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University of Washington
ABSTRACT

Significance of Multiple Scattering
in Remotely Sensed Images of Natural Surfaces

by Wen-Hao Li

Chairperson of the Supervisory Committee: Professor Alan R. Gillespie .
Department of Geological Sciences

To. separate reflectivity and surface structure information in remotely sensed
images, a practical hybrid radiosity model, first developed for use in natural landscape
environments, has been adapted from existing algorithms in the computer graphics and
engineering fields. This radiosit}; model can be used to predict quantitatively the total
radiance leaving a surface, including single-scattering and multiple-scattering
components. The model operates on digital terrain models (DTMs) of the topography of
the surfaces. A central problem in the radiosity model is to estimate the geometric
function or “form factor”, which determines how much light is received from adjacent
surface elements. In order to achieve the high precisions required to predict the multiple-
scattering signal from natural surfaces, the new radiosity model balances accuracy and
speed of computation efficiently. For an image of 100x100 pixels, the radiosities can be
estimated with < 2% error in 1.5 hours on a DEC Alpha 3000 with a 276 Mhz processor,

run under Unix.

Using the hybrid radiosity model, multiple scattering (MS) has been quantitatively
predicted for natural surfaces at pixel and subpixel scales for the first time. These two
scales separate multiple-scattering effects into those resolved by Landsat Thematic
Mapper (TM) and those that are unresolved at subpixel scale. The model results have

been verified by laboratory measurements. Two experiments have been made in



laboratory for two types of surfaces: surface “TA.” consisting of parallel triangular prisms
and having an accurate DTM, and surface “BC,” fabricated by a computer-controlled
machine using DTMs of the Bluff Creek watershed in Northern California. Radiosities
predicted for the two surfaces using the computational model were compared with CCD
camera measurements of radiance from the physical surfaces. The comparisons

demonstrate that the practical hybrid radiosity model is reliable, with 98% accuracy.

In this study, I inverted the radiosity model to estimate the surface roughness of
geological surfaces from Landsat TM images. [ also applied the radiosity model to
correct topographic effects in rugged vegetated areas. In both applications, the radiosity
model was used to calculate the bidirectional reflectance distribution function (BRDF) for
simulated surfaces designed to match the vegetation canopy surface and geological
surfaces (such as a gravel bar). Including the multiple-scattering component in the
radiosity calculation noticeably improves both the surface roughness inversion and the

topographic correction.
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Radiant Flux (¢)

Radiant Flux Density (D)

Irradiance (I,,)

Radiosity (B) or Exitance (M)

Radiance (L)

Rough & Smooth surfaces

Reflectivity (p)

Reflectance (r)

Sky illumination

[llumination Elevation Angle

GLOSSARY

The radiant energy (photons) passing through an area
element in unit time: Wem™.

The radiant flux intercepted per unit area of plane surface
at a specific spectral wavelength: Wem™.

The radiant flux density for incident upon a plane surface:
Wem™

The radiant flux density for flux leaving a plane surface:
Wem™,

The radiant flux per unit solid angle leaving an extended
source in a given direction per unit projected source area
. . . -2

in that direction: Wcm™sr.

Describe the surface geometric structure, and are scale
dependent terms.. Smooth surface is defined here that all
the surface finite elements are oriented in same direction,
and rough surface is opposite. In this study, they are
relative to pixel scale, referring rough and smooth
surfaces at pixel and subpixel scales.

Fraction of irradiance reflected from a smooth surface.

Fraction of irradiance reflected from a rough surface. i.e.

B/ rr

The radiant flux density scatters from sky as diffuse light
source: Wcm™, including upwelling (A,,) and
downwelling (Aq4w) scattering components.

See “Sun Elevation Angle (E).”
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Sun Elevation Angle (E)

Solar Incidence Angle (i)

Local Incidence Angle ()

View Angle (v)

Shading

Shadow

Texture

Topography

Radiance Mismatch

Geometric Mismatch

The solar angle E above sea-level horizon, equal to 90°

minus the solar zenith angle.

Angle from the zenith to the sun; same as the solar zenith

angle.

The solar incidence angle referred to the local surface

normal instead of the global zenith.

The angle in the principal plane above the sea-level

horizon: 0° is the sun-facing direction.

Refers to the variations in lighting at all scales that result

from changes in incidence angle.

Refers to the darkness in lighting at all scales that result

from the cutting off of direct illumination.
Surface roughness unresolved at the measurement scale.
Surface roughness resolved at the measurement scale.

The difference between the predicted and the CCD

measured radiance.

The difference between the physical surface and the

computer-simulated surface.
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Residual image

Single-scattering (SS)

Multiple-scatting (MS)

Relative MS (MSg)

Absolute MS (MS,)

Maximum of MSg

Maximum of MS,

Areas for which MSg/B>5%

Areas for which MS,/B>5%

The radiance difference image, which is the difference
between the predicted and the CCD measured radiance

normalized by the local predicted radiance.

Represents the direct-reflectance component leaving each

pixel: Wem™.
Represents the light reflected more than once: Wem™.

MS normalized by the radiosity at each pixel.

(dimensionless).

MS normalized by the maximum radiosity in the image.

(dimensionless).

Maximum value of the relative multiple-scattering

component MSg: Wem™.

Maximum value of the absolute multiple-scattering

component MS,: Wem™.

The pixels (the fraction of the scene) where the relative
multiple scattering is greater than 5% of the radiosity

(dimensionless).

The pixels (the fraction of the scene) where the absolute
multiple scattering is greater than 5% of the radiosity

(dimensionless).
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Offset and Slope Used in context of Chapter 4. It is the offset and slope

terms defining the linear equation of Power-law spectra

of a surface roughness.
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LIST OF ABBREVIATIONS

L Radiance

B Radiosity.

T Emittance.

SS Single-scattering component.

MS Multiple-scattering component.

