scales.

The immediate motivation for this analysis is the mini-surge behavior of Variegated
Glacier (Raymond and Malone, 1986; Harrison and others, 1986; Kamb and Engelhardt,
1987). In these mini-surges the glacier did not speed up simultaneously at all locations.
Instead, fast motion was confined to a rather narrow propagating zone, with high compres-
sion below it and extension above it. This means that the ice underwent a rapid transition
from compression to tension as a given mini-surge propagated down-glacier. In general
temporal changes in glacier speed, whether propagating or not, can be expected to show
some localization and resulting longitudinal stress changes, which will tend to damp varia-
tions at the surface in comparison to the bed. Thus there is ample motivation for studying
the relation between surface and basal velocity variations.

The analysis of velocity variations can be approached in two different ways. The
first method is to start with a given basal velocity or basal sliding law, and then calculate
the resulting surface velocity; the second method is to start with a given surface velocity
and then attempt to calculate the corresponding basal velocity. The first method may be
referred to as the "forward" problem and is used in Chapters 2 through 5. The forward
problem is a standard boundary value problem. The second method is referred to as the
"inverse" problem and is developed in Chapters 6 and 7. This inverse problem involves
boundary conditions which result in instabilities in the solution process, and therefore spe-
cial solution techniques are required. Since almost all velocity data from glaciers are sur-
face data, the inverse method is very useful for analyzing real data. This method is applied
to velocity data from the mini-surges of Variegated Glacier.

The assumed rheology of the glacier ice is clearly important in any study of velocity
changes. Several different rheologies are used, for both the forward and the inverse solu-
tions. These include a linear viscous rheology, a visco-elastic rheology, and a non-linear

Glen’s flow law rheology. The results using the linear and non-linear rheologies can be



compared to check the importance of non-linear effects. The visco-elastic rheology is use-
ful for examining the possible importance of elastic straining during short time-scale velo-
city variations.

Various simplifying assumptions are used to make the analysis of velocity variations
more tractable. These assumptions are described in some detail at the beginning of the
appropriate chapters; particularly at the beginning of Chapter 2 (the first chapter on forward
solutions) and at the beginning of Chapter 6 (the first chapter on inverse solutions). These
assumptions will be summarized here.

The first major assumption is the specification of a planar geometry and plane strain.
This means that only two components of velocity are allowed: a component z in the x
direction (referred to as the "longitudinal" component), and a component v in the y direc-
tion (referred to as the "normal" component). Thus velocity and strain-rate components
across the slope are assumed to everywhere be equal to zero. This assumption also means
that width effects (e.g., from valley sides) are not considered.

The next major assumption is the separation of the problem into steady-state and
anomalous parts. The flow in the steady-state problem is assumed not to vary in time or in
the x direction (for the planar geometry), and this steady-state flow balances the average
forces arising from gravity, atmospheric pressure, and the stresses at the glacier bed. The
anomalous flow is assumed to be due to changes in the glacier boundary conditions at the
bed (e.g., changes in the force balance at the bed from changes in the basal water pres-
" sure). Furthermore acceleration terms are assumed to be negligible for the anomalous
flow. This separation into steady-state and anomalous parts will be shown to be of varying
validity, depending on the rheology and the boundary conditions. When necessary, the
total solution fur the combined steady-state and anomalous problems will be derived.

The last major assumption is that the planar geometry remains essentially constant
(with a constant surface slope parallel to a constant bed slope). This means that geometry
changes arising from the anomalous flow must be negligible. The easiest analytical
method of insuring negligible geometry changes is to look at the solutions in time-
independent form; thus most of the solutions are a "snapshot” of the flow pattern within
the ice at a certain specific time. In physical reality, this assumption of negligible

geometry changes will be met if the velocity anomaly occurs over a sufficiently short time



scale, or if the velocity anomaly does not significantly affect the surface geometry even

over longer time scales (see Appendix A).



CHAPTER 2

LINEAR VISCOUS FORWARD SOLUTIONS

2.1 Chapter introduction

The goal of this chapter is to do an initial analysis of short-scale velocity variations.
This initial analysis will involve prescribing a basal sliding velocity, and then calculating
the resulting englacial and surface velocities (the "forward" problem). A simple linear
viscous rheology will be used. Examination of more complicated rheologies and the

"inverse" problem is done in following chapters.

2.2 Mathematical description of problem

2.2.1 Definition of steady-state and anomalous motions

The effect on glacier motion of changes in sliding velocity is most simply examined
by separating the added anomalous motion u(x,) caused by a specific anomalous sliding
velocity distribution from a steady-state motion u(x) that would occur without the anomaly.

The velocity anywhere in the glacier is then expressed as u'(x) + u(x,?).

The steady-state velocity distribution u”(x) and the corresponding stress distribution
o°(x) satisfy the field equations for flow under the action of gravity, with atmospheric pres-
sure at the upper surface and the steady-state sliding u’(x,;) at the bed. The sum of the
steady-state and anomalous distributions must also satisfy these field equations, with the
boundary conditions changed to include the additional anomalous sliding velocity u(x,t).

2.2.2 Geometrical assumptions and coordinate system

Planar slab geometry is assumed. Coordinates are chosen as shown in Figure 2-1,
with the x axis on the bed and positive down the slope, the y axis normal to the bed and
positive towards the surface, and the z axis horizontal across the slope. The steady-state
velocity distribution v’(x) is assumed to be compatible with planar geometry and a constant

ice thickness H, under a prescribed mass balance distribution. The anomalous motion is
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assumed to be planar: the x ("longitudinal”) component of velocity » and the y ("normal")
component of velocity v may be non-zero functions of x, y, and ¢, but anomalous motion

across the slope in the z direction is everywhere zero.

This chapter is concerned with the instantaneous velocity distribution at a specified
time and for a specified planar geometry. A more complex and less well-defined problem
would be the subsequent evolution of the geometry and velocity. Any basal velocity ano-
maly is likely to cause an anomalous normal velocity at the upper surface and gradually
change the geometry of the glacier. This geometry change would feed back to affect the
velocity distribution (Langdon and Raymond, 1978; Hutter, 1983; Kamb and Echelmeyer,
1986; Echelmeyer and Kamb, 1986). If the time scale of interest is short, or the velocity
anomalies are small compared to the steady-state velocity u®, then the geometry changes
and corresponding velocity changes may be negligible. Under these restrictive conditions
the problem of the eventual evolution of the surface geometry would not arise. These res-

trictions are examined in more detail in Appendix A.

2.2.3 Rheological assumptions and field equations

The ice is assumed to flow as a Newtonian fluid of uniform dynamic viscosity 7.
The relevant field equations are the equation of continuity for incompressible flow, and the
Navier-Stokes equations. Velocity anomalies are assumed to vary slowly enough that
acceleration terms are negligible. - From the assumptions that the motion is planar and that
the steady-state distributions u’ and ¢° satisfy the equations with body force from gravity,
standard considerations yield the following field equations for the velocity anomaly com-
ponents « and v, and the anomalous pressure p:

g: g—; =0 @-1)
n a’; ~2 @2)
[z azv a;: 3y 0

The gravity body force does not appear in these equations because the steady-state stress
distribution ¢* is in static equilibrium with gravity, and the linearity of the equations results



in the anomaly fields being independent of and additional to the steady-state distribution.

2.2.4 Boundary conditions

The boundary conditions to be applied are atmospheric pressure on the upper surface
and a prescribed velocity at the base. At the upper surface the steady-state distributions v°
and o* correspond to atmospheric pressure. The additional stress on this surface from the
anomaly distributions u and o must therefore be zero. For the given coordinate system this

is expressed as

Oyy(x.H 1) =[2n-% - p] =0 (2-4a)
i

OnlcH) =1 [g—; + %f] =0 @-4b)
y=H

keeping in mind the restrictions on the geometry of the upper surface discussed in the pre-

vious section. At the base, a prescribed velocity anomaly is expressed as

u(x,0,0) = uy(x,0) (2-5a)

V(x,o,t) = Vb(x,t) (2'5b)

Equation (2-5a) is appropriate to slip along a flat base, and Equation (2-5b) allows for a
simple approximation of the opening and closing of basal cavities.

A physically based sliding law relating basal velocity to basal stress, with spatially or
temporally varying parameters, can also be used instead of Equation (2-5a). This sliding
law boundary condition is used in Chapter 3, in order to better understand the physical ori-
gin of basal velocity anomalies. However, from an observational point of view, it is better
to relate surface velocity directly to basal velocity, especially since in practice a realistic
sliding law is not known.

The mathematical formulations for these two approaches are somewhat different.
However, in many cases the results of one formulation can be interpreted in terms of the
other (see Chapter 3).



2.2.5 Solution technique
Equations (2-1) to (2-3) are solved using a stream function y such that

u=%‘£— v=—%‘£— (2-6)

Equation (2-1) is trivially satisfied for any choice of y. Substitution of Equation (2-6) into
Equations (2-2) and (2-3) gives two corresponding equations for y and p. Differentiation
of Equation (2-2) with respect to y and Equation (2-3) with respect to x and the require-
ment 9%p/oxdy = d’p/dyox implies that y must be biharmonic, that is

2y, 2 Ty @

Furthermore, when vy is biharmonic, p can always be found from a path-independent
integration of Equations (2-2) and (2-3). Thus the solution of Equations (2-1) to (2-3) is
reduced to the solution of Equation (2-7).

To solve Equation (2-7) the boundary conditions (2-4) and (2-5) must be expressed in
terms of y. Treatment of Equation (2-4a) is simplified if it is equivalently expressed as
d0,,(x,H)/ox=0, plus the requirement that at some point on y=H, c,=0 (eg
6,,(0.H,0) = 0). In this differentiated form of Equation (2-4a), dp/ox and 9%v/oxdy can be cal-
culated in terms of y from Equations (2-2) and (2-6) to find

2y, u] _
[ 23y - (2-8a)
Substitution of Equation (2-6) into Equations (2-4b), (2-52), and (2-5b) gives
25 - 2] o e
%‘;Ll,fu,,(x,o (2-92)

- = (2-9b)



2.2.6 Soime properties of solutions

Because of the linearity of Equations (2-1) to (2-3) or equivalently Equation 2-7), it
is apparent that if ¢ and y® are solutions, then y = y + y® is also a solution. Further-
more, if y@ and y® satisfy the boundary conditions in Equations (2-8) and (2-9)
corresponding to uf® and 4 in Equation (2-9a) and v{? and v{? in Equation (2-9b), then v
also satisfies the boundary conditions with u, = uf® + uf?’ and v, = v{? + v{?. This expresses
the well-known principie of superposition of solutions. It is also evident that if v, =0, so
that v is a solution corresponding to a basal velocity ug, then dy/dx is also a solution and
corresponds to a basal velocity duy/dx. These properties can be used to generate new solu-
tions from existing ones.

Another important property of the equations is that they depend on time only through
the boundary conditions in Equations (2-9a) and (2-9b). This arises because of the
assumed fluid rheology and the absence of acceleration terms, so that the internal flow
responds to the basal boundary condition without time lag. An important consequence of
this is illustrated by the following example. Suppose v, =0, so that y(x,y) is a solution
corresponding to u,(x); then a(f)y(x—wt,y) is a solution corresponding to a(®)u,(x~wr). Thus a
solution for a certain time-independent, fixed spatial distribution can easily be modified to
give a time-varying amplitude, or a propagating solution of the same wave shape. The
solutions in the following sections will only be written in time-independent form, with the
understanding that the corresponding propagating solutions can easily be determined.

Finally, it is noteworthy that the dynamic viscosity n drops out of all of the Equa-
tions (2-7) through (2-9b) which determine . This arises because there are no prescribed
stress boundary conditions other than the free upper surface, and no body force. In conse-
quence, the anomalous velocity is independent of n and differences in the velocity distribu-
tion arise only from differences in the kinematic boundary conditions in Equations (2-9a)
and (2-9b). However, the anomalous stress distribution will depend on n, although this
distribution is not examined explicitly in this chapter. (Also, the velocity solution for a

basal sliding law will depend on n; see Chapter 3).
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2.3 Sclution metheds

2.3.1 Harmonic longitudinal basal velocity anomaly

Suppose the velocity anomaly at the base of the glacier is

up(x) = Uysinkx (2-10a)

V() =0 (2-10b)

where U, is the amplitude of the basal anomaly. With the given rheology and assumptions,
the velocity throughout the ice mass will also vary harmonically. A solution to Equation
(2-7) varying harmonically with x is

Auk)
k

e® + B (K)ye™ + %e"’ + Du(k)ye"’]U,,sinkx (2-11)

The boundary conditions in Equations (2-8) and (2-9) give four equations which determine
the coefficients A,, B,, C,, and D, as follows:

2UZH?
Au==Cu=- e 20 L AL 2 (2-123)
142kH+e*!
Bu= L0 412 1P (2-12b)
—~2KkH  1_
D,= e “+1-2%H ©-12¢)

L0 A1PH e

The velocity anomaly at any point (x.y) can be found from Equations (2-6), (2-11),
and (2-12). The longitudinal component at (xy) is

u(xy) = i‘a&;’ﬂ (2-13a)

=[-Ag™ + [B-BJyle™ + Ce? + [D 4D Jyle®U,sinkx

= T(k.y)us(x)

and the normal component is



11

V(xy) = -Q‘V%Xl (2-13b)

=—[Ae™ + BJye™ + C.e” + D Jye®YUscoskx

= Thux—7)
Here
T“ky) = — Ae™ + [B,Budyle™ + Ce? + [D 4D Jyle? (2-14a)
and
T™(ky) = Ae™ + Biye™ + Ce® + D fye® (2-14b)

The velocities consist of a transfer or filter function multiplying the basal velocity u,. The
longitudinal velocity component anywhere in the glacier is in phase with the longitudinal
velocity component at the base; the normal velocity component is everywhere 90° out of
phase from the longitudinal velocity component.

The velocity transfer functions evaluated at the surface (y = H) are

_m —
1) = Ty = (24T LA (2-152)

for the longitudinal velocity component, and

_ _2kHe* oM

T,7(k) = T"(k-Y)IF" T e APy

(2-15b)

for the normal component.

Schematics of the internal motion for harmonic longitudinal basal velocity anomalies
of a short and a long non-dimensional wavelength A/H are shown in Figures 2-2a and 2-2b.
The important difference between these two cases is that for the short wavelength the velo-
city anomaly recirculates, while for long wavelengths it does not. This leads to interesting
effects at the surface; particularly for short wavelengths the longitudinal component will
have opposite direction at the surface to that at the base. (This can either be viewed as a
sign change or a 180% phase shift) Also, at a certain intermediate wavelength VH =52,
the amplitude at the surface of the longitudinal velocity component is zero. At this
wavelength the surface amplitude of the normal component reaches its maximum. These

effects are summarized in Figure 2-3.
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2.3.2 Harmonic normal basal velocity anomaly
Now suppose that the velocity anomaly at the base of the glacier is
u(x) =0 (2-16a)
vp(x) = Vycoskr (2-16b)
where V, is the ampiitude of the basal anomaly. A solution to Equation (2-7) then is

C(k)
k

Ak)
k

Yy = |——e™® + B (k)ye™ + €% + D (K)ye” |V,sinkx 2-17)

Using the boundary conditions in Equations (2-8) and (2-9) the coefficients A,, B,, C,, and
D, are found to be

_ =4+ 2kH- 2P -

A, = — -
P 4P (2-182)
—1+24H—e*
B,= — -
P T (2-18b)
_ —e M UH-H?
€= €2 2142 H (2-18c)
e 142kH
D,=— -
Y M 42 H e (2-180)
The resulting velocity anomaly at a point (x,y) is
uey) = 22 2-192)
= [-A,e™® + (B,~B ky)e™ + Ce® + (D +D ky)e?1V,sinkx
= T*(yse7)
and
viay) = - 22 2-196)
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=~ [A,e™® + B kye™ + C,e? + D kye®1V,coskx

= T (k.y)ve(x)
where
T*(ky) = -Ae™® + [B~-Bkyle™ + C,e? + [Dy+D kyle® (2-20a)
and
T"(ky) = -A,e™ — Bjye™ — C,e” — D kye” (2-20b)

The velocity transfer functions evaluated at the surface (y=H) are

—kH kH
1) = Tl = St (2-212)

for the longitudinal velocity component, and

! —kH
700 = Tkl = 2 zfg,jm;zg;fge"’ (2-21b)

for the normal component.

Comparison of Equation (2-21a) with Equation (2-15b) shows that T, = T,¥, i.e. the
"cross-component” transfer functions are equal at the surface.

Schematics of the flow for harmonic normal basal anomalies of a short and a long
non-dimensional wavelength are shown in Figures 2-2c and 2-2d. The major difference is
that the amplitude of the surface velocity is greater for the longer wavelength anomaly.
The amplitudes at the surface of the longitudinal and normal components also vary relative
to each other depending on the wavelength, although not in a significant manner for the
schematics shown. These effects are summarized in Figure 2-3.

2.3.3 Fourier transform solution

The Fourier transform method theoretically allows surface solutions to be found for
any pattern of basal velocity u, and v,. The Fourier transform and the inverse transform
are defined as
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f(k) = J‘ j(x)e“"“dx (2-22a)
) = o [Fedk (2-22b)

Using Equation (2-22a), the transform of Equation (2-7) is

o _pdy v _ ]
# - 2wSd - SE =0 2-23)
A solution for v is
v = ﬂk’ﬁe-*’ + BlRye™ + Qk’-‘le"’ + DEye? ©2-24)

By transforming the boundary conditions (Equations (2-8) and (2-9)), the coefficients A, B,
C and D are found, and are most simply written in terms of the coefficients in Equations
(2-12) and (2-18):

A=Agy,—iAD, (2-25a)
B = B.ji, — BV, (2-25b)
C = C, i, — iC\Vs (2-25¢)
D =D, - iD,%, (2-25d)

Here #,(k) is the Fourier transform of the longitudinal component of the basal velocity ano-
maly, and 7¥,(k) is the transform of the normal component of the basal velocity anomaly.
These equations are analogous to those found for a single harmonic component in Sections
2.3.1 and 2.3.2.

The actual basal anomaly components u,(x) and v,(x) must be specified (as two of the
boundary conditions). From the transformed basal velocity components &, and ¥, the
transformed stream function v is determined using Equations (2-24) and (2-25). This is
used to calculate the transformed velocities anywhere in the glacier:

iky) = i‘l’%ﬁ (2-262)
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$(k,y) = —ikg(y) (2-26b)

If these are written out in terms of the individual coefficients (Equations (2-25)), then the
transformed velocities can easily be rewritten in terms of the transfer functions (Equations
(2-14) and (2-20)). Then when evalvated at the surface, the iransiormed velocity com-

ponents are:

By = TS0 — T, (2-27a)

V= =Ty + T,y (2-27b)

These surface transfer functions are given explicitly in Equations (2-15) and (2-21). T;* is
used instead of T, in Equation (2-27a), since these two transfer functions are identical.

The Fourier transform solutions in the following sections were calculated using a
discrete Fourier transform routine. The discrete Fourier transform assumes that the func-
tion is periodic. The surface effects of this assumption can be minimized by having a
length of at least 2.5H on each side of the region of interest in the basal function (since this
is about the maximum distance to which surface effects spread out from the basal func-
tion).

2.4 Solutions for basal velocity fronts and peaks

2.4.1 Surface response to basal front

An anomaly in the longitudinal component of basal velocity that has the form of a
front of amplitude (half-height) U, can be expressed as:

U, x<0
uy(x) = {_:,b x>0 (2-28a)

ve(x) =0 (2-28b)

The corresponding surface response can be calculated using Equation (2-27) and a discrete

Fourier transform routine.

Surface and basal velocities are compared in Figure 2-4 for such a basal front. The
abrupt change in « at the basal front is spread out over about 5H at the surface. Also, the
trend of u at the surface is not as smooth as would be expected. Instead, there is a flat of
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width about 1H in the surface velocity over the basal discontinuity. The flat in the longitu-
dinal component of the surface velocity occurs because of reverse contributions when the
high wave-number Fourier components of u, are filtered to the surface through the transfer
function. These high wave-number components dominate near the basal front, and their
reverse surface contributions break the larger-scale trend established by the lower wave
number contributions.

24.2 Surface response for ramp at base

An anomaly in the longitudinal component of the basal velocity that has the form of

a ramp can be written as

Uy xX<-r

U,

us(x) = -r—bx —r<xsr (2-29a)
—Ub x>r
() =0 (2-29b)

The slope of the ramp is —U,/r, where 2r is the horizontal distance taken up by the ramp.

Basal and surface velocities for r = 0.25H are shown in Figure 2-4. This produces a
ramp in u, of width 0.5H. At the plotting scale, the calculated surface velocity components
are almost indistinguishable from those for a sharp basal front.

If the basal velocity ramp width is increased, the flat in #, becomes less prominent,
and the maximum amplitude of v, decreases (see Figure 2-4). However, the width of the
basal ramp does not noticeably affect the width of the zone of the surface velocity ano-
maly, as long as the basal ramp is less than about SH wide.

24.3 Surface solution for Gaussian peak at base

A pulse in basal velocity is plausible for both the normal and longitudinal com-
ponents. An anomaly in the longitudinal component at the bed which has the spatial form
of a Gaussian peak is expressed as
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2
Lz 2
uy(x) = Uy r__;we 2[°] 2-30)

where o is the standard deviation. The surface effects vary depending on the ratio of the
standard deviation of the peak to the thickness of the ice (o/H). Three results are shown:
a wide peak (Figure 2-5a), a medium width peak (Figure 2-5b) and a narrow peak (Figure
2-5c). As the peak is made narrower, u, develops a dip over the center of the basal peak,
and v, becomes more pronounced. These effects are summarized in Figure 2-6. The high
wave-number terms of the basal velocity are the source of these variations (as was
explained in Section 2.4.1).

If a Gaussian pulse is made narrower and taller while holding the area constant in the
limit of zero width, it approaches a delta function. The delta function solution can also be
found by differentiation of the solution for a basal front. From this point of view the dip. ‘in
surface velocity dirsctly above a basal delta function spike corresponds to the surface velo-
city "flat" above a discontinuous front. The delta function solution is qualitatively the
same as Figure 2-5c¢ for the narrow Gaussian pulse.

The solution for a delta function anomaly in u, provides the formal means for
expressing the solution for any arbitrary spatial distribution of u, in terms of a spatial
decomposition based on a Green’s function. (A similar solution is possible for a delta func-
tion anomaly in v,.) Let the surface velocity at position x caused by a unit basal delta func-
tion at X’ be expressed as G (x,x) = G(x—x). Figure 2-5c approximates G,(x-x") with x’ = 0.
By superposition the surface solution for an arbitrary spatial distribution of u,(x,t) is

wx0) = [uy(@ )G (x-x)dx’ (2-31)

Since the analytical representation of G,(x-x) derived above is very complex, this approach
does not seem generally useful now. If a simple analytic approximation were fitted to
G.(x~x), then Equation (2-31) could be very useful, but this is not pursued here.

One property of G,(x—x") can be used to arrive simply at a useful result. This pro-
perty is

]:G,,(x-x')dx =1 2-32)
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This can be seen in several ways. For example, the solution for a basal delta function is
the x derivative of the solution for a2 unit basal front at ¥. Thus G,(x—x) for fixed x’ gives
the x derivative of surface velocity for a unit basal front at ¥, and when it is integrated
over adequate distance from one side of the front to the other, it gives the total velocity
jump at the surface and at the bed (Figure 2-4). From Equations (2-31) and (2-32)

Jutende = | fuc )G e-dvde= [ 0de (2-33)

which shows that the integrated velocity is the same at the surface and bed for any basal
velocity anomaly.

- A Gaussian pulse in the normal component of basal velocity (perhaps caused by cavi-
tation) can be represented as

2z
v,,(x) = Vb ‘lence 2 [G] (2'34)

Surface effects are shown for a wide peak (Figure 2-7a), a medium-width peak (Figure 2-
7b), and a narrow peak (Figure 2-7c). The cross-component effects are the same as for the
pulses in the longitudinal component of the basal velocity (since T, = T,). The normal
component at the surface is reduced in amplitude and increased in longitudinal extent rela-
tive to the basal pulse, as the basal pulse is made narrower.

2.5 Discussion

2.5.1 Longitudinal scales of transfer

Based on the considerations of the foregoing sections, four longitudinal scales of
differing behavior may be identified. Basal velocity anomalies cf a long scale appear at
the surface unattenuated, and deformation-induced cross-component motions are negligible.
At an intermediate scale, the longitudinal and normal velocity components have nearly the
same spatial pattern at the surface as at the bed, but with reduced amplitudes. At this
scale, cross-component motions caused by ice deformation become noticeable. At a short
scale, while the normal component at the surface is reduced in amplitude from that of the
normal component at the base, the longitudinal component at the surface is significantly
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altered in both amplitude and spatial pattem in comparison to at the bed. At this short
scale cross-component motions are substantial. Finally there is a very short scale, at which

there is essentially no response at the surface.

These systematics are best seen with reference to harmonic basal anomalies (Figure
2-3) and basal peaks (Figures 2-5, 2-6, and 2-7). The boundary between the four scales
can be roughly identified as 10H (long to intermediate), SH (intermediate to short), and 14
(short to very short). Since the change in behavior with longitudinal scale is gradational,
these boundaries cannot be positioned precisely. Furthermore, the positions of the boun-
daries depend to some extent on the spatial pattern as can be seen from comparison of Fig-
ures 2-3 and 2-6. Any real pattern of basal velocity variation will likely have features at a
variety of scales. A basal velocity front is one example for which there are effects at all of
these scales (Figure 2-4).

2.5.2 Deformation-induced normal motions and estimates from surface strain rate

For intermediate and short scales, Figures 2-3 and 2-6 show that a basal velocity ano-
maly such that u;, # 0 and v, = 0 causes both u, and v, to be non-zero, and v, may be larger
than u,. From ice continuity (Equation (2-1)), and assuming v, = 0, v, is

H

0
e = | g—;w,o #=] 2 e yony =—H[%] 2-35)
H

(where [dwox]y refers to the average over the depth). If the anomalous longitudinal motion
were independent of depth, then the average of dw/dx could be found from ou/dx measured
at the surface. The problem is that in general « is attenuated toward the surface and du/ox
will underestimate the magnitude of the average of aw/ox over depth. Furthermore, at the
short scale the signs can be opposite. These problems are illustrated in Figure 2-8.

2.5.3 Problems of interpretation of measured surface velocity and uplift variations

On Variegated Glacier, propagating "mini-surges” occurred quasi-periodically during
the early melt seasons for several years prior to the main surge. These were characterized
by a zone of accelerated motion which propagated down-glacier at about 0.1 to 0.6 km k.
At a given location, speed rose rapidly over a few hours to a sharp peak, dropped rapidly

and then more slowly over about 14" as the zone approached and passed (Kamb and
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Engelhardt, 1987). Often there was a secondary velocity peak following the first principal
one by several hours (Raymond and Malone, 1986).

The longitudinal velocity anomalies u, averaged over 1 d were of the order of 0.5 to
1 md™! and resulted in extra anomalous surface displacements of 0.5 to 1 m over the 1d
interval of a mini-surge. The peaks in u, were of the order of 3 to 4 times larger than the
day-averaged values. In addition there was a noticeable anomaly v,, which produced a
relatively rapid uplift rate of up to about 1 m d™ over 1 to several &r, followed by a slower
more extended subsidence. The maximum uplift was about 0.1 m and occurred after the
peak in u, by 1 or 2 hr.

These time intervals and propagation speeds correspond to spatial scales of from
about 1 km to more than 10 km, which can be compared to the ice thickness of about
0.4 km. Therefore, the surface velocity pattemns of these mini-surges have features from the
small to the large scale.

Figure 2-9 shows an example constructed from a superposition of ramps and a Gaus-
sian spike for u;, and a Gaussian pulse for v,. Surface velocities are shown both with and
without the effects from v,. This example shows some of the qualitative features of mini-
surge velocity variation. However, it is not as accurate as the direct calculation of the
basal velocity anomaly from mini-surge surface velocity data (this direct calculation is the
inverse problem; see Chapters 6 and 7). Nevertheless, some semi-quantitative conclusions
are possible. The broad scale asymmetric peak in mini-surge velocity is of long enough
scale that it probably resembles in shape and amplitude the actual variation at a similar
scale at the bed, except for some broadening of the velocity rise at the surface in com-
parison to the bed. The narrow principal peak and the subsequent sccondary peak at the
surface may be indicative of a single sharp peak at the bed of substantially higher velocity
and represent intermediate to short scale features. The principal peak at the surface has a
half-width of about one depth, which suggests the peak at the bed could be narrower and
have a velocity anomaly more than 3 times that at the surface. Furthermore, the positions
of the peak at the bed may be shifted relative to the principal peak at the surface, probably
toward the secondary peak. Finally, at this scale the deformation-induced normal velocity
component at the surface will have an amplitude similar to the anomalous longitudinal
component at the surface. Uplift determined by integration of v, when v, = 0 shows a rapid

rise and a subsequent slower fall. The maximum uplift is = 0.13 times the anomalous
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longitudinal displacement caused by the passage of the velocity wave; this is seen by com-
parison of the areas under the positive parts of the v, and the z, curves. This shows that a
large fraction or possibly all of the surface uplift during mini-surges could be explained by
internal deformation, without uplift at the bed.

Iken and others (1983) have observed variations in surface velocity and elevation on
Unteraargletscher at an approximately 4 4 time resolution. At this time resolution they find
a correlated velocity increase and uplift of the surface during an approximately seven-
month summer season. Several short-term velocity and uplift events lasting more than four
days are superimposed on it. These short-term velocity variations have some resemblances
to the mini-surges of Variegated Glacier; however, little is known about their spatial varia-
tion or propagation. Assuming the Unteraargletscher events propagate at speeds similar to
or faster than the Variegated Glacier mini-surges, which is consistent with the description
of available information, the durations of the features would indicate that these events have
large spatial scale and are free from the complexities of the short and intermediate scales in
the foregoing analyses. Iken and others (1983) have carefully considered in detail various
possible contributions to the surface uplift and conclude that its major features must arise
from the opening of cavities at the bed, but based on limited measurements of surface
strain-rate changes they caution that ice straining in the direction normal to the bed could
be a major contribution. We emphasize here the possible major errors when using surface
values of longitudinal strain rate to estimate averages over depth unless the spatial scale of
velocity variation is well known. Furthermore, unlike a velocity measurement, which
represents an average over time, an uplift measurement is a sample at a single time and

may niot be representative of the time interval over which the velocity has been averaged.

2.5.4 Limitations of the model

A major limitation of the model is the assumption of a linear viscous fluid rheology
to represent ice behavior. Some of the features of the strain-rate pattern during Variegated
Glacier mini-surges show dramatic changes on time scales short compared to the time
needed to establish steady-state creep in experiments. This indicates possible visco-elastic
effects. This problem has been examined using a visco-elastic Maxwell rheology, which
gives some differences in behavior in comparison to the purely viscous rhesiogy, but these

differences are not major (see Chapter 4). More importantly, ice creep is better
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approximated by a power law with power of 3 to 4 than by a linear fluid (power of 1).
This could lead to some substantial differences in behavior. In the limit in which the velo-
city anomalies induced at the bed and their strain-rate contributions are much smaller than
the steady-state velocity and strain rate, the velocity anomaly field will occur in a distribu-
tion of effective viscosity controlled by the straining associated with the steady-state
motions. In this circumstance, a perturbation solution could be attempted (Hutter, 1983).
The effective viscosity will then tend to be low near the bed and high near the surface
(Whillans and Johnsen, 1983). This will tend to promote recirculation of the velocity ano-
maly near the bed and probably increase the length for transition between the short and
intermediate scales described above. If the velocity anomalies and corresponding strain
rates are large in comparison to the steady-state motion, then the anomalies themselves will
significantly alter both the normal and longitudinal structure of the effective viscosity field
with possible major effects on the transfer of amplitude and pattern between the surface
and bed. In both of these limits the behavior of the ice will be equally or more complex
than for the linear fluid rheology, and no easing of the difficuities of interpreting surface

variations in terms of those at the bed will occur.

If basal velocity variations do not extend over widths significantly larger than the
depth, their transmission to the surface may be different from that calculated here. Three-
dimensional flow calculations would be needed to account for this.

Finally, these calculations do not address the question of what sliding velocity varia-
tions are physically possible. Some of the mathematically illustrative solutions derived
represent idealizations that likely could not exist in reality (for example, a sharp basal velo-
city front). Nevertheless, in the absence of a compelling sliding law, an appropriate step is
to attempt measurement of basal velocity from the surface. From that point of view this
chapter begins to show what is possible and what is not.
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Figure 2-1. Definition of geometrical quantities and coordinate system.
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Figure 2-2a. Pattern of motion represented schematically for harmonic longitudinal
basal velocity anomaly, short wavelength MH = 1, for linear viscous rheology (shown for a
half wavelength). Note differences in proportions between horizontal and vertical scales
compared to Figure 2-2a.
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Figure 2-2b. Pattern of motion represented schematically for harmonic longitudinal

basal velocity anomaly, long wavelength A/H = 10, for linear viscous rheology (shown for a
half wavelength).
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Figure 2-2c. Pattern of motion represented schematically for harmonic normal basal
velocity anomaly, short wavelength MH = 1, for linear viscous rheology (shown for a half
wavelength). Note differences in proportions between horizontal and vertical scales com-
pared to Figure 2-2d.
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Figure 2-2d. Pattem of motion represented schematically for harmonic normal basal

velocity anomaly, long wavelength M/H = 10, for linear viscous rheology (shown for a half
wavelength).



RELATIVE AMPLITUDE

Figure 2-3. Forward transfer functions for linear viscous rheology. These are the
relative amplitudes of surface velocity caused by harmonic variation in the basal velocity
(of unit amplitude). Solid line = T,*, long dashed line = 7,”, short dashed line = T,* =
™
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RELATIVE VELOCITY

Figure 2-4. Basal and surface velocities for a basal velocity anomaly u,, for linear
viscous rheology: a sharp front shown by solid lines, a steep ramp wave (r = 0.025),
shown by long dashed lines whene. distinguishable, and a less steep ramp wave (r = 0.1),
shown by short dashed lines.



30

| oM=s (2)
o/H=05 :j\/\_;/‘?;?_‘_h (b)

| GH=005 ‘__1/:\’7‘%:_\& (c)

F ] ! i | | I } ] i
oy "y 0 4 8

Figure 2-5. Relative basal and surface velocities for Gaussian pulse basal velocity
anomalies u,, for linear viscous rheology. (a) o/H =5, (b) o/H=0.5, and (c) o/H =0.05.
Solid line = u,, long dashed line = u, (where distinguishable from u,), short dashed line =
v,. Basal velocity anomalies integrated over distance are 'equal in all three cases.
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o/H

Figure 2-6. Characteristics of u, in response to Gaussian pulse basal velocity
anomalies u,, and their dependence on the longitudinal scale of the pulse, for linear viscous
rheology.
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Figure 2-7. Relative basal and surface velocities for Gaussian pulse basal velocity
anomalies v,, for linear viscous rheology. (a) o/H=35, (b) o/H =0.5, and (¢) o/H = 0.05.
Solid line = v,, long dashed line = v, (where distinguishable from v,), short dashed line =
u, Basal velocity anomalies integrated over distance are equal in all three cases.
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Figure 2-8. (a) Normal component of surface velocity for linear viscous rheology,
calculated as —Howdx scaled by v, from mathematical model, for harmonic basal velocity
anomaly u,. Solid line = [-Hu,/dx]/v,, dashed line = [-Houy/ox}/v, (b) Normal component
of surface velocity for linear viscous rheology, calculated as —Hou/ax (dashed line) com-
pared with v, from mathematical model (solid line), for a Gaussian pulse basal velocity
anomaly u, with 6/H = 0.05, of maximum amplitude u,(0) = 10.
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Figure 2-9. Hypothetical mini-surge for linear viscous rheology. Surface velocity
components u, and v, (upper two solid curves) for a hypothetical basal velocity anomaly
with component u, (lower solid curve). Addition of basal component v, (lower dashed
curve) results in total surface components u, and v, (shown by upper two dashed curves).

Anomalies propagating with speed w.



CHAPTER 3

LINEAR VISCOUS FORWARD SOLUTIONS USING A BASAL SLIDING LAW

3.1 Field equations, basal sliding law, and other boundary conditions

3.1.1 Field equations

The applicable field equations for the planar geometry and the linear viscous rheology
are again reduced to (as in Section 2.2.5):

Py, dy  Fv_,

ax4 + 2 BXZayz ay4 (3-1)
where v is the stream function. This equation can again be Fourier transformed to
y-202y , B8
By - _2‘1’_ =0 -
-20sd S 32

3.1.2 Form of sliding law

Basal sliding laws for glacier ice have been developed by many authors; among these
are Weertman (1957), Kamb (1970), Lliboutry (1975), Bindschadler (1983), and Iken and
Bindschadler (1986). The general form of the sliding law which we wish to use is

1 = Wiy (3-3)

Here u°" is the basal sliding velocity (the longitudinal component of the basal velocity).
The effective basal shear stress deviaior is ,*# (which is equal to the effective basal shear
stress). This effective basal shear stress is actually due to normal stresses exerted on the
ice by the upstream sides of bumps in the bed, etc. The exponent m depends on the rheol-

ogy of the ice; for a linear viscous material m=1. The sliding law parameter is W.

This sliding law says that as the sliding speed increases, the effective basal shear
stress increases, for a given value of the parameter W. In the earlier versions of the sliding
law (e.g., Weeriman, Kamb, and Lliboutry) the value of this parameter only depends on the

inverse of the actual roughness of the glacier bed. Thus the only ways to increase the
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sliding speed in these early sliding laws are to increase the basal shear stress (by increasing
the ice thickness or the surface slope), or to decrease the actual bed roughness.

In later versions of the sliding law (e.g., Bindschadler, and Iken and Bindschadler),
and in flow laws which incorporate varying rheological parameters near the bed (Boulton
and Hindmarsh, 1986; Clarke, 1986), the value of a sliding law parameter W can also
depend on such things as the basal water pressure, the geometry of the basal hydraulic sys-
tem, and the amount of deformable till overlying a solid bed. These can be included in an
effective roughness of the glacier bed. Thus the sliding speed of the glacier will change if
this effective roughness changes. In fact, the main motivation for studying a prescribed
basal sliding law is to examine velocity variations caused by changes in this effective
roughness (with these roughness changes being mathematically described as changes in the

sliding law parameter).

It is important to note that in reality, a true basal sliding law for glaciers is probably
not linear in velocity and shear stress, even if the assumption of linear theology were valid.
However, it is quite likely that the true sliding law is at least monotonic (although the pos-
sibility of a sliding law with multiple maxima has been proposed by several authors). We
will use the given form of the sliding law for lack of a proven better form, and because the

given form also results in reasonably tractable mathematics.

To determine the basal shear stress, we first note that for a glacier lying on a sloped
bed (sloped at angle y), the downslope component of the weight of the ice can either be
balanced by the basal shear stress or a longitudinal stress gradient. If we look at a section
of ice in our planar slab geometry which is sufficiently long to include any anomalous
boundary conditions, or has periodic boundary conditions, the longitudinal stresses at the
ends of the section will be equal. The average shear stress at the base of the section can
then easily be calculated to be pgHsiny (Paterson, 1981). This does not preclude variations
in the basal shear stress within the section.

3.1.3 Separation into steady-state and anomalous equations

To separate the basal sliding law into steady-state and anomalous equations, we note
that the rheology is linear, so velocity solutions can be superposed, and shear stress solu-
tions can also be superposed. For the planar slab geometry, a longitudinally varying basal
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sliding velocity (that is, varying in the x direction) can then be composed of steady-state
and anomalous parts:

") = Y + u™mH () (3-4a)

(Thus the steady-state basal sliding does not change in the x direction.) Similarly, a longi-
tudinally varying basal shear stress can be written:

't,,'”‘“'(x) = ,‘.bmndy + 'tb"’"”'""’(x) (3-4b)

(From here on the superscripts fotal, steady, and anomaly will be shortened to ¢, s, and a.)
Substituting Equations (3-4) into Equation (3-3), our sliding law then is

ub“ + u;,"(x) = W[Tbs + Tba(.).')] (3-5)

In order to examine basal velocity anomalies and the associated surface velocity
anomalies, it is necessary to prescribe a varying sliding law parameter W(x). (If this
parameter does not vary, it tums out that the velocity anomalies and stress anomalies are
all equal to zero; see Section 3.3.2.) We therefore divide the sliding law parameter into a
steady-state part W* and an anomalous part W°. We also note that the steady-state basal
shear stress 1,° can in fact be set equal to the average basal shear stress pgHsiny (with the
anomalous basal shear stress 7,°(x) accounting for any variations from this average). The

sliding law is then written:
u + upt(x) = [W’ + W"(x)] [ngsin'y + 't,,"(x)] (3-6)

The next step is to divide this sliding law into a steady-state equation and an
anomalous equation, where the steady-state equation has only terms which do not involve
functions of x, and the anomalous equation has all the terms which do involve functions of
x. This gives, for the steady-state equation

uy” = WpgHsiny (3-7a)
The anomalous equation is
uy’(x) = W'ts(x) + Wi(x)pgHsiny + W(x)ty"(x) (3-7b)

We will not be directly solving Equation (3-7a), which is the equation for the longitudinal
component ot the steady-state basal velocity. (However, this equation will be used to
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non-dimensionalize the anomalous velocity at the bed and surface.)

Equation (3-7b) is the equation for the iongitudinal component of the anomalous
basal velocity. The right side of this equation has three terms: Wr,%(x), which is the con-
tribution to the anomalous basal sliding from the combination of the steady-state stdiug
parameter and the anomalous basal shear stress; We(x)pgHsiny, which is the contribution
from the combisations of the anomalous sliding parameter and the steady-state basal shear
stress; and Wo(x)t,%(x), which is the contribution from the combination of the anomalous
sliding parameter and the anomalous basal shear stress. This last term is non-linear.

Equation (3-7b) is one of the boundary conditions which we will use to solve for the
anomalous basal shear stress, and the velocity anomalies at the base and surface of the gla-
cier. It is important to realize that this boundary condition depends on both the anomalous
and steady-state parts of the sliding law parameter, and that it also depends on both the
anomalous and steady-state parts of the basal shear stress. Thus the anomaly solution will
be coupled to the steady-state solution. This coupling complicates the solution process;
however, if this coupling did not exist, the anomalous solution would be everywhere equal
to zero (as will be shown in Section 3.3.2).

3.i.4 Magnitude of terms in anomalous sliding velocity equation

We will now examine Equation (3-7b) to check the relative importance of the three
terms on the right side. This process is facilitated by non-dimensionalizing the equation,
which is done by dividing by the steady-state basal sliding velocity ;" = WpgHsiny (from
Equation (3-7a)). This gives:

W@ W | W, [W“(x)][ %) ] (3-82)

uy pgHsiny w* w* pgHsiny
In this equation, the left side is the ratio of the anomalous basal velocity to the steady-state
basal velocity. The first term on the right side is the ratio of the anomalous basal shear
stress to the steady-state basal shear stress; the second term on the right side is the ratio of
the anomalous sliding parameter to the steady-state sliding parameter. The third term on
the right side is the product of the first and second terms on the right side; this is the non-
linear term.
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For any physicaily reasonable basal sliding law, IW(x)l < W* (or else the glacier could
conceivably be sliding uphilif). Therefore we will require that Iw*()l < w*, which means
that the second term on the right side of Equation (3-8a) is less than or equal to one.
However, meeting this requirement does not constrain the magnitude of the other terms in
the equation, since these other terms all depend on the ratio of 7,°(x) to pgHsiny. Although
we could intuitively expect the magnitude of this ratio to be somewhat dependent on the
magnitude of W(x), (i.e., the anomalous basal shear stress 7,°(x) will tend to vary propor-
tionally to W°(x)), we might also expect that the "roughness" of the spatial form of W*(x)
would be important (i.e., if W°(x) had rapid changes or sharp jumps, we might expect that
the anomalous basal shear stress would have high values in the vicinity of these rapid
changes). However, we will show that if the non-linear last term on the right side of
Equation (3-8a) is second-order (of the order of one-third or less), the ratio of 7,°(x) to
pgHsiny is less than or equal to the ratio of W*(x) to W* (and thus less than or equal to one).
If the non-linear last term on the right side of Equation (3-8a) is not second-order, the ratio

of 7,2 to pgHsiny is :Gi constrained.

3.1.5 Conditions for non-linear term being second-order

Equation (3-8a) will be much more easily solved when the non-linear last term on the
right side is second-order, since this non-linear term can then be neglected. To meet this
qualification, both ratios in this non-linear term must be significantly less than one (say of
the order of one-third or less). For the ratio W(x)/W*, this requirement is just a slightly

more stringent case of the physically reasonable requirement that Iwe()l < w*. Mathemati-
cally, this more stringent requirement is easy to satisfy, by simply increasing W* to what-
ever value is required.

For the ratio 1,°(x)/pgHsiny, it tums out that the requirement that this ratio be of the
order of one-third or less is automatically satisfied by the requirement that the ratio
We(x)/W* be of the order of one-third or less. (This occurs because the maximum possible
value of the magnitude of 7,%pgHsiny is the maximum magnitude of W*(x)/W*, when the
magnitude of W(x)/W* is of the order of one-third or less; this will be shown in Section
3.3.3.) Therefore the only condition for the non-linear term in Equation (3-8a) to be

second-order is that |Wa(x)l/W* be of the order of one-third or less.
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It is important to note that this mathematical requirement may or may not correspond
well with physical reality. The requirement that IW?(x)l/W* be relatively small is easily met
on some glaciers, such as the lower Columbia Glacier in Alaska (Krimmel and Vaughan,
1986). However, in other situations, such as the mini-surges of Variegated Glacier, the
magnitude of W(x) may be close to the value of W°. (Also, the spatial form of W(x) may
have rapid changes in situations such as these mini-surges.) Thus the mathematical
requirement for the non-linear last term in Equation (3-8a) being second-order may be
quite restrictive in physical reality.

3.1.6 Other boundary conditions

To solve Equation (3-1) or (3-2), four boundary conditions are necessary, two of
which will be at the surface and two at the bed. The first of the basal boundary conditions
is the relation between the longitudinal component of the basal velocity anomaly and the
basal shear stress anomaly, which has previously been given in dimensionless form in
Equation (3-8a). The other basal boundary condition which we will use is a requirement
that the normal component of the basal velocity anomaly be equal to zero:

v, =0 (3-8b)

It is possible that a better form of this boundary condition would be to allow v, to vary as
some function of the parameters in the sliding law. However, this relation would be quite
speculative, and would also greatly complicate our solution process. In this chapter we

will use the much more simple requirement of Equation (3-8b).

The two surface boundary conditions are the requirement that the stress anomaly at
the surface be equal to zero. These boundary conditions are written:

GWIFH =0 (3-92)
and
nyl =0 (3-9b)

Here Gy, is the normal component of the stress anomaly at the glacier surface, and

a,,l,:,, is the shear component of the stress anomaly at the glacier surface.
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We will not allow these boundary conditions to vary with time, thus constraining our
solutions to "snapshots" fixed in space at a certain time. The reasoning behind this restric-
tion is explained in Section 2.2.6.

3.2 Mathematical solution neglecting non-linear term

3.2.1 General solution form

The solution will most easily be determined by using the Fourier transform. We first
write the boundary conditions (Equations (3-8) and (3-9)) in terms of the stream function
v, with Equation (3-8a) changed back to the dimensioned form and the last term on the
right side neglected. The equations are then Fourier transformed. This gives, from Equa-
tions (3-8):

A a A n - .
%‘)l;’.l 0= W [Tz;g- + kz\yLo + WpgHsiny (3-10a)
—ik\ill,:o =0 (3-10b)
From Equations (3-9):

Pyl _ .
[31:2 % 5 L" 0 (3-11a)

2y el - -
[ayz +0y| =0 (3-11b)

Here the caret (e.g. ) signifies the Fourier transform, and these Fourier transformed vari-
ables are now functions of the wave number k. Note that in Equation (3-10a), the Fourier
transform does not affect the constant sliding parameter W* (which multiplies other terms
which are affected by the transform); but the Fourier transform does affect the variable
sliding parameter W°(x), transforming it to W®, (which multiplies a constant term). Also
note that Equation (3-11a) is actually the transform of the x derivative of Equation (3-9a),

as is explained in Section 2.2.5.

We can now consider the solution to Equation (3-2), for the Fourier transformed
stream function . The form of this solution is
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y= -‘4—§c]i)-e"" + B(kyye™ + -Cl]?-e*’ + D(k)ye"’:‘W"ngsiny (3-12)

Using the boundary conditions (Equations (3-10) and (3-11)), we can solve for the
coefficients A, B, C, and D. These solutions are

—202H?

=== (-2Wni)e 2 + 2 + SWonkkH + 4CH? + (1 2Wnk)e™ (3-13a)
= 1+ 2kH+ ew """" _ (3-13b)
(1-2Wnk)e 2 + 2 + SWnkkH + 4ICH” + (1+2Wni)e
~2kH
D e+ 1 - %UH 3139

T U2Wnke 2 + 2 + SWenkH + 4I2H? + (1:2WPni)e?®

These coefficients give us the solution for y. This transformed stream function allows us

to determine the velocity anomaly or stress anomaly anywhere in tiie giacier.

3.2.2 Basal shear stress solution

The equation to solve for the Fourier transform of the basal shear stress anomaly

(which from now on in this chapter will be written without the superscript  as just £;) is

£y =1 [?a—zy‘zli + K&y L, (3-14a)
= [A -B+C+ D]ZW"nkngsiny

Using the solutions for the coefficients A, B, C, and D, we get the solution for 2,:

_wi- - .
% = [( 2 — 4kH - 27 W nkpgHsiny (3-14b)

1-2Wnk)e 2 1 2 + SWIkKH + 4IZH? + (142Wnk)e*!

3.2.3 Basal velocity solution

The equation to solve for the Fourier transform of the longitudinal component of the
basal velocity anomaly (which from now on in this chapter will be written without the
superscript a as just ) is just the boundary condition of Equation (3-10a). In terms of the
coefficients A, B, C, and D of v, this is
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i, = [—A +B+C+ D] WepgHsiny (3-152)

Using the solutions for the coefficients of v, we get the solution for 4,

. [ 2 1 2 4 ARPHR 4+ 2

%= 02w e 2 + 2 + SWenkkd + 4ICHE + (12Wnk)e ]W"ngsmv (3-15b)

It is worth noting that the basal velocity is a function of the dynamic viscosity 7, as con-
trasted to the case in Chapter 2 where the basal velocity was prescribed and did not depend
on the viscosity. This occurs because in this chapter the boundary- condition in Equation
(3-8a) relates the basal velocity to the basal shear stress, and a velocity solution based on
this boundary condition must depend on the viscosity. Chapter 2 does not use a similar
boundary condition.

The Fourier transform of the normal component of the basal velocity anomaly is zero
(which corresponds with this component being set equal to zero in the boundary condition
Equation (3-8b)).

3.2.4 Surface velocity solution

The equation for the Fourier transform of the longitudinal component of the surface
velocity anomaly #, is

4= (3-162)

= [—Ae"’” + B[1-kH)e™ + Ce® + D[l+kH]e"”] WepgHsiny
Using the solutions for the coefficients of v, we get the solution for 4,

| [2+2kH]e™ + 2-2kH]H
*7 | [1-2Wenkle T + 2 + SWENkkH + 4ICHE + [14+2Wnkle™

} WepgHsiny  (3-16b)

The equation for the Fourier transform of the normal component of the surface velo-
city anomaly v, is

N (3-17a)



=—i [Ae’m + BkHe™ + Ce™ + DkHe"‘"]W"ngsiny

Using the solutions for the coefficients of vy, we get the solution for ¥,

s [ 2UeHe™ + 2UHe™

s = 7 Hsi -
"= (2w ke ™ 2 + sk + 42HE + [12Wenide™ ]ng siny 3-170)

These surface velocity components are functions of the dynamic viscosity 7, as con-
trasted with the case in Chapter 2 where the surface velocity anomaly did not depend on 1.
This difference occurs because for the basal sliding law the basal velocity anomaly u,

depends on 1, and this basal velocity anomaly in turn drives the surface velocity anomaly.
3.3 Properties of mathematical solution neglecting non-linear term

3.3.1 Non-dimensionalization and adjustable parameters

The Fourier transformed solutions for the basal shear stress anomaly (Equation (3-
14b)), the longitudinal component of the basal velocity anomaly (Equation (3-15b)), and
the surface velocity anomaly (Equations (3-16b) and (3-17b)) all depend on various param-
eters. These parameters are the dynamic viscosity 7, the steady-state sliding parameter W<,
the Fourier transformed anomalous sliding parameter W°, the wave number k, the ice thick-

ness H, and steady-state basal shear stress pgHsiny.

These solutions can be non-dimensionalized by dividing the transformed basal shear
stress anomaly by the steady-state basal shear stress pgHsiny, and dividing the transformed
velocity anomalies by the steady-state basal sliding velocity WepgHsiny. The equation for
the dimensionless Fourier transformed basal shear stress anomaly %,* then is

2Wnk  (3-18a)

Bk = e — 4rH ~
P 12Wnkde P + 2 + SWPNKKH + 4I2H? + [14+2Wnk)e?d

The equation for the dimensionless Fourier transformed longitudinal component of the

basal velocity anomaly £,* is

oy [ e 4 2 4 APH? + 2 ][W‘] (3-18b)

B = T2 Wnke 2 + 2 + SWonkkH + 4I2HE + [12Wnile™ || W

The equations for the dimensionless Fourier transformed longitudinal and normal
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components of the surface velocity anomaly 4.* and ¥,* are

P [2+2kH)e™ + [2-2kH)eH Wl 3180
* T [1-2WPnkle 2 + 2 + SWPNRKH + AICH? + [1+2Wnkle® || wE
and
oo 2kHe™ + 2kHe™ iﬁ (3-180)
g [1~2Wnkle 2 + 2 + SWnkkH + 4PH? + [1+2Wnkle™ || w*

It is possible to combine the parameters so that the solutions in the dimensionless
Equations (3-18) only depend on three dimensionless combinations of parameters. These
combinations are: (1) the dimensionless viscosity W*n/H, (2) the dimensionless Fourier
transformed sliding parameter W*/W?, and (3) the dimensionless wave number kH. Note
that Wk = [Wen/HIIW*/W*1kH] and Wk = (W/H][kH].

To calculate the Fourier transformed dimensionless basal shear stress anomaly and
dimensionless velocity anomalies, we first specify the anomalous sliding law parameter as
WA(x)/W°. We also specify the dimensionless viscosity Wn/H. Given the ice thickness H, a
fast Fourier transform routine will calculate the solutions for Equations (3-18), as functions
of the dimensionless wave number kH. These soiutions can then be inverse transformed to

the space domain.

3.3.2 Effect of zero or constant terms in anomalous sliding velocity equation

We now look at the effect on the anomaly solutions of setting various terms in the
sliding law boundary condition equal to zero or a constant. It will be easier to use dimen-
sioned equations to see these effects. The dimensioned form of the sliding law boundary

condition is Equation (3-7b); this equation Fourier transforms to
i, = W%y, + WopgHsiny + W%, (3-19)

The dimensioned form of the Fourier transformed anomalous basal shear stress equation is
Equation (3-14b); and the dimensioned forms of the Fourier transformed anomalous velo-
city component equations are Equations (3-15b), (3-16b), and (3-17b).

We first look at the coupling of the steady-state basal shear stress pgHsiny to the ano-
maly solutions. This coupling can be seen by setting pgHsiny equal to zero (e.g., no bed
slope). We immediately see that the effect on these solutions of setting pgHsiny equal to
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zero is that all of the anomaly sclutions are also equal to zero. This illustrates the fact that
the steady-state basal shear stress is necessary to drive the anomalous basal shear stress

solution and the anomalous velocity solution.

We next look at the case where the varying part of the sliding law parameter W?(x) is
set equal to zero. In the wave number domain W*(x) = 0 is transformed to W2 =0 for all
wave numbers. The solutions in this case for the anomalous basal shear stress and

anomalous velocity components are again equal to zero, as is to be expected.

We last look at the case where W2(x) equals a constant. The Fourier transform of this
constant will only have power at k=0, so we look at the transformed anomalous solutions
with &=0 and W* equal to some constant. Examining Equation (3-14b) for the transformed
anomalous basal shear stress, we see that it involves a multiplication by & so the
anomalous basal shear stress solution for k=0 is simply equal to zero. Solving for the
transformed longitudinal components of the basal and surface velocity anomalies (Equa-
tions (3-15b) and (3-16b)) for k=0, we see that they are both equal to WpgHsiny. (where
W* is equal to the constant). The transformed normal component of the velocity anomaly
(Equation (3-17b) involves a multiplication by &, so it is also equal to zero when k=0.
These solutions all show that setting W*(x) equal to a constant is analagous to changing the
steady-state sliding parameter W* by the same constant (for the steady-state solution see for
example Paterson, 1981). This is not surprising and can be viewed as a check of the solu-

tion process.

3.3.3 Limits of solution at low and high wave numbers

The limits of the anomaly solutions at low and high wave numbers can be used to
show several important properties of the solutions. The limits of the anomaly solutions as
the wave number k goes to zero are derived in the previous section. This shows that a
very long wavelength anomaly in the sliding law parameter becomes equivalent to adding
the anomalous parameter W*(x) to the steady-state sliding law parameter W-.

The limit of the anomalous basal shear stress solution as k goes to infinity is also use-
ful to determine. Knowing from the previous section that the limit of 2, is zero as k goes
to zero, we can show that the limit at the other end of the wave number spectrum (high
wave numbers) will be the maximum value of the Fourier transformed basal shear stress
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anomaly (for a given value of W* regardless of the wave number). This maximum value is
crucial to whether or not the non-linear term on the right side of the dimensionless sliding
law equation (Equation (3-8a)) is second-order and can be neglected, since this tem is a
function of 1,(x). Taking the limit of the transformed anomalous basal shear stress in
Equation (3-14b) as k goes to infinity, we see that this limit is

im 2, = — oo Hsi )
;x_g: R = W pegHsiny (3-20a)

(It can be shown that for intermediate wave numbers the value of 2, is always less than

this limit.) Thus we can show that in the space domain

T5(x) We(x)
m — =
k- pgHsiny W

(3-20b)

for the case where the non-linear last term on the right side of Equation (3-8a) was
neglected. This means that if we neglect this term and make the preliminary requirement
that the ratio IW°()l/W* be of the order of one-third or less, the ratio t,(x)/pgHsiny will also
be of the order of one-third or less, and the non-linear last term on the right side of Equa-
tion (3-8a) will be less than or equal to the square of the ratio IW*(x)l/W*. This non-linear
term will then in fact be second-c.der, and we will have a self-consistent problem. There-
fore the oaly requirement for this non-linear term being second-order is that the magnitude
of W2(x) be of the order of one-third or less the value of W°.

At high wave numbers, the limit of the solution for the longitudinal component of the
basal velocity anomaly goes to zero (see Equation (3-15b)). This is interesting since we
have seen that the anomalous shear stress will have power at high wave numbers if the
anomalous sliding parameter has power. The explanation for this lack of a basal velocity
anomaly at high wave numbers is that the longitudinal stresses become high enough such
that the high wave number components of the basal velocity anomaly are damped out.

At high wave numbers, the limits of the solutions for the anomalous surface velocity
components both go to zero. This is easily seen since these limits will be proportional to
4/e®!, This situation is entirely equivalent to the ttanéfer functions in Chapter 2 going to
zero at short wavelengths; at these high wave numbers a signal at the bed results in a van-
ishingly small signal at the surface,
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3.3.4 Relation o prescribed basai velocity solution

The relation of the solutions which result from a basal sliding law with a varying
parameter, to the solutions which result from a prescribed basal velocity (Chapter 2), is
quite interesting. For this comparison, we will only use the longitudinal component of the
Fourier transformed prescribed basal velocity anomaly #f*?; the normal component of the
prescribed basal velocity anomaly will be set equal to zero, to correspond with this com-
ponent being set equal to zero for the sliding law solutions. (Here the superscript (pbv)
refers to a quantity from the prescribed basal velocity solutions of Chapter 2.)

We first look at the relation of the basal shear stress solutions. Since the solution for
the basal shear stress anomaly was not explicitly derived in Chapter 2 (given a prescribed
basal velocity), this solution in the wave number domain £§*” is given here (for the case
with ¥, = 0):

~2kH 2kH
bv)= € —4kH — e — |onts ) _
8 = | s 4 ] kg (3-21a)

This can also be written in terms of a "transfer function" 7%, which relates the basal shear
stress to the prescribed basal velocity anomaly:

2P = TR (3-21b)
Here T* is defined

(3-21¢c)

2 _ Al -
°= |—5 2
e‘w’+2+4k2H2+e2*"] mk

This transfer function is plotted in Figure 3-1. This transfer function T° relates stress to
velocity at the same depth in the glacier (in this case at the bed), unlike the transfer func-
tions of Chapter 2 which relate velocity to velocity at different depths in the glacier (e.g.,
from the base to the surface). Note that T° is always negative, e.g., for a prescribed basal
velocity (longitudinal component) of one sign, the associated basal shear stress will always
have the opposite sign.

Comparison of Equation (3-21a) with Equation (3-14b) shows that

250 _ 2 )+ ARPH? + 2 WepgHsiny (3-222)
2 T | (1-2WPnk)e 2 + 2 + BWNKKH + AI2H? + (1+2Wnk)e? g™

Here the superscript (sl) refers to a quantity from the sliding law solutions of this chapter.
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Inspection of this equation shows that we can define a sliding law transfer function T
such that

CH iae WepgHsiny
oo =TS (3-22b)

with 7% defined

e 4 ) 4 4PH + &

(1-2W*nk)e 2 + 2 + SWNkkH + 4H? + (1+2Wnk)e™H (3-22c)

Tslidc

1]

Comparison of the equations for the basal and surface components of the velocity
anomaly in Chapter 2 with these components for the basal sliding law shows that they all
are related by the same transfer function T4 multiplying the same ratio WpgHsiny/af?™.
That is:

i _ otias WopgHSinY

323
2™ ) (3-254)
B roiae WopgHsiny (3-23b)
23 1 WepgH

g =T (3250

The term W?pgHsinyaf®” is simply the dimensionless ratio between the prescribed
anomalies for the two cases. Therefore the relation between the solutions for the
prescribed basal velocity anomaly, and the solutions for the basal sliding law, can be
viewed as being completely described by the sliding law transfer function T°i4¢, This
transfer function is plotted in Figure 3-2, for different values of the dimensionless viscosity
Ww/H, as a function of the logarithm (to the base 10) of the dimensionless wavelength A/H.
The plots in this figure show that 7°*# increases with increasing wavelength, and increases
with decreasing viscosity. These characteristics are due to the fact that longitudinal
interactions will always tend to damp out the effect on the stress and velocity fields of an
anomaly in the sliding law parameter, except in the limits as the wavelength goes to
infinity or the viscosity goes to zero. At these limits the value of T is one (as can be
seen from Equation (3-22c)); for shorter wavelengths or greater viscosity the value of Tide
is less than one. The coupling between the anomalous sliding parameter, and the basal
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shear stiess and basal velocity, is only perfect at these limits of infinite wavelengih or zero
viscosity.

The question of why the solutions for the prescribed basal velocity should be related
to the solutions for the sliding law by one simple ratio is worth examining. This relation
by the simple ratio 7°%4 means that the physics are the same for both problems, in that the
stress and velocity are coupled in the same manner. It is fairly obvious that the surface
and basal velocity should be related by the same transfer functions in both solutions; what
is not quite so obvious is that in both solutions the basal shear stress anomaly and the
longitudinal component of the basal velocity anomaly should be related by the same func-
tion T°. However, in one problem we specify the basal velocity and the physics give the
basal shear stress; in the other problem we specify a relation between the basal velocity
and the basal shear stress, and the physics give us the particular basal velocity and basal
shear stress which satisfies both the physics and the specified relation. E.g., in the first
problem we have one equation in one unknown, and in the second problem we have two
equations in two unknowns. In both cases we end up with solutions for both the basal
velocity anomaly and the basal shear stress anomaly, which are related in both cases by the
transfer function 7%, and are also related in the second case by the sliding law.

By using the prescribed basal velocity transfer functions T, T, and 7,*, and the
sliding law transfer function 7, we can further simplify our notation in the sliding law
solutions. We first multiply Equation (3-22b) and Equations (23) by their respective
denominators from the left sides. We next substitute the appropriate prescribed basal velo-
city transfer function multiplying 4¥*, for the basal shear stress and velocity components
PP, 2™, M, and v, This gives the following forms of the Fourier transformed
solutions for the sliding law (which we will no longer write with the superscript reference
to the sliding law):

Ry, = T T ey pgHsiny (3-24a)
iy = "W pgHsiny (3-24b)
i, = T, T4y pgHsiny (3-24¢)

¥, = T, T ey ?p gHsiny (3-24d)



51

In Equation (3-24b) there is only the single transfer function T (this occurs
because no transfer function is necessary to calculate a prescribed basal velocity anomaly
from itself). This shows that the sliding law transfer function T4 directly relates the
anomalous basal velocity to the prescribed anomaly in the form of W2pgHsiny, for the slid-
ing law solution. This can also be quite simply concluded from Equation (3-23a).

3.4 Mathematical solution including non-linear term

3.4.1 Restrictions on solution

We now look at solutions for the basal shear stress and velocity anomalies, and the
surface velocity anomaly, when the non-linear last term on the right side in the sliding law
(Equation (3-8a)) is included. (This non-linear term is the contribution to the basal sliding
velocity from the combination of the anomalous sliding parameter and the anomalous basal
shear stress; this contribution will be significant when both of these anomalous parts are of
the same order as the equivalent steady-state quantities.) When this non-linear term is
second-order, the solutions derived here should not differ appreciably from the solutions of
Sections 3.2 and 3.3. If this non-linear term is not second-order, the solutions in these pre-
vious sections are not valid. However, there is a limited range of situations where this
non-linear last term on the right side of Equation (3-8a) is not second-order: the ratio

Iw=(x)l/w* has to be greater than about one-third (so that the term is not second-order), but
less than one (to be physically reasonable). It is in this limited range that we expect the
solutions including the last term in Equation (3-8a) to be useful, and it is important to note
that this term is not actually second-order in this range.

Another important restriction on the solutions which will be derived in this section, is
that these solutions are strictly valid for only a single harmonic in the anomalous sliding
parameter W2(x), since this is the form of anomaly for which we are able to reasonably
derive solutions. The possibility of superposing solutions for various harmonic com-

ponents will be examined in Section 3.5.4.



52

3.42 General solution form

The solution will again be determined by using the Fourier transform. This necessi-
tates transforming all the terms in the equation for the basal sliding anomaly (Equation (3-
8a)), as one of the basal boundary conditions. The non-linear last term on the right side
must now be included. This term involves a multiplication of two functions of x, which
will transform to a convolution of two functions of k in the wave number domain
(Papoulis, 1962). The dimensioned form of the transform of Equation (3-8a) then is:

—aa-‘yi'-l)co =W [%z;‘g + kzﬁtLo + WpgHsiny + Wn* [%2;2— + k’ﬁlLo (3-25)

Here * denotes convolution.

The difficulty in this equation is caused by the convolution of W* with terms of the
transformed stream function y. Since we wish to obtain a reasonably simple explicit solu-
tion for v, we will choose a form for W* which allows the convolution to be written as a
multiplication. This will be true if W*(x) is harmonic, since the Fourier transform will then
be a Dirac delta function. Thus we choose

W(x) = Wrcoskx (3-26a)

Here W* is now the amplitude of a cosine function, which has a fundamental wave number

k. The Fourier transform then is

W* = W25(k~k;) (3-26b)
Here 3(k—k;) is the Dirac delta function, which has infinite amplitude at k=k; and zero
amplitude elsewhere, and which has an integrated value over all £ of one.

This form of W° is then substituted into Equation (3-25). Using the fact that
S(k—k))*f (k) = flk~k,), where the * again denotes convolution, this gives for one of the basal
boundary conditions:

i‘i’-l,.:o =W a—z‘I’- + kz\]r] + W8 (k—k)pgHsiny (3-27a)
oy | 9y =0
™ .
+Wn —z'w'é(yz—l) + (k_kl)z‘ll(k’kl)]
X =0

The other boundary conditions are the same as the corresponding boundary conditions in
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Sections 3.3 and 3.4. - That is

-kl o =0 (3-27b)
e _ Pyl g (3-27c)
dy ¥ y=H
[ﬂ + kzq:] =0 (3-27d)
7 Y
The solution form for y will be
¥ = -éi’-‘?-e-*r + Bl)ye™ + -‘Kk’-‘le"y + D(R)ye? (3-28)

Note that here (as contrasted with Equation (3-12) where the non-linear term was
neglected) the solution can not be assumed to be proportional to WpgHsiny.

The solutions for the coefficients A, B, C, and D can then be determined. These solu-
tions are somewhat complicated. It turns out that the solutions are sums over all positive
integer multiples of the fundamental wave number k;. The solutions for the coefficients for
each multiple depend on the solutions for the previous multiple; thus the solution process is
iterative.

We need to be able to begin the iteration by knowing the solutions for the
coefficients at k=k;. These solutions can in fact be determined, since the terms in Equation
(3-27a) which are mulitiplied by k~k, become zero when i=k;; this allows non-iterative solu-
tions for the coefficients at this wave number k=k,. The solutions for the coefficients at
this fundamental wave number are:

22 H?p gHsinyS(k—k,)
57 (3-292)

A(kl) = _C(kl) =- —Zle
[1-2W*nkyde ' + 2 + 8WinkikH + 4k2H? + [142Wnkle

(1 + 2k H + & pgHsimyd(k—ky)

B(ky) = =
[1-2Wnkde Y + 2 + SWonkikoH + 8k,2H? + [14+2Wenkgde”™!

(3-29b)

[e 2" 4 1 - 24y HlpgHsimyd(k-ky)

D(ky) = =
(1-2Wnkle 7 + 2 + SWonkk,H + 4k, 2H? + [142Wnk e

(3-29¢)
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We now define the wave number %, such that k=nk;, with » being a positive integer.
The solutions for n=1 are given in Equations (3-29). Using these solutions for A(k,), B(k,),
C(k,), and D(k,), we can iterate to write the solutions at all other (n > 1) positive integer
multiples of the fundamental wave number. The solutions for the terms in the coefficients
for n=2 to n=e then are
2k, 2H2

Alky) =-— = =1 (3-30a
20w | [1-2WkJe 2 42 + SWoNkKH + 4k ZHE + [142Wnkle " (3-302)

[e-?*""H — 4k, H - &l
l ~2k 2 H?

2Wnky1A(kn-1)

1+ 2% H+
Bk, = =Ty 7| (3-30b)
2w | [1-2Wnkde " + 2+ 8WnkkaH + 4k,ZH? + [14+2Wnk,le

2% H 2% .H
[e 1 Ak, H—e ™t

Wk, 1Bknr)

l 1+ 2%k, H+ P ' '
Clk) 2y 11 (3-30¢)

- - -30c

2w | [1-20nkJe 2 + 2 + SWoNkokH + 4k, 2H? + [142Wnkle™

[e_ i _ e H — &

l T 2011 Clr)

-2 H
e +1-2%

D) = A (3-30d)

2w | [1-2WnkJe 2 + 2 + SWNkkH + 4k,ZH + (142Wnk,le "

-2k _H 2% _H
e "V —4k, H—¢e ™

ety _op H

2u’m“kn-lD (kn—l)
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The total solution for each coefficient, is ihe sum of these solutions for all positive integer
multiples of the fundamental wave number k. The total solution for each coefficient has
power at each of these multiples. (Note that in Equations (3-30) the solution for the value
of a coefficients at a given wave number k, is a function of that wave number, multiplying
the value of the coefficient for the previous wave number k,;.)

The total solutions for the coefficients give the solution for the transformed stream
function .

3.4.3 Basal shear stress solution

The Fourier transform of the basal shear stress anomaly £, can be determined by sub-
stituting the solutions for the coefficients A, B, C, and D, as solved in the last section, into
Equation (3-14a). For this case (including the non-linear term in the sliding law), the solu-
tion for the transformed basal shear stress anomaly will be iterative, because the
Icoefﬁcients are iterative. We first determine the solution for ¢, at the fundamental wave

number k;:

-2k H 2k, H .
e —4kH - ¢ WeogHsinyd(k—k
f 1 1W2pgHsinyd(k—k,) - M (3-31a)

Rky) = 2% H
[12Wnkde ~ 1 + 2 + 8W ki H + Ak 2H? + [142WPnk e

We can then determine the transformed basal shear stress anomaly %, for the multiples
from n=2 to n=o of the fundamental wave number:
€7 - 4kH — WPty r)

(AR = 2Nk, (3-31b
wrie | [1-2Wnkle 2 + 2 + SWenk ko H + 4k2H? + [142Wnk,le " 3-31b)

Inspection of Equations (3-31) shows that if we define a term %,(ko), we can write a
single equation which gives the solutions for £,(k,) for all the multiples of the fundamental
wave number, from n=1 to n=ee. (Note that this term %,(ko) is not one of the terms which
are summed to determine the total basal shear stress anomaly; %,(ko) is only used to begin
the iteration process.) The definition of %,(ko) is

2y(ko) = pgHsinyd(k—ke) (3-32a)

The equation for the nth wave number multiple of the transformed basal shear stress ano-
maly then is
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k) [ = 4k — W)
e | [1-2WMkle 2 + 2+ Wkl + 462H? + [12Wnkle" "

2nk, (3-32b)

The total solution for the Fourier transformed basal shear stress anomaly is the sum of
these solutions for all positive integer multiples of the fundamental wave number k;. The
total solution has power at each of these multiples.

3.4.4 Basal velocity solution

The solution for the Fourier transformed longitudinal component of the basal velocity
anomaly #, is determined by substituting the solutions for the coefficients 4, B, C, and D,
as solved in Section 3.4.2, into Equation (3-15a). The solution for &, will be iterative.
The solution will be most easily written by using the "transfer function" T%() (defined in
Equation (3-21c)). We first define a term &,(ko) as

. _ peHsmBlkky)
ly(ko) = Tko) (3-33a)

(This term dy(ko) is not summed to determine the total basal velocity anomaly; it is only
used to begin the iteration process.) The equation for the ntk wave number multiple of the

transformed longitudiizal component of the basal velocity anomaly then is

o [e' H o2+ a2 + ez*""] WoT (K, )ity (Kns)
e [1-2Wnkle 2 + 2 + SWNkkH + 4,ZH? + (1420 e

A

(3-33b)

-1
Tk

sk

The total solution for the Fourier transformed longitudinal component of the basal velocity
anomaly is the sum of these solutions for all positive integer multiples of the fundamental
wave number k;. The Fourier transform of the normal component of the basal velocity

anomaly is zero. .
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3.4.5 Surface velocity solution

The solution for the Fourier transformed longitudinal component of the surface velo-
city anomaly 4, is determined by substituting the solutions for the coefficients A, B, C, and
D, as solved in Section 3.4.2, into Equation (3-16a). The solution for #, will be iterative.
The solution will be most easily written if we first define a term 4.(ko) as

. pgHsimiko)
is(ko) = T(ky) (3-34a)

(This term #(k,) is not summed to determine the total longitudinal component of the sur-
face velocity anomaly.) The equation for the nth wave number multiple of the transformed
longitudinal component of the surface velocity anomaly then is

[[2+2k,,111e""” + 22 He™ [WoT(lp)t(Kin-n)

fikn) = — (3-34b)
e [1=2Wnkle 2 4 2 + SNk H + 4k, ZH? + [142Wonk,Je

()
= Tk Ro(kny

The total solution for the Fourier transformed longitudinal component of the surface velo-
city anomaly is the sum of these solutions for all positive integer multiples of the funda-

mental wave number k;.

The solution for the Fourier transformed normal component of the surface velocity
anomaly ¥, is determined by substituting the solutions for the coefficients 4, B, C, and D,
as solved in Section 3.4.2, into Equation (3-17a). The solution for ¥, will be iterative. The
solution will be most easily written if we first define a term 9,(ko) as

o _ —ipgHsinS(k—ko)
Vslko) = T (3-352)

(This term ¥,(ko) is not summed to determine the total normal component of the surface
velocity anomaly.) The equation for the nth wave number multiple of the transformed nor-

mal component of the surface velocity anomaly then is

, ot + et 09000

2 = = - (3-35b)
mloe  [1-2Wnkle 27 + 2+ SWonky,H + 4k,2H2 + [142WnkJe™"
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=T

= Tray

The total solution for the Fourier transformed normal component of the surface velocity
anomaly is the sum of these solutions for all positive integer multiples of the fundamental

wave number k;.

3.5 Properties of mathematical solution including non-linear term

3.5.1 Non-dimensionalization and adjustable parameters

The non-dimensionalization and adjustable parameters, are very similar for the solu-
tion including the non-linear term in the sliding law and the solution neglecting the non-
linear term in the sliding law. The non-dimensionalization and adjustable parameters for
the solution neglecting the non-linear term were examined in Section 3.3.1. The only
differences in the case here (where the non-linear term is included) are due to the simple

form of the sliding law anomaly, and the fact that the solutions are iterative.

The non-dimensionalization of the basal shear stress anomaly and the velocity
anomalies are the same for both cases: the basal shear stress anomaly is divided by the
steady-state basal shear stress pgHsiny, and the velocity anomalies are divided by the
steady-state sliding velocity W'pgHsiny.

The adjustable parameters are very similar for both cases. For the case including the
non-linear term, the dimensionless Fourier transformed sliding parameter W%/W* becomes
Wes(k—k,)/W", and the dimensionless wave number kH becomes k,H = nk,H, where n is a
positive integer and k, is the fundamental wave number.

3.5.2 Limits of solution

The limits of the solution including the non-linear term in the sliding law can be
briefly examined. The first limit which we will examine is the limit of the iterative solu-
tion for the Fourier transformed basal shear stress anomaly 2,(k,).

As the wave number multiple %, of the fundamental wave number k, goes to infinity,
the limit of Equation (3-32b) for the transformed basal shear stress anomaly goes to
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[FWWIRs(ka—). Since W* must be less than or equai to W* for a physically reasonable slid-
ing law, this limit shows that the maximum possible power at any wave number is less
than or equal to the power at the previous wave number. Therefore in the’ ¢ise ‘where
W* = W*, we expect that the total solution (summed over all wave number multiples) for %,
when inverse Fourier transformed tc the space domain, would converge to some type of
delta function. This is in fact true, and is shown by the example for a harmonic anomaly
W) in Section 3.6.1. For values of W* which are less than W, the solution in the space
domain for T, converges to an intermediate case, between a delta function and the harmonic
form of the basal shear stress anomaly Wcosk,x.

This information about the form of the basal shear stress anomaly is interesting, since
it shows that the magnitude of this anomaly can be very large, for a simple harmonic ano-
maly in the sliding law parameter of much smaller magnitude. The requirement for this
large anomaly in the basal shear stress is that the magnitude of the anomaly in the sliding
law parameter be close to the value of the steady-state sliding law parameter. The “rough-
ness" of the sliding law parameter does not appear to be crucial to whether or not the basal
shear stress anomaly has a large magnitude.

The limits of the iterative solutions for the Fourier transformed velocity components
i, i, and ¥, as k, goes to infinity, are all iess than the limit for 4,. (This can be seen by
examining Equations (3-33), (3-34), and (3-35).) Thus we expect that these limits would
always converge to the intermediate case somewhere between a delta function and a har-

monic. This is shown in Section 3.6.1.

It is also useful to check that the solution including the non-linear term approaches
the solution neglecting this non-linear term, when the ratio W%W* becomes of the order of
one-third (which means that the non-linear term is then second-order). This is fairly easy
to see, since the limits of the various quantities at a high wave number %, are proportional
to W4W* multiplying the quantity at the previous wave number. As the ratio W/W*
decreases, these limits will rapidly approach zero, since they will be proportional to
[WW*I* (because the quantity at the previous wave number will also be proportional to
WYW?, and so forth). Therefore the wave number multiples will not have much power for
WPW* of the order of one-third; and only the solution for the fundamental wave number
will be significant. Comparison of Section 3.2 with Section 3.4 shows that this solution

for the fundamental wave number is in fact identical to the solution neglecting the non-
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linear term, if the anomalous parameter W* in the sliding law is harmonic.

3.5.3 Relation to prescribed basal velocity solution

The previous section shows that the solution including the non-linear term in the slid-
ing law is similar to the solution neglecting this term, provided that the iterations in the
solution for the case including the non-linear term rapidly approach zero. This suggests
that it is possible to write the solutions for the basal shear stress anomaly and velocity ano-
maly for the non-linear case, in terms which relate them to the solutions for a prescribed
basal velocity, since this is possible for the case which neglects the non-linear term.
Inspection of Equations (3-32), (3-33), (3-34), and (3-35) shows that this is true; that is,
we can write the solutions for the case including the non-linear term by using the transfer
functions 7%, T,*, and T, and the sliding law transfer function T°%%,

This gives the following forms for the solutions which include the non-linear term in
the sliding law. The Fourier transformed basal shear stress anomaly %, is:

Ro(kn) = T ) T (e )W Ry (K pr) (3-362)
The Fourier transformed longitudinal component of the basal velocity anomaly &, is:
fig(kn) = TP Ge)WT" (k-1)idg (k1) (3-36b)
The Fourier transformed longitudinal component of the surface velocity anomaly &, is:
dylkn) = T (e T (o) WT (1) (k1) (3-360)
The Fourier transformed normal component of the surface velocity anomaly v, is:
Vilkn) = T ()T U)W T 1) Plp) (3-36d)

Here the transfer functions are evaluated at the wave number k,, where the subscript n
refers to the positive integer multiple of the fundamental wave number ;. These solutions
are summed as in Section 3.4 to determine the total transformed basal shear stress anomaly
and velocity anomaly. The terms £,(ko), fis(ko), &s(ko), and ¥,(ko) are also as defined in Sec-
tion 3.4.
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3.5.4 Possibility of superposing solutions for various harmeonic components

The solution for the case including the non-linear term in the sliding law has been
done for a harmonic variation in the sliding law parameter. The question arises of whether
the solutions for different harmonic anomalies could be summed, to give a solution for the
combination of these harmonic anomalies. This would enable the solution for any arbitrary
anomaly in the sliding law to be determined. This can be simply tested, by comparing the
sum of the solutions for two different harmonic anomalies, to the solution which results
from a sliding law which has an anomalous parameter consisting of two different hamon-
ics.

To do this comparison, we can look at the solutions for just one part of the
anomalies, e.g. the Fourier transformed longitudinal component of the basal velocity ano-
maly 4, The solution for this component is just the sliding law. We suppose that we

have two different harmonic anomalies in the sliding law parameter:

Wx) = Wcoskyx (3-37a)

W3(x) = WPcoskax (3-37b)

Then the individual sotution for u,(x), using the anomaly W(x), can be found directly
from Equation (3-7b):

u D) = W, 00 + WOR)pgHsiny + WO(x)t,P(x) (3-38a)

Here 1,(x) is the corresponding basal shear stress solution. The individual solution for

u,?, using the anomaly W®(x), is
uP(x) = Wi, P () + WPx)pgHsimy + WAxyt,P(x) (3-38b)
Here 1,%(x) is the corresponding basal shear stress solution.
We next directly add these two solutions. This gives:
1D + 4@ = WD + @1 + W + WPpgHsiny + W, + WP, D (3-39)

We now compare this additive solution with the presumed solution for a combined sliding
law anomaly W*(x) = W(x) + W@(x). This presumed solution is

gD = Wog, A0 4 (WD 4+ WDlpgHsiny + W + WP, A (3-39b)
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Equations (3-39a) and (3-39b) are mot equal. If we set D = 7, W 4 1. @ we see
that the additive solution (Equation (3-39a)) is missing the terms W,® and WP,
Consideration of the magnitude of the various terms shows that there is no valid reason to
expect these missing terms to be smaller in magnitude than any of the terms which were
included in the additive solution. We are forced to conclude that adding solutions for
different harmonic anomalies is not valid, when the non-linear last term in the sliding law

is not second-order.

It is worth noting that a direct analytic solution for an anomalous sliding law parame-
ter which consists of two or more harmonics is theoretically possible. However, this solu-
tion would be very complicated. It might also be possible to determine analytic solutions
for forms of the sliding law parameter other than a harmonic anomaly, such as a delta
function. These solutions are not attempted in this dissertation.

3.6 Examples of shear stress and velocity solutions

3.6.1 Solutions for harmonic variation in sliding law parameter

We will now examine specific solutions for various different anomalies in the sliding
law parameter. We will first look at a simple harmonic variation in the sliding law param-
eter, .g., W2(x) = Wecoskx. This simple form of the anomaly allows a comparison of the
solutions both neglecting and including the non-linear term in the basal sliding law.

The solutions for a harmonic anomaly are first examined for the case neglecting the
non-linear term in the sliding law. The dimensionless parameters for this case need to be
chosen. We will choose intermediate values of these parameters, which hopefully will
represent a typical situation for glacier ice. We therefore set the dimensionless viscosity
Wei/ii equal to one, the amplitude of the dimensionless sliding parameter W%/W* equal to
one-third, and the dimensionless wave number of the harmonic anomaly kH equal to one.
We note that although the choice of W/W* = 1/3 can be considered an intermediate value, it
is about the highest value of this parameter which can be used, while still validly neglect-

ing the non-linear term in the sliding law.

The resuiting solutions for the dimensionless basal shear stress anomaly and the

dimensionless basal and surface velocity anomalies are plotted as the dashed lines in
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Figures 3-3. There is nothing very surprising about these resulis. We note that the dimen-
sionless longitudinal component of the basal velocity anomaly u,* has the same pattern and
phase as the prescribed sliding law anomaly W@coskr; the amplitude of u,* is somewhat
lower than the amplitude of Wecoskx. This is as expected from the form of the transfer
function 7°%%, which relates u,* to W°(x) (see Equation (3-24b)). The dimensionless basal
shear stress anomaly 1,* has a similar pattern, although with opposite phase and greater
amplitude, when compared to u,*. This is to be expected from the form of 7° and the
transfer function T° (see Equation (3-24a)). We note that the amplitude of T,* is less than
the amplitude of the prescribed anomaly W¥; this is because the product T°T** js less than

one in absolute value, for all wave numbers k.

The dimensionless components of the surface velocity anomaly u* and v,* are as is
to be expected from the transfer functions (see Equations (3-24c) and (3-24d)). There is
no phase reversal between us* and u*, although this would occur if a sufficiently high
wave number (kH greater than about 1.2) were used. The phase of v,* leads u* by =/2.
The amplitude of both «* and v,* is less than the amplitude of u*.

The case where the non-linear term in the sliding law is included is much more
interesting. The same dimensionless parameters are used as for the case neglecting this
term, except that the dimensionless amplitude W*/W* has been increased to a value of one.
This is necessary for the non-linear term to be significant (not second-order), and affect the

solutions in an interesting manner.

The resulting solutions for the dimensionless basal shear stress anomaly and the
dimensionless velocity anomalies are plotted as the solid lines in Figures 3-3. These solu-
tions are quite different than the solutions where the non-linear term is neglected (dashed
lines). In particular, these new solutions are not harmonic, although the prescribed sliding
law anomaly W*(x) is harmonic; this especially applies to the solutions for the dimension-
less basal shear stress anomaly t,* and the dimensionless longitudinal component of the
basal velocity anomaly u,*. In addition, the amplitude of 7,* is greater than the amplitude
of W*(x). These solutions for 1,* and u,* when the non-linear term in the sliding law is
included can be approximately described as consisting of a series of delta functions (the
solid lines in Figures 3-3b and 3-3c). The area under these curves is equal to zero, but the
dimensionless basal shear stress anomaly consists of broad slightly negative regions alter-

nating with sharply positive spikes, while the dimensionless longitudinal component of the
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basal velocity anomaly consists of broad slightly posiiive regions aliernating with fairly
sharp negative spikes. The dimensionless surface velocity anomaly (u* and v.*) is less

extreme in pattern, but is also non-harmonic.

Mathematically, the form of the dimensionless basal anomalies t,* and u,* is not too
surprising (see Section 3.5.2). The fact that the magnitude of 7,* is greater than the magni-
tude of W* is due to the summation process; the magnitude of u* is still less than W*. The
physical basis for these basal anomalies is more difficult to determine. The main question
to be answered is why the positive and negative parts of the basal anomalies are so
different in form. If this question is answered for the dimensionless basal anomalies t5*
and u,*, the form of the dimensionless surface anomalies u,* and v,* is simply explained by

applying the transfer functions 7, and 7, to the dimensionless basal anomaly u,*.

The form of the basal anomalies is probably due to the fact that the non-linear term
in the sliding law makes the dimensionless anomalous basal shear stress solution 7,* highly
non-linear as a function of the anomalous sliding law parameter W*; and yet this dimen-
sionless anomalous basal shear stress solution (which is driven by the steady-state basal
shear stress) must have a mean value of zero. Therefore high values of 7,* must cover
only a narrow range, if they are to be offset by regions of only slightly negative anomalous
basal shear stress. The dimensionless longitudinal component of the basal velocity ano-
maly u,* is simply related to t,* by the transfer function 7°. The dimensionless com-
ponents of the surface velocity anomaly are in tum related to the dimensionless basal velo-
city anomaly by the appropriate transfer functions.

It is useful to test that the solution (for a harmonic variation in the sliding law param-
eter) including the non-linear term in the sliding law approaches the solution neglecting
this term, as the magnitude of the non-linear term is decreased. If we decrease the ratio
W4W* to a value of one-third, the solution including the non-linear term does in fact

become very similar to the solution where the non-linear term is neglected.

3.6.2 Solution for step in sliding law parameter

We next look at the solution for a step in the anomalous sliding law parameter W*(x).

It is necessary to use the solution neglecting the non-linear term in the sliding law, since

the prescribed anomaly is non-harmonic. We set the ratio IW*l/W* to a value of one-third,



65

where the anomalous amplitude W4l is the haif-height of the step. The dimensionless
viscosity Wn/H is set equal to one. The wavelength of the periodic patiern (in the fast
Fourier transform) for W?(x) is chosen to be 25H (where H is the thickness of the glacier.

The resulting dimensionless basal shear stress anomaly and dimensionless velocity
anomalies are shown in Figure 3-4. For this case where the non-linear term in the sliding
law is neglected, we see that the magnitude of these anomalies is less than the magnitude
of the anomalous sliding law parameter. This again follows from the fact that the various
transfer functions and products of transfer functions in Equations (3-24) are all less than

one.

The dimensionless basal shear stress anomaly t,* has sharp spikes associated with the
step in the anomalous sliding law parameter W*; the sign of 7,* is opposite to the sign of
W This is because the transfer function 7° is negative, and has a large magnitude at the
small wavelengths which dominate the Fourier transform of the step in W™

The dimensionless longitudinal component of the basal velocity anomaly u,* is sim-
ply a somewhat smoothed version of the prescribed'anomaly W°. This is interesting,
because it shows that the spikes in the basal shear stress are not associated with sudden
changes in the basal velocity, although physically the fairly extreme pattern of the basal
shear stress might be expected to cause relatively rapid changes in the basal sliding velo-
city. (It is important to remember that the non-linear term in the sliding law has been
neglected.)

The dimensionless surface velocity is as would be expected from the transfer func-
tions T,;* and T,**. The longitudinal component &* is simply an even smoother version of
ug*; there is no phase reversal due to the long wavelength of the prescribed anomaly W°.
The normal component v.* has a peak associated with the step in W=,

It is interesting to compare this solution with the similar solution of Hutter and Olun-
loyo (1980). Hutter and Olunloyo prescribed an abrupt change from “"perfect slip” to "no
slip" as the basal sliding boundary condition; however, their surface boundary condition
requires that the normal velocity component at the surface be equal to zero. The result is
that Hutter and Olunloyo’s basal shear stress and basal velocity solutions are similar to the
solutions derived in this section, but their surface velocity solution is different than the
solution derived here. The longitudinal component of the surface velocity in the
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calculations of Hutter and Clunloyo reaches a maximum over the abrupt change in the
basal sliding boundary condition; this is equivalent to the peak in the normal component of
the surface velocity seen in the solution here (since we have allowed normal motions at the
surface).

3.6.3 Solution for peak in sliding law parameter

We will now examine an anomaly for W) which has the form of a Gaussian peak.
We again choose a value of one for the dimensionless viscosity W*n/H, and a value of
one-third for the ratio IW?lw*, where 1ol is the height of the peak. The standard deviation
of the Gaussian is taken to be 0.5H (where H is the ice thiclémss). It is again necessary to

use the solution where the non-linear term in the sliding law is neglected.

The resulting dimensionless basal shear stress anomaly and dimensionless velocity
anomalies are plotted in Figures 3-5. It is useful to note that the resulting dimensionless
longitudinal component of the basal velocity anomaly u,* has the form of a basal peak,
although this peak in u,* is broader and of less amplitude than the prescribed peak for W".
This peak in u,* means that the results for a prescribed peak in W* are similar to the results
for a peak in the prescribed basal velocity (see Section 2.4.3). This can be seen by com-
parison of Figures 2-5b and 3-5.

It is interesting to examine the dimensionless basal shear stress anomaly 7,* for the
sliding law solution (the basal shear stress was not calculated for the prescribed basal velo-
city solution). This anomaly t,* has a negative peak associated with the positive peaks in
w* and ug*. It also has lower amplitude positive peaks on either side of the negative peak
(see Figure 3-5b). This shows that this form of basal shear stress anomaly is necessary for
the peak to exist in the longitudinal component of the basal velocity anomaly u;. This is
verified by directly calculating the basal shear stress anomaly associated with a prescribed
Gaussian peak in the longitudinal component of the basal velocity anomaly; this basal
shear stress anomaly has the same form as Figure 3-5b.
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3.6.4 Siiding law anomaiy associated with a step in basal velocity

All of the examples in the previous sections have resulted in velocity anomalies
which are continuous, with no sharp jumps. The solution neglecting the non-linear term in
the sliding law resulted in smooth velocity anomalies for the various sliding law anomalies
which we have examined; the solution including the non-linear term (for a harmonic slid-
ing law anomaly) resulted in velocity anomalies which are still continuous, although the
longitudinal component of the basal velocity anomaly u, had relatively sharp peaks. The
question arises of what form of anomaly in the sliding law parameter is necessary in order

to get a sharp jump in the associated basal velocity, e.g. a step in #,. This question is par-
\ ticularly important since this form of basal velocity anomaly is thought to be associated
with the mini-surges and the main surge of Variegated Glacier, and with surges in other
glaciers. (This form of basal velocity anomaly was prescribed in Chapter 2, and resulted
in a very interesting surface velocity anomaly.)

This question can be answered by reversing the solution for the Fourier transformed
longitudinal component of the basal velocity 4, in Equation (3-24b) (neglecting the non-
linear term in the sliding law). The new equation which results is

A 1 n

T4 peHsiny “ (3-40)
This means that we can prescribe the transformed velocity 4, and then calculate the associ-
ated transformed anomalous sliding law parameter W°. We can also easily calculate the
associated transformed basal shear stress anomaly and transformed surface velocity ano-

maly by using the calculated parameter W in Equations (3-24a), (3-24), and (3-24d).

An example of this solution is shown in Figure 3-6. A step is prescribed as the form
of the dimensionless longitudinal component of the basal velocity anomaly u,*; this form
of uy* is plotted in Figure 3-6c. (Here uy* has exactly the same form as the prescribed
dimensionless anomalous sliding law parameter W%W" in Figure 3-4a, with a half-height of
1/3). The dimensionless anomalous sliding law parameter and dimensionless basal shear
stress anomaly 7,* associated with the step in u* are plotted in Figures 3-6a and 3-6b.
(The surface velocity anomaly is not plotted since it is of the same form as in Figure 2-4.)

This step in u,* results in the form of a sharp positive spike immediately next to a
sharp negative spike for both W?/W* and 7,*, located at the position of the step in the basal
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velocity anomaly. (The sign of W*W" is reversed from that of 1,*) This form of anomaly
for the sliding law parameter and basal shear stress does not seem very plausible, since it
is somewhat difficult to picture a physical basis for such an anomaly. This means that a
step in the basal velocity anomaly is not very likely, if we assume that the sliding law is
an accurate description of the physics of the prablem, and that the linear viscous rheology
is valid. Tt is quite likely that these assumptions are not true for a step in the basal velo-
city anomaly. Furthermore, forms of the basal velocity anomaly such as a smoothed step

or a ramp have not been ruled out.

It is also important to note that our given choice of u,* results in a magnitude for
WW* which is much too large for the non-linear term in the sliding law to be neglected.
This could be remedied by decreasing the magnitude of the prescribed velocity anomaly;
however, it would have to be decreased to of the order of one-hundredth of the steady-state
sliding velocity. If we had a solution including the non-linear term in the sliding law, the
magnitude of the anomaly u, would still have to be decreased to of the order of one-
thirtieth of the steady-state sliding velocity. This would be necessary for the ratio Iwelw=
to be less than one (which we have decided is the criterion for a physically reasonable slid-
ing law anomaly). Although we do not know the form of the solution including the non-
linear term for the prescribed step in the basal velocity anomaly, we would intuitively
expect it to be somewhat similar to the solution where the non-linear term is neglected, for

this particular anomaly.

3.7 Discussion

The solutions for a prescribed anomaly in a basal sliding law have been shown to
have several interesting features. If the magnitude of the anomalous sliding law parameter
is of the order of one-third or less the value of the steady-state sliding law parameter, the
non-linear term in the sliding law is second-order and can be neglected. For this solution,
the most interesting feature is probably the fact that the basal shear stress anomaly and
velocity anomalies can be directly related to the solution for a prescribed basal velocity
anomaly, by using the transfer function 7%, The results can be summarized as showing
that very rapid changes in the anomalous sliding law parameter result in rapid changes in
the basal shear stress anomaly, but that these are associated with relatively smooth changes
in the velocity anomaly. The magnitude of the rapid changes in 7,* is less than the
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magnitude of the anomalous sliding law parameier W*. These results are not particularly
surprising.

For situations where the magnitude of the anomalous sliding law parameter is
between about one-third and one times the value of the steady-state sliding law parameter,
the non-linear term in the sliding law must be included. For this case, the basal shear
stress anomaly and velocity anomaly can not be as simply related to the solution for a
prescribed basal velocity anomaly, since the solution for the sliding law involves a summa-
tion process. However, the sums can still be written in terms of the transfer function Tolide,
For a harmonic anomalous sliding law parameter, rapid changes in the basal shear stress
anomaly are associated with changes in the velocity anomaly which are somewhat rougher
than those for the case where the non-linear term is neglected. The velocity anomaly is
still smoother than the basal shear stress anomaly. In this case the magnitude of 7,* can be
greater than the magnitude of W=

The possibility of the magnitude of the anomalous sliding law parameter exceeding
the value of the steady-state sliding law parameter is generally assumed to not be physi-
cally reasonable. However, Section 3.6.4 showed that brief high-amplitude spikes in the
anomalous sliding law parameter (with magnitude greater than the value of the steady-state
sliding law parameter) could be associated with a much lower amplitude anomalous sliding
velocity variation, such that the total sliding velocity (the sum of the anomalous and
steady-state sliding velocities) would always be positive. Thus a physically reasonable
sliding velocity can be associated with a physically unreasonable sliding law parameter.
The total basal shear stress associated with the negative sliding law parameter is also nega-
tive, which is also physically unreasonable. The solution to this problem is probably that
the abrupt step in the basal velocity is not possible in reality, and that real changes in the
sliding velocity are required to be at least scmewhat smoother. It is also quite likely that
the sliding law is not a completely accurate description of the physics of the problem, and
that the assumed linear viscous rheology is not a valid approximation of the true rheology
for this particular case. It is important to note that this particular solution also neglected
the non-linear term and thus is not really valid (since for this particular case the non-linear
term is not second-order). The mathematical solutions derived in this chapter do not allow
the inclusion of the non-linear term in this case. This means that the question of whether

the an abrupt step in the basal sliding velocity is possible must be left unanswered.
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Finally it is imporiant to realize that the value of the dimensionless viscosity affects
the form of the transfer function 7°%¢, which in tum affects the form of the solutions con-
sidered in this chapter. At high values for the dimensionless viscosity, the value of T°
will be less than one (except at very long wavelengths). For this case the sliding law solu-
tions for a prescribed anomalous sliding law parameter will be considerably different than
the solutions for a prescribed basal velocity anomaly, when the prescribed anomalies have
the same form. At low values of the dimensionless viscosity the value of T*4 will be
much closer to one. In this case the sliding law solutions will be very similar to the solu-
tions for a prescribed basal velocity anomaly, if the prescribed anomalies have the same
form. In fact, simple calculations show that the dimensionless viscosity (which in this
chapter has been defined as W*/H) is often quite low in value (of the order of 0.1), for
various glaciers. This means that although the sliding law soluticns have shown many
interesting effects, in reality a prescribed basal velocity anomaly may be just as good a

method for examining velocity anomalies in glaciers.
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CHAPTER 4

VISCO-ELASTIC FORWARD SOLUTIONS

4.1 Constitutive equations

We now will examine the surface velocity solution for a Maxwell visco-elastic rheol-
ogy, given a prescribed basal velocity anomaly. These solutions will be useful for study-
ing possible transient creep (elastic strains) in glacier ice, for short time-scale velocity vari-
ations. The constitutive equations which relate the stress and strain rate (and the time
derivative of the stress, which we will refer to as the stress rate) for the Maxwell theology
are (Peltier, 1974)

&y + % [c, - —;-0&8,-,-] = 2ué; + [K - %u}éu,&,- @-1)

Here o; are the nine stress components and ¢é; are the nine strain rate components. The
elastic bulk modulus is K, the elastic shear modulus is p, and m is the dynamic viscosity.

Repeated indices indicate summation and §; is the Kronecker delta.

These constitutive equations are considerably more complicated than the constitutive
equations for a viscous incompressible material (as first examined in Chapter 2), or an elas-
tic compressible material (see Appendix B). However, the other equations which we need
for our solution (i.e., force balance, and kinematic relations betwzen velocity and strain
rate) are exactly the same for the various rheologies. This fact will later be used to sim-
plify the visco-elastic solution process.

4.2 General solution method

4.2.1 Separation of rheological operators and application of Laplace transform

The constitutive equations for the visco-elastic rheology involve not only the stress
and the strain rate, but also the stress rate. This makes the solution for the surface velocity
somewhat difficult. We will first put the visco-elastic constitutive equations into a simpler

form before we attempt to solve for the surface velocity.
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The first siep which we will take is to separate the constitutive equaticns into two
parts: one part relating the sum of the normal stress rates to the sum of the normal strain
rates; and the other part relating the stress deviator components and stress rate deviator
components to the strain rate deviator components. Summing Equations (4-1) for the nor-

mal components, we get
G = 3Kéy 4-2)

To relate the stress deviator components and stress rate deviator components to the
strain rate deviator components, these deviators must first be defined. The stress deviators
are defined: '

Tjj = G5 — _31_6kk8y (4-33)

(where §; is the Kronecker delta). The stress rate deviator components are just defined as
the time derivative of the stress deviator components. The strain rate deviators are defined:

Ly= by — g oubi (4-30)

These deviators are then substituted into Equations (4-1). The sums of the normal com-
ponents which are in the resulting equation can be related by Equation (4-2) and cancel
out. The remaining terms give a set of equations relating the stress deviators and the stress

rate deviators, to the strain rate deviators:
-51‘-1:,-,. + 1= 2mE; (4-3c)

The other step which we will take to simplify the constitutive equations is to apply
the Laplace transform. It is important to note that this means that any velocity solutions
which we derive, using the Laplace transformed constitutive equations, will have to ini-

tially be solved in the Laplace transform domain.

The Laplace transform is defined:

fis) = t!e-“f(:)dz = L{f)} (4-42)

Here s is the transform variable. The inverse Laplace transform is then defined:
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cHio

fo= [ eRods (4-4b)

Of special interest to our application is the fact that L[%é} = sf(s) — {0). We can see

that this allows us to tumn the time derivatives in Equations (4-2) and (4-3c) into algebraic
functions of s. This gives us our final simplified form of the visco-elastic constitutive

equations. From Equation (4-2) we get
Oy = 3Ksey (4-53)

From Equation (4-3c) we get
[lni + s]’t;j = st (4-5b)

In these equations we have set o(0), e(0), ©(0), and ((0) equal to zero to simplify the

mathematics of our solution process.

4.2.2 Application of correspondence principle

Since we have Laplace transformed the constitutive equations, we must derive our
solution for the surface velocity in the Laplace transform domain. Fortunately there exists
a relatively simple method for deriving this solution. This method is known as the

correspondence principle (Flugge, 1967).

The correspondence principle refers to a cormrespondence which can be derived
between the visco-elastic and the elastic compressible rheological operators. This principle
states that the substitution of the visco-elastic operators for the elastic compressible opera-
tors, will change the rheology from elastic compressible to visco-¢lastic, in any equations
which depend on the original constitvtive equations. In the Laplace transform domain, the
correspondence is algebraic, since the time derivatives in the visco-elastic operators when
Laplace transformed become algebraic functions of s, which simply multiply the other
Laplace transformed functions in the equations which are being examined. (The Laplace
transform does not affect the elastic compressible operators at all, since these operators are
simply constant functions of time, which multiply other varying functions of time.) The
correspondence principle allows us to fairly easily determine the Laplace transform of the

visco-elastic surface velocity solution, by simply substituting the Laplace transformed
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visco-elastic operators for the elastic compressible operators in the Laplace transformed
elastic compressible surface velocity solution. (It is of course necessary to first have the

elastic compressible surface velocity solution; this solution is derived in Appendix B.)

When the Laplace transformed visco-elastic solution has thus been determined, it
must be inverse transformed to give the solution in the time domain. This inverse
transform may be difficult, since the substitution of the visco-elastic operators for the elas-
tic operators introduces various functions of the transform variable s into the transformed
velocity equations. Since these transformed equations will have functions of s in addition
to the operators (i.e., the Laplace transform for propagation of the velocity anomaly), the
additional functions of s introduced by the transformed visco-elastic operators will compli-

cate the inverse transform.

The correspondence principle could also be used to find the visco-elastic velocity
anywhere within the glacier, or to find the visco-elastic basal shear stress, provided that we
had the elastic compressible solutions for these quantities. However, we will only examine

the visco-elastic surface velocity in this paper.

4.3 Surface velocity solution for prescribed basal velocity

4.3.1 Prescribed propagating basal velocity

The basal velocity anomalies which are used for the viscous incompressible surface
velocity solution (Chapter 2) and the elastic compressible surface velocity solution (see
Appendix B), are not propagating as a function of time. The only effect which propaga-
tion of the basal anomaly would have on the surface anomaly is to propagate the surface
anomaly in a similar manner. The effect of this propagation at the surface can thus be very
easily calculated (see Section 2.2.6). However, for a visco-elastic rheology, the propaga-
tion speed and the spatial pattern of a given basal velocity anomaly can both quite possibly
affect the spatial pattern of the resulting surface velocity anomaly. It is therefore necessary
to specify propagating velocity components u(x,f) and v,(x,) for the basal boundary condi-
tions.

It is easiest to again use the Fourier transform in the solution process (in addition to
the Laplace transform which is required for the algebraic use of the correspondence
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principle). The Fourier transform is used in Appendix B for the linear elastic velocity
solution; it is quite simple to just propagate the Fourier transformed velocity boundary
conditions which are used in that appendix. These propagating boundary conditions (in the

wave number domain) are:

dgk.t) = dy(k)e™™ (4-6a)

Dy(k) = Fy(k)e™* (4-6b)

Here #,(k) and 7,(k) are the Fourier transforms of the x and y components of the spatially
fixed basal velocity anomaly, and ¢~ is the term for propagation in the +x direction. The
angular frequency is o; for all wave number components to propagate with a given wave

speed w the angular frequency must be proportional to the wave number.

4.3.2 Laplace transform and substitution of visco-elastic rheological operators

We are now prepared to make use of the correspondence principle. We first must
substitute the propagating Fourier transformed basal velocity anomaly (Equations (4-6)), for
the fixed basal velocity anomaly in the Fourier transformed surface velocity solution for the
linear elastic theology (Equations B-11). We next take the Laplace transform. This gives:

n _ [8—16v+8v2+4kH—4vikH]e™ + [8—16v+8v>4kH+4vkH e || s-iw P @-72)
s [3-4v]e 2 10-24v+16v2+4i2H +[3-4v]e? St |

[4-12v+8v2-akH+4vkH]e ™ + [—4+12v-8v2~4kH-+avkH] e || s—io i
[3—4vie M 110-24v+16vAHACH [3-4v1e? JVITS

5 | [AH12v-8VAdkiviHe ™ + [4-12vs8v-aitiraviele® || s-iw i, (4-7b)
: [3—4v]e 21 +10-24v-+16v>+4KPH+{3—-4v]e? | R

[8—16v-+8v?—~4kH+4vEH 1™ + [8—16v+8v44kH-avkH]eH |[ s-i .
[3-4v1e 2+ 10-24v+16v2H4IH +[3-4v]e?! ol |

In these equations v is the elastic compressible Poisson’s ratio. (We again note that the

Laplace transform does not affect this elastic compressible ratio.) The terms &, and v, are

the Fourier transforms of the spatial patterns of the two components of the basal velocity
s—i®

anomaly. The effect of the propagation is seen in the term yowe
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We now need to substitute the Laplace transform of the visco-elastic operator v
which corresponds with the elastic compressible Poisson’s ratio. Comparison of Equations
(4-5) with Equations (B-5) (from Appendix B) shows that: (a) the elastic compressible bulk

modulus X corresponds with K in the Laplace transformed visco-elastic equations, and (b)
the elastic compressible shear modulus p corresponds with the operator —u%% in the

Laplace transformed visco-elastic equations. The solution for the Laplace transform of the

visco-elastic operator v then is

_ 3Ku+ 3Kms — 2uns
6Kl + 6Kns + 2pums

@4-8)

This operator is substituted for the elastic compressible Poisson’s ratio in Equations (4-7).
This substitution will add considerable complexity to these equations. The results of the
substitution give us the Laplace transforms of the Fourier transforms of the visco-elastic

surface velocity components % and v,

4.3.3 Inverse Laplace transform of surface velocity

The inverse Laplace transform of the visco-elastic form of Equations (4-7) is not
trivial, due to the substitution of the visco-elastic operator v (which is a function of the
transform variable s) for the simple elastic compressible ratio v (which is not a function of
s). Without writing out all the steps involved in solving the inverse transform, it is
sufficient to first note that the visco-elastic form of Equations (4-7) can be reduced to the
" following equations for the visco-elastic surface velocity components &, and ¥g:

, -011+Bls+7152 1[ s—io Lb+ [02+st+"lz-$‘2 H s—® ] .

| atbstes® || Is+iolls-ie] _u bsie || sHols—o] | (4-9a)

i e
. | utBastras” 50
| atbstes® || [sHio]ls-iw] |

N |
v~

a+bs+es® || [sHo)[s—io]

O3H i
'Iib+[ yHBasHYas H 5—i® :|Gb (4-9b)
The coefficients a, B, v, a, b, and ¢ are explicitly written out in Appendix C. These
coefficients are functions of the non-dimensional wave number kH, the bulk modulus X, the
shear modulus p, and the dynamic viscosity . Equations (4-9) are in a form which can be
inverse Laplace transformed (see for example Churchill, 1971); the inverse Laplace

transforms give the solutions for the Fourier transformed surface velocity components i
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and 9, These solutions will each have four terms; however, two of the terms for each
solution decay exponentially with time. These two terms are transient terms which arise
from the fact that our Laplace transforms involved the assumptions that the initial stress
and strain were equal to zero; thus we may ignore these terms. The third term for each
solution is conveniently equal to zero. This leaves the only the final terms as the solutions

for the Fourier transformed surface velocity components:

(4-10a)

| a0y + [avtbBi—coylo? + ey |
s = fiye
@ + [2ac+b¥0* + ot v

N [-aBy+boyle + [~by+cp o’ g
@ + [2ac+b*10? + c?ot o

_ [[—aBﬁbazlm + [—bvﬁcﬁﬂm3]v. it

@ + [2ac+ble? + ot

acy + [~ay+bBrcolo? + cpo’ 55,70
@ + [Fac+b@? + 2ot 4
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5 _ l[-a134+ba4]co + bverepao’ |

= 4-10b
Vs a+ [—Zac+b2] o? + 2t ¢ )

a0 + [~aytbBacagle? + oy’ | 2
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4.4 Properties of surface velocity solution

4.4.1 Choice of adjustable parameters

There are several parameters which we might wish to vary in order to look at the
properties of the visco-elastic surface solution. The first of these is the non-dimensional
wave number k. We will look at our solutions as a function of the logarithm (to the base
10) of the non-dimensional wavelength MH, where this wavelength is related to the wave
number in the usual manner (MH=2m/kH).

The other parameters which the velocity solutions are functions of are X, g, and no.
(This can be seen from the full algebraic solution, which the reader has been spared.) All
of these have units of stress. In fact, each of the terms in the numerators and the denomi-
nator of the surface velocity solution (e.g., ac;) come out as units of stress to the eighth
power. (This means that the particular stress units used do not matter, provided that they
are the same for K, u, and nw.) Thus the equations are dimensionless quantities multiplying
the Fourier transformed basal velocity components @, and v,. We can vary K, p, and no

to change the relative elastic and viscous properties of the theology.

For glacier ice, an acceptable value for the elastic compressible Poisson’s ratio is
about one third. If we set the bulk modulus K=1, Poisson’s ratio will be correct for the
shear modulus p=0.375. The term nw can then be varied over a wide range. Relatively
low values of nw correspond with a relatively viscous rheology; while relatively high
values of o correspond with a relatively elastic rheology. At intermediate values of no
we would expect to see the most interesting visco-elastic effects. The importance of these
visco-elastic effects will also depend on the wavelength or wave number.

4.4.2 Magnitude and phase of forward transfer functions

The solutions for #, and ¥, (Equations (4-10) each have four terms: a real and an
imaginary part multiplying both 4, and ¥,. These terms which multiply 4, and ¥, are simi-
lar to the forward transfer functions of Chapter 2; however, the phase of the transfer for
the visco-elastic rheology is more complicated, since there are both real and imaginary

parts for each visco-elastic transfer function.
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To calculate the magnitude and the phase of the visco-elastic transfer functions, we
wiite Equations (4-10) ir a simplified form. Simplifying Equation (4-10a):

i, = [A+A )l ™™ + [AgHAl0,e™™ (4-11a)
Simplifying Equation (4-10b):
Vs = [AstiAglie ™ + [Ar+iAglipe ™ (4-11b)

The magnitudes, and phase leads (in space), then are as follows:

I = VA %A , 8 =tan! —g (4-12a)
Irl = JA%AZ 8 =tan™! -3‘; (4-12b)
ITol = JAZ+ASZ | 8 =tan™ :7‘:‘?? @-12¢)
IT”l = Va+Ag 8= tan™ :-%: (4-12d)

The values of the phase leads 3 are all between -zt and 0 (which means that they are actu-
ally phase lags in space, which correspond to phase leads in time. The magnitude and
phase for each transfer function will depend on the wavelength or wave number, and the
visco-elastic parameters. Fixing Poisson’s ratio at v=1/3, we then vary log(WH) and

logMw). The resulting plots of the transfer functions are shown in Figures 4-1.

Not surprisingly, we see that the magnitude and phase of the transfer functions for
the relatively viscous rheology (log(nw) =—2.8) are similar to those for the viscous transfer
functions of Chapter 2; and the magnitude and phase of the transfer functions for the rela-
tively elastic rheology (log(nw) = 1.2) are similar to those for the elastic transfer functions
of Appendix B. For the relatively visco-elastic rheology (logmw)=-0.8, which
corresponds to @ = 10 4! for glacier ice), the magnitude of the transfer functions is gen-
erally between the magnitudes for the viscous and elastic rheologies, which is not in any

case much of a variation.

It is the phase of the transfer function T,/* which appears to be the most interesting

for the relatively visco-elastic rheology, since there is a wide variation in the phase lag of
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this transfer function when the visco-elastic rheology is compared to either the viscous or
the eclastic rheologies. This varation in the phase lag occurs in the range
0.6 < log(MH) < 0.8. The variation in the phase lag of the other transfer functions (as com-
pared to the elastic or viscous rheologies) is not very pronounced. In fact, maximizing the
variation in the phase lag for the transfer function T;* was the criterion for choosing the
value of log(nw) which would maximize the effects of the visco-elastic rheology (with the
conclusion that a value of log(n®) = —-0.8 maximized these visco-elastic effects). However,
we note that the magnitude of 7 is relatively small for the wavelengths which have the
large variation in the phase lag. This means that any interesting visco-elastic effects are

not likely to be very pronounced.

4.4.3 Surface velocity solution for basal velocity front

To test for interesting visco-elastic effects, we will prescribe a basal velocity anomaly
which consists of a "front" in the longitudinal velocity component u,. The Fourier
transform of this anomaly will include the wavelengths of interest. The transfer function
T* can then be used to calculate the longitudinal component of the surface velocity ano-
maly u,, thus testing the most likely situation for which we expect interesting visco-elastic
effects to occur. We will also calculate the normal component of the surface velocity ano-
maly v,. The basal velocity anomaly and resulting surface velocity anomaly are plotted as
the solid lines in Figure 4-2.

This plot can be compared with the dashed lines in Figure 4-2, which are plots of the
surface velocity anomaly using the linear viscous rheology (similar to the solid lines of
Figure 2-4). The comparison shows that the amplitude of the surface velocity components
for the visco-elastic rheology is slightly less than the amplitude of the same components
for the linear viscous rheology. In addition, there is a slight shift in the pattern of u, near
the zero crossing, above the basal velocity front. However, these can not really be viewed
as major differences between the results for the two different rheologies. This lack of
major differences is significant, since the visco-elastic calculations in this section used a
value of log(nw) = -0.8, which we concluded was the Maxwell rheology which would give

the most pronounced visco-elastic effects (when using a value of Poisson’s ratio v = 1/3).
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4.5 Discussion

The Maxwell visco-elastic rheology which we have used produces interesting com-
plexity in the phase of the transfer function 7,“. However, the previous section showed
that the calculated surface velocity, for a basal velocity front in the component u,, is not
much different as compared to the case for the linear viscous rheology. We can reasonably
conclude that other forms for a basal velocity anomaly would also not have much
difference between the visco-elastic and the linear viscous rheologies, since the basal velo-
city front is a fairly extreme case. The reason for the lack of difference between the
results for the two rheologies (given the variation in the phase of the transfer function 7;),
is that the magnitude of T is small when the phase variation is pronounced. The other
transfer functions do not have significant differences when the two rheologies are com-

pared.

It is possible that basal velocity anomalies could be prescribed for which the visco-
elastic effects in the calculated surface velocity anomaly would be pronounced, although
experimenting with various reasonable forms for basal velocity anomalies did not yield this
result. It is also possible that visco-elastic effects might be important if a different visco-
elastic rheology were used. However, the Maxwell rheology does show some of the possi-
ble visco-elastic effects in the transfer functions. The example of a calculated surface velo-
city using the Maxwell visco-elastic rtheology suggests that the differences between linear

viscous and visco-elastic rheologies may in most cases be fairly minor.
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Figure 4-1a. Magnitude and normalized phasc lead of forward transfer function 7,
for visco-elastic rheology, for three different values of log(nw): long dashed line,
log(w) = —2.8 ("viscous"); solid line, logme) = —0.8 ("visco-elastic"); and short dashed line,
log(nw) = 1.2 ("elastic”). Poisson’s ratio v = 1/3.
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Figure 4-1b. Magnitude and normalized phase lead of forward transfer function 7,™
for visco-elastic rheology, for three different values of log(nw): long dashed line,
log(nw) = —2.8 ("viscous"); solid line, log(nw) = -0.8 ("visco-elastic"); and short dashed line,
log(mw) = 1.2 ("elastic”). Poisson’s ratio v = 173,
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Figure 4-1c. Magnitude and normalized phase lead of forward transfer function 7,*
for visco-elastic rheology, for three different values of log(nw): long dashed line,
log(Mmw) = 2.8 ("viscous"); solid line, log(nw) = 0.8 (“visco-elastic"); and short dashed line,
log(nw) = 1.2 ("elastic”). Poisson’s ratio v = 1/3.
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Figure 4-1d. Magnitude and normalized phase lead of forward transfer function 1,”
for visco-elastic rheology, for three different values of log(w): long dashed line,
logMmw) = -2.8 ("viscous"); solid line, log(nw) = -0.8 ("visco-elastic"); and short dashed line,
logmo) = 1.2 ("elastic"). Poisson’s ratio v = 1/3.
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Figure 4-2. Basal and surface velocity anomalies for a step or sharp front in u,, for
visco-elastic theology. Solid lines: lognw)=-08, v = 1/3. Dashed lines: linear viscous

solution.




CHAPTER S

NON-LINEAR (POWER LAW) FORWARD SOLUTIONS

5.1 Rheology and flow law

The previous chapters have all considered linear viscous or visco-elastic rheologies,
which allowed analytic solutions for the given geometry and boundary conditions. We
now wish to consider a power law rheology, which is more realistic for glacier ice. This
power law rheology for glacier ice has been studied by many workers (Nye, 1953; Glen,
1955; Shreve and Sharp, 1970; Raymond, 1973) and is usually referred to as Glen’s flow
law. The form of this flow law is

é;= At (5-1a)
Here ¢; is the strain rate tensor, A is the inverse viscosity parameter, T is the second invari-
ant of the stress deviator tensor, and ; is the stress deviator tensor. The parameter » is the
exjonent in the flow law and is generally considered to have a value of about 3 (Paterson,

1981). The flow law can also be written using a viscosity parameter B, which is defined
B = [1/2)A7V*, This form of the flow law is '

2B" . :
T = G (5-1b)

Thus we can define an effective viscosity of the ice n%:

W= 5-2)

It is very important to note that this effective viscosity is dependent on the stress dis-
tribution within the ice. Both the sieady-siate and anomalous velocity distributions can
affect this stress distribution and thus affect the effective viscosity. The effective viscosity
in turn affects the flow for both the steady-state and anomalous velocity distributions.
Therefore the steady-state and anomalous flows are coupled, and in general can not be
separated. This coupling is examined in more detail in Section 5.4.

With the power law rtheology, analytic solutions can be determined only for very
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simple problems. The more complicaied problems which we wish to consider require the:
use of numerical models which are solved on a cocmputer. The specific model which we
are going to use is a finite element model developed by Raymond (1978). Additional
details of this model are in Raymond and others (1986), and Pfeffer (1987). The finite ele-
ment model, given the proper boundary conditions, calculates the velocity and stress distri-
butions throughout the modelled section.

52 Geometry, boundary conditions, and model parameters

52.1 Geometry and boundary conditions

The geometry which we wish to use with the finite element model is a planar slab
(see Figure 2-1). However, the model can not directly consider a slab of infinite length.
For the boundary conditions which we wish to apply, this difficulty can be avoided by
specifying "periodic boundary conditions" at the ends of the model.

This is done by modelling only a small longitudinal section of the planar slab. The
periodic boundary conditions mean that the section is assumed to repeat itself in an infinite
series. This means that the velocity and stress at one end of the modelled section must be
identical to the velocity and stress at the other end. Given the basal and surface boundary
conditions, the finite element model calculates a solution which satisfies this requirement
that the velocity and stress at the ends be equal. Consideration of this method shows that
it is entirely analagous to the assumed periodicity of a fast Fourier transform. '

The basal and surface boundary conditions are similar to those of Chapters 2 and 4.
A velocity anomaly is prescribed at the bed, with longitudinal component u, and normal
component v,. (Although the steady-state and anomalous solutions are in general coupled,
a solution for steady-state basal sliding (not changing in the x direction) can be linearly
superposed with other solutions, because steady-state sliding does not affect the strain-rate
and thus does not affect the effective viscosity. This means that steady-state basal sliding
need not be considered in the boundary conditions. See Section 5.4.2.) The surface is
assumed to be stress free, except for atmospheric pressure. Since this surface stress boun-
dary condition is built in to the finite element model, the only boundary condition which
must be explicitly input to the model is the anomalous basal velocity.
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5.2.2 Model parameters

The first model parameters involve the grid of the finite element model. The organi-
zation of the nodal numbering system, and the coordinates of each node, must be specified.
For the periodic boundary conditions, an example of the nodal numbering system is shown
in Figure 5-1. The coordinates of the nodes will depend on the problem which we are try-
ing to model. It is convenient to non-dimensionalize these coordinates by the ice thickness
H: thus the y-coordinate of the surface nodes (and the thickness of the ice) is equal to 1.
The basal nodes have a y-coordinate of 0. The intermediate nodes between the surface and
the bed have y-coordinates with values between 0 and 1. The domain of the x-coordinates
depends on the length of the slab being modelled. '

The parameters which control the ice rheology must also be specified. For our model
we will specify incompressibility; this means that the non-linear equivalent of Poisson’s
ratio is equal to 0.5. The viscosity parameter B must be chosen; it is convenient to choose
a value of 0.5 (for justification of this see Section 5.3.3). A value of 3 for the exponent n
in the flow law will be used, which is intermediate in the range of accepted values. These
choices of B and n give a value of one for the inverse viscosity parameter A.

The density of the ice p, and the body force components per unit mass (longitudinal

componcat gsiny and normal component -geosy, where g is the acceleration of gravity and y
is the bed slope angle) must be specified. We will use p =900 kg m3and g=98N kg™h;
the bed slope angle y will vary depending on the specific situation which we are modelling.
Along with the boundary conditions, these will control the total stress distribution within
the ice and the resulting deformation and velocity.

Finally, since the finite element model works by an iterative technique, convergence
criteria must be established. This is done by looking at the value of a parameter ¢ which
measures the difference between velocity solutions for successive iterations. If € is less
than a chosen small value, the solution is considered to be converged. A maximum
number of iterations is also specified.
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5.3 Non-linear transfer funciions for harmonic basal velocity anomalies

5.3.1 No bed slope

We will now calculate non-linear "transfer functions” which will be a direct com-
parison with the linear transfer functions of Chapter 2. Since we expect that the steady-
state and anomalous flows for the non-linear rheology will be coupled, the non-linear
transfer functions will first be calculated for the case with no steady-state flow. This is
done by specifying no bed slope (e.g., no longitudinal component of the body force), and
no steady-state basal sliding. The basal boundary condition will be a prescribed harmonic
velocity anomaly, either in the longitudinal or normal component. The amplitude of these
anomalies will be set equal to one. The output from the finite element model will then
give the velocity at all the surface nodes, which gives the longitudinal component of the

surface velocity u, and the normal component of the surface velocity v,

To calculate the transfer functions, the finite element model is run for basal anomalies
with a series of different dimensionless wavelengths M/H. For each of these wavelengths,
the resulting surface velocity components will have amplitudes which are some fraction of
the basal amplitude of one (the wavelength at the surface will be the same as the
wavelength at the base). These fractional surface amplitudes are then the magnitude of the
non-linear transfer functions. We expect that either a longitudinal or a normal velocity
component at the bed will cause both a longitudinal and a normal component at the sur-
face, and that the relative phases between the basal and the surface components will be
similar to the relative phases for the linear rheology.

When these non-linear transfer functions are calculated, it tums out that our assump-
tions about the cross-component effects and the relative phases are correct. Thus when we
prescribe a basal velocity anomaly in the longitudinal component us, this results in surface
velocity anomalies for both the longitudinal component u, and the normal component v;.
The phase of u, is either the same as the phase of u, or shifted 180° (which is equivalent to
a sign change). The phase of v, lags the phase of u, by 90° in space (which is equivalent
to a 90° phase lead in time for propagation in the +x direction).

If we prescribe a basal velocity anomaly in the normal component v, this results in

surface velocity anomalies for both the u, and v, The phase of v, is the same as the phase
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of v,. The phase of u, lags the phase of v, by 90° in space.

Thus the non-linear transfer functions follow a similar pattern to the linear transfer
functions of Chapter 2. We can therefore plot these non-linear transfer functions in a
manner similar to the linear transfer functions. Both the linear and the non-linear transfer
functions are plotted in Figure 5-2.

In this figure, comparison of the linear transfer functions with the non-linear transfer
functions (with no bed slope) shows systematic differences. The main differences are that
the magnitudes of the non-linear transfer functions T,* and T, are considerably less than
the magnitudes of the corresponding linear transfer functions; while the magnitudes of the
non-linear transfer functions 7, and T,” are similar to the magnitudes of the corresponding
linear transfer functions. Thus for the non-linear rheology there is less effect at the surface
than with the linear rheology for a given longitudinal harmonic basal anomaly u;. The
effect at the surface for a given normal harmonic basal velocity anomaly v, is similar for
both the linear and the non-linear rheologies. Note that for the non-linear rheology, the
transfer function T,* is less than the transfer function 7., instead of being equal as with
the linear rheology. Therefore these transfer functions are plotted separately in Figure 5-2.

Furthermore, the boundaries between the various scales (as described in Chapter 2)
for longitudinal harmonic basal velocity anomalies are shifted towards longer wavelengths.
In fmﬁicular, the boundary between the intermediate and the long scales may be viewed as
being shifted considerably towards longer wavelengths, since in no case which is tested is
T,* near to one in value, for the non-linear rheology.

These non-linear effects are a bit difficult to explain. However, it is intuitively obvi-
ous that the deformation and associated stresses resulting from a basal velocity anomaly
should be greatest near the bed, and decrease towards the surface. (Balise and Raymond,
1985). This was well-shown for the linear rtheology of Chapter 2. Since the effective
viscosity (Equation (5-1)) depends on the stress distribution, we can see that the effective
viscosity will be lowest near the bed and higher towards the surface. We expect that this
will tend to even further decrease the surface effects of a basal anomaly, as is in fact the
case for a longitudinal basal velocity anomaly u,. However, the surface effects for a nor-
mal basal velocity anomaly are not decreased, which is somewhat counter-intuitive. The

only explanation for this might be due to the gradient of the effective viscosity tending to
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be in the normal direction (from the bed towards the surface), with the magnitude of this
gradient being greatest near the bed. This could reasonably result in a damping of longitu-
dinal flows near the bed, while normal flows near the bed would not be similarly damped,

and might even be decreased less than the decrease which occurs with no effective viscos-
ity gradient.

532 Sloped bed

The question now arises of what effect a steady-state velocity distribution will have
on the non-linear transfer functions. Since we expect that steady-state basal sliding will
not affect the anomalous surface motion which results from a basal velocity anomaly, we
will instead examine the effects of steady-state deformation within the ice. This can be
modelled by specifying a sloped bed for the planar slab. This means that there will be a
longitudinal component of the body force (due to gravity) acting on the ice; thus, there will
be steady-state deformation in the ice and a steady-state longitudinal velocity component
which increases towards the surface.

Specifically, we will prescribe a longitudinal component for the body force, with the
geometry and the coordinate system being unchanged. This is equivalent to having a sloped
bed. We will then prescribe a basal velocity anomaly only (with no steady-state sliding).
This gives a combination of deformation within the ice due to both the steady-state longitu-
dinal body force and the anomalous basal velocity. This allows us to study the effect of a
sloped bed (with the associated longitudinal body force) on the non-linear transfer func-
tions, and to compare this with the case for no bed slope which was calculated in the pre-

vious section.

The non-linear transfer functions for a sloped bed are plotted in Figure 5-3. (The
non-linear transfer functions for the case with no bed slope are also plotted for com-
parison.) Inspection of this figure shows that the transfer functions 7, and 7, are further
decreased in magnitude for a sloped bed, as compared to the case of the transfer functions
with no bed slope. The boundary between the intermediate and the long scales (as men-
tioned in the previous section) is shifted towards even longer wavelengths. The transfer
function T, is also decreased in magnitude, but is still greater than T,”. Surprisingly, the
transfer function T,” increases in magnitude.
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The analysis of these effecis due to the interaction of a sicady-state deformation with
an anomalous velocity depends on the effect on the effective viscosity of the steady-state
and anomalous stress distributions. A detailed analysis of these interactions is done in Sec-
tion 5.4.

5.3.3 Important dimensionless numbers

Experimenting with various combinations of the input parameters for the finite ele-
ment model allows the determination of a few simple dimensionless numbers, for a har-
monic basal velocity anomaly. We first specify a given model grid with given coordinates
for the nodes. We then choose either a longitudinal or a normal basal velocity anomaly.
These anomalies have the form:

1y, = Uysinkx (5-3a)

v, = Visinkx (5-3b)

Here U, and V, are the respective amplitudes of the longitudinal and normal basal velocity
anomalies.

With these choices, we can then determine the important dimensionless numbers. A
given set of these dimensionless numbers will then always result in a certain dimensionless
surface velocity anomaly, no matter how the constituents of the dimensionless numbers are
varied. (The surface velocity anomaly is non-dimensionalized by dividing it by the ampli-

tude of the basal velocity anomaly).

The most obvious of the dimensionless numbers is the exponent n in the flow law. If
this exponent is changed, the surface velocity effects from a basal velocity anomaly

change, since changing n changes the rheology and the effective viscosity.

The second imrortant dimensionless number is the dimensionless wavelength of the
basal velocity anomaly M/H. Varying this wavelength changes the surface effects since a
different transfer function value is used. This is obvious given the plots for the transfer
functions (Figures 5-2 and 5-3).

The last important dimensionless number is not so obvious. We know that we have
not yet considered in this section the viscosity parameter B and the basal shear stress

pgHsiny. It tumns out that if we combine these, the flow law exponent n, and the amplitude
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of the harmonic basal velocity anomaly (U, or Vp), gives us the third dimensionless
number. This dimensionless number is the ratio of the amplitude of the basal velocity ano-
maly, to the theoretical steady-state surface deformatio_n velocity. The theoretical steady-
state surface deformation velocity is simply the (longitudinal) surface velocity which would
exist if there were no basal velocity anomaly and no steady-state basal sliding. This sur-
face deformation velocity is due to the component of gravity which is parallel to the bed
and surface (the longitudinal component of the body force), and occurs only with a sloped
bed. This velocity is calculated in many references. We will denote it as u:

d_ _2;4_ 2 anf]B
uf = == HipgHsin) (5-4)

For a longitudinal basal velocity anomaly, our dimensionless number is then Uyu?. For a
normal basal velocity anomaly, our dimensionless number is Vy/u?. No matter what the
constituent parameters of this dimensionless number are, experimenting with the finite ele-
ment model shows that the dimensionless surface velocity effects do not change if this
dimensionless number Uy/u? or Vy/u,? does not change (provided that the other dimension-
less numbers and the grid system and nodal coordinates do not change). In particular, the
value chosen for the viscosity parameter B is not important, as long as it results in a rea-

sonable value of the ratio U,/u,? or the ratio V,/u,’.

5.3.4 Limited validity of non-linear transfer functions

It would be convenient if the non-linear transfer functions, which are a function of
wavelength (or wave number), could be applied to any Fourier transformed basal velocity
anomaly. This would be similar to the application of the linear transfer functions of
Chapter 2, and would allow the determination of the Fourier transformed surface velocity,
which could then be inverse Fourier transformed. However, a little thought shows that this
process is not valid for the non-linear transfer functions. This is true because in a Fourier
analysis, motion at any wave number affects the effective viscosity, thus changing the
motion at other wave numbers and in effect changing the transfer functions for these other
wave numbers. The non-linear transfer functions were calculated only for motion at any
single wave number, and are therefore only valid for motion ai any single wave number.
To calculate the surface effects of a basal velocity anomaly which has harmonic com-

ponents at various different wave numbers, it is necessary to run the finite element model
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directly for that specified basal anomaly.

Although the non-linear transfer functions are not very useful for directly analyzing
the surface effects of complicated basal velocity anomalies, these transfer functions are use-
ful for studying the general effects of the non-linear rtheology. This has been briefly exam-

ined in the previous sections and will be studied in more detail in the following section.
5.4 Coupling of steady-state and anomaly flows

5.4.1 Effect of anomaly flow on steady-state flow

We know that the steady-state and anomalous flows are coupled, since they both
affect the effective viscosity n%. We have briefly examined the effect of a steady-state
deformation (due to gravity and a sloped bed) on the anomalous nos-linear transfer func-
tions; now we will examine the effect of the velocity anomalies on the steady-state defor-

mation.

This can be done by specifying various angles v for the bed slope in combination
with various prescribed basal velocity anomalies. We will use harmonic anomalies, since
these are easiest to systematically describe. Anomalies in both the longitudinal and the
normal coniﬁbnents of the basal velocity will be used.

The steady-state deformation due to gravity and the sloped bed results in the theoreti-
cal longitudinal surface velocity % there is no steady-state normal component to the sur-
face velocity. We will compare this theoretical surface velocity, with the mean of the
longitudinal component of the actual surface velocity which occurs when a basal anomaly
(with a mean of zero) interacts with steady-state deformation. This mean of the longitudi-
nal component of the actual surface velocity will be denoted as 7. This comparison can be
described by a dimensionless ratio which is i/u,. This ratio gives the actual mean surface
velocity, as a fractional multiple of the surface deformation velocity (due to the sloped bed)

which would occur with no basal velocity anomaly.

Experimenting with various combinations of parameters shows that the dimensionless
numbers detailed in Section 5.3.3 are also the important numbers for this case. We there-
fore set n=3, choose a dimensionless wavelength A/H, and then vary the ratio Uyu? or the
ratio Vy/u?. The results of these calculations are plotted in Figure 5-4.



102

This figure shows that in all cases the ratio @/u? is equal to or greater than one. This
occurs because the basal velocity anomalies result in an anomalous stress distribution in the
ice, which decreases the effective viscosity, as compared to the effective viscosity which
would exist with only steady-state defermatinn. This can be referred to as "strain-rate
softening”. This strain-rate sofiening allows greater deformation from the gravitational
component which is parallel to the sloped bed. This causes a greater mean surface velocity
than that which would occur with no velocity anomaly.

As the ratios Uyu? or Vyud are increased, the resulting ratio z/u, also increases.
This is because as the velocity anomaly becomes a greater portion of the total velocity dis-
tribution, the proportion of the stress distribution due to the velocity anomaly increases,
resulting in proportionally greater strain-rate softening. This allows proportionally greater
deformation due to gravity, and results in a greater mean surface velocity as compared to

the surface velocity which would occur with a lower magnitude velocity anomaly.

If we vary the dimensionless wavelength, Figure 5-4 shows that shorter wavelengths
result in a greater mean surface velocity. Thus the strain-rate softening (with a constant
value for the dimensionless number Uyu? or Vyu?) is greater for shorter wavelength
anomalies. This is to be expected, since shorter wavelength anomalies result in higher
stresses in the ice. Of interest are the details that at short wavelengths, the strain-rate
softening is greater for a normal basal velocity anomaly than for a longitudinal basal velo-
city anomaly; while at long wavelengths, the strain-rate softening is less for a normal basal
velocity anomaly than for a longitudinal basal velocity anomaly. No simple explanation is
apparent for these details.

The figure also shows that there is very little strain-rate softening when the ratio
Uyu? or Vyul is less than or equal to 0.2 (i.e., for this value of Uyu,? or Vy/u,? the value of
the ratio #/u? is very close to one). For ratios greater than 0.2, the increase in the strain-
rate softening is somewhat linear. No obvious explanation has been identified for this

somewhat linear relation.
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5.4.2 Effeci of sieady-siate flow on anomaly flow

The effect of a steady-state flow on the anomaly flow has been briefly examined in
Section 5.3.2. We will now examine in more detail how the deformation due to gravity
and a sloped bed affects the anomalous velocity disiribution.

This deformation under the force of gravity will be greatest near the bed and decrease
towards the surface (as is also true for the deformation due to a basal velocity anomaly).
Thus the stresses associated with the steady-state deformation will be greatest near the bed
and decrease towards the surface. This is the same pattern of stress distribution as that
described in Section 5.3.1 for the basal velocity anomaly. We thus expect a further
decrease in the surface effects of a longitudinal basal velocity anomaly, beyond the
decrease which occurs when the rheology is changed from linear to non-linear. This
decrease was in fact seen in Section 5.3.2 for a harmonic longitudinal basal velocity ano-
maly. The non-linear transfer functions 7,” and T, decreased in value when the effects of
a sloped bed were added (see Figure 5-3).

Furthermore, the non-linear transfer function 7,” increased in value in Section 5.3.2
(for a harmonic normal basal velocity anomaly with a sloped bed). Although this is some-
what counter-intuitive (given the changes in the effective viscosity from the steady-state
deformation associated with the sloped bed), a possible explanation for this increase was
developed at the end of Section 5.3.1. This explanation was based on the fact that the gra-
dient of the effective viscosity is generally normal to the bed (and decreases towards the
surface). Therefore a normal velocity component near the bed would not be damped as
much as a longitudinal component, and might also be damped less than a normal velocity
component with less effective viscosity gradient. Although this explanation was originally
developed to compare a simple non-linear harmonic anomaly (with an effective viscosity
gradient), to a linear harmonic anomaly (no viscosity gradient); it is an equally plausible
explanation for the comparison of a non-linear harmonic anomaly with steady-state defor-
mation, to a non-linear harmonic anomaly without steady-state deformation. There will be

a lower effective viscosity gradient for the anomaly without steady-state deformation.

The transfer function T,”* decreases in value when the effects of a sloped bed are
added (again see Section 5.3.2). This contradicts the above explanation for normal motion
near the bed. However, this explanation is somewhat tentative. It is plausible that
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somehow the effective viscosity changes due solely to a harmonic normal velocity anomaly
increase the non-linear transfer function T, (as compared to the linear case); and yet that
the effective viscosity changes due to a combination of steady-state deformation and a har-
monic normal basal velocity anomaly decrease the non-linear transfer function 7" (as com-
pared to the case without steady-state deformation). It seems difficult to further resolve
this discrepancy.

It is fairly apparent that decreasing the ratios Uy/u,? or Vy/u? will increase the above
effects. (This is confirmed by increasing the longitudinal component of the body force in
the finite element model.) Thus as we steepen the bed slope, T, T,%, and T decrease,

and 7,” increases.

This analysis of the effect of steady-state deformation on an anomalous velocity dis-
tribution may be summarized as a "stress guide" effect. This stress guide damps the
motion from a longitudinal harmonic basal velocity anomaly, thus decreasing the surface
effects. It also damps the cross-component (fongitudinal) motion from a normal harmonic
basal anomaly. The normal motions from a normal anomaly are damped less than in the
case with no steady-state deformation, which probably can be explained by continuity argu-
ments requiring that the normal motions be increased since the cross-component longitudi-
nal motion (from a normal basal velocity anomaly) has been decreased.

The above analysis is based on examination of harmonic basal velocity anomalies.
However, it seems reasonable that steady-state deformation would affect any form of basal
velocity anomaly (and the resulting surface velocity anomaly) in a manner similar to the
manner for harmonic anomalies. The exact details would have to be determined for each
specific basal anomaly. This is not systematically examined in this dissertation.

A final question to be examined in this section is whether or not steady basal sliding
affects an anomalous velocity distribution. We know that the solution for steady sliding
(which is simply a uniform longitudinal velocity throughout the ice thickness) should be
able to be linearly added to the anomalous velocity distribution. Tests with the finite ele-
ment model confirm this. The uniform longitudinal velocity does not affect the effective

viscosity, and thus does not affect the anomalous motion.
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5.5 Hypothetical mini-surge

The finite element model and solutions of this chapter allow us to make a simple
example of a hypothetical mini-surge. One possible explanation for mini-surges involves a
pressure wave traveling through the basal hydraulic system. We can therefore model a
possible mini-surge by specifying a basal velocity pattern which might be associated with

this pressure wave.

This problem has been studied by Iken (1981). A sharp pressure wave in the basal
hydraulic system will result in rapid cavitation at the bed. If the pressure is then gradually
reduced, the cavities will gradually close.

The rapid cavitation will cause a sharp pulse in both components of the basal velo-
city. When the cavities reach their maximum size, the normal component at the bed v, will
have dropped back to about zero, since the cavities are no longer opening. However, the
longitudinal component at the bed u, will remain relatively high as long as the cavities are
open, due to the increase in the effective smoothness of the bed. As the water pressure is
gradually reduced and the cavities close, u, will gradually decrease. The gradually closing

cavities will result in a small negative value for v;.

The basal velocity boundary condition for the hypothetical mini-surge therefore con-
sists of the following pattem: sharp pulses in both u, and v,, followed by u, then gradually

decreasing towards zero, while v, goes to zero and then is slightly negative.

This pattern for the basal boundary condition and the resulting surface velocity pat-
temn from the finite element model are shown in Figure 5-5. (The basal component v, was
in fact set equal to zero in the "slightly negative" region to simplify the model input.) The
single basal peaks in u, and v, result in a double peak in the longitudinal component of the
surface velocity u,. This double peak is centered above the single basal peaks. The nor-
mal component of the surface velocity v, has a pattern similar to the pattern at the bed for
Vp.

The scale of this hypothetical mini-surge is quite important; especially important is
the width (in the x direction) of the basal velocity peaks as compared to the thickness of
the ice. If the basal velocity peaks are made sufficiently broad, the double peak in u, is
smoothed out, and the surface velocity pattern becomes very similar to the basal velocity
pattern.
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This non-linear mini-surge model can be compared with a mini-surge model using the
linear theology (the results for the lincar rheology were plotted in Figure 2-9). The
different rheologies do not cause major qualitative differences in the resulting surface velo-

city patterns.

5.6 Discussion

The forward solutions, as developed with the finite element model using the non-
linear theology, are somewhat limited. These solutions heavily emphasize harmonic basal
anomalies and the resulting transfer functions. As previously mentioned, these transfer
functions can not be reliably applied to a Fourier analysis of any arbitrary basal velocity
anomaly.

However, the non-linear transfer functions do give some insight into the effects of the
non-linear rtheology on velocity anomalies. Specifically, the important dimensioniess
numbers discussed in Section 5.3.3 should be valid for any form of velocity anomaly.
Also, the analysis of Section 5.4 should be valid for non-harmonic anomalies. This
analysis described the important coupling between steady-state velocity distributions and
anomalous velocity distributions; this coupling only occurs with the non-linear rheology.

Although other differences between the linear and non-linear rheologies are quite
interesting, this coupling between the steady-state and anomalous flows is probably the
most important result of using a non-linear rheology. This means that the complete velo-
city or stress distributions must be considered for any problems which are examined using
non-linear rheologies.
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ment model. Actual models had 121 to 231 nodes.
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Figure 5-2. Solid lines: non-linear forward transfer functions for harmonic basal
velocity anomaly, no bed slope. Dashed lines: corresponding linear transfer functions. (a)
T*, (b) I, (¢) 7", and (d) T,".
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Figure 5-3. Solid lines: non-linear forward transfer functions for harmonic basal
velocity anomaly, Uyu,?=02 or Vy/u?=02 (sloped bed). Dashed lines: cormesponding
non-linear transfer functions for no bed slope. (a) 7,*, () T, (c) 7, and (d) T,”.
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Uy/ud

Figure 54. Effect of harmonic basal velocity anomalies on mean surface velocity,
for non-linear rheology. Solid line: &/u? plotted as a function of Uy’ for MH =2.
Long dashed line: same as solid line except VH = 20. Short dashed line: #/u,? plotted as
a function of Vyu2, for VH = 2. Dotted line: same as short dashed line except MH = 20.
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RELATIVE VELOCITY

Figure 5-5. Hypothetical mini-surge for non-linear rheology. Surface velocity com-
ponents (upper curves) for hypothetical basal velocity anomaly (lower curves). Solid lines:
u, and u,. Dashed lines: v, and v,. Here u®=0.045 (sloped bed).



CHAPTER 6

LINEAR VISCOUS INVERSE SOLUTIONS

6.1 Chapter introduction

Understanding sliding velocity distribution in glaciers is an important problem. Typi-
cally glacier velocities are measured at the surface, but the velocity of most interest for
understanding glacier sliding is the velocity at the glacier bed. For surface velocities which
change over a relatively long scale in time or space, the problem of determining basal slid-
ing velocity for a given surface velocity distribution is not too difficult (Haefeli, 1970;
Hodge, 1974; Raymond and Harrison, submitted). The calculation of basal sliding veloci-
ties for surface velocity patterns which change over a short scale in time or space is more
difficult.

Observations of these short-scale changes in surface velocity have been made on vari-
ous glaciers (e.g., Iken, 1977; Kamb and Engelhardt, 1987). The theory of how relatively
short-scale surface velocity patterns relate to basal (and englacial) velocity fields has been
developed for flow through a transverse section of a glacier by Reynaud (1973), and Hantz
and Lliboutry (1981); only one component of velocity (normal to the section) was con-
sidered in these treatments.

In this chapter we will determine possible basal velocity patterns which could be
associated with a given surface velocity pattern, when the surface velocity pattern changes
over a relatively short scale along a longitudinal section of a glacier. Two components of
velocity are allowed. Solving for the basal velocity using a given surface velocity is the
"inverse” problem (solving for the surface velocity using a prescribed basal velocity is the
"forward” problem; see Chapter 2). The results will be useful for a better understanding of
rapid changes in glacier sliding and possible basal processes which may be important in a
glacier sliding law.
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6.2 Mathematical description of problem

6.2.1 Assumptions, rheology, and geometry

The underlying assumptions are the same as those in Chapter 2. These assumptions
can be summarized as solving for an anomalous velocity distribution only, with any
steady-state velocity field subtracted out of the problem (which also removes the gravita-
tional force). The anomalous velocity is assumed to be driven by relatively short-scale
changes in the glacier dynamics, such as those due to variations in the basal water pres-
sure. The anomalous velocity field is assumed to vary slowly in time so that acceleration
terms can be neglected.

A linear viscous rheology is used. (Although a power law rheology is more accurate
for glacier ice, calculations using a finite element model show most of the same qualitative

features as the linear viscous rheology -- see Chapter 7.)

A planar slab geometry is assumed; coordinates are as shown in Figure 6-1. The
velocity is allowed to vary in the x and y directions only. Anomalous motion across the
slope in the z direction is zero. Changes in surface topography due to the velocity anomaly
are assumed negligible.

6.2.2 Boundary conditions

The boundary conditions are all at the upper surface (y=H). (Thus this is not a
"well-posed” problem; see Section 6.2.3.) The x and y components of the surface velocity

anomaly give two boundary conditions:

u|,=” = ux,f) (6-1a)

Vs = vi(x) (6-1b)

where u is the x component ("longitudinal component") of the velocity anomaly, and v is
the y component ("normal component”). The upper surface is stress free (except for
atmospheric pressure), so the stress anomaly on this surface is zero. Treatment is simplified
if the derivative in the x direction of the normal stress anomaly on the upper surface is
used as the normal stress boundary condition. This derivative must equal zero along the
surface:
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ac”
=2 ey =0 (6-22)

where o, is the normal stress anomaly. The boundary condition for the shear stress at the

upper surface is also zero:
Oylrr=0 (6-2b)

where o, is the shear stress anomaly.

6.2.3 Solution method
The field equations for the stress anomaly and the velocity anomaly can most easily
be solved by defining a stream function y, where u= %5-, and v=-— %‘i’- The applicable

field equations can then be reduced to

_y. , Oy Dy _ g
+ 22 o =0 (6-3)
The problem can be further simplified by using the Ifourier transform. The transform
of equation (6-3) is:
Ky - 2k2—2w- %’- =0 (6-4)

where k is the Fourier transform variable (wave number), and v is the Fourier transform of
the stream function. The Fourier transformed boundary conditions, written in terms of v,
are (for the surface velocity anomaly)

~

= a0 (6-52)
ikl gy = 9,01 (6-5b)

For the surface stress anomaly:

v _ Pyl _ .
[3k2 -5 LH 0 (6-62)
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0%y ~ .

These four boundary conditions are sufficient to solve for the unknown function v in
Equation (6-4), giving the transformed stream function throughout the ice. In particular,
we will use this function at the bed to determine basal velocities. However, the problem is
"ill-posed", in that all the boundary conditions are at the surface and none are at the bed
(Lanzcos, 1956; Squeak and Diddlesworth, 1987). This means that minor perturbations or
errors in the surface velocity boundary condition can cause extreme changes in the velocity
pattern calculated at the bed. Some techniques of inverse theory will be used to overcome
this difficulty.

The solutions in the following sections will be written in the wave number or space
domain, in time-independent form. Thus the solutions are a "snap-shot" of the motion
within the ice at a specific time; this viewpoint corresponds with the assumption of negligi-
ble change in the surface topography. These fixed spatial solutions could easily be
modified to give propagating wave forms. (However, possible changes with time in the
surface topography would have to be considered.)

1t would also be possible to determine the solutions in the frequency or time domain,
solving at a fixed spatial position. For this approach, the spatial pattern of the surface
velocity boundary conditions as a function of time would have to be known. This method
is mathematically similar to solving in the wave number or space domain, but the solution
is not examined in this dissertation.

6.3 Exact velocity solution at bed

6.3.1 Mathematical solution

A solution for Equation (6-4) is
v = Akk e + B(k)ye™ + gkl-cle"y + D(k)ye® -7

If this solution is substituted into the boundary conditions (Equations (6-5) and (6-6)), the
resulting four equations can be solved for the four unknown coefficients A, B, C, and D.
This gives
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A= % [—kHemﬁs+[1—kH]e"”i\?_,] (6-82)
B = L [aets)] (6-8)

C= % [—kHe‘""ﬁ,+[l+kI-I]e’”’iﬁ,] (6-8¢)
D= %[e""”ﬁ,— -*”iv‘,] (6-8d)

These coefficients give the solution for the transformed stream function v. This can be
used to determine the transformed components of the velocity anomaly, at any depth. We
are specifically interested in the velocity at the bed. The exact solutions for the Fourier
transforms of the longitudinal and normal components of the basal velocity anomaly are:

g, = % [[1-kme-*”+[1+uﬂe”']a, + %[kHe"‘"+kHe”’]i\?_, (6-92)

%, = % [kHe'”’+kHe""]iﬁ, + [[1+uﬂe-"'+[1-kme"’]o, (6-9b)

The basal velocity can more easily be written in terms of inverse transfer functions (where
"inverse” here means from the surface to the bed). T, will be defined as the magnitude
of transfer from u at the surface to u at the bed. T, T,*, and T, are similarly defined.
These inverse transfer functions are then written:

Ty = -;- [[1—k1ﬂe-*"+[1+k11]e"”] (6-10a)
T =T =1 [kHe-”’+kHe"'] (6-10b)
b b 2
w_l 4 H
W= 5 [[1+kH]e +[1-kH]e ] (6-10c)

The inverse transfer functions are plotted in Figure 6-2. As the non-dimensional
wave number kH goes to infinity, the magnitude of all four inverse transfer functions goes
to infinity also. This can be contrasted with the corresponding forward transfer functions
calculated in Chapter 2 (see Figure 2-3). The magnitude of the forward transfer functions
is always less than or equal to one.
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6.3.2 Inmformation and error for exact basal velccity solution

If real data are used for the surface velocity anomaly (the surface velocity boundary
conditions), this data will contain both information and error. The information (signal) is
assumed to be greatest at low wave numbers (because the basal signal when transferred to
the surface is increasingly attenuated as the wave number increases; see Chapter 2). The
error (noise) at the surface is assumed to be "-white" as a function of wave number (Jaech,
1985). Thus the noise-to-signal ratio at the surface increases as the wave number

increases.

When the surface data are transferred to the bed, both the signal and the noise are
multiplied by the same inverse transfer functions. Therefore the noise-to-signal ratio for
the calculated basal velocity anomaly, as a function of wave number, will be the same as
that at the surface, and will increase as the wave number increases. Furthermore, the
inverse transfer functions (from surface to bed) also increase as the wave number increases.
This means that the error at high wave numbers at the bed can be very large, and can in
fact dominate the entire signal. When viewed in the space domain, the true information at
the bed may be totally masked by a large basal error resulting from relatively small errors
in the high wave number components at the surface. This problem can be minimized by

modifying the exact solution.

6.4 Modifications to exact solution: filtering data

6.4.1 General theory

One obvious modification is to limit the error in some way. A simple method would
be to limit the inverse transfer functions at high wave numbers, and thus limit the error at
high wave numbers. For example, the inverse transfer functions could be multiplied (in
the wave number domain) by a filter which had a value which was near to one for low
wave numbers (for which the inverse transfer function values are small), but tapered
towards zero for high wave numbers (for which the inverse transfer function values are
large). However, applying a filter to the inverse transfer functions can be viewed as

changing the physics of the problem.
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Another choice is to apply the filter to the surface data (which have been Fourier
transformed), instead of filtering the inverse transfer functions. When the basal velocity
anomaly is then calculated using the filtered data and the exact inverse transfer functions,
the results will be identical to those using unfiltered data but filtered inverse transfer func-
tions (for a given filter).

An example of the equations for calculating the basal velocity, using filtered inverse

transfer functions, is
By = [FT,*18, (6-11a)

where F is the filter and T, is the inverse transfer function. The same example for the

equations for calculating the basal velocity, using filtered data, is
y = Ty“IFi} (6-11b)

Mathematically these equations are the same. The only difference between the two
methods is that it is easier to justify "filtering the data" than it is to justify "changing the
physics".

If a filter is applied which selectively decreases the high wave number components of
the surface data, the error at the bed can be limited. However, the true information at high
wave numbers is also limited. Thus we have less error but also less information. This
effect must be considered when the filter parameters are chosen. Hopefully these parame-
ters can be specified so that the error at the bed is reduced enough to see the true signal;
and yet leave enough information present at high wave numbers so that interesting features
in the basal velocity pattern are not eliminated. These criteria are somewhat subjective,
and are discussed more quantitatively in the next section.

6.4.2 Analysis of resolution and accuracy

The analysis of resolution and accuracy will be applied to the data for the surface
velocity anomaly, these surface data after they have been filtered, and the basal velocity
anomaly which results when the filtered surface data are transferred to the bed.

The resolution at the bed can be tested by looking at a given wavelength component
in the surface data (where wavelength A =2m/k). Perfect resolution would result if this
component was not filtered, and was just multiplied by the appropriate inverse transfer
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function to calculate the amplitude of that wavelength component at the bed. Thus the
resolution at the bed will depend directly on the filter. We can define a resolution length
to be the wavelength at which the filter reduces the amplitude of that wavelength com-
ponent by a factor of 1/e. Shorter wavelengths are reduced in amplitude by a factor greater
than 1/e. This resolution length could then be easily calculated by looking at a particular
filter as a function of wavelength.

The accuracy is not quite so easy to define. If we compare the filtered surface data
with the actual measured data, it is reasonable to say that the filtered data are accurate pro-
vided that they are within the error bounds of the measured data. (These error bounds are
determined by uncertainties in surveying, etc.) However, the accuracy of any calculated
basal velocity can not be exactly determined, since the true basal velocity is not known.
The best approach is to assume that the filter which most reduces the high wave number
components is the filter which will give the most accurate basal velocity, since the error

increases with increasing wave number.

Therefore, to retain accuracy in the filtered surface velocity anomaly, and to also
obtain as much accuracy as possible in the calculated basal velocity anomaly, the filter
should be chosen which most reduces the high wave number components of the data, and
yet allows the surface velocity to remain within the error bounds.

This procedure will give the most accurate filter, considering both the surface and
basal velocities. The basal resolution will be somewhat reduced.

6.4.3 Gaussian filter

The filter that we will look at is a Gaussian (in the wave number domain). The equa-
tion for this Gaussian is:

F=exp [- -;-[ok’fm 1 (6-12)

Here o is the non-dimensional standard deviation, as a fraction of the maximum wave
number k,,,. The filter has a maximum value of one, centered about ¥=0. If a fast Fourier
transform routine is used to transform the data both positive and negative wave number

components exist, so the filter can easily be applied to this transformed data.
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The adjustable parameter in this filier is 6. A plot of a Gaussian with ¢=0.15 is
shown in Figure 6-3a. Also shown is a plot of the filter when transformed to the space
domain, in Figure 6-3b. This curve also has the qualitative form of a Gaussian, with no
sidebands. Since in the space domain the filter is convolved with the data (which is
equivalent to multiplication in the wave number domain), a filter with no sidebands in the
space domain means that spikes in the data set will not result in ringing when the data are
filtered. This is a desirable feature for the filter, and viewing the filter in the space domain

is a simple way to check whether or not ringing can occur.

A broad Gaussian in the wave number domain (¢ large) will result in little loss of
information at the bed. However, the error at the bed will be high. If the Gaussian is
made narrower (¢ small), the error at the bed will decrease but more information will be
lost. The particular value of ¢ which is used to filter a given data set should be based on
the analysis of resolution and accuracy. This value can best be determined by progres-
sively decreasing the standard deviation ¢ from some relatively high starting value. For
some sufficiently small ¢ the filtered surface velocity, as viewed in the space domain, will
just reach the error bounds at some point. The value of ¢ which causes the error bounds
to be reached will depend on both the range of the error bars, and the particular spatial
form of the surface data. The filter parameter ¢ cannot be chosen only as a function of the
range of the error bars.

6.5 Modifications to exact solution: trade-off of roughness vs. misfit

6.5.1 General theory

Instead of filtering the surface data, an alternate approach is to limit the calculated
basal velocity anomalies in some way. Since errors in the data are expected to introduce
predominantly high wave number noise in the calculated basal velocities, it is reasonable to
attempt to limit the "roughness" of these basal velocities. However, if we modify the basal
velocity, the surface velocity must also be modified, so that the surface and basal velocities
can still be related by the physics of the exact inverse transfer functions. (The
modification of the surface velocity is justified by the presumption of errors in the surface
data.) There will then be a "misfit" between the modified surface velocity and the actual
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surface data. If the basal velocity is made smoother, the amount of surface misfit
increases. Thus there is a trade-off between the (basal) roughness and the (surface) misfit.

We will minimize the sum of this roughness and misfit, with the trade-off being con-
trolled by an adjustable parameter. The minimization must be subject to a side condition,
which is the requirement that the modified surface velocity (ie., the surface data as
adjusted by the presumed error), be exactly related via the inverse transfer functions to the
calculated basal velocity.

The definition for the roughness of the basal velocity which we will use is: the square
of the magnitude of the longitudinal (x direction) derivative of the basal velocity. Any
order of derivative can be used. We will minimize the roughness of both components of
the basal velocity.

Minimizing the zeroth order derivative would limit the amplitude of the basal velo-
city. Minimizing the first derivative would limit the steepness of the velocity as a function
of x; this means that we are minimizing [dwdx]? at the bed, which is equivalent to limiting
the basal longitudinal strain rate and the basal longitudinal stress. (We are also minimizing
[ov/ox)? at the bed, which limits one part of the basal shear stress; but we do not want to
minimize [0wdy]?, and thus we are not limiting the total basal shear stress.) Minimizing the
second longitudinal derivative of the basal velocity limits the smoothness of the velocity as
a function of x; this means that we are minimizing [0*wdx?)* at the bed, which will limit the
basal longitudinal strain rate gradient and the basal longitudinal stress gradient. This is
equivalent to limiting the steepness of the basal longitudinal strain rate and the steepness of
the basal longitudinal stress as a function of x. (For the second derivative we are also
minimizing [9?v/0x*1%.)

It is reasonable to assume that one of the above quantities '(zemth, first, or second
derivatives) is the correct function to use in the minimization. The general mathematical
solution will be written in terms of any nth order derivative. We can then calculate and
compare the different minimizations for different orders of derivative, using actual surface
data.
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6.5.2 Mathematical method

To minimize the equations for a spatial derivative (with respect to x), while operating
in the wave number domain, the equations are minimized as a function of the wave
number k. Since the Fourier transform is orthogonal, this method will result in 2 minimi-
zation when inverse transformed to the space domain. If a discrete Fourier transform is

used, the minimization applies to the equations for each discrete wave number.

We will do this minimization for both components of the basal velocity anomaly.
This means that we could do this minimization in two different ways: we could either
minimize a sum which includes both components 4, and ¥, of the Fourier transformed
basal velocity anomaly, or we could minimize two separate sums (one for 4, and the other
for ¢,). For the first method, the resulting smoothed solutions for 4 and v, are completely
coupled (i.e., there is only one set of assumed errors at the surface). For the second
method, the resulting smoothed solutions for #;, and ¥, (and related quantities, such as the
assumed errors at the surface) are not required to be coupled. (This means that the
assumed errors at the surface will be different for the solution for &, as compared to the
solution for ¥,.) However, for the first method the form of the solutions for 4, and ¥, is
more complicated than the form of these solutions for the second method. This occurs
because the equations to be minimized for the first method are more complicated, since

they include terms for both #, and ¥, in one sum.

We therefore choose the second method, which minimizes two separate sums, since
the resulting velocity solutions will be simpler and more easily understood. This means
that we are actually doing two separate but parallel problems. The solutions will not be
coupled except as specifically stated.

We wish to minimize the sum of the basal roughness and the surface misfit; this sum
will be called S, for the equation applying to the Fourier transformed basal velocity com-
ponent 4, and S, for the equation applying to the Fourier transformed basal velocity com-

ponent ¥,. The sum for 4, is
Sup = ()P (k)% + ﬁ[éu(k)eu(k)*+€v(k)€v(k)*] (6-13a)

The sum for v, is
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S = P50 + e O .08 6-130)

Here i, (k)™a,(k)™* and v,(k)™5,(k)™* are the Fourier transforms of the roughness, with the
superscript (z) signifying that these roughnesses are for the nth longitudinal spatial deﬁva-
tive. The misfit is 8, (k)8 (k)*+&,(k)E,(k)*, where &, is the assumed error in the transform of
the longitudinal component of the surface data 4, and &, is the assumed error in the
transform of the normal component of the surface data v,. (The * means the complex con-
jugate; thus we are minimizing a real number which is the sum of the squares of the
moduli of the complex quantities.) The misfit is not required to be the same in Equations
(6-13a) and (6-13b), and in fact will differ between the two solutions. (This difference
would not occur if we were minimizing a sum which included both 4, and ¥, since we
would only have one set of equations.)

The adjustable trade-off parameter is §; higher § values give more roughness and less
misfit. For simplicity the value of § will be the same in both equations. This parameter is
not a function of the wave number k. Since the basal velocity is a function of the inverse
transfer functions, which increase with increasing wave number, not allowing B to vary
with & has the effect of biasing the minimization towards Iess roughness at higher wave
numbers. This is useful because the surface noise-to-signal ratio is assumed to be high at
higher wave numbers, and thus any calculated basal roughness is less meaningful at these
higher wave numbers.

The side conditions which must be added to Equations (6-13) are that the physics of
the problem are satisfied. These side conditions are written:
6, = [k T, (4,48, + (KT [i0+i8,) (6-14a)
for Equation (6-13a), and
5" = [Ty [i6,+i8,) + [T, 9 +8,] (6-14b)

for Equation (6-13b). These equations are in fact the nth derivative of Equations (6-9),
with the Fourier transformed surface data 4, and ¥, modified by the assumed errors ¢, and
¢2,. The data are the same for Equations (6-14a) and (6-14b); the assumed errors are not
required to be the same in both equations. The quantity ()" is the Fourier transform of
the nth longitudinal spatial derivative.
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The side conditions are then separated into their real and imaginary parts, and are
added to Equations (6-13), using Lagrange multipliers. (Note that the particular terms in
the real and imaginary parts of the side conditions will depend on the order of derivative

n.) This gives the total quantities to minimize:

S = 4,5, 1+ B8 *+8,8,%] (6-153)
+ 20, Re [12,,"') — KT (6,48, — [ik]"T,,“"[io_,+ie,]]

+ 20 0Im [ﬁ,,(") — [T ™0+, — [ik]"T,,"“[iﬁ,+i€,]]
and

8,508 = 5,5, 0% 1 Bla g 188 %] (6-15b)
+ 2hRe(§ — T2, - GT"T948)

 +2\,Im [v,,"" — k1T, lid+ig,) — [ik]"T,,""[ﬁ,+€,,]]

The Lagrange multipliers are A,;, Ay, Ay, and A,y; these are real numbers. The real parts
are written as Re( ); the imaginary parts are written as Im(). The imaginary parts are
defined to be the magnitude of the imaginary quantity and are real numbers. Thus the total
quantities being minimized S,,* and va“’“' are real quantities.

To minimize Equations (6-15), we take their multi-dimensional gradient. The com-
ponents of the gradient for Equation (6-15a) are defined:

_ 2 ) d ) 9 9 616
~ {9Re(5,") * AIm(,"™) ' ORe®) ' dIm(e) ' ORe(,) ~ oIm(e,) (6-16a)

The components of the gradient for Equation (6-15b) are:

_ d 2 d 0 d d

- [aRe(ﬁ,,(")) " Am@®,™) " Re(®,) | dImE) ' Re®,) alm(é,,)] (6-16b)
Each term of the gradient of Equations (6-15) is then set equal to zero. This gives six
equations from Equation (6-15a), to use for the solution of & and its associated unk-
nowns; and six equations from Equation (6-15b), to use for the solution of #® and its
associated unknowns. We then add the fact that both the real and imaginary parts of the
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side conditions must be satisfied. (Again, the particular terms in the real and imaginary
parts will depend on n.) This gives two additional equations for 4," and its associated unk-
nowns, for a total of eight; and two additional equations for ¥, and its associated unk-
nowns, also for a total of eight. There are a total of eight unknowns in the equations for
,™, and a total of eight unknowns in the equations for 4,™. It is thus possible to solve for
the complex quantities 4, and %", which can then simply be divided by (k)" to get 4,
and v, Suitable algebraic manipulations yield the general solutions for 4, and ¥,. These

solutions are:
X T4, + T,"iv,
Up = 6-17a
1+ %kzﬂ[[r,;"‘]%[r,,"‘]z] ©172)
o o Ty + T,
b (6-17b)

1+ %k”[[r,,“"]%[mz]

The quantities 4,, ¥, 4,, and ¥, may be complex. These solutions apply for basal roughness
which is dependent on any nth order longitudinal derivative of the basal velocity.

6.5.3 Effects of applying trade-off solutions

The effect of the trade-off solutions can perhaps most easily be looked at by calculat-
ing the effect as filters. Inspection of Equations (6-17) shows that the trade-off approach
can be viewed as applying one filter to both 4, and ¥,, and then calculating 4, using the
exact inverse transfer functions T, and T, while a different filter is applied to both &,
and ¥, for use in the calculation of ¥,, where ¥, is then calculated using the exact inverse
transfer functions T,* and 7,**. The reason that we have two different filters is because we
separated the equations for 4, and ¥, at the beginning of Section 6.5.2. (Note that in the
filtering approach of Section 6.4, a single filter was applied to both #, and 9,, with the
filtered surface velocities then being used for the calculation of both 4, and v,.)

This means that we can rewrite Equations (6-17) in the form:

iy = ﬁ ubwa‘ﬁ: + FA ,‘bwaiG_, (6-183)

V= ﬁ Wl ity + ﬁ wlp Vs (6-18b)
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Here £, (the filter for 4y) is defined

4 1

F, ub = >
1+ % Y [[wacjz +[Tbvu]2] (6- 193)

And F,;, (the filter for ¥,) is defined

1

1+ _;_ 2 [[Tbuv]Z 2 [Tbvv]Z] (6-19b)

These effective filters for the trade-off solutions are just one divided by the denominators
in Equations (6-17).

Fvb

These equations show that increasing the order of derivative » will in general result in
a smoother basal velocity. Decreasing the value of the trade-off parameter B will also
result in a smoother basal velocity. Examples of the filters £, and F,;, and their inverse
~ Fourier transforms (the filters as viewed in the space domain), are plotted in Figures 6-4.
The filters in the wave number domain have forms qualitatively similar to Gaussians.

Sidebands exist in the space domain, but are relatively small.

The two modified versions of the surface velocity that result from applying the filters
F and F,,, could also be calcuiated directly by adding the error terms £, and &, to the sur-
face data. (These modified versions of the surface velocity are equivalent to the terms in
the side conditions (Equations (6-14)) which include the measured surface velocity and the
assumed errors.) However, as previously noted, the solutions for &, and &, are different in
the &, equations as compared to the v, equations; and an explicit mathematical solution for
the error terms shows that each single error term is a function of both components of the
surface data. It is much easier to see the form of the modified surface velocity by using
the filters in Equations (6-18).

It is also possible to calculate a different modified surface velocity anomaly, with
Fourier transformed components which we will call 4™ and #,™, that corresponds exactly
with both components #, and ¥, of the calculated basal velocity anomaly, via the inverse
transfer functions. This modified surface velocity is not exactly the same as the surface
velocity which results from applying the filters F,; and F,, in Equations (6-18) (e.g., the
filtered surface velocity on the right sides of the equations), since here we will use only a

single version of the surface velocity to calculate the basal velocity, while using Equations
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(6-18) is equivalent to using two different forms of the surface velocity to calculate the
basal velocity. Actually the disferent approaches do not result in greatly different forms of
the surface velocity, and it is very important to note that the basal velocity is exactly the

same in both cases.

The equation for calculating the modified longitudinal component 4, of the surface

velocity anomaly is
4" = T, i — iT,™5 (6-202)

The equation for calculating the modified normal component ¥," of the surface velocity

anomaly is
9,"‘ =~ 1T, ,“"ﬁb + T_,wl‘;bv (6'20b)

Here T, T,*, T, and T,” are the exact forward transfer functions (see Balise and Ray-
mond, 1985). At first glance it would appear that we can now calculate a filter which
gives &, from #,, and another filter which gives ¥, from v,. These filters would not be the
same as the effective filters in Equations (6-18). We could call these new effective filters
F,, and F,. However, these new filters are not simple; in fact, both filters will be func-
tions of both components of the surface data set 4, and ¥, Thus the filters will vary,
depending on the specific data which are being examined. It is therefore not particularly
useful to explicitly write the equations for effective filters F,, and F,, which determine 4,™
and 9. These modified components of the surface velocity are instead most easily deter-
mined by first calculating the basal velocity by using Equations (6-17), and next applying
Equations (6-20) to yield this form of the modified surface velocity.

This single version of the modified surface velocity is very useful, since we can
easily compare it with the original surface data to determine the error between »,” and u,,
and the error between v, and v,. The error terms &, and &, in the equations of Section 5.2
are not the same as the error here. The error determined by comparing this modified sur-
face velocity with the surface data will be the basis of our choice for the exact parameters
to use in the trade-off solution. For any given order of derivative n, we must apply a reso-
lution and accuracy approach (detailed in Section 4.2), to choose the value of the trade-off
parameter B. For some particular value of §, the modified surface velocity will reach the
error bounds in the space domain at some point for the surface data. This value of B can
easily be determined by progressively decreasing it, from some relatively high starting
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value. (At the high starting value #, and v,” will be will within the error bounds, but the
calculated basal velocity will be very noisy.) The value of B which just allows the surface
error bounds to be reached, will give the smoothest basal velocity anomaly which still has
a corresponding surface velocity anomaly within the error bounds of the surface data.

Unfortunately, there is one difficulty with applying the analysis of resolution and
accuracy to the trade-off solution. The problem is that ringing in the modified surface
velocity may preclude ever getting this velocity within the error bounds, for any reasonable
value of the trade-off parameter B. This ringing can be severe if the surface data have
especially sharp maxima or minima in their spatial pattem. This happens because the
trade-off approach can be viewed as consisting of first convolving the spatial form of the
effective filters F,, and F,; (Figure 6-4b) with the surface data, then calculating the basal
velocity using the exact inverse transfer functions, and finally calculating the modified sur-
face velocity using the forward transfer functions. The convolution of the filter sidebands
with any spikes in the surface data will result in ringing, and this ringing will be carried
through the following calculations. The only solution to this problem is to expand the

error bounds as necessary, if the surface data have many rapid changes in spatial pattern.

6.6 Application of theory to Variegated Glacier mini-surges

6.6.1 Fitting data to theory

The mini-surges of Variegated Glacier in Alaska have been well described in several
papers (e.g. Kamb and Engelhardt, 1987). Among the data collected during these mini-
surges are the displacement and the longitudinal strain rate as functions of time, measured
at various fixed spatial positions along the centerline of the glacier surface. (These spatial
positions actually move with the slow movement of the glacier surface, but this does not
materially affect the calculations in this chapter for the rapidly propagating mini-surges.)
The change in displacement over a certain time interval can be divided by the length of the
time interval to give the average velocity during this interval. This process gives the sur-
face velocity as a function of time at the fixed spatial position. The strain rate data can
also be converted to the longitudinal component of the surface velocity as a function of

time at a fixed spatial position; however, the process is more complicated and involves
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ceriain assumptions. This conversion is explained and carried out in Raymond and Malone
(1986). .

When the surface velocity during a mini-surge is examined, it consists of a "back-
ground" steady-state component, and an anomalous component which only occurs during
the mini-surge. The cross-glacier velocity component (when known) is small. The surface
velocity anomaly typically consists of a velocity wave of several km spatial extent, which
propagates down-glacier at several hundred m art.

To apply the particular equations which have been developed in this chapter, it is
necessary to convert the calculated surface velocity anomaly from a function of time at a
fixed spatial position, to a function of longitudinally varying spatial position at a fixed
time. To do this conversion it is necessary to know the wave propagation speed in the x
direction, and also to know how the shape of the wave, as a function of varying longitudi-
nal position on the glacier surface, changes with time. The wave propagation speed seems
to be fairly constant for a given mini-surge, and is constrained by measurements of when
various velocity peaks passed various points along the glacier centerline. (Typically there
were three to five of these centerline locations where data were collected on the glacier.)
Unfortunately the changes in the wave shape are not so easily constrained, because the
velocity wave (as a function of time) typically does not have a consistent pattern, or a con-
sistent change in pattern, when the data from the different spatial measurement positions
are compared. Given the very limited spatial resolution of the data, the best assumptions
that can be made about the surface velocity anomaly are that the pattern of this propagat-
ing anomaly does not change, but that the overall amplitude of the pattemn varies with time.
Thus a spatial wave shape must be fairly arbitrarily based on-the pattern as a function of
time at a chosen surface measurement position, even though using data from a different
measurement position would give different results. A wave amplitude decay or increase
factor o (for overall amplitude changes with time) is then applied, which is based on the
total strain and displacement at the various measurement points (see Raymond and Malone
(1986) for details of calculating o). This decay or increase factor is assumed to be
exponential.

The equation for converting the longitudinal component u, of the surface velocity
anomaly, as a function of time, to velocity as a function of spatial position then is
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b Mo = € P CEdt) (6-21)

Here x, is the longitudinal coordinate of the fixed position on the glacier centerline where
the surface data were collected; and ¢, is the fixed time at which the data are being viewed,
when converted to a function of varying longitudinal coordinate x. The wave propagation

speed in the down-glacier direction is w.

A similar equation applies to the normal component v, of the surface velocity ano-
maly. (The cross-glacier component of the velocity anomaly is assumed to be negligible.)
However, for most of the mini-surges data were not collected for the displacement normal
to the glacier surface, thus making it impossible to determine v, (since in no case were
strain rate data collected allowing determination of this velocity component). Therefore
some assumptions about v, are usually necessary. One possible assumption is to require
that v, = 0 (giving a boundary condition for , at the surface and v, at the bed); the theory
would then have to be modified so that v, would be one of the outputs (along with u,).
Other possible assumptions are to either guess the form of v,, or to simply require that
v,=0. These last two assumptions require no modification of the theory.

Requiring that v, = 0 is not compatible with some theories of sudden changes in gla-
cier velocities, which is usually thought to involve basal cavitation (Iken, 1981). Requiring
that v, = 0 also contradicts the one case which we will examine where both u, and v, are
known. (In this case the known surface velocity will be seen to be related to significant
anomalies in both components of the basal velocity; in fact, for this case the amplitude of
vy is substantially larger than the amplitude of v,. See Section 6.6.2.2.) We therefore con-
clude that we are forced to guess v, in the cases where it is not known, or at least to
require that v, =0, rather than require that v,=0. The cases where we either know or

guess a reasonable form for v, can be compared with the cases where we set v, =0.

A final adjustment to the data is made necessary by the fact that the mathematical
computations are done using a discrete fast Fourier transform. This requires 2" evenly
spaced data points (where here n is any positive integer). For both the displacement and
strain rate data, zeros were added to both ends of the data sets to reach the next higher
value of n. (For the displacement data, points were first interpolated between the known
data points to result in a smoother, more continuous curve, with even spacing.) The exten-

sion of the data sets also minimizes problems which can be caused by the fact that the fast
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Fourier transform assumes that the signal is periodic.

6.6.2 Velocity from survey data

6.6.2.1 Surface velocity calculation

The theory can now be applied to mini-surge data from Variegated Glacier. The first
data which we will examine are displacement data obtained by standard surveying tech-
niques. We will limit our examination of this survey data to the mini-surge which
occurred on 15 July 1980. Very good data exist (Kamb and Engelhardt, 1987) which
allow the calculation of both the longitudinal component u, and the normal component v, of
the surface velocity anomaly. In particular, we will use the data collected at 6.5 km on the
glacier centerline (measured down-glacier from the head).

The wave shapes at 6.5 km for u, and v,, as functions of time, are assumed to be rea-
sonably representative of the form of the surface velocity anomaly. Data from other loca-
tions on the glacier centerline support this assumption, and also allow the determination of
the wave propagation speed w and the wave amplitude decay factor o. Here w is calcu-
lated i0 be 8520 m d, and « is calculated to be —0.29 4. These then allow the calculation
of u, and v, as functions of spatial position. Plots of the longitudinal component u(x.s,) and
the normal component v,(xt,) of the surface velocity anomaly are shown in Figures 6-5a
and 6-5b, with x = 0 being at 6.5 km, and ¢, = 1549 d (just before noon on 15 July 1980).
Identical plots of u,(xt,) and v,(r.r,) are also shown in parts a and b of Figures 6-6, 6-7,

and 6-8, in order to make using these figures easier.

6.6.2.2 Gaussian filter and basal velocity calculation

We next apply a Gaussian filter to the Fourier transformed data as discussed in Sec-
tion 6.4. The standard deviation o is chosen as explained in Section 6.4.2. One value of &
is used to filter both u, and v,. This is done both to simplify the calculations and because
the error in u, is better known than the error in v,. The error in u, is based on possible sur-
vey errors of about 1 cm, with surveys being done approximately every Ar. This results in
error bars of +0.25md™ for u,. If a Gaussian filter in the wave number domain with
o =0.137 is applied to the transformed data 4, these error bounds will just be reached in
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the space domain at one point (x = 1299 ). This same filter applied to ¥, results in a max-
imum error of 0.62 md™? (at x = 1299 m). The filtered components of the surface velocity
anomaly will be denoted by the superscript f. The filtered components u/ and v/ (viewed

in the space domain) are shown in Figures 6-5a and 6-5b.

The filtered data are then transferred to the bed using the exact inverse transfer func-
tions. The resulting basal velocity components u, and v, are also shown in Figures 6-5a
and 6-Sb. This is the presumed pattern of the basal velocity anomaly at ¢ = 1549 d during
the mini-surge. For u,, the dominant feature is the large positive spike. This spike is cen-
tered under the down-glacier peak in u, at the surface. The up-glacier peak in u, at the sur-
face corresponds only with a minor basal velocity peak. The double maximum seen in u,
does not appear to be related fo a significant double maximum in u,, since u, consists of

one dominant velocity peak.

The pattern for v, is dominated by down-drop down-glacier of the major peak in u,,
and uplift up-glacier of this peak. No current theories of glacier mini-surges seem to sup-
port such a pattern, although it would not be impossible if a substantial deformable layer
existed beneath the glacier sole. However, we must also consider problems with the
mathematical theory of this chapter which could result in such a pattem. These problems
are:

(1) Inaccurate rtheology. However, as previously mentioned, a power law rheology

shows most of the same effects.

(2) No allowance for transverse motions. Since the glacier is constrained to move in
two dimensions only, it is possible that adding the third dimension would result in a
significantly different pattern for v,.

(3) No allowance for voids in the ice. These are not considered by our theory. It is
quite possible that water-filled or air-filled voids exist in the glacier. If these were
compressed in the down-glacier region of the mini-surge, this would be equivalent to the
calculated down-drop of the ice at the bed in this region. Similarly, if voids opened in the
up-glacier region of the mini-surge, this would be equivalent to the calculated uplift at the
bed in this region. This situation secems quite plausible.

We will now use the same data and filter, except that we will set v, =0. This com-

parison is important, because the mini-surge of 15 July 1980 is the only one which we will
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examine where v, is well known. Setting v, =0 (but with u, still based on the data), and
then applying the Gaussian filter and the inverse transfer functions, results in the basal
velocity anomaly shown in Figures 6-5a and 6-5b. The longitudinal component u, of the
basal velocity is considerably different from the case when the component v, was not set
equal to zero, but the normal component v, is quite similar to the case when v, was not set
equal to zero. This result is interesting since it shows that changes in v, may be related to
major changes in u,, and only minor changes in v,. For this particular case, the figures
show that setting v, = 0 changes u, from a single dominant peak to a double peak. This
emphasizes the importance of knowing the correct form of v,. For this mini-surge with a
Gaussian filter, if the correct form of v, is used, the double peak in u, is seen to be related
to only a single major peak in uy; if v, is incorrectly set equal to zero, the double peak in u,
is incorrectly thought to be related to a double peak in u;.

6.6.2.3 Trade-off solutions and basal velocity calculations

We now apply a trade-off solution to the data for the mini-surge of 15 July 1980.
For this trade-off solution, we need to choose a trade-off parameter B, and an order of
derivative n to use in the minimization. The value of B which allows the modified surface

velocity to reach the error bounds will depend on the order of derivative n.

The first case which we will examine is for n=0. For this situation, a value of
B = 1350 allows the error bars for u, of 0.25 m d™! to be reached by the modified longitudi-
nal component u,™ of the surface velocity anomaly, at x = 1417 m. For this same value of
B, the maximum error in the modified normal component v,” of the surface velocity ano-
maly is 0.84 md™, at x=1299 m. This modified surface velocity anomaly which this
trade-off solution results in is plotted in Figures 6-6a and 6-6db (Figures 6-6a and 6-6b
also show the unmodified surface velocity.) The basal velocity anomaly for this trade-off
solution is also plotted in Figures 6-6a and 6-6b. This basal velocity is seen to be quite
similar to the basal velocity in Figures 6-5a and 6-5b (which are for the Gaussian filter).
Again, u, has a single dominant peak; and v, has down-drop down-glacier and uplift up-

glacier of the peak in u,. The same reasoning of Section 6.6.2.2 can be applied to v, here.

The next case to examine is for n = 1. For this case, a value of the trade-off parame-
ter B = 1250 allows the error bounds for u, to be reached by the modified longitudinal
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component ™, at x = 1299 m. The maximum error in the modified normal component v,"
is 0.77 m 47, also at x = 1299 m. These modified components of the surface velocity ano-
maly are plotted in Figures 6-7a and 6-7b, and are similar to the results in Figures 6-6a
and 6-6b (for which n = 0), although somewhat smoother. The basal velocity anomaly for
n=1is also plotted in Figures 6-7a and 6-7b. These basal velocity components are again
somewhat similar to the case where n =0 in Figures 6-6a and 6-6b. However, besides
both basal velocity components being somewhat smoother and of lower amplitude, there is
more evidence of a double peak in u, for the case where n = 1 (Figure 6-7a), as compared
to u,, for the case where n = 0 (Figure 6-6a). The down-drop in the down-glacier part of v,
has also been substantially reduced.

We niext set n=2. Here a value of B =3650 allows the error bounds for u, t0 be
reached by #,™ again at x=1299 m; the maximum error in v,” is 0.73 md?, also at
x= 1299 m. The modified components of the surface velocity anomaly are plotted in Fig-
ures 6-8a and 6-8a. These are slightly smoother than for the case with n = 1; of particular
interest is the fact that the double peak in u, has been somewhat reduced. The components
of the basal velocity anomaly for n =2 are also plotted in Figures 6-8a and 6-8b. These
are also slightly smoother than the basal velocity components for n= 1, and of somewhat
lower amplitude. The double peak in u, is pronounced.

If higher values of n were examined (which is not done in this dissertation), the
modified surface velocity and associated basal velocity would become even smoother. At
some value of n the double peak in both u, and u, would probably be smoothed out. Since
physical arguments for setting a particular value of » are not compelling, we can not really
determine with this trade-off approach whether u, has a single peak or a double peak. We
do know from the data, however, that u, appears to have a double peak for this particular
mini-surge. This would indicate that the value of n chosen should not modify the surface
data u, such that the double peak is eliminated. Since higher values of » tend to reduce the
double peak in u, (e.g. as is the case for n = 2), we can reach a tentative conclusion that the
lowest value of n (n=0) is the most accurate, or at least better than values of n=2 or
higher. We will therefore restrict our examination of trade-off solutions for other mini-
surges to solutions with n = 0.

The final situation which we will use for the mini-surge of 15 July 1980 is to set
v, = 0, for a trade-off solution with n=0. The same trade-off parameter (B = 1350) is used
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as was used for ihe case where v, was not set equal io zero. The basal velocity anomaly
for the case with v, =0 is plotted in Figures 6-6a and 6-6b. These results are similar to
those for the Gaussian filter, in which setting v, = 0 caused a change from a single dom-
inant peak in u, to a double peak. For the trade-off solution with v, = 0 the double peak in
u is quite pronounced. This situation again underscores the necessity of accurately know-

ing v, if we hope to successfully determine u,.

6.6.3 Velocity from strain meter data

6.6.3.1 Surface velocity calculations

The other data from Variegated Glacier which we will use are data from wire strain
meters. Details of the data collection, and the calculation of velocities from strain rates,
are explained in Raymond and Malone (1986). Good data for the longitudinal strain rate
component at the surface were obtained in 1979, 1980, and 1981. (As previously noted,
the strain meters were not set up to collect data for the strain rate component normal to the
surface.) We will consider data from three mini-surges: 11 July 1979, 15 July 1980, and
14 July 1981.

For the mini-surge of 11 July 1979, the clearest wave form for the longitudinal com-
ponent u, of the surface velocity, as a function of time, is calculated from strain rate data
which were obtained on the glacier centerline 7.5 km down-glacier from the head. Data
froin other positions along the glacier centerline are used to determine a wave propagation
speed of w = 8160 m d™, and a wave amplitude decay factor of o =-0.82 d'. The longitu-
dinal component of the surface velocity anomaly can then be calculated as a function of
spatial position. This component x,(x,,) is plotted in Figure 6-9a (and identically in Figure
6-10a). Note the short spatial scale over which the surface velocity anomaly has relatively
rapid changes in magnitude and sign. Here x=0 is at 7.5 km, and ¢, = 11.19 d (in the early

morning on 11 July 1979). The normal component v, of the surface velocity is not known.

The strain meter data from the mini-surge of 15 July 1980 give a longitudinal com-
ponent of the surface velocity which is quite similar to that same velocity component
obtained by surveying (see Section 6.6.2). Since the survey data also allow the calculation

of v, for this mini-surge, the survey data are more useful than the strain meter data in this
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case. Due to the similarity of the data for u,, and the lack of strain meter data for v, it
seems reasonable to limit the analysis of this mini-surge to the survey data (which were

analyzed in the previous sections).

Good longitudinal strain rate data at the surface were also obtained for the mini-surge
of 14 July 1981. We will use data which were collected on the centerline 4.7 km down-
glacier from the head. Data from various positions on the glacier centerline determine a
wave propagation speed of w= 6480 md™'. The wave amplitude decay factor is determined
t0 be a=-0.30d™. The longitudinal component of the surface velocity anomaly is then
calculated as a function of spatial position, and is plotted in Figure 6-11a (and identically
in Figure 6-12a). Note the relatively long spatial scale of the surface velocity anomaly.
For this plot of u(x,,) x =0 is at 4.7 km, and ¢, = 14.87 d (in the evening on 14 July 1981).

The normal component v, of the surface velocity is not known.

6.6.3.2 Gaussian filters and basal velocity calculations

We will now apply Gaussian filters to the Fourier transformed velocities. However,
we first need to determine error bounds for these velocity data in the space domain. These
error bounds are chosen to be approximately the same fraction of the total range of the sur-
face velocity data, as.the error bars were for the mini-surge of 15 July 1980. This fraction
is about one fifth.

We start with the velocity data for the mini-surge of 11 July 1979. The error bars
are chosen to be #1.0 md™?. Applying a Gaussian filter with a standard deviation of
o = 0.196, to the Fourier transformed longitudinal component of the surface velocity, results
in these error bars being reached in the space domain at x =-1339m. The filtered longitu-
dinal component u; of the surface velocity anomaly is plotted in Figure 6-9a.

We next need to decide what to use for the unknown normal component v, of the sur-
face velocity anomaly. Experimenting with various possible forms for v,, and comparing
the resulting basal velocities to the basal velocity for the case where v, = 0, shows no major
consistent diiferences between the two situations. We therefore conclude that the best
choice is to set v, = 0, although we will have no way of knowing whether or not the result-
ing basal velocity anomaly is correct. Since the component v, is set equal to zero it does
not need to be filtered.



137

The basal velocity components u, and v, are then calculated by using the exact
inverse transfer functions, applied to the filtered surface velocity (with v, = 0). These com-
ponents of the basal velocity anomaly are shown in Figures 6-9a and 6-9b. The pattern of
these basal velocity components, although somewhat rough, is similar to the pattern at the
surface for u,; the amplitude is much greater at the bed than at the surface. Since we do
not know v,, we can not necessarily expect the pattern of the calculated basal velocity to be
accurate, although we can conclude that the rapid changes are important. The double peak
in both basal velocity components may or may not exist. The large amplitude of the basal
velocity is certainly significant. This shows that a large amplitude basal anomaly (with a
rapidly changing spatial pattemn) is probably necessary to cause a rapidly changing surface
velocity anomaly, of much smaller amplitude.

We now examine the mini-surge of 14 July 1981. Here the longitudinal component
u, of the surface velocity anomaly is of smaller amplitude, and with a less rapidly changing
spatial pattern, than that component for the mini-surge of 11 July 1979. The error bars for
u, on 14 July 1981 are taken to be £0.20 m 4™ (about one fifth of the overall amplitude of
u). A Gaussian filter with ¢ =0.047 is applied, which results in the error bounds being
reached by uf at x = 1080 m. This filtered longitudinal component of the surface velocity
anomaly is plotted in Figure 6-11a. The normal component v, of the surface velocity ano-

maly is again taken to be zero (since no data to determine it exist).

The resulting basal velocity components are calculated, and are plotted in Figures 6-
11a and 6-11b. The basal component u, is very similar to the surface component u, in
both pattern and amplitude. We conclude that in this case (as contrasted to the case for 11
July 1979), the surface anomaly is smooth enough that a much larger amplitude basal ano-
maly is not required.

The basal component v, has down-drop down-glacier, followed by uplift up-glacier.
This is probably explained by the reasoning in Section 6.6.2.2, with the additional
qualification that v, is not known and was somewhat arbitrarily set equal to zero.
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6.6.3.3 Trade-off solutions and basal velocity calculations

Trade-off solutions for the basal velocity anomalies, for the mini-surges of 11 July
1979 and 14 July 1981, can be briefly examined. We restrict our solutions to the case

where n=0.

For 11 July 1979, we have previously determined error bars for u, of ¥1.0md™. A
value of the trade-off parameter B = 2550 allows these error bars to be reached, by the
modified component ™, at x = —1450 m. This modified longitudinal component of the sur-
face velocity anomaly is plotted in Figure 6-10a. (The surface component v,, which is not
known, is set equal to zero. However, it is important to note that the modified normal
component of the surface velocity v,” is not necessarily equal to zero, as is shown by
examination of Equations (6-17) and (6-20b); but v, is small relative to u,™.) The resulting
components u, and v, of the basal velocity anomaly are plotted in Figures 6-10a and 6-10b.

The basal velocity for this case is fairly similar to the results obtained with the Gaus-
sian filter, although the spatial pattern is smoother and the amplitude is reduced (which
may at least in part be due to the expanded error bars.) We again conclude that a rela-
tively large amplitude basal anomaly, with rapidly changing spatial pattern, is necessary to
cause a much smaller amplitude surface anomaly with a similar rapidly changing spatial
pattern.

For the mini-surge of 14 July 1981, minor ringing problems occur (see Section
6.5.3). This problem exists especially since the error bars for u, are relatively small
(£0.20 m d*). However, a value of the trade-off parameter § = 200 results in an error for
the modified longitudinal component u,™ of 0.21 m d!, at x = 1080 m. This is very close to
the error bars of +0.2¢ m 4™, so we will use this value of 3. This modified longitudinal
component u,™ of the surface velocity anomaly is plotted in Figure 6-12a (again, v, is set
equal to zero, and v,” is small). The basal velocity components u, and v, are plotted in
Figures 6-12a and 6-12b. The results are again somewhat similar to the results using a
Gaussian filter, although with a somewhat rougher spatial pattem and a greater amplitude.
In particular, the double peak in the basal component u, is much more pronounced in this
case, and less down-drop exists in v,. However, these differences between the Gaussian
and trade-off solutions are not too significant, especially when we consider the lack of

knowledge about v,. The conclusion which we can reach for the mini-surge of 14 July



139

1981, is that a large amplitude basal anomaly wiih rapid changes in spatial pattern is not

required for the relatively smooth surface anomaly.

6.7 Discussion

The examination of possible basal velocity anomalies for the three mini-surges -- one
in 1979, one in 1980, and one in 1981 -- allows us to reach some conclusions on the gen-
eral pattern of the mini-surges. In addition, the three mini-surges were each chosen as
being somewhat representative of the other mini-surges for their particular year; this allows
us to also reach some tentative conclusions about the evolution of the mini-surges from

year to year.

The first general conclusion about the mini-surges is that the amplitude of the basal
velocity anomaly is highly variable. In particular, mini-surges for which the surface velo-
city pattern changes rapidly over a relatively short spatial scale (¢.g., the mini-surge of 11
July 1979) seem to be associated with relatively high-magnitude basal velocity anomalies;
while mini-surges for which the surface velocity pattern is smoother (e.g., the mini-surge

of 14 July 1981) are associated with lower-magnitude basal velocity anomalies.
A comparison of the basal magnitudes for 1979, 1980, and 1981 also can be con-

strued as evidence that the amplitude decreases from year to year. This decrease from year
to year appears to apply to both the longitudinal and normal components of the basal velo-
city. If we assume that the mini-surges are caused by a pressure wave in the basal
hydraulic system (Humphrey and others, 1986; Kamb and Engelbardt, 1987), something
affecting this system must be changing from year to year in order to cause the decrease in
the amplitude of the basal velocity anomaly. The year to year thickness increase of the
glacier in the region of the mini-surges is a possible cause, although this increase was only
on the order of 2% per year (Raymond and Harrison, submitted). More likely causes for
the decrease in amplitude of the basal velocity anomaly are some change in the layout of
the basal hydraulic system, and changes in the dynamics of the pressure waves. All of
these possible causes for year to year changes in the mini-surges are quite speculative,

since the theory of what actually causes mini-surges is not well developed.

Conclusions can also be reached on the spatial pattern of the basal velocity anomaly
during the mini-surges. This basal pattern appears to generally be more complex for
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shorter-scale surface velocity anomalies. In particular, the longitudinal component u,
appears to have multiple peaks for 11 July 1979 (and perhaps 14 July 1981), but only a
single dominant peak for 15 July 1980. Unfortunatcly these conclusions are of limited
value for 1979 and 1981 due to lack of data for the normal component v, of the surface
velocity. Comparing the solution using the known normal component of the surface velo-
city with the solution setting this component equal to zero in Figures 6-6a has shown that
the correct form for v, (which was known for 15 July 1980) can substantially affect the
pattern of u,. It is of course quite interesting that for this case where v, is well known,
only a single peak results in u,. This would indicate that 4, could possibly only have a
single peak in the other mini-surges also, even though the calculations for these other
mini-surges (using data for only z, and with v, = 0) show multiple peaks.

The theoretical model which we have used does not really allow conclusions about
the pattemn of v,. The problems with the model which restrict accurate determination of v,
were mentioned in Section 6.6.2.2. A reasonable conclusion is that there is some sort of
compression of the system (ice, air, water and sediment) in the down-glacier region of the

mini-surge, with this compression being relaxed in the up-glacier region.

It is very important to emphasize that these conclusions are dependent on the accu-
racy of the solution process. In particular, errors are probably introduced by the assump-
tions involved in the calculation of the spatial pattern of the surface velocity (which was
calculated from the velocity data as a function of time at a fixed spatial position). This
emphasizes the fact that better spatial-resolution surface data are necessary in order to yield
more conclusive results for the basal velocity during the mini-surges. Both z, and v, need
to be measured (note that the data for v, for 15 July 1980 significantly affected the calcula-
tion of both velocity components at the bed).

It is possible that adding a third velocity component (cross-glacier) to the model, and
especially somehow allowing for the opening and closing of voids (which would be
difficult to model), would help in a better understanding of the normal velocity component
at the bed v,. A non-linear rheology might also significantly affect the results (this possi-
bility is examined in Chapter 7). However, even the relatively simple model which we
have used allows a fair understanding of the basal velocity anomalies during the mini-
surges of Variegated Glacier.
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gravity

Figure 6-1. Definition of geometrical quantities and coordinate system.
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RELATIVE AMPLITUDE

Figure 6-2. Inverse transfer functions for linear viscous rheology. Solid line: 7.
Short dashed line: T,™ =T,. Long dashed line: T,”.
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Figure 6-5. Surface and basal velocity components for mini-surge of 15 July 1980,
for linear viscous rheology, x =0 at 6.5 km. (a) Longitudinal velocity components: upper
dashed line, u, as actually measured; upper solid line, u/ calculated using Gaussian filter
(o = 0.137); lower solid line, u, calculated using same filter; and lower dashed line, up cal-
culated using same filter with v, set equal to zero. (b) Normal velocity components: upper
dashed line, v, as actually measured; upper solid line, v/ calculated using Gaussian filter
(6 = 0.137); lower solid line, v, calculated using same filter; and lower dashed line, v, cal-
culated using same filter with v, set equal to zero.
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Figure 6-6. Surface and basal velocity components for mini-surge of 15 July 1980,
for linear viscous rheology, x=0 at 6.5 km. () Longitudinal velocity components: upper
dashed line, u, as actually measured; upper solid line, ™ calculated using trade-off solution
(n=0, B =1350); lower solid line, u, calculated using same trade-off solution; and lower
dashed line, u, calculated using same trade-off solution with v, set equal to zero. (b) Nor-
mal velocity components: upper dashed line, v, as actually measured; upper solid line, v,”
calculated using trade-off solution (n=0, B =1350); lower solid line, v, calculated using
same trade-off solution; and lower dashed line, v, calculated using same trade-off solution
with v, set equal to zero.
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Figure 6-7. Surface and basal velocity components for mini-surge of 15 July 1980,
for linear viscous rheology, x =0 at 6.5 km. (a) Longitudinal velocity components: upper
dashed line, u, as actually measured; upper solid line, #,™ calculated using trade-off solution
(n=1, p=1250); and lower solid line, u, calculated using same trade-off solution. (b)
Normal velocity components: upper dashed line, v, as actually measured; upper solid line,
v,™ calculated using trade-off solution (n = 1, B = 1250); and lower solid line, v, calculated
using same trade-off solution.
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Figure 6-8. Surface and basal velocity components for mini-surge of 15 July 1980,
for linear viscous rheology, x=0 at 6.5 km. (a) Longitudinal velocity components: upper
dashed line, u, as actually measured; upper solid line, 1, calculated using trade-off solution
(n=2, B =3650); and lower solid line, u, calculated using same trade-off solution. (b)
Normal velocity components: upper dashed line, v, as actually measured; upper solid line,
v,™ calculated using trade-off solution (n =2, B = 3650); and lower solid line, v, calculated

using same trade-off solution.
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Figure 6-9. Surface and basal velocity components for mini-surge of 11 July 1979,
for linear viscous rheology, x =0 at 7.5 km. (a) Longitudinal velocity components: upper
dashed line, u, as actually measured; upper solid line, u/ calculated using Gaussian filter
(o = 0.196); and lower solid line, u, calculated using same filter. (b) Normal component of
basal velocity v, calculated using Gaussian filter (o = 0.196).
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Figure 6-10. Surface and basal velocity components for mini-surge of 11 July 1979,
for linear viscous rheology, x =0 at 7.5 km. (a) Longitudinal velocity components: upper
dashed line, , as actually measured; upper solid line, &, calculated using trade-off solution
(n=0, B=2550); and lower solid line, u, calculated using same trade-off solution. (b)
Normal component of basal velocity v, calculated using trade-off solution (z = 0, B = 2550).
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Figure 6-11. Surface and basal velocity components for mini-surge of 14 July 1981,

for linear viscous rheology, x=0 at 4.7 km. (a) Longitudinal velocity components: upper
dashed line, u, as actually measured; upper solid line, u calculated using Gaussian filter
(o = 0.047); and lower solid line, u, caiculated using same filter. (b) Normal component of
basal velocity v, calculated using Gaussian filter (¢ = 0.047).
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Figure 6-12. Surface and basal velocity components for mini-surge of 14 July 1981,
for linear viscous rheology, x =0 at 4.7 km. (a) Longitudinal velocity components: upper
dashed line, , as actually measured; upper solid line, »,™ calculated using trade-off solution
(n = 0, B = 200); and lower solid line, u, calculated using same trade-off solution. (b) Nor-
mal component of basal velocity v, calculated using trade-off solution (n = 0, B = 200).



CHAPTER 7

NON-LINEAR (POWER LAW) INVERSE SOLUTIO