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Abstract

Inversion of Controlled-Source Audio-Frequency Magnetotelluric Data
by Xinyou Lu

Co-Chairs of Supervisory Committee

Associate Professor Martyn Unsworth
Geophysics Program

Professor John Booker
Geophysics Program

This dissertation addresses an inversion algorithm to recover the Earth’s electrical
structure from controlled-source audio-frequency magnetotelluric data. The algorithm
is based on the concepts of rapid relaxation inversion (RRI) of magnetotelluric data.
The inversion uses the same technique to compute sensitivities as RRI and these
approximate sensitivities are validated by comparison with exact sensitivities. The
comparison shows that the approximate sensitivities have similar depth variations
although different magnitudes as the exact sensitivities when transmitter-receiver
offsets are greater than one skin depth in the Earth. A relationship between rapid
relaxation inversion and the standard inversion is established through the sensitivity
matrix. It is shown that RRI computes the sensitivities of data to the cells directly
below the observation site by using approximate analytic formulas similar to the 1-D
Fréchet derivative, and approximates the sensitivities of data to the rest of cells to be
zero. The combination of sensitivity comparison and successful inversion imply that
the accuracy of the sensitivity matrix need not be very high for an iterative inversion.

The 2.5-D finite-element forward modeling method of Unsworth et al. (1993) is



used in this inversion algorithm and extended to include a magnetic source. Thus
the 2.5-D finite-element forward modeling method can model any source exciting a
2-D Earth. In principle, this inversion algorithm can invert CSAMT data from an
electric or a magnetic source. The algorithm is tested on synthetic and field data from
a electric dipole, a horizontal magnetic dipole and a finite-length horizontal electric

dipole, and gives promising results.
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Chapter 1

INTRODUCTION

This dissertation describes some rapid inversion algorithms that can be used to
recover the Earth’s subsurface electrical conductivity structure from controlled source
audio-frequency magnetotelluric (CSAMT) data. A range of transmitters are consid-
ered, including a horizontal electric dipole (HED), a finite-length horizontal electric
dipole (FLHED), and a horizontal magnetic dipole (HMD).

The first section of this chapter gives a general introduction to the factors which
influence the Earth’s electrical conductivity. The second section reviews the history
of CSAMT and its application. The third section of this chapter overviews this

dissertation.

1.1 Factors influencing the Earth’s electrical conductivity

The materials that lie at depth within the earth can be constrained by measurements
of their physical properties such as density, velocity, magnetic permeability, dielectric
permittivity, electrical conductivity, etc. The physical property sensed by CSAMT is
electrical conductivity. The electrical resistivity is the reciprocal of the conductivity
and is the other term often used. Only isotropic materials will be discussed in this
dissertation.

The main factors influencing the conductivity of a rock at a shallow depth are
minerals comprising the rock, the chemistry of electrolytic fluids in the pores, tem-

perature, and the geometry of pore structures. Rock is a complex mixture of ma-



terials and different conduction mechanisms (electronic conduction, ionic conduction
and electrolytic conduction) contribute to the overail conductivity. Under certain
circumstance, one mechanism dominates others.

Minerals, the main constituents of rocks, can be separated into three groups by
their conductivity property: 1) good conductors, 2) insulators, and 3) semiconductors
between them. Minerals such as copper, iron and gold are the first group, which are
of great economic interest and rarely occur in their native states, but their presence
in a rock significantly increases the conductivity of the rock. Various compounds of
those minerals may also be of high conductivity. Electronic conduction is the main
conduction mechanism. The second group is mostly rockforming minerals such as
quartz, feldspar and calcite, whose conductivities are less than 1078 S/m. A large
portion of minerals are semiconductors. The conductivity of semiconductors often
is increased with temperature due to the energy provided by thermal excitation.
Economic ore minerals are usually sulfides and oxides, which are also semiconductors
and have high conductivities. The presence of highly conducting minerals may greatly
increase the conductivity of the rock.

Electrolytic fluids such as water contained in the pores of a rock are another
factor, possibly more influential than minerals, since, in most rocks, the fluid is the
only constituent present with significant conductivity. Electrolytic conduction plays
an important role in the conductivity of a fluid-bearing rock. The conductivity of a
fluid-bearing rock can be empirically described by Archie’s law (Archie, 1942; Keller,
1988),

o =ac,S"p™ (1.1)
where o is the bulk conductivity of the rock, o, is the conductivity of the fluid, §
is the fraction of the pore space filled with the fluid, ¢ is the porosity expressed as
a volume fraction of the rock, which could be occupied by a gas, n is an empirical
parameter termed the saturation exponent (normally close to 2.0), a is a parameter

which varies somewhat according to interconnectivity and m is a parameters which



indicates fracture density. From Archie’s law, the conductivity of rocks will decreasc
if the pore space is filled with air, gas or oil. Conversely, it will increase sharply if
the pore space is filled with water or other electrolytic fluids. Generally, sedimentary
rocks are much more porous than igneous or metamorphic rocks, and thus, more
conductive.

Temperature may also be an important factor. Ionic conduction becomes more
and more important as temperature increases. The mobility and number of ions
in fluids in the pores increase with temperature, and thus the conductivity of the
rock increases also. Usually, pronounced conductivity anomalies are associated with
geothermal areas. At very high temperature, rocks may melt and molten rocks have
a high conductivity. Because water and other fluids begin to be freeze below 0°C, the
conductivity of the rock gradually decreases with temperature. Normally, permafrost
has very low conductivity.

Pore structure is another important factor influencing rock conductivity. For a
given porosity and electrolyte content, fracture and joint porosity will result in higher
rock conductivity, while vuggy and isolated porosity will generate lower rock conduc-
tivity.

Other factors such as pressure may also influence the rock conductivity. The rock
conductivity is not just controlled by one factor, but is usually influenced by many
factors. Keller (1988) has a more detailed discussion about factors influencing the
conductivity and Palacky (1988) gives a review of the resistivity characteristics of

geologic targets.

1.2 CSAMT

Controlled source audio-frequency magnetotellurics uses electromagnetic (EM) fields
from an artificial source to investigate the conductivity structure of the Earth’s interior

through analysis of electric and magnetic fields observed on its surface. CSAMT



is similar to natural-source magnetotellurics (MT), the difference between them is
the source of the EM fields. Therefore, it is useful to briefly review MT. A brief
mathematical derivation of MT is given in Chapter 2. Vozoff (1988) gave a thorough
review on MT and also collected some important published MT papers into a single
volume (Vozoff, 1986).

Tikhonov (1950) and Cagniard (1953) independently proposed the MT method.
The dependence of MT on natural sources quickly attracted geophysicists’ attention.
It required no power supplies and the corresponding control system. Also, natural
signals are very strong at long periods and can be assumed to be plane waves (one-
dimensional), and then the interpretation of MT data is greatly simplified. From
then up to 1980, MT progressed steadily but slowly with the debate on the validity
of the plane-wave assumption in later 1950s and early 1960s (Wait, 1954; Price, 1962;
Madden and Nelson, 1964; etc.), the introduction of the concept of impedance tensor
(Cantwell and Madden, 1960), the development of remote reference (Gamble et al,
1979 a & b), and application of 1-D inversion (Oldenburg, 1979), but was largely
hindered by the lack of innovation in instrument (data acquisition), data process-
ing and interpretation techniques. Since 1980, MT has advanced rapidly with the
revolution of digital electronics, new data processing and interpretation techniques.
In data acquisition, advanced digital electronics results in highly sensitive magnetic
sensor and multi-channel collecting units, and therefore enhances data quality and
efficiency. In data processing, robust estimates yield superior transfer functions over
conventional methods (Egbert and Booker, 1986; Chave, 1987) and the Groom-Bailey
decomposition (Groom and Bailey, 1989, 1991) can effectively remove near surface 3-
D distortions. In data interpretation, practical 2-D inverse algorithms have been
developed (deGroot-Hedin and Constable, 1990; Smith and Booker, 1991). Today,
MT is widely used as a powerful geophysical tool.

The dependence of MT on natural fields is its major attraction, and also its great-

est weakness. Because natural sources are unpredictable and there exists a persistent



spectral energy low near 1 Hz, it often takes a very long time to obtain good data.
Sometimes, for instance, in an oil field, it may be impossible to get high-quality MT
data because of very strong cultural noise. In order to provide a stable, dependable
signal, Goldstein and Strangway (1975) proposed using a grounded electric dipole
source instead of relying on natural sources. This technique was called Controlled
Source Audio-Frequency Magnetotellurics.

The utilization of artificial sources resulted in higher-quality data and more effi-
cient measurements than are usually obtainable with natural-source MT, but greatly
complicates data interpretation in most situations because of the 3-D nature of the
electromagnetic fields from an artificial source. In the far field, beyond a distance of
approximately three skin depths from the transmitter, the electromagnetic fields can
be assumed to be planar. If the mutually orthogonal electric and magnetic fields, £

and H, are measured, then the apparent resistivity p, and phase ¢ are defined as

2
(1.2)

1 |E

Ll

and :
¢ = Arg (-f;) (1.3)
They can be analyzed with conventional, plane wave magnetotelluric techniques. Due
to the transmitter power limitations, it is not always possible to produce measurable
signals in the far field. Thus measurements are often made near the transmitter,
where the electromagnetic fields have a 3-D geometry. Within a skin depth of the
transmitter, the electric and magnetic fields vary as 1/r® and 1/r? respectively (for
an HED transmitter), where r is the transmitter-receiver separation. Thus in this
near field regime the apparent resistivity is proportional to r?. On a logarithmic plot
the variation of apparent resistivity with period is linear, while the phase approaches
zero. Between the far field and the near field is the transition zone which exhibits
intermediate behavior. The application of plane wave analysis techniques will yield

incorrect estimates of the earth’s conductivity structure in the transition zone and the



near field because of the 3-D nature of the electromagnetic fields. This geometrical
complexity has hindered the development of inversion and -modeling algorithms for
CSAMT data as compared to the MT method, and the full potential of the technique
has not been realized.

Since its introduction in the mid-1970s, CSAMT has become a powerful non-
seismic exploration method and has been used in mineral and petroleum exploration,
geothermal investigation, groundwater and seawater intrusion studies, and environ-
mental geophysics. An excellent review of CSAMT and its applications is given by
Zonge and Hughes (1991). However, CSAMT inversion and modeling algorithms are
much less well developed than for MT data and the lack of the effective interpretation
techniques greatly impedes the widespread use of CSAMT and makes the quality of
CSAMT work questionable. A brief review of CSAMT interpretation techniques is
given in Chapter 3. Therefore seeking an effective CSAMT interpretation technique
has become a main research topic in EM geophysics, and is also the main topic of

this dissertation.

1.3 Overview

This dissertation involves CSAMT forward modeling, inversion, the Fréchet derivative
or sensitivity, and synthetic data and real data experiments. It is organized as follows.

Chapter 2 discusses the CSAMT forward modeling and presents some analytic and
numerical results. It begins with the equations that govern the physics of CSAMT
and a brief review of the previous work on EM forward modeling, then describes the
finite element method for 2.5-D CSAMT forward problem developed by Unsworth
et al (1993), which is extended to include the magnetic source. After this, analytic
results are presented for horizontal electric and magnetic dipoles on the surface of a
homogeneous half-space. At the end of the chapter, some numerical results computed

with the technique of Unsworth (1993) are given for a two-dimensional model.



The inverse problem is the topic of Chapter 3. First, general inversion problems
are discussed and a formulation of the 2-D inversion is described. Then, the rapid
relaxation inversion (RRI) of MT is outlined extended to CSAMT. The key step to
this extension is the Fréchet derivatives and sensitivities.

Chapter 4 focuses on the Fréchet derivatives and sensitivities. At the beginning
of this chapter, methods of computing the Fréchet derivatives and sensitivities are
introduced and RRI sensitivities are derived. Then the RRI technique is applied to
derive sensitivities for CSAMT with electric and magnetic dipoles. Finally, compari-
son of CSAMT-RRI sensitivities with true sensitivities is made to justify the validity
of CSAMT-RRI sensitivities on three models.

The inversion is tested on synthetic data and applied to a variety of field data in

Chapter 5. The dissertation ends with conclusions and suggestions for future work in

Chapter 6.



Chapter 2

CSAMT FORWARD MODELING

The goal of forward modeling is to predict the response of a given model pro-
vided that the relationship between these two is given. For any electromagnetic
forward modeling, this relationship is provided by Maxwell’s equations. Therefore,
this chapter starts with derivation of the general CSAMT governing equations from
the Maxwell’s equations under some approximations; following is a review of previ-
ous work on EM forward modeling. The third section describes a forward modeling
method which is used in our proposed CSAMT inversion. The fourth section gives
analytic solutions of HED, HMD and FLHED for a homogeneous half-space. The

fifth section presents some numerical results for a 2-D model.

2.1 Induction Equations

The fundamental differential equations governing the behavior of electromagnetic

fields are given by Maxwell:

VXH=%+J (2.1)
VXE=—%?- (2.2)
V-D=p (2.3)
V-B=0 (2.4)

where H is the magnetic field in Ampere/m, E the electric field in Volt/m, D the
electric displacement in Coulomb/m?, B magnetic flux density in Weber/m?, J the

current density in Ampere/m?, p the volume charge density in Coulomb/m3, and bold



face letters represent vectors. Assuming that the medium is isotropic, the relations

between these vectors are then given by

J=0E (2.5)
D =¢E (2.6)
B =uH (2.7)

where o is conductivity in Siemens/m, € the dielectric constant in Farad/m, and u
the permeability in Henry/m. Resistivity is expressed in units of ohm — m.

At present, no magnetic charge has been found to exist in nature and Maxwell’s
equations contain only electric charges and currents. In practice, however, it is often
convenient to use the concept of fictitious magnetic currents and charges. For example,
a small current loop is shown to be equivalent to a magnetic current, which is used
as a source to generate electromagnetic waves in CSAMT. If the fictitious magnetic
current density J,, and charge density p,, are included, Maxwell’s equations take the

following symmetric form:

VxH=e%B+J, (2.8)
VxE= _,,%I- -3, (2.9)
V-D =p, (2.10)

Because of this symmetry, duality relationships exist (Ishimaru, 1991). For exam-

ple, one can use the following transformation without affecting Maxwell’s equations:
E-H J—->J, p— p u—e
H - -E Jn = =T Pm — —p e—u

Using this duality principle, when a solution is known for the unprimed fields, the
solution for the primed fields can easily be obtained. The above duality relations

between the primed fields and the unprimed fields are not the only ones that exist.
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In Maxwell’s equations, the current density and the charge density refer to all
currents and charges, source and induced. Ii is often convenient to separate them into
the source (or extrinsic) and the induced. For example, in CSAMT the current on the
transmitting antenna is the source current, but the currents induced in the earth are
considered the induced current. It is more convenient to express Maxwell’s equations

in the following manner:

VxH=c%E:-+J+J: (2.12)
0H
VXE=-p—-=-J .
X r o 32 (2.13)
V-D=p+p; (2.14)
V-B=p, (2.15)

where J and p are the induced current and the induced charge density, respectively.
J and p can be incorporated into the medium characteristics.

In CSAMT, Maxwell’s equations can be simplified by the following assumptions:
(1) quasi-static electromagnetic fields: the displacement current term is negligible
in the CSAMT working frequency range; (2) non-ferromagnetism: permeability of
medium within the earth is approximately equal to the permeability of free space po.

The resultant Maxwell’s equations become

VxH=0¢E+J' (2.16)
V x E = iwpoH - J2, (2.17)
V-D=p (2.18)
V-B=0 (2.19)

where time factor e~** is used, w is angular frequency in radians/second, and i =
v/ —1. Taking the curl of (2.17) and using (2.16), (2.18) and (2.19), one can get a
second order partial differential equation for E alone

V xV x E — twpeoE = iwped: ~V x J2, (2.20)
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Then H can be computed from E by

H=,1

Wi

V xE (2.21)

Similarly, H satisfies the following equation:
VxV xH-iwygocH = —-0J}, -V x J? (2.22)

and E can be computed from

=lyxm (2.23)
g

Solving Maxwell’s equations (2.16) to (2.19) for E and H is equivalent to solving
equations (2.20) and (2.21) or equations (2.22) and (2.23). Equations (2.20) and
(2.22) are the two basic equations one needs to solve for E and H. It is important
to recognize that they are diffusion equations, which lead to the attendant lack of
resolution of electromagnetic prospecting methods. A number of techniques have
been developed to solve (2.20) and (2.22). In the next section I will review previous

work in the area of EM forward modeling.

2.2 Review of Previous Work

Forward solutions for 1-D models have been available for many years. The half-
space case is reviewed in the book by Sommerfield (1949) and in the monograph
by Banos (1966). Stratified media are treated by Wait (1953), Ward (1967), Kong
(1972), Stoyer (1977), Tang (1979) and others. Forward modeling of a 2-D or 3-D
conductivity model is more difficult. Analytic solutions do not generally exist for a
2-D or 3-D model except for certain simple geometries such as spheres and cylinders,
where conductivity boundaries correspond to constant-coordinate surfaces. Therefore
numerical solutions are sought for multi-dimensional models.

For multi-dimensional forward modeling, the simplest problem is that of a 2-D

model excited by a 1-D or 2-D source such as a plane-wave natural EM field in the
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MT method and a line source of current. A number of techniques for the 2-D for-
ward problem in the frequency-domain have been developed. Jones and Price (1971)
presented a finite-difference solution and Swift (1971) discussed a network analogy
formulation of a finite-difference solution. Coggon (1971) discussed a finite-elemeut
formulation using a variational approach. Hohmann (1971) and Parry and Ward
(1971) developed volume and surface integral equation solutions, respectively. Sil-
vester and Haslam (1972) presented a finite-element solution based on the method
of weighted residuals. In the time-domain, Kuo and Cho (1980) obtained an ex-
plicit solution based on finite-element discretization in space and a finite-difference
approximation in time. Goldman and Stoyer (1983) formulated an implicit finite-
difference transient solution. Oristaglio and Hohmann (1984) presented an explicit
finite-difference solution. Because of the 3-D nature of the CSAMT transmitter, 2-
D modeling is not completely adequate in CSAMT inversion. Lu et al. (1997) used
infinite-length line source in HED CSAMT data inversion and observed some artifacts
in inversion model.

Modeling a 2-D earth and a 3-D source is the next step of complexity. Cog-
gon (1971) first published a finite-element derivation for this so-called 2.5-D electro-
magnetic problem and some results for the DC resistivity and induced polarization
problems. Stoyer and Greenfield (1976) used a finite-difference method to compute
the response of a 2-D earth to a vertical magnetic dipole source. Lee (1978) and
Lee and Morrison (1985) presented a finite-element solution for the fields induced
by a magnetic dipole over a 2-D earth. Unsworth ef al. (1993) developed a finite-
element method to model electromagnetic induction by an electric dipole source over
a 2-D earth. In the time domain, Everett (1990) described a solution for a tran-
sient seafloor exploration system, Moghaddam et al. (1991) presented a solution for
ground-penetrating radar, and Sugeng and Raiche (1992) modeled the 2.5-D responses
for a wide range of time-domain EM systems. 2.5-D modeling is a practical approach
to compromise computation and model complexity. Fully 3-D modeling techniques
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would approach the real situation more closely, because real earth conductivity varies
in 3-D.

3-D forward modeling dates back to the early 1970’s. Solutions to 3-D modeling
were first formulated by using the volume integral equation method (Raiche, 1974;
Hohmann, 1975; Weidelt, 1975). Since then a lot of effort has gone into the integral
equation method (Ting and Hohmann, 1981; Wannamaker et al., 1984, 1991; Newman
et al., 1986; Xiong, 1992). Finite-difference formulations are discussed by Lines and
Jones (1973), Zhdanov et al. (1982), and Adhidjaja and Hohmann (1989). Reddy et
al. (1977) published 3-D MT results based on a finite-element method. Pridmore et
al. (1981) presented a 3-D finite-element solution for controlled source EM applica-
tions. Some hybrid approachs have been developed by combining differential-equation
solutions and integral-equation solutions as a means of limiting mesh size (Lee et al.,
1981; Best et al., 1985). Recently, Wang and Hohmann (1993), Mackie et al. (1993)
and Smith (1996) have introduced staggered grids into 3-D modeling problems of
EM induction to enforce conservation laws. More recent developments of 3-D EM
modeling are covered in the monograph edited by Oristaglio and Spies (1995).

3-D EM modeling is still a challenge for any numerical method. The limitations
arise in part because of restrictions on computer memory and speed and also because
of the inadequacies of numerical approximations used to represent continuous fields.
The integral equation method has been studied extensively primarily because it re-
quires discretization in the anomalous region only, but it lacks flexibility in terms
of the structures that can be modeled. The finite-difference method and the finite-
element method are better suited to modeling arbitrarily complex geometries, but
they require large grids, which often result in unreasonable amounts of computer
time and storage.

The forward problem I will address is to model the electromagnetic response of
2-D conductivity structures to 3-D electromagnetic waves and is discussed in the next

section.
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2.3 2.5-D EM forward modeling

[ use the finite-element method developed by Unsworth ei al. (1993) for forward
modeling to exploit its efficiency, accuracy and flexibility for various sources. The
following derivation largely follows Unsworth et al. (1993), but extends it to include

more complex magnetic sources such as magnetic dipoles.

2.8.1 Formulation

Maxwell’s equations (2.16) and (2.17) can be rewritten as
VxB= ,UQO’E + [JQJ: (224)

V xE = iwB - J?, (2.25)

where o = o(y, z) is assumed to vary in two dimensions, with z aligned with strike, y
perpendicular to strike and z positive downward (hereafter, [ will use this coordinate
system unless otherwise specified).

