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University of Washington

Abstract

Membrane Deformation Rate and Geometry of Subducting
Slabs

By Ling-Yun Chiao

Chairperson of Supervisory Committee: Professor Kenneth C. Creager
Graduate Program in Geophysics

The subduction process forces the oceanic lithosphere to change its geometric
configuration from a spherical shell to the geometry delineated by the Wadati-Benioff
seismicity. This change induces lateral membrane deformation within the slab in addition
to the bending deformation typically analyzed in two dimensional cross sections.
Observations including the along-arc variations of slab geometry, seismic activity, and
orientation of earthquake focal mechanisms suggest that this membrane deformation is an
important mechanism in controlling the evolution of the subduction zone structure and
seismic generation pattern. To quantify this type of slab deformation, we assume that
subducting slabs behave like thin viscous sheets with either Newtonian or Power-Law
rheology flowing into a mantle with significantly lower viscosity. A non-linear
optimization scheme is developed to find the slab geometry and the subduction flow field
minimizing the integrated total dissipation power by fixing boundary conditions
constrained by the Wadati-Benioff seismicity and the relative plate convergence. The
rationale behind this optimization is that since the subducted slab has strong resistence to
membrane deformation and relatively little strength to respond to slab normal forces,
finding the optimal configuration with the least amount of membrane deformation rate
will thus provide insights on both the slab structure and the pattern of slab deformation.
Experiments on the Cascadia subduction zone suggest that the proposed arch structure is



a natural consequence of the subducted slab responding to the concave-oceanward
trench. The arch also provides a plausible explanation for the origin of the Olympic
Mountains accretionay prism in the context of the Critical Taper Theory. The
concentration of seismicity beneath the Puget Sound area may be the result of bending the
already arched slab. The computed deformation rate is dominated by along-arc
compression under Puget Sound and the peak compressional strain-rate is around 2 x 10-
16 sec-! which is comparable to the value estimated from the total intraplate seismic
moment release during the last century. In both the Alaska-Aleutian and NW-Pacific
subduction zones, preliminary experiments predict similar arch structures. Also,
modelling results provide plausible explanations for along-arc variations of the
deformation regime within slabs that are not resolvable by 2-D approaches.
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Chapter 1 Introduction
1.1 Shell effects and subduction process

As it spreads out from the mid-ocean ridge and gradually cools down, the oceanic
lithosphere formed near the surface of Earth becomes part of a spherical shell. Toa good
approximation, these spherical shells are observed to form large "plates” where relative
motions can be described by rigid body rotations. The paucity of intra-plate seismicity
suggests that the internal deformation of the lithospheric plates is generally small.

The lithosphere must, however, deform as it subducts back into the deep mantle.
First, the lithosphere must bend and unbend. Bending has been analyzed in detail using a
variety of lithospheric rheologies, but these analyses have considered only two-
dimensional vertical cross sections, and assumed no variation of geometry in the along-
arc direction. This simplification had enabled researchers to examine the evolution and
origin of the ocean basin, outer rise, and trench topography [e.g. Caldwell et al., 1976;
Turcotte, 1979; Melosh and Raefsky, 1979] and also the state of stress of the subducted
slab [e.g. Hanks, 1971; Chapple and Forsyth, 1979; Tsukahara, 1980; Kawakatsu,
1986]. Understanding the deformation regime in the subducted slab is of primary
geophysical concern since it is directly related to slab earthquakes and the evolution of arc
structures. The two-dimensional approach not only helped in providing insights on the
bending mechanism in the shallow part of the subduction, it also leads to the well
accepted concept that even in the intermediate and deep depth, the slab behaves like a
stress guide that transfers the gravitational pulling and viscous drag as either down-dip
extension or down-dip compression [Isacks and Molnar, 1971]. More complete two-
dimensional dynamical calculations have led to a greater understanding of stresses and
strain rates within subducting slabs owing to the slab's anomalous rheology, negative
buoyancy, and viscous drag [eg. Gurnis and Hager, 1988; Kemp and Bird, 1989].

The mechanical thickness of slabs is usually a few tens of kilometers [e.g.
Turcotte, 1979; McNutt, 1984], which is small compared to their lateral dimensions of a
thousand or so kilometers. Also, because slabs are cold relative to the surrounding
mantle, the effective viscosity of the slab is probably at least a few orders of magnitude
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higher than the surrounding warm mantle. For those two reasons, Creager and Boyd
[1991] argued that slabs should behave like a thin sheet, in the sense that ‘they have
strong resistance to in-plane (or membrane) deformation, but relatively little strength for
slab-normal forces. As delineated by Wadati-Benioff seismicity, the shapes of the
subducted slabs are quite different from the spherical shell of oceanic lithosphere prior to
subduction. Simple experiments like bending a sheet of corrugated metal or flattening out
a spherical shell tell us that changes of internal geometric configuration of a three-
dimensional surface cannot occur arbitrarily without introducing membrane deformation.
This implies that the subducting slab must suffer a significant amount of membrane
deformation and contortion in addition to the bending deformation as the spherical
oceanic lithosphere is forced into the geometry of the subducted slab. In dealing with the
geometry of a non-Euclidean surface as the slab structure, the Gaussian Curvature
concept from the theory of Differential Geometry is very useful in examining the
deformation imposed by geometric constrains. This concept will be discussed in more
detail in chapter 2. In short, it points out that conservation of Gaussian Curvature,
product of the two principal curvatures, during a change of configuration is a necessary
condition for a general surface structure to be free from membrane deformation.
Recognizing the implications of this concept on subduction systems, Bevis [1986]
pointed out that all subduction geometries violate this condition, so all slabs suffer
membrane deformation. There are dozens of studies on the kinematics and dynamics of
subduction which consider only two-dimensional cross sections. Using this assumption,
the curvature of any slab surface vanishes in the along-arc direction. Thus, the Gaussian
curvature is zero everywhere, and there is no need for membrane deformation in either
the along-arc or down-dip direction. Of course membrane deformation in the down-dip
direction, caused by the dynamics, are the kinematic equivalent of down-dip compressive
and extensional stresses so often discussed in the literature. One of the primary goals of
this dissertation is to analyze the minimum amount of membrane deformation rate
associated with three-dimensional flow corresponding to several subduction geometries,
and to demonstrate that both focal mechanism orientations and slab geometries can often
be explained by considering these three-dimensional constrains.

An interesting argument based on the concept of Gaussian Curvature is that the
success of the theory of Plate Tectonics resides mainly on the fact that we have a nearly
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spherical planet, so the Gaussian curvature of Earth's surface is nearly constant. This
allows plates to move in a rotational fashion with respect to Euler poles without
significant intra-plate deformation. In fact, since Earth is slightly elliptical with an
ellipticity of €=0.00335, it leads to speculations that large scale plate motion in the long
term may actually induce accumulations of intra-plate straining. Assuming plates behave
elastically, Turcotte [1973] estimated membrane stresses of the order of kilobars
associated with the membrane deformation induced by change in latitude when plates
move about on the surface of the earth. Freeth [1980] also argued that these stresses
generated by membrane tectonics may be partially responsible for the initiation of intra-
continental rifts. Taking a Young's modulus of 1.72 x 1012 dynes/cm? used in
Turcotte's calculation, this would translate into membrane strain on the orders of 10-2.
Since a significant change of latitude requires about 108 years, it means a strain rate on
the order of 10-18 sec-1, the deformation rates are thus small and may be taken up by a
slow creeping mechanism. The changes of geometric configuration in a subduction zone
are more dramatic with a typical strain rate of 10-15 sec-! (Bevis, 1988; Creager and
Boyd, 1991), the need to better understand and quantify this type of deformation and its
impact on subduction process is then obvious. However, unlike the oblate spheroidal
surface of the earth, the subducted slab usually does not have a simple regular
geometrical shape. This makes the attempt of quantifying this deformation extremely
difficult.

1.2 Observations requiring a three-dimensional treatment
1.2.1 Arcuate shape of Island Arc system

Figure 1.1 shows that the trenches of major subduction zones usually take a
concave-oceanward arcuate shape. The origin of this shape has been argued by different
hypothesis, e.g the indention of seamounts on the edges of the trench [Vogt, 1972; Hsui,
1988], although the correlation of cusps between different arcs with the presence of
seamounts or other aseismic ridge structures is not always obvious. It is generally
believed that the sphericity of the earth plays a role in the forming of such shapes. A
simple "Ping-Pong Ball" model [Frank, 1968; see Figure 1.2] accounts for the sphericity
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of Earth by pointing out that the oceanic lithosphere can hold it's integrity and conserve
area if its subducted shape is similar to an indented ping-pong ball. This model predicts
that the dip angle of the subducted slab is twice the radius of curvature of the trench, and
provides a simple explanation for the general arcuate shape of most oceanic trench-arc
systems. Intriguing as it may be, this model is not quite realistic. First, the predicted
relationship between the subduction dip angle and the radius of curvature of the trench is
seldom met by real subduction systems. Secondly, this model has the slab going to
shallower dips with increasing depth, which is nearly never observed. Perhaps the most
serious problem with this simple model is the discontinuous dip change right at the
trench, which is not only inconsistent with observations but also would generate an
unacceptable amount of deformation regardless of what kind of rheology the slab might
have. Bevis [1986] points out that this model is actually a particular example that
conserves the Gaussian curvature. Several studies in the 70's [Stroback, 1973; Larvie,
1975; Le pichon, 1978; Tovish and Schubert, 1978] attempted to further elaborate this
concept, but were unable to quantify the deformation generated within the slab as a result
of non-ideal configurations. These models, however, do provide general qualitative
pictures of what kind of deformation to expect within the subducted slab given the shape
of the trench and the dip angle of the subduction zone (Figure 1.3). Intriguing
observations like along-arc extension revealed from intermediate-focus-earthquake focal
mechanisms in the central Aleutians and the Mariana slab are two examples showing the
effect of lateral membrane deformation within the slab subducting with dip angles that are
too steep.

1.2.2 Oceanward concave trench traces and slab arches and cusps

With the general concave landward trench configuration in mind, an interesting
comparison is then to examine the slab configuration across "cusps" between different
arcs. Arc-arc-junctions form cusps with tight oceanward concave curvature. Invariably
the slab dip landward of thes cusps is anomolously shallow, and forms an arch structure.
For example, shown in Figure 1.4, the slab dip angles of the NW-Pacific subduction
zones change gradually from approximately 55° in the Kuril-Kamchatka subduction zone
to nearly 300 in the Japan zone and then gets steeper again to Izu-Bonin and eventually
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Figure 1.1 Trench configuration of subduction zones in the Circum-Pacific region.



Figure 1.2 Frank's "Ping-Pong Ball" model. The above diagram shows a cut-away
view of the earth at an island arc showing the descending slab [after Tovish and
Schubert, 1978]. The lower diagram is after Strobach [1973] where the heavy line
represents the oceanic plate with down bent slab. It shows the geometric relation, that the
dip angle of the subducted slab (o) is twice the radius of curvature of the trench measured
in radians (B).



Figure 1.3 Qualitative deformation regimes corresponding to different trench shapes.
(a) Frank's strain free configuration. (b) The curvature of the trench is not tight enough,
the slab is thus in along-arc compression. (c) The curvature of the trench is too tight, the
slab is in along-arc extension [after Stroback, 1973].
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(Mariana, profile 210, 252) to 300 (Hokkaido comer, profile 588, 630) and then to ~559
(Kuril, profile 840, 882, 924).
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becomes vertical in the Mariana region. When viewed as a series of isolated cross-
sections, there are no obvious variations in subduction parameters such as age of oceanic
crust, convergence rates, obliqueness of subduction or type of overriding plate, that
would explain these systematic changes in dip. Figure 1.5a shows the inferred slab
depth contours [after Yamaoka and Fuako, 1987] underneath the Japan area. Notice that
both the transition from Kuril to Japan (the Hokaido corner), and the transition from
Japan to Izu-Bonin defines two sharp concave oceanward bends in the trench.
Coincident with these two close bends the slab has much shallower dip as shown from
both the cross-sectional view of seismicity in Figure 1.4, and the inferred depth contour
in Figure 1.5a. In the Cascadia subduction zone, a similar arching within the subducted
slab associated with a oceanward concave trench shape had been proposed by examining
seismic evidence (Figure 1.5b, [after Crosson and Owens, 1987]). Other examples
include New Britian-Solomon subduction zone (Figure 1.5c, [after Yamaoka and Fuako,
1987]) and the Alaska Subduction Zone. With a clear oceanward-concave trench
wrapping around Gulf of Alaska, the subducted slab between the Wrangell Slab to the
east and the Aleutian Slab further west, the Alaska slab has a shallower slab dip (Figure
1.5d, [after Page et al., 1989]). One exception, however, is the Peru-Chile Slab, where
the shallow structure has a steeper dip underneath the region with an oceanward concave
trench before it shoals to a relatively shallower dip again (Figure 1.5¢, [after Isacks and
Barazangi, 1977]]. These possible arch structures, that are usually coincident with the
axes of the concave-oceanward shape of the trench or cusps at the arc-arc junction, had
been qualitatively attributed to the buckling of the subducted slab that is subjected to
along-arc compression imposed by the shape of the trench.

All these observations mentioned above are directly related to the relationships
between membrane deformation rates of a relatively thin slab surface and the geometric
configuration of the surface. Due to the large amount of centroid-moment tensor (CMT)
solutions available in recent years [Dziewonski et al., 1981; Dziewonski and
Woodhouse, 1983; Giardini, 1984; and routinely published solutions in issues of
Physics of the Earth and Planetary Interiors since 1983], focal mechanism orientations of
slab earthquakes have been systematically examined to understand the deformation
regime within slabs [e.g. Vassiliou and Hager, 1988; Zhou, 1990; Lundgren and
Giardini, 1990]. Although most of these studies confirmed down-dip compression in the
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Figure 1.5 Examples of arch structure associated with concave-oecanward shape of
the trench. Depth contours of subducted slabs inferred from slab earthquakes for (a)
Kuril-Japan-Izu region [after Yamaoka and Fuako,1987]; (b) Cascadia Subduction Zone
[after Crosson and Owens, 1987]; (c) New Britain-Solomon Subduction Zone {after
Yamaoka and Fuako,1987); (d) Alaska-Wrengell Subduction Zone [after Page et al.,
1989]; and (¢) Peru-Chile Slab [after Isacks and Barazangi , 1977].
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slab at depths below 300 km, more and more interesting patterns of lateral variations have
been observed. In the Alaska-Aleutian subduction zone, we plot the available CMT
solutions for slab earthquakes below 70 km (Figure 1.7). The systematic change from
along-arc extension in the central Aleutians to mostly along-arc compression in eastern
Alaska is quite consistent when it is put in the context of lateral membrane deformation.
Noticeably, this observation is beyond the resolution of the conventional two-
dimensional model for examining the deformation regime within subducting slabs.

1.2.3 Space Problem and the Table Cloth Analogy

Another way to think about this type of possible deformation of the subducted
slab imposed by geometric constrains had been addressed by Rogers [1983]. In his
extensive study of the seismotectonics of Cascadia Subduction Zone, he noticed a space
problem that because of an unusual concave oceanward bend in the trench of this
subduction zone, there is not enough room for the subducted slab material to fit into
while subducting (Figure 1.6). In trying to accommodate this, the slab would experience
along-strike compression and possibly some kind of contortion in order to reduce this
deformation. An easier way to visualize this problem is the Table Cloth Analogy by
noticing the folds of a table cloth hanging over the comer of a table. Note that the folds
can be removed by pulling the table cloth away from the table corner to give it a shallow
dip or arch off the corner.

1.3 Recent efforts in quantifying slab membrane deformation

As mentioned earlier, while the two-dimensional idealization of subduction zones
might be appropriate for studying bending deformation in the shallower depth, it is not
capable of examining the possible membrane deformation imposed by the geometric
constrains. The Gaussian Curvature is a good indication of whether this internal
deformation is necessary, but it lacks the power of actually quantifying this deformation.
Recognizing the importance of these shell effects, Yamaoka et al. [1986] suggest the use
of the term "shell tectonics" instead of "plate tectonics". In exploring the three
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Figure 1.6 Roger's [1983] "Space Problem" of the Cascadia Subduction Zone points

out that there are not enough room under this subduction system for the slab material to
fit in.
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dimensional nature of the subduction process and quantifying membrane deformation of
the subducting slab, they use plaster to construct miniature model shapes of Wadati-
Benioff zones by using International Seismological Center (ISC) earthquake locations.
Oceanic lithosphere is then simulated by an inextensible spherical shell made of polyvinyl
chloride resin. They perform analog experiments by forcing the spherical shell to fit the
miniature of the Wadati-Benioff zone. They find that while most of the Wadati-Benioff
zone shapes can be fit reasonably well without significant membrane deformation, there
are regions of poor fit where tearing of the spherical shell or large membrane strains are
needed to achieve an acceptable fit. Following this analog experiment, they use a finite
element code to perform numerical experiments in order to examine the buckling of an
open spherical shell under end loading and hypothesize that a buckling mechanism is
responsible for forming the cusps at arc-arc junctions [Yamako and Fuako, 1987].

Pioneer work by Burback and Frohlich [1986] adopted a quite different approach.
In their inspiring study, they devised a simple algorithm to track the particle paths of
subduction processes. First, they use Wadati-Benioff seismicity from ISC bulletins to
define a smooth surface and thus get the local slab dips. Secondly, they define the flow
field representing the subduction process by letting the velocity vector prior to subduction
be consistent with the relative plate convergence. For a particle at the trench, they rotate
the particle velocity vector through the local slab dip about the trench strike direction.
Using this scheme, they estimate along-arc strain from the difference between separation
distances of two neighboring particles at the trench and between the same two particles
after 10 million years of subduction. Their results indicate that the observed geometry of
most subduction zones involve relatively little lateral strain which is consistent with
Yamaoka et al.'s experiment. But there are places like the western Aleutians, where the
accumulated strain is as high as 50%.

Both of these two studies suggest that, first of all, although no observed
subduction zone has the ideal strain free configuration predicted by Frank's model, there
is actually a wide range of geometries with relatively small strain and that most
subduction zones seem to fall in one of these configurations. Secondly, a lot of the
previously proposed segmentations of subducted slabs, with different Wadati-Benioff
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zone geometries or seismicity patterns, are most likely features of continuous contortion
rather than being separated by tears or hinge faultings.

In the study of the geometry of Aleutian Subduction Zone, Creager and Boyd
[1991] presented a method of quantifying this type of in-plane deformation by utilizing an
optimization principle, They first constrain the slab geometry by local seismic array data
and residual sphere analysis. Assuming the slab behaves similar to a thin viscous sheet,
they set the surface flow field representing the slab motion to be consistent with the
relative plate motion on the surface of the earth and adjust the flow field representing the
motion of the subducted slab to go through the fixed slab geometry and at the same time
minimize the in-plane deformation. They predict along-arc stretching deformation in the
Aleutians and a maximum strain of 10% in the Central Aleutians, each of which are
consistent with seismic observations. Also, their calculated strain rates in the Western
Aleutians are ten times smaller than those calculated by Burbach and Frohlich.