BRDF Bidirectional reflectance distribution function.

E; E; Surface elements i, or j.

A Atmospheric down-welling irradiance.

Ay Atmospheric up-welling irradiance.
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INTRODUCTION

The purpose of my doctoral research was to pioneer a method for removing
multiple-scattering effects from images, and for using these effects to help characterize
land surfaces. A major goal of terrestrial remote sensing is the mapping of plant
communities, geologic units, and attributes of these units such as forest type and maturity,
lithology and weathering, degree of soil development, and the changes of these properties
in space and time (Schaber et al., 1976; Brown and Scholz, 1985; Franklin et al., 1986:
Borengasser et al., 1988; Borengasser and Taranik, 1988 Evans and Smith, 1991: Bonan,
1993). In order to achieve these goals it is necessary to determine the reflectivity (p) of
the land surface, and also, the land-surface structure (e.g., roughness and/or topography).
However, remotely sensed measurements are of radiant fluxes (photons per unit time.
Watt) measured through the earth’s atmosphere, and commonly scaled into integer digital
numbers (DN) in a range of 0-255. Therefore, the data must be calibrated to account for
instrument factors if they are to be expressed in units of radiance, and to account for
irradiance and atmospheric effects if they are to yield reflectance or reflectivity
(Kaufman, 1988; Moran et al., 1990; Kaufman and Holben, 1993; Hallum, 1993; Myneni
and Asrar, 1994). The reflectivity spectra of materials in a scene can be measured in a
laboratory setting and used for this purpose. A problem which has not been accounted for
in this process is that remotely sensed reflectances for many scenes are strongly affected
by multiple-scattering effects caused by surface roughness and topography -- features not
present in the laboratory (Li et al., 1996). Even the “color” of a surface, largely
controlled by its reflectivity spectrum, may differ from the laboratory to the field due to
multiple scattering from neighboring surface elements. These effects, which may amount
to ~20% of the total measured signal for rugged terrain (e.g. Bluff Creek area, California)
and as much as ~50% for rough-textured surfaces (i.e., gravel bar at the subpixel scale),

must be corrected if reflectance is to be converted to reflectivity for comparison to
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spectral information, or if accurate maps are to be made from remotely sensed images.

Such correction is not made now.

The difficulty in extracting scene reflectivities and roughness from images is that
surface reflectivity, scene texture (subpixel-scale surface structure) and topography
(pixel-scale terrain) influence the surface brightness simultaneously, so that the inversion
for any desired parameter is under-determined. The reflectivity controls the brightness
directly, whereas the terrain roughness at all scales affects brightness by: (1) reducing the
illumination due to shading (foreshortening and shadowing) and (2) increasing the
illumination due to multiple reflection. The first overall goal of my research is to
improve methods for estimating reflectivity by correcting measured brightness for
unresolved shading, and for multiple scattering (MS) at all scales. The second goal is to
estimate surface roughness from remotely sensed data, minimizing ambiguity and

uncertainty in the inversion.

I have separated my research in three main parts: 1) developing and testing a
practical hybrid radiosity model with which to predict multiple scattering for different
situations; 2) developing algorithms to estimate reflectivity and surface roughness from

images; and 3) applying these models to forests and unvegetated landforms.

The main part of the dissertation is divided into five chapters: the radiosity model;
a discussion of multiple scattering at two scales; validation of the radiosity model;
estimation of surface roughness; and topographic correction in vegetated areas. The first
three chapters are focused on model generation, verification, and primary results; last two
are focused on applications of the radiosity model in the separation of surface reflectivity

and surface roughness.

Radiosity is a computer-graphics term for describing the total radiance from a

diffuse surface, consisting of a directly reflected component and a multiple-scattering



component integrated over the hemisphere of the sky (Cohen and Wallace, 1993). (In
most studies only the direct term is considered). In Chapter 1, I present the basic
methodology of developing the new hybrid radiosity model used to characterize and
compute the radiosity from a complicated natural surface, as represented by digital terrain
models, or DTMs. This practical radiosity model is based on an efficient algorithm with
which to compute a geometric “form factor.” In terms of accuracy and computation
speed, this is the central challenge in coding the radiosity model. The form-factor
algorithm combines three existing methods: the double-contour integral (DCI), half-
contour integral (HCI), and element-to-element (EE) methods. These three algorithms
are listed in decreasing order of precision, and increasing order of computing time. My
contribution to radiosity modeling was to develop a sophisticated method with which to
select the best of the three algorithms, pixel by pixel, by balancing the desired output
precision and required computing times. A threshold distance is predetermined for

selecting the algorithm for each form-factor calculation.

First, model results are presented in Chapter 2. The radiosity model is used to
make quantitative estimates of the multiple scattering for a range of surfaces, at visible
near-infrared (VNIR) and thermal infrared (8-12 mm) wavelengths. These results
establish the importance of correction for multiple scattering at the pixel scale of Landsat
imagery, which can account for as much as 20% of the total brightness. DTMs of rugged
terrain of Bluff Creek, northern California, and a rough gravel bar surface, were used to
define test surfaces to demonstrate the multiple-scattering effect at pixel and subpixel
scales, respectively. The results show the spatial distribution of multiple scattering (MS)
over a surface as a function of surface roughness, surface reflectivity, illumination

geometry, and sky illumination.

In order to evaluate the reliability and precision of the new hybrid radiosity model,
laboratory radiance measurements of physical surfaces were made and compared to the

radiance calculated by the model. In Chapter 3, two types of test surfaces, made from



white board, and plaster (both close to ideal Lambertian surfaces), were analyzed. The
radiances were measured using a CCD camera, and the CCD images were registered to
digital DTMs of the surfaces. Comparisons of the predicted and the measured results
were made by direct matching of results, analysis of mismatches, and analysis of local
MS effects normalized to the effects integrated over the image. After accounting for
systematic and random errors caused by the artifacts and laboratory equipment, the

comparisons show a high degree of consistency that validates the radiosity model.