If the fields due to a specific resistivity model oo(y, z) are defined as primary fields
and the fields due to model o(y, z) are defined as total fields, then their differences
are the secondary fields. Equations (2.24) and (2.23) govern both the primary fields

when o = g¢(y, z) and total fields when o = o(y, z). Thus equations for the secondary

fields are:
V x B? = poo(y, 2)E® + polAo(y, z)EP (2.26)
and
. aB*
VxE*=—- 5 (2.27)

where E* and B* are the secondary electric field and magnetic induction, E? is the
primary electric field, and Ac(y, z) = o(y, z) — oo(y, 2). Note that the nature of the
source is introduced here by the primary field just in places where the total model

departs from the primary model. Also, note that by separating the total electric and
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magnetic fields into their primary and secondary components, the method removes
the singularity in E and B at the location of the current sources J2 and J?,, and has
the advantage of directly calculating secondary quantities. The primary fields can be
calculated for a simple conductivity structure. Appendix A gives primary fields for a
half-space with various sources.

By Fourier transforming each field component in the z-direction, the dimension-

ality of computation can be reduced from 3 to 2. The Fourier transforms are defined

as
Pks y,z) = / ~ dee**F(z, y, z) (2.28)
and

F(z,y,2) = 51; [ : dk.e=*== Pk, y, ) (2.29)

where k. is the along-strike wavenumber; a hat (A) is used to denote quantities in
the Fourier transform domain. In Cartesian form, equations (2.26) and (2.27) can be

expanded as

~ik B2 — 9, B2 — iwB: = 0 (2.30)
8,B: — 8.B? — pooE2 = pobo E? (2.31)
0.E2 + ik B —iwB: =0 (2.32)
—ik B2 — 0,B% — poo E2 = podo kP (2.33)
0,E: — 0.E2 —iwB2 =0 (2.34)
8,82 + ik B: — poo EX = pobo EP (2.35)

If the source is invariant in the z-direction (2-dimensional with k; = 0) as in MT
or for an infinite-length line source, equations (2.30) to (2.35) can be grouped into
two “modes”. Equations (2.30) to (2.32) define the transverse electric (TE) mode,
which only has an electric component in the invariant z-direction. Equations (2.33)
to (2.35) define the transverse magnetic (TM) mode, which only has a magnetic

component in the invariant z-direction. For a finite source, a number of nonzero k.
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values have to be considered in the Fourier domain. TE and TM modes are no longer
independent but coupled by the variation of the source in the z-direction. One can
view the zero-wavenumber problems (2-D source) as a first-order approximation to the
non-zero-wavenumber problems (3-D source). Therefore, the solution of the problem
with a 2-D source gives useful physical insight into electromagnetic induction, but
the results must be applied cautiously to the interpretation of data from 3-D sources,
since the reduction in dimension fails to represent the complete induction process.
Equations (2.30) to (2.35) may be rearranged to yield coupled equations for £?

and B2, the secondary along-strike fields in the Fourier domain.

v.(‘ﬂi)- poo B2 = poaai:;-ik,v-(

JaE”)
+
v

72
+ ik, [vi;_:_ <V (71—2)] X (2.36)

. "’ . “p
V. (szsz) —wB] = iwpeV x (Jafl ) - X+
v v

+ ik, [VE; x V (71—2)] x (2.37)

where 92 = k2 — iwpeo, x is a unit vector in the z-direction and V = (0,8,,0.).
Note that these two equations are coupled through a non-zero k.. With a non-zero
wavenumber, a minimum of two field components must be computed at a point to
represent the electromagnetic fields of a 3-D source, whereas only one suffices for
the zero-wavenumber case or a 2-D source. The other field components can then be
calculated by numerical differentiation of £? or/and B2. To avoid the errors from
differentiation, Coggon (1971) and Lee and Morrison (1985) solved directly for all
three electric field components, but this approach increases the size of the matrix
equations by 50 percent. Equations (2.36) and (2.37) could be solved simultaneously
for E2 or/and BZ, but an iterative approach is more efficient to solve the coupled

equations. The iteration process is: (1) the coupling terms are kept on the right-hand
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sides of the equations as a source term; (2) then B? is set to be zero and equation
(2.36) is solved for an initial £2; (3) E? is then used to update £? in the source term in
equation (2.37) to compute B?; (4) finally B? is used to improve the approximation
to E’;. This process is repeated until convergence is achieved, which is defined as
occurring when both the mean and maximum change in the secondary fields at the
earth’s surface are less than some specified amount.

Once the secondary fields E’; and B; are obtained, the primary and secondary
fields are added to yield the total electromagnetic field components in the z-direction.

Then the other two horizontal components can be computed by

r — 1 aEZ(kza Y, Z) . aéz(krs yvz)
By(kz,y,2) = (iwpo — 2 (pa' 5% + zkz————ay (2.38)
: e L (i 0Bekey,2) | OB.(key,2)
Ey(kz,y,2) = (o — k) (zk, By + w 3% (2.39)

Finally, the EM fields in the (z, y, z) domain are computed by using the inverse Fourier
transform (2.29).

2.8.2 The finite element method

The 2.5-D EM induction problem has been formulated in terms of two differential
equations (2.36) and (2.37) that are solved subject to a given set of boundary con-
ditions. The following outlines how the finite-element method is used to solve the
two partial differential equations for £2 or B2. This formulation may be written in

general mathematical notations as
DV =f in Q (2.40)

and boundary conditions
V= on 0N (2.41)

where D is a differential operator, V is a field, Q2 is a specified region, f is the source
term, fo is a known function on 99, 952 is the boundary of the region 2.



18

The calculus of variations shows that solving the differential equation is equivalent

to finding a function V that minimize the Lagrangian £ (Clegg, 1968)
C= /n L(V,8,V,8,V)dydz (2.42)

where L, the Lagrange density, satisfies the Euler-Lagrange equation,

oL oL oL
% a7 +2 ata| - o (249

Equations (2.36) and (2.37) are of the form
=V -(a(y,2)VV) + b(y, 2)V = f(y,2) (2.44)

which has Lagrange densities of the form

L=3@,V)+35@.V)+ bzﬁ +fV (2.45)
Thus solving a differential equation problem is transformed to minimizing the func-
tional £ of equation (2.42). This alternative formulation provides a convenient way
of implementing a finite-element scheme.

The detailed description of the finite-element method can be found in Zienkowicz
(1967) and Oden and Carey (1983) and a brief description is outlined here. The
region Q is divided into N, elements, and the k** element is defined by n(k) nodes
with coordinates (y;, z;),i = 1,...,n(k). The mesh contains N, nodes in total. The
solution V is expressed within element k as

n(k)

Vily,2) = Y vithi(y, 2) (2.46)

i=1
where v; is the value at node 7 of the element k, ¥; is a set of basis functions, : =
1,...,n(k), which are also called the element shape functions. Then equation (2.42)

can be rewritten as a sum of integrals over each element,

N.
=% / L(V,8,V,8,V)dyd:z (2.47)
k=1795x
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where Qg is the kth element. Substituting for L and V' from equations (2.45) and
(2.46), gives

N, a (™8 2 o [P 2
L= ,,Z_: -/03,. 3 (XJ: vja,ﬂ/)j) + 3 (2,: vjazl,bj) +

=1
b (") 2 n(k)
+3 (Z vﬂﬁj) +f3 vj’»b:] dydz } (2.48)
7 2

The basis functions, if they are independent of the nodal values, are required to have

the property that
Y =08; at (yj,z;) (2.49)

where (y;, z;) are the nodal points, ¢, = 1,...,n(k), and § is the Kronecker delta.

Then the contribution to £ from each element can be written in quadratic form as
L.=v."K.v. — v.Tf. (2.50)

where v, is the vector containing the node values, T denotes the conjugate transpose,

K. is the element stiffness matrix given by

b ..
Ki= [ [g(a,zp;)(a,,wj) + 30(0:0;) + S5 | dydz i, = 1,...,n(k),
(2.51)

and f, is the element load vector with components

fi= ]n fodydz i =1,...,n(k). (2.52)

The Lagrangian £ can be obtained by summing over all elements and it can be
written

L = vIKv - vIf (2.53)

where v = {[vy, ...., uny,] is the global solution vector of nodal values, K = Zf’;l K. is
the global stiffness matrix and f = ¥V £, is the global load vector. K contains all

of the information regarding the element sizes and media properties (a and b).
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To minimize £ with respect to v, equation (2.53) is differentiated with respect to

v and equated to zero, yielding the matrix equation,
Kv=f (2.54)

which can be solved for v.

2.4 The analytical solution for a homogeneous half space

Computing the electromagnetic fields of an EM source in a conducting medium is
of direct practical importance in geophysics. It helps us not only to understand
the nature of EM fields, but also to provide information for optimal survey layout to
resolve a specific target. The horizontal electric dipole (HED), the horizontal magnetic
dipole (HMD), and the finite-length HED (FLHED) are among the most commonly-
used artificial sources in practice. In this section, first, I will briefly review MT
methodology since CSAMT is closely related to MT and they share many technical
terms. Second, I will study the EM fields on the surface of a homogeneous half space
from HED, HMD and FLHED.

2.4.1 MT methodology

MT uses natural sources, which may be assumed to be 1-dimensional plane waves
outside the earth. For a homogeneous half space, EM fields are uniform laterally. If
the electric field is in the z direction, then the magnetic field has only a y component.

From equations (2.20) and (2.22), the governing equations are

2

aaf; —kE, =0 (2.55)
2

aagy ~k*H, =0 (2.56)

The solution of equations (2.55) and (2.56) are given by

E.(z) = Ege™** (2.57)
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Hy(z) = ;'-:;E,oe-‘kz (2.58)
where k = (1 - i)\/—w—po—o/a is the complex wave number in the medium and Eq is the
horizontal electrical field at the surface. Note that the strength of the fields decreases
exponentially as their depth increases due to the transformation of electromagnetic
energy into heat. The field strength is attenuated by 1/e or 63% percent of the original
field strength at a depth equal to the skin depth &, which is given by

§= |2 (2.59)

WHoT

Equation (2.59) can be written in terms of resistivity as

é= 503\/-%_ (meters) (2.60)

Skin depth is a very useful concept. It is dependent on two parameters: the re-
sistivity of the earth and the frequency of the signal. Skin depth is smaller with
decreasing resistivities and increasing frequencies. Conversely, it is larger with in-
creasing resistivities and decreasing frequencies. Figure (2.1) shows the skin depth as
a function of the earth resistivity and the signal frequency. If the Earth’s resistivity
varies from 1 to 10* Qm and the frequency of EM data varies from about 1 to 10* Hz,
then EM penetration varies from tens of meters to tens of kilometers.

In order to draw useful information about the Earth’s resistivity structure from
the measurement at the surface, z = 0, the ratio of orthogonal E to H is used and
defined as impedance 2

Z=4 (2.61)

Then, by equations (2.57) and (2.58), the impedance Z_, is given by

Zy = \[—twpp (2.62)

Impedance is a function of the resistivity of the earth and the frequency. Simple

algebra gives the true resistivity of the half space in terms of the impedance

p=——t 72 (2.63)

twpe Y
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Therefore measuring orthogonal electrical and magnetic fields at the Earth surface
can be used to infer electric resistivity inside of the Earth. If the electric field is in

the y direction and then magnetic field is in the z direction, one can readily see from

E ;
Zy = -ET:- = —\/—iwpp (2.64)

For a uniform half space and a 1-D earth

the above derivation that

Zoy = =2y ' (2.65)

For more complex structure, the quantity on the right hand side of equation (2.63)
still reflects a volume average of the resistivities within about one skin depth below the
measurement point. The magnitude of the impedance can be used to define apparent

resistivity and its argument is defined as the phase,

=L e
Pa= |Z] (2.66)
¢ = Arg{Z} (2.67)

pa (also called the Cagniard resistivity) and ¢ are the two main parameters used to

extract resistivity structure information from measured data.

2.4.2 EM fields of a horizontal electric dipole

One commonly-used controlled source is the horizontal electric dipole, which is an
insulated wire grounded at each end. Electric and magnetic field components in a
half space conducting medium due to an HED aligned in the z-direction on the surface
of the medium are given in Appendix A. On the surface, the horizontal components
can be simplified to

_ Idl
T 2nr30

E,

E. [3cos? ¢ — 2+ (1 + ikr)e™] (2.68)

Idl

= -2?3-0_—3 cos ¢sin ¢ (2.69)
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H, = %2- sin ¢ cos ¢ [ikr([oK, — [ Ko) — 8, K] (2.70)
Idl ) ,  tkr
H, = = [(1 —4sin’ @)K, + 32—81112 #(IoKy — [lKO)] (2.71)

where the I, and K,, represent modified Bessel functions of the mth order with
argument tkr/2 and ¢ is the angle from the z-direction (Figure 2.2). The electric
and magnetic components are dependent on r, the separation between the source
and the receiver, and on medium resistivity and frequency. Investigating EM field
variation as a function of the separation between the source and the receiver gives

one an understanding of the fields.
Near-Field

This region is very close to the HED at much less than one skin depth (r < 4 or
lkr| < 1). Equations (2.68) to (2.71) can be simplied by taking the limit |kr| — 0

E. = 5 :ﬁa(s cos’¢p — 1) (2.72)
E, = 21{;{,;3 cos ¢sin ¢ (2.73)
H = 421[2 sin ¢ cos @ (2.74)

y = 4;‘112(2 cos? ¢ — 1) (2.75)

We see that for a homogeneous half space, both electric field (E; and E,) and
magnetic field (H, and H,) are independent of frequency, and so is the impedance.
Electric field is inversely proportional to ground conductivity, but magnetic field is
independent of conductivity. H, and H, are independent of ground conductivity
and frequency. Such H, and H, are said to be “saturated”. Since the electric and
magnetic fields vary as 1/r® and 1/r?, respectively, the apparent resistivity in the
near-field is proportional to r2. This demonstrates that near-field measurements are
controlled by survey geometry, not frequency. The apparent resistivity increases with

a slope of 45 degrees on a log-log plot, while the phase approaches zero (Figure 2.3).
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This phenomenon is often called the “source effect”. Sometimes, any deviation from
the MT responses, caused by the introduction of the artificial source is attributed to

the source effect.
Far Field

Far away from the HED source (r 3> é or |kr| 3> 1), equations (2.68) to (2.71) have

the following form

Idl

E,=5——(3 cos? ¢ —2) (2.76)
E, = 2—1{%3 cos ¢sin ¢ (2.77)
H, = -3 ;ili 3singcos ¢ (2.78)
v =3 ;i[ik(a cos? ¢ — 2) (2.79)

Equations (2.76) to (2.79) show that, in the far field, £, and E, are independent
of frequency and are inversely proportional to ground conductivity as in the near-
field, but H, and H, depend on k and therefore on ground conductivity as well as
frequency. The horizontal field components all decay as 1/r®. Impedance in the far

field can be obtained from (2.76) to (2.79)

Ez .
and

E ;
Zyr = Fi = —\/—iwpp (2.81)

These impedances are same as those defined for MT. Since (2.76) to (2.79) are ob-
tained with the limitation r — oo, EM fields in this region can be taken as uniform
plane wave. Since CSAMT and MT have the same impedances (Figure 2.3) in the
far field, definitions (2.66).a.nd (2.67) for apparent resistivity and phase are also valid
for CSAMT in the far field. Apparent resistivity and phase are again the two most



25

commonly-used parameters in CSAMT data interpretation, which maintains the sim-
ilarity between CSAMT and MT. In MT, the use of impedance cancels the unknown
natural source field.

Apparent resistivity and phase presented in pseudo-section format have a visual
relationship to the electric structure, but apparent resistivity and phase pseudosec-
tions for CSAMT will have a source-effect at low frequencies and near the transmitter.
For CSAMT, electric and magnetic fields can also be used to recover a conductivity
model, but they have no easily visualized relationship with conductivity structure
below the measurement site and their magnitudes are dependent on the source as

well as conductivity structure.
Transition Zone

This is the region between the near-field and far-field zones (r = § or |kr| = 1).
The exact electric and magnetic fields and impedance Z can be computed by using
equations (2.68) to (2.71). E decays as 1/r® and H decays at a rate between 1/r? and
1/r3. Data in this zone are transitional from near-field to far-field behavior (Figure

2.3).
EM fields, apparent resistivities and phases

Figure (2.4) shows the horizontal EM field components, apparent resistivities and
phases for an HED on a 100 Qm half space at frequency 64 Hz. The HED, an
infinitesimal dipole with unit moment, is located at the origin and directed in the
z-direction. The plots are presented for one quadrant only. The other quadrants
follow from the symmetry.

Figures 2.4a and 2.4e show the behavior of the horizontal electric components
E; and E,. The E-field parallel to the HED, E., shows a double-lobed appearance.
The lobes are separated by a “null” zone in which E, goes to zero. The flip in the
orientation of E. causes this null zone, which is about at 35° from the HED direction.
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The orientation flip means that the direction of E. changes from the positive x-
direction to negative, or vice versa. E, values along the z-axis are about half the E,
values along the y-direction. This difference in signal strength is one of the features
that makes E; measurements in the broadside configuration more preferable than
the collinear one. The E, plot, which is the electric component perpendicular to the
HED, has a single uniform lobe appearance except along the z and y axes, where the
field strength drops off sharply. The single uniform lobe appearance indicates that
E, always has the same orientation in each quadrant. E, has the strongest signal at
an azimuth of 45°.

Figures 2.4b and 2.4f show magnetic fields H, and H., which are very similar to
E. and E,, respectively. This similarity can be verified by comparing the formulas
for near-field and far-field responses.

Figures 2.4c and 2.4d show the apparent resistivity p., and phase ¢.,. Because
of the double-lobed appearance of E. and H,, the appearances of p,, and ¢, are
more complicated than those of p,; and ¢,.. The apparent resistivity p, is very close
to the true resistivity value at » > 44 for broadside measurements and at r > 5§
for collinear measurements. However the phase ¢., converges to 45° at r > 56 for
broadside configuration and at r > 64 for collinear configuration. The computation
along the 35° null zone is not accurate because the fields flip their orientations in this
zone. So the values of p,, and ¢., along the null zone are less accurate than others.
Also note that the effective null zone for p, and ¢,, are larger near to the source
than far away from the source. This is because the zones where E, and H, flip are
not exactly the same near to the source, but are the same far away from the source.

The apparent resistivity and phase computed from E, and H, are shown in Figures
2.4g and 2.4h. Since E, and H, both have a single uniform lobe appearance, it is
predictable that the apparent resistivity p,. and phase ¢, are much the same, with
the data along the z and y axes being undefined due to the null zones for E, and

H.. The apparent resistivity is very close to the true resistivity of the half space for
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r > 34, whereas the phase is about 45° for r > 44.

2.4.3 EM fields of a horizontal magnetic dipole

The HMD technique is studied less. From the derivation in Appendix A, horizontal

components on the surface are given by

E,= _u;;:::n sin ¢ cos ¢ [—4111(1 + %r-([olﬁ - 111\'0)] (2.82)
E, = u;::om [(1 —4cos? ¢) [, K, + ﬁ‘z(IOKl ~ I Ko) cos ¢] (2.83)

He = =5 {34 K2 — (34 3ikr — Kr¥)e™™ 4 cos? ¢ [~15 — 3k%r2 +
+ (—zlc3 ® — 6k*r? + 15ikr + 15)e=""| } (2.84)

H, = s sin ¢ cos ¢ [15 + 3k%r? — (—ik%r® — 6K% + 15ikr + 15)e™*]|  (2.85)

where m is magnetic dipole moment, r and ¢ are same as in Figure 2.2.

Note that, by comparing them with equations (2.68) to (2.71) for the HED, E and
H of an HMD are similar to their counterparts of H and E for HED, respectively. This
can be understood from the duality of Maxwell’s equations for the HED and HMD.
The similarity will be more obvious when one investigates EM fields in the near-field

and far-field zones.
Near-Field

In the near field, r « § or |kr| < 1. The limit of equations (2.82) to (2.85) for small

kr is
E.= _ Wwpom sin ¢ cos ¢ (2.86)
2nr?
E, = “‘”‘°m(1 2 cos? ¢) (2.87)
H, = —4?3-(1 — 3cos? ¢) (2.88)
H, = il 3singpcos ¢ (2.89)

473
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When comparing these equations with the equations for HED, some differences
are observed. For an HMD, both electric and magnetic fields are independent of
earth resistivity, so the measurement in this region is non-responsive to the ground
resistivity. Furthermore, the near-field E; and E, vary with frequency and are not a
function of resistivity, whereas for an HED, E, and E, are independent of frequency
but are a function of resistivity. For the HMD, E and H vary as 1/r? and 1/73,
respectively, while E and H vary as 1/72 and 1/r? for the HED. Therefore, for HMD,
the apparent resistivity decreases with a 45 degree slope in log-log plot and phase
approaches 90 degrees (Figure 2.5). The appearance of the source effect for the
HED and HMD is opposite. H. and H, remain independent of both frequency and

resistivity for both cases.
Far Field

Equations (2.82) to (2.85) can be simplied for the far-field (r > § or kr| > 1) to

E,= ;;”—:;23 sin ¢ cos ¢ (2.90)
y = %‘%’%(1 — 3cos® ¢) (2.91)
H, = ‘fr—s(l ~ 3cos® @) (2.92)
H,= 271::33sin ¢cos (2.93)

In far field, for the HMD, the electric fields (E; and E,) are a function of both
frequency and resistivity, but E; and E, are independent of frequency for HED. For
an HMD, the magnetic fields (H; and H,) are independent of both frequency and
resistivity, whereas the magnetic field of an HED is dependent of both frequency and
resistivity. Both electric and magnetic fields from the HMD decay as 1/r2 as in HED.
Similarly, apparent resistivity is equal to the true resistivity and phase is 45 degree
for a half space (Figure 2.5).
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EM fields, apparent resistivities and phases

Figure 2.6 shows the horizontal EM field components, apparent resistivities and phases
from an HMD for a 100Qm half space at frequency 64 Hz. The HMD is located at
the origin and directed in the z-direction.

Figures 2.6a and 2.6e show the horizontal electric components E,; and E,, which
are very similar to £, and E; for the HED. However, the null zone for £, for the
HMD is at about 55°, rather than 35° of E. for HED.

Magnetic fields H, and H, are shown in figures 2.6f and 2.6b. They are also
similar to H, and H; of HED. Similarly, H;’s null zone is about 55°. Note that the
EM fields from a unit HMD are much smaller than those from an HED, because HED
has grounded electrodes to inject electric current into the earth and is coupled with
the earth tightly, whereas an HMD is insulated from the earth and electromagnetic
waves transmitted by an HMD will be partially reflected back to air. HMD is weakly
coupled with the earth. For this reason, a horizontal magnetic dipole normally has
less transmitting power than HED, but is safer without grounded electrodes. HMD
is not used as commonly as HED.

Figures 2.6c and 2.6d show the apparent resistivity p-, and phase ¢,. Apparent
resistivity is very close to the true resistivity of the half space for r > 4 ~ 54, whereas
the phase is about 45° for r > 58. Figures 2.6g and 2.6k show the apparent resistivity
pyz and phase ¢,-. The apparent resistivity p,- is very close to the true resistivity
value at r > 44 for broadside measurements and at r > 56 for collinear measurements.
The phase ¢, is about 45° at r > 53 for broadside configuration and at r > 64 for

collinear configuration.

2.4.4 EM fields of a finite-length horizontal electric dipole

The HED is an approximation to a real CSAMT electric source. In practice, a real
CSAMT electric source is composed of a finite length of grounded wire. If the source-
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receiver separation is large enough, a grounded wire may be approximated as an
electric dipole. But ofien, to overcome noise and improve signal-noise ratio, either a
long grounded wire source is used or receivers are close to the grounded wire. Then
the approximation of a point dipole may not be valid. Then the length of a long
grounded wire source has to be considered. In this section I will investigate EM fields
on the surface of a homogeneous half-space from an z-directed finite-length horizontal
electric dipole source and the effect of length on measurements. Unfortunately, no
closed formula is available for the EM field on the surface of the earth from a finite-
length horizontal electric dipole source. Therefore, analysis is based on numerical
results using formulas in Appendix A.

Figures 2.7, 2.8, 2.9, 2.10, 2.11, and 2.12 show the EM fields, apparent resistivities
and phases for line sources with the lengthes of 1, 2, 3, 4, 6, and 10 skin depths,
respectively.

Comparing these figures with Figure 2.4, some features can be observed. The
deviations from an HED are larger as the length is increased. When the length is
less than 2-3 skin depths, EM fields, apparent resistivities and phases are quite close
to those from an HED, whereas when the length is 10 skin depths, they appear to
be very close to those from an infinite-length line source in the area between the two
electrodes. The null zones of E, and H,, which gives their radiation a double-lobed
appearance, start from the electrode location at £ = L/2, and the strongest signals
for E; and H, are at the azimuth of 45° and also start from z = L/2. The null
zones of E, and H, along the y-axis get wider as the length of an FLHED source is

increased.

In summary, horizontal electric dipole, magnetic dipole and finite-length horizon-
tal electric dipole sources generate EM fields that can be related to each other by
impedance as with MT. This similarity allows one to use the MT method to interpret
CSAMT data. But fields from these finite sources also depend on the positions of
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the source and receiver. In the transition and near-field zones, apparent resistivity
and phase are not same as those from MT. The source effect can invalidate an MT
interpretation of data collected in the transition and near-field zones. The null zone
is different for each mode and each dipole type. One has to keep this complication in
mind to avoid weak signal and low-quality data when one uses CSAMT to resolve a
geological target. When the length of a line source exceeds three skin depths in the
earth, it may be necessary to consider its finite length.

2.5 Numerical results for a two-dimensional model

The 2.5-D forward modeling method is convenient for computing responses of a model
to various sources. In this section numerical results for a 2-dimensional conductivity

model are presented.

2.5.1 Model and mesh

The 2-dimensional model (Fig.2.13, also see Fig.4.8 for more detail of the model) is
based on two conductive dipping prism bodies (10 m) in a homogeneous bedrock
(100 2m) with a conductive overburden at the surface. The two conductive bodies
are 1000 m apart. Each conductive body is 1000 m wide and high, and its top is
300 m below the surface. The conductive overburden consists of three layers with
resistivities 30 Qm, 60 Qm, and 80 Qm from shallow to deep, each with 100 m thick.

The goal of discretization design is to balance computational cost and the accuracy

of the numerical solution. Grid information is listed below

Horizontal Node y (km) -100.0 -39.0 -19.0 -10.0 -5.0 -3.0 -2.0 -1.5 -1.3 -1.1 -0.9
-0.7-0.5-0.3-02-0.10.00.050.10.2030.50.7091.11.31.51.71.92.1 23
2.527293.133353.73.94.14.34.54.74.95.15.35.55.75.96.16.36.56.7
6.9 7.1747.78.08.59.010.013.0 18.0 28.0 48.0 100.0
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Vertical Node z (km) -100.0 -40.0 -15.0 -8.0 -3.0 -1.0 -0.3 -0.1 -0.05 -0.02 -0.01
-0.005 0.0 0.005 0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0.26 0.28 0.3 0.35 0.4 0.450.5060.708091.01.11.21.31.41.61.82.02.5
3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 10.0 15.0 20.0 30.0 40.0 50.0

Measurement site y (km) 2.1 2.3 2.52.72.93.1 3.33.53.73.94.1 4.34.54.74.9
5.1 5.35.55.75.96.16.36.56.76.97.1

Frequency (Hz) 2048.0 1024.0 512.0 256.0 128.0 64.0 32.0 16.0 8.0 4.0 2.0 1.0

The transmitter is located at the origin. The horizontal nodes are spaced logarith-
mically to the left side of the transmitter since there are no receivers, but on the right
side, the horizontal nodes are made uniform where there are receivers and increase
logarithmically outside of the region with data. Vertical node spacing at the surface
is made less than one tenth of the skin depth deduced from the lowest resistivity at
the surface in order to have an accurate numerical differentiation. The mesh in the
earth is 200km x 50km with the grid of 50 x 50. 26 measurement sites are located
from 2.1 km to 7.1 km with a spacing of 200 m. The 12 frequencies from 1 Hz to
2048 Hz are spaced logarithmically. Figure 2.14 shows the center part of the finite

element mesh.

2.5.2 Configuration

Horizontal electric dipole, horizontal magnetic dipole and finite-length line sources
will be considered. According to the relationship between the orientation of the
source and the direction of the strike, four configurations can be set up (Figure 2.15):
along-strike HED (denoted as HEDx), across-strike HED (HEDy), along-strike HMD
(HMDx), and across-strike HMD (HMDy). The configuration of an FLHED source
can be treated similarly as an HED. Separate TE and TM modes do not exist for
a dipole source (as in MT or for a 2-D infinite source). However, TE and TM can
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formally be defined in analogy to MT with the TE mode: (E., H,,) and the TM
mode: (E,, H.). ,

Since the EM fields of 2-D model due to a dipole source are 3-dimensional, various
measurement profiles can be deployed. Figure 2.16 shows two basic geometries: co-
linear profile (or called, main profile) and broadside profile (or non-main profile). The

non-main profile in Figure 2.16 has an offset d in the strike direction.
2.5.8 Numerical results

HEDx data

Figure 2.17 shows apparent resistivities and phases for HEDx; TE data on the main
profile (Fig.2.17a) and a non-main profile with offset 3.0 km (Fig.2.17b), and TM data
on the non-main profile (Fig.2.17c). Because of the null zone on the main profile for
E, and H., measurements for TM data on the main profile are not recommended.
All responses show that the high apparent resistivity and low phase associated with
the HED source effect occur at the sites close to the dipole and at low frequencies.
From Fig.2.17 a and b, note that the source effect does not decrease very much for a
3.0 km offset and that the data from the non-main profile are complicated by the 35°
null zone of E, and H,, especially for phase. TM data show two separated resistivity
anomalies, while TE data hardly indicate if one or two conductors are present. The
conductive body at the right, which is farther away from the source, has a stronger

anomaly.

HEDy data

Figure 2.18 a, b, and c displays HEDy TE data on the non-main profile and HEDy
TM data on the main profile and the non-main profile. TE data on the main profile
are not shown because of the null zone. The source effect, the separation of the

anomalies, and the strength of the anomalies seen for HEDx can also be observed for



HEDy. The TM data from the non-main profile are much more complicated by the
null zone than their counterpart for HEDx (Fig.2.18.b). This is because TE data for
HEDx are observed in the lower triangular regions of Fig.2.4c and d, while TM data
of HEDy is collected in the upper triangular regions. Fig.2.4c and d show that the
35° null zone has more effect on the upper triangular regions than on the lower ones,
and the lower triangular regions are larger than the upper ones. TE data (Fig.2.17b
and Fig.2.18a) or TM data (Fig.2.17c and Fig.2.18c) from the non-main profile for
HEDx and and HEDy are very different. Therefore, TE data (or TM data) for HEDx
‘and HEDy should be considered separately. Zonge and Hughes (1988) proposed that
“ In tensor measurements, these quantities (E., E,, H., H,, H,) may be treated by
standard MT processing techniques”. This claim is true only if measurements are
made in the far-field. In practice, measurements of E., E,, H,, H,, and H, should
be made separately for HEDx and HEDy of tensor CSAMT.

HMDx data

TE data for the non-main profile and TM data for the main and non-main profiles
are shown in Fig.2.19 a, b, c. Physically, HMDx is somewhat similar to HEDy. The
data of HEDy and HMDx show this similarity. Compare Fig.2.18a with Fig.2.19a
and Fig.2.18b with Fig.2.19b. Thus the general features for the HEDy are also true
for the HMDx. But the source effect for an HMD appears as low apparent resistivity
and high phase at the sites near to the source and at low frequencies. HMDx data
appears to have weaker resistivity anomalies, but shows less source effect than HEDy

data.
HMDy data

HMDy data are shown in Fig.2.20 and are similar to HEDx data. The features of
HMD data that are different from HED data discussed above are also true for HMDy

data. Thus, HMDy’s main features can be summarized as: resistivity anomalies in
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the TM data are separate, but not in the TE data; the conductive body at the right
has stronger anomalies; HMDy data has weaker conductive anomalies, but with less
source effect than HEDx data; etc. Note that TE phase appears low at low frequencies

and at the sites very close to the source.
FLHEDx and FLHEDy data

Figure 2.21 shows apparent resistivities and phases for an z-directed FLHED
source with a length of 2.5 km, which is about 4 skin depths of bedrock or 7 skin
depths of the shallow layer. The HEDx results (Fig.2.17) are very similar to the FL-
HEDx. The significant difference is the source effect. For the main profile, the source
effect is less as the length of the FLHED source is increased.

The results for a y-directed FLHED source are shown in Figure 2.22. It has very
similar results to those from HEDy. Because the electrodes are separated from each
other as the length of the FLHEDYy increases in the y-direction, the measurement sites
become closer to one electrode. The source effect on main profile is therefore larger.
But for a site which has the same distance from the electrode, the source effect should

be smaller for an FLHED source.



Resistivity (ohm-m)

|

36

Skin Depth

v

2

Frequency (Hz)

Figure 2.1: Skin depth as a function of resistivity and frequency for a half space.
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42

X (skin depth)

1 2 3 4 5 8
Y (skin depth)
8
5
§e
£3
s
x2

-’

2 3 4 5 &6
Y (skin depth)

[ )

X (skin depth)
N W h

-h

Tt 2 8 4-5
Y (siin depth)

1 2 3 4 5 8
Y (skin depth)

1 2 3 4 5 ¢
Y (skin depth)

X (skin depth)
»

S

-8
-9

+3

Figure 2.7: EM fields, apparent resistivities and phases of an z-directed FLHED with
a length of 1 skin depth, centered at the origin on a 100 Qm half-space. E (volt/m),
H (ampere/m), apparent resistivity (2m) all have a log;, scale, phase (degree) has a

linear scale.



~8

-7

-8

-9

-10
of +1.5 s}
5 ,-.5
i o
:a :3

g 3

<2 +25 x 2
1

1 2 3 4 5 &8
Y (skin depth)

1 2 3 4 §5 &8¢

Y (skin depth)
8 8
_5 5
§ 5
$3 ¥

s s
x 2 xX2
1 e 1
12 3 4 5 6 1 2 3 4 5 6
Y (skin depth) Y (skin depth)

Figure 2.8: EM fields, apparent resistivities and phases of an z-directed FLHED with
a length of 2 skin depths, centered at the origin on a 100 Qm half-space. E (volt/m),
H (ampere/m), apparent resistivity (Qm) all have a log,, scale, phase (degree) has a
linear scale.



-8
-7
-8
-8
-10
+1.5 P
- As
%4 +2 §4
=
3 : €3
s 3
x2 S x2
1 1
+3
1 2 3 4 5 8
Y (skin depth)
-8 6 -8
7 2° -7
5-4
-8 53 -8
s X2 -
1
~10 -10
1 2 3 4 5 6
¥ (skin depth)
6
60
5
= =
§.4 3.4 50
3 €3
i £ "
x2 x2
1 1 30

1 2 3 4 5 6 1 2 3 4 5 6
Y (skin depth) Y (skin depth)

Figure 2.9: EM fields, apparent resistivities and phases of an z-directed FLHED with
a length of 3 skin depths, centered at the origin. E (volt/m), H (ampere/m), apparent
resistivity (m) all have a log,q scale, phase (degree) has a linear scale.



X (skin depth)
N oo s 0 o

Y

1 2 3 4 5 6
Y (skin depth)

X (skin depth)

N W

-

1 2 3 4 5 6
Y (skin depth)

1 2 3 4 5 6
Y (skin depth)

X (skin depth)
N WA O O

-

Rho-yx

X {skin depth)
> O O

N W

E :{}I

-

-~ o

1 2 3’ ; 5 6
Y (skin depth)

X (skin depth)

1 2 3 4 5 &6
Y (skin depth)

»

- N

80
S0
40
30

1 2 3 4 5 6
Y (skin depth)

Figure 2.10: EM fields, apparent resistivities and phases of an z-directed FLHED
with a length of 4 skin depths, centered at the origin. E (volt/m), H (ampere/m),
apparent resistivity ({¥m) all have a log,, scale, phase (degree) has a linear scale.



0N o
n o

X (skin depth)
F-S

X (skin depth)

N W

3
2

-
-

60
50
40

1 2 3 4 5 8
Y (skin depth)

X (skin depth)
- N W O U O

Py +15 6
5 5
2 F
§.4 + 3-4
§3 & §3
;2 * +25 ;2
1 v W 1
s it +3
1t 2 3 4 5 6 1 2 3 4 5 8
Y (skin depth) Y (skin depth)

Figure 2.11: EM fields, apparent resistivities and phases of an z-directed FLHED
with a length of 6 skin depths, centered at the origin. E (volt/m), H (ampere/m),
apparent resistivity (2m) all have a log,, scale, phase (degree) has a linear scale.



47

X (skin depth)
- N W

X (skin depth)
- N W s

1 2 3 4 5 6
Y (skin depth)

Y (skin depth)

£
%4
£3
s
x2

1

1 2 3 4 5 6 1 2 3 4 5 6
Y (skin depth) Y (skin depth)

Figure 2.12: EM fields, apparent resistivities and phases of an z-directed FLHED
with a length of 10 skin depths, centered at the origin. E (volt/m), H (ampere/m),
apparent resistivity (2m) all have a log,, scale, phase (degree) has a linear scale.



2.1 km 7.1 km
0.0 km

3.0 km

1500 100 10 1

Resistivity (ohm-m)

Figure 2.13: 2-Dimensional model. Two conductive dipping prisms (10 {m) embed-
ded in a homogeneous bedrock (100 Qm), with a conductive overburden. Horizontal
ticks are measurement sites. The transmitter is located at the origin of 0 km.
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Figure 2.14: The center of the finite element mesh used for modeling. The transmitter
is located at the origin. Vertical exaggeration is 2. The overall mesh is 200 kmx 150
km with a grid 66 x 62 of nodes. The mesh in the earth is 200 km x 50 km with a

grid 66 x 50.
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Figure 2.16: Geometry of a CSAMT survey. Profile A is called the main profile (or,
the co-linear profile), profile B the non-main profile (broadside profile) with offset d.
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Figure 2.17: HEDx apparent resistivities and phases on the main profile (offset z =
0.0 km) and a non-main profile with offset z = 3.0 km for the two conductive dipping
prism model. Data are represented in pseudo-section format: horizontal ticks are the
measurement sites with the distances from the HEDx located at the origin; vertical
ticks represent frequencies. (hereafter, I will omit the explanation of the pseudo-
section format if data are represented in this format.) (a) TE p, and ¢ on the main
profile. (b) TE p, and ¢ on the non-main profile. (c) TM p, and ¢ on the non-main
profile.
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Figure 2.18: HEDy apparent resistivities and phases on the main profile (offset z =
0.0 km) and a non-main profile with offset z = 3.0 km for the two conductive dipping
prism model. (a) TE p, and ¢ on the non-main profile. (b) TM p, and ¢ on the main
profile. (c) TM p, and ¢ on the non-main profile.
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Figure 2.19: HMDx apparent resistivities and phases on the main profile (offset z =
0.0 kn) and a non-main profile with offset z = 3.0 km for the two conductive dipping
prism model. (a) TE p, and ¢ on the non-main profile. (b) TM p, and ¢ on the main
profile. (c) TM p. and ¢ on the non-main profile.



Figure 2.20: HMDy apparent resistivities and phases on the main profile (offset z =
0.0 k) and a non-main profile with offset z = 3.0 km for the two conductive dipping
prism model. (a) TE p, and ¢ on the main profile. (b) TE p, and ¢ on the non-main
profile. (c) TM p, and ¢ on the non-main profile.
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Figure 2.21: FLHEDx apparent resistivities and phases on the main profile (offset
z = 0.0 km) and a non-main profile with oftset z = 3.0 km for the two conductive
dipping prism model. (a) TE p, and ¢ on the main profile. (b) TE p, and ¢ on the
non-main profile. (c) TM p, and ¢ on the non-main profile.
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Figure 2.22: FLHEDy apparent resistivities and phases on the main profile (offset
z = 0.0 km) and a non-main profile with offset z = 3.0 km for the two conductive
dipping prism model. (a) TE p, and ¢ on the non-main profile. (b) TM p. and ¢ on
the main profile. (¢) TM p, and ¢ on the non-main profile.
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Chapter 3

INVERSION

In this chapter I will discuss inversion. In the first two sections, a formulation
of an inversion is given and some general inversion difficulties such as nonlinearity
and nonuniqueness are discussed. In the third section, I will focus on the 2-D in-
version. This includes a formulation of the 2-D inverse algorithm and its numerical
representation. After this, a short review of the Rapid Relaxation Inversion (RRI)
method of Smith and Booker (1991) is given. Then I describe previous methods to
invert CSAMT data. Finally, I present -a new CSAMT data inversion algorithm:
the CSAMT-RRI inversion algorithm. The CSAMT-RRI algorithm is developed by
extending the RRI method to CSAMT inversion.

3.1 Inverse problems

The inverse problem is a process to recover the earth’s resistivity structure from
the measurements. The forward problem discussed in last chapter can be written
symbolically as

d = F(m) 3.1)

where m is a model of the earth’s resistivity, d is the result of the forward problem,
and F is the physics of the problem, which is known and provides a means to compute
d for any model m. Then the inverse problem corresponding to this forward problem
would be to find the set of all m that yield the given data d. It may be written, also
symbolically, as

m = F~1(d) (3.2)
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This inverse mapping F~! can be very complicated and non-unique.

3.2 General inversion problems

When the inversion problem is formulated as in (3.2), no specific property is assigned
to the functional F, the model m or the measurements d. The property of each
element plays an important role in inversion. In this section, I will review the general
inversion problem.

The functional F can be simple or complicated. The simplest functionals are the
linear ones. When the functional F is linear, the corresponding inverse problem is said
to be linear. Linear inverse problems are the simplest and best-understood inverse
problems. They have been extensively studied by Backus and Gilbert (1968) and
Backus (1970a, b, c). They showed that although an infinite number of models exist,
localized averages of those models can be uniquely determined, and the position that
the averages are localized a.Bout may be varied continuously, yielding models whose
resolution properties are well understood. Franklin (1970), and Jordan and Franklin
(1971) studied a more specific linear case by assigning values to m with error bars at
all positions to realize a stochastic process.

Most functionals which are derived in geophysics are nonlinear, so the correspond-
ing inverse problems are nonlinear. Well-established linear inverse theories cannot be
directly applied. Non-linear inverse problems have been approached in two ways: the
direct non-linear inversion and the linearized inversion. The direct non-linear inver-
sion has only been considered for simple, low-dimensional situations. For example,
Weidelt (1972), Parker (1980), Parker and Whaler (1981), Whittal and Oldenburg
(1986) etc. have discussed direct non-linear inversion methods for 1-D MT data. A
direct non-linear inversion method for multi-dimensional models is unknown.

Another approach to the non-linear inverse problem is the linearized inversion.

The nonlinear relationship between data and model is approximated by the following
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linear relationship

M
d; = F(mo) + Z G;,-Jm_,- (3.3)
Jj=1
or in continuous form,
d; = F(mo) + / gi(r)8m(r)dr (3.4)

where dm is a small change to a known (or guessed) model my. G;; and g;(r) are known
as the Fréchet derivatives, sensitivities or data kernels. Linearized inversion methods
iterate using a linear inversion of the residuals r; = d; — F(my) for a current model.
This is essentially the Gaussian-Newton iterative procedure. A typical linearized
inversion proceeds as follow: Starting with an initial model, one calculates Fréchet
derivatives (sensitivities of the data with respect to the model parameters) and data
residuals; then a linear inversion is applied to compute the perturbated model from
the data residuals. The model can be updated by adding the perturbation to the
initial model. This updated model is used to compute the predicted responses and
the new residuals for next iteration. This procedure is repeated until convergence is
achieved. In relative terms, linearized inversions are easy to implement, flexible to
extend to higher dimensional model, and are able to incorporate model structural
constraints.

In reality, the unknown model m is a function of position, which is of infinite di-
mension, and the measurements d comprise only a finite collection of numbers, either
exactly or with error, so that the inverse problem is not unique. Non-uniqueness is
another serious problem in inversion. Four approaches have been suggested to deal
with the non-uniqueness problem. One approach (Backus and Gilbert, 1968; Parker,
1970; Oldenburg, 1979) has been to find localized averages that are shared by all mod-
els that are close enough to some reference model for a linearization approximation
to hold. A second approach (Tikhonov, 1970; Parker, 1975; Oldenburg, 1983; Con-
stable et al, 1987; Smith and Booker, 1988) has been to find models minimizing some
functional, particularly functionals which penalize roughness of the model. A third
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approach has been to assume prior knowledge of the distribution of likely models and
find which of these models is most likely given a set of data (Franklin, 1970; Jordan
and Franklin, 1970; Backus, 1970c, 1988). A fourth approach has been to ignore the
problems of the non-uniqueness and to merely seek a model fitting the data fairly
well. The first three approaches differ in interpretation of the resultant models, but
not in obtaining models. An inversion algorithm which makes the model unique by

minimizing a norm of the derivative of the model is given in next section.

3.3 . A formulation of the 2-D inversion

The goal of CSAMT/MT inversion could be to find an electrical resistivity model
that fits the data. Mathematically, this can be stated as

minimize obj = eTe (3.5)

where e is the misfit vector.

Numerically, a common objective approach is to discretize the model into more
blocks than there are degrees of freedom in the data (overparameterizing), give a
resistivity for each block, then invert data for resistivities. The solution will be
non-unique. The fundamental difficulty in solving the EM inverse problem is the
nonuniqueness of the solution. Three approaches discussed in the last section can
be applied to obtain a unique solution. The philosophy to avoid non-uniqueness is
to find a model which has the minimum structure possible for a given level of data
misfit. Therefore, the problem (3.5) can be modified by including a functional for
measuring structure. One proposed by Smith and Booker (1991) is

. e . . d*m ?m]? T
minimize obj = / w(z,y) [-3?2- + g(y,z)w] dydz + fe’e (3.6)
where w(z,y) is a weight function. This can be written compactly as

minimize W =Q + 8x* (3.7)
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where x? is the squared misfit scaled by the variances of the measurement errors,
which is often called the chi-squared misfit statistic. Because of the exponential
decay of EM fields as the depth increases, it is reasonable to put a larger structural
penalty at depth to make parts of model, which are less constrainted by the data,
smoother. Smith and Booker (1988) show that choosing (z + zo)3 is likely to result in
a model fitting the data uniformly across the full frequency bandwidth. The function
9(y, z) allows trading-off between penalizing horizontal and vertical structures. g is
a trade-off parameter between model complexity and data misfit. If 3 is too big, the
resulting model fits noise in the data (i.e. overfits the data). In fact in 1-D the model
actually approaches a series of Dirac delta functions. It is termed D* by Parker
(1981). If B is too small, the resultant model will over-penalize structure complexity
and be too smooth to fit the data. Smith and Booker (1988) presented an efficient
and stable method for choosing 3. In their algorithm, 8 is chosen in each iteration so
that minimizing the object function W results in the smallest Q for a specified value
of x? when the linearization inherent in equations (3.3) and (3.4) are valid.

When approximated with finite differences, the problem (3.6) can be rewritten in

the form

minimize W = (Rm - ¢)"(Rm — c) + BeTe (3.8)
subject to d -do=Fm-Fmy (3.9)

where R is a roughening matrix of dimension (n, -»nz); F is the matrix of sensitivities
of the data to changes in the model, with a dimension of ny4 - (n, - n;); c is a vector
with a length of (n,-n.) which arises from penalizing the horizontal second derivative,
(it expresses our bias that structure under one site must be similar to that beneath
its adjacent sites); m and myg are (n, - n,) vectors containing the new and starting
models; and d and dg are n4 element vectors containing the measured and calculated

data.
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Some features can be added to allow for more general problems. For instance, the
apparent resistivity commonly has an unknown, frequency-independent multiplier
because of static distorticn of the surface electric field (Jones, 1988). Smith (1988)
successfully incorporates estimation of static shifts into the inversion. In order to

contain such features, one can modify equations (3.8) and (3.9) to
minimize W = (Rm — b)"(Rm — b) + BeTe (3.10)

subject to d=FPm+Gp+e (3.11)

where d is defined as

One can modify ¢ (now written as b) to allow finding models with Rm close to some
prefered b. G is the sensitivity matrix of the data to changes in the parameters p
which one might want to consider separately from the model parameters such as static
shift coefficients.

Smith (1988) derives solutions for the problem (3.10) and (3.11). First, d is
rewritten as

d=(FR™')(Rm-b)+Gp+e+FR'b (3.13)

where R is assumed to be full rank for simplicity. If not, a partition of R using a
singular value depcomposition can be done and the row vectors corresponding to its
zero eigenvalue can be moved into matrix G (Smith and Booker, 1991).

The object function (3.10) can now be minimized subject to the constraints (3.11)
by introducing ny Lagrange multipliers. After some algebra, one can derive the fol-

lowing formulas

eTe = (d - Gp)TU(BA +I)7*UT(d - Gp) (3.14)
(m—b) = HU (,\ + %1) " uTd—Gp) (3.15)

p=ad (3.16)
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-1
a= [GU (A + %1) uT G] GU (,\ + %I) Ut (3.17)

and

H=FR'=UAxVT (3.18)

where A is a diagonal matrix with the eigenvalues of H.

These solve the probelm (3.10) and (3.11). At each iteration, the singular value
decomposition of H is first performed as indicated in (3.18), then Newton’s method
is applied to (3.14) to calculate 3 for a given prescribed misfit, finally, unknowns p
and (Rm — b) are computed using (3.15) and (3.16).

3.4 A review of the RRI method of MT

3.4.1 RRI algorithm

Rapid Relaxation Inversion (RRI) of MT (Smith and Booker, 1993) is based on the
observation that electric and magnetic fields can generally be expected to have smaller
horizontal derivatives than vertical derivatives. Therefore, it is reasonable to approx-
imate the horizontal second derivatives by their values from the previous iteration.
This approximation makes the Fréchet kernel function of a 2-D model identical to the
one derived by Oldenburg (1979) for 1-D model except the electric and magnetic fields
in the kernel are computed from the 2-D model. This provides an efficient method
to compute Fréchet derivatives. One can speed up the computation of model change
by performing inversion at each site rather than a 2-D inversion for all sites. That
is, a 2-D inversion is approximated by a set of single-site inversions. The resistivity
structure beneath the observation sites is first recovered from the inversions site by
site. These structures are then used to interpolate a 2-D model for calculating the 2-D
EM fields required for the next iteration. The iterations continue until convergence is

achieved. Further details of this method are discussed by Smith and Booker (1991).
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3.4.2 Justification of the RRI

Although RRI has been successfully applicd to numerous field data sets, it is useful
to examine why (and when) the approximation works. No such examination has been
carried out so far.

I first check the assumption about the horizontal and vertical second derivatives.
Consider the configuration shown in Figure 3.1. The earth is considered to be a
half-space having conductivity oo, except for a two-dimensional inhomogeneity with
conductivity o). Assuming a plane incoming wave polarized with the electric field
parallel to the strike x, and with magnitude Ey at the surface, the incident field (or
primary field) inside the earth is

E;(y,z) = Eoe™** (3.19)

Now let
EI(y,z) = Ei(y,2) + E2(y,2) (3.20)

where ET(y, z) and E3(y, z) denote the total and scattered fields. E3(y, z) is generated

by the scattering current J, existing only in the inhomogeneity. J; is given by
J, = (0’1 - Uo)EZ: (321)
The total field ET(y, z) is given by Hohmann (1971) in integral form.

El(y,2) = Ei(y,2) + / / Jo(y',2)G(y, z; ¢, 2') dy' &2’ (3.22)

where G is the Green’s function, which is the electric field due to a line source in
the earth. The formula (3.22) is general for any two-dimensional inhomogeneity of
arbitrary cross-section. If the inhomogeneity is at the surface and small enough, one
can get a formula in closed form with the first order approximation to the formula

(3.22)
twho
2

Ez‘(y, Z) = E'oe—ikz + (0’1 -_ O’Q)EQ Ko[ik(yz + 22)] (3.23)
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Note that far away from the inhomogeneity, the primary fields will dominate and have
zero horizontal second derivatives. In the area close to the inhomogeneity, the vertical
second derivatives become of the same order as the horizontal second derivatives. So I
conclude the approximation is valid away from an inhomogeneity, but may be marginal
near one. I do not expect, however, to see a situation where the horizontal derivative
dominates the vertical derivative for these kind of models.

However, there are more extreme situations such as two abutting quarter spaces.
Using the formulas for magnetic fields for the TM mode derived by d’Erceville and
Kunetz (1962), one can compute the vertical and horizontal second derivatives of the
magnetic fields. Figure 3.2 shows 8*H /32% and 8*H /8y? at a site on the conductive
side that is one half skin depth from the contact. The §*H/dy? curve gradually
increases from zero to a maximum at about one skin depth, then decreases to zero
with depth. 92H/8z? on the other hand is a monotonically-decreasing function of
depth. 92H[02? is larger than 82 H /3y? shallower than one skin depth and smaller
below one skin depth. Due to the skin depth effect, the structure within one skin
depth of the surface dominates the MT response. Thus in the region MT constrains
the model, the observation that vertical derivatives dominate is true. Therefore,
approximating the horizontal second derivatives with quantities computed from last
iteration should work well if the model change is not too large.

The second approximation is that the sensitivity of the data to the structure
directly underneath is reasonable when 2-D fields are used in 1-D Fréchet derivatives.
I will investigate this approximate sensitivity in the next chapter and one will see

that the approximate sensitivity is verified.

3.4.3 Computation of RRI

Inversion methods for EM data typically divide the earth model into cells with con-
stant conductivity, linearize the problem about an initial model, compute the sensitiv-

ities, solve an optimization problem to obtain model change, and update the current
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Table 3.1: Methods used in several recent magnetotelluric inversion algorithms. Rapid
Relaxation Inversion (Smith and Booker, 1991), OCCAM (deGroot-Hedlin and Con-
stable, 1990), Conjugate Gradient (Mackie and Madden, 1993).

RRI OCCAM Conjugate Gradient
Fwd Modeling 2-D 2-D 2-D
Sensitivity approximate 2-D 2 Fwd modelings

Update model

small linear systems

large linear system

large linear system

model to get a new model. This process is repeated until a satisfactory model is

reached. The main computation steps of this process consist of

1. Forward modeling - Computing EM response of a given resistivity model.

2. Calculating the sensitivity matrix - Computing how changes in each model

parameter change each datum.

3. Solving the resulting large system of equations to compute the model change at

each iteration.

A number of methods have been used for each step in EM data inversion. Table

3.1 lists some MT inversion algorithms which use different methods for these three

computational steps. If one of these methods cannot be carried out in reasonable

time then an alternate method is sought. Viable methods should balance accuracy,

speed and computational requirements. RRI is the fastest existing method as long as

its approximations hold.

For the step of forward modeling, the accuracy of forward modeling is critical to

determining if a given model fits the data. Compared with other two steps, forward

modeling computation is generally a small fraction of the whole inversion. Neverthe-

less, RRI solves the forward modeling in a fast way using an iterative method with
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the fields of the last iteration as its initial values. The forward solutions converge in
only a few iterations.

To compute and store the sensitivity matrix can be the most demanding stage
for computer resources when fully 2-D sensitivities are used. The RRI approximate
sensitivities, which will be discussed in detail in the next chapter, dramatically reduce
these computer resources.

The computation of the model change is the second largest. Due to RRI approxi-
mate sensitivity, sites are not coupled in the 2-D linear inversion system. Thus, RRI
is solving a number of small linear systems of equations instead of solving a large

linear system of equations.

3.5 A review of previous CSAMT inversion methods

A variety of methods exist for inverting CSAMT data to find a conductivity model
which fits the data. In the far-field, CSAMT data are indistinguishable from plane
wave data and an obvious strategy is to use MT inversion to interpret them. This
approach has been used to recover 1-D and 2-D earth models (Sasaki et al., 1992;
Wannamaker, 1997). The main disadvantages with this practice are that: (a) The
horizontal attenuation inherent in the controlled source is not considered in the MT
forward modeling; (b) data collected in the transition zone and near field cannot be
utilized; and (c) it is difficult to determine where the far-field begins without knowing
the electric structure of the earth. This last factor can result in significant artifacts
in the model even when data is thought to be at least three skin depths away from
the transmitter. Figure 3.3 shows an example from Lu et al. (1997). The model
consists of two 10 Qm conductive prisms embedded in 100 Qm half-space with HEDx
transmitter (Figure 3.3(a)). Figure 3.3(b) shows CSAMT synthetic data with 10%
Gaussian noise. Data above the blue dash lines are three skin depths away from the

source and are used as far-field data. MT inversion is used to invert those far-field
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data and the recovered resistivity model is shown in Figure 3.3(c). Note the high
resistivity artifact close to the source. Also note that the inversion does not recover
the two conductive prisms.

An alternative approach is to attempt to correct transition zone and/or near-field
data, so that it is equivalent to plane wave MT data. The corrected data are then
inverted with conventional MT techniques. Various correction schemes have been
proposed (Yamashita and Hallof, 1985; Maclnnes, 1987; Bartel and Jacobson, 1987).
Although these methods may work under some situations, the problems with this
approach include: (a) the correction can not be appraised quantitatively; (b) it is
physically impossible to correct CSAMT data to be MT data when the subsurface
resistivity model is unknown. The correction requires an assumption about the struc-
ture. If these assumptions are wrong, the correction is wrong. Thus artifacts can
be introduced into the resulting resistivity model. Figure 3.4(a) shows that the cor-
rection method cannot correct CSAMT data to be MT data. The inverted model
from the corrected data gave misleading information of a relatively resistive layer at
a depth where actually is a relatively conductive layer (Figure 3.4(b)).

Another approach is to use 1-D CSAMT inversion (Boerner et al., 1993; Routh
and Oldenburg, 1996). While this method accurately models the electromagnetic
fields, it is restricted to 1-D conductivity models. This is often a useful approach
for simple electric structures, but since it places the same conductivity structure
beneath the transmitter and the receiver, it can give misleading results in a 2-D
or 3-D environment. In order to cope with the finite source effect and the high
dimensionality of electric structure in the earth, Wannamaker (1997) combined 1-D
CSAMT inversion and 2-D MT inversion in field data interpretation.

Newman and Alumbaugh (1997) have developed an inversion method whiéh mod-
els both 3-D EM sources and 3-D conductivity structures on a massively parallel
computer. This approach demands expensive computational resources at the present

time, but is a vital tool for evaluating inversion techniques that use a lower dimen-
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sionality.

In recent years a number of approximate methods have dramatically reduced the
computational cost of MT inversion (Smith and Booker, 1991; Farquharson and Old-
enburg, 1995). In the next section, the approximate method of Smith and Booker
will be extended to CSAMT data. 3-D transmitter fields and a 2-D earth structure

are considered.

3.6 CSAMT-RRI inversion algorithm

CSAMT-RRI inversion algorithm is an extension of RRI to CSAMT inversion. Com-
putation time for computing sensitivities is in general proportional to the time needed
for forward modeling. CSAMT forward modeling is always much slower than MT for-
ward modeling, since a higher number of dimensions and a nearly singular field close
to the transmitter must be modeled. Therefore, CSAMT inversion will demar;d much
more in computation and computer resources than MT inversion. The RRI method
to invert MT data appears to be one of the fastest available, so it is natural to con-
sider if the method will be useful for CSAMT data. This extension requires that the
assumption about horizontal and vertical second derivatives is valid for CSAMT. In
this section, we will investigate this assumption.

Since it is difficult to derive an analytic solution for a 2-D model and a finite source,
we will compute vertical and horizontal second derivatives numerically by using the
forward modeling method described in Chapter 2. Figure 3.5 shows 82H/8z% and
0%H [3y? at the site on the conductive side half skin depth from the contact between
two quarter spaces. The transmitter is located three skin depths from the contact
and oriented in the y-direction. Both curves monotonically decrease with the depth
and 9?H [92? is larger than 9% H/3y? everywhere above one skin depth.

This computation shows that the fundamental approximation on which RRI is
based does hold for CSAMT. Therefore, it should be possible to extend the RRI
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inversion method to CSAMT. The crucial requirement for this extension is that the
sensitivities can be approximated sufficiently accurately that the model perturbation
leads us in the right direction. In the next chapter, I will derive CSAMT sensitivities
and compare them with the true sensitivities.

In extending RRI to CSAMT data inversion, [ extend it first to CSAMT data from
infinite-length line source, then to data from finite sources (HED, HMD and FLHED).
Although an infinite-length line source is ideal, it is the first order approximation to
finite sources. Thus I first approximated a 3-D source by a 2-D infinite-length line
source and modeled 2-D geoelectric structure. This is a good compromise between
computation and complexity. If it had not worked for this situation, it is unlikely
that it would extended to more realistic sources. Lu et al. (1997) inverted synthetic
HED CSAMT data using an infinite-length line source. Figure 3.6 shows an example
with the same model as in the direct MT inversion method described in the last
section. The inverted resistivity model is shown in Figure 3.6(c). Note that the two
conductive prisms are resolved well, although a resistive artifact appears close to the
source. The appearance of this resistive artifact in the inverted model indicates that
it is necessary to model the source more accurately in order to get reliable inversion

result. Examples of CSAMT data inversion of finite sources are given in Chapter 3.
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Figure 3.1: Section view of a two-dimensional inhomogeneity in the earth.
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Figure 3.3: Interpreting far-field CSAMT data with MT inversion. (a) Resistivity
model. (b) Synthetic data with 10% Gaussian noise. Data above the blue dashed
lines are three skin depths away from an HEDx source and were used as far-field
data. (c) Inverted model for the far-field CSAMT data with MT inversion. Misfit =

1.43. (d) Computed MT response of model (c).
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Chapter 4

FRECHET DERIVATIVES AND SENSITIVITIES

In order to solve the inverse problem, one needs to compute the Fréchet derivatives
or sensitivities that quantify how a change in the model affects each datum. If one part
of the model is changed slightly and the data are significantly altered as a result, one
can say that the observation is sensitive to this part of the model. Conversely, if there
is no appreciable change in any of the data, the observation is insensitive to change
in the model. Sensitivity analysis is used by geophysicists to judge the capability
of geophysical measurements to detect or resolve specific geological features, or to
aid in the design of better survey methods. Due to the importance of the Fréchet
derivatives and sensitivities in inversion, I will focus on the computation and validity
of sensitivities in this chapter. First, the Fréchet derivatives and sensitivities will
be briefly introduced; then the methods of computing the Fréchet derivatives and
sensitivities will be reviewed. After this, I will discuss the RRI Fréchet deriva._tive
and its features. Finally, I will derive the Fréchet derivative for CSAMT by using
the perturbation analysis, and then compare them with those sensitivities from the

perturbation method to justify their validity.

4.1 Introduction

The forward problem (3.1) is rewritten as
d;=Fm) i=12,...,N (4.1)

where F; is a functional which relates a given model m to the ith datum d;. Then,

the 7*# observation data can be written in terms of the expansion around an estimated
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model m.,,
&% = Fi(Mow) + FO(m0)m + o FO(mew)om? + .. (4.2)

where F;™(m) is called the nth order Fréchet derivative of F;(m) (Griffel, 1981;
Zeidler, 1985). The first-order derivative F;(*)(m) is simply referred to as the Fréchet
derivative.

The misfit de; for the ith observation can be written as
de; = FiV(m.y)dm + O(||6m||?) (4.3)

where de; = d?"' — Fiy(m.,). If the high-order terms are neglected, (4.3) can be written

as

Sei = [ gi(r,mep) Sm(r) dF (4.4)

where g;(r, m.,) is the Fréchet kernel associated with the ith observation. The Fréchet
kernel function relates small changes in the model parameters to the corresponding
changes in the data. The properties of Fréchet kernels determine the resolution of the
inversion. For instance, if the kernel functions consist of a series of delta functions,
then the model parameters may be precisely resolved. On the other hand, if the kernel
functions are constant functions, only an average of the model can be obtained from
the data. Normally, the kernel functions lie somewhere between delta functions and
a constant. Analytic expression for the Fréchet kernel function g;(r,m.,) in (4.4) is
presently not available for multi-dimensional models.

In multi-dimensional inversions, the model is usually divided into a finite set of
cells with parameters m;,j = 1,2,..., M. The ith observation can be written in the
Taylor series expansion as

= F{ma) + 3 aF(m"‘)J +5 Ly 3 TR o @)

i=1 m; j=1 k=1 m; Om;0my

where 8"F;(m.,:)/8m; Bm; - -- is the nt® order sensitivity of F:(m) with respect to
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the parameters m;, my, - - -. Then, the misfit for the :th observation can be given by
M .
be; =y Al Ment) 5 L O(l16mP?) (4.6)
=1 amJ

Equation (4.6) can be rearranged in matrix form by neglecting the higher-order terms,
de =Jdém (4.7)

where J is the sensitivity, or Jacobian, matrix. The elements of this matrix, the
sensitivities, are the first-order partial derivatives of the data with respect to the
model parameters.

Equations (4.4) and (4.7) are linear and can be easily solved for the model update
dm(r). Almost all linearized inversion methods use these two equations. Computing
Fréchet derivatives and sensitivities is thus a crucial step to solving most non-linear

inverse problems.

4.2 Methods of Computing Fréchet Derivatives and Sensitivities

Inverse problems which have been solved using Fréchet derivatives and sensitivities in-
clude the DC resistivity inverse problem (Oldenburg, 1978), MT (Rodi, 1976; Parker,
1977; Jupp and Vozoff, 1977; Oldenburg, 1979; Hohmann and Raiche, 1988; Smith
and Booker, 1991), the EM induction problem (Oristaglio and Worthington, 1980;
Chave, 1984), the seismic problem (Tarantola, 1984; Chen, 1985), the ground water
flow problem (Neuman, 1980; Sykes and Wilson, 1984; Townley and Wilson, 1985),
the reservoir evaluation problem (Carter et al., 1974), computer-aided design prob-
lems ( Branin, 1973; Brayton and Spence, 1980), and others. The problems are so
diverse that a range of methods for computing Fréchet derivatives and sensitivities

have been developed. They can be classified as

1. Analytic

2. Perturbation
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3. Sensitivity-equation
4. Adjoint-equation
5. Approximation

McGillivray and Oldenburg (1990) give an excellent review on the first four methods.
In this section, I will briefly outline those methods largely by following McGillivray
and Oldenburg (1990).

4.2.1 Analytic methods

Adjoint Green’s function approach

By applying perturbation analysis to equation (2.40), one can get the first-order
equation for §V
DéV = R(r) (4.8)

where R(r) = —éDV, 4D is a new differential operator. The problem (4.8) concerns
the Fréchet derivative 8V and can be solved by using the adjoint Green’s function

(Lanczos, 1960; Roach, 1982). The adjoint problem is defined as
D*G" = é(r,ro) (4.9)

where D" is the adjoint operator, which is defined below. G* is then called the adjoint
Green’s function and é(r, ro) is the Dirac delta function. Multiplying (4.8) by G* and
(4.9) by 4V, subtracting and integrating over the domain €2, leads to the Fréchet
derivative

8§V (ro) = /ﬂ G™(r, ro) R(r) dO2 (4.10)

where the operator D* and the adjoint boundary conditions are chosen such that

/n (GDSV — 6V D'G™)dQ = 0 (4.11)
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for all G* and éV.

Lquation (4.10) shows that computing the response perturbation §V(ro) at ro due
to a unit source at r is equivalent to calculating the adjoint Green’s function at r
from a unit source at ro and then superposing the complete source termn R(r). This
property is called reciprocity. Parker (1977) used this approach to derive the Fréchet
derivative for the 1-D MT problem and Chave (1984) obtained the Fréchet derivative
for the 1-D EM induction problem.

Series expansion approach

This approach is based on writing the response of a perturbed system in terms of
a Taylor series expansion. Fundamentally, this approach is not different from the
adjoint Green’s function approach, but it shows how higher-order Fréchet derivatives
can be evaluated. For example, the normalized response S for 1-D DC resistivity

problem can be written as

3:‘2' w(z)ig —X5=0 (4.12)
where w(z) is the model, § = Ad(), z)/ (A(A,0)) and & is the Hankel transform
of the potential ¢. By writing S in terms of a Taylor series expansion, substituting
it into (4.12) and rearranging, one can obtain a relationship between higher-order

Fréchet derivatives with lower-order Fréchet derivatives

425, S, .= dSi-,
o7 -w(z)—— — XSk =kn -

k=1,2,... (4.13)

where S, = 3%5/8e*, §w(z) = en(z). Equation (4.13) can be solved to get higher-

order Fréchet derivatives using the adjoint Green'’s function.
Riccati equation approach

This approach is restricted to the second-order homogeneous linear equation in one-
dimension.
V'(z) + A(2)V'(2) + B(z)V(z) =0 (4.14)
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Equation (4.14) can be transformed to the Riccati equation by using the substitution

Vi(z)

y(z) = “aZ)V() (4.15)
- _a@V(z)
¥(z) = =5 (4.16)

Then the Riccati equation for dy can be obtained by perturbating the model and
solved by using standard techniques such as the integrating factor technique. Olden-
burg (1978, 1979) uses this approach to derive the Fréchet derivatives for the 1-D DC
resistivity problem and the 1-D MT problem.

Although the adjoint Green’s function approach is general and yields an expression
in integral form for the Fréchet derivative, solving for the adjoint Green’s function
is theoretically as hard as the problem itself. Nevertheless, the computation can be
decreased by using the reciprocity of the adjoint Green’s function. So far, those ana-
lytic approaches are only successful in deriving Fréchet derivatives for one-dimensional
problems. For multi-dimensional problems, one must make use of the parameter sen-

sitivities, which can be computed by the methods in the next section.

4.2.2 Perturbation method

The perturbation method, also called the brute-force method, computes the sensitiv-
ities by representing the derivative with the finite-difference approximation,

0F(m) Fy(m + Am;)— F(m)

am,- Am ]

(4.17)

The method requires two forward calculations for each parameter, but M + 1 forward
calculations for all M parameters. This method is straightforward, but it is very

inefficient and often impractical in inversion.
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4.2.8 Sensitivity-equation method

Equations (2.36) and (2.37) represent a steady-state diffusion problem, which can be
described' by the following boundary-value problem

—V-(mr)W)+qr)V=Q() in Q (4.18)

o)V + ;3(1-)9Z =0 on 09 (4.19)

where m(r) and ¢(r) jointly specify the model and @(r) describes the source distri-

bution. If m(r) is taken as the model and is parameterized by

M
m(r) = 3 mi i(r) (4.20)
i=1
where {1} is set of basis function, the above boundary-value problem can be written
as
M
-Vv. (Z m; ¥;(r) VV) +4q(r)V =Q(r) in (4.21)
i=1
a(r)V + ﬂ(r)— =0 on 0N (4.22)

Differentiating (4.21) and (4.22) with respect to m;, yields

-v-( ()vav(’))+ ()av(") V-@i(r)W) in Q (4.23)
() ) + ()5 (%2?):0 on 99 (4.24)

Equations (4.23) and (4.24) are called the sensitivity problem and can be solved for
the sensitivities 8V(r)/dm; in the following manner. First, the forward problem
(4.18) and (4.19) is solved for V(r) at all points r in Q, then the corresponding
sensitivity problem is solved to get dV'(r)/dm; for each model parameter m;. Thus
a total of M + 1 forward problems have to be solved to obtain all sensitivities. But
they can be solved efficiently by a direct method such as the LU decomposition,

since the original forward problem and the sensitivity problems differ only in their
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source terms. Obviously, this method is more efficient than the perturbation method,
but its computation is still very demanding. Rodi (1976), Jupp and Vozoft (1977),
Hohmann and Raiche (1988) use this method for the 2-D MT problem, Oristaglio

and Worthington use it for the 2-D induction problem with a line source.

4.2.4 Adjoint-equation method

The adjoint-equation method is based on the adjoint Green’s function concept dis-

cussed earlier. The adjoint problem for (4.18) and (4.19) is constructed as

-V - (m(r) VG") + q(r) G* = 4(r, r;) in Q (4.25)

a(r)G” + ﬂ(r)a—G: =0 on 99 (4.26)

Following the similar derivation to that for Adjoint Green’s function approach, one
can obtain,

av r’ / G™ V-(%:; V) d2 (4.27)

To compute the sensitivities, the a.dJOInt problem (4.25) and (4.26) must be solved
for each observation site r;. Then, equation (4.27) is used to compute sensitivities
for each parameter. Since the source term in the adjoint problem differs for each
observation site, a total of N + 1 forward problems must be solved. Again, this can
be done efficiently by a factorization method (e.g. LU). Generally, the number of
model parameters is considerably greater than the number of data, so the adjoint-

equation method is the most efficient method to compute exact sensitivities. This

method is used by Weildelt (1975) and Madden and Mackie (1989).

4.2.5 Conjugate Gradient method

Mackie and Madden (1993) use a conjugate gradient approach for solving the mag-
netotelluric inverse problem that does not explicitly need the sensitivity matrix but

rather the effects of this matrix or its transpose multiplying a given vector. They show
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that each of these requires one forward problem with a distributed set of sources ei-
ther in the volume (for the sensitivity matrix multiplying a vector) or on the surface
(for the transpose multiplying a vector). Although this significantly reduces the com-
putational requirements, it still needs three forward-modelings with various sources

for each inversion iteration.

4.2.6 Approzimation methods

The approximation method of RRI (Smith and Booker, 1991) is based on the one-
dimensional Fréchet derivative, but uses two-dimensional forward calculations. No
extra forward calculation is required. Therefore it is extremely fast. The sensitivity
matrix is not only approximate but also incomplete. Its derivation, features and
accuracy will be discussed in the following section. I refer to this method as the RRI
approximation method.

Farquharson and Oldenburg (1995) present an approximation method which is
based on the adjoint-equation method. In the adjoint-equation method, the sensitiv-
ities are obtained by integrating the product of an adjoint field (the adjoint Green’s
function) with the field generated by the forward calculation of the last iteration.
They approximate the adjoint field either by computing fields from a homogeneous
or layered half-space, or by using the Born approximation, instead of computing the
adjoint field from the updated model at each iteration. This method can reasonably
be called the approximate adjoint-equation method. It also requires no extra forward
calculation. The sensitivity matrix generated by this method is approximate, but
complete.

An approximation method should be considerably faster than exact methods but
needs to be sufficiently accurate to allow an iterative inversion algorithm to converge

to the solution.
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4.2.7 Comparison of sensitivity computations

In conclusion, the analytic Fréchet derivative is the most convenient way to com-
pute sensitivity, but it is normally restricted to one-dimensional models. For multi-
dimensional models, parameter sensitivities are calculated either exactly by pertur-
bation, sensitivity-equation and adjoint-equation methods, or approximately by the
approximation methods. The perturbation method requires a large number of for-
ward calculations and is not practically feasible in general. The sensitivity-equation
and adjoint-equation methods compute sensitivities more efficiently if a numerical
solution for the forward calculation based on a matrix factorization is used, but the
computation for the sensitivities still requires considerable time. The approximation
methods generate fast sensitivities for inversion and have been shown to be sufficiently
accurate for the MT inversion.

Relative computation times for each method are listed in Table 4.1. As the size of
the problem increases, the amount of computation becomes increasingly unrealistic
for perturbation, sensitivity-equation and adjoint equation methods. Thus the con-
jugate gradient and approximation methods become attractive. [ will use the RRI

approximation method for CSAMT data inversion.

4.3 RRI Seansitivities

4.8.1 Derivation of RRI sensitivities
In this section I will outline the extension of RRI sensitivity to CSAMT.
TE mode

First, consider the transverse electric (TE) mode in which the electric field (E;) is
parallel to the strike of the structure. For a 2-D electric model o(y, ), with = aligned

with strike, y perpendicular to strike and z positive downward, the governing equation
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Table 4.1: Comparison of Computation Time. M is the number of model parameters,
Ny is the number of frequencies, and NV,;, is the number of observation sites. A typical
2-D example: M = 100 x 100, Ny = 20, Ny, = 20.

Method No. of Forward Modeling | A Typical Example
Brute-Force M x Ny 10000 x 20
Sensitivity-Equation M x Ny 10000 x 20
Adjoint-Equation Ny x N, 20 x 20
Conjugate-Gradient 3x Ny 3 x20
Approximation N; 20

for E, is given by
1 J*E, 1 9*E,

E 9.2 + . 0y + twpeo =0 (4.28)
The datum V is defined as
1 6Ex s Hy —_ 1
V= o - W E — tWwho 7. (4.29)
From this definition, (4.28) can be written as
v . 1 *E; : _
e + Ve + {E_z 392 } + twwpeo =0 (4.30)

Suppose that V5 and E.q satisfy equation (4.30) when o = 0o, and V = Vo + dV
when o = ¢ + do. Due to the skin depth effect, the horizontal gradients in braces

are normally smaller than the vertical gradients, and are approximated by

1 8E: _ 1 8Ex
E. 8y? = E.o Oy?

(4.31)

Applying the perturbation analysis to equation (4.30) and neglecting higher-order
terms, one obtains the first-order linear differential equation for 8V,

%JV + 2VpdV + twugdo =0 (4.32)



It can be solved for §V to yield

o tw
8V (@,0) = gr oo [ Bhlyi,2)6o(z)dz

Equation (4.33) describes the Fréchet derivative of 1/Z,,.
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(4.33)

Apparent resistivity p, and phase ¢ are usually used as data. If drg is defined as

H,\? vz
dre =In [—zwuo (Ez) ] =l (—iwﬂo)

it has the following relationship with p, and ¢,
In
Re[drg] = - lnpa [m[d'pg] = 7 - 2¢

By differentiating equation (4.34), one can easily derive

_ [ _200(2)EX (v, 2)
JV_/Ezo(y.,O)H,,o(y )5(lna'(z)) z

odrg =
™~ V(%,0)

TM mode

The governing equation for the TM mode can be written as

1 0 0H, 1 0 OH.

H.o:" 0z VH.9y" oy T o =0
The datum is defined as
_POH: E,
v H, 0z H. ~ Zsz

Similarly, one can derive the Fréchet derivative §U

0U(y;,0) = ?ITIO(I?.,E)-/ E2\(yi, 2)60(z)dz

For TM apparent resistivity and phase, one can define

H:\? —iwig
=t i () | =10 (522)

(4.34)
(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

where dras is related to p, and ¢ in exactly analogous form as (4.35). Then one can

get

ddrpm =

U (y-, 0) v0(Yi> 0) Hzo(yi, 0)

0 E ty
§U = f E2" (2)Ep0(®02) 510 o))z

(4.41)
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Equations (4.33) and (4.39) are scaled Fréchet derivatives of impedances 1/Z,, and
Z,z, while Equations (4.36) and (4.41) are Fréchet derivatives for apparent resistivities
and phases. Equations (4.33) and (4.39) have the same form as that obtained by
Oldenburg (1979) for the 1-D problem, but use 2-D fields from the last iteration
instead of the 1-D fields. Equations (4.33), (4.39), (4.36) and (4.41) are a relationship
between data residuals and model changes. So these four equations can be inverted
for model changes directly beneath the site.

The complete RRI iterative cycle is as follows: Given an initial model oq(y, 2),
equations (4.28) and (4.37) are solved for E(y,z) and H.o(y,z). These fields are
used to compute the Fréchet kernels of equations (4.33) and (4.39) (or (4.36) and
(4.41)) and the data residuals at each site. Equations (4.33) and (4.39) (or (4.36) and
(4.41)) are then inverted for the model update do directly beneath the site. Then
o(yi, z) is updated at all sites and interpolated between sites to generate a new 2-
D model o(y, z). Equations (4.28) and (4.37) are solved again for the fields of the
updated model. This cycle is repeated until a satisfactory fit to the observed data is

reached.

4.3.2 RRI sensitivity matriz

RRI inverts data site by site and constructs a new 2-D model by interpolation. Thus
RRI does not explicitly use the 2-D sensitivity matrix J defined in equation (4.7). This
is the major difference from the standard inversion method and makes comparison
difficult between RRI and other inversion methods. This difference can be eliminated
by constructing an RRI sensitivity matrix based on its inversion scheme.

The standard inversion method computes a fully-2D sensitivity matrix, which
relates data to the change of each model cell. RRI computes the sensitivities of the
data only to the cells which are directly below the measurement site, but does not
use the sensitivities to the cells that are not directly below the measurement site

(for ease, side cells). RRI’s site by site inversion scheme is equivalent to setting the
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side cell sensitivities to zero. Therefore the RRI sensitivity matrix can be related
to the standard sensitivity matrix in this way: The sensitivities of data to the cells

irectly below its site are computed from the formulas (4.36) and (4.41) and the
sensitivities of data to side cells are approximated to be zero. Setting sensitivities
of data to side cells to zero enables RRI to (1) invert data site by site rather than
do a 2-D inversion for all sites at once and (2) require much less computation time
and memory for model changes. The accuracy of the sensitivity matrix is crucial to
inversion convergence. Therefore it is important to check how close the RRI sensitivity
is to the true sensitivity.

Figure 4.1 (a) and (b) show sensitivities of apparent resistivity p, and phase ¢
respectively from RRI and the perturbation method over 100 Qm half-space at the
frequency of 64 Hz. dp,/do; and d¢/do; are normalized by the thickness of the
perturbed cell. From Figure 4.1 (a), note that dp,/do; and d¢/do; for TE and TM
modes from RRI are the same for the half-space model (this is also true for any
1-D layered model). Also note that dp,/do; from RRI is larger than TE dp,/do;
because of the different volumes perturbed in each case. The perturbation sensitivity
is with respect to a cell of finite width, whereas the RRI sensitivity for this cell is
equivalent to perturbating an infinitely wide layer. Also note that perturbation TM
dp,/do; is larger than both RRI sensitivity and perturbation TE dp,/do;. This can
be understood to be the result of charges that build up on the two side surfaces
of the perturbed cell for TM mode. The sensitivities of apparent resistivity from
both methods quickly decay to zero below one skin depth. Figure 4.1 (b) shows
that TE d¢/do; from the perturbation method is larger than TM d¢/do; from the
perturbation method. This can be explained by looking at the physical meaning of
phase. Phase is not related to the magnitude of the impedance, but concerns how
quickly the electric field responds to a change of the magnetic field. The charges
built on the edges of the perturbed cell for the TM mode slow down the response
of the electric field caused by the perturbation of the conductivity o; of the cell.
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Thus one can expect that d¢/do; from RRI should be closer to TE d¢/do; from the
perturbation method than to TM dé/do; from the perturbation method. The shape
of d¢/do; from RRI is very similar to the shape, but larger than the magnitude of
TE d¢/do; from the perturbation method. Also note that the sensitivities of phase
decay to zero below two skin depths, which indicates that phase is more sensitive to
deep structure than apparent resistivity. Overall, for this simple model, it is observed
that the corresponding Fréchet derivatives for dp,/do; and d¢/do; from both RRI and
the perturbation method are broadly similar in shape, although they have different
magnitudes. A more thorough comparison of the RRI and true sensitivities of data to
the cells directly below the site will be made in Section 4.5 with the same conclusion.

While RRI approximates sensitivities in cells directly below each site by the for-
mulas (4.36) and (4.41), it approximates sensitivities to side cells by zero. The ap-
proximation of setting sensitivities of data to side cells zero seems very crude. But if
the resulting model beneath each site from “pseudo” 1-D inversions is close enough
to the correct model, the roughness of this approximation may be compensated by
the interpolation of the 2-D model from the 1-D models. So far numerous synthetic

and field data inversions show that this approximation often works well.

4.3.8 Horizontal derivatives

Equation (4.41) can be rewritten as

_ 2 1 OH o(yir 2)\* .
St =~ o | T (o) Sl (442

The Fréchet kernel function in this equation only has the vertical derivative of the
magnetic field. For a multi-dimensional model, at first thought, it would be expected
that the Fréchet kernel function should include both vertical and horizontal deriva-
tives, because structures not only directly below but also horizontally adjacent to the
site have significant contributions to the measurement at this site. It seems that RRI

would do better if the horizontal derivative was included. This is what Yamane et al.
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(1996) attempted with their generalized RRI algorithm (or GRRI). Integrating over a
domain consisting of just one vertical column instead of three columns and assuming

small model perturbation, equation (10) of the GRRI paper can be simplified to

o 2 1 dHo(yi,2)\’
ddrm = Eyo(yi, 0) Hzo(y;, 0) ./ o(yi, 2) [( Oy )

+ (GH,,.%Q) ]J(Ina’(yi,z))dz (4.43)

Equation (4.43) includes the horizontal derivative as well as the vertical derivative of
the magnetic field.

Sensitivities of apparent resistivity and phase can be easily computed from equa-
tions (4.42) and (4.43). Figures 4.2 (a) and (b) show sensitivities of TM apparent
resistivity and phase from the perturbation method, RRI and GRRI for the same
two quarter-space model shown in Figure 3.2. Note that the perturbation method
and RRI give very similar curves in shape, which decrease in magnitude with depth.
However GRRI gives {rery different curves, which oscillate with depth and have much
larger magnitudes at one skin depth than at the shallow depths. This contradicts the
nature of the diffusion process. Physically, MT is more sensitive to the shallow struc-
tures than to the deep ones. The only difference between equation (4.42) and (4.43) is
the horizontal derivative, therefore, the horizontal derivative should not be included
in the Fréchet kernel function. Also note that RRI and GRRI have almost identical
Fréchet derivatives at shallow depths because the horizontal derivative is very small
near to the surface. Looking closely at the RRI derivation, it can been seen that RRI
does consider the horizontal derivatives by approximating them with those from last
iteration, rather than simply discarding them. So where should the contribution from
the structures horizontally adjacent to the measurement site be represented in the
sensitivities? The contribution should be represented by the sensitivities of data to
side cells. In RRI, the affect of adjacent structures enters indirectly through the use

of the 2-D fields. Thus even though the side cell sensitivities are set to zero, the side
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cells affect the next iteration because the 2-D fields will change.

4.8.4 Inversion examples

In this section, RRI and GRRI will be tested on two synthetic models. GRRI is devel-
oped by incorporating horizontal derivative into the Fréchet kernel function based on
equation (4.43). It just has one column of cells in the “pseudo” 1-D inversion. GRRI
(Yamane et al., 1996) uses three adjacent columns together in the inversion, but under
the constraint of seeking the smoothest model, these three adjacent columns are very
similar to each other. Therefore, no significant improvement could be gained from
having three adjacent columns as long as no new site is included.

Figure 4.3 shows the inversion results from RRI and GRRI inversions for the two
quarter-space model. Both recover very similar models and fit the data well. RRI
fits the data to a misfit of 1.44 while GRRI fits the data with misfit of 1.67. The
ideal misfit is 1.0. Figure 4.2 shows that including horizontal derivative causes severe
deviation from the correct sensitivity, especially at depth, but surprisingly, GRRI
still converges to a model that is almost identical model to that derived by RRI. This
can be explained as follows. Horizontal derivatives quickly decrease to zero with the
distance from the contact, so only a fraction of the data is strongly affected by the
horizontal derivative. This implies that even though sensitivities of a small part of
the data are not correct, inversion can still progress in the correct direction if the
sensitivities of a majority of data are accurate enough.

Figure 4.4 shows inversion results from RRI and GRRI for a more complicated
model, which is two dipping prism model with conductive overburden. RRI and GRRI
give almost identical models and the same data misfits. Horizontal derivatives of any
intermediate inversion model for this inversion starting from 100 Qm half-space are

very small, so the two Fréchet kernel functions are almost the same.
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4.4 CSAMT-RRI sensitivities

In this section, I will derive the approximate sensitivities for CSAMT. The derivation
is identical to that used by Smith and Booker (1991) for the MT inverse problem.
The governing equations (2.20) and (2.22) is the starting point to derive the ap-

- proximate sensitivities for CSAMT. If extrinsic sources J2 and J2, are given by
Je = JezX + Joyy + JezZ (4.44)
and -
I = ImzX + Inyy + Im:2 (4.45)

where x,y,z are the unit vectors in z,y, z—directions, respectively. The expressions
for the components of E and H in equations (2.20) and (2.22) are in Cartesian coor-

dinates given by

-V3*E, — wpeo B, = twpgdez — (%sz - aa—szy) (4.46)
—VzEy — wpeo B, = wwuedey — (-a%.lm,_. - %Jm,) (4.47)
2 . ; a a
—V?°E,; — twpego B, = iwpode. — —3—me + -a-;Jm, (4.48)
and
d 0
2 . _ (e, 9
~V°H, —iwpogoH, = —0J iz (ay.[ez az.l,v) (4.49)
. a d
—V?*H, —iwpeoHy = ~0Jpy — (EJ,z - %Jez) (4.50)
2 . a ad
~V*H, —iwpeoH, = —0Jpn, — —53;"” + 5:;.1,,, (4.51)

where V2 = 3%/9z* + 8°/8y* + 8%/022.
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4.4.1 Horizontal electric dipole parallel to the strike (HEDz)

A horizontal electric dipole source paralliel to the strike, which is located at the origin,
can be expressed as

J2 = IdI5(z)6(y)d(2)x (4.52)

where [dl is the dipole moment. Substituting in the above equations and setting

J2, =0, one has the TE mode with (E;, H,)

1 8°E, | O*E, 1 &°E, -
—E: oz2 + -E_; ayz + —E:ET + wpoo = E—zzwpoldlé(,)é(,)d(z) (4.53)
0E, O0E, .
52 Bp — wWHoH, (4.54)

and the TM mode with (E,, H;)
1 10H: 1 810H: 1 0 10H,

OH, OH,
9z 9z 7Ey (4.56)

TE mode

With the same definition for the datum V as (4.29), the perturbation analysis can be
applied to equation (4.53). If the perturbation do is small enough, one can make the

following approximations,
1 §%E. 1 0%E

o = Ee 3o (4.57)
1 8%E; 1 9%E
B oy = B 09 (4.9
1. 1 .
—1wy01d16(z)6(y)6(z) = —1w[10[d15(z)6(y)6(z) (4.59)
E. Exo

where E.q satisfies equation (4.53) when o0 = oy (the starting model or the model
from last iteration, not the model for computing primary fields in forward modeling),

and get the same differential equation as (4.32) for 6V. Therefore,

9in0) = 2B [ B2 (o
V(2090 = grrt oo [ Blalais v 2)60(2)dz (4:60)
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TM mode

Similarly, defining ithe data U as in (4.38), applying the the perturbation analysis to
equation (4.55), and making the following approximations
1 d10H, 1 0 10H

H.9z0 0z ~ Hdzo 0z (4.61)
1 910H. 1 8 10H,
H.9yo 0y ~ Habyo 0y (462)
one can obtain
§U(zi,y:,0) = ( P~ /Eyo(x.,y,,z)tfa(z) (4.63)

4.4.2 Horizontal electric dipole perpendicular to the strike (HEDy)

The relevant equations used for deriving the approximate sensitivities with the hori-
zontal electric dipole source perpendicular to the strike become, for TE mode,

LB’E’, + ia%:, + 1 3%E.
E. 0z  E; 0y . 922

+ twpoo =0 (4.64)

and for TM mode,

1 8 10H, 1 8 10H; 1 0 10H, . 1 9,1
Ea_x;3_2+E5§;_6_§—+EE— 5. TiwHo = Ea—(aldlts(,)tf(y)tf(z)) (4.65)

For this case, the HED located at the origin is represented by

J: = Idlé(z)é(y)é(=)y (4.66)
After some algebra and suitable equivalents of (4.57 - 4.59) and (4.61 - 4.62) one
obtains exactly the same results as (4.60) and (4.63).

4.4.3 Horizontal magnetic dipoles and finite-length horizontal electric dipoles

The horizontal magnetic dipole parallel (HMDx) and perpendicular (HMDy) to the
strike, located at the origin, can be represented by

J;. = iwpeAlé(z)d(y)d(z)x (4.67)
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and
J;, = wwpoAIé(z)d(y)é(2)y (4.68)

where A[ is the magnetic dipole moment.
The finite-length horizontal electric dipole sources, centered at the origin and
extended from —L/2 to L/2 along the z-axis and the y-axis, can be represented by,

respectively,

32 = IL B(z)5(y) 6(z) x (4.69)
J: = [L&(z) B(y)§(z)y (4.70)

where B(z) is the box car function defined as

: L
B(z) ={ L iflzl <3 (4.71)

0 otherwise.

Substituting in equations (4.46) to (4.51) and following the same derivation, one

comes to (4.60) and (4.63).

4.5 Comparison of the Sensitivities

In this section I compare sensitivities obtained by the approximation method de-
scribed above (which is the RRI version of CSAMT, and abbreviated CSAMT-RRI)
and the perturbation method. The purpose of the comparison is to illustrate when the
CSAMT-RRI sensitivities will be valid. The quantities to be compared are dp,/d0;
and 0¢/00; normalized by the thickness of the perturbed cell, where p, is apparent re-
sistivity, ¢ is phase, and o; is the conductivity of the i** cell. The perturbation method
requires two forward calculations per cell. 3p,/00; and 9¢/0o; are calculated with
respect to the i** cell of a mesh, which is used in the forward calculation in Chapter
2. In order to compare sensitivities from cells with the same size for CSAMT-RRI
and the perturbation method, all observations are located in the region with uniform

horizontal node spacing. [ compare the sensitivities from these two methods for a
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homogeneous half-space, a layered earth, then for a more complicated 2-D model.
The sensitivities I compare are those on the co-linear profiles for TE mode due to an

HEDx source at 64 H =z.

4.5.1 Homogeneous half-space

To examine sensitivities in the far field, transition zone, and near-field, sensitivities
were computed at the four receivers shown in Figure 4.5. TE mode sensitivities on the
co-linear profile are shown in Figure 4.6. Note that dp,/8c; and d¢/dc; from CSAMT-
RRI have been scaled to plot the two sensitivities together, allowing their shapes to
be compared. The CSAMT-RRI sensitivity is typically larger than the perturbation
sensitivity because of the different volumes perturbed in each case. The perturbation
sensitivity is with respect to a cell of finite horizontal width, whereas the CSAMT-
RRI sensitivity for this cell is equivalent to perturbing an infinitely wide layer. From
Figure 4.6, it can be seen that the CSAMT-RRI and perturbation sensitivities are
similar in shape at transmitter-receiver offsets greater than one skin depth. Also
note that sensitivities at these offsets decay quickly with depth and are essentially
zero below a depth of two skin depths. This indicates that CSAMT data are most
sensitive to conductivity structure within two skin depths of the surface. It should
be noted that dp,/00; and d¢/do; have opposite signs. The negative sign of dp,/do;
occurs because an increase in the conductivity of the ground produces a lower p,.
As in magnetotellurics, a decrease in p, corresponds to phases above 45 degrees and
vice versa, so O¢/0o; is positive. At transmitter-receiver offsets less than a skin
depth, the shapes of the two sensitivity curves are quite different, suggesting that the

approximate sensitivities will not be valid in the near field.

4.5.2 Layered model

The three-layered model and sensitivities are shown in Figure 4.7 for the same re-

ceiver locations used in the previous section. dp,/80; and d¢/d0; from CSAMT-RRI
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are again scaled for display purposes. Again note that the approximate sensitivities
are similar in shape to those from the perturbation method, although they have dif-
ferent magnitudes. From Figure 4.7, it is obvious that the exact sensitivities from
the perturbation method are discontinuous at model interfaces, but the approximate
CSAMT-RRI sensitivities are continuous. The jumps in the perturbation sensitivities
at interfaces of the layered model can be explained by considering the impedances.
Although the magnetotelluric impedance in the far field is a continuous function of
conductivity and layer thicknesses, its derivative with respect to the conductivity of
a layer is not continuous at an interface where the conductivity has a discontinuity.
Conversely, the sensitivities from the approximate method are continuous because of
the boundary conditions on the horizontal electric fields at an interface. From equa-
tion (4.60), the approximate sensitivities are integrals of continuous horizontal electric
fields and thus the approximate CSAMT-RRI sensitivities are continuous. Note that
at all receivers there is significant sensitivity to the third layer. This is because the
skin depth (630 m) in the first layer is much larger than the layer thickness (100 m),
and the skin depth (200 m) in the second conductive layer is comparable with its
thickness (100 m). Thus energy reaches the third layer and, owing to its low conduc-
tivity, diffuses efficiently within it. Note that the sensitivities in the third layer are
larger than in the second layer at some sites. This enhanced sensitivity phenomenon
is quite different from the results from the half space, where the corresponding sensi-
tivities decrease monotonically with depth. Also note that the sensitivities from the
perturbation method in the third layer decay to zero quickly below 1000 m depth,
which is about one skin depth (1098 m) in the third layer for 64 Hz. Sensitivities
from CSAMT-RRI in the third layer dec‘ay to zero at greater depths, because although
electromagnetic energy in CSAMT travels horizontally and vertically, formula (4.60)

assumes that the energy only travels vertically as in the MT case.
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4.5.8 2-D model

The 2-D conductivity model shown in Figure 4.8 was also used to generate synthetic
data for the inversion study in next chapter. The model consists of two conductive
dipping prisms embedded in a layered earth. The CSAMT-RRI and perturbation
sensitivities are shown in Figure 4.9 for three receivers at a frequency of 64 Hz.
0pa/00; and 0¢/do; from CSAMT-RRI are again scaled for display. Again, note
that the corresponding curves for dp,/d0; and d¢/do; have similar shapes. Also note
that dp./00; at 3600 m and 5600 m are almost the same, but different from that at
4600 m. Since all three receivers are approximately the same number of skin depths
from the transmitter, the electrical structures beneath 3600 m and 5600 m are the
same, but different beneath 4600 m. Surprisingly, this most complicated model gives
the best agreement, partly due to the presence of the conductive overburden which

ensures that all three receivers lie in the far-field zone.

4.5.4 Validity of sensitivities

From the above comparisons it can be seen that the corresponding curves for dp,/0dc;
and 9¢/do; from CSAMT-RRI and the perturbation method are broadly similar in
shape for each of the three models considered, although they have different magni-
tudes. Specifically, the ratio of CSAMT-RRI to exact sensitivities is approximately
constant for all sites at transmitter-receiver offsets greater than one skin depth. Sensi-
tivities were also computed at other frequencies and similar agreement was obtained.
The same agreement was observed for TM mode sensitivities. By comparing CSAMT-
RRI sensitivities with those from the perturbation method for various models, it ap-
pears that CSAMT-RRI sensitivities are generally a good approximation to the exact
sensitivities in the far field and transition zone. The CSAMT-RRI sensitivities may
be inaccurate in the near field, where electric currents exhibit zero frequency effects

and the fundamental approximation inherent to the method is invalid.
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Figure 4.1: Sensitivities normalized by the cell thickness from RRI and the pertur-
bation method for a 100 2m half-space at f = 64Hz2. (a) Sensitivities for apparent
resistivity. (b) Sensitivities for phase.
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Figure 4.3: Inversions of the two quarter-space model. (a) Resistivity model. (b)
Synthetic data for model (a) with 10% Gaussian noise. (c) RRI inversion with a
misfit of 1.44. (d) Computed response of model (c). (¢) GRRI inversion with a misfit
of 1.67. (f) Computed response of model (e).
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Figure 4.4: Inversions using RRI and GRRI for the two dipping prism model. (a)
Resistivity model. (b) Synthetic data for model (a) with 10% Gaussian noise. (c)
RRI inversion with a misfit of 1.51. (d) Computed response of model (c). (¢) GRRI
inversion with a misfit of 1.51. (f) Computed response of model (e).
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Figure 4.5: Model and receivers for computing sensitivities for the 100 Qm half-space.
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Figure 4.6: Sensitivities for CSAMT-RRI and the perturbation method at receivers
over the 100 Qm half-space. dp,/do; and d¢/do; from CSAMT-RRI are scaled by
0.31 and 0.43, respectively. Units for 8p,/80; and d¢/da; are m/S? and degree/S,
respectively.
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Figure 4.7: Sensitivities for CSAMT-RRI and the perturbation method at various

receivers over a three-layer model. 8p,/d0; and 3¢/d0; from CSAMT-RRI are scaled
by 0.40 and 0.50, respectively. Refer to Figure 4.6 for units.
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sensitivities of the 2-D model.
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Figure 4.9: Sensitivities for CSAMT-RRI and the perturbation method at various
receivers over the 2-D model. 8p,/d0; and 8¢/o; from CSAMT-RRI are scaled by

0.31 and 0.45, respectively. Refer to Figure 4.6 for units.
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Chapter 5

INVERSIONS OF SYNTHETIC DATA AND FIELD DATA

In the previous two chapters, I have extended the RRI inversion algorithm to
CSAMT and justified CSAMT-RRI sensitivities on several models. In this chapter,
the CSAMT-RRI inversion will be tested on synthetic data, and then applied to field
data. Finally, application to CSAMT survey design is discussed.

5.1 Synthetic Data Inversion I: Two Conductive Dipping Prisms

In this section, I present inversions of synthetic data generated from a 2-D model
(Figure 4.9) which was described in Section 2.5.1. The two conductive dipping prisms
are placed close enough to interact with one another and, by introducing a surface
conductive layer, currents are shielded from fully penetrating into the earth, poten-
tially decreasing resolution. All synthetic data used below are obtained from the
results in Section 2.5.3 and contaminated with 10% Gaussian distributed noise.

I have tested inversions from different starting models and found that the final
result may depend on the starting model. This is not a surprise since linear inversion
cannot guarantee to get the global minimum for a nonlinear problem and the inverse
problem itself is nonunique. [ also observe that inversion will not converge if it is
started with a very resistive model. The reason for this is as follows. For a very re-
sistive model, all observation sites would be in the near-field zone, then CSAMT-RRI
sensitivities would not be good enough for computing a reasonable model update.
In this situation, the inversion can diverge. Normally, inversion converges from a

conductive starting model. For MT, Smith and Booker (1991) found that a 1-D min-
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imum structure inversion of the horizontally average of the data makes an extremely
effective starting model. If using this 1-D MT average model as a starting model
for CSAMT, one should be very careful when the source effect is significant in data,
because assuming the data are MT can produce a model that is too resistive layer and
cause the inversion to diverge. There are several other ways to generate an effective
starting model: 2-D MT inversion, 1-D CSAMT inversion, and CSAMT inversion
with an infinite line source. However, all inversions presented below were started
from a 100 Qm half-space since my primary goal is to test the algorithm, rather than

to interpret specific data.

5.1.1 [Inversions of Synthetic HEDz Data

Inversions of HEDx data are shown in Figure 5.1. Figure 5.1(a) shows the inversion
results for TE data on the main profile (no offset in strike direction). The inversion
reduced rms data misfit from 13.4 for 100 @m half-space starting model to 1.5 for
the resulting model (5.1(a-3)) after 60 iterations (30 smoothings). The expected rms
data misfit is 1.0. The computed response of the resulting model is shown in 5.1(a-2),
which indicates an even fit. The conductive overburden and two dipping prisms are
resolved. The resolved conductive bodies are located at the correct depth and have
approximately the correct resistivity in the upper two thirds of the prisms where the
induced currents are the strongest, and also show evidence of the dip of the prisms.
The resolved right conductive body spreads deeper and away from the source side.
This could be caused by the left conductive prism’s “shadow effect” (Kuznetzov, 1982,
Zonge and Hughes, 1991), which arises from local features between the source and
the sounding site. No extraneous structure appears in the resulting model.

Results from the inversion of TE data on a non-main profile with an offset of 3.0
km in the strike direction are shown in Figure 5.1(b). The data misfit is reduced to
1.8 after 25 iterations (5 smoothings) from an initial 14.2 misfit. Inversion could not

reduce misfit further after 25 iterations, although 60 maximum iterations was allowed
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(30 smoothings). The computed response is shown in Figure 5.1(b-2). The inversion
resolves the conductive overburden and two conductive bodies. The dipping sides are
apparent in the inverted result, though their slopes are smaller than the true one. The
resistivity of the upper two thirds of the prism is recovered correctly, but smaller than
the true resistivity for the lower one third, which has been shielded from the inducing
magnetic field by the upper conductive part. Both upper and lower edges appear to
be resolved. The inversion results are visually as good as those from the main-profile
data, but the measurement of the data might be difficult if a site happens to be in
the null zone.

Inversion results for TM data of the non-main profile are shown in Figure 5.1(c),
and achieve a reduction in misfit to 1.9 from 13.1 of the uniform half-space starting
model after 60 iterations. The conductive overburden and two prisms are resolved
separately. The prism at the right hand side is resolved clearly, with correct resistivity
and size. Also, its upper and lower edges are located correctly. But the left prism
is resolved poorly, with no evidence of dip and is visually much smaller than the
actual body. Figure 5.1(c-1) and (c-2), the synthetic data of the true model and the
computed response of the inverted model, respectively, show that the inversion does
not achieve a good fit for the right-hand anomaly, especially for phase data. The
right-hand anomaly is mainly the response from the right-hand dipping prism. Note
that source effect is very significant in data, especially in phase data, which might

have affected the inversion.

5.1.2 Inversions of Synthetic HEDy Data

For the HEDy source, I inverted TM data from the main profile, and TE and TM
data from the non-main profile, respectively. The results of the non-main profile TE
data inversion are shown in Figure 5.2(a) after 44 iterations, achieving a data misfit
of 2.0, which was reduced from an initial rms misfit of 13.2. The inversion resolves

the overburden and two prisms, but the two prisms are recovered poorly. The right-
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hand conductive body is bigger in size than the true prism, while the left-hand one is
smaller. Both have no evidence that they are dipping. Comparing with the results of
TM data on the non-main profile, they are very similar to each other. For both cases,
the model progression reveals that the inversion recovers a much bigger conductive
body for the right-hand prism than for the left-hand one at the early iterations, and
fails to recover them well at later iterations.

Figure 5.2(b) shows the inversion results of TM data on the main profile. The
data misfit is reduced to 1.7, after 60 iterations, from an initial 13.7 misfit. Figure
5.2(b-2) and (b-3) show the synthetic response and the resulting model, respectively.
The overburden and two prisms are recovered separately. Two recovered conductive
bodies have approximately the correct resistivity and are located at the correct depth,
but have no indication of dipping.

Results for TM data on the non-main profile is shown in 5.2(c), achieving misfit
reduction from 14.6 to 3.2 after 60 iterations. Two conductive bodies are resolved,
without evident dipping. The upper edges appear to be located correctly, but the

lower edges are extended deeper.

5.1.8 [nversions of Synthetic HMDz Data

Figure 5.3 shows the inversion results for HMDx data. Overall, the inversion results
are very similar to those for HEDy due to the similarity of the physics in HEDy
and HMDx configuration. Recall the similarity of HEDy and HMDx, mentioned in
Section 2.5.

Figure 5.3 (2-2) and (a-3) show the computed response and the recovered model,
after 60 iterations, for TE data on the non-main profile, which reduces data misfit to
2.0 from 12.1 of the uniform half-space starting model. Two conductive bodies are
barely recovered, the right-hand body with smaller size and the left-hand one with
larger size. Neither of them has evidence of dip. The model is very similar to the one

(Figure 5.2 (a-3)) inverted from HEDy TE data on the non-main profile.
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The inversion model from TM data of the main profile is shown in Figure 5.3 (b-
3). Two conductive bodies are resolved, with no evidence of dip. Both are extended
in the vertical direction, while the lower edge of the right-hand body is deeper. The
corresponding response of the model is shown 5.3 (b-2), with misfit of 1.9, after 60
iterations, from original misfit 11.7. Again, the model similarity can be observed from
Figure 5.3 (b-3) and Figure 5.2 (b-3).

Results for TM data of the non-main profile are shown in 5.3 (c), after 44 iterations
(30 smoothings), and achieve a reduction in misfit from 13.2 to 4.5. The computed
response and the inverted model are shown in 5.3 (c-2) and (c-3), respectively. A
conductive body is recovered poorly for the left-hand prism, with much smaller size
and higher resistivity than the true model, while the right-hand one is recovered
better, with deeper lower edge. No dip is apparent in the inverted model. The nulil
zone might have significant effect on inversion. From the data (Figure 5.3 (c-1)), the
response from the left-hand prism is severely distorted by the inaccuracy in the null

zone.

5.1.4 Inversions of Synthetic HMDy Data

There exists a similarity between HMDy and HEDx in physics, so their inversion
results are very similar to each other for corresponding data sets. Inversion results
for HMDy data are shown in Figure 5.4.

The computed response and resulting model from the inversion of TE data on
the main profile are showr in Figures 5.4 (a-2) and (a-3). The inversion reduces
data misfit to 3.1 from an original misfit of 12.7 for the uniform half-space starting
model. The conductive overburden is recovered and two conductive bodies appear
to be resolved, though they are not completely separated. The recovered left-hand
body has the correct resistivity in the upper two thirds of the body. Its upper edge
is resolved clearly, but the lower edge is blurred. Its dip is apparent in the inverted

model. For the recovered right-hand body, the correct resistivity is resolved in most of
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the body. The upper edge is resolved, but the lower edge is also blurred and extended
deeper. No dip appears in the model.

Figures 5.4 (b-2) and (b-3) show the computed response and inverted model from
the inversion of TE data on the non-main profile. Data misfit is reduced from 15.9
to 5.0 after 41 iterations. The conductive overburden is recovered. Two conductive
bodies are resolved. The left one is recovered as a vertically-stretched body, with the
resistivity of 30 2m. Its upper and lower edges are not resolved. The right one is
resolved as a rectangular body with correct resistivity. The upper edge is resolved, but
the lower edges is blurred. Both recovered bodies have no evidence of dipping. The
inversion does not recover the model well. The null zone has effected the inversion.
Figures 5.4 (b-1) and (b-2) show the data is not fit well, especially phase.

Results from the inversion of TM data on the non-main profile are shown in
Figure 5.4 (b). Data misfit is 2.2 after 60 iterations, with the original misfit 11.8 for
the uniform half-space starting model. The inverted model is shown in 5.4 (b-3). The
overburden and two conductive bodies are recovered. The left conductive body is a
1.0 km x 1.0 km square, with correct resistivity in the center of the body. The
right one is a vertically-stretched body, with the volume (about 1.6 km x 2.5 km) of
larger than the true prism. The resistivity is recovered in two thirds of the body. Its
upper edge appears to be resolved, but the lower edge is blurred and extended deeper
than 3.0 km. There is no evidence of dip in the inverted model. Figure 5.4 (b-2), the
computed response of the inverted model, shows that the left anomaly in data is not

fit as well as the right one, both for apparent resistivity and phase.

5.1.5 Inversions of Synthetic FLHEDz Data

Figure 5.5 shows the inversion results for data from an FLHEDx with the length of 4
skin depths. The results are similar to those from the inversion of HEDx data (5.1).
As noted in Section 2.5.3, the FLHEDx data is very similar to the HEDx data. Thus

their inversion results are expected to be similar to each other.
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Figure 5.5(a) shows the inversion results for TE data on the main profile. The
inversion reduced data misfit from 13.4 for the 100 Qm haf-space starting model to
1.6 for the resulting model (5.5(a-3)) after 32 iterations. The computed response is
shown in Figure 5.5(a-2). Compared with the inversion of its corresponding HEDx
data, the inversion does not resolve the two conductive bodies separately. Also note
that a resistive body appears at the end of the profile near the transmitter.

Figures 5.5(b-3) and (b-2) show the recovered model from TE data on the non-
main profile and its computed response. The data misfit is reduced to 1.6 after 60
iterations from an initial 13.8. The conductive overburden and two conductive bodies
are resolved. The resolved two conductive bodies are located at the correct depth. The
recovered left-hand-side one shows evidence of the dip of the prism, but no evidence
is shown from the recovered right one.

Figure 5.5(c-3) shows the resulting model inverted from TM data on the non-main
profile. The inversion reduces the data misfit from 13.0 to 2.9 after 60 iterations. The
inversion recovered the conductive overburden and the right-hand-side conductive
body, but did not resolved the left prism well. Figure 5.5(c-2) and (c-1), the data and

the computed response, show that the inversion does not have a good data fit.

5.1.6 Inversions of Synthetic FLHEDy Data

Figure 5.6 shows the inversion results for data from an FLHEDy with the length of
4 skin depths. The results are very similar to those from the inversion of HEDy data

(5.2). So the description of inversion results is omitted.

5.1.7 [nversions on joint HEDz TE and HEDy TM data

Figure 5.7 shows the inversion results of joint HEDx TE and HEDy TM data on the
main profile. The joint inversion reduces the data misfit to 1.6 after 70 iterations from
10.7 for 100 Qm half-space starting model. The resistivity model and corresponding

computed TE and TM responses from the joint inversion are shown in Figure 5.7(e),
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(c) and (d) respectively. The joint inversion recovers a better model than HEDx
TE inversion (Figure 5.1 (a-3)) and HEDy TM inversion (Figure 5.1 (b-3)). The
inversion separates two conductive bodies clearly and resolves them equally well. The

two recovered conductive bodies are located at correct depth and dip.

In summary, all synthetic data inversions presented here for this two conductive
dipping prisms model show that the algorithm generally works well, however it ob-
tains better results for some configurations than others. Inversions provide model
parameters of the target such as location, size, resistivity and others, but how well
those parameters are resolved varies from one data set to another. In data fitting,
inversions fit the data on the main profile better than the data on the non-main profile
and fit the data without the null zone better than the data affected by the null zone
if they are from the same non-main profile. Accordingly, the faithfulness of the recov-
ered model to the true one decreases from the data on the man profile, the data on
the non-main profile without the null zone, to the data on the non-main profile with
the null zone. TE mode inversion gives evidence of dip, while TM mode inversion
separates targets better, but does not have information of dip. Joint inversion results
are better than the results of single mode data inversion. Finally, one clarification
should be made. The inversion results depend to some extent on initial model and
on controlling parameters such as the exact form of w(z,y) and g(y, z) in (3.6). No

attempt has been made to optimize these.

5.2 Synthetic Data Inversion II: Two Resistive Dipping Prisms

In the last section, CSAMT-RRI was examined on synthetic data from a conductive
2-D model. In this section, I present inversions of synthetic data generated from a
resistive 2-D model (Figure 5.8), which is essentially the same as the one used last
section except two dipping prisms are resistive (1000 Q2m). All synthetic data used
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below are contaminated with 10% Gaussian distributed noise.

5.2.1 Inversions of Synthetic HEDz TE Data

Figure 5.9 shows the inversion results of HEDx TE data on the main profile. The
inversion reduced data misfit from 9.7 to 1.2 after 32 iterations. The inversion resolves
the conductive overburden and two resistive prisms. Two resistive prisms are not
resolved equally well. The right-hand resistive body approximately has the same size
of the true prism, whereas the left hand one is much smaller than the true one, both
have no evidence of dip. The inverted model (Figure 5.1 (a-3)) from HEDx TE data
on the main profile from the conductive model shows some evidence of dip. This is
because conductive bodies, which provide current channels, can be resolved well at
deep, whereas resistive bodies at deep are not. The synthetic data (Figure 5.9 (a))
shows that there are almost no anomalies for the left-hand resistive prism in apparent
resistivity and phase, and the source effect is very strong close to the transmitter
and at low frequencies. Therefore the left-hand resistive body cannot recovered well.
Figure 5.9 (b) shows computed responses of the inverted model and indicates a good

fit to the data.

5.2.2 [Inversions of Synthetic HEDy TM Data

Figure 5.10 shows the inversion results of HEDy TM data on the main profile. The
data misfit is reduced to 1.4 from an initial misfit of 10.6 after 22 iterations. Figures
5.10 (b) and (c) show the computed response and the recovered model, respectively.
The conductive overburden and two resistive bodies are recovered. The two recovered
resistive bodies are separate, have the same size as the true prism, but have no
indication of dip. The synthetic data (Figure 5.10 (a)) shows anomalies in apparent
resistivity from both resistive dipping prisms are very weak, whereas anomalies in
phase from them are clearly visible, but source effect is much stronger in phase than

in apparent resistivity.



120

5.2.8 Inversions of Synthetic HMDz TM Data

Figure 5.11 shows the inversion results of HMDx TM data on the main profile. The
inversion reduces the data misfit to 1.7 from an initial misfit of 9.1 after 32 iterations.
Figures 5.11 (b) and (c) show the computed response and the recovered model, re-
spectively. The inverted model is very similar to the model from HEDy TM data on
the main profile. The conductive overburden and two resistive bodies are recovered.
The two recovered resistive bodies are separate, have approximately the same size as
the true prism, but have no indication of dip. The synthetic data (Figure 5.11 (a))
shows anomalies in both apparent resistivity and phase from both resistive dipping

prisms are visible, while they are stronger in phase than in apparent resistivity.

5.2.4 Inversions of Synthetic HMDy TFE Data

Figure 5.12 shows the inversion results of HMDy TE data on the main profile. The
data misfit s reduced from 11.6 to 1.5 after 54 iterations. The inversion recovers the
conductive overburden and two resistive prisms. The right-hand resistive body has
approximately the same size as the true prism, whereas the left hand one is much
smaller than the true one. Both have no evidence of dip. The synthetic data (Figure
5.12 (a)) show that anomaly from the left-hand resistive prism in apparent resistivity
is very weak, and 10% noise masks the anomaly. Therefore the left-hand resistive
body cannot recovered well. Figure 5.9 (b) shows the computed responses of the

inverted model.

In summary, all synthetic data inversions presented here are from the main pro-
file for two resistive dipping prisms. Again, all inversions show that the algorithm
generally works well. In the sense that we have produced smooth models that fit the
data within a reasonably small multiple of the expected misfit. For resistive targets,

neither TE nor TM mode inversions provide information about dip. Furthermore, the
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TE mode inversion does not resolve the right-hand side resistor as well as the TM

mode inversion.

5.3 Examples of Field Data

5.3.1 Sellafield Data

The Sellafield data were collected as part of the search by NIREX (Nuclear Industry
Radioactive Waste Executive) to locate an underground facility for the long term
storage of intermediate and low level radioactive waste in the United Kingdom. The
long term storage of radioactive waste is an unsolved problem for industrial countries.
Among potential storage, underground storage is the most-commonly used technique.
The requirements for such storage are very high. For instance, such storage should
be safe for the life time of 10,000 years. Therefore, extensive site characterization
is required to investigate if a proposed site meets the safe requirements. Electrical
resistivity is sensitive to the presence of interconnected electrolytic fluids such as water
contained in the pores (see Chapter 1). Thus EM methods are important geophysical
tools in site characterization. The proposed Sellafield site is very close to the Sellafield
Works (Figure 5.13) and intense cultural noise was present. Thus CSAMT is one of the
most suitable EM methods to get high quality data. For more information about the
project, previous geological and geophysical studies of Sellafield site, one is referred
to papers by Chaplow (1996) and Unsworth et al (1998).

Sites with high quality data were grouped into 4 profiles as shown in Figure 5.13.
Figure 5.13 also shows the geological frame work and borehole locations. The trans-
mitter is approximately parallel to the regional geological strike, and the four profiles
are almost perpenciicula.r to the transmitter. Only TE mode data were collected at
these sites. The purpose of the field data examples is to demonstrate the applicability
of the developed algorithm to real data sets. Thus I take Line 1 (the principal survey
line) as a field data example of HEDx TE data. The results of other three lines are
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not presented in this dissertation, but are described by Unsworth et al., (1998).

Line 1 passed through the proposed storage site and consists of 18 sites, which are
located from 1.6 km to 7.7 km away from the transmitter. Four boreholes (BH-1, BH-
10, BH-4 and BH-8) are located close to Line 1. These boreholes give independent
electrical resistivity data for comparison with results inverted from CSAMT data.
Figure 5.14(a) shows the TE data collected along Line 1. Note the high resistivities
that occur close to the transmitter and which move to lower frequencies as transmitter-
receiver offset increases. There are two possible causes for this phenomenon. One
could be due to the source effect. The other could be the presence of a resistive
structure under the transmitter that deepens to the west. It is important to determine
how much of the high apparent resistivity derives from geoelectric structure and how
much is due to the source effect.

The data were inverted starting from 100 Qm half-space using the CSAMT-RRI
algorithm. After 43 iterations the data misfit was reduced from 11.3 to 1.7, with the
expected misfit of 1.0. Figure 5.14(b) and (c) show the model response and the final
resistivity model. BH-1, BH-10, BH-4 and BH-8 are projected on the profile (Figure
5.14(c)). The comparison between the inverted resistivity model and the well log
data is shown in Figure 5.14(d), which shows they are in good agreement generally.
CSAMT inversion gives a smooth change in resistivity with depth. This is because
we seek the smoothest model to overcome the nonuniqueness of the inversion. At
the potential storage site, BH-4 and the inversion results agree well. Both show low
resistivity of the sedimentary rocks at shallow depth, then a resistivity rise at the
depth of 400 m representing the Borrowdale volcanic group. Further to the east at
BH-8 this agreement is also observed, but there is some discrepancy below 500 m. At
the area near the coast, BH-1 and the inversion model both show a conductor at depth
from 500 m to 1000 m, which is denoted by Unsworth et al. (1998) as the coastal
conductor due to an intrusion of hypersaline fluids. Further inshore, good agreement

can be observed between the inversion model and BH-10, which is in the transition
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zone trom the saline zone at the west to the fresh water zone at the east. The principal
mapped faults are also shown in the resistivity model (Figure 5.14(c)). A coincidence
can be observed between the main geological structure and the resistivity model.

In summary, CSAMT successfully recovers the subsurface electric resistivity struc-
ture in the site characterization of radioactive waste disposal. Comparison of the
inverted resistivity model with well log data shows generally good agreement. This
shows that CSAMT-RRI correctly recovered resistivity model and we should have

confidence in using this inversion technique.

5.3.2 Salt Dome Data

The interpretation of this data set is very brief because of the confidential nature of
the project. The data were collected during oil and gas exploration. The primary
objective of the CSAMT survey is to delineate the structure of a salt dome. Some
other geophysical surveys were carried out before the CSAMT survey. A seismic
survey defined the salt body as a steep-sided diaper in cross-section and elbow-shaped
in plan view. Time domain EM (TDEM) preceded CSAMT data acquisition in order
to get the background resistivity values important to CSAMT transmitter-receiver
separation considerations. TDEM data also were used in the static shift correction
of CSAMT data. The survey consisted of two profiles transversing the salt body.
The interpretation of one of the two profiles, Line A (Figure 5.15), is presented as an
example. Figure 5.15 shows the survey geometry of Line A. Power lines and pipelines
are present in the survey area and some of them transverse the two profiles. Data at
some sites and frequencies are severely contaminated and eliminated. Figure 5.16(a-1)
and 5.16(a-2) show TE and TM data of Line A, respectively. Note that the TM data
of the three middle sites are very different from those of their neighbor sites, which
are caused by a gas pipeline passing through at the middle site of these three sites
and are excluded in inversion.

From Figure 5.16(a-1) and 5.16(a-2) also note that there is no obvious source
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effect. Therefore, I first invert TE. and TM data with MT inversion. The resulting
model clearly recovered a resistive body at the right side of the profile and has a data
micfit of 1.5. But 2.5-D CSAMT forward modeling shows that the MT model fits the
data at a misfit of 8.9. Obviously, the data is not fit well in the CSAMT context.
This shows that even though the data appear to have no obvious source effect and can
be fit well with MT inversion, the resulting model is still questionable in the sense of
data fit in the CSAMT context. CSAMT inversions with various starting models are
performed on the data. Experiments show that the inversion starting with the model
from the MT inversion results in the model with smallest data misfit of 2.6 of all tests.
Figure 5.16(c) shows the CSAMT inversion model with the smallest data misfit. The
shallow structure above 500 m of this survey area is very simple. It basically consists
of two layers, an upper resistive'la.yer and a lower conductive layer. At the left end of
the profile, a layered earth is recovered. This agrees with the results from TDEM. A
resistive body, the salt body, is recovered with the resistivity of 50 dm at the right
hand side half of the profile. The resolved salt body has its center located between
the sixth and seventh sites from the right, the upper and lower edges located at the
depths of 500 m and 2100 m. Although we have no other information to verify the
model, CSAMT inversion does recover a resistive body and fits the data fairly weil

(5.16(b-1) and 5.16(b-2)).

5.4 Application to Survey Design

My synthetic data inversions of a conductive model and a resistive model provide

several suggestions for designing a CSAMT survey.

5.4.1 Transmitter

Physically, HED and HMD are equivalent. Therefore, HED and HMD should resolve
targets equally well, theoretically. The appearance of the EM field of an HED at the
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surface of the earth is similar to that of the EM field of an HMD (see Figures 2.4
and 2.6). However, if both an HED and an HMD have a unit dipole moment, the
EM field of an HED is about 2 orders of magnitude stronger than an HMD EM field.
Also, an HED transmitter can be made to have larger dipole moment than an HMD
transmitter. Thus using an HED can enhance signal to noise ratio (SNR), improve
data quality and investigate deeper. In practice, therefore HED could possibly get
better results because of its quality data. However, an HMD transmitter is safer than
an HED, which has two grounded electrodes.

For a specific transmitter, particular configurations can have higher SNR than
others. For the same transmitter, signals are stronger on the main profile than on
non-main profiles, but only one mode can be measured on the main profile (TE for
HEDx and HMDy, TM for HEDy and HMDx). Null zone can appear for one mode
on a non-main profile (TE for HEDx and HMDy, TM for HEDy and HMDx). SNR
is extremely low close to the null zone for those modes. For different transmitters,
for example, HEDx and HEDy, HEDx has stronger signals than HEDy on the main
profile; HEDx TM and HEDy TE have the same signal strength on the same non-
main profile, whereas HEDx TE and HEDy TM measurements could go into the null
zone. Those comments are also hold for HMDy and HMDx if HMDx and HMDy are
substituted for HEDy and HEDx.

In practice, a real CSAMT electric source is an FLHED. When the length of an
FLHED is less than 2-3 skin depths, an FLHED can be approximated by an HED
with about 5% error in apparent resistivity and phase in most areas except close
to the null zone. Appearances of the EM field, apparent resistivity and phase of
an FLHED are more complicated than those of an HED. The conditions used to
define the near-field, transition zone and far-field in Chapter 2 are still suitable for an
FLHED. Specifically, the far-field of an FLHED is the region which is 3-5 skin depths

away from the electrodes and the straight line between the two electrodes.
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5.4.2 TE, TM modes

If investigated targets are conductors, TE mode data possibly resolve more structure
details such as dip than TM mode data, whereas TM data possibly separate two ad-
Jjacent conductors better than TE data. If investigated targets are resistors, TM data
can resolve the model better than TE data since TE data cannot recover geometry
such as dip of a resistive model.

For transmitters HEDx (similarly, FLHEDx), HEDy (FLHEDy), HMDx, and
HMDy, in a 2-D environment, only one mode can be measured on the main profile.
But on non-main profiles, both modes can be measured. Normally, a survey should
be designed to collect data on the main profile to avoid the null zone on non-main
profiles, at which data are not accurate.

Inversion of single mode data can provide general informations about the target
such as approximate location, resistivity, size etc, but those parameters are not con-
strainted well. If a survey aims to reveal finer informations of targets, measurement of
both modes is strongly recommended since joint inversion provides better results than
each individual inversion. This implies that if only one transmitter is used, survey

profiles should be off the main profile whenever possible.

5.4.8 Data quality

Figure 5.17 shows the inversion results of HMDy TE data with 3%, 10% and 20%
Gaussian noise. The model is the same as the one of synthetic HMDy TE data
example in Section 5.2. The inversion results deteriorate as data has more noise.
Inversion of data with 3% noise recovered two connected resistive bodies, whereas
inversion of data with 20% noise only recovered the right-hand resistive body, but it
is much smaller than the true one. Tests on other models also shows that inversion
resolution degrades as noise increases. Therefore, the quality of data is very important

to inversion.
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Figure 5.7: Joint inversion of HEDx TE data and HEDy TM data. (a) HEDx TE
data on the main profile withe 10% Gaussian noise. (b) HEDy TM data on the main
profile withe 10% Gaussian noise. (c) Computed TE response for inverted model (e).
(d) Computed TM response for model (e). (e) Joint inversion model.
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Figure 5.8: 2-D resistive model. Two resistive dipping prisms (1000 2m) embedded
in a homogeneous bedrock (100 Q) with a conductive overburden.
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Figure 5.9: Inversion results for HEDx TE data for the resistive 2-D model. (a) HEDx
TE data on the main profile with 10% Gaussian noise. (b) Computed response for
inverted model (c). (c) Resistivity model inverted for data (a).
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HEDy TM Data Inversion
(x=0.0 km)
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Figure 5.10: Inversion results for HEDy TM data for the resistive 2-D model. (a)
HEDy TM data on the main profile with 10% Gaussian noise. (b) Computed response
for inverted model (c). (c) Resistivity model inverted for data (a).
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Figure 5.11: Inversion results for HMDx TM data for the resistive 2-D model. (a)
HMDx TM data on the main profile with 10% Gaussian noise. (b) Computed response
for inverted model (c). (c) Resistivity model inverted for data (a).
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HMDy TE Data Inversion
(x=0.0 km)
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Figure 5.12: Inversion results for HMDy TE data for the resistive 2-D model. (a)
HMDy TE data on the main profile with 10% Gaussian noise. (b) Computed response
for inverted model (c). (c) Resistivity model inverted for data (a).
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Figure 5.13: Map of the Sellafield survey area and the CSAMT layout. LDBFZ: Lake
District Boundary Fault Zone. SGFZ: Seascale Gosforth Fault Zone. FHFZ: Fleming

Hall Fault Zone.
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Figure 5.14: Sellafield survey: (a) Measured TE data. (b) CSAMT response of the
inverted model (c). (c) The inverted resistivity model. (d) Comparison with well log
data.
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Figure 5.15: Salt dome survey: CSAMT survey layout of Line A.
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Figure 5.16: Salt dome survey: (a) Measured TE and TM data. (b) Computed TE
and TM responses of the resulting model (c). (c) The inverted resistivity model.
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Chapter 6

CONCLUSIONS AND SUGGESTIONS

This final chapter of the dissertation summarizes work done and offers some sug-

gestions for future work.

6.1 Conclusions

[ have developed an algorithm to invert CSAMT data from a horizontal electric dipole,
a horizountal magnetic dipole and a finite-length horizontal electric dipole exciting a
2-D Earth. The algorithm combines a 2.5-D finite-element forward modeling method
(Unsworth et al., 1993) and the rapid relaxation inversion of Smith and Booker (1991).
The algorithm uses an approximate method to compute sensitivity, which is closely
related to the method used in RRI.

Calculating sensitivities is the most time-consuming step in the whole inverse
process. The CSAMT forward modeling is computationally slow because of its 3-D
source field and the singularity at the position occupied by transmitter. In order to
rapidly compute sensitivities, I have adopted the philosophy of approximating them.
I have derived approximate CSAMT sensitivities (CSAMT-RRI) by following the
perturbation method used by Smith and Booker (1991) for the MT problem. The
approximate sensitivities are valid for data collected on a non-main profile as well as
the main profile. The Fréchet kernel functions for CSAMT have the same form of those
for MT except the EM fields in the kernels are computed from the 2.5-D CSAMT
forward modeling. I have compared the CSAMT-RRI sensitivities with the exact
sensitivities by the perturbation method. Based on three models — a 100 Qm half-
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space, a three-layered earth and two dipping prisms with a conductive overburden,
I find that (1) the corresponding curves for dp,/d0; and 3¢/0do; from CSAMT-RRI
and the perturbation method are broadly similar in shape and (2) a constant ratio
exists between CSAMT-RRI and true sensitivities for all sites at transmitter-receiver
offsets greater than one skin depth for each model. The CSAMT-RRI sensitivities
are finally justified by the successful inversions of synthetic and field data.

I have also established a relationship between RRI inversion and standard inversion
through the sensitivity matrix. RRI does not explicitly have a 2-D sensitivity matrix,
but from the RRI inversion scheme, an implicit 2-D RRI sensitivity matrix can be
constructed: the sensitivities of data to the cells directly below the observation site are
computed from the formulas derived by Smith and Booker (1991) and the sensitivities
of data to the rest of cells are approximated to be zero. The approximation of zero
sensitivities from side cells decouples a 2-D inversion for all sites into a series of
pseudo 1-D inversions at each site. I have shown that RRI sensitivities do consider
the horizontal derivatives, which are approximated by the fields from the last iteration,
and clarified the contributions from the horizontal derivative term in the governing
equation and the cells horizontally adjacent to the site. Yamane et al. (1996) derived
sensitivities with a Fréchet kernel including a horizontal derivative. I have compared
their simplified GRRI sensitivities with RRI and true sensitivities and found that
their horizontal derivative should not be included in the Fréchet kernel function. The
deviation of GRRI sensitivities from RRI and true sensitivities are very large at some
sites for the two quarter-space model, but the recovered models from GRRI and RRI
inversions for the two quarter-space model and the same two dipping prism model are
very similar. Combined with the results from CSAMT-RRI sensitivities, this implies
that the requirement for the accuracy of the sensitivity matrix is probably less strict
for an iterative inversion than what one usually anticipates.

In order to invert data from a horizontal magnetic dipole and a finite-length hor-
izontal electric dipole, I have extended the 2.5-D finite-element forward modeling
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method for a horizontal magnetic dipole and a finite-length horizontal electric dipole.
The 2.5-D forward modeling method is flexible for various sources. The nature of the
source is introduced by the primary field, which is defined as EM fields in wavenum-
ber domain for a simple conductivity structure. [ followed the work of Harrington
(1961) and Ward and Hohmann (1988) to derive EM fields in wavenumber domain
for 1-D layered earth for HED, HMD and FLHED sources. Numerical results have
been computed for some models. The results show that source effects from HED and
HMD are different in appearance for apparent resistivity and phase.

Finally, I have tested the algorithm on synthetic and field data and obtained

promising results.

6.2 Suggestions

Although I have developed a working, practical 2-D CSAMT inversion, there are
several things that should be addressed to improved its performance and reliability:

(1) Conduct a comparison of the CSAMT-RRI inverse algorithm with the standard
exact 2-D Féchet derivative method to test how much the approximate sensitivity
affects inversion results. The synthetic data tests for the two prism model show that
the conductive body closer to the transmitter is normally not resolved as well as the
other one. The possible explanations for this could be (a) the use of the approximate
sensitivity, and (b) physical restraints in the near field. The comparison will answer
this question.

(2) Make the sensitivity matrix more accurate by including additional sensitivities.
The inversion uses only the sensitivities of cells directly below the site. Skin depth
arguments indicate that cells which are within one skin depth range of an observation
site should have significant sensitivities to the data at that site, while the rest of
cells have near zero sensitivities. So the standard sensitivity matrix is very nearly

a sparse matrix. An inversion would be more efficient if one could take advantage
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of the sparse property. Such inversion could be implemented by inverting several
sites (say NN,) simultaneously. Thus an inversion can be divided in a series of N,-site
inversions. N, is less than the number of total sites, N,. If N, = N,, it becomes the
standard inversion. This implementation localizes important contributions to data.
Such implementation could be called localized 2-D inversion. Such a philosophy could
be readily extended to 3-D inversion, where it would possibly have more gains in saving
computation resources.

(3) Incorporate topography into the inversion. In many practical applications,
topography may have an important contribution to the response and should not be
ignored. This work should not be difficult to implement. _

(4) Reorganize the code to make the implementation consistent between the 2.5-D
forward modeling and the inversion. The 2.5-D forward modeling was incorporated
into RRI without considering a lot of subtle inconsistencies between them ranging
from implementation philosophy to coding level. In implementation philosophy, for
example, the 2.5-D forward modeling uses the finite-element method while RRI ex-
pects the fields were calculated by a finite-difference method. In coding, for instance,
the 2.5-D forward modeling numbers model parameters row by row, but RRI numbers
them column by column. These inconsistencies effect both computer resources and
inversion performance.

(5) Allow the code to accommodate data with sources at different locations. Cur-
rently the code can invert data from sources (at most, two transmitters) at the same
location. In practice, because of transmitter power limitation, especially for HMD,
the transmitter is often relocated when receivers cannot receive a sufficiently strong

signal.
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Appendix A

ELECTROMAGNETIC FIELDS

The 2.5-D forward modeling algorithm used in CSAMT inversion requires that
electric fields (so called primary fields) be computed for a specific model which usually
is a simple model. To compute electromagnetic fields, we always have to start with the
Maxwell’s equations and generally end with solving a boundary-value problem. The
boundary-value problem can be solved in terms of the vector electric and magnetic
field intensity functions or in terms of vector and/or scalar potential functions from
which the vector field functions may be derived.

Kong (1972) and Tang (1979) give solutions due to dipole antennas in stratified
anisotropic media by decomposing a general wave field into TM and TE modes, em-
ploying the concept of propagation matrices, and expressing the reflection coefficients
in terms of continuous fractions. But solving EM boundary-value problem was mostly
carried out by means of potential functions. Several different sets of potential func-
tions appear in the literature. Hertzian potential functions are the most widely used
set, and are used for the half-space case by Sommerfeld (1949) and Banos (1966); for
the stratified isotropic media by Wait (1951, 1953, 1970), Wolf (1946), Bhattacharya
(1967), Ward (1967), Stoyer (1977), etc; for the anisotropic media by Chetaev (1963),
Wait (1966a, b), Praus (1965), Sinha and Bhattacharya (1967), and Sinha (1968,
1969). Chave (1982) and Chave and Luther (1990) use two scalar potentials, which
are derived from the Mie representation of the magnetic induction B, to get the
solution for a electric dipole source over a layered earth. In their solutions, the elec-
tromagnetic fields can be separated into the poloidal magnetic (PM) mode and the
toroidal magnetic-(TM) mode. Ward and Hohmann (1988) adapt the approach of
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Harrington (1961) and use the Schelkunoff potentials, because of their symmetry and
the ease of relating them to the TE and TM modes of excitation, to derive the EM
fields for the various finite sources over a layered half-space in frequency and time
domain.

Most of the derivation for EM fields below is based on the work of Harrington
(1961) and Ward and Hohmann (1988).

A.1 Theory

A.1.1 Schelkunoff potentials

The Maxwell’s equations (2.12) and (2.13) are written as
VxH=yE+J; (A.1)

V xE=—:H-J°, (A.2)

where time factor e’ is used. § = & + iwe is the admittivity, and 2 = twy the
impedivity (Harrington, 1961). Equations (A.1) and (A.2) are linear; so total field
can be considered as the sum of two parts, one [E., H.] produced by J and the other
[Em, Hy) by J2..

E. and H. satisfy

V x H, = jE. + J? (A.3)
V x E. = —3H, (A.4)

and E,, and H,, satisfy
V x Hy, = §En (A.5)
V x Ep = —3H,, — 32, (A.6)

Taking the divergence of equations (A.4) and (A.5) yields

V-H.=0 (A.7)
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V.-E.=0 (A.8)

Equations (A.7) and (A.8) imply that E,, and H, may be written as the curls of two

vector functions,

H.=VxA (A.9)
En,=-VxF (A.10)

From equations (A.3), (A.4), (A.5), (A.6), (A.9), and (A.10), one can get

VxVxF=J +k®F - :V¢/ (A.11)

VxVxA=J3+kA-jVe® (A.12)

where k? = —§% = w?ue — iwpo, ¢/ and ¢ are arbitrary scalars. If ¢’s are chosen
according to

V-A=—j¢° V-F=—z¢/ (A.13)

Equations (A.11) and (A.12) are reduced to
V?F + k*F = -J2, (A.14)

V2A + kK*A = -J° (A.15)

The total electromagnetic field in terms of A and F is given by

E= -2A+3—17-V(V-A)—V « F (A.16)
H=—jF + éwv F)+V xA (A.17)

Let us consider some particular choices of potentials.
TM,:

IfF =0, then
E=-z2A+ 1§V(V -A) (A.18)



H=VxA

If the potential A is given by
A=1yYz

Equations (A.18) and (A.19) can be expanded as

1 8%y M
Ex:gazaz Hz:%
_ 1 o=
VT §0yoz v© 0z
E =l(a—2+k2)¢ H.,=0
Fog\9z2 ?

A field with no H. is called transverse magnetic to z (TM,).

TE.:
If A =0, and
F=1vy2z
then
E=-VxF

H=_jF + %V(V»F)

This can be expanded as

__ % _10%
E““ay H:= 5202
_ 0y _ 13
By = dz = 20y0:z
E.=0 g=1(Z s ¥
= T2\ 022

A field with no E, is called transverse electric to z (TE.).
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(A.19)

(A.20)

(A.21)

(A.25)
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A.1.2 Construction of solutions

We need to solve the boundary-value problems (A.14) and (A.15) for computing EM
fields. The general solutions of the equations (A.14) and (A.15) can be constructed as
the sum of the particular solution of the inhomogeneous differential equation and the

complementary solution of the homogeneous equation. So F and A can be written as
F=F,+F, (A.26)

A=A, +A, (A.27)

As Harrington (1961) points out, the particular solution (F,, and A,,) can be
thought of as the field due to sources inside the region and the complimentary solution
(Fes and A,,) as the field due to sources outside the region. So he writes out the
particular solution by using the potential integral solution.

The complementary solution is the solution of (A.14) and (A.15) in the source-free
region. In source-free region, it is not necessary to think of A as due to J2 and F as
due to J},. One can represent a field in terms of A or F or both, regardless of its
actual source. Harrington (1961) also shows that an arbitrary field in a homogeneous
source-free region can be expressed as the sum of a TM field and a TE field. For
instance, we have a field with £, and H, components, which is neither TE nor TM.

We can determine 1* (A type source) and ¢/ (F type source) by, respectively,
a2,¢,a

5o T K" = GE; (A.28)
2., f
_aafz + K = 3H, (A.29)

Then the complementary solution would be superposition of equations (A.21) and
(A.25).

Therefore the boundary problem (A.14) and (A.15) has been solved. We will
practice this approach to compute EM fields for a layered half-space in the following.
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A.1.8 Finite sources over a layered half-space

Finite sources used in geophysics are usually oriented in one direction at a time,
so (A.14) and (A.15) can be reduced to scalar equations. Because the conductivity
of a layered half-space model only changes with the depth, the two scalar partial
differential equations can be converted to ordinary differential equations of z by 2-D

Fourier transform.

%g—wﬁ=—ﬁ (A.30)
%é-ﬁA:-k (A.31)

where u? = k2 + k2 — k2.
Now let us find a particular solution to equations (A.30) and (A.31). Solving those

two equations is equivalent to solving the following equation

42G

— 2 A - .
oz U G 8(z+h) (A.32)
where the source is at z = —h. Its solution is the Green's function given by
. e-u|z+h|
Gk by 2) = (A.33)

Once we have the Green’s function to equation (A.32), we may give a particular

solution to equations (A.30) and (A.31) by

Foa(kaykyy 2) = Fp(kz, ky)e™ 1 +M (A.34)
Apa(kzy kyy 2) = Ap(kz, ky e (A.35)

where F, and A, depend on the particular sources J;, and J:.

The complementary solutions are the solutions to the homogeneous equations of

(A.30) and (A.31), that is,

%g-wﬁ=o (A.36)
£A_2h-0 (A.37)
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Equations (A.36) and (A.37) are in the same form as the plane wave equation for 1-D

MT. Therefore the solutions of equations (A.36) and (A.37) can be easily written out
as

Folke, by, 2) = F¥(ks, ky)e™ + F7 (ks ky)e

(A.38)
Acy(kz by, 2) = At (ke by )e™ ™ + A (kz, k)€™

(A.39)

where superscripts + and — stand for downward and upward propagating solutions,
respectively.

Up to this point, we have finished deriving the general solutions for finite sources

over a layered half-space. For an N-layered 1-D model, the solutions in each layer are

summarized in Fig.A.l. Finally, solutions in the (z,y, 2) domain can be obtained by
2-D inverse Fourier transform.

In the solutions, coefficients F}, F, A

+, and A can be determined by the
following boundary conditions.
Fo(kz kyy2) = Fopi(kz, ky, 2)
1 9Fu(kz, ky, 2) _ 1 OFnt1(kz, ky, 2) (A.40)
Hn 0z B+l 0z
/i,.(lc,_.,k,,,z) = An+l(krakyvz)
1 QAn(ke,kyy2) _ 1 8Angi(karkyr2)
Un oz -

e = (A.41)

at the boundary between layer n and layer n + 1. rrg and rrar are reflection coeffi-
cients, given by

Yo - Y
- 4 A.42
"TE Yo+ Y ( )
Zo — 7
rr™M =

= (A.43)
Zo+ 2,

where Y; and Z; are intrinsic admittance and impedance of free space, respectively,

and given by

Uo
Yo=.—

20

(A.44)



ﬁ(k.,k,,z)} {F.,(kx kv guoz

Alke, ky,z) Al (kx, ky)
--------------------------'.‘-.T!(.-.a.'..z.:':.'.'." ....................................
N
E(kx, l(y,l)} = { Fp(kx.ky)}[e_m,(z.'.h)_'- (FI'E ) eu°(z_h)]
A(kx.ky,l) Ap(kx.ky) Frm
Z=0 Surface of the Earth
¢ \
F(kx,ky,Z)} {F (kx ky) —U1Z F.‘ (kx,ky) Utz
z‘ Alke, ky,2) A" (kx, ky) ST Layer 1
h2 Flke, ky, 2) F3 (s, ky) | guez Fa ks, ky)
Jky, - 2tix, Kyl | g2z Layer 2
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®
L J
L ]
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Figure A.1: Solutions in each layer for an N-layered earth. Finite sources are
z = —h.
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Zo =22 (A.45)
Yo

171 and Zl are surface admittance and impedance at z = 0 and can be computed by

following formulas

S Y2+ Y, tanh(uih,)
i = 1 =
Y: + Yz tanh(u,h,)
?n = Yn ?n-i-l 'i: Yn ta-nh(unhn)
)/n + Yn+l l;a-nh(unh'n)
~ u
Yv = Yn=— (A.46)
N
Z = z, Z, + Zy tanh(uih,)
Z1 + Z2 t;a.nh(ulhl)
Z _ Zn-{-l + Zn ta.nh(u,,h,,)
" " Zn + Z,..H tanh(unhn)
In = Zy=2XN (A.47)
YN

A.2 Electromagnetic fields of a layered half-space

In this section we derive EM fields of a horizontal electric dipole, a horizontal magnetic
dipole and a finite-length line source for a layered earth. All those finite sources are
z-directed. The fields for a y-directed source can be obtained by a simple coordinate
permutation from its z-directed counterpart since the conductivity of a layered earth

only changes with the depth.
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A.2.1 Horizontal electric dipole (HED)

For the z-directed horizontal electric dipole located at z = —h, only the x-component

of A exists because of the symmetry. Thus equation (A.15) can be reduced to
V2A, + KA, = = Idl§(z)6(y)é(z + h) (A.48)

Equation (A.48) can be transformed to a differential equation in z using the 2-D

Fourier transform and becomes
A,

e ulA, = —Idlé(z + k) (A.49)

Comparing this equation with (A.32) and (A.33), one can easily get the particular
solution for the region between the source and the surface of the earth

A=Ax= ;:i —uo(z+h) (A.30)

Using (A.18) and (A.19), one can get vertical components in the (kz, ky, z) domain
E2(koy by, 2) = iiAz(kmkva )= —-[ﬂzk —uo(=+h) (A.51)
%o 0

AP (ks ky 2) = —iky Ag (ke by 2) = —é’i’zk ~uo(+h) (A.52)

The EM field has both TM, and TE. components. If the particular solution is
broken into a TM, field and a TE, field, one can treat them separately. Substituting
(A.35) into (A.21) in the (k.,k,,2) domain and equating E? in equation (A.51), one

gets
Idl ikz
Aulberky) = = (A.53)
Similarly using equations (A.25), (A.34) and (A.52), one obtains
Zoldl ik,

Fo(kzy ky) = — (A.54)

2up k2 + k2
Once the EM field is broken into TE and TM, the expression for A of (A.50) is
not needed any more. Using the boundary conditions (A.40) and (A.41), the rest of

coefficients in solutions of Fig.A.1 can be uniquely determined.
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For a half-space, the solutions in the earth for HEDx at z = 0 are

. Il ik,
Arlle by 2) = = (i + rran)e ™ (A.55)
. Idl i
Foks kyy2z) = — z;u kz‘sz\urm)e e (A.56)

Then superposing equations (A.21) and (A.25) yields

Ldl |
Ex(ks,ky 2) = [ —=(L+rram)kE — —(1 +m;)k2] wiRe ' (A.57)
- Il [ u kok, ..
Ey(kz,ky,2) = <= [—'g—l(l +rrM) + —(1 +7'TE)] Rt kze ' (A.58)
Idl [ ik,
E.(ks kyy2) = [ '—g-(l +rm)] C (A.59)
1
F[ k‘ k [dl -uy 2z
z(kzy Ky, 2) = [(1 +rrv) - —(1 + rrs)] P kze (A.60)
H,y(ke, k fd k2 k2 —uz
ke k) = = [+ rrae)kl = 2200+ 2] e (A.61)
H (k:nk!h 2) = '[_‘E —1_’:1(1 + rTE')] (A62)

Finally, EM fields in the (z,y, z) space domain can be obtained using the 2-D

inverse Fourier transform.

A.2.2 Horizontal magnetic dipole (HMD)

Similarly, the particular solution in the (k., k,, z) domain for an z-directed horizontal

magnetic dipole located at z = —h is

F=Fx= %?e"“’(""h)x (A.63)

Then one can derive vertical components in the (kz, ky, z) domain from (A.18) and
(A.19)
7 _ M —u(a+h)
E?(kz, ky,2) = o ik,e (A.64)
o
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HP(ky, ky, 2) = —’-;‘-ik,e-"o<=+") (A.65)
The EM field has both TM; and TE; and can be broken into them separately with
kim ik,

Ap(kz, ky) = — 2o I 1 12 (A.66)
and
Zom  ik:
z v

Once Ap(kz,ky) and F,(k:,k,) are derived, the solutions in Fig.A.l are completely
determined by the boundary conditions.
For a half-space, the solutions in the earth for HMDx at z = 0 are

k3m ik,
Suo K2 + K2

Ay(kz Ky, z) = — (1 + rrar)e™™* (A.68)

zom ik,

2 k24 k2
Then using equations (A.21) and (A.25), one can derive EM components in the

Foke ky,2) = ———(1 + rrg)e™* (A.69)

(kz, ky, z) domain

R 2
Eolherky2) = 3 [—ﬁﬂ(l + rrar) = o +rm)] e ’“’;c e (AT0)
N u
k2
Ey(ke kyy2) = 5 [-y—ﬂ(l + rrm)kl + Zo(1 + rrE)k ] e™*  (A.71)
. 2
B (ks by 2) = = [ ko 'k"(1 +rm)] (A.72)
2 th u
] m kg 2 2 1 -u1 2z A
Holke kyy2) = 5 ;-(1 + rrm)kZ — uy(1 + rrg)k? T (A.73)
LS k2 k k -1 2
Hy(kz7 ky7z) = % [-—(1 + TTM) - ul(l + TTE)] k2 + kze ! (A'74)
H. (kg ky,2) = 5 D (—iko(1 + rrg)] e~™* (A.75)

EM fields in the (z,y, z) space domain can be obtained using the 2-D inverse Fourier
transform.
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A.2.8 Finite-length line source

The finite-length line source, centered at the origiz and extending from —L/2 to L/2

along the z-axis, can be represented by
J: =1L B(z)é(y)d(=)x (A.76)

where B(z) is the box car function defined as

B(z) ={ L ifle] < 7 (A.77)

0 otherwise.

Then the potential A equation in 2-D Fourier transform domain (kz, ky, z) is given

by

~

d*A; 2 1 . kL
-z = — = A.
17 ugAz I L sinc( 5 )48(2) (A.78)
where the sinc function is defined as
) sin(z)
sinc(z) = - (A.79)

By analogy with equations (A.49), (A.50), (A.53), and (A.54), the particular solution

is

A = Ax = Lhgne(Fzl ey (A.80)
2uo 2

and the separated TM, and TE, have the amplitudes

'L kL, ik
z A.81

(A.82)

Once Ap(k:,k,) and F,(k;,k,) are derived, the rest of the derivation is straightfor-

ward. The solutions in a half-space are

IL Z
E(ky by, 2) = — [—?(1 +rra)k? — 201 + rm)k:]
0N Uo

k,L)e_mz

2
(A.83)

sinc(

1
k2 + k2
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Bk 2) = 5 | =320 4 rrae) + 2004 )| Ein e (A0
(ko by, 2) = L2 [ ik (1+rm)] smc(—)e"‘" (A.85)
Bulhes by 2) = o [ rra0) = 201+ rr)] sine(BgEem (A0
Byl by 2) = [0+ rrwk = 2200+ rre)tl] ot gincl “l)er (A1)
Ho(kar ey 2) = £ [_%(1 + 7"1'5)] sinc("”TL)e-“" (A.88)
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