To summarize these previous works: Bevis' [1986] Gaussian Curvature argument
indicates that all slabs have to suffer a certain amount of membrane deformation from the
subduction process, although the Gaussian Curvature criteria is not capable of
quantifying how much that membrane deformation might be. Both the analog fitting
experiment of Yamaoka et. al [1986] and Burback and Frohlich's [1986] algorithm
implies most of the previously proposed tears in slabs are possibly continuous, contorted
features. Also, slabs have strong resistance to membrane deformation and seem to be
able to find configurations with relatively small lateral straining. Creager and Boyd's
[1991] study is an improvement of Burback and Frohlich's algorithm in that they
consider more realistic slab geometry, and invert for the flow field which minimizes in-
plane deformation rate, whereas Burback and Frohlich specified the flow field a priori
and consider geometries in which a particle changes dip abruptly at the trench and then
subducts 10 my at that dip.

1.4 Motivation and preview of this study

This study is primé.rily motivated by the non-uniformly distributed patterns of
various kind of subduction related features, i.e. the along-strike variations of the
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geometry of the subducted slab, especially the arch structures generally associated with
the concave-oceanward shape of the trenches, the pattern of intra-slab seismic activity and
their correspondence with the shape of the trench. Based on the same philosophy as in
Creager and Boyd's study [1991] we are going to quantify the least amount of
membrane deformation rates required by the geometric and kinematic constrains and
examine the pattern of membrane strain rates distributed within the slab. But instead of
using the Lagrangian description of the flow field in their work, we reformulate the
problem using the Eulerian description implemented by the Finite Element interpolation
so that the flow would be able to anticipate the effects of the slab geometry in the down
dip direction just as it has memory of the configuration above. Also, instead of fixing the
slab geometry completely, except at places where we have accurate constrains of slab
geometry (mainly by Wadati-Benioff seismicity) we let the slab geometry adjust itself
along with the flow field so that we can study how the slab geometry responds to the
shape of the trench. In short, the main objectives of this study are:

(1). To formulate a quantitative measure of membrane deformation rates imposed
by geometric and kinematic constrains associated with subduction processes.

(2). To fine tune the flow field and the slab geometry subject to constraints setup
by known plate motion, Wadati-Benioff seismicity and other geophysical observations in
order to construct the optimal configuration with the least amount of membrane
deformation rate required for a subduction system. We examine the correlation between
the pattern of deformation of this optimal configuration and those indicated by various
geophysical observations in order to understand how important a role the membrane
deformation plays in the subduction process.

(3). Interpolating the large scale structure of the subducted slab based on the
criteria of minimizing the membrane deformation rates.

(4). Obtain a better understanding of why slabs have their observed shapes, and
why focal mechanisms have their observed orientations.

In pursuit of a better understanding of the subduction process, this study will
provide a systematic way of examining the fundamental problem of the geometric effects
of the subduction process and their correlation with the intermediate and deep seismic
activity.
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The first main difficulty in formulating a feasible numerical modeling scheme in
this study is that, since it is in general not possible to construct a two-dimensional global
Cartesian coordinate system on an arbitrary curved surface [Aris, 1962; Pearson, 1990],
the velocity gradient tensor and strain rate tensor usually have to be defined in a general
curvilinear coordinate system using general tensor calculus. To avoid the complexity
resulted from this, we will formulate the problem in a fixed Cartesian coordinate frame,
and define the strain-rate tensor in terms of a properly defined projection operation based
on the fact that our non-Euclidean 2-space (the slab surface) is embedded in the Euclidean
3-space. Chapter 2 describes the way we formulate the problem, especially how we
apply the projection operator to get the membrane strain rate tensor for an arbitrary
surface and then evaluate the integrated total dissipation power for a general flow with
power-law rheology. We will then be equipped with a well defined optimization
problem, in the sense that we invert for both the complete flow field and the surface
geometry swept out by this flow field which minimize the integrated total dissipation
power. The second difficulty is that, although the variation of flow field with respect to a
fixed slab geometry is linear, the variation of geometry is highly non-linear. Three
different kinds of Finite element configurations used to parameterize both the surface
geometry and the flow field are discussed. The numerical iteration algorithm used to
solve the non-linear inversion is outlined.

In chapter 3, observations related to geometric constraints in Cascadia Subduction
Zone are discussed. Successive modeling efforts designed for examining the pattern of
membrane deformation rates and the slab geometry and their relations with the trench
configuration were undertaken. The main features of the modeling experiments in terms
of their capability to offer plausible explanation toward major observations are described.

Chapter 4 presents preliminary modeling results on two well documented
subduction zones: Aleutian-Alaska and NW-Pacific. Experiments generally adopt highly
simplified trench shapes in order to understand the dominant first order observations,
e.g. the arch structures in the subducted slabs associated with slab subducting in a
oceanward concave geometry, and the general orientations of earthquake focal
mechanisms.
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In Chapter 5, conclusions on experiments for different subduction zones are
discussed. The application of this modeling technique for studying subduction processes
in general is appraised. Improvements and future work are discussed.



Chapter 2 Theoretical Formulation

Chapter 1 described the observations concerning the three-dimensional nature of
the subduction process and the reason we believe that the lateral membrane deformation is
of fundamental importance in understanding these observations. A full three-dimensional
treatment of the subduction process covering all aspects including the dynamics and the
thermal and rheological structure is not computationally feasible and also impractical
because of unknown parameters and possible chaotic flow. Instead of taking such a
brutle force approach and with the basic physics buried deeply in a complicated model,
we simplify the problem based on certain assumptions so that we can concentrate on
examining the lateral membrane deformation of subducting slabs required by geometric
and kinematic boundary conditions. This chapter shows our basic philosophy and efforts
in formulating the problem of quantifying the membrane deformation during subduction
process. By developing a scalar measure of the membrane deformation rates, we devise
an inverse scheme to explore how subducting slabs respond to different geometric and
kinematic constraints.

As already discussed in chapter 1, the mechanical thickness of subducting slabs is
very small comparing to their lateral dimensions. In other words, subducting slabs are
geometrically analogous to thin sheet like structures. The exact rheology of subducting
slabs is still largely unknown. Although the mechanical response of the oceanic
lithosphere to loads may be represented by the flexure of an elastic plate (Forsyth, 1989),
it had been argued that an elastic-perfect plastic rheology might be more appropriate for
studying bending of oceanic lithosphere near the trench [e.g. Turcotte et al., 1978]. Itis
not realistic to assume elastic behavior, however, when dealing with the subducting slab
as a whole. First of all, the strain-rates associated with the subduction process are
usually on the order of 10-15 sec-! [Bevis, 1988; Burbach and Frohlich, 1986; Creager
and Boyd, 1991] which amounts to several tens of percent of accumulated strain within a
typical 10 my of subduction. The shear modulus of the upper most mantle is 1300 kbar
[Dziewonski and Anderson, 1983], so shear strains of 10% would produce shear
stresses of 260 kbar, which is well above the material strength of subducting slabs.
Secondly, the slab earthquakes cause irreversible change of slab geometry, these
macroscopic processes together with microscopic creeping mechanisms during the
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geological time period, make the rheological behavior of subducting slabs resembles
viscous flow in a bulk average, long term average sense. General Power-Law rheology
will be used in the modelling experiment in this study as standard rheological models.
Since the Power-Law rheology with the power n ->c0 approximates plastic behavior, the
cases n=1 (Newtonian) and n=co thus represent two end members of possible flow laws.
In short, the first assumption we make is that subducting slabs can be treated like thin
viscous sheets with either Newtonian or general Power-Law rheology.

Because slabs are cold relative to the surrounding mantle, the effective viscosity
of the slab is probably at least a few orders of magnitude higher than the surrounding
warm mantle [e.g. Vassiliou and Hager, 1988]. In Appendix A we show that this
assumption leads to the conclusion that the shear strain rates parallel to the slab, evaluated
at the cold core of the slab is a few orders of magnitude less than in the ambient mantle.
In other words, the shear deformation parallel to the slab surface would essentially be
taken up by the surrounding mantle. This is analogous to the Kirchhoff's hypothesis in
studying the deformation of elastic shells [e.g. Calladine, 1988]. In essence, this implies
that we can characterize the deformation of a thin sheet structure by the membrane
deformation within the mid-surface and the bending deformation.

Now that we are simulating the subduction process by a viscous thin sheet
structure subducting in a much less viscous environment, a proper mass conservation law
is needed to complete the kinematic description of the system. We do this by assuming
that the mantle is incompressible. This is, of course, neglecting important effects of the
major transition zones (basalt-ecologite, olivine-spinel). Since the details of how
materials deform when going through a phase transition are still largely unknown, it is
premature to include these effects. However, the compressibility condition in our model
is implemented computationally in a very flexible way such that other kinds of
compressibility can be incorporated very easily.

The last important assumption we make is that the flow field representing
subduction process is in steady state. This is in general not true, since transient evolution
of subduction system configurations have been reported in terms of the migration of both
the trench and converging plates. However, it has been argued that during the last 15 my
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or so, the subduction processes are relatively stable for the two major subduction zones
we are going to examine: Aleutian Subduction Zone [Creager and Boyd, 1991]; and
Kuril-Japan Subduction Zones [Lundgren and Giardini, 1990]. It is, however, not the
case for the other subduction system of interest, i.e. Cascadia Subduction Zone
[Nishimura et. al., 1984; Riddihough, 1984; Vandecar, 1991]. Our calculation are thus
performed based on the current configuration of the subduction system. This allows us
to examine how the subducting slab responds to the current configuration and the
possible deformation regime within the slab. However, we admit that the deformation in
this subduction zone is likely to be complicated by the change of relative plate
convergence during the past 10 my.

In summary, the main assumptions in our formulation are:
(1). Slab can be treated as a thin viscous sheet.
(2). Slab effective viscosity is orders of magnitude higher than the surrounding mantle.
(3). The mantle is incompressible.
(4). The flow field representing subduction is in steady state.

Based on the preceding assumptions, we can then get the full three-dimensional
strain-rate tensor by taking the symmetric part of the velocity gradient tensor evaluated at
the mid-surface of the slab. Section 2.1 will show that a simple expansion with respect
to the mid-surface decomposes the full strain-rate tensor into two parts describing the
membrane- and the bending-deformation rate. These two parts interact nonlinearly
[Calladine, 1988; Olszak and Sawczuk, 1967]. In the limiting case when the thickness
approaches zero, the bending part of the deformation rate can be ignored. Since
subducting slabs have finite thickness, the bending deformation rate is important. On the
other hand, we do examine bending strain rates in 2-D cross section (section 2.2), so we
can compare these strain rates with membrane strain rates and see where one is likely to
dominate over the other. We build boundary conditions for the subducting slab geometry
by considering hypocenters of Wadati-Benioff earthquakes and bending deformation rate
in simplified two-dimensional cross sections (Section 2.2). In the calculation of
membrane deformation rate, the bending deformation rate is not explicitly incorporated
however.
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Evaluating the full velocity gradient tensor requires information of the flow field
not only on the mid-surface, but also the flow outside the surface. Although Assumption
2 enables us to concentrate on the deformation of the slab surface itself, because of the
irregular shape of the surface, there is no easy way to reduce the calculation within the
surface except by using curvilinear coordinate system on the non-Euclidean 2-space
representing the slab surface. The surface projection operator that will be described in
Section 2.3, however, serves as a convenient tool to extract the deformation rates
confined in the surface (i.e. the membrane deformation rates). The elegance of the
projection operator is that it can be easily defined in a simple three-dimensional Cartesian
coordinate system. It also helps to map the three-dimensional problem into a two-
dimensional space. This not only greatly simplifies the computation but also concentrates
the efforts of calculation within the surface while avoiding the complexity of performing
general non-Cartesian tensor calculus.

Having properly quantified the membrane strain-rate tensor, we can thus evaluate
the integrated total dissipation power. For Newtonian flow, this scalar quantity is
mathematically proportional to the L2 norm of the membrane strain-rate tensor integrated
over the slab surface. For the Power-Law flow with the power n=o0, on the other hand,
it corresponds to the L! norm. This quantity then serves naturally to be a measure of the
total membrane deformation rate. In section 2.4, we use this measure to compare
membrane deformation rates for different subduction configurations. This enables us to
devise an inversion scheme which seeks the slab geometry and corresponding flow field
with the least amount of membrane deformation rate while satisfying the prescribed
boundary conditions. The general dissipation power functional that is minimized
depends linearly on the flow field but non-linearly on the slab geometry. The full
optimization to seek the optimal slab geometry and the corresponding flow field is thus a
non-linear inversion.

2.1 Decomposition of membrane- and bending-deformation rate
Now consider a local slab coordinate (t,s,n) shown in Figure 2.1. According to

the assumptions above, we can then approximate the strain rate tensor D by expanding it
in the slab normal direction:
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D(t,5,0)=DP(t,5,0)+n2-D?P(t,5,0)+0(n2)
on @2.1.1)

where n=0 corresponds to the cold thermal core of the slab, referred to here as the "slab

surface”. DPP is the membrane strain rate tensor that is the primary deformation rate
9 per

targeted in this study, while on can be shown to be related to the bending part of the

deformation rate. More discussion on the decomposition of the strain rate tensor into the

membrane strain rate tensor and the bending strain rate tensor can be found in Creager
and Boyd [1991].

Figure 2.1 Local slab-normal coordinate,t : down-dip tangent ,n : slab normal, s :
along strike tangent .

Equation (2.1.1) shows that the bending deformation is in fact a second order
phenomena as compared with the membrane deformation. As discussed in chapter 1, the
two-dimensional simplification for modelling slab bending assumes implicitly that the
membrane strain rate tensor DPP of the mid-surface is zero and concentrates on the

i])PP

bending strain rate on . Thisis generally not true, considering the three-dimensional
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nature of subduction processes. Again, it is the basic goal of this dissertation to not only
point out the fundamental importance of this usually ignored mechanism but also devise a

scheme to quantify the membrane deformation rates associated with the subduction
process.

2.2 Bending deformation in simplified two-dimensional case

Even in this simplified situation, to determine a self-consistent slab shape and
quantifying slab deformation regime is not an easy task, mainly because of the various
dynamic controlling factors involved, e.g. the gravitational pulling; the thermal straining;
the viscous drag induced by the coupling of the down going slab with the mantle and the
effects of mantle wind, and the macroscopic rheological character of the slab material.
Instead of pursuing the complete dynamics of the process, since we usually have some
information on the slab shape (given that the Wadati-Benioff zone delineate the low
wavenumber structure of the slab), a kinematic or geometric approach is sometimes used
to serve the purpose toward interpolating the slab shape and estimating the deformation
regime associated with that particular geometry. In many situations near the surface of
Earth, the mechanical response of the lithosphere to applied loads can be represented by
the flexure of an elastic plate. In the simplified two-dimensional case, assuming an
intially flat plate with a flexural rigidity D, the integrated strain energy is thus:

U= %— f Dx2ds
2.2.1)

where K is the curvature, d's is the incremental length element along the shape of the slab
in the down-dip direction

For constant D, U is then proportional to

I= f K2ds
(2.2.2a)
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It had been shown that "minimum strain energy" is the appropriate variational priciple
governing the elastic plate bending (e.g. Timoshenko and Goodier, 1970; Lee and
Forsyth, 1973). In other words, Minimizing I defined in Equation 2.2.2a is then the
variational priciple for interpolating the shape of a bending elastic plate in the simplified
two-dimensional case. Notice that when calculating the local curvature x for the plate
with displacement w(x) at a point x, a common pratice that is usually not well justified is

Pw d’w / dx?
to approximate x by dx2, instead of the precise form (V1+@w / dx)?) ie.,
2 2
x2ds~ | (%) dx
dx (2.2.2b)

Briggs (1974) showed that minimizing Equation (2.2.2b) leads to the differential
equation:

dfﬂ = f; S(X-Xi)
dx4 21: | (2.2.3)

Minimizing functional (2.2.2) is thus equivalent to solving a particular bending problem
with point loadings f; at x=x; such that at those points w=wj;. This "minimum curvature"
algorithm is in fact the well known Interpolating natural spline and is widely used in the
geophysical community both in its one-dimensional and two-dimensional form (e.g.
Briggs, 1974; Smith and Wessel, 1990). In the case of interpolating cross sectional
shape of the subducting slab, we have the subducted slab depths constrained by the
Wadati-Benioff seismicity at certain points along the cross section. A "minimum
curvature algorithm" interpolation scheme based on solving Equation (2.2.3) or
minimizing (2.2.2) is, in its essence, minimizing the elastic bending energy subject to the
boundary conditions that w have to satisfy the known information. Although other more
realistic rheologies have been used to study oceanic lithospheric bending at the trench,
e.g. viscoelastic [DeBremaecker, 1977, Melosh, 1978]; elastic-perfectly plastic [ Turcotte
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et al., 1978; McAdoo et al., 1978]. The minimum curvature algorithm represents one
extreme member among the methods used to interpolate the slab shape.

An alternative algorithm is to notice that for a thin plate with finite thickness H, if
the subduction can be represented by the convergence rate v, then the bending strain rate
H

vx/dasH _ 1 [*
el f V(dx/ds)ndn

average through thickness is proportional to 3 , dx/ds is
the change of curvature along the path. If both H and v are constants, then to find the
minimum bending deformation rate configuration is equivalent to minimizing

(dx/ds)? ds
2.2.4)

Notice that this quantity is proportional to the dissipation power owing to bending
deformation rates in a viscous flow. This minimum "change of curvature" algorithm is
physically more realistic than the minimum curvature scheme described above, since the
minimum curvature scheme is only appropriate for pure elastic bending with small
displacement field away from the initial flat configuration. More importantly, the
minimum curvature algorithm tends to squeeze the curvature into finite narrow regions
while the minimum change of curvature algorithm accumulates curvature in a smooth,
gradual fashion (Figure 2.2). The concentration of curvature produced by considering
bending deformation elastically (minimum curvature scheme) yields typical curvature on
the order of 10-2km-!. With a typical mechanical thickness of a few tens of kilometers,
this amounts to a typical elastic strain (k X H) on the order of 10-1. Multiplying this by
the shear modulus of the mantle gives shear stresses of a thousand kilobars that is again
well above the material strength of slabs.