Once validated, the radiosity model was used to retrieve a surface roughness
parameter from a Landsat TM image. Chapter 4 presents a new inversion model (“semi-
empirical inversion”) based on the foreground/background analysis (FBA) algorithm
(Smith, et al., 1996). Basically, the semi-empirical inversion model uses an optimized
finite impulse response (FIR) filter to estimate the roughness of a geological surface using
the radiosity model. The inversion is conducted on an image using the FIR filter
operating in the spectral dimension. The FIR filter was optimized using radiosity model
calculations based on the laboratory reflectivity spectra of natural materials and simulated
rough surfaces, rather than on image data or field data, as in other studies. Compared
with three other roughness inversion methods, the new semi-empirical method
demonstrated better accuracy and stability. In this study, a TM image of Death Valley

was chosen as a test site because of the advantages discussed in Chapter 4.

In Chapter 5, I applied the radiosity model to separate the spectral and roughness
information in a image in order to improve methods of topographic correction. As an
example, the densely forested, rugged Bluff Creek watershed in northern California was
chosen. Based on the anisotropic reflectance of the vegetated surface, a special case of
the bi-directional reflectance distribution function (BRDF) dependent on the both local
incidence and slope angles, as well as subpixel roughness, was calculated using the
radiosity model. The modified BRDF is known as the canopy function (CF). The CF

varies with many parameters, such as subpixel surface structure (tree shape), surface



reflectivity, canopy density (tree spacing), and illumination geometry. Topographic
correction using the CF applied to a simple surface model demonstrates that the CF is a
proper, reliable and theoretically based model of surface reflectance. Comparisons with
three other methods of topographic correction show that the CF approach is the most
reliable, even at low sun elevation angles for which corrections are large. The CF can be
recalculated for different types of surfaces, but it takes a long time; hence the CF method
is more difficult to use than simple methods of topographic correction, although it is

easier to use than full BRDF correction



CHAPTER 1: RADIOSITY MODEL

INTRODUCTION

The increasing demand for high-precision remotely sensed images has created a
need to understand and model the basic physical process of electro-magnetic waves
interacting with complicated natural surfaces, with a higher level of accuracy than before
(Teillet et al., 1982; Lee and Kaufman, 1986; Lepriuer et al., 1988; Proy et al., 1989).
This need is driven in large by the requirement to extract intrinsic reflectivities, devoid of
the effects of lighting condition and geometries, and devoid of the effects of surface
textures and terrain roughness. This information is required for comparison of remotely
sensed reflectivities to laboratory spectral measurements, and hence is a basic

requirement for robust image classification and for the identification of surface materials.

Models that predict radiance budgets must account for secondary irradiance
scattered onto a surface element after one or more reflections from nearby surfaces. The
total radiance from the surface element, consisting of the reflected direct sunlight and the
reflected secondary irradiance, is called “radiosity,” and the models that predict it are

called radiosity models.

Radiosity models were originally developed in the engineering and computer
graphics fields and have been successfully applied to calculate total radiate energy from
simulated surfaces. The greatest use of the radiosity model has been for synthesizing
image, especially for architecture, interior design, light engineering, and advertising
(Nishita and Nakamae, 1985; Christensen, 1992). Recently, it has been introduced into
remote-sensing studies (Borel et al., 1991; Borel and Gerstl, 1992; 1994a; 1994b). Most

primary applications in remote sensing have been focused on predicting the reflectance



from vegetation with the simple geometric surface modes (Gerstl and Borel, 1992).

However, little attention has been given to natural surfaces .

Existing radiosity models have been mostly used for relatively simple surfaces and
were designed to minimize computation time (Baum et al., 1989; Cohen and Greenberg,
1985; Smits et al., 1992; Gortler et al., 1993; Troutman and Max, 1993). Numerous
approximation algorithms have been developed to solve radiosity calculations more
efficiently, without sacrificing accuracy, but these have limited application for
complicated natural surfaces, for example as represented by DTMs. For these natural
surfaces, none of the radiosity methods yields both acceptable accuracy and speed. Thus,
the need to apply radiosity models to actual images has created a need for computationaly

efficient implementation on readily available computers.

A central problem in radiosity modeling is to calculate form factors, which are
defined as the fraction of light leaving one surface element and reaching another. The full
solution for finding form factors is complicated and time-consuming. There are three
basic forrulas: a closed solution method using double-contour integral for polygon (a
finite element) to polygon; a semi-approximation method using half-contour integral for
polygon to differential element; and an approximation method, using differential
equation, for differential element to differential element. The double-contour integral
method (Schroder and Hanrahan, 1993) is the most computationally intensive, but offers
the greatest accuracy. The half-contour integral method (Ashdown, 1994) and element-
to-element techniques (Siegel and Howell, 1992) offer progressively greater savings and

may be used for less-demanding situations.

Most radiosity models were derived from the differential equation by treating the
surfaces as differential elements, and therefore contain inevitable approximation errors,
especially for adjacent surface elements (Cohen and Greenberg, 1985; Baum et al. 1989;

Wallace et al., 1987; Cohen and Wallace, 1993). To minimize the approximation errors



within affordable computation, I have examined existing radiosity algorithms and
developed a radiosity model that is accurate, precise, computationally efficient, and
suitable for complex surfaces. Accuracy and precision estimates are 1-2% of the
maximum radiosity in a scene, or roughly 2-4 DN values if the dynamic range of the
sensor is matched to the distribution of radiance measurements. To achieve this
performance, the acceleration of model relies on the selection among the three different
basic form-factor algorithms as appropriate for a given local geometry. Therefore, a new
radiosity model, hybridized from the three existing radiosity methods, was developed

through careful analysis of overall radiosity precision as well as computation speed.

PREVIOUS WORK

Several theoretical models have been developed and used in remote sensing to
predict the radiance of natural surfaces (Li and Strahler, 1985: Borel et al., 1991; He et
al., 1992; Kusk, 1994). The ray-tracing model is a form of radiative-transfer model. It
provides a straightforward means to predict the radiance reflected from each point of an
image, tracing a visual ray from a sensor into the scene. It has been widely and
successfully used for specular surfaces. (Shinya et al., 1987; Wallace, et al., 1987; 1989:
Shirley, 1990; Watt, 1990). However, the model for non-specular surfaces is time

consuming and impractical (Greenberg, 1989).

To avoid complicated numerical computation, Li and Strahler (1985, 1986, 1992)
developed a geometric-optical model by using the “geometric projection fraction” of each
object on a flat surface to predict the apparent reflectance from a surface. Primarily, their
model was used to predict the bi-directional reflectance distribution function (BRDF) for
vegetated surfaces (Li and Strahler, 1985, 1986, 1992;: Woodcock et al., 1994). A major
limitation of accuracy is due to its strategy of projecting 3-D objects onto a 2-D surface to

calculate the geometric area fraction (the “geometric fraction™). Because the geometric-



optical model lacks the ability to handle complicated geometries, with light bouncing
among many surface elements, it cannot predict shading and the amount of multiple

scattering well (Li et al., 1995).

In contrast to the ray-tracing and geometric-optical models, radiosity models are
designed to calculate the total radiance from a diffused surface (Lambertian surface).
Without considering the directional variation of surface reflectivity, the computations are
much simpler and more practical in terms of coding and speed. The radiosity model has
the attractive characteristic of providing a view-independent solution (Wallace, et al..
1987,1989; Shirley, 1990). Thus, it is attractive for remote sensing, because natural

surfaces have great amount of diffuse reflected radiation at some scales.

Radiosity has been studied for thirty years, and with increasing frequency during
the past decade. Most research has focused on developing efficient methods to calculate
the form factor, the parameter at the core of the model. A number of different approaches
have been developed, most relying on approximate solution for the form factor to reduce
the otherwise prohibitive computation time. These methods include: the hemi-cube
algorithm (Cohen, and Greenberg, 1985; Cohen and Wallace, 1993), the cubic
tetrahedron algorithms (Ashdown, 1994), Nusselt’s analogy (Cohen and Wallace, 1993),
the single-plane method (Sillion and Puech, 1989), the Monte Carlo ray-tracing method
(Malley, 1988), and the area-sampling method (Wallace et al., 1989). These
approximation algorithms are all essentially based on the same basic form factor
formulation used in the element-to-element approach. Thus, all contain inevitable errors,

especially for radiance from nearby pixels.

Of the approximation algorithms, the hemi-cube algorithm is the most commonly
used. In it, a hemi-cube (a half cube) is placed around a differential element, with the
hemi-cube faces divided into small grid cells. Each grid defines a direction and a solid

angle. A differential form factor, dF, is computed for each cell based on its size. Only
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one eighth of the delta form-factors need be computed, due to symmetry (one eighth of
the top face and half of one side face). These delta form factor are precomputed and
stored in a lookup table (Cohen, and Greenberg, 1985). Two important kinds of error are
associated with this approach: aliasing due to projection (Ashdown, 1994), and
approximation by the element-to-element algorithm. These errors increase with

decreasing the distance between two elements.

Only recently has a full solution for the form factor been achieved. Schréder and
Hanrahan (1993) used the double contour-integral method to solve the form-factor
equation numerically. Its solution has been coded with both C and Mathematica for
direct application. The major drawback of the algorithm is that it is computation-
intensive. A scene of 100x100 pixels, for example, requires more then 20 hours to
process using a DEC-Alpha station with a 276-Mhz processor. Therefore, the double

contour-integral method is impractical for most image applications.

RADIOSITY MODEL

The radiosity model is based on the radiative heat transfer theory, for predicting the
radiant interchange between surfaces (Siegel and Howell, 1992: Cohen and Wallace,
1993). The radiance leaving a surface element is determined by the direct illumination
and ambient light from neighboring surface elements. Originally, the radiosity model was
designed only for Lambertian diffuse reflection; subsequent work has extended the model
to glossy and specular (mirror) reflection (Shirley, 1990; Aupperle and Hanrahan, 1993).

In this study, I develop an efficient radiosity model for natural Lambertian surfaces.

A Lambertian surface is defined such that its directional reflectance is an isotropic
function of the irradiance weighted by the cosine of the local incidence angle and surface

reflectivity L = I, pcos(z). The brightness of the surface is independent of the viewing

angle. The Lambertian assumption enables the radiosity model to compute the energy
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balance among surfaces efficiently and in a way that is independent of view angle. These
simplifications must be abandoned if the surface is non-Lambertian. Even for Lambertian
surfaces, the viewer-surface-illumination geometry must be specified in order to compute
radiance, but most of the computation of form factors has been completed before

selection of viewing position.

Multiple scattering (MS) is a major source of light reflected to the viewer, in
addition to the single-scattering component. MS describes the diffuse light bounced

between any pair of surface elements.

To describe the spatial distribution of MS effects in an image quantitatively, the
image is generally divided into many small cells. Any radiosity function over a complex
surface can be estimated by linearly summing the basic functions over a simple array of
finite elements. The contribution of each basic function to the radiosity is therefore

determined by values computed at a finite number of locations, or cells.

RADIOSITY THEORY

Radiosity (B), or exitance, is the total energy per unit area (Wcm™) leaving a
surface, including the thermal emittance (7), single-scattering (SS) and multiple-scattering
(MS) components (Figure 1). It is similar to irradiance, which describes the total energy

per unit area arriving on the surface. Its concise formula can be written as
B, =T +SS, + MS, i=123 ........ n (D

The first term (T) represents all thermal energy released from the surface: the
second term (SS) is single-scattering radiance, includes all first-order reflectance; and the

third term (MS) is the multiple-scattering component, which is the energy bounced one or
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Figure 1. Schematic diagram shows the geometric relation of radiosity
with components: single scattering, and multiple scattering components,
and roughness at Landsat TM pixel and subpixel scales. At the pixel (30-
m) scale, roughness is topographic and is described by DTMs. At the
subpixel scale, roughness is textural; typical scale lengths vary widely with
terrain.

more times among surface elements. Emittance, the radiation of a surface, is the function
of the emisivity and surface temperature, and the first-order reflectance is the light
incident on the tilted surfaces. One of the complexities of the radiosity model is the
calculation of multiple scattering. The amount of light reflected from adjacent surface
elements is determined by the geometric relation of those elements, or how they view

each other. The full radiosity model is then written as
B.=T +p*(I,)*Cos(t,)+p,* Y. B, *F,, )
j=l

where p; is surface reflectivity; /,, is Irradiance; T; is incidence angle; F;; is the form-

factor. This is a typical form of the radiosity equation as used in computer graphics and
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engineering fields. Rearranging the radiosity equation, the n linear equations can be

derived, and written in a matrix expression:

(1=pFy o —pF, 8] [Tess,
—pF, .. .. —-pF, |B T, + S8,

=l .. 3
__ pnF;l.l cte oo l—anx.nj_Bn_J _7:1 +SSH.J

where SS; = p, *(/ + A, ) *cos(7;) and Ay, is downwelling scattering component.
There are n unknown radiosities in the n linear equations, associated with the individual
pixels in the neighborhood of pixel i. The SS terms as known variables, calculated from
the irradiance, surface reflectivities, and local incidence angles (1;), and the data kernel
(linear-equation coefficient matrix) which represents the geometric position (F i.j) for each
pixel is determined before-hand. Solving for the data kernel is a key step of the radiosity

model and discussed in detail below.

FORM-FACTOR CALCULATION

In describing the simple case of radiance from one point to another, the form factor

takes its most basic form, written in equation (4) and illustrated in Figure 2:

Cos(6.) * Cos(6;)
d**r

dAi 4)

Fug - ue =

where Fygj . 4 is the form factor of element dE; to dE;; 8 is the projection angle between

the normal of a surface element and line linking the pair of elements together; dA; is the

area of element i; and d is the distance between the two.
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Figure 2. Schematic plot for illustrating the definition of symbols used in
the radiosity model.

In considering a form factor for one finite area to another, both 6; and 0; angles, and
distance in equation (4) will change with each point within the area elements, and
therefore, integration is required. Normally, for two arbitrary surface elements in 3-D
space, integration must be performed six times along each of the X-, Y-, and Z-axes for

both areas. Then equation (4) becomes

Cos(6,)*Cos(8,)
Fii= I J- I .[ J. I T*d? *dx,dydz,dx;dy,dz, (5)
Solving equation (5) is complicated and time-consuming (Hamilton and Morgan,

1960). “Full solution has required most of the 230 years since Lambert’s pioneering

efforts,” summarized on page 267 Ashdown (1994). There are two fundamental

approaches: numerical and analytic methods. The closed-form solutions are mostly

applied for simple geometric shapes of polygons (Siegel and Howell, 1992). Analytic

methods are more efficient in terms of computation, but have less accuracy.
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A HYBRID RADIOSITY MODEL FOR NATURAL SURFACES

The hybrid radiosity model consists of four main procedures, which are outlined in
a flow diagram in Figure 3. They are: 1) modeling the topography with DTMs; 2
determining the form factor (using the hybrid algorithm); 3) solving the radiosity

equations iteratively; and 4) displaying the results.

Model Environment
Digital Terrain Model (DTM)

Determine Form Factor
(Hybrid Algorithm)

Solve The radiosity Equations
(Gauss-Seidel Iteration)

Display Result For A Given Illumination
And Viewing Geometry

Figure 3. Flow chart shows the major procedures in the radiosity mode.

MODELING THE ENVIRONMENT

Finite surface structure

Digital terrain models (DTMs) are used in the radiosity model to represent the
topographic structure of natural surfaces. The DTMs use a predetermined mesh template
to map the topography. This template is a predefined subdivision into standard elements,
usually a rectangular grid. The chief advantage of the subdivision algorithm is that it
generates perfectly regular, well-shaped elements. The mesh template is the only surface
structure commonly available for representing natural surfaces. However, this meshing
method inevitably generates some inaccurate elements where the template intersects

natural boundaries.
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Each element can be characterized in two ways. One uses the four corner values
directly to represent the surface element, which is not flat but curved. The other way uses
the normal vector, the average height, and the area of a best-fit plane controlled by the
elevation at the four corners. The normal vector was calculated using a cross-product
algorithm, and the average height and area were calculated for the best-fit plane. These
two methods were selectively used for calculating form factors with different form-factor
methods. Using the double-contour integral method requires the four corner values, and
using the element-to-element method requires both the normal vector and the height of

the best-fit surface.

The radiosity was calculated for each surface element by assuming the surface was
flat. Both methods (double-contour integral and element-to-element) are sensitive to this
assumption, and therefore the calculated radiosity is erroneous to some degree. The
validity of the approximation, and the accuracy of the calculated radiosity, depend on the
spacing of the DTM grid as well as its vertical resolution. In general, the finer the DTM

resolution, the better the radiosity results.

Visibility determination

One of the factors determining multiple scattering is the “visibility function™ (view
blocking) of an element as viewed from adjacent pixels. The mutual illumination
between a pair of pixels requires that they face each other, and that the mutual view is
unimpeded by intervening topography. Therefore, before calculating the form-factor, the
visibility function must be determined for the whole image. This visibility function is a
binary field (“true” or “false”), and depends on the normal and height of each surface
element. The visibility function controls the number of pixels involved in the form-factor

calculation, and hence affects the total computation time.

There are two steps in determining the visibility function. The first step is to check

if a given pair of pixels face each other, based on the angle between the surface normal
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vectors. If this facing angle is less than 180°, they potentially can see each other:
otherwise they cannot. The second step is to determine if the view between pixels is
impeded by surface elements between them. After calculation of the binary visibility-

function image we may proceed with the form-factor calculation.

For most natural surfaces at remote-sensing scales (10-100 m), typically fewer than
half the pixels in the image are visible from a given position, because of the blocking by
intervening hills. Usually, the rougher the surface, the fewer the “visible” pixels, and the
shorter the calculation time required to calculate the form factor. Consequently, the

radiosity model runs faster for rough than the smooth surfaces.

Errors in the visibility function may be caused by the discontinuity between the
fitted plane at each pixel. Using the center height of each pixel to determine if the view is
blocked results in overestimating or underestimating the height at an edge; hence the
blocking factor may also be in error. These errors mostly occur along the edges of
blocking terrain features. Their effect in the radiosity image is the geometric distortion of

the pattern and errors in the calculated multiple scattering.

DETERMINING THE FORM FACTOR (HYBRID FORM-FACTOR METHOD)

Three approaches to determine the form factor
In this section, three methods of solving for the form factor are explained briefly.
In order of decreasing precision, they are the double-contour integral (DCI), half-contour

integral (HCI), and element-to-element (EE) methods.

Double-contour integral (DCI) method
One mathematical solution of equation (5) is called the double-contour integral
method, which treats the problem as an exchange of energy between two finite areas.

Instead of integrating in three directions (X, Y, Z axis) over each surface area, a double-
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contour integration is applied to convert equation (5) to two line integrals along the
boundary of each polygon, by two applications of Stokes’ theorem (Sparrow and Cess,
1978). Through a series of complicated mathematical manipulations (Sparrow, 1963),

equation (5) becomes
1 1 1
AF,, =§f(;§ln5dxj)dxi +ﬂ;§(;§lndej)dyi +;;§(c§lnSdzj)dzi (6)

where ¢; and ¢; are the boundaries of the two surface elements and S is a complete
function (see Schréder and Hanrahan, 1993). Schréder and Hanrahan (1993) were the
first to solve this equation and to give the full solution for the form factor for any two
polygons of arbitrary shape, coded in Marhematica and C computer languages. Their full
solution is too complicated for presentation here. As a courtesy from Schréder (P.
Schroder, pers. Comm. 1995), I have incorporated the C code implementing the double-

contour integral method in my radiosity computer program.

0.0018

0.0012 -

0.0006 -

Form Factor

Distance (d), pixels

Figure 4. Form factor vs. distance calculated by the double-contour
integral method for the case: a = 150°, 6,=75°, and B=10°. Maximum
value of the form factor is 1 (parallel elements facing each other at close
range).

For a given image, the time required to calculate the whole form factor increases

exponentially with the size of the image. For an image (50x50 pixels), calculation of 10°
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complete form factors required 740 seconds CPU time on a DEC-Alpha 3000 computer,
with a 276-Mhz processor. The value of the form factor decreases quadratically with the
distance between the two elements, indicating the effect of bounce light from an adjacent

scene element is rapidly reduced with distance (Figure 4).

Figure 5. Schematic plot for the half-contour integral algorithm, adapted
from Ashdown.

Half-contour integral (HCI) method

The half-contour integral method treats the radiosity exchange as from a differential
element to a finite area, therefore reducing equation (5) to three integrals applied only on

the finite area. Ashdown (1994) solves the triple integral numerically, yielding

I n-|
Fyp g, = 5;;)% cosy, (7

or



1 n-1
Fie,-e, =5 20, (r * rk + )%n) (8)
k=0

where # is the number of polygon edges; ¢ is the angle (in radians) between vectors r;
and r (t+/)%, defined from JE; to each pair of vertices k and (k+1/)%n (% is the modulo
arithmetic operator); vy, is the angle (in radians) between the plane of dE; and the triangle
formed by dE; and the kth edge; and n; is the normal of dE;. Figure 5 provides a

geometric context for equations 7 and 8. I have written C code for this algorithm.

Computation time was only 12 seconds, for the same set of form factors used in
determining run time for the DCI method. Thus, the ACI method is faster by a factor of

>60 than the DCI method.

Element-to-element (EE) method

Equation (4) is the basic form of the simplified form-factor method that treats the
surface elements as points. Since it has the simplest form, it is the fastest algorithm. It
can be used to approximate the form factor only when the distance between the pair of
surface elements is sufficiently large to justify treating the elements as points. My
radiosity program uses this method whenever this approximation does not result in errors

larger than the precision requirement for the radiosity, set by the user.

The EE method took only 2 seconds CPU time for the same set of 10° form factors.

It is six times faster than HCI and 320 times faster than DCL.

Variables affecting the form factor

The form factor is solely dependent on the five geometric variables relating the
surface elements to each other (Figure 2): the two projection angles (6; and 6;), the areas
of the surface element dA; and dAj, and the distance between the them (d). In practice, I

use the facing angle (o) (to replace the projection angles 0)), slope angle B and rotation
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angle v (to represent dA;) in calculating the form factor, because from a physical point of
view, a and 6; are more convenient than the pair of projection angles (6; and 6;) for

describing the geometry of land-surface elements.

In order to understand how each variable affects the form factor, the functions
relating the form factor to each variable are discussed in detail below, with respect to the

basic form factor equation:

Cos(8,)*Cos(0,)
Fee -ue = ——*dA, @
1 ' ﬂ.*d-
0.6
0.4 |

Cos(6,)*Cos(0))

_o:a —//170 (00 =0+ 6)
-1 " t ¢ : : :

0 15 30 45 60 75 90

Angle 6; (°)

Figure 6. This diagram shows the basic cosine term of the form factor
equation 4 as a function of the projection angle (6;) for facing angles (a)
from 90° to 170°. The positive values indicate that the elements are

visible to each other, whereas the negative values indicate the pair of
elements cannot “see” each other.
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Projection angles 6; and 6,

The two projection angles are closely related to the facing angle o and the rotation
angle y of the surface element (Figure 2). By definition, & is the angle between the two
surface elements. In principle, o may range from 0° to 180° but, for most natural
surfaces, it ranges between 90° (cliff) and 180° (horizontal plane). The rotation angle v is
defined as the azimuth of a surface element relative to the normal of other surface
element. When y; = O, both surface normals lie in the same plane, called the principal
plane, and o = 6; + 6;. There is a restricted relationship (dependency) between o and 6;:
if o is fixed, 6; can vary only in a certain range; if the form factor is positive, the two
elements are mutually visible. The relationship of the form factor, o and 0; is plotted in
Figure 6. The dependency of o and 6; constrains the range of reasonable value of each

angle.

Area of surface element E; (dA;)

Intuitively, the form factor Fyej .aei ought to increase with dA;, because the solid
angle subtended by element E; (viewed from E;) increases with the area. For a given

pixel, dA; can be determined from the surface element slope B and rotation angles vy

(Figure 2):
dAi = {cos[arctan(cos ¥ tan )] * cos[arctan(sin ¥tan 5)]}”" (5)

where § varies in the range of 0° to 90°, and v is in the range of 0° to 45° (symmetric to
principal plane). Area dA; will be bigger than a pixel for B > 0°. When y = 0° both
elements are in the principal plane and the target element E; is fully facing E;. In this
orientation, the multiple scattering between E; and Ej, and the relative errors attending its

estimation (with respect to SS), are all maximized.



Distance (d)

The distance between the two elements is the dominant variable contributing to the
form factor, which decreases quadratically with increasing d (Figure 5). The accuracy as
well as the value of the form factor depends more on the distance than any other variable.
One consequence is that, for most natural terrain surfaces, two patches can be treated as

points when d is sufficiently large.

1.00E-02

1.00E-03 - Half-Contour

Double-Contour

1.00E-04 +

Form Factor

1.00E-05 +
Element-Element

1 .OOE'OG . v v T . T T v v 13 13 3 T T * 3 T * T * T t 3 i * * .
2 8 14 20 26 32 38 44 50 56
Distance (d), pixels

Figure 7. Form-factor values calculated using three different algorithms:
double-contour integral (DCI), half-contour integral (HCI), and element-
to-element (EE) methods. The DCI is the most accurate. The
approximation errors using HCI decrease with the distance and the ones
using EE is almost constant in the log-axis. The example is calculated
using o = 150°, B = 30°, and 6; = 75°.

Comparing the three algorithms
Both the HCI and EE methods estimate the form factor by assuming that either one

or both of the surface elements are points. That assumption can be justified when d
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exceeds a threshold value that varies with the precision desired. Figure 7 shows the form
factor as a function of the distance calculated using three algorithms. The approximation
errors for the HCI method decrease rapidly with distance. After 15 pixels, there is almost
no difference between the values found using the two algorithms. However, the form-
factor error from the EE method is constant for the entire range of input parameters.
There will be always an error in using EE method, no matter how far the two elements are

apart.

This threshold distance does not only vary with the choice of algorithm, but also
varies with the geometric variables discussed above. Careful selection of the threshold
distance is the key to make the form-factor calculation efficient within the allowable
precision. To select the proper algorithm for the form-factor calculation, the threshold
distance value must first be calculated. In the next section, the detailed strategy for

selecting the threshold is explained.

ALGORITHM SELECTION

The rule of the algorithm selection is to choose the fastest algorithm of the three
within the desired accuracy. The threshold distance which gives the chosen errors

(desired precision) is then calculated. A set of threshold distances was calculated for all
variations of the geometric parameters (o, B, 8, and ). These precalculated threshold
distances are coded in a lookup table for use in selecting the best algorithm for each form-

factor calculation.

To determine the accuracy for each form-factor calculation, the first step is to select
the approximate radiosity precision for a given image. This precision, in turn, determines

the limit of accuracy required for the each form-factor calculation.

B, =p,*I, *cos(t,)+p, >, B, *F,, 9)
j=t
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The radiosity, B; (equation 9), is the function of surface reflectivity p, irradiance /,,.
local incidence angle 1;, and form factors Fij. Assuming all these variables are constant
for a homogenous surface, except the summation of form factors, which must be
approximated. Thus, the accuracy of the calculated radiosity depends on the sum of form

factor precision.

Figure 7 shows the form factors calculated by the three algorithms as a function of
distance. The difference between the approximation algorithms (HCI and EE) and DCI
are the errors: positive caused by HCI and negative caused by EE with respect to DCL
When an element receives all bounce light from its neighbors, the error of its form factors
in sum is compounded from all the individual of each form factor. When a precision is
specified for the predicted radiance, the implied uncertainty for each individual form
factor is actually much smaller. This required precision is really dependent on how many
form factors must be summed in equation 9. Since the number changes from pixel to

pixel, it must be estimated statistically.

In application, the maximum field of view must be determined before calculating

the form factor precision. The number of elements (N,) that are in the field of view and
within the distance (d) is given by: N, = (2*d +1)> 1. If all pixels are assumed to be
visible to each other, the number (Ny) of the form factors is then N F =lR*d+1)))2,

where the denominator 2 account for the form-factor reciprocity for any pair of elements.
For example, if the distance of viewing field is 10 pixels (thus, the image is 21x21

pixels), the total number of elements is 440 pixels, and the total number of form factors is

<97,240.

For natural terrain surfaces, however, many topographic depressions are enclosed
on only two sides, such that only half of the above number of elements must be

considered. Again, because the form factor decreases quadratically with distance, for d >
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60 pixels (1800 m for 30-m resolution), the form-factor value is < 10°. This amount is
negligible; therefore, I have chosen 60 pixels as a cutoff boundary for the field of view,

and radiance from beyond that distance is neglected.

Determining the threshold distance that accounts for all possible geometries of a
pair of elements requires a 5-D lookup table: facing angle a, projection angle qi, element
slope angle b, and rotation angles g. To reduce the number of variables, I have fixed g =
0, where the form-factor estimation error is maximum for all range of g. This is the case
in which both surface elements are in principal plane. Thus, the reduced lookup table is
4-dimensional.

Facing Angle (o)

N

S ) —

e | \
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Figure 8. Schematic flow chart illustrating a hierarchy structure for
classifying the geometric orientation of a pair of elements into simple
categories. For each case, the threshold distance value is evaluated for a
specified form-factor precision. All the values in the chart are angles in
degrees.
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Determining the threshold values depends on evaluating the cumulative errors in
the several geometric categories. These categories can be represented as the tree structure
shown in Figure 8. Starting from the top node of the tree, the facing angle o was divided
from 180° to 100° (the most common situations) in intervals of 10°, and 6; and B were
divided from 45° to 0° in intervals of 5°. All the intervals were chosen with
considerations of computational speed and form-factor approximation accuracy. Thus,
there are about 400 cases (in which the form factor is positive, Figure 6) of geometry of
two elements for evaluating the threshold distance values. Calculating all the form
factors in the 60-pixel neighborhood, using both HCI and DCI; taking their difference
multiplied by the total number of surface elements within distance d; and then summing
up all the differences in the 60-pixel range (cutoff point), the cumulative errors for the
radiosity for each distance value were obtained. Thus, for each different accuracy
requirement, the corresponding distance threshold can be calculated. A lookup table was

then established for the hybrid radiosity model calculation.

Based on the threshold values in the lookup table, the primary choice of the form-
factor algorithms is between the DCI and HCI methods, because there in lies the greatest

savings in computation time. For most surface, the threshold distance for this choice is 5-

8 pixels.

There is less at stake in choosing between the HCI and EE methods, because the
difference of speed is only a factor of six. The difference in radiosity calculated by HCI
and EE beyond 15 pixels is generally less than the uncertainty caused by measurement
errors. My experience shows that 15 pixels is good threshold distance, beyond which the
EE method may be used, provided that the radiosity must be determined within + 2%.

This rule of thumb greatly simplifies the calculations attending the choice of method.
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ITERATION IN THE RADIOSITY EQUATION

Once the form factors for each surface element are calculated, the data kernel in
equation (3) is then also known and can be used to solve the linear radiosity equations.
Solving the radiosity equation is one of the most familiar challenges in numerical
analysis, because the computing time required increases exponentially with n*m, where n
and m are the row and column of an image, respectively. Many algorithms have been
developed for simultaneously solving the n*m linear equations. The most popular ones
are direct methods, such as Gaussian elimination and its variants, but these exhibit a
computational complexity related to the cube of the number of equations. Thus, even for

a relatively small image (e.g., 100x100 pixels), this approach becomes impractical.

The iterative methods are the best of the candidates for approximate solution. In
previous studies of radiosity modeling, Gauss-Seidel iteration is commonly used to solve
the set of equativns (Cohen and Wallace, 1993): therefore, it is used here also. The

Gauss-Seidel iteration is given as

B.(k+1) =SS,.+z",p,.F;JBI.(k+1)+ zn:p,.F;_ij(k) (10)
j=1 j=itl
where k+/ is the current iteration and & is the previous iteration. At the k+ /st step of the
iteration, the new B(k+/) is computed using the values B, (j =/, I-1,..., 2, ]) computed in
current iteration and the values By(j = i+/ -- n) from previous iteration. For each
iteration, the Gauss-Seidel iteration requires O(n’) operations. At the beginning of the
iteration (k=1), radiosity B is given by the first reflection or single bounce (SS). The first
iteration accounts for the incident SS light reflected onto the surface element from its

neighbors. The second iteration accounts for second-order reflections, and so forth.

Gauss-Seidel iteration has clear physical meaning and converges quickly, usually

within 2-4 iterations. Each iteration actually represents a reflection between a pair of
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surface elements. At each iteration, the Gauss-Seidel method uses the most up-to-date
values from the current solution, rather than values from the previous iterations. Since
the scattered light usually decreases rapidly in natural environment, because of low
reflectivity and moderate relief, only a few iterations are required for the convergence. In
general, Gauss-Seidel iteration takes only 2-4 times to achieve 1% maximum difference
between the nth and n + Ist iteration. However, if the surface is highly reflective, as is
the case for snow or for vegetation in the near-infrared, more iterations will be required

and the savings will be less.

PRESENTING RADIOSITY RESULTS

Once the radiosity solution has been computed, the radiosity model comes to its
final step — rendering results. The radiosity results basically can be presented in two

ways: as rendered images and as analytic results.

RENDERED IMAGES

The calculated radiosity field can be rendered as an image in order to display the 2-
D spatial distribution. Although the radiosity calculation is independent of the viewing
geometry, the rendered image naturally requires its specification. For a given viewing
position, the radiosity field is projected on to a plane that is perpendicular to the viewing
direction. If a surface is flat and Lambertian, radiosity does not varies with viewing
geometry. For a rough surface or for a non-Lambertian surface, however, the radiosity

varies with slope and/or the viewing position.

For Landsat images, the viewing angle is close to zero (< 11°) and, since terrain
slope is typically small also, the emergent angle rarely exceeds 20°. Every target on the

ground is projected on to the horizontal plane (ground). If the surface is Lambertian, the

radiosity at each pixel projected onto the viewing plane, is the same as the radiosity
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calculated from the DