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Abstract 

 

 The combination of rainy climate, glaciolacustrine clays, and steep topography of the 

Puget Lowland creates slope stability issues for the regional population. Several glaciolacustrine 

deposits of laminated silt and clay of different ages contribute to the likelihood of slope failure. 

The glaciolacustrine deposits are generally wet, range in thickness from absent to >30m, and 

consist of laminated silt and clay with sand interbeds at the tops and bottoms, sandy laminae 

throughout the deposits, occasional dropstones and shear zones. The glaciolacustrine deposits 

destabilize slopes by 1) impeding groundwater flow percolating through overlying glacial 

outwash sediments, 2) having sandy laminae that lower strength by increasing pore pressure 

during wet seasons, and 3) increasing the potential for block-style failure because of secondary 

groundwater pathways such as laminae and vertical fractures. Eight clay samples from six known 

landslide deposits were analyzed in this study for their mineralogy, clay fraction and strength 

characteristics. The mineralogy was determined using X-ray Diffractometry (XRD) which 

revealed an identical mineralogic suite among all eight samples consisting of chlorite, illite and 

smectite. Nonclay minerals appearing in the X-ray diffractogram include amphibole and 

plagioclase after removal of abundant quartz grains. Hydrometer tests yielded clay-size fraction 

percentages of the samples ranging from 10% to 90%, and ring shear tests showed that the angle 

of residual shear resistance (ϕr) ranged from 11° to 31°. Atterberg limits of the samples were 

found to have liquid limits ranging from 33 to 83, with plastic limits ranging from 25 to 35 and 

plasticity indices ranging from 6 to 48. The results of the hydrometer and residual shear strength 

tests suggest that ϕr varies inversely with the clay-size fraction, but that this relationship was not 

consistent among all eight samples.  The nature of the XRD analysis only revealed the identity of 

the clay minerals present in the samples, and provided no quantitative information. Thus, the 

extent to which the mineralogy influenced the strength variability among the samples can’t be 

determined given that the mineral assemblages are identical. Additional samples from different 

locations within each deposit along with quantitative compositional analyses would be necessary 

to properly account for the observed strength variability. 
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1.0 Introduction 
 

 The hilly topography that is characteristic of the Puget Lowland largely represents the 

legacy of continental glaciation that occurred in the Puget Sound region over the last 2.4 Ma 

(Troost and Booth, 2008). Glacial sediments of variable thickness covers the ridges and glacially 

carved troughs of the Puget Lowland; features that provide testament to the power of moving ice 

to carve landscapes by grinding, transporting and depositing rock debris (Savage et al., 2000).  

The glacial deposits consist of fine-grained glaciolacustrine sediments that are overconsolidated 

as a result of having been overridden by glaciers and subjected to the weight of thousands of feet 

of ice, and are therefore very dense and hard. The glaciolacustrine sediments underlie coarse-

grained outwash sediments that are capped incompletely with a layer of glacial till, then by 

recessional outwash. (Troost and Booth, 2008). These sediments and post-glacial fill are thickest 

in the glacially carved troughs and now supports the infrastructure of the densely-populated 

greater Seattle area and its surrounding counties (Troost and Booth, 2008). Gravity acting on 

steep slopes, elevated groundwater levels during storm events and extensive alteration from 

development, act to destabilize the post-glacial sediments which results in common slope failures 

(Savage et al., 2000). Moreover, the contact between glaciolacustrine and overlying coarser-

grained deposits is frequently associated with slope failure throughout the Puget Lowland 

(Savage et al., 2000). Stormwater percolating through the permeable coarse sediments pools on 

the low permeability surface of the clay-rich layer, causing destabilization by elevating pore 

pressure in the overlying sediments and creating a slide plane on the fine-grained surface (Tubbs, 

1974).  

 The terms clay and clay mineral are distinct from one another in that clay is a general 

term used to describe a sedimentary rock of a grain size <2 μm, whereas clay mineral refers to a 

specific layered hydrous aluminosilicate (Moore and Reynolds, 1997). Examples of common 

clay mineral groups include illite, smectite and chlorite (West, 1995). Members of the illite and 

smectite groups have a three-layer sequence of tetrahedral sheets (t) sandwiching an octahedral 

sheet (o) in their repeating structural units (t-o-t). Chlorite has a mixed-layer repeating structure 

of a t-o-t layer separated by a single o-sheet (West, 1995). Minerals of the three-layer structure 

category are susceptible to shrinking and swelling in the presence of water. The most 

problematic of these minerals are those of the smectite group in which their capacity to expand 

and contract reduces the strength of deposit, thereby affecting slope stability (Borchardt, 1977). 
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To better understand the engineering behavior of clay-rich deposits, the mineralogy and strength 

characteristics of the clays need to be determined. Prior studies have identified the mineralogy of 

some of the Puget Lowland glaciolacustrine deposits (e.g. Mullineaux, 1967; Subbarao, 1953), 

though these studies are few in number. Mullineaux determined that these deposits have a 

homogeneous mixture if illite, chlorite and montmorillonite, where montmorillonite is a member 

of the smectite clay mineral group. Subbarao conducted an in depth investigation of the 

glaciolacustrine Superior Clay using several approaches to mineralogic analysis and found that 

the clay contained illite, chlorite, montmorillonite, kaolinite, and numerous non-clay minerals.  

 The approach of this study is different from the previous study examples in that it focuses 

on determining the mineralogy and the strength characteristics of clays associated with known 

slope failure deposits. The goals are to determine what correlation exists between the mineralogy 

and the residual shear strength of the clays, and to contribute data on strength parameters that 

could be used to inform geotechnical studies on these landslide deposits (Figure 1). This work is 

important because of the limited information available of this nature on the glaciolacustrine 

deposits of the Puget Sound region, and for safeguarding the public from loss of life because of 

related slope failures. 

 

1.1 Geologic Setting 
 

 During the Pleistocene the Puget Lowland experienced repeated advance and retreat of 

continental ice sheets. These ice sheets deposited units of fine-grained glaciolacustrine deposits, 

which exist in the Puget Lowland as bedded silt and clay deposits of varying ages which are 

overlain by loosely consolidated proglacial outwash. This sequence of glacial deposits is 

common in the subsurface and in bluff exposures. The ages of these sediment packages are often 

unknown because of a lack in absolute dating and a lack of distinguishing characteristics. The 

youngest of these are the glaciolacustrine clays deposited by the Vashon glacier, which receded 

northward approximately 16,400 years ago (Troost and Booth, 2008). These clay-rich deposits 

formed as streams delivered fine-grained sediment into the still-water environments of proglacial 

lakes (Mullineaux et al., 1965). As the Vashon glacier advanced southward, meltwater streams 

laid down the Esperance Sand in front of the glacier, which is a large unit of coarse-grained 

alluvium deposited on top of a glaciolacustrine deposit known as the Lawton Clay (Mullineaux 

et al., 1967). At the top of the glacial sequence, an extensive but discontinuous layer of glacial 
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till caps the Esperance Sand, and marks the arrival of the Vashon glacier (Troost and Booth, 

2008). 

1.2 Study Area 

 

 A total of eight fine-grained soil samples from six separate slope failure deposits were 

analyzed in this project. This section provides brief descriptions of the sample deposits and their 

geographic locations. From north to south, these are the Oso landslide, the Ledgewood landslide, 

the Woodway landslide, the Discovery Park sampling point, the SR-520 slope failure, and the 

Klickitat Drive slope failure. These sample locations are contained in an area that covers a 20 

km-wide swath of the Puget Lowland that stretches from south of Seattle approximately 20 km 

to about 80 km north of Seattle (Figure 1). Three samples identified as Shaft 7, Shaft 18 and 

Shaft 21 came from the SR-520 slope failure. 

  

1.2.1 Oso Landslide 
 

 The Oso landslide occurred on March 22, 2014 on the slope of the Whitman Bench above 

the North Fork of the Stillaguamish River near the town of Oso, WA following a period of 

higher than normal precipitation during February and March (Robertson, 2014) (Figure 2). Over 

7 million cubic meters of material moved during the event with the slide runout extending over 

one kilometer (Robertson, 2014). The glaciolacustrine unit is mapped as advance 

glaciolacustrine deposits of Vashon age (Dragovich, et al., 2003). WSDOT provided the clay 

sample from this slope failure from near the base of the slope. 

 

1.2.2 Ledgewood Slide 

  

 The Ledgewood slide occurred on March 27, 2013 on a coastal bluff of Whidbey Island 

along Puget Sound above Ledgewood Beach southeast of Coupeville, WA (Gordon and Cool, 

2013) (Figure 3). The Ledgewood slide represents the most recent movement of the Driftwood 

Way landslide that has experienced intermittent activity over several decades. (Gordon and Cool, 

2013).  Based on stratigraphic relationships, this glaciolacustrine deposit appears to be of pre-

Vashon age and exhibited extensive deformation, shearing and slickensides (Kathy Troost, 

verbal communication, March 2015). University of Washington Geologist Kathy Troost 
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provided the sample for this slide, which came from clay exposed in the toe of the slide on 

Ledgewood Beach (Figure 4). 

1.2.3 Woodway Slide 

 

 The Woodway slide occurred on January 17, 1997 on a coastal bluff along Puget Sound 

in the town of Woodway, WA (Figure 5). On this date, an estimated 75,000-150,000 cubic 

meters of glacial sediments slid down the steep bluff south of Deer Creek, pushing several cars 

of a passing freight train into Puget Sound (Baum et al., 1998). Based on stratigraphic 

relationships, this clay sample appears to be from the Lawton Clay (Kathy Troost, verbal 

communication, March 2015). I collected the sample for this slide from bedded clay exposed in 

the failure deposit. 

1.2.4 Discovery Park 

 

 The type sequence of proglacial Vashon deposits is exposed in the south bluff in 

Discovery Park in Seattle, WA.  The glaciolacustrine clay exposed in the middle of the bluff is 

known as the Lawton Clay (Figure 6) (Mullineaux et al., 1965). The Discovery Park sample is 

not associated with a specific landslide deposit, though small scale failures frequently occur in 

the south bluff at this location. I collected the sample from sluffed blocks of clay that had eroded 

from this unit that were accessible at the bluff base. 

 

1.2.5 SR-520 Slope Failure 

 

 A slope failure occurred On November 28, 2011 next to the eastbound lanes of SR-520 in 

Bellevue, WA following a slope grading excavation below the off-ramp to Bellevue Way. The 

toe of the slope was excavated to allow construction of an access road parallel to the eastbound 

lanes to facilitate widening of SR-520 as part of a floating bridge replacement project (Stark, 

2013) (Figure 7). After a 20-foot wide excavation exposed glaciolacustrine clay at the toe of the 

slope, the action of unloading the clay produced tension cracks that allowed water to infiltrate 

and decrease the clay strength (Stark, 2013). The tension cracks progressed into a landslide 

occurring on November 28, 2011 (Stark, 2013). The clay deposit may be from a pre-Vashon 

glaciation (Kathy Troost, verbal communication, March 2015). WSDOT provided the three 

samples Shaft 7, Shaft 18 and Shaft 21 from this slope failure. 
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1.2.6 Klickitat Drive Slope Failure 

 

 A shallow landslide occurred in March 2014 on the slope above Klickitat Drive near the 

interchange of I-5 and SR 518 in Tukwila, WA (Bartoy, 2014). The 2014 failure extended about 

30 m to 50 m downslope, and exposed about 1.5 m of the head scarp at the top of the slope 

approximately 75 m wide (Bartoy, 2014). The slope failure occurred after heavy rains saturated 

soil that was part of a larger landslide that had failed during the construction of I-5 in the 1960’s 

(Bartoy, 2014). This sample may have come from Vashon glaciolacustrine recessional sediments 

(Kathy Troost, verbal communication, March 2015). WSDOT provided the clay sample from 

this slope failure. 

 

1.3 Scope of Work 

 

 The goals of this study were to 1) determine the mineral composition of glaciolacustrine 

clays associated with known landslide deposits, 2) see whether a correlation exists between the 

mineralogy and the residual shear strength, and 3) contribute data on strength properties of these 

clays. I used X-ray diffraction (XRD) to determine the mineralogy of the clay, Atterberg limit 

tests to determine the clay liquid limits (LL) and plastic limits (PL), ring shear tests to determine 

the angle of residual shear strength (ϕr), and hydrometer tests to determine the sample clay 

fractions (CF). CF is defined as the percentage of particles finer than 2μm. 

 

2.0 Methods 
 

 This section describes how the clay samples were prepared and analyzed using X-ray 

Diffraction (XRD), and how the samples were tested for their Atterberg limits, residual shear 

strength and CF. 

 

2.1 XRD 

 

2.1.1 XRD Background  
 

 Clay minerals form in low temperature environments near the Earth’s surface from the 

interaction of water with weathered rock minerals and poorly crystallized substances such as 

volcanic glass. This interaction allows for greater structural complexity than those of minerals 

crystallizing at higher temperatures (Perkins, 2002).  The intricacy and small size of clay 
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minerals requires laboratory techniques and analysis with XRD as an aid for differentiating 

between clay mineral species (Poppe et al., 2001).  

 Clay minerals have a platy structure in which their atoms are organized in a repeating 

pattern arranged on planes that are separated by equal distances (Moore and Reynolds, 1997) 

(Figure 8).   X-rays striking the atoms in the planes are diffracted. The diffracted X-rays scatter 

and interfere with one another either constructively or destructively. Destructive interference 

occurs when the diffracted X-ray waves are out of phase with one another, and thus combine to 

partially or completely cancel the energy of the resultant X-ray. Constructive interference occurs 

when the waves of the scattered X-rays are completely in phase with one another, and thus 

combine to produce a resultant X-ray of increased energy (Moore and Reynolds, 1997).  The 

constructively diffracted X-rays emanate from the crystal structure at angles that are unique to 

each mineral (Figure 8).  

  An X-ray Diffractometer is a device used to generate X-rays and measure the angle and 

intensity of diffracted rays as a means of identifying the composition of materials consisting of 

minute particles (Pei-Yuan, 1977). The diffractometer focuses X-rays onto the surface of a clay 

sample, and the detector measures the intensity and the angle of diffracted X-rays striking the 

detector. Diffracted waves must be of sufficient energy to be recorded by the detecting device of 

an X-ray Diffractometer (Figure 9).   The detector measures the intensity in “counts” of the 

number of X-ray photons striking the detector per second, and the goniometer measures the 

diffraction angle in degrees 2θ as the machine rotates the detector through a preset 2θ range. 

JADE XRD software connected to the diffractometer produces a plot of the diffraction angle 

versus the intensity of the diffracted beam on a graph known as a diffractogram (Figure 10).  

 The minerals present in a sample diffract X-rays at angles 2θ specific to each mineral, 

producing diffraction peaks in the diffractogram at unique 2θ angles (Moore and Reynolds, 

1997). Most clay minerals will produce multiple diffraction peaks at evenly spaced angles along 

the 2θ axis. The multiple diffraction peaks that the minerals produce are known as diffraction 

peak orders. The distances between the diffraction peak orders along the 2θ axis are the same for 

a given mineral (Moore and Reynolds, 1997). For example, the distance between the first order 

diffraction peak for chlorite (001) and the second order diffraction peak for chlorite (002) will be 

the same as the distance between 002 and the third order diffraction peak (003), and so on 

(Figure 10).  
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 The heights of the peaks (a function of the number diffracted X-rays striking the detector) 

can vary from sample to sample depending on factors such as sample thickness, but the ratio 

between the heights of the peaks between diffraction orders will remain essentially constant. For 

example, the height of the chlorite 002 peak may be taller in a diffractogram for a given sample 

of certain clay than in a diffractogram of a second sample of the same clay, the thickness of 

which happened to be less than the first. However, the chlorite 002/003 height ratio of 

approximately 1 to 4 is a characteristic of the clay mineral and will not change from sample to 

sample (Figure 10). 

 Each mineral present in a sample can be identified based on the unique pattern of 

diffraction peaks the mineral produces, though some clay minerals produce peaks at angles close 

enough to coincide on the pattern. In these instances, the property that clay minerals may expand, 

contract, or collapse in response to different chemical and physical treatments can be used to 

help confirm or eliminate the presence of such minerals (Moore and Reynolds, 1997). These 

responses show up in the diffractograms as changes in peak intensity and shifts in peak location 

along the 2θ axis. In this study, the chemical treatments included saturating the samples with 

solutions of magnesium chloride and potassium chloride, and exposing the samples to the vapors 

of ethylene glycol and glycerol (solvation). The physical treatments included air drying, heating 

to 300 °C, and heating to 550 °C. How these treatments were applied is discussed in the 

following section on sample preparation for XRD. In this study, I identified the clay mineralogy 

by matching the 2θ peak data of the diffractogram patterns to published diffraction data for the 

minerals. In addition, I compared the effects that the heat and chemical treatments produced on 

the diffractograms to published results expected for these treatments as a guide for confirming 

the presence of specific minerals (Moore and Reynolds, 1997). 

 

2.1.2 Sample Preparation for XRD 

 

 Preparing the clay samples for XRD analysis takes place in two steps. The first step is to 

isolate the <2μm sediment size fraction. This step removes most of the non-clay minerals. The 

second step is use preferred orientation. This step enhances the basal diffraction peaks and 

allows for better detection of the clay responses to the various treatments. Forcing the clay 

minerals into this preferred orientation also greatly simplifies the diffractogram by filtering out 

the influence of the a- and b-crystallographic axes, which are nearly equal among the many clay 
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minerals. This process leaves the c-crystallographic axes presented to the X-ray beam, and thus 

allows the signature peaks of the clay minerals to clearly stand out for easy identification (Moore 

and Reynolds, 1997).   

 I developed the preferred mineral orientations in a process of several steps. In the first 

step of this process, approximately 25 grams of sample is crushed with a mortar and pestle, 

placed in a beaker with 400 ml of deionized water, and then disaggregated for five minutes using 

an ultrasonic cleaner. This is necessary to prevent the suspended clay particles from flocculating, 

or clumping back together (Poppe et al., 2001). In the second step, the <2 μm fraction is 

separated from the larger-sized particles by centrifuging the disaggregated clay at 800 RPM for 

approximately 4 minutes. This step suspends the <2 μm fraction so that these sediments can be 

captured by vacuum filtration, thus forcing the platy minerals to lie flat on a 0.45 μm filter disc. 

The filter cake is transferred to a glass petrographic slide by holding the filter taught around the 

outside of a glass cylinder and “rolling” the cake onto the slide. The filter cake binds to the slide 

with the platy clay minerals lying flat so that the c-crystallographic axes are oriented 

perpendicular to the glass slide surface.  

 To evaluate of diagnostic response of clays to various treatments, I created four slides for 

each of the eight clay samples. As mentioned in section 2.2, these treatments included air-drying, 

saturation with magnesium ions and potassium ions, heating to 300 °C, heating to 550 °C, and  

 solvation with glycerol and ethylene glycol. Saturating the samples with magnesium and 

potassium ions places uniform cations in the cation exchange positions of the clay mineral 

structures. For the saturation treatments, I saturated three of the four slides during the suction 

filtration step with approximately 3 ml of 0.1M magnesium chloride solution (Mg).  I saturated 

the fourth slide during filtration with ~3 ml of 1M potassium chloride (K). Of the three Mg-

saturated slides, one slide was X-rayed three times; once under its air-dried condition (Mg-AD), 

again after being heated to 300 °C for one hour (Mg-300), and for a last time after being heated 

to 550 °C for one hour (Mg-550). Of the two remaining Mg-saturated slides, one was X-rayed 

after being solvated in ethylene glycol vapors (Mg-glycol), and the other was X-rayed after being 

solvated in glycerol vapors (Mg-glycerol) (Moore and Reynolds, 1997). Finally, the K-saturated 

slide was X-rayed under its air-dried condition (K-AD), and then again after being heated to 300 

°C for one hour (K-300) (Moore and Reynolds, 1997). 
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2.2 Atterberg Limit Tests  
 

 Atterberg limits are measurements of fine-grained soil consistency based on the moisture 

content of the soil. The two common limits used in geotechnical engineering are the liquid limit 

(LL) and the plastic limit (PL) (Reddy, 2002). The PL is the moisture content that defines the 

point at which the soil changes from semi-solid to a plastic (flexible) state. The LL is the 

moisture content marking the point at which a soil changes from a plastic state to a viscous fluid 

state (Reddy, 2002).  The plasticity index (PI) is the difference between LL and the PL values 

and represents the range of moisture contents at which the soil exhibits plasticity. The technical 

definition for LL is the moisture content, in percent, at which two halves of a soil cake will flow 

together, for a distance of 12.7 mm along the bottom of a groove of standard dimensions 

separating the two halves, when the cup of a standard LL apparatus is dropped 25 times at a rate 

of two drops per second from a height of 10 mm (NYDOT, 2007) (Figure 11). The PL is defined 

as the moisture content, in percent, at which a soil will just begin to crumble when rolled into a 

thread 3 mm in diameter on a ground glass plate (NYDOT, 2007).  

 The American Standards of Testing and Materials (ASTM) covers the procedure for 

determining the Atterberg limits in ASTM standard D4318-10: Standard Test Methods for 

Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM, 2010). I performed Atterberg 

limits at the UW campus following the methods described in standard D4318-10 on the 

Ledgewood, Woodway and Discovery Park samples. I also sent portions of these same three 

samples to WSDOT for them to duplicate Atterberg limits as a check on my results. For the LL 

test, standard D4318- 10 outlines two testing methods: the three point method, and the single 

point method. At UW, I used the three point method to determine LL for the Ledgewood, 

Woodway, and Discovery Park samples. Later, I discovered that the WSDOT standard procedure 

is the single-point method. Since WSDOT had previously conducted Atterberg limits on the 

Klickitat, Oso, and the three SR-520 samples, for consistency I use the LL, PL and PI values 

from WSDOT for all eight of the samples in this study. The convention for reporting the LL, PL 

and PI values is to omit the percent sign (ASTM, 2010), and is the reporting method I use here.  

 

2.3 Residual Shear Strength 
 

 Clays have a limit to the amount of shear stress that they can withstand before failing. 

This limit is known as the peak shear strength, which is a measure of the maximum resistance 
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clay has to shear stress, or forces acting laterally on the clay. When clay is exposed to increasing 

shear stress, the peak resistance to the shear force will eventually be exceeded, and the clay goes 

into a slightly lower but steady shear resistance known as the residual shear strength (Stark and 

Hussein, 2013).  

 To evaluate the residual shear strength of the samples, I conducted ring shear tests 

following the procedure given in ASTM standard D6467-13: Standard Test Method for Torsional 

Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils (ASTM, 

2013).  This ring shear test takes place in two phases. In the first phase, or consolidation phase, a 

clay sample is placed in the ring-shaped recess of a sample vessel and consolidated at five steps 

(A, B, C, D, and E) at progressively higher normal stress (Table 1). Following the consolidation 

phase, the clay is then sheared during the shearing phase in another five steps under the same 

progressively higher normal shear stress loads. The device used to perform the residual strength 

tests on the clays is the Wykeham Farrance “Torshear” Anular Ring Shear Tester located at the 

WSDOT State Materials Testing Laboratory in Tumwater, WA (Figure 12).   

 Because this ring shear tester was available for a limited time period, it was decided that 

five of the eight samples would be tested. WSDOT already conducted testing on the Oso and 

Klickitat Drive samples using their original sample vessel. Thus, I retested these two samples 

using the modified ring shear sample vessel for comparison. The Ledgewood, Discovery Park 

and Woodway were chosen as the remaining samples because there was no prior knowledge of 

available shear strength data on these soils.  

 The sample vessel I used in this study is a two-piece vessel that consists of a lower plate, 

also known as the lower platen, and an upper platen (Figure 13). The lower platen had been 

custom modified for WSDOT to have a base that can be vertically adjusted, in contrast to the 

original sample vessel that was non-adjustable. The purpose for having a vertically adjustable 

vessel base is to compensate for the change in thickness of the sample resulting from the 

consolidation phase. This vertical adjustment allows the recessed surface of the consolidated 

sample to be elevated flush with the surface of the lower platen.  

 

2.4 Hydrometer Tests 

 

 Hydrometer tests are used as part of a soil particle size analysis to determine the 

gradation of the soil fraction that passes a #200 sieve (Das, 2009). Particles belonging to this soil 
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fraction are the silt- and clay-sized particles. The clay-size fraction (CF) can be determined from 

the gradation results as a percentage of the silt- and clay-sized soil fraction. CF is useful 

information for seeing how the percent clay in the sample correlates with the liquid limit and 

angle of residual shear strength. WSDOT had performed hydrometer tests on the Oso, Klickitat 

Drive, and the SR-520 and provided the CF for those five samples.  I performed hydrometer tests 

at the State Materials Testing Laboratory on the Ledgewood, Discovery Park, and Woodway 

samples following the hydrometer test procedure outlined in the American Association of State 

Highway and Transportation Officials (AASHTO) Standard Method of Test T 88:  Particle Size 

Analysis of Soils (AASHTO, 2008).  

 

3.0 Results 
 

 Through the course of this project I prepared a total of 56 X-ray diffractograms consisting 

of the seven chemical and heat treatments performed on the <2μm fractions of the eight clay 

samples. Additionally, I conducted ring shear tests on a subset of five clay samples, and 

performed hydrometer tests on a subset of three silt- and clay-sized sample fractions. I provide 

detailed data descriptions along with XRD diffractograms in the Appendix, where data are 

arranged by geographical sample site location from north to south (Figure 1).  

 The results of the strength assessments show that the Atterberg limit tests produced a 

broad array of liquid limits ranging from 33 for the Klickitat Drive sample to 83 for the 

Woodway sample, and a more limited band of plastic limits ranging of 25 for the SR-520 Shaft 

18 sample to 35 for the Woodway sample (Table 2). The LL and Pl values yielded plasticity 

indices that range from 6 for the Klickitat Drive sample to 48 for the Woodway sample.  The 

clay-size fraction of each sample varied greatly from 10% for the Klickitat Drive sample to 90% 

for the Woodway sample. Ranges for the angles of residual shear strength based on the normal 

stress loads of 50-700 kPa went from10-12° for the SR-520 Shaft 7 sample to 28-32° for the 

Klickitat Drive sample.  

 The XRD analyses show that seven of the eight clay samples have an identical 

mineralogy consisting of illite, chlorite and smectite. The Ledgewood sample is the exception 

because it lacks smectite (Figure 10). Non-clay minerals appearing in all of the diffractograms 

were inferred to be amphibole and plagioclase, based on the closest matching diffraction data in 

published mineral diffraction tables (Pei-Yuan, 1977). The clay minerals were identified by their 
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response to specific treatments. The illite diffraction peaks did not respond to solvating the Mg-

saturated samples with glycerol, ethylene glycol, and heating to 550 °C (Figure 14). Chlorite was 

identified by heating the Mg-sample to 550 °C, which increased the height of the 001 diffraction 

peak and collapsed the 002 peak (Figure 15).  Smectite was identified by solvation with ethylene 

glycol, which caused the mineral to expand and the 001 peak to shift to a lower 2θ angle (Figure 

16). These XRD results agree well with earlier mineralogical studies on Puget Sound clays that 

show a similar clay mineral composition of illite, chlorite and smectite (Mullineax, 1967). 

 

4.0 Discussion 
 

 The goals of this study were to 1) determine the mineral composition of glaciolacustrine 

clays associated with known landslide deposits, 2) see what correlation exists between the 

mineralogy and the residual shear strength, and 3) contribute data on strength properties of these 

clays. The XRD analyses revealed a similarity in clay mineralogy among all of the clay samples. 

This suggests that the glaciolacustrine clay-size fraction (CF) has a relatively uniform 

composition, with the possible exception of smectite, over a relatively large geographic area. 

Presumably, this is because these clay minerals were derived from the same glacial advance 

source area.  

 The angle of residual shear strength varies among the samples even though the 

mineralogy remains the same. However, the XRD analyses conducted in this study identify the 

mineral types that are present in the samples without providing information on relative mineral 

percentages. This lack of quantitative information makes the extent to which the mineralogy 

affects the strength of the clays difficult to determine. Hence, other factors such as CF appear to 

influence the residual shear strength of these samples more strongly than the mineralogy. For 

example, the general trend in the relationship between CF and the angle of residual shear 

strength (ϕr) is that ϕr decreases with increasing CF (Figure 17). Scatter about the trendline 

indicates that this relationship is not true for every sample, and that variability in this relationship 

exists between the slide deposit locations. Additionally, scatter about the trendline among the 

SR-520 samples shows that conditions can vary within short distances along the surface and with 

depth in a single deposit. This results from using a limited number of single point samples to 

characterize deposits that are infinitely larger in extent compared to the size of the soil sample.  

Thus, establishing a description of the deposit that accurately relates the clay mineralogy and the 
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strength characteristics would require many more samples from different locations and depths 

from each deposit. 

 The results of the ring shear test agree well with the expected values calculated from 

values for ϕr from empirical formulas developed by Dr. Timothy Stark of the University of 

Illinois at Urbana-Champaign based on CF and LL (Figure 18 and Table 2). Exceptions are the ϕr 

values for the Oso sample and the Discovery Park sample, which plot above the black trendlines 

designated for the >50% clay-size fraction (Figure 18). Dr. Stark developed four formulas that 

model the expected ϕr values for normal stress loads of 50, 100, 400 and 700 kPa. Thus, for 

consistency in comparing the measured ϕr values to the calculated values, the measured ϕr value 

discussed in the methods and in Table 1 for the 25 kPa normal stress load (Step A) are omitted.  

 The Oso ϕr results compare favorably between the test using the adjustable platen in this 

study and the test WSDOT performed using the non-adjustable platen. However, it is interesting 

to note that both tests came in higher than the expected value based on a CF of 56% and a LL of 

64. In the case of the Oso sample, the departure from the expected value may include the 

presence of coarse-grained particles in the ring shear sample. In the case of the Discovery Park 

sample, in the absence of a prior test for comparison, the departure may be because of procedural 

errors in the ring shear test. As pointed out earlier in this discussion, these results also show the 

overarching issue of the variability inherent in these landslide deposits. A greater number of 

samples from each deposit would likely improve the comparison between the measured ϕr values 

and the expected ϕr values. 

 

5.0 Conclusion 
 

 This study showed that the mineralogy of the glaciolacustrine clays of the Puget Lowland 

to consist of a homogeneous assemblage of the clay minerals chlorite, illite and smectite based 

on samples obtained from known landslide deposits. The qualitative nature of the X-ray 

Diffraction analyses revealed the identity of the constituent minerals, but provided no 

information on relative mineral quantities in the samples. Thus, the extent to which the 

mineralogy controls the strength characteristics of the clay deposits is difficult to determine. The 

strength of the clays, as expressed by the angle of residual shear strength (ϕr) ranges from 11° to 

32°. Clay liquid limits had a wide range of 33 to 83, plastic ranged more narrowly between from 

25 to 35, plasticity indices ranged from 6 to 48, and sample clay-size fractions covered a wide 
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range from 10% to 90%.  This study shows that, in general, the residual shear strength varies 

inversely to the clay fraction of the samples, though this relationship is more complex in several 

cases. The ring shear test results agreed well with expected ϕr values calculated from formulas 

based on CF and LL values with the exception of the Oso and Discovery Park samples, which 

had higher than expected measured ϕr  values. The variability observed in the strength data 

illustrates the inherent conditional variability with space and depth within the landslide deposits. 

A larger number of samples from various points within each deposit, along with quantitative 

mineralogical analysis, would allow for more accurate conclusions to be drawn about the 

relationship between the mineralogy of the glaciolacustrine clays and the strength characteristics.  
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Figure 1. Overview of the Puget Lowland showing the locations of the sampled landslide 

deposits (red markers), along with major populations centers for geographical reference. The 

imprint of continental glaciation on the landscape can be seen through the network of scoured 

troughs that Puget Sound now occupies. The map coloration indicates topography; blue showing 

Puget Sound and pale green the lowlands, with green indicating uplands and tan showing the 

highest elevations (figure adapted from map image courtesy of Kathy Troost, 2015). 
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Figure 2. Oblique view of the Oso landslide looking east (Robertson, 2014). Runout from the 

slide can be seen crossing the North Fork of the Stillaguamish River and continuing westward 

out of view of the photograph. WSDOT provided the clay sample from the glaciolacustrine 

deposit near the base of the slope. The exact location of the sampling point is unknown to the 

author. 
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Figure 3. Oblique aerial view of the Ledgewood slide looking southward. (Seattle Times, 2013). 
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Figure 4. Clay exposed at the sampling location in the toe of the Ledgewood slide. View looks 

to the northeast (Photo by author, April 2014). 
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Figure 5. Oblique view of the 1997 Woodway slide looking east in the town of Woodway, WA 

(Baum et al., 1998). Vegetation has now recolonized the slide surface in the 17 years since this 

photo was taken. The sampling site is located at approximately three-quarters of the way bluff 

face along the north edge of the failure surface. 
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Figure 6. The Vashon glacial sediment deposit sequence exposed above the shore of Puget 

Sound at Discovery Park in Seattle, WA. In the Seattle area the glaciolacustrine clay deposit is 

known as the Lawton Clay. Intact blocks of Lawton Clay are accessible from the beach as clay 

material sluffs down to the base of the bluff. The sampling location was selected for safety 

reasons and ease of access to the material. The height of the bluff from the base to the small gap 

in the trees at the highest point is approximately 80 meters. The Lawton clay overlies bedded 

pre-Vashon sediments deposited during the Olympia nonglacial interval, and is overlain by the 

Esperance Sand. The cap of glacial till is not present at this exposure. The lower line marks a 

gradational contact between the Lawton Clay and the Olympia beds (Mullineaux et al., 1965). 

(Photo by author, taken May 2014).  
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   a)            b) 

       
   c)            d) 

Figure 7. Photo collage of the 2011 SR-520 slope failure in Bellevue, WA (Stark, 2013). a) East-

looking view of the access road excavation. The old off-ramp to Bellevue Way sits on top of the 

plastic-covered graded slope, and the exposed clay can be seen sticking out at the slope base. b) 

Tension cracks developing just below the surface at the top of the old off-ramp. c) View looking 

down on the old Bellevue Way off-ramp surface showing pavement damage produced by slope 

movement. d) Eastward view of slope from the old Bellevue Way off-ramp surface showing the 

slope movement retrogressing upslope.  
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Figure 8. Diagram illustrating X-ray diffraction from the atomic planes of a clay mineral. Each 

X-ray incident at angle θ traveling along the wave front X-X’ penetrates the mineral surface and 

is diffracted from the atoms in atomic planes R, S and T separated by distance, d (Å). 

Constructive interference produces diffracted waves of increased energy when scattered waves 

leaving the sample are in phase (reproduced from Moore and Reynolds, 1997).  
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Figure 9. The Bruker F8 Powder X-ray Diffractometer used in this study at the Materials 

Science and Engineering User Facility on the UW main campus. The device mounted at an angle 

on the left side of the apparatus is the X-ray tube. The tube focuses an X-ray beam onto the clay 

sample mounted on a petrographic slide held in a fitted plastic slide holder. The slide holder is 

held in place on the circular, vertically adjustable metallic support base visible in the center. The 

surface of the clay sample on the glass slide is held exactly in the X-ray diffraction plane when 

the support base is adjusted fully upward so that the holder is butted against the bottoms of three 

guide pins. As the incident X-ray beam exits the tube it passes through the diffractor slit and 

strikes the clay surface where it is diffracted. The device mounted at an angle on the right side of 

the diffractometer is the detector, which receives the diffracted X-rays after they pass through the 

antiscatter slit, the nickel filter, and finally the detector slit. The detector records the diffraction 

intensity and transfers this information to the computer analysis software (photo by author, 

2014).  
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Figure 10. XRD diffractograms of the ethylene glycol-treated clay samples of the clay suite. The 

glycol-treated diffractograms were used in this illustration so that the smectite peak at 

approximately 5.1 degrees 2θ would be visible. Note the great similarity of the diffractogram 

patterns for all the samples in terms of 2θ peak locations. This similarity shows that the 

composition of the clays is essentially identical, with the exception of a lack of smectite in the 

Ledgewood sample, indicated by missing S001 peak. C001, C002, C003, C004, and C005 are the 

first, second, third, fourth and fifth order chlorite diffractions; I001, I002, I003 are the first, 

second and third order illite diffractions; S001 is the first order smectite reflection. 
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Figure 11. A standard LL apparatus showing the results of a LL test. The two halves of the clay 

cake are shown having closed together across a groove of standard dimensions cut through the 

cake. The number 22 on the counter shows the number of drops from a height of 10 mm it took 

to draw the two halves together over a distance of approximately 13 mm (ASTM 4318-10) 

(photo by author, 2014). 
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a) 

 
b) 

Figure 12. Photographs of the ring shear test apparatus. a) The two mechanical arms on the left 

and right of the machine hold the upper platen of the sample vessel in place while the base 

supporting the lower platen slowly rotates, shearing the clay at 0.024 inches per minute. b) View 

of the machine shearing the clay under the 700 KPa (29 kg applied weight) step D normal stress 

load.  
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Figure 13. Photograph of the upper and lower platens of the ring shear sample vessel. The lower 

platen is the piece shown sealed in a plastic bag to prevent moisture loss from the clay sample 

loaded in the ring-shaped recess.  
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Figure 14. Illustration using the Woodway sample of how the response to treatments aided in 

identifying illite in the clay samples. The Woodway sample was chosen to represent the sample 

suite here and in figures 15 and 16 that follow because this sample responded to the treatments in 

such a way that the subtleties among the sample treatments showed up well. The main diagnostic 

feature for illite is the lack of response of the illite diffraction peaks to solvation with ethylene 

glycol, glycerol, or heating to 550 °C. This response is characteristic of illite (Moore and 

Reynolds, 1997). 
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Figure 15. Illustration using the Woodway sample of how the response to treatments aided in 

identifying chlorite in the clay samples. The Woodway sample was chosen to represent the 

sample suite here and in figure 14 above and figure 16 below because this sample responded to 

the treatments in such a way that the subtleties among the sample treatments showed up well. 

The main diagnostic feature for chlorite was the increase in height of the 001 peak and the 

collapse of the 002 peak in the Mg-550 diffractogram resulting from heating the Mg-saturated 

sample to 550 °.  
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Figure 16. Illustration using the Woodway sample of how the response to treatments aided in 

identifying smectite in the clay samples. The Woodway sample was chosen to represent the 

sample suite here and in figures 14 and 15 above because this sample responded to the treatments 

in such a way that the subtleties among the sample treatments showed up well. The diagnosis for 

smectite came from the broad smectite 001 peak in the Mg-Glycol diffractogram resulting from 

swelling of the smectite mineral structure in response to solvation of the Mg-saturated sample 

with ethylene glycol. 
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 Figure 17. Graph showing the general inverse relationship between clay fraction (CF) and angle 

of residual shear strength (ϕr). Scatter between samples such as Discovery Park and SR-520 

Shaft 7 shows that this trend is not constant. The scatter among the SR-520 samples shows how 

conditions can vary within a single deposit. 
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Figure 18. Comparison of the measured angle of residual shear strength values to the expected 

shear strength angles based on the formulas developed by Dr. Timothy Stark (Stark, 2013). The 

trendlines are colored according to clay-size fraction (CF) ranges, and the shear stress angles 

from each of the normal stress loads for each sample are plotted against the trendline curves. In 

the sample legend, the clay-size fraction values are colored according to their respective CF 

values for easier plot interpretation.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured Sample φr Values vs. Expected φr Values 

 



 

36 
 

Table 1. Normal stress loads at steps A, B, C, D and E for both the consolidation phase and the 

shearing phase of the ring shear test. The normal stress values given here help facilitate 

comparing residual shear stress angles (ϕr) derived from shear tests to expected values of ϕr from 

published stress curves (Figure 15).  

Consolidation and Shearing Steps Normal Stress (kPa) Applied Weight (kg) 

A 25 1.11 

B 50 2.15 

C 100 4.21 

D 400 16.61 

E 700 29.00 
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Table 2. Summary table of the strength attributes of the clay samples analyzed in this study. The 

samples are listed from top to bottom in the table according to their geographical location from 

north to south (Figure 1). The values for ϕr are given as the range of angles obtained from the 

ring shear test points at the 50 – 700 kPa normal stress load range of the shear test. The low 

normal stress value of 25 kPa for point A shown in Table 5 above omitted in this table for 

purposes of consistency in comparing the results to the four-point normal stresses prescribed in 

Dr. Timothy Stark’s formulas as shown in Figure 18. 

Clay Sample Strength Characteristics 

 Atterberg Limits 
Hydrometer 

Test 
Residual Shear Test, ϕr (°) 

 

Sample ID LL PL PI CF (%) 
Measured 

Values
a
 

Measured 

Values
b
 

Expected Values 
c
 

Oso 64 31 33 56 20-21 18-20 10-17 

Ledgewood 49 28 21 52 14-20 - 14-20 

Woodway 83 35 48 90 11-12 - 7-13 

Discovery Park 55 28 27 64 23-27 - 12-18 

SR-520-7 64 32 32 52 - 10-12 10-16 

SR-520-18 56 25 31 40 - 15-20 16-23 

SR-520-21 39 26 13 17 - 27-29 27-30 

Klickitat Drive 33 27 6 10 28-32 27-28 29-31 

a
 Angle of residual shear strength values measured in this study using the adjustable platen.  

b
Angle of residual shear strength values WSDOT measured using the non-adjustable platen. 

c
Expected values from formulas derived by Dr. Timothy Stark based on clay-size fraction and 

liquid limit. 
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Appendix – Data Descriptions 

 

A.1 Oso Landslide 
 

 The results of the XRD scans for the Oso sample reflect the presence of chlorite, illite 

and smectite (Figure 16). The peaks labeled 001, 002, 003, 004 and 005 that respectively occur at 

approximately 6.3, 12.5, 18.9, 25.2 and 31.6 degrees 2θ designate chlorite; illite is indicated by 

peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 degrees 2θ; smectite 

shows up at 001 occurring at approximately 5.1 degrees 2θ. Solvating the sample with ethylene 

glycol brought out the presence of smectite as seen by the smectite 001 peak in the Mg-glycol 

pattern. As the Mg-550 pattern shows, heating the sample to 550 °C increased the height of the 

chlorite 001 peak, and caused the chlorite 002 peak to collapse. Illite was unaffected by 

treatment with glycerol, ethylene glycol, or heating to 300 °C and 550 °C in neither the Mg- or 

K-saturated samples. 

 The results of the residual shear strength tests for the Oso sample yielded a ϕr of 

approximately 20° for the test WSDOT had previously conducted using the non-adjustable 

sample vessel, and approximately 20° for the test I conducted in this study using the adjustable 

vessel (Table 2). The Atterberg limit tests yielded a LL of 64, a PL of 31 and a PI of 33, and the 

hydrometer produced a clay fraction of 56%.  
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Figure 19. Diffraction patterns for the Oso sample showing the changes in the magnitude of the 

reflectance peaks in response to the chemical and heat treatments. The patterns for each 

treatment are labeled as follows: Mg = magnesium chloride-saturated; K = potassium chloride-

saturated; AD = air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-solvated; 300 

= oven-heated to 300 °C; 550 = oven-heated to 550 °C. I was able to save time through the 

course of this study by running the Mg-Glycerol scan from 2 to 32 degrees 2θ, and the Mg-300, 

Mg-550, K-AD, and K-300 patterns from 2 to 15 degrees 2θ. These shorter 2θ ranges were 

sufficient to capture the effects of these treatments for analytical purposes.   

 

 

  

C
 0

0
1

 

I 0
0

1
 

C
 0

0
2

 

I 0
0

2
 

C
 0

0
3

 

C
 0

0
4

 

I 0
0

3
 

C
 0

0
5

 

Oso 

6.3 5.1 8.8 12.5 17.8 18.9 25.2 26.8 31.6 

S0
0

1
 

Mg-AD 

Mg-Glycol 

Mg-Glycerol 

Mg-300 

Mg-550 

K-AD 

K-300 

 

 

 

 

 

 

 

 

In
te

n
si

ty
 (

C
o

u
n
ts

) 

10.4 

A
m

p
h

ib
o

le
 (

?)
 

P
la

gi
o

cl
as

e 
(?

) 
27.9 

A
m

p
h

ib
o

le
 (

?)
 

28.7 



 

40 
 

A.2 Ledgewood Slide 
 

 The results of the XRD scans for the Ledgewood sample reflect the presence of chlorite, 

illite (Figure 17). The peaks labeled 001, 002, 003, 004 and 005 that respectively occur at 

approximately 6.3, 12.5, 18.9, 25.2 and 31.6 degrees 2θ designate chlorite; illite is indicated by 

peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 degrees 2θ indicate illite. 

The Ledgewood sample was the only one of the eight samples in which smectite was not present, 

which would have been observed as a broad peak at approximately 5.1 degrees 2θ in the Mg-

glycol diffractogram. As the Mg-550 pattern shows, heating the sample to 550 °C increased the 

height of the chlorite 001 peak, and caused the chlorite peaks 002, 003 and 004 peaks to collapse. 

Illite was unaffected by treatment with glycerol, ethylene glycol, or heating to 300 °C and 550 

°C in neither the Mg- or K-saturated samples. 

 The results of the residual shear strength test for the Ledgewood sample yielded a 

residual stress failure angle (ϕr) of approximately 25° (Table 2). The Atterberg limit tests yielded 

a LL of 49, a PL of 28 and a PI of 21, and the hydrometer test produced a clay fraction of 52%.  
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Figure 20. Diffraction patterns for the Ledgewood sample showing the changes in the magnitude 

of the reflectance peaks in response to the chemical and heat treatments. The XRD scans for the 

Ledgewood sample were all ran from 2 to 39 degrees 2θ because the Ledgewood sample was 

used to for training on the diffractometer, and in the process, for establishing the proper 

diffractometer settings. The treatments are notated in the legend as follows: Mg = magnesium 

chloride-saturated; K = potassium chloride-saturated; AD = air-dried; Glycol = ethylene glycol-

solvated; Glycerol = glycerol-solvated; 300 = oven-heated to 300 °C; 550 = oven-heated to 550 

°C. 
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A.3 Woodway Slide 
 

 The results of the XRD scans for the Woodway sample reflect the presence of chlorite, 

illite and smectite (Figure 18). The peaks labeled 001, 002, 003, 004 and 005 that respectively 

occur at approximately 6.3, 12.5, 18.9, 25.2 and 31.6 degrees 2θ designate chlorite; illite is 

indicated by peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 degrees 2θ; 

smectite shows up at 001 occurring at approximately 5.1 degrees 2θ. Solvating the sample with 

ethylene glycol brought out the presence of smectite as seen by the smectite 001 peak in 

diffractogram 2. As diffractogram 5 shows, heating the sample to 550 °C increased the height of 

the chlorite 001 peak, and caused the chlorite 002 peak to collapse. Illite was unaffected by 

treatment with glycerol, ethylene glycol, or heating to 300 °C and 550 °C in neither the Mg- or 

K-saturated samples. 

 The results of the residual shear strength test for the Woodway sample yielded a ϕr of 

approximately 11° (Table 2). The Atterberg limit tests yielded a LL of 83, a PL of 35 and a PI of 

48, and the hydrometer test produced a clay fraction of 90%.  
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Figure 21. Diffraction patterns for the Woodway sample showing the changes in the magnitude 

of the reflectance peaks in response to the chemical and heat treatments. The patterns for each 

treatment are labeled as follows: Mg = magnesium chloride-saturated; K = potassium chloride-

saturated; AD = air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-solvated; 300 

= oven-heated to 300 °C; 550 = oven-heated to 550 °C. I was able to save time through the 

course of this study by running the Mg-Glycerol scan from 2 to 32 degrees 2θ, and the Mg-300, 

Mg-550, K-AD, and K-300 patterns from 2 to 15 degrees 2θ. These shorter 2θ ranges were 

sufficient to capture the effects of these treatments for analytical purposes.   

 

 

 

 

 

 

 

 

 

 

 

  

C
 0

0
1

 

I 0
0

1
 

C
 0

0
2

 

I 0
0

2
 

C
 0

0
3

 

C
 0

0
4

 

I 0
0

3
 

C
 0

0
5

 

S0
0

1
 

6.3 5.1 8.8 12.5 17.8 18.9 25.2 26.8 31.6 

Woodway 

In
te

n
si

ty
 (

C
o

u
n
ts

) 

Mg-AD 

Mg-Glycol 

Mg-Glycerol 

Mg-300 

Mg-550 

K-AD 

K-300 
 

 

 

 

 

 

 

 

10.4 

A
m

p
h

ib
o

le
 (

?)
 

P
la

gi
o

cl
as

e 
(?

) 
27.9 

A
m

p
h

ib
o

le
 (

?)
 

28.7 



 

44 
 

A.4 Discovery Park 
 

 The results of the XRD scans for the Discovery Park sample reflect the presence of 

chlorite, illite and smectite (Figure 19). The peaks labeled 001, 002, 003, and 004 that 

respectively occur at approximately 6.3, 12.5, 18.9, and 25.2 degrees 2θ designate chlorite; illite 

is indicated by peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 degrees 

2θ; smectite shows up at 001 occurring at approximately 5.1 degrees 2θ. Solvating the sample 

with ethylene glycol brought out the presence of smectite as seen by the smectite 001 peak in 

diffractogram 2. As diffractogram 5 shows, heating the sample to 550 °C increased the height of 

the chlorite 001 peak, and caused the chlorite 002 to collapse. Illite was unaffected by treatment 

with glycerol, ethylene glycol, or heating to 300 °C and 550 °C in neither the Mg- or K-saturated 

samples. 

 The results of the residual shear strength test for the Discovery Park sample yielded a ϕr 

of approximately 25° (Table 2). The Atterberg limit tests yielded a LL of 55, a PL of 28 and a PI 

of 27, and the hydrometer test conducted in this study produced a clay fraction of 64%.  
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Figure 22. Diffraction patterns for the Discovery Park sample showing the changes in the 

magnitude of the reflectance peaks in response to the chemical and heat treatments. The patterns 

for each treatment are labeled as follows: Mg = magnesium chloride-saturated; K = potassium 

chloride-saturated; AD = air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-

solvated; 300 = oven-heated to 300 °C; 550 = oven-heated to 550 °C. I was able to save time 

through the course of this study by running the Mg-Glycerol scan from 2 to 32 degrees 2θ, and 

the Mg-300, Mg-550, K-AD, and K-300 patterns from 2 to 15 degrees 2θ. These shorter 2θ 

ranges were sufficient to capture the effects of these treatments for analytical purposes.   
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A.5 SR-520 Shaft 7 
 

 The results of the XRD scans for the SR-520 Shaft 7 sample reflect the presence of 

chlorite, illite and smectite (Figure 20). The peaks labeled 001, 002, 003, 004 and 005 that 

respectively occur at approximately 6.3, 12.5, 18.9, 25.2 and 31.6 degrees 2θ designate chlorite; 

illite is indicated by peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 

degrees 2θ; smectite shows up at 001 occurring at approximately 5.1 degrees 2θ. Solvating the 

sample with ethylene glycol brought out the presence of smectite as seen by the smectite 001 

peak in diffractogram 2. As diffractogram 5 shows, heating the sample to 550 °C increased the 

height of the chlorite 001 peak, and caused the chlorite 002 to collapse. Illite was unaffected by 

treatment with glycerol, ethylene glycol, or heating to 300 °C and 550 °C in neither the Mg- or 

K-saturated samples. 

 The results of the residual shear strength test for the SR-520 Shaft 7 sample yielded a ϕr 

of approximately 12° for the test WSDOT had previously conducted using the non-adjustable 

sample vessel (Table 2). The Atterberg limit tests yielded a LL of 64, a PL of 32, and a PI of 32, 

and the hydrometer test produced a clay fraction of 52%.  
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Figure 23. Diffraction patterns for the SR-520 Shaft 7 sample showing the changes in the 

magnitude of the reflectance peaks in response to the chemical and heat treatments. The patterns 

for each treatment are labeled as follows: Mg = magnesium chloride-saturated; K = potassium 

chloride-saturated; AD = air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-

solvated; 300 = oven-heated to 300 °C; 550 = oven-heated to 550 °C. I was able to save time 

through the course of this study by running the Mg-Glycerol scan from 2 to 32 degrees 2θ, and 

the Mg-300, Mg-550, K-AD, and K-300 patterns from 2 to 15 degrees 2θ. These shorter 2θ 

ranges were sufficient to capture the effects of these treatments for analytical purposes.   

 

 

 

 

 

 

 

 

 

 

 

 

  

SR-520 Shaft 7  

 

 

 

 

 

 

 

In
te

n
si

ty
 (

C
o

u
n
ts

) 

Mg-AD 

Mg-Glycol 

Mg-Glycerol 

Mg-300 

Mg-550 

K-AD 

K-300 
C

 0
0

1
 

I 0
0

1
 

C
 0

0
2

 

I 0
0

2
 

C
 0

0
3

 

C
 0

0
4

 

I 0
0

3
 

S0
0

1
 

C
 0

0
5

 

6.3 5.1 8.8 12.5 17.8 18.9 25.2 26.8 31.6 10.4 

A
m

p
h

ib
o

le
 (

?)
 

P
la

gi
o

cl
as

e 
(?

) 
27.9 

A
m

p
h

ib
o

le
 (

?)
 

28.7 



 

48 
 

A.6 SR-520 Shaft 18  

 

 The results of the XRD scans for the SR-520 Shaft 18 sample reflect the presence of 

chlorite, illite and smectite (Figure 21). The peaks labeled 001, 002, 003, and 004 that 

respectively occur at approximately 6.3, 12.5, 18.9, and 25.2 degrees 2θ designate chlorite; illite 

is indicated by peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 degrees 

2θ; smectite shows up at 001 occurring at approximately 5.1 degrees 2θ. Solvating the sample 

with ethylene glycol brought out the presence of smectite as seen by the smectite 001 peak in 

diffractogram 2. As diffractogram 5 shows, heating the sample to 550 °C increased the height of 

the chlorite 001 peak, and caused the chlorite 002 to collapse. Illite was unaffected by treatment 

with glycerol, ethylene glycol, or heating to 300 °C and 550 °C in neither the Mg- or K-saturated 

samples. 

 The results of the strength tests for the SR-520 Shaft 18 sample yielded a ϕr of 

approximately 17° for the test WSDOT had previously conducted using the non-adjustable 

sample vessel (Table 2). The Atterberg limit tests yielded a LL of 56, a PL of 25 and a PI of 31, 

and the hydrometer test produced a clay fraction of 40%.  
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Figure 24. Diffraction patterns for the SR-520 Shaft 18 sample showing the changes in the 

magnitude of the reflectance peaks in response to the chemical and heat treatments. The patterns 

for each treatment are labeled as follows: Mg = magnesium chloride-saturated; K = potassium 

chloride-saturated; AD = air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-

solvated; 300 = oven-heated to 300 °C; 550 = oven-heated to 550 °C. I was able to save time 

through the course of this study by running the Mg-Glycerol scan from 2 to 32 degrees 2θ, and 

the Mg-300, Mg-550, K-AD, and K-300 patterns from 2 to 15 degrees 2θ. These shorter 2θ 

ranges were sufficient to capture the effects of these treatments for analytical purposes.   
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A.7 SR-520 Shaft 21 
 

 The results of the XRD scans for the SR-520 Shaft 21 sample reflect the presence of 

chlorite, illite and smectite (Figure 22). The peaks labeled 001, 002, 003, 004 and 005 that 

respectively occur at approximately 6.3, 12.5, 18.9, 25.2 and 31.6 degrees 2θ designate chlorite; 

illite is indicated by peaks 001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 

degrees 2θ; smectite shows up at 001 occurring at approximately 5.1 degrees 2θ. Solvating the 

sample with ethylene glycol brought out the presence of smectite as seen by the smectite 001 

peak in diffractogram 2. As diffractogram 5 shows, heating the sample to 550 °C increased the 

height of the chlorite 001 peak, and caused the chlorite 002 to collapse. Illite was unaffected by 

treatment with glycerol, ethylene glycol, or heating to 300 °C and 550 °C in neither the Mg- or 

K-saturated samples. 

 The results of the strength tests for the SR-520 Shaft 21 sample yielded a ϕr of 

approximately 29° for the test WSDOT had previously conducted using the non-adjustable 

sample vessel (Table 2). The Atterberg limit tests yielded a LL of 39, a PL of 26 and a PI of 13, 

and the hydrometer test produced a clay fraction of 17%.  
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Figure 25. Diffraction patterns for the SR-520 Shaft 21 sample showing the changes in the 

magnitude of the reflectance peaks in response to the chemical and heat treatments. The patterns 

for each treatment are labeled as follows: Mg = magnesium chloride-saturated; K = potassium 

chloride-saturated; AD = air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-

solvated; 300 = oven-heated to 300 °C; 550 = oven-heated to 550 °C. I was able to save time 

through the course of this study by running the Mg-Glycerol scan from 2 to 32 degrees 2θ, and 

the Mg-300, Mg-550, K-AD, and K-300 patterns from 2 to 15 degrees 2θ. These shorter 2θ 

ranges were sufficient to capture the effects of these treatments for analytical purposes.   
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A.8 Klickitat Drive 

 

 The results of the XRD scans for the Klickitat Drive sample reflect the presence of chlorite, 

illite and smectite (Figure 23). The peaks labeled 001, 002, 003, 004 and 005 that respectively occur at 

approximately 6.3, 12.5, 18.9, 25.2 and 31.6 degrees 2θ designate chlorite; illite is indicated by peaks 

001, 002 and 003 occurring at approximately 8.8, 17.8, and 26.8 degrees 2θ; smectite shows up at 001 

occurring at approximately 5.1 degrees 2θ. Solvating the sample with ethylene glycol brought out the 

presence of smectite as seen by the smectite 001 peak in diffractogram 2. As diffractogram 5 shows, 

heating the sample to 550 °C increased the height of the chlorite 001 peak, and caused the chlorite 002 

to collapse. Illite was unaffected by treatment with glycerol, ethylene glycol, or heating to 300 °C and 

550 °C in neither the Mg- or K-saturated samples.  

 The results of the residual shear strength tests for the Klickitat Drive sample yielded a ϕr of 

approximately 28° for the test WSDOT had previously conducted with the non-adjustable sample 

vessel, and approximately 31° for the test I conducted in this study using the adjustable vessel (Table 

2). The Atterberg limit tests yielded a LL of 33, a PL of 27 and a PI of 6 (Table 2 and Figure 9). The 

hydrometer test produced a clay fraction of 10%.  
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Figure 26. Diffraction patterns for the Klickitat Drive sample showing the changes in the magnitude of 

the reflectance peaks in response to the chemical and heat treatments. The patterns for each treatment 

are labeled as follows: Mg = magnesium chloride-saturated; K = potassium chloride-saturated; AD = 

air-dried; Glycol = ethylene glycol-solvated; Glycerol = glycerol-solvated; 300 = oven-heated to 300 

°C; 550 = oven-heated to 550 °C. I was able to save time through the course of this study by running 

the Mg-Glycerol scan from 2 to 32 degrees 2θ, and the Mg-300, Mg-550, K-AD, and K-300 patterns 

from 2 to 15 degrees 2θ. These shorter 2θ ranges were sufficient to capture the effects of these 

treatments for analytical purposes.   
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