We devised a non-linear iteration scheme to numerically achieve the “change of
curvature" optimization subject to the boundary conditions that the slab goes through the
trench and be flatten at certain depth, i.e. three boundary conditions: the depth, the slope
and the curvature at both ends of our calculation region are specified. In other words,
this scheme seeks the solution with the least amount of bendin g deformation rate, while
satisfying the boundary conditions at both ends, the slab thus achieves both bending and
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unbending within the region of interest. Our scheme provides a way of obtaining the
optimal self-consistent slab shape that can be used in estimating the unbending strain-rate
as discussed by Tsukahara [1980] and Kawakatsu [1986]. Figure 2.2 compares the slab
shape, the curvature and the change of curvature as functions of the horizontal distance
from the trench obtained by both the "minimum curvature" and the " minimum change of
curvature"” schemes. It is clear that while minimizing curvature results in concentration
of curvature and will thus induce extremely large change of curvature, the minimum
change of curvature scheme presents a nearly linear change of curvature.

For this study, we are using the algorithm described above to construct cross-
sectional shapes, and build the slab surface based on cross sections thus obtained. Once
the slab surface is constructed, we will be examining the membrane deformation rate
associated with this configuration assuming the slab is infinitely thin. In other words,
although the shape of the two-dimensional cross sections are built under consideration of
optimal bending deformation regime, the bending deformation rate is not actually
considered simultaneously with the membrane deformation rate in examining the optimal
deformation regime of the three-dimensional slab surface. This is by no means implying
that the bending deformation rate is not an important mechanism, rather, this is the first
cut of an attempt to quantify a more fundamental kind of deformation in the three
dimensional space.

Note that the in Figure 2.2, the shapes are similar (probably cannot distinguish
among shapes by seismicity distributions), but the curvature and the change in curvature

are very different. The deformation rate at the edges of a slab average through thickness
V(dx/ds)H

H with subduction velocity V is 4 . For each subduction zone examined we can
produce diagrams like that shown in Figure 2.2 to estimate the bending strain rate owing
to bending. For Cascadia, we obtain a peak bending defomation rate of 2x10-16 sec!,
assuming H=10 km,V=1.6x10-12 km/sec, (dx/ds)max =5x10-5 km2.

2.3 Membrane deformation rates: Forward Problem

2.3.1 Conceptual view of the membrane strain rate tensor
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For a given flow field in the three dimensional space that sweeps out a well
defined surface, the first step needed to quantitatively measure its membrane deformation
is the evaluation of the membrane strain rate tensor. It represents physically the
extension, compression and shearing confined within the surface swept out by the flow
field. In the simple case when the surface is flat or is a simple spherical shell, it is
straightforward to carry out this calculation. However, for an arbitrary surface embedded
in the three-dimensional space, since the surface is generally not flar or developable
(e.g. a cylindrical surface), the Gaussian curvature does not vanish everywhere on the
surface, it is then generally impossible to construct a two-dimensional Cartesian system
within that surface. This then imposes certain difficulties for mathematically defining and
computing the membrane strain rate tensor.

A simple approximation to visualize the membrane strain rate tensor is the
following. Suppose we have the complete Largrangian description of the flow field, i.e.
assuming that we can always track any particle path within the region of interest. Then
anywhere on the surface swept out by the flow, we can choose three neighboring, non-
colinear points that define a plane. In the limit when these points approach one another,
this plane approximates the local tangent of the surface. As shown in Figure 2.3, points
A, B, C move along the surface to points A', B, C'. In analyzing membrane strain, we
are not concerned with rotation of the triangle either about an axis normal to the slab
surface, or owing to change in orientation of the surface itself. Membrane deformation is
a measure of the change in shape or size of the triangle, a concept that is coordinate
system independent.

Define the normalized changes in length :
a_ -
S==—~ oeclabc] @3.1.1)

for 0i=a,b and c, let d* be the unit vector pointing in the direction of line segment OL.
Choose an orthogonal two-dimensional coordinate system in the ABC plane and let d;*

and ¢;; be the components of the unit vector d® and the strain rate tensor €.

di"ei,-d;’=s°‘, sum over i,j but not a.. (i,j € {1,2}, ae {a,b,c} )
(2.3.1.2)
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which represents three equations that can then be solved for the three independent
components of the symmetric two-dimensional strain rate tensor €. This approximation
is physically simple to visualize, it points out that whatever the orientation might be, the
membrane strain tensor is simply the extension, compression and shearing that occurs
within the surface.

A'

Figure 2.3 A, B, C are three non-colinear points embedded in a surface flow which
form a triangle with sides of length a,b and c. After a short period of time, these points
are mapped to points A', B' and C' by the flow field.

The scheme to estimate Largrangian strain tensor formulated above can be written
in a more general fashion, in that we can construct a general two-dimensional curvillinear
coordinate system say (x, X2) on the surface swept out by the flow field, then the length
element at any point is

dS=Cjjdxidxj, (i,j e {1,2}) (2.3.1.3)
Cijj is the local metric tensor at that point,

Now for a small patch of the material, we construct a general curvilinear coordinate
system having the metric tensor Coij as that mentioned above and we fix this coordinate
frame to the material particles. After a short period of time, this patch of material would
be mapped into a different configuration by the flow field just like the triangles shown in
Figure 2.3. The coordinate frame that was constructed before the mapping would now
be distorted and have a different metric tensor Cjj. The Largrangian strain tensor can
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now be very conveniently written [e.g. Pearson, 1990; Grundland and Niewiadomski,
1986] in the form as

.= 1eC...0..
eij = E(Cl, C%) (2.3.1.4)

Note that if the surface is flat or developable then we can always choose the Cartesian

coordinate as the initial coordinate system, the metric tensor C°ij is equal to the identity

tensor and ejj then reduces to the usual definition of strain tensor in Cartesian coordinate
system, i.e.

oui Ju:

1.3, 94

e.. = — + ———

Y E(a 0x;

Xi (2.3.1.5)

This is of course not applicable in evaluating membrane strain (rate) tensor in general,
since the surfaces we are dealing with are generally not flat. In fact, covariant derivatives
have to come in and replace the normal partial derivatives.

2.3.2 Gaussian curvature

The foregoing discussion on Largrangian description highlights some important
constrains on the deformation regime posed by the geometry of an arbitrary surface (a
non-Euclidean 2-space where the metric tensor is not necessary fixed everywhere). A
useful indication or measure of that constraint is a intrinsic property of the surface called
the "Gaussian curvature”. The simplest definition of the Gaussian curvature is the
product of the two principal curvatures measured in two mutually orthogonal directions at
a local point. The "Gauss' theorem", in the theory of Differential Geometry, states that
the Gaussian curvature of a surface is bending invariant. In other words, conservation of
Gaussian curvature before and after a mapping is the necessary condition for the surface
to be free from any local internal deformation. This is not surprising, if we notice that
Gaussian curvature is directly related to the metric tensor and its first derivatives.
Although it is generally impossible to construct Cartesian coordinate system on an
arbitrary surface, an orthogonal curvilinear coordinate system called geodesic coordinate
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system can always be built for such a surface. For this orthogonal system (E,Tl), the
metric tensor reduces to a diagonal form:

Cii=a, C12=C21=0, C22=p (2.3.2.1)
and the line element will be
ds? = 2dE%+B%dn?2 (2.3.2.2)

on that surface. It can then be shown [Pearson, 1990] that

d 10B,, 9 19 -0
f“aé)t#ﬁzaﬂﬁaﬁm 2.3.2.3)

Where G is the Gaussian curvature. This shows clearly that the Gaussian curvature
depends only on the metric tensor and variations of the metric tensor. Notice that
although the metric tensor is different for each different coordinate system, the Gaussian
curvature is a coordinate system independent physical quantity and is an intrinsic property
of the surface. The connection between Gaussian curvature and surface deformation is
now clear that from Equation (2.3.1.4), surface deformation is in fact a measure of
variation of metric tensor defined by the mapping (the displacement or the velocity field)
which is then directly related to the Gaussian curvature.

Another way to examine this effect, in the context of the theory of Continuum
Mechanics, is to examine the compatibility conditions for a curved surface. Simply put,
the deformation or strain field for a mapping confined within a curved surface can not be
assigned arbitrarily without subject to the local geometric constraint to assure the
compatibility of the mapping (the displacement or the velocity field). In other words, the
strain (strain rate) field has to satisfy the compatibility conditions to guarantee that the
displacement (velocity) field that they are derived from are physically realistic.
Geometrically, the easiest way to visualize this is imagining cutting the pre-strained
surface into small squares, and then try to fit them back to form a continuous surface after
each square is given a certain strain; in general the strained pieces cannot be fit back
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together without further deformation, but if the strain in each part is related to the strain in
its neighbors according to the compatibility conditions, which is governed by the local
change of curvature, then they can be fit back together. A simple example to elucidate
this is to consider the elastic deformation occurring in a thin shell, for a relatively small
region that started flat and was subsequently deformed slightly. These compatibility
equations can be reduced [Calladine, 1988] to

(2.3.2.4)

where (x,y) is a local tangential two-dimensional Cartesian coordinate system; exx, €Xy,
eyy are corresponding components of the membrane strain tensor, and 3(xg) is the
change of Gaussian curvature before and after the deformation. Obviously if the plane
stays flat before and after the deformation is imposed, this equation further reduces to our
familiar compatibility equation for plane-strain problem where 8(kg) is always zero. It is
clear from this equation why Gauss theorem demands the conservation of Gaussian
curvature as a necessary (not sufficient) condition to be free from in-plane deformation.
Gaussian curvature is a powerful tool to examine whether there would be intrinsic
deformation associated with a certain mapping. For example, Bevis [1986] applies
Gauss theorem in examining several subduction zones and argues that since the Gaussian
curvature is generally not conserved for the slab before and after subduction, it is
unavoidable for the slab to suffer certain amount of membrane deformation. He also
points out that the popular Frank's (1968) "ping-pong ball" model can be viewed as a
particular example of conserving Gaussian curvature and thus avoiding internal
deformation. An important point worth mentioning here is that, it is the conservation of
Gaussian curvature rather than the "conservation of slab area" [e.g. Minamino and Fujii,
1981] that is controlling the possible contortion of the subducted slab. Unfortunately, we
have not been able to devise a scheme to use Gauss theorem to quantify the relation
between an arbitrary surface with spatially varying Gaussian curvature and the resulting
deformation field associated with flow along the surface. The Gaussian curvature
concept in itself is not enough to provide a feasible mean for the purpose of actually
quantifying the deformation field associated with a non-ideal mapping (i.e. the Gaussian
curvature is not conserved). This study is an attempt to devise such a machinery so that
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we can examine the least amount of deformation rate associated with subduction where
obvious change of geometric configuration occurs.

2.3.3 The projection operator

For any well-defined flow field V embedded In the three-dimensional Euclidean
space, the velocity gradient tensor is simply

L=VVT (2.3.3.1)

Now suppose at the same time we have a well-defined surface Z also embedded in the
Ealme’}-ll space and that in a global Cartesian coordinate system with base vectors
€x; €y, €z the surface can be written as Z=z(x,y). For any point located on the surface
’Z\ we can always define a local Cartesian coordinate system using base vectors
€5, €1, €n with €, € representing two unit vectors orthogonal to each other and both
tangent to the surface; en- es X et is then the unit normal vector. We can now

decompose L evaluated on the surface as

L= 3} aiVjaé} , aé} is the dyad é:@é;
ij=st,n (2.3.3.2)

From the classical Helmoltz' theorem, we can get the strain-rate tensor D by

D=L(L+LT
-5( ) (2.3.3.3)

the six independent components of D are then clearly:
the stretching or compression
sVs s

OVt inthe t direction;
OnVn . n

and the shearing
(Owvs + 9sv1)/2 within the surface;
(OsVn + 0nVs)/2, (Otvn + OnVe)/2 parallel to the surface.
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As argued in appendix A, assuming that the viscosity is much lower outside the slab than
within, most of the shearing parallel to the surface occurs in the region outside the slab.
Thus, the last two terms of I above (sharing parallel to the surface) are expected to be
small when evaluated within the cold core of the slab (Note that the equivalent terms
evaluated in the mantle adjacent to the slab represent the viscous drag that supports the
slab and is a region of very large deformation rates). A mathematically convenient way to
insure that the shear parallel to the surface vanishes is to consider any velocity field V
that does not cross the surface Z, construct the deformation rate tensor D from V
(Equations (2.3.3.1) and (2.3.3.3)) and apply the surface projection operator to D.

Define the surface projection operator to be
P=I-€nes, where Lis the 3-D identity operator; Obviously, P=PT (2.3.3.9)

notice that P is the same as Backus' "surface identity operator” Ig [Backus, 1967)-

Since .

epep=€n € =€y epn=en-es=0 (2.3.3.5)
so that

P-eses-P T=[(I'enen)'eses]‘PT=eses‘P T--eses (2.3.3.6)
and similarly,

PeaP'=e8, PeeP’=58, Pae P =e8,
P-&iéy PT=P-&,6 PT=P-&&, PT=P-&,&; P"=P-&en P'=0, _ (2337
Thus if we then apply the surface operator on both sides of D, we get

T
= p.p-pT = p.L+L) pr
DPP 2

= &€y (01Vy) + €:85(svs) + [€:64(0svy) + €85(0vs)l/2 _ (2.33.8)
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i.e. DPP is the surface deformation part of the complete strain-rate tensor D,
furthermore, applying assumption 3), to enforce incompressibility

V.-V=0; + 0sVs +0qvn=0 = OpVp= -(0iV¢ + OsVs) (2.3.3.9)

we thus have

ﬁﬁ? =P.D-PT+ €nen(-0rvy -0sVs)

=aa(atvt)+a€s(asvs)+[é;a(asvt)+aé:‘s(atvs)]/ 2+E\n6;('atvt'asvs)
(2.3.3.10)

as the strain-rate tensor that we are interested in this study, which represents the
stretching, compression, shearing within the surface of the slab and also accounts for the
thickening or thinning in the slab normal direction.

Equation (2.3.3.10) gives us the strain-rate tensor as the basis for quantitatively
measure the in-plane deformation. But how do we actually calculate it using a fixed
global Cartesian coordinate system given that our knowledge on the flow field is limited
to only the surface part ? i.e. if we have the surface flow field VT=(u,v,w) that is only
well-defined on the surface Z=z(x,y), and always stays on the surface. To force the flow
to stay on the surface everywhere, we must have

_dZ 0z
X = v Zy=—
w=u(zx)+V(zy), where ox dy (2.33.11)

but if we don't have full information on the complete flow field, we won't be able to
T
evaluate YV~ and thus D. The answer here is that although L demands full

T
information of VT, P-L-P" doesn't; in fact, it needs only informations of VT on the
surface.
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For any point (x,y,z) located on the surface Z=z(x,y), vectors aT = (1,0,z,) and
bT =(0,1,z,) are always tangential to the surface, so the local unit normal vector would be

axb

& loal

= Al 28y - 2y + &) A=(1+2,2+2,2)12

where
zx2 ZxZy -Zx

e
"Zx "Zy 1

1 +Zy2 'Zny rAN

P=l-énen=A"Y -zxzy 422 zy
Zx 2y 2xl+zy2 (2.3.3.12)
Thus,
PLP 3 2 3 3. 7
W2 422 7202.( 2
(1+zy )(ax +zx8z) zxzy(ay +zyg)
— (A- 0 d F] 0 T T
=(A2] zgzy(— +zx8—z)+(l+zx2)(§)7 +zgs) |V7)-P
] d 0 ]
— +Zy—)+Zy (= +
| E&GEe G Yy (2.3.3.13)

Now, when an arbitrary function f is said to be well-defined on the surface Z=z(x,y), it
means that the variation of f along any direction within the surface is also well-defined.
The previously defined vectors a, b are two of such vectors, so that



of
=9,
=@Vif= =+ 2z

= b-V)f = _+zy¥

(2.3.3.14)
are completely defined by the surface information of f only. Itis
af (en V)f _A-Z(_Zx_a_f - yaf + 2 af
on dx “dy oz (2.3.3.15)

that is not constrained by the surface information, i.e. depends on the function value
outside the surface. This implies that if we have two 3-D flow field V(;y and V) that
are in general not the same but are identical on the surface Z, then although in general L

T
and thus D are different, but P-L-P evaluated on the surface Z for both of these flow

field will be exactly the same, and thus DP? are identical. In other words, DP? and DPP
is independent of any information outside the surface Z.

2.3.4 Mapping the 3-D problem to 2-D space

Previous discussion on the independence of D and D?” with respect to the
information of flow field outside the surface may seem trivial and redundant since by
definition they should rely merely on the knowledge of flow on the surface. But it
highlights one important point in terms of actually computing DPP. That is, instead of
calculating VvT directly, note that for any point located on the surface z=z(x,y), the
function u can be written as

=u(X,y,Z)=u(x,y,2(x,y))=u*(x,y)

Evaluating the differential: du=uxdx+uydy+uzdz=uxdx+uydy+uz(zxdx+zydy)
=(ux+uzzx)dx+(Uy+u22y)dy
=ux*dx+uy*dy

we see that
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%
Ux =ux+uzzx

uy*=uy+uyzy (23.4.0)
using Equation (2.3.4.1) we can rewrite Equation (2.3.3.13) as

u*x v*x w*x
P’L'PT=P' u*y V*y W*y 'PT

0 0 0 (2.3.4.2)

The advantage of the equation above is that having information of geometry
parameters (zx, zy) of the surface, we need to know the velocity field defined at the
surface as function of (x,y) only, i.e. we don't need to know any flow out of the surface
to evaluate the surface gradient of the velocity field, also, the fact that now the parameters
z, u*, v*, w* are all functions of (x,y) only makes it possible to map this 3-D problem to
a 2-D space to be solved, this will become very useful in the numerical formulation
discussed later. Note that from now on we'll drop the * for velocity field.

Z

AN u(xyz) = u*(x,y)

Z=Z(x,y)

X

Figure 2.4 A surface flow U(x,y,z) defined on the non-Euclidean surface z=z(X,y)
embedded in the three-dimensional space can be rewrite as a function w*(x.y) of X,y
only.
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2.4 Membrane deformaiion rates: Inverse Problem
2.4.1 Integrated total dissipation power

One natural way to define a global scalar measure of the membrane deformation
rate mathematically, is to take the simple L2 norm of the tensor D"’

I=f[ (5757 510A
Once we have calculated DPP, then from Equations (2.3.3.8), (2.3.3.9) and (2.3.3.10)

1 = [ [DPPy;DPP;5+(D#P35)21dA (2.4.1.1)

Notice that for a Newtonian flow with constant and isotropic viscosity [, the total
dissipation power is

Hp

Hl z:6dA="E] ¢:¢4dA
2 2

(24.1.2)

where H is the slab thickness,
T is the stress tensor,
£ is the strain-rate tensor .

the L2 norm measure defined in Equation (2.4.1.1) is thus proportional to the dissipation
power of the particular flow field we use to define the subduction process. Finlayson
[1972] shows that in the ideal closed system with proper boundary conditions,
minimizing the dissipation power is the appropriate variational principle governing the
flow motion for both the Newtonian flow and the Power-Law flow. Our formulation is
not a closed system in that we have not included all the dynamics that control the flow.
Nevertheless, we are going to minimize the functional (2.4.1.1) to define a flow field
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with the least amount of membrane deformation rates that is compatible to the geometric
constrains setup by the slab configuration. In other words, we are not claiming that the
flow field of our calculation is the flow representing the actual subduction process.
Rather, the calculated flow field is the optimal flow field with the minimum membrane
deformation rate among all the admissible flow field that are compatible with the
geometric constrains.

Similar expression of Equation (2.4.1.1) for Power-law rheology is thus

2 1+1/n
I=j [[DppijDvPij+(DPPii)] 2 dA (2.4.1.3)

Again, physically, this is the dissipation power for the flow field with a Power-law
rheology. Notice that, when n -> oo this functional is simply the L1 norm measure of the
membrane strain-rate tensor. In summary, Equations (2.4.1.1), (2.4.1.3) then
mathematically complete our definition of "the configuration with the least amount of
deformation"”, i.e. in order to find the optimal configuration, the scalar quantity I is what
needs to be minimized.

A brief summary of the problem can now be mathematically posed as the
following. We want to determine the flow field [u(x,y),v(x,y),w(x,y)] and the slab
geometry z(x,y) associated with the subduction precess which minimizes the integrated
total dissipation power I, and satisfies the boundary constrains that

(1).  The flow field before entering the trench boundary is completely prescribed
by the known relative plate convergence motion.

(2). The geometry of the oceanic lithosphere before subduction overlays the surface of
the earth and is thus part of a spherical cap.

(3). The flow stays within the slab surface during subduction process, i.e. there is
no flow across the surface.

(4). The slab surface go through where position constrains are available, e.g.
hypocenters of slab earthquakes.
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Gij=PisGstPjt » DPij=1(Gyy+Gi) 2414

where

Ux Vx Wx
G uy Vy Wy
0 0 O

1+Zy2 'Zny Zy

P=A2 -zx2zy liz2 2z . A=VTtz, 2422

zx zy zx2+zy2

2.4.2 Inverting for flow field only

In this section we hold the geometry, and therefore the projection operators, fixed
and invert for the flow velocity field, we adjust the flow field in order to find the least
amount of deformation rates associated with the process of moving and contorting from
one geometric configuration (the spherical cap oceanic lithosphere) into a different
configuration (the subducted slab).

2.4.2.a Linear inversion for Newtonian Rheology

For a flow with Newtonian rheology, the inversion for flow field is then linear.

Suppose ¢l is a vector of parameters that specify the functions u(x,y), v(x,y) to be
determined, then

f j[DP IJaDP i, rop uanpp D A0
a[¢] ECREED

9Gqs,

Pi+Pis—1SP;p)
= a[¢] ! (2.4.2.a.1)

EOR )
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2.4.2.b Non-linear inversion for Power-Law Rheology

For power-law rheology, the inversion is similar except that it's no longer linear,

aD?P;  ADPPy ln
O 1Ly [1g0DPPy i+ Doy —J1aA=0 , To={D?P;iDPPy+(D#P;) 2 2n

4] 0] ol

(2.4.2.b.1)

This inversion can be attacked by iterating from an initial Newtonian solution. And then
by utilizing a "direct iteration method" [Zienkiewicz, 1977]; for each new iteration, use
the previous solution to evaluate the weighting Iy, Physically, the effects of the power-
law rheology would be to concentrate the deformation, i.e. increase the contrast of the
high vs. low deformation pattern.

2.4.3 Inverting simulténeously for the flow field and the slab geometry
2.4.3.a The non-linear inverse problem

The basic strategy in undertaking this complete inversion is briefly discussed in
this section, more details on the non-linear optimization is discussed in Appendix.B. As
usual, non-linear optimization starts with an initial model and then iterate it's way down
to adjust increments on the adjustable variables in order to get to the sought minimum. In
the nth step, we can expand the "dissipation power" functional I to be minimized near the
model calculated in the previous (n-1)th step by hyperbolic expansion [Bevington, 19691,
ie.

M=17-1-B;(Ad)j+o(AP)j(Ad)K

ol 1, dl
Bi=-(—) y Qik=A——)
01 T T 2 0090k ne1

1
(A0)=0]"-]' 2.43.2.1)
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To make I minimum

oF =-Bj+0k(AQ)=0
a(A¢)j 2.4.3.a.2)

solve the linear system of equations

a(Ad)=B (2.4.3.2.3)

for 8¢,
Creeping vs. Jumping iteration & Damping vs. Smoothing regularization.

Generally, Equation (2.4.3.a.3) is an ill-posed problem, certain regularization has
to be imposed to stabilize the inversion. Scales et. al. [1990] discussed different
regularizations and their effects on the convergence rate for Least-Square problems.
Discussion for more general optimization problems is briefly shown here.

First of all, there are two alternatives to approach Equation (2.4.3.a.3),
the Creeping algorithm:

©)o"=6"L+ortp (2.43.2.4)
and the Jumping algorithm :
(Do =at (o™ 1+p) 2.43.2.5)

where of is the generalized inverse of o Comparing Equations (2.4.3.a.4) and
(2.4.3.a.5),

Mg ={ortor-Tjp" (2.43.26)

the difference of these two solutions depends on the way how the generalized inverse of
o is applied. In Equation (2.4.3.a.4), ot operates on [} directly, implying that Ad is the
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‘minimum-norm solution. The term "creeping" simply indicate that in each iteration
during the optimization process, the perturbation from the initial model are minimized.
On the other hand, in Equation (2.4.3.a.5) the way a ¥ operates forces the solution vector
9 itself to be minimize, and is thus refereed as "jumping" algorithm. In other words, the
difference in Equation (2.4.3.a.6) are solely components of the initial model in the null
space of at. If the initial model contains components within the null space of o, these
components will be sorted out by the jumping algorithm but not by the creeping
algorithm.

The most common ways to regularize Equation (2.4.3.a.3) are usually achieved
by imposing an additional optimization constrain or penalty of the form:

x=IA[(R®) T(RY)] 2.43.272)

or
A=I+AI(R(AD)) L(R(AG))] (2.4.3.2.7b)

when R=I, Equation (2.4.3.a.7b) becomes

x=I+MIA¢"2 (2.4.3.2.8)

Rewrite Equations (2.4.3.a.1), (2.4.3.a.2)

%=1 1-Bi(AQ);+i(AD)(AD)HAIAGI

N oADK+ 2B (A
9(A0); (2.4.3.2.9)
ie.
[o+A I]1(AG)=P (2.4.3.a.10a)

similarly, if we apply the same derivation for Equation (2.4.3.a.7a), we get
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[a+7~'II(A¢)=B-X'¢ (2.4.3.a.10b)

From discussions in the previous section, clearly, if we choose regularization Equation
(2.4.3.2.10a), we will be using a "creeping" scheme where the perturbations in each step
are minimized. This is a simple but robust way to stabilize the solution of Equation
(2.4.3.a.3) although the convergence is usually slow. From the physical point of view, if

we are able to make good initial guess then the creeping scheme can in a sense display the
evolution of the structure during each iteration.

Alternatively, in the other popular "smoothing" regularization,
R=V2 is used instead of R=I, we then have

[e+A (VD) (V2] (Ap)=P (2.4.3.a.11a)

and

[+ (V2 T(V2))a0)= -1 ¢ 2.4.3.2.11b)

2.4.3.b Parameterization and Finite Element Interpolation

To formulate a discrete parameterization of the flow field by a finite number of
variables, we first cover the region of interest by a set of inter-connected non-overlapping
triangles. Each vertex that is shared by the neighboring triangular element is a "node",
and we assign a global label to it, say we thus have Ne elements and Np nodes. This
mesh generating procedure for a curved boundary can be easily automated as discussed in
Appendix C. In a chosen Cartesian coordinate system, associate 5 degrees of freedom to
each node: the x- and y-components of the velocity vector (u and v), the height (or the
depth) (z), and the slopes (zx and zy) of the surface . As discussed in section (2.3.4), all
the variables can be transformed to be functions of x,y only, and the actual mesh we will
be dealing with is the projection of the..original mesh onto the X-Y plane as shown in
Figure 2.4, this greatly simplifies the computation.
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Using the nodal variables and the triangular mesh thus constructed, we can then
form patchwise continuous representations of the flow field. To get robust estimates of
various spatial derivatives of the flow field using these patchwise continuous
representation in order to get approximations of the membrane strain rate tensor, certain
continuity (or compatibility) condition have to be considered.

Linear CO element

The easiest way to devise a patchwise representation of a certain function based

on a triangular grid is to simply assume that the function value varies linearly within a

single element. For an element with nodal variables {f1, f2, £3], we assume that within
the element

f(x,y)=ax+by+c (2.4.3.b.1)

Since we have f1, f2, f3 at the vertices to determine the three unknown coefficients a,b,c,
f is completely determined within the element. Furthermore, since two neighboring
element share one common edge and two nodes as shown in Figure 2.5, the values of f
interpolated on the common edge are uniquely specified by the two common nodal
variables. This then guarantees that the function f is continuous across any element
boundary. This continuity is true for f but not for derivatives of f, and is thus called C?
continuity.
As,Bs

B2

AZIBI
Ay
Figure 2.5 Continuity across the shared boundary of two neighboring triangular
elements has to be secured.

In the Finite Element Method (FEM) community, the interpolation scheme is
usually expressed in terms of the "Local Area coordinate" and "Shape functions”, which
simplify the algebra involved. The "Local Area coordinate” is defined as shown in Figure
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2.6, where any point P(x,y) within the element can also be addressed by a new set of
coordinate (L1, L2, L3), where

L= Area of pq1q2
Area of 430102

and L1, L2 are defined in the similar fashion.

q3(X3,¥3)

p(x,y)

q2(X2,Yz)
q1(X1,¥1)

Figure 2.6 Definition of local area coordinate system.

It can be shown that in general, the transformation between these two coordinate systems
is

x=Lixi , y=Liyi , i=1,2,3

Li=ajx+biy+ci , ai=(yj - yk/2, bi=(xk - Xj)/2, ci=(xjyk - Xkyj)/2,

i,j,k is in cyclic permutation and ranges from 1 to 3. (2.4.3.b.2)

Having defined the Local Area coordinate system, we can then express the representation
of the function in terms of the "Shape functions";

£f=NLif; , offox =(@N1fx)ifi , offdy = ON1/y)ifi (2.4.3.b.3)

Nli is the shape function which is function of Lj, fj are nodal variables. In the simple
linear element;

Nli=L; , (ON1/ox)j=dLi/ox=aji , (ON1/3y)i=0Li/dy=bi (2.4.3.b.4)
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Quadratic C0 element

As shown in Figure 2.7, this element has 6 nodes, i.e. 3 vertices and 3 mid-side
points to allow quadratic variations of f in the element,

f=N2if; , offox = (ON2/ox)ifi , offdy = (ON2/dy)ifi, iranges from 1 to6.
N22k-1=Li(2Lk-1-1),
N29p=ALkLk+1 , k ranges from 1 to 3, if k+1>3 then k+1=1. __(2.4.3.b.5)

ds

de Q4

q3
q q2

Figure 2.7 Nodes location of the quadratic C? element.

Clough-Tocher cubic cl element

For reasons to be discussed later, we will need a C! element for the interpolation
of z, i.e. the continuity of z, zx, zy across the element boundaries have to be all secured.
It has been pointed out [Akima, 1970] that a complete 21 degrees of freedom quintic
polynomial is needed to achieve this if we follow the usual procedure to construct the
shape functions. Alteratively, by introducing a "seaming technique" [Clough and Tocher
,1965] Clough and Tocher were able to develop a 12 d.o.f cubic C1 element which can
then be further reduced to a 9 d.o.f element by sacrificing some flexibility [Lancaster and
Salkauskas,1988). General configuration of the element is shown in Figure 2.8, the
shape functions of this element can be found in Lancaster and Salkauskas [1988].
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9z az)

(zlsi'l%_ 2

@, 9z d2

| |
9z
-3—3?'3_)7)1 (a_n-)s

Figure 2.8 Nodal variables of the C! Clough-Tocher element.

2.4.3.c Setting up the inversion

To simplify the computation, we tend to utilize lower order interpolation wherever
it is possible. For the parameters u,v we thus choose the linear element. To make the
flow field stay on the surface, the constraint w=uzx+vzy must be satisfied. Under this
condition, in spite of the fact that w is not an explicit variable used in the parameterization
(as it can always be computed from other parameters), the continuity of the implicit
computation of w must still be insured, otherwise, we would have tears in the flow field
which is not only physically unrealistic but also would greatly underestimate the
membrane deformation. This then leaves no other alternative than to use at least Cl
interpolation for z to guarantee the continuity of zx, zy and thus w. This is the basic
rationale for using the Clough-Tocher element for z. Again, although w can be written
implicitly in terms of u, v, zx, zy, the lowest order interpolation for w would be quadratic
to account for variation of w originating from both variations of (u, v) and (z, zy).

Another advantage of utilizing Cl interpolation for z is that if we choose to go
with the "Smoothing" regularization as discussed in section (IL.3.2.a), it is very
convenient to write down the R operator by

o =(V2N3.1 (V2N 3.
RlJ_(V N 1)(V N J) , 1,jranges from1t0 9
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N3 are the nine shape functions of Clough-Tocher element (24.3.c.1)

In summary, for the mesh constructed on the X-Y plane in a region mapped by
projecting the surface region on the X-Y plane, we parameterize each node with 5 d.o.f
(u, v, z, zx, zy) and the patchwise representations for a single element are

aN; aN;
=N R =a—1ny: . =
u=NYuj , ux=—s—tuj o, uy 3y Ui
aN1 N
V=N v , V =_.__lv- , V =—-1.V.
ivi X% 1 Yy oy 1! (2.4.3.c.2a)

2. 2.
= 2. . =aN 1 . =aN 1 .
w=N4w; , Wy 35 M 0 Wy 3y wi

Wok-1=Uk(Zx)k+Vk(Zy)x  , no summation

me(%)(zx)"‘kﬂm)(zv)%

2
(zx)"k, ()" are zx, zy evaluated at the kth mid-side. ______ (2.4.3.c.2b)
3. 3.

=N3:7: JON% _oNY
z=N%z; , zx= ox 4o Zy<T dy Z
z1, z4, 27 z i
2),25,z8  are zx variables at vertex 2
23, 26, 29 zy 3 (2.4.3.0.2c)

We now have the complete representations that is at least C0 in the velocity field
and Cl in the geometry, it is then straight forward to formulate the numerical scheme to
undertake the inversion.

In a single element, with initial guesses on the five d.o.f for each vertex, we have
15 element d.o.f

T .
P15x1=IW, v, 2, 2¢; 2y}l » =123 (2.4.3.c.3)
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we can then calculate P, G, L, D according to Equations (2.4.1.4) and (2.4.3.c.2) and
thus the integration

I°=”[DijDij+(Dii)2]1i—21mdA
= [DijDij"'(Dii)z]H%mAdXdy

(as defined before, A=V 1+zx2+zy2 is the area element at each point) 2.43.c.4)

can be easily calculated by numerical integration scheme (e.g. Gauss' weighted sum
algorithm [e.g. Zienkiewicz, 1977]).

To proceed with the inversion, we need to compute for each element the 15 by 15
o€ matrix and the 15 by 1 B€ vector as defined in Equations (2.4.3.a.2) and
(2.4.3.a.3), the details of these derivation is presented in Appendix D.

2.4.4 The Simple experiment

The Simple experiment is designed to show both the forward computation of the
membrane deformation and how the optimization works. Starting with a model geometry
that is a spherical cap with radius 600 km, the minimum membrane deformation rate
solution for this geometry is to have a rotational flow field on this surface. In fact, this is
the only way to have a solution free from internal membrane deformation. We then
slightly perturb this geometry by adding a round hill of height 30 km on top of the
original spherical cap. An arbitrary rotational flow field is then imposed on this surface
by entering the experimental region from the left edge. The first calculation is then to
calculate the membrane deformation rates for this non-ideal configuration (Figure 2.9).

For the sake of comparing membrane deformation rates of different
configurations, We defined the quantity

A (2.4.4.1)
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where n is the power of the power-law rheology,
A is the total area of the surface,
Iis the integrated total dissipation power defined in Equation (2.4.1.3)

This then represents root mean square effective strain-rate (RMS) for Newtonian
rheology; and mean effective strain-rate (MES) for Power-Law rheology with n=ce.

In Figure 2.9, the rotational flow field outside the anomalous region is free from
any internal deformation while the flow crossing over the hill is first compressed in the
flow direction facing the hill and laterally extended, and then the exact opposite
mechanism can be observed for flow over the back side of the hill.

We performed the first optimization experiment by fixing this non-ideal model
geometry, setting the boundary conditions on the left entering edge to have fixed in-
coming flow field and then invert the flow field within the experimental region that
minimizes the total dissipation power (Figure 2.10). This experiment on inverting for the
flow field only shows how the flow field responds by adjusting itself to reduce the
membrane deformation rate caused by the hill. The result of this optimization as
compared to the forward computation reduces the RMS by a factor of 2.5. A similar
optimization experiment adopting Power-Law rheology (n=10000) is then undertaken
(Figure 2.11) to compare with the previous Newtonian rheology experiment (Figure
2.10). Comparison between Figure 2.10 and Figure 2.11 clearly demonstrates the
effects of the Power-Law rheology that it forces the deformation to be more concentrated.

A full inversion is then executed by allowing the geometry within the region to be
adjusted simultaneously with the flow field. Ideally, the optimization iterations would
converge to the strain-rate free solution with the geometry adjusted to the perfect spherical
cap and the flow field be tuned to become pure rotational. The boundary conditions in
this experiment are such that the geometry of the surface on the left edge is fixed and the
flow field on the two corner points defining the left edge are fixed. The results shown in
Figure 2.12 is a series of iterations. After 25th iteration where the overall mean effective
strain-rate is reduced by a factor of 2000, essentially vanishing; the added hill has been
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wiped away to force the surface back to the ideal spherical shape and the flow field is
approaching a perfect rotational flow field, i.e. the solution converges to the ideal
solution as expected. In summary, these experiments show the forward computation of

the membrane deformation rate. It also confirms the capability of our inversion scheme
to seek for the optimal geometry and flow field .
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Chapter 3 Cascadia Subduction Zone

3.1 Tectonic framework and observations

Although lacking in typical signatures associated with subduction zones (deep
oceanic trench, highly anomalous gravity profile etc.), the relative convergence between
the Juan de Fuca Plate and the North American Plate along Vancouver Island and
Washington-Oregon coast is well documented [e.g. Nishimura et. al., 1984;
Riddihough, 1984]. Reproduced from Taber and Smith [1985], Figure 3.1a shows a
brief sketch of the tectonic setup of this subduction zone and the estimated convergence
rate along different parts of the trench. The trace of the trench, as shown in Figure 3.1a,
changes its azimuth from nearly NS south of 47°N to approximately N30°W north of
48°N, and thus shows a concave oceanward bend adjacent to Olympic Peninsula.
Landward of this sharp backward-curved (as compared with other trenches) bend, there
are several anomalous geophysical and geological features:

(1).Concentration of seismic activity. The well-located microseismicity recorded
by the Washington Regional Seismograph Network (WRSN) during the past two
decades is concentrated in the vicinity of the Puget Sound Basin (Figure 3.2a).
Extracting earthquakes within the down-going slab from both this catalogue and Pacific
Geoscience Center catalogue, and also including events greater than magnitude 6 during
the last century (Table 1) that are believed to occur within the subducted slab, we plot the
total seismic moment release rate by first subdividing the area in Figure 3.3 into 20 km
by 20 km map-view cells. We then convert bodywave magnitude to seismic moment
release by using emprical formula:

log Mg=2.4 xm; + 10.1 (3.1)

and sum all the seismic moment associated with slab earthquakes that falls within each
cell. The distribution of seismic moment release of subcrustal events displays an even
more pronounced concentration beneath the Puget Sound Basin, extending from
Olympia, Washington to Victoria, British Columbia . As shown in Figure 3.3 the
contrast is at least four orders of magnitude.
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Table 1. Earthquakes with magnitude ~6 or larger that are inferred to be within the

Date

01/11/09
11/13/39
02/15/46
04/13/49
04/29/65

Long. ®°E) Dep.(Km) Mag.

subducted slab in this century.
Lat. °N)
48.7 -122.8 75
47.4 -122.6 60
47.3 -122.9 60
47.1 -122.7 54
474 -122.3 59

6.0
6.2
6.2
7.0

6.5

seismic moment release (dyne-cm)

1.5 x 10% [Baker & Langston,1987]
1.4 % 10%® 1 angston & Blum, 1977]
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Figure 3.3 Total seismic moment release within the subductmg plate of this century in

the Cascadia Subduction Zone
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Figure 3.4 Cross sections of
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the shallow structure of the Cascadia slab underneath

Vancouver Island and the Olympic Mountains [after Davis and Hyndman, 1989]
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(2). Slab geometry. The low rate of subcrustal seismicity makes detailed
mapping of the Wadati-Benioff Zone (WBZ) of this subduction zone rather difficult in
general. However, a well defined cross section of the shallow slab seismicity beneath
the Olympic Peninsula-Puget Sound area which is coincident with the axis of the trench
bend, defines a generally planar WBZ with a dip around 10° e.g. Crosson and Owens,
1987, see also Figure 3.4, Figure 3.5]. Rogers et al. [1990] on the other hand, shows
that a steeper ~18°dip fits the seismicity underneath Vancouver Island which is consistent
with the slab shape by combining both slab seismicity and evidence from seismic
reflection studies shown in Figure 3.4 which is reproduced from Davis and Hyndman
[1989]. The slab dip to the south underneath Oregon is poorly resolved, Weaver and
Michaelson [1985] suggest that the Cascadia Slab is divided into two segments, and has
steeper dips beneath the southern segment than beneath the northern segment. Four
small earthquakes that are inferred to be slab events near Portland, North Oregon also
suggest a possible steeper dip to the south. Figure 3.2b is reproduced from Crosson and
Owens [1987] which shows a proposed Arch structure representing the possible
buckling of the subducted Juan de Fuca plate [see also Weaver and Baker, 1988] with the
arch axis coincident to the axis of the trench bend. This Arch structure is consistent with
Teleseismic P-to-S receiver function analysis [Crosson and Owens, 1987; Owens et al.,
1988; Lapp et al., 1990] and recent tomographic studies {Vandecar, 1991]. Also,
tomographic images by Rasmussen and Humphrey [1988], and Vandecar [1991] indicate
that after passing beneath the Puget-Sound region the slab goes to a steeper ~55°dip.
Figure 3.5 shows the cross-sectional view ( A-A' in Figure 3.2a) of the slab seismicity
around the Puget-Sound region and our attempt to construct plausible slab shapes
consistent with the shallow slab seismicity and the information from tomographic studies
in greater depth, using the "minimum change of curvature" algorithm described in chapter
2. In Figure 3.5(a), the slab bends and unbends within 60 km from the deformation
front to achieve a 100 dip, this shape is consistent with the shallow seismicity but not
with the few deepest events and the tomographic results. Figure 3.5(b). on the other
hand, shows a wider bending and unbending zone that the slab reaches 550 dip after it is
already 200 km deep, the shape does not quite follow the trend delineated by the shallow
seismicity. Finally, Figure 3.5(c) shows a slab shape that has two bending-unbending
zones, the shallow one is identical to the one in Figure 3.5(a); the secondary bend occurs
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Distance from the trench( km )
100 200 300 400 ,

Depth (km)

Depth (km)
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120

20
Figure 3.5 Slab seismicity projected on A-A' cross section marked on Figure 3.2a,
"minimum change of curvature" algorithm described in chapter 2 are used to fit this
cross-section. (a) Slab bends sharply in the first 50 km after passing through the trench
to attain a 100 dip. (b) Slab bends smoothly to a dip of 550 when it reaches 250 km
depth. (c) Slab shape composited by two bends, the shallower structure above 50 km
depth is similar to (a) while a secondary smoother bend occurs between depth range 40-
100 km where most of the slab earthquakes are concentrated.
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in the depth range 40-100 km where most of the slab earthquakes are concentrated, this
shape seems to be the favorable one that is consistent with most of the constrains.

In general, the proposed arch structure is compatible with other geophysicai
observations, e.g. seismic reflection and refraction studies: Snavely and Wanger [1981],
Green et al. [1986], Keach et al. [1986], Taber and Lewis [1986], Yorath et al. [1987].
However, the tightness of the arch and the slab structure at greater depth further north
and south are not constrained by these observations.

(3). Geological observations. Coincident with the arch axis in Olympic
Peninsula is the Eocene to Miocene highly deformed sedimentary and meta-sedimentary
accretionary complex which is bounded to the north and east by the horseshoe shaped
Eocene Cresent basalts [Tabor and Cady ,1978; see Figure 3.1b]. The wide and deep
accretionary wedge is confined to less than 100 km along arc. This unusual distribution
has been attributed to the shallower slab dip beneath the Olympic Peninsula [Davis and
Hyndman, 1989; Brandon and Calderwood, 1990]. By applying the "Critical Taper
theory" of Davis et al. [1983], Davis and Hyndman [1989] argued that the slab dip angle
is greater than 110 beneath the continental shelf around the Vancouver Island region, a
dip too steep to allow upward growth of an accretionary prism; but to the south, beneath
the Olympic Peninsula of Washington coast, the slab dips more gently on top of the
proposed arch structure, allowing the accretionary prism to grow upward well above sea
level to form the Olympic Mountains (Figure 3.4).

We postulate that the arching structure along with other important observations
such as the concentration of slab related seismic activity (both in terms of the seismicity
and the total seismic moment density) beneath Puget Sound that is coincident with the
axes of the arch; and the anomalous high Olympic Mountain accretionary prism located
on top of the arch and narrowly restricted around the landward corner of the bend of the
trench are all linked directly or indirectly to the trench geometry. A primary goal of this
study is thus set to investigate and quantify the possible relationship between these
observations and the trench geometry in this subduction zone.
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3.2 Examining the effect of the backward-curved trench
3.2.a Inverting for the optimal flow field: The Constant-Dip experiment

The fundamental goals in undertaking modeling experiments for this subduction
zone are two fold. First, based on the coincidence of the axis of the concave-oceanward
bend of the trench and the top of the proposed arch structure, we will examine the effect
of the trench shape on the slab geometry. In other words, can the trench shape actually
force the forming of the arch? A second question is: how much is membrane
deformation reduced by forming the arch structure? Finally, how does the deformation
regime correlate with the seismic activity? To keep the geometry simple, the deformation
front is digitized and fit with a hyperbolic curve. A finite element mesh is generated for
the curved boundary as described in Appendix A. We then construct 2 working model
slab geometry with a constant 20° dip along the entire trench. The controlling cross
section is built by the "minimum change of curvature" algorithm discussed in chapter 2,
and has piecewise continuous change of curvature. Fixing the geometry of this working
model, we invert for the flow field that will yield the least amount of membrane
deformation rates. The boundary conditions are that on the surface of the Earth prior to
entering the trench, the flow field is constrained to be the relative plate motions with the
Euler pole set at (29.11°N, -112.72°E) and a angular velocity of 1.05° per million years
[Nishimura et al, 1984). The model geometry and the result from flow field inversion
for this Constant-Dip model is shown in Figure 3.6. The bend of the trench shape
clearly imposes a smoothly varying along-arc compression and reaches values as large as
2 x 1016 sec-! and integrates to strains of several percent.

3.2.b The full Inversion: The Shallow-Dip experiment

To test our hypothesis that the arch structure is a direct result of the unusual
trench configuration, we formulated the inversion described in chapter 2 so that both the
flow field and the slab geometry can be adjusted simuitaneously in order to achieve the
optimal configuration with the least amount of in-plane deformation. In other words,
instead of fixing the slab geometry, we only set boundary conditions on the northern and
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southern edges of the study region to have a 20° dip below a depth of 50 km. Having
defined the boundary conditions on the geometry, we set up the constant-dip slab
geometry as in the previous flow field inversion experiment as the initial model.
Boundary conditions on the flow field are identical to those used in the previous flow
field inversion. We then let the solution iterate to convergence. The result for this
Shallow-Dip I experiment (Figure 3.7) is a very tight arch that is consistent with the
seismicity and the results from the receiver function analysis [Crosson and Owens, 1987;
Owens et al., 1988; Lapp et al., 1990]. Figure 3.7(b), 3.7(c) shows the resulting pattern
of the distribution of the in-plane deformation which clearly indicates a very effective
reduction of the total in-plane deformation. The arch structure reduces the RMS effective
strain-rate (see section 2.3.3 for definition) by a factor of five over the Constant-Dip
experiment(compare Figure 3.6 and Figure 3.7). The concentration of strong along arc
compression near the axis of the bend remains a distinct feature.

In the Shallow-Dip II experiment, a Power-law rheology (n=100000) instead of
the Newtonian rheology for the Shallow-Dip I experiment is utilized. Results for this
experiment is shown in Figure 3.8. As a comparison, this experiment yields more
concentration of high effective strain-rate with higher contrast to the background (Figures
3.8(b) and 3.8(c)) as compared to the Shallow-Dip I experiment (Figures 3.7(b) and
3.7(c)).

Since the geometry is practically identical to the one shown in Figure 3.7(a), it is
the iso-dip contour that is shown in Figure 3.8(a). The 10° and 129 slab dip contours
which bound the 11° critical dip according to the "Critical Taper Theory" of Davis et al.
[1983] show a clear triangular wedge that extends inland in the Olympic Peninsula
region, mimicking the distribution of the Cresent basalt backstop and the locus of the
thick accretionary wedge material. Figure 3.9(a) shows the perspective view of the
resulting optimal slab geometry with the slab seismicity; 3.9(b) is the same contour plot
of the slab structure as in Figures 3.7(a), and is reproduced here to be compared with the
regional trend of the volcanic line (Figure 3.8(c)) [Dickenson, 1970].

The result of these non-linear optimizations (both of experiments Shallow-Dip I
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and Shallow-Dip II) provide a plausible model for the underlying shallow structure of
Cascadia Slab that is consistent with the observations mentioned earlier in this chapter.

The total seismic moment release can be viewed as a reflection of the undergoing
deformation. Bevis [1988] derived a simple formula to relate the seismic moment release
and the average strain rate for intra-slab earthquakes,

=M
2uWLHt

where € is the averagé effective strain rate, is the rigidity of the slab,
M is the total seismic moment release in a time period t,
W,L,H are along-strike width, down-dip length , slab thickness.

Assuming p = 7 x 1011 dyn / cm2, W = 200 km, L= 200 km, H 10 km, t = 90 years for
the Cascadia slab, we get a strain-rate of 2 x 10-16 sec-l. Note that over 99% of the
summed moment release comes from the 5 events in Table 1. The predicted peak
membrane strain-rate is about 1.5 x 10-16 sec-!: which is the same order of magnitude as
calculated from seismic moment releases. We also estimated the mean bending strain rate

to be also around €pending = 2 % 10-16 sec! based on simple profile shown in Figure
V(dx/ds)H
3.5¢ and the simple formula described in Section 2.3.3 i.e., 4 , where dx/ds is

the change of curvature along the path, H is the seismogenic thickness of the slab and v
is the convergence rate. The membrane strain rate and the bending strain rate are thus the
same order of magnitude comparable to scalar strain rate estimated from seismic activity.

The modelling results, however, do not provide adequate explanations for two
observations:

(1). The predicted deformation-rate contrast comparing the peak value with the
background is only within one order of magnitude while the seismic moment
contrast is at least 3 orders of magnitude. The Power-law rheology improves this
but still does not have the right order of magnitude.

(2). This model did not take account of the evidence from tomographic studies which
suggests that the slab goes to a steeper 550 dip at greater depth.
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3.3 Effect of bending an arch: The Arch-Bending experiment

Our first hypothesis, examined in the previous section, is that the abnormal bend
of the trench forces the occurrence of the arch in order to accommodate the room problem
[Rogers, 1984] it creates. However, the slab has to go to a steeper dip at greater depth as
indicated by tomographic studies [Rasmussen and Humphrey, 1988; Vandecar, 1991].
As a result, we are faced with a situation of bending an arch. This will be very difficult
compared to bending a flat sheet. We designed the second experiment with relatively
simple geometry to test our second working hypothesis that the concentration of slab
seismicity in the Puget-Sound area is caused by concentration of in-plane deformation
when the arch is bent to go to steeper dip.

For this Arch-Bending experiment, a simple arch is built in a rectangular region
with normalized length 200 km by 200 km as shown in Figure 3.10(b), on the left edge
the surface is relatively flat to the north and to the south. In the middle, a Gaussian-
shaped arch with the peak height 40 km is superposed on the flat surface; this non-planar
surface is then bent along a north-south axis in the middle. A flow field with constant
speed within the surface and directed normal to the left entering edge is then imposed on
this surface. Fixing the model geometry and the flow boundary conditions on the left
edge, a flow field inversion is done by letting only the flow field adjust itself to achieve
the minimum-membrane-deformation-rate configuration (Figure 3.10(a), (b)). Notice the
widely-spread high membrane deformation before the bending occurs. If, on the other
hand, we allow the geometry to be adjusted except on the north and south edges while
holding the flow field fixed (Figure 3.10(c)-(f)). The result of the inversion shows a
gradual reduction of total membrane deformation while concentrating the high
deformation in the area near the arch axis and just before the bend starts to take place.
After 30 iterations, the arch in down-dip direction is essentially removed. Results for the
full inversion are shown in Figure 3.10(g)-(j) by letting both the flow field and the
geometry be adjusted simultaneously. While the boundary conditions on the flow field
are the same (the velocity vectors on the left edge are fixed) the boundary conditions on
the geometry are sightly different: for (g),(h), the two cross sections defining the
northern and southern edge are completely fixed as before; while in (i),(j) only the depth
at the two points in the upper right and lower right comners are fixed. Not surprisingly,
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(1),(j) yield the lowest membrane deformation rate. The results of both (g),(h) and (i),(j)
show an interesting effect that while both the geometry and the flow field are allowed to
be adjusted, it does not require the arch to be flatten out after the bend to get to a lower
deformation configuration as compared to the result shown in (e),(f) where it does
require the arch to be wiped out since in that experiment, only the geometry is allowed to
be adjusted. The overall pattern of the optimal deformation rate distribution are generally
the same. In the down dip side, there is practically no significant deformation; within the
bending zone, the deformation is low near the axis of the arch; before the bending area,
the deformation is concentrated around the arch especially right before encountering the
bend. We suspect that the concentration of seismicity underneath Puget-Sound area is
the result of an analogous deformation pattern.

3.4 Incorporating the information of a steeper secondary bend: The Steep-
Dip experiment

. Combining the essence of experiments described in 3.2 and 3.3, we use the arch
structure from the experiment shown by Figure 3.2 as the initial model for a new
inversion where the geometric boundary conditions on the northern and southern edges
are forced to dive to a steeper 559 dip. The results of this Steep-Dip experiment that
includes the complete inversion of tuning both the flow field and the slab geometry in
order to reduce the membrane deformation rate are shown in Figure 3.11. The slab
geometry goes to a simpler configuration (Figure 3.11(a)) with an even tighter arch
structure at greater depth. The deformation near the arch axis is much higher and more
concentrated (Figure 3.11 (b) and (c)) than in the Shallow-Dip I experiment(Figure 3.7).

To test the uniqueness of our solution, we repeat the experiment with identical
boundary conditions, but a different starting model. Cross-sections for the new starting
model do not vary along strike. The result of this inversion converges to a solution that
is essentially identical to what is shown in Figure 3.11 implying that the predicted arch is
a robust result forced by the shape of the trench instead of being caused by the seed arch
in the initial model. Note that the 550 dip in this Steep-Dip experiment forces strain rates
about 3 times greater than the shallower-dip (20%) models.
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Figure 3.10 The Arch-bending experiment on the effects of bending an already
arched, non-flat surface. (a), (b) are orientations of principle axes of the membrane
strain rates and the distribution of the effective strain rate (see the caption of Figure 2.9)
for the optimization by inverting for flow field only. (c)-(f) are results of inverting for
optimal geometry only (holding the flow field fixed) using (a),(b) as the initial model.
(c), (d) are the same plots after 15 iterations for the complete nonlinear optimization
involving both the flow field and the model geometry; (e), (f) are after 30 iterations. (g)-
(j) are plots for similar optimization as in (c)-(f) except that both the flow field and the
geometry are allowed to be tuned, also, the boundary conditions on the geometry are
more relaxed. Instead of fixing the entire northern and southern edges, (g),(h) allow the
three points sitting in the bending zone to be free to adjust while (i),(j) only fix the two
corner points in the upper- and lower right.
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3.5 Conclusions and discussions

The experiments described in section 3.2, 3.3 and 3.4 leads us to the following

conclusions:

(a).

(b).

(c).

(d).

The arch structure of the subducted Cascadia Slab underlying Olympic Mountains
and the Puget-Sound basin is a natural response of the subducted slab trying to
accommodate the room problem as the spherical oceanic lithosphere subducts at a
trench with a backward-curved shape.

Strain rate estimated from the seismic moment release calculated for the slab
earthquakes of the last century are about the same order of magnitude as the
calculated membrane and bending strain rates.

As the arch forms, the shallower slab dip on top of the arch provides a better
opportunity to form a thicker accretionary prism. Consistent with the Critical Taper
theory, the iso-dip contours of our predicted arch provides a reasonable explanation
for the origin of the Olympic mountains and the the reason why it is laterally
confined narrowly near the axis of the concave-oceanward bend of the trench in the
along-arc direction. The shape of the circumferential backstop (the Cresent
formation) seems to be consistent with the tightness of the predicted arch.
Although the predicted arch seems to have an even shallower dip as compared with
the dip revealed from slab seismicity, the tightness of the arch structure is
consistent with the P-to-S receiver function analysis. Also, undulations in the trend
of the volcanic line are consistent with the predicted slab structure.

By subducting to a steeper dip at greater depth (>100 km), the already formed arch
has to be bent, this might cause the concentration of the seismicity underneath the
Puget-Sound area. The predicted concentration as shown in Figure 3.11c,
however, is not as dramatic as revealed from seismic moment release shown in
Figure 3.3. There are two possible explanations for this, one is that the one
hundred year sampling window used to construct Figure 3.3 is too short, in other
words, there might have been big historical events outside the Puget-Sound area.



(e).
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The other plausible explanation is that the seismic activity becomes significant only
when the local deformation rate is higher than certain threshold level. Also, the
increased crustal seismicity near Puget Sound that is over the predicted arch may
also be related to the arch structure. One speculation is that whereas the 200 dip
north and south of the arch may be in local dynamic equlibrium, the arch geometry
may not be in local dynamic equilibrium, producing large shear stresses in the crust
above the arch.

The experiments incorporating the steeper 550 dip as boundary conditions predicts
an even more pronounced arch. However, tomographic results [Vandecar, 1991]
do not indicate a noticeable shallower slab dip at depths exceeding 100 km
underneath the Puget-Sound region compared to areas further north and south.
This points out one serious defect in our formulation. We did not include important
dynamic controls such as gravitational pulling. In other words, our formulation let
the slab surface change its configuration in order to seek the geometry that reduces
membrane deformation. In the case of this subduction zone, forming an arch is an
efficient way to achieve this reduction. However, forming the arch is against the
effect of gravity. Adding the effect of the gravitational pulling might balance part of
the tendency of forming an arch, and in return would increase the deformation
within the slab underneath the Puget Sound area.

From his tomographic study of Cascadia Slab, Vandecar [1991] suggest that the
slab is torn at a depth near 100 km beneath Oregon. If this is the case, the need to
form a pronounced arch at greater depth in order to reduce the membrane
deformation as predicted in our steep-dip experiment will be relaxed. Our
calculation is performed with respect to the current configuration of the trench, and
based on the assumption that the slab is continuous across the entire subduction
zone. The question of whether the tear is present or not is not directly resolvable
by our calculation.



Chapter 4 Preliminary experiments on Alaska-Aleutian and
NW-Pacific

4.1 Alaska-Aleutian Subduction Zone
4.1.1 Slab seismicity, slab geometry and focal mechanisms

Figure 4.1 is reproduced from Kienl et al. [1983] which shows the seismicity and
the tectonic framework of Alaska-Aleutian Subduction Zone. The relative plate motion
between Pacific and North American plate [Minster and Jordan, 1978] is nearly normal to
the trench in the eastern Aleutians but almost parallel to the plate boundary in both
southeastern Alaska and the western Aleutians. We plot the map view distribution of the
seismic moment release (Figure 4.2(a)) computed for earthquakes below 70 km from
ISC bulletins (1964-1984), and from large historical slab earthquakes in this century
from Astiz et. al. [1988]. We also plot the same seismic moment release projected to a
cylindrical surface roughly parallel to the along-arc direction (Figure 4.2(b)). The most
immediate impression indicated by these plots is that the there are two zones where
seismic activity seems to concentrate. One is around the Gulf of Alaska where the trench
has a concave-oceanward shape and the other is in the central Aleutians where the trench
seems to have the tightest curvature. The Aleutian slab geometry is relatively well
constrained by Wadati-Benioff seismicity. The decrease of maximum depth of seismicity
from 250 km in the central Aleutians to 50 km toward the west is explained by Creager
and Boyd [1991] to be caused by along-arc variation of the slab's thermal structure.
Seismicity rate is reduced in the southeastern Alaska region. However, by combining
locally recorded events and evidence from seismic reflection profiling, Page et al. [1989]
mapped the shallower structure of the Wrangell zone. This zone extends to a depth of at
least 100 km beneath Wrangell volcanos and at least 150 km in lateral extension (Figure
1.5d). The local strike direction at the eastern edge of the Aleutian Wadati-Benioff zone
is 900 from the strike of the Wrangell zone, and the region between the two zones is
totally aseismic down to the detection level of the local array [Figure 1.5d, and Page et
al., 1989]. They favor a continuous buckled slab structure, at least in the shallower
depth, rather than putting a tear to separate these two zones. Note that the aseismic zone
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is landward of a sharp cocave oceanward bend in the trench. Pulpan and Frohlich [1985]
point out that the Aleutian slab's strike changes by 150 beneath the lower Cook Inlet that
is coincident with a northward bend of the volcanic line (see Figure 1.5d). They also
point out an increase of seismic activity near this bend area.

The along-arc tensional character of intermediate-focus events in the central
Aleutians was recognized more than two decades ago [Stauder, 1968; Isacks and Molnar,
1971] and later confirmed by Creager and Boyd [1991] (see Figures 1.7 and 4.4). In the
Eastern Aleutian-Alaska region, Pulpan and Frohlich [1985] argue for two possible
segment boundaries near the Cook Inlet area and that the focal mechanisms at
intermediate depth beneath Cook Inlet are controlled by horizontal north-south
compression. Kissling and Lahr [1991] also show that focal mechanisms at Southern
Alaska around the same region are dominated by down-dip extension and along-arc
compression. The pattern of along-arc extension in the central Aleutians and along-arc
compression in the eastern Aleutians is confirmed by the CMT solutions (figure 4.5b).

4.1.2 Previous models

Yamaoka et al. [1986], using their analog fitting experiment described in chapter
1, claim that they were able to get reasonably good fit which does not require any tears in
this slab geometry, although the 459 slab dip angle for their slab geometry is probably
not steep enough in the central Aleutians as pointed out by Creager and Boyd [1991].
Burback and Frohlich's [1986] modeling results in Aleutian Zone are summarized in
Figure 4.3 where they indicate five Possible Segment Boundaries (PSBs) and show that
the whole Aleutian Zone is under lateral extension averaging to 10% accumulated strain
after 10 million years of subduction with a peak value of 50% accumulated strain in the
western Aleutians. They do not predict along-arc compression under Alaska because
they do not extend their calculation to where the trench curvature changes to concave
oceanward. Creager and Boyd [1991] concentrate their efforts in the Aleutian zone
between longitudes 165%E and 160°W. They construct the slab geometry constrained by
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Figure 4.3 Burback and Frohlich's [1986] modelling results of Alaska-Aleutian
Subduction Zone. AA1-AAS show the locations of the five possible segment boundaries
(PSBs). On the same drawing, numbered positions from 1 to 9 are the CMT mechanism
locations. The numbered CMT mechanisms are lower-hemisphere projections with solid
circles for P-axes, open circles for T-axes and crosses for N-axes. Below that, the grids
show the 5 my and 10 my isochrons of subduction while the set of lines in the direction
of arrows are the tracked particle paths. The Lateral strain plot shows the accumulated
lateral strain after 10 my of subduction. The slab is shown in general in along-arc

extension, with a peak of 50% accumulated strain after 10 my of subduction in the
Western Aleutian,
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local network data where the slab is seismically active, and P-wave residual-sphere
analysis of eleven earthquakes and one nuclear explosion where the slab is aseismic. The
slab dip angle below 100 km depth varies from 450 in the eastern Aleutians to 600 in the
central Aleutians and then to ~50° in the western Aleutian. Fixing this slab geometry,
they invert for the optimal flow field that minimizes the in-plane deformation. Shown in
Figure 4.3, their result predicts along-arc extension dominating the in-plane strain rate
field with a peak value of 10-15 sec-! in the central Aleutians, and an accumulation of
10% strain as the slab material reaches the seismicity cutoff. The along-arc variations in
the magnitude and orientation of their calculated strain-rates are in general consistent with
the spatial distribution of seismic moment release and source mechanisms of
intermediate-depth earthquakes (Figure 4.4). Also, their optimal flow field suggests that
the slab underneath the far western Aleutians was transported there laterally with nearly
zero component of down-dip subduction. They argue that this might be responsible for
the lack of volcanic activity in that region.

4.1.3 Modeling efforts in this study

The basic goals in undertaking preliminary modeling experiments in this
subduction zone are to test our working hypothesis that membrane deformation
optimization provides reasonable explanations for the basic slab geometry and the pattern
of seismic activity; especially the along-arc extension in the central Aleutian zone, along-
arc compression in the eastern Aleutian zone and the arch structure implied by the
variation of slab geometry around the corner surrounding the Gulf of Alaska.

4.1.3a The Constant-dip and Continuous-slab experiments

We begin by digitizing the Alaska-Aleutian trench and perform the first
experiment on a Constant-Dip model. By utilizing the mesh construction technique
described in Appendix C, we construct a mesh with 2142 triangles wrapping around the
curve representing the trench. This Constant-Dip experiment uses a cross section that is
built by letting the slab attain a 450 dip using the "minimum change of curvature”
interpolation described in chapter 2. We then invert for the flow field only. Results of
this experiment are shown in Figure 4.5. Principal axes of membrane strain-rates show a



bee::/g ™S 5 Alaska
M <
r i~ . # " 7 7 T =7 &N
N/ L. P ’ -
Far Western --.‘m(a s’k\ /? he : ’,4‘ i A - _-Eastem.-
N S e 2 - .
. \%{ N — ey ./ \ 4 L -
‘J% 2N ‘\\ A Pacific Ocean X ’” Pid ’ -’
~ ’ b
P ~ \\ \\ < - // \\ A , P oS
~ 20)\ / ~ ~, - A . " id A’ Pid 7z
RPN Western. . < / Central PP Y A TN\ ,,
12 S~ b S - - - _«f_-) d ’

| P W | 1 SO°'N
155°E 180° 160°'W
OO~ 0 O T 0 OF o O o100 ~og Y
(o) OO Q’::qcb H AP A O i
- 00 T T e, X @ 079 "l
= O _%. : . Haes : O -':-'
- C
163°E

Depth (hm)

165°E

160°W

1 0-33 1 0-30

Figure 4.4 Creager and Boyd's [1991] modelling results of the Aleutian slab. (a) The
slab geometry and the particle path representing the optimal flow field (inverted for the
flow field that minimizes the in-plane deformation by holding the slab geometry fixed).
(b) The comparison between the strain-rate ellipses, with long axes in extension and
short axes in compression, and the focal mechanisms, with solid lines for extension axes
and dotted lines for compression, projected on the Longitude versus depth cross section.
(c) The distribution of the effective strain-rate ranging from 3x10-17 (light grey) to 10-15
sec-1 (black), and circles whose radii are proportional to the earthquake magnitudes.
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very simple systematic pattern with the central Aleutians being under along-arc extension.
The Gulf of Alaska area is under along-arc compression around the the axis of the
oceanward-concave trench. The fourteen available CMT mechanisms from 1/1977 to
6/1986 below a depth of 70 km are also plotted for comparison. The projection in Figure
4.5(b) is done by converting into a three-dimensional Cartesian coordinate and then
projected on the surface (z=0), so that they are directly comparable to the model
calculation, while in Figure 1.7, everything is projected on the surface of the earth and
plotted in the Longitude-Latitude domain. Unlike the conclusion drawn by Burback and
Frohlich [1986], the pattern of these CMT solutions seem to fall into two groups, with
four mechanisms in the central Aleutians having more or less along-arc extension and
nine mechanisms around the Cook Inlet area having NE-SW compressional axes. This
pattern is then basically consistent with the predicted deformation regime.

In a second experiment (the Continuous-slab experiment), we use the resulting
flow field and the slab geometry from the previous Constant-Dip experiment as the
starting model. We then fix the model geometry at the trench and only one point at the
bottom edge in central Aleutians (marked by filled squares in Figure 4.6(a)). That is to
say that the only constraint on the slab leaving the trench is that it has to go to a deep
depth at that point, other than that, the slab is free to adjust itself both through modifying
the in-plane flow field and by tuning the slab geometry. The slab geometry (Figure
4.6(a)) has the steepest dip in the central Aleutians. Away from there, both of the two
flanks are trying to get to shallower dip angle, especially the eastern flank where the arch,
forced by the oceanward-concave trench configuration, has a shallow dip. The pattern of
along-arc extension in the central Aleutians and along-arc compression further east under
Alaska remains. The prédicted strain rate under the Wrangell mountains is greatly
reduced, consistent with observations (compare Figure 4.6 to Figure 4.5). Orientations
of compressive axes on the western wing switch to a more northeast direction. Effective
strain-rates show a peak deformation rate of 7 x 10-16 sec-! and with high deformation
rates concentrated in between from western Alaska to the central Aleutians. This is in
general consistent with the pattern of seismic activity. However, if we examine the
seismic moment release plot in Figure 4.2 in more detail, the seismic activity within that
zone is concentrated toward the two ends rather than in the middle as suggested by our
model. The resulting geometry is in general consistent with observations from Wadati-
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Benioff seismicity. Given that the boundary condition is only one fixed point at depth,
the consistency between the predicted geometry and observations suggest that the
optimization of membrane deformation rate is one important controlling factor for slab
geometry. However, we notice that when the solution is approaching a minimum of the
integrated dissipation power, while the geometry still changes in significant amount, the
reduction in the integrated dissipation power can be extremely slow. This suggest that
the "dissipation power" functional space defined in the subspace of geometry parameters
is usually "flat" near the minimum.

The most robust features of these calculations are that a steep dip in the central
Aleutians can only be achieved by a continuous slab if there is significant along-arc
stretching. Secondly, the concave oceanward bend in the trench forces both an arch
structure and along-arc compression wrapping around the arch. Note that the along-arc
extension in the central Aleutians, along-arc compression in the eastern Aleutians/Alaska
and the arch structure are all observed. We have tried several inversions similar to the
Continuous slab experiment, but varying rheology, trench geometry and boundary
conditions. In all calculations where geometry is allowed to vary, an instability develops
as tight bends in the depth contours near the central Aleutians (Figure 4.6a). We do not
completely understand this, but it is a region of intense along-arc shear deformation
(Figure 4.6c), and suggests that if the slab can tear, this is where it would tear. Is it
possible that the slab does in fact have a tear in that region (notice that the location
coincides with the possible segment boundary AA4 in Burbach and Frohlich's study
(Figure 4.3))? We simulate tear by considering two independent calculations, one for the
Aleutians, one for Alaska. Each has a free edge where the tear is postulated to occur.

4.1.3b Alaska Zone: The Alaska experiment

In the Alaska experiment, we build a starting model with a constant 459 dip along
the Wrangell-Alaska transition zone between 1320W to 1600W. Using this constant-dip
configuration as initial model and fixing slab geometry along the trench and one profile at
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the eastern edge (marked by small filled squares in Figure 4.7a) we start the full iterative
optimization. The reason to choose the one profile as a boundary condition is mainly
because that profile is relatively well constrained by slab seismicity and that the slab
geometry further west to Aleutian Zone is more or less uniform. The optimization result
and comparisons with seismic observations are summarized in Figure 4.7. Comparing
Figure 4.5 with Figure 4.7, a very efficient reduction in membrane deformation is
achieved by forming a highly pronounced arch structure (notice that the grey-scales are
different in Figures 4.5d and 4.7d). The deformation pattern revealed by CMT solutions
(Figure 4.7b) is in general consistent with the orientation of predicted compressional axes
(Figure 4.7c). Furthermore, Figure 4.7d shows that the deformation corresponding to
Wrangell Zone is much lower to the eastern limb of the arch as compared to the western
Aleutian Zone. The peak effective strain-rate is 2 X 10-16 sec-! and concentrated around
the Cook Inlet area where higher seismic activity is observed. Again, similar to the case
in Cascadia Subduction Zone, the predicted arch structure is probably too severe because
of the lack of involvement of gravitational pulling in our model calculations.

4.1.3c Aleutian Zone: The Aleutian experiment

A 600 constant-dip geometry is used as initial mode! for optimization experiment
in the Aleutian Zone (165%E to 1580W). Figure 4.8a shows the intermediate-focus
seismicity, the particle path and the optimal slab geometry. Figure 4.8b is the four CMT
solutions below 70 km that show a deformation regime generally consistent with the
calculated membrane deformation as shown in Figure 4.8c. Figure 4.8c reveals a clear
pattern of along-arc extension in the central Aleutians and gradually switch to
compression to shallower depth both to the east and to the west. The peak value of the
membrane strain-rate in the central Aleutians is 2 x 10-15 sec-1 that is slightly higher than
the result from Creager and Boyd's study. In general, the result of this experiment is
qualitatively reproducing Creager and Boyd's result, however, instead of fixing the slab
geometry a priori, our predicted slab geometry is not the same as theirs in the Eastern
Aleutian, also the extremely high deformation to the eastern edge (Figure 4.8d) that
appears in our modelling is not consistent with their study.
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In conclusion, the four experiments presented here for Alaska-Aleutian

subduction Zone indicate that:
(1). Consistent with observations and previous modeling studies by Burbach & Frohlich,

(2).

and Creager & Boyd, the subducting Aleutian Slab has a steeper dip in the central
Aleutians than the western and eastern Aleutians. The slab dip is in general too steep
for its trench configuration which leads to along-arc tensional membrane
deformation rates. The backward curved trench around Gulf of Alaska, on the other
hand, imposes along-arc compression. This along-arc compression can be reduced
by forming an arch analogous to the situation in Cascadia Subduction Zone (Chapter
3). This pattern of along-arc extensions in the central Aleutians switching to along-
arc compressions associated with the backward curved trench is a robust feature in
all our experiment (some of them are not presented here). This pattern is also
generally consistent with orientations of earthquakes focal mechanisms shown by
the fourteen CMT solutions.

The resulting arch in Alaska-Wrangell slab reduces the along-arc compression,
especially those in the eastern limb of the arch, that is, in the Wrangell Zone. While
in the Cascadia subduction zone, the high deformation rates concentration coincides
with the arch axis, the concentration of high deformation rates around Alaska-
Wrangell Arch is skewed to the west, allowing very low deformation rates in
Wrangell Zone. This result is true for all experiments we performed in this area
(Figures 4.6 and 4.7), even when additional boundary conditions are put in by
fixing the eastern edge (the bottom edge on Figures 4.6 and 4.7).

(3). The Continuous-Slab experiment results in a shear contortion of the slab geometry.

Associated with this contortion, all the experiments seem to concentrate their high
deformation rates in the same area. This is not consistent with observation that the
seismic activity concentrates more in the central Aleutians and around the arch. A
tear within the subducted slab might account for this contradiction, however, it is not
directly resolvable from our modelling.

(4). The aseismic region between the Aleutian zone and Wrangell zone is an intriguing

observation with no obvious explanation. Qur calculation suggest that this region
should be in along-arc compression, so if the slab were torn, it would be
overlapping, not separating, in that region.
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4.2 The NW-Pacific Subduction zone

4.2.1 Slab seismicity and slab geometry

Lateral deformation in the along-arc direction in the NW-Pacific subduction zones
have been the subject of interest of several studies in the past two decades. As already
described in chapter 1, the along-arc variation of slab dip angle as shown in Figure 1.1
had been a well documented observation that motivated most of these studies. Isacks and
Molnar [1971] is the first to propose two possible underlying slab structures around the
Hokkaido corner (a tear or a continuous contortion). In a more recent study Chiu et
al.[1991] uses three dimensional computer graphics to construct the slab geometry along
the entire NW-Pacific subduction zones based on Wadati-Benioff seismicity.
Reproduced from their study, Figure 4.9 shows the perspective view of the structures of
(a),(c) Kuril-Japan-Izu-Bonin system and (b),(d) Bonin-Mariana system. These
drawings indicate dramatic along-arc variations of slab geometry especially at places
where the trench change its orientation to concave-oceanward e.g., Hokkaido corner and
Izu corner. The arch structures in the slab at these places are clearly implied by the
seismicity. Figure 4.10 is the seismic moment release plot similar to the one for the
Alsaka-Aleutian Subduction Zone (Figure 4.2). Starting from the Kuril Subduction
Zone, the deepest seismicity reaches near 700 km depth in the center while the seismic
activities shoals to both ends. Approaching the western limb of the Aleutian trench to
the north, a clear pattern of lack of seismicity can be observed. The southwestern edge
of this subduction is the Hokkaido Corner, a lack of deep seismicity below 300 km depth
there has also been reported [e.g. Lundgren and Giardini, 1990]. Although marked by a
shallow ~300 dip (see Figure 1.1), deep seismicity reaches 600 km in the Japan
subduction zone. The Izu corner has a similar deep seismicity gab below 350 km as the
one in the Hokkaido corner. Since it is an unstable triple junction between Eurasia,
Pacific and Philippine Sea Plate; the trench configuration here would have to evolve with
time. The Izu-Bonin and Mariana slabs have more complicated configurations. The deep
seismicity increase from 400 km to 600 km toward south in the Izu-Bonin Zone when
the slab dip varies from 400 to 800. Approaching the Izu-Bonin/Mariana corner, the
Wadati-Benioff zone becomes vertical and even appears to curl under slightly beneath
northern Marianas.
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Figure 4.9 Three-dimensional perspective view of the geometry of the subducted slab
of (a),(c) Kuril-Japan-Izu-Bonin system, and (b),(d) Bonin-Mariana system.
[reproduced from Chiu et al., 1991).



101

Figure 4.10 Seismic moment release of the NW-Pacific subduction zones, the region
is divided into 40 km by 40 km cells, all the earthquakes deeper than 70 km from ISC
(1964-1984) and from the catalog of large earthquakes of this century [ Astiz et al.,
1988] that fall in the same cell are converted to seismic moment (see Equation 3.1) and
summed. (a) Map view. The depth contours (contour interval 100 km) are inferred from
deep earthquakes. Solid lines is the trench. ((b) Projected to a cylindrical surface roughly
parallel to the along-arc direction.
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4.2.2 Deformation regime revealed from focal mechanisms

Beside the general slab geometry and the seismicity, the deformation regime
revealed by focal mechanisms of intermediate and deep earthquakes, especially those
from CMT solutions published by the Harvard group, is also a topic of great interest. A
collection of the CMT solutions (1/1977 - 7/1986) below 70 km in this region are plotted
in Figure 4.11 by projecting their P and T (most and least compressive) axes on a map
view. No clear systematic variation can be detected in this plot. Zhou [1990], however,
points out an intriguing pattern of along-arc variation of the occurrence depth of the P-T
transition (down-dip extension to down-dip compression transition) that are deeper in
both the Hokkaido corner (the junction between Kuril Trench and Japan Trench), and the
Izu comer (the junction between Japan Tench and Izu-Bonin Trench) which are
coincident with the two distinct concave-oceanward tight corner (Figure 4.12).
Lundgren and Giardini {1990], examined both the distribution of seismicity and the focal
mechanism around the Hokkaido corner, they showed evidence in support of both hinge
faulting and continuous contortion around this concave-oceanward trench with a rather
tight curvature and suggest that a plausible model is to allow the cold core of the slab to
bear the hinge faulting mechanism while allowing the surrounding mantle flow to behave
in a continuous, contorted fashion.

4.2.3 Previous modelling works

Previous modelling efforts include both Burback and Frohlich [1986], and
Yamoko et al. [1986]. Yamoko et al. indicate by their analog experiment that except
near the Bonin-Mariana junction the slab is likely to be continuous from Kuril-Kamchaka
to Japan and to Izu-Bonin Subduction Zone, and that a tear in the Bonin-Mariana junction
would reduce much of the lateral extension and thus obtain a better fit to the slab
geometry there. Figure 4.13 shows the results from Burback and Frohlich's study
which can be summarized as the following: In the Kuril-Kamchatka zone, model
calculation yields an average 10% accumulated extension after 10 my of subduction along
this arc. Approaching Hokkaido Comer, there are no evidence that shows overlapping in
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Figure 4.11 Map view of the orientation of the principal P and T axes (least and most
compressive axes) of CMT solutions deeper than 70 km during 1/1977 - 7/1986.
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Figure 4.12 Along arc variation of the neutral down-dip stress zone (NDSZ) which
marks the depth of transition from down-dip tension to compression within the slab in
the NW-Pacific Subduction Zone, [after Zhou, 1990].
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teleseismic dafa, suggesting that a continuous buckled slab structure is in favor around
this corner rather than a tear, 30% shortening in this region is modelled by their
algorithm. The Honshu (Japan) arc, modelled by an average of 359 slab dip, they
estimate 5-15% lateral extension along this arc. Mostly lateral extensional CMT
mechanisms are explained in terms of either lateral extension or buckling of the
subducted slab near Izu corner. Down-dip compression and lateral extension dominate
the CMT mechanisms in the Izu-Bonin slab. In the Mariana region, 25-55% extensional
strains is predicted by their modelling, probably caused by the tight curvature of the
trench and the extraordinarily steep dip. This large tensional strains is consistent with
most of the CMT mechanisms in this area which have mostly lateral tensional axes.

4.2.4 Modeling efforts in this study

The complete Kuril-Japan-Izu-Boini-Marian system has a rather complicated
trench shape, in order to focus on examining the effect of concave-oceanward bend of the
trench, we concentrate our preliminary experiment around the Hokkaido corner and Izu
corner using highly simplified linear segments representing the trench shape. Figure
4.14a shows this highly idealized trench shape and the predicted slab geometry after the
iterative optimization process. The starting model for this optimization is again a
constant-dip geometry, and the boundary condition as marked by the small filled squares
are simply fixing the two cross-sections on the bounding edge. The predicted slab
geometry in Figure 4.15a shows a pair of arches with an overall shape similar to the slab
geometry constrained by slab seismicity (Figures 1.2 and 4.8¢c). Since the shape of the
trench is not very realistic and the boundary condition on the southern edge
corresponding to the Izu-Bonin slab has a slab dip too shallow, the result of this
experiment can only be interpreted qualitatively. The CMT solutions shown in 4.14b and
also in Figure 4.10 do not show systematic patterns that correlate well with the calculated
strain-rate orientation shpwn in 4.14c. However, 4.14c does show an interesting
concentration of down-di;i extension to greater depth on top of the two arches which is
consistent to the variation of P-T transition pointed out by Zhou [1990] (see Figure
4.12). In other words, his observation concerning deeper occurrence of down-dip
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extension in the two comers can be attributed to the effect of the additional component of
significant lateral compression on top of the usual gravitational pulling within the slab.
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Chapter 5 Summary and Discussions

Lateral deformation of the subducted oceanic lithosphere has been a problem of
geophysical concern mainly because of its possible role on the evolution of the structure
of subduction zone systems. More importantly, it can be a seismic generating
mechanism that might at least account for part of the along-arc variation of seismic .
activities. Interesting observations including the lateral variation of subducted slab
geometry, the forming of cusps at arc-arc junction and the "space problem", well
recognized in the past, had only been addressed qualitatively. This is mainly because of
the fact that although conceptually and physically simple, the quantification of the
membrane deformation for an arbitrary non-Euclidean surface is not a trivial task. The
surface projection operation defined in Creager and Boyd [1991] and chapter 2 is a
natural way to accomplish the forward computation if we know the flow field
representing the subduction process in the three-dimensional space. It is conceptually
and computationally simple since the whole calculation can be performed in a fixed
Cartesian coordinate system even though the surface mapped by the flow field can be
arbitrary. In modelling real subduction zones, however, we can only constrain the flow
field on the surface before subduction. We also have only partial information on the slab
geometry by using constrains from slab earthquake hypocenters and other direct and
indirect seismic techniques including: residual-sphere analysis, P-to-S receiver function
analysis and tomographic studies. An interpolation or inversion scheme has to be
devised to determine the optimal slab geometry and the the flow field representing
subduction process satisfying the constrains derived from observations for the purpose
of estimating the membrane deformation in the slab. We use a minimum dissipation
power principle to construct the inversion scheme in the sense that we hope to find and
quantify the configuration with the least amount of membrane deformation rates among
all admissible solutions that are consistent with observations. By using this algorithm,
we first focus on the fundamental problem of examining the effect of trench shapes on
the slab geometry and the possible implications on the spatial distribution of seismic
activity.

Experiments on the Cascadia Subduction Zone suggest that the possible arch
structure underneath the Puget Sound area is a natural consequence of the subducted slab
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trying to reduce the along-arc compression caused by the concave-oceanward bend of the
trench. This arch structure, as predicted by our inversion experiments described in
chapter 3, not only is consistent with the local geophysical and geological observations,
but also provides a natural explanation for the concentration of the local slab seismicity
underneath Puget Sound Basin. Equipped with the "Critical Taper Theory" by Davis et
al. [1983], this arch might also shed important insights on the forming of the thick
accretionary prism that essentially makes up Olympic Mountains.

The effective strain-rate for both the bending and membrane deformation rates in
this subduction zone are on the order of 10-16 per sec which is an order of magnitude
lower than the other two subduction zones modelled. This might serve as an explanation
that the seismic activity is generally much lower than other subduction zones.

Our preliminary experiments on both the Aleutian Zone and the NW-Pacific Zone
again reveal the robust feature of arch structures associated with concave-oceanward
bend of the trench. These predicted arch structures greatly reduce the potential lateral
compression within the subducted slab and alter the deformation regime. The large scale
structure of the slab predicted by minimizing the membrane deformation are usually
consistent with the slab structure inferred from seismic observations, even when we use
only minimal boundary constrains. Also, the predicted distribution of deformation
generally correlates well with the spatial distribution of slab seismicity. These suggest
that the lateral membrane deformation of the subducted slab is an important mechanism in
controlling the slab geometry and seismic generating process.

We have not yet been able to establish detailed correlations of the orientation of
calculated membrane strain-rates with the observed focal mechanisms. This is mainly
because, although the spatial distribution of the orientation of calculated strain-rates
generally yield systematic variation for simple subduction zone geometries, the focal
mechanisms for the same zone are usually quite scattered and often lack obvious simple
patterns. At places like Alaska-Aleutian Zone where the focal mechanisms do show clear
trend (along-arc extension and along-arc compression) our model generally shows
consistent results. One important reason for the lack of higher success in applying this
scheme to examine the detailed pattern of focal mechanisms can be attributed to the fact
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that our modelling does not involve possible dynamic controls of the subduction process,
namely, the gravitational pulling, the compressibility associated with major transition
zones and the viscous drag exerted on the slab and mantle winds. The complete pattern
of deformation rates within subducted slabs is a combined result of the dynamics
mentioned above and the interplay of membrane- and bending-deformation. Our study
shows that the lateral membrane deformation arising mainly from kinematic and
geometric boundary conditions is a basic mechanism of fundamental importance.
Examples like the systematic variation of focal mechanisms in Alaska-Aleutian Zone
indicate that the concept of membrane deformation can provide useful insights towards
understanding the deformation regime of subducting slabs that is beyond the reach of the
conventional two-dimensional model.

Lacking the involvement of important dynamic controls in our optimization
algorithm also caution us in interpreting the obtained slab geometry. However, without
addressing the detail structure of the obtained geometry, the forming of an arch structure
with a shallower dip seems to be a robust feature related to the backward curvature (or
concave-oceanward bend) of the trench in all experiments. Also, the spatial distribution
of the seismic activity is usually coincident with concentration of high membrane
deformation rates. Overall, the experiments show at least that the lateral deformation is a
very important mechanism that deserve more attention. One way of applying this method
is then to regard the geometry inversion as an interpolation scheme. Instead of trying to
actually predict the overall slab geometry, more available geometric information should
be incorporated as boundary conditions to setup at lease the low wavenumber, large scale
framework of the slab shape, and let the optimization algorithm to fine tune the geometry
where it is poorly constrained. However, the success of predicting general trend of the
slab geometry like the arch structure by using minor fixed boundary conditions strongly
suggest that the membrane deformation is an important mechanism in shaping the slab

geometry.

Based on the preliminary experiments on the three subduction zones presented in
chapter 3 and chapter 4. We think the method described in this study is a promising tool
in examining and quantifying the slab geometry and the associated lateral deformation.
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We intend to extend our modeling experiments to perform systematic examination on all
the major subduction zones.

Possible improvements on the present scheme might include the following:

(1) Incorporate gravitational pulling. Conceptually, the difficulty involved with
implementing the dynamics of the subduction process is mainly that the relative
contribution of each component are largely unknown. To formulate a self-consistent,
well balanced dynamic system representing the subduction process is thus extremely
difficult. However, incorporating the gravitational pulling can be achieved by adding
an additional term, describing the potential energy input rate, into the dissipation
power functional that is minimized. By using different weighting on this newly
added term in a trial and error fashion, we can at least examine a broader range of
possible solutions and examine the possible effects of superposing the gravitational
pulling. Another way to incorporate the controlling dynamics is to use simple
parameterized approximation to dynamics which depends on a few parameters and
slab geometry in two-dimensional cross section [e.g. Kemp and Bird, 1989].

(2) Rheology and thermal structure. As the slab heats up, its reology changes.
presumably the slab's effective viscosity decrease. A variable viscosity as a function
of temperature is easily incorporated in our calculation.

(3) Compressibility associated with phase transitions. Since major phase transitions
occur within relatively narrow depth ranges and cause significant change of volume,
the effect of these transitions on the slab geometry and internal deformation are
probably significant . For example, Rogers [1983] used basalt-ecologite transition as
one possible solution for the space problem in Cascadia Subduction Zone. However,
how phase transitions translate in terms of strain or strain-rate is not yet clear. Recent
work on how materials behave when going through a phase transition [R. Delinger,
personal communication] will help in incorporating these effects in our modelling.

(4) Incorporate bending deformation rate. Estimating bending deformation rates for
subduction process needs higher order information on slab geometry, since it is
directly proportional to the local change of curvature. To devise a discrete
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parameterization of the geometry with piecewise continuous change of curvature (a
nonlinear third order term) is technically difficult. The Clough-Tocher element used
for interpolating slab geometry in this study is a C! element. One possible way to
formulate bending deformation is then to use element average curvature and estimate

the change of curvature by robust finite difference scheme to get piecewise estimate
of the change of curvature.
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Appendix A On the shear deformation parallel to slab surface

Consider an ideal situation as shown in figure A.1, when a slab with half width A
is falling vertically with a terminal velocity wp into the surrounding mantle. The
viscosity of the mantle is assumed to be 12 while the slab has a constant viscosity of M1,
the density anomaly of the slab is Ap compared to the surrounding mantle.

"Eg.'?

1| AP 173

Mantle

falling slab

Figure A.1 An ideal slab with viscosity M1 is falling vertically into the surrounding
mantle with viscosity H2. The bold line in the lower half of the diagram shows the
falling velocity profile while the upper bold line shows the strain-rate distribution at
corresponding sites.

Assuming the flow behaves according to the Newtonian rheology, the governing
equations for the highly simplified velocity distribution w(x) are then:

d’w

Ap-g=
PE=HT b2 within the slab (A.1)
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and
2
0=11,9°W.
ey in the mantle (A2)

dw
the strain-rate dx in the mantle is thus a constant, say it is £2. The boundary conditions

at the interface x=h requires the continuity of velocity w and the shear stress:

_ | a =t |
I1€1 = U2€2; which then leads to M1 . Since by Equation (A.1), the

variation of €1 within the slab is linear and by the symmetry of the problem
dw| =9
dx '*=0 , the strain-rate distribution as shown in the upper part of the diagram in
Figure A.1 clearly indicates that the maximum shear strain-rate within the slab is a factor
of M2/l lower as compared with the surrounding mantle. Also, the dissipation power
ME? would also have a contrast ratio of

26,2 21 = M2
[m(ﬁ—lez) 1/ e = 12

Since M1 2> U2 from our assumption, the shear strain-rate parallel to the slab surface is
then much less within the slab as compared to those in the mantle and the contrast might
even be an under-estimate since toward the center of the cold core of the slab, the shear
strain-rate is even lower. In summary, the assumption that the slab viscosity is orders of
magnitude higher than the surrounding mantle would then allow us to make the
simplification that the shear deformation parallel to the slab surface would essentially be
taken up by the surrounding mantle.

The density contrast and viscosity contrast of slab versus the surrounding mantle
are mainly controlled by the temperature contrast. Vassiliou and Hager (1988) gave a
brief review of the existing temperature models showing that as the slab reaches 700 km
depth, the core of the slab is still much colder than the surrounding mantle, the contrast
ranges from 3000 (McKenzie, 1969) to 8000 (Schubert et al, 1975) among different
models. They plotted the viscosity contrast as governed by
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nr; T (ET-T
n—Tl- = %_1' R ToTh :
o To (A.3)

where T} is the estimated slab temperature, Ty is assumed initial mantle temperature, E is
the activation energy for creep and a value of 5.2 x 10% J/mol for Olivine is used, and R
is the universal gas constant. Figure A.2 shows the viscosity ratio redrawn from
Vassiliou and Hager (1988), which shows that the viscosity contrast of the cold core of
the slab is essentially infinite with respect to the mantle. They then argue that although
the microscopic viscosity of the slab as shown in the plot is very high, other evidence
from studies on the topography of the outer arc bulge and the trench, and from post-
glacial rebound studies suggest that the macroscopic viscosity contrast might be lower
and adopt a contrast ratio of ten as comparing the slab viscosity to the surrounding
mantle. In their modeling of subduction flow, however, they point out that for Power-
Law rheology (n=3), contrasts of 10° is needed to generate reasonable subduction flow

velocity.

"’q»o('l/'lunun:)
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Figure A.2 Viscosity ratio of slab versus the ambient mantle, after Vassiliou and
Hager (1988).
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We believe that the slab viscosity is probably at least two orders of magnitude
higher than the surrounding mantle, based on our previous discussions, this would then
make the shear strains parallel to the slab surface occur within the slab to be at least two
orders of magnitude lower than those taken up by the ambient mantle. An order of
magnitude estimate of the shear deformation in the mantle induced by the subduction
process can be done by noting that the shear strain-rate scales as (v/R) where v is the
convergence rate and R is the curvature of the slab (Davis, 1984). This yields a strain-
rate value of the order of 10-14 which would then give a 10-16 shear strain rate within the
slab. As shown in Chapter III, IV and V, this value is usually at least one order of
magnitude lower than the in-plane deformation that we are interested in, this then justify
our ignoring the shear deformation that is parallel to slab surface.

In fact, the shear strain rate is one important mechanism at least in the dynamics
of the subduction (dynamically, it relates to the so called viscous drag that usually enter
into the force balance of the subduction process). The point we are making here is that
first of all, it can be shown that this deformation is relatively unimportant as compared to
the in-plane deformation; secondly, this part of the deformation relies on the variation of
the flow away from the mid-surface of the slab where we evaluate the membrane
deformation, not on the surface-flow itself. In other words, it is not directly constrained
by the geometric configuration c.{ the slab. Since our goal in this study is to quantify the
least amount of deformation required simply by the geometric configuration of the slab.
It is then reasonable for us to first focus on the membrane deformation as discussed in

chapter 2 before any attempt to explore the more complete picture of the dynamics of the
subduction process.



Appendix B. Notes on the non-linear optimization.

The scheme used to proceed with iterations on the non-linear optimization of this
study as described in chapter 2 is essentially a more general form of the popular
Levenberg-Marquardt's method widely used in attacking non-linear least-square
problems. There are lots of well established schemes for general multidimensional
optimization problems, usually, to choose one of this schemes depends on how
expensive to evaluate the function and its first and second derivatives and the numerical
robustness and the efficiency to converge, e.g. steepest descent method, conjugate
gradient methods like Plak-Ribiere scheme and Quasi-Newton methods (also known as
the variable metric methods) like: DFP (Davidon-Fletcher-Powell) scheme and BFGS
(Broyden-Fletcher-Goldfarb-Shanno) scheme all needs only informations on the first
derivative of the target functions being minimized. Gill et. al. (1981) and Scales (1985)
give excellent review on this topic. In the formulation described in chapter 2, the second
derivatives of the dissipation power functional with respect to the parameters of flow
field and slab geometry (i.e. the Hessian matrix) can be evaluated analytically, it's also
very sparse as a result of proper node labelling of the finite element mesh and it doesn't
cost too much extra work along with the computation of the the dissipation power
functional value. Since second derivative method (methods that use the knowledge of the
Hessian matrix) are usually more reliable and take fewer iterations to converge (Murray,
1972), It is then an obvious choice in this study to choose an optimization scheme among
this particular group.

To minimize a function F(X) in the n-dimensional Euclidean space; xeE"
Define the gradient vector & g-VF and the Hessian matrix H"VVF If F(x) is a

general functional then the V operation is the Frechet derivatives. Notice that rewriting
the dissipation power functional I of the form in Section 2.4.1 to Equation (D.2a) enables
I to be analytically Frechet differentiable. General iterative schemes to solve this
optimization problem is then; For the k-th iteration:

Fy=F(x})

update Xby X+ 1=Xg+ 0Pk
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such that Frs1 < Fg (B.1)
where Ck is a scalar, Pk is the new search direction.

Method of steepest descent
Since by Taylor's expansion,

F(Xp+ D) ~F(Xp)+ 08t Pr (B.2)

ForQ% > 0, the necessary condition for (B.1) to be true is then
gk Pk < 0
the obvious choice is then
Pk = -8k
This simple and stable scheme unfortunately has a very slow rate of convergence for

general functions. In fact, only if in the vicinity of a strong local minima of F(X) can be
approximated by

F(x) =

N

X X+
IX+D X B i a scalar, Tis the identity matrix. (B.3)

that the steepest descent direction would be pointing to the minima (say the direction c
).

In Figure B.1, the more ellipsoidal the contours of F may be, the more would the
direction of steepest descent be biased away from the direction ¢ and the slower the
convergence. Only when (B.3) is true, the contour will tend to be hyperspherical and the
steepest descent direction coincides with c.
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Figure B.1 Zigzag path of the steepest descent direction (the bold line) on a quadratic
function. c is the direction pointing to the minima.

Newton's method

All second derivative methods are basically variants of Newton's method. It is
designed to take advantage of the knowledge on Hessian matrix to achieve quadratic
termination, and in a sense, it is an improvement on the drawbacks of the steepest
descent method mentioned above. During the k-th iteration, the search direction is
defined by

pr =-Hy 'gx (B.4)

- —oT -
which is then a steepest descent direction for the norm IxIl = x" H X In other
words, near the vicinity of a local minima, F(x) is approximate by

>\ L...T - =T
F(x) 5 X H x+b x ®.5)

Clearly, if H is positive definite, then
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g pr=-2 H'gi<0

and Fic is thus a descent direction. Also, by including H in (B.5) as compared to
(B.3), the convergent rate of Newton's method is now of second order if H is positive
definite. Unfortunately, this is not always true. Not only that the positive-definiteness
of H is not guaranteed, it can sometimes be nearll.singular for a weak minima or ill-
conditioned minima. Also, near a saddle point, lig gl =0, and a new descent direction
can not be found by (B.4).

Modified Newton's method

Generally, modified Newton's method try to replace the Hessian matrix by a
positive definite matrix whenever the original matrix is not positive definite, and
otherwise close to the original matrix. Such algorithms preserve the fast asymptotic rate
of convergence of Newton's method near well behaved minima and are otherwise robust
and numerically stable. In other words, if we examine the eigenvalue-spectum of the
matrix, the essence of the modification is to alter the small and negative eigenvalues of
the Hessian matrix while preserving other eigenvalues to guarantee both the resulting

search direction is a proper descent direction and also, the computation is numerically
robust.

Gill & Murray's algorithm

Proposed by Gill and Murray (1974), this algorithm first use Cholesky's
algorithm to factorize the Hessian matrix:

Hyp=L; D, LT
1
djj=gjj- ¥, dueli®
k=1
1

Lj = (gjj - Zl delielip) / dj
k=

The descent direction is then calculated by

(B.6)
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Liqi=- 8k
L, pr=Dy" ar B.7)

The essence of this algorithm is that (B.6) can only be done for symmetric positive

definite matrix. It is straightforward to monitor the value of djf as the factorization
proceed, the non-positiveness of this value indicates that the matrix is not positive
definite. Whenever this situation should occur, the corresponding value can be replaced
by a small positive number. In the end this is equivalent to perform the factorization on a
modified Hessian matrix:

He=L DL’ . He= He+

where Ekisa diagonal matrix. As mentioned in Scales (198;& one thing worth noticing

is that it is not sufficient for the modified eigenvalues of H 10 be merely positive,
because it might results in a very large condition number and might produce severe
rounding errors in the computation of the descent direction. Gill and Murray (1974)
gives details of how to make sure the condition number of the modified Hessian matrix is
bounded. Itcan also be shown that the deviation of the modified matrix from the original .
Hessian matrix is minimized. Detecting saddle point and provide "negative curvature"
direction as an alternative descent direction turns out to be quite trivial when utilizing this
method. Overall, the method is robust and computationally efficient. The factorization
needs to be done only once for each iteration, and (B.7) can be solved by straight
forward forward and backward substitutions.

Levenberg-Marquardt's algorithm

This method was originally proposed to solve non-linear least square problems
(Marquardt, 1963) and is sometimes called "ridge regression" or "damped least square
method”. In this type of optimization problem, the function to be minimized usually take
a special form of

FX)=Y fAX) or F®X)=f1(X) f(X)
i=1
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the gradient vector is then

g=25 2 o §®=20"G T

e,
| ax,

with
of;

e
and the Hessian matrix
ofj of; , ¢ of; _ T

22 = e ,anax] or H=2[J"J+8]

with

22 i axkaxj

Newton's method is then

" i+ Sp) P = -Ji " fx

—_— o —

Xk+1=XtPk (B.8a)

the so-called Gauss-Newton method is to ignore Sk and (B.8a) thus becomes

I 3k pre = -3y (B.8b)

This is the popular least-square solution when we linearize the functions fi.
The Levenberg-Marquardt's algorithm is to replace (B.8b) by

"I+ M D pre = -Ji (B.9)

where I is the identity matrix and Mk is some positive scalar.
Similar to Gill & Murray's algorithm, this modification guarantees the positive
definiteness of the matrix to be inverted and stabilize the numerical computation when the
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matrix is nearly singular. When lk is small the decent direction lTl.c is simply the
Gauss-Newton vector; as as Mk gets very t big, Pk is close to the steepest descent direction.

Between these two extremes, both &)l and the angle between Pk and -Ek decrease
monotonically as Ak increases. The most non-trivial part of this method is to determine a
proper Ak for each iteration. Marquardt (1963) proposed to start MAiata relatively small
value and then increase it by some factor when the descent direction fails to decrease the
function value that is being minimized. The disadvantage is that for each trial of a new
Mk the complete Equation (B.9) needs to be solved. This then makes it relatively more
expensive than Gill & Murray's algorithm. Methods utilizing truncation of smaller
eigenvalues to determine the optimal Ak had been proposed, but to compute the
eigenvalue spectrum of a matrix of large size is too expensive and impractical.

In this study, both the Levenberg-Marquardt's algorithm and the Gill & Murray's
algorithm are nnplementtu.I The main equations to be solved in each iteration step are
always of the form

(Hi+ Eg) pr = -8k (B.10)

i.e. in implementing the Levenberg-Marquardt's algorithm, instead of linearize the in-
plane strain rate tensor w.r.t the nodal variables to utilize Equation (B.9) we use Equation
(B.10) since the Hessian matrix H are analytically available and that it have been reported
(Scales, 1985) that only for small residual problem that ignoring the S matrix are
justifiable. Equation (B.10) is then exactly the same as the damping regularization of
Equation (2.4.3.a.10a) as described in chapter 2. when Egis replaced by Al where I
is the identity matrix. It turns out that the Hessian matrix of this problem are usually not
well-behaved in that, during the iteration, positive definiteness of the matrix are usually
exceptions rather than regular. Both of the two algorithms thus numerically stabilize the
computation. The main difference is that in Levenberg-Marquardt's algorithm,
determining the proper Akin each step is handled in a more or less brutal force fashion in
the sense that you usually start with a small value of xk, increase it by certain factor
when the resulted search direction fails in finding a new lower value of the functional that
is being minimized until the search direction that does reduce the functional value is
found and that step of iteration is thus complete. This process of trial and error involves
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with solving a big system of equations in each step of trial and is thus relatively
expensive. Also, it is still possible to encounter a matrix of very big condition number
along the trial process which might then cause overflow problems. The Gill & Murray's
algorithm, on the other hand, accomplishes the estimation of the proper Ek for each
iteration during the Cholesky's decomposition, and is done in a single pass. This then
makes it more efficient and less expensive. The fact that Ef is still a diagonal matrix
although not of the form Ml can be interpreted in the context of the regularization
discussed in chapter II as having different weighting on each different variables.



Appendix C. Mesh generation for curved-shape trench

It is quite straightforward to generate triangular grids used in the Finite Element
interpolation if the region of interest is of relative simple shape. Since the trench usually
takes curved shape, a transformation is devised here so that we can automate the mesh
generation process by constructing the mesh in a regular rectangular domain and then by
using this transformation to map the grid points to the transformed domain to make the
selected boundary of the mesh match the shape of the trench. Suppose we have a curved
trench that can be characterized by a single-value function in a chosen coordinate system,
i.e. x=f(y). We can then define a new set of coordinate (d,s) for any point (x,y) such
that d is the normal distance to the trench and s is the distance along the trench from some

reference point.
d=Va , a=(x-x*)2+(y-y*)2

Y

(x,4) = f(y*), f'=df.| , f"=d3f.|
/ y x*=f(y*) dy b yeys dy2 gy
d

X s=J‘y 4/Edy , [3=V1+f'2

0

D=f"(x*-x)+(f)2+1

Figure C.1 Configuration and parameters used in mapping a curved boundary into a
straight one.

To avoid ambiguity for points located on the concave side of the trench, d cannot be
greater than the local radius of curvature of the trench. Fortunately, this is usually true
for modelling subducting slabs.

From the definition above, for any function z defined in the x-y domain
z=z(x,y)=2(x(s,d), y(s,d)), the following expressions can be derived, such that all the
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calculations in the (x,y) domain can be done in the' (d,s) domain and then be transformed

ful for complicated trench shapes.
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Appendix D. Computing matrix o€ and vector €.

Let
l4zy2  -zgzy 1z

Qe -zxzy l+z2 z

w7y nlzy (D.1a)

and

T=QGQ+QGQ)T (D.1b)

G is the gradient tensor of the velocity field defined in Equation (2.4.1.4). The
projection operator P as defined in Section 2.3.3 can be written as

=A'2Q

where A is the area element of z(x,y) at point (x,y) also defined in Equation (2.4.1.4).
The membrane strain rate tensor D?? (x,y) can now be written as

DPP=(A-4/2)T

The integrated total dissipation power for power-law rheology with nth power in a single
element is thus

I=’ I 2'(1"‘,1{) J dxdy (D.2a)

with
3-4 1+l/n
J=Ah [TTyHT3 2, Tii=T11+T22+T33 (D.2b)

As mentioned in Section 2.4.3.c, integration (D.2a) can be dor:¢ sumerically with
schemes of the form
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1= LU w;
where N is the number of sampling points, wj is the weighting coefficient for the
sampling point i and Jj is J defined in Equation (D.2) evaluated at the i-th sampling point.
Since wj depends only on the shape of the element, we have

2 _ @11
ok 90k (D.3a)

where ¢ is one of the 15 degrees of freedom in an element described in Section 2.4.3.c,

i.e.
¢T=[u1,v1,zl,le,zy1,u2,v2,z2,zx2,zy2,u3,v3,z3,zx3,zy3]
Rewrite
1=A->EptH g T}jTj + (Tii)? | (D.3b)
and then
A _yia-hHatdh, el p-1 9B,
CLR ELN 90k (D.3c)
Now
A _ p 25152
Ik dox o0k (D.4)
9B _, (Tuar ;er)
90k Ik a0k (D.5)
_(QISGStQJt+Q1tGStQ_]S)

8¢k dok (B.6)
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| Qi ﬂ 0zy +aQij dzy '
30y dzx Mk dzy Ay f (D.7a)
From Equation (D.1)
0 -zy 1 2zy) -zx O
o o y -4 y x
?)QIJ 7y 2z) O |, 33‘1 z 0 1
Zy
10 2z 1o 1 26 (D.7b)

From the definition of G in Section 2.4.1 and the interpolation scheme summarized in

Equation (2.4.3.c.2), we have

_ )
oNY;  oNl;  ONS

ox Y ox Vi ox
aNL;  oNl; ONZ
G=| u v w = 1. 1.

(;, 0y Oy % ! % " 9

Y

¥

0 0 0
(D.8)

where i sum through 1 to 3, j sum through 1 to 6, N are linear element shape

2.
functions, and N5 are quadratic shape functions.
By Equations (D.8), (2.4.3.c.2), it is thus straightforward to calculate quantities

0Gij , dzx ’ ozy
like 9%k 9%k Ok __ etc. For example,

1
ONK  fork=1,6,11
ox

dGj1 _ @ [aNliu.] _oNL: qu =8Nli Sy

3 90 O = O 3¢ X 0, fork=1,6,11

3 3
a_la\lx_l S = algxk, for k=(ng-1)x5+n1+2 , ng.n1=1,2,3

Ozx _ oN3 9z
a0k 9% gy |

0, otherwise
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These expressions can then be plugged back into Equations (D.6), (D.5), (D.4) and

(D.3) successively and complete the computation for B€.
Similarly, from Equation (D.3), we can compute

2
94 _ i{ J [(_3_%) A- lié.+(lizlnln.)3-la_B] }

00;00; 00 3¢ka 5 a0k N
J (B(3n+4ydn+4,0A0A | A 1+ny1.n\0B
AB'A" n n 'a¢ja¢k B 2n""2n a¢ja¢k

0AOB 0BOA
-Gyl =y
m 720 9000k 90590k
_(3n+4)B aZA + (n+1)A aZB ]
n T 0P 20 0000k

(D.9)
Also, from Equation (D.4)
2 0z
9%A =i[A-l(z xa_zx_,.zy__y)]
ddjo0k 90 ook 9k
2 02
A1 0A JA vy d<zy b2y Zy
odjodx  Oddjodx  ~ o0jodKk
L e B B
odj ddx  9¢j 9ok (D.10)
From Equation (D.5),
2 aT.
9°B =2i(‘[‘pq_pq+'[‘mmm‘_nn
00j00x  99; ok ok
0Tpq T, 92T 2
BTk T +TmmOTnn 7 9°Ton;
ddj dox  odjodx 99 ddk ELIER (D.11)

From Equation (D.6),
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?2Tpq _ 2
o0jo0k  99jodK

(QpsGstQiq+QqsCstQip)

and

32Qys [0 0 0] 32Qy [0-10] 92Qps {200
gs{ozo},a—a—ps 100/, ‘2’8 000
2 | g02) %% loool %* loo:2
92Qpq 3Gpq

We can thus compute both aq)ja‘bk a¢ja¢k .
For example, if both j,k are among 3,4,5,8,9,10,13,14,15, i.e. 0j, ¢k are both
parameters concerning z interpolation (z, zx , Zy) then

82Qpq _3%Qpq, O2x 8y 92Qpq, 2 %
2 P
2000, 022 305 90 zy® 0; My
82qu Dzx azy 8zy azx)
" 922y 30; 90K aq>] 0K

otherwise,
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32Qpq
ohjo0k

=0

Again,successively plug these expression back into Equation (D.9), the computation of
o€ are complete similar to expression (D.3a).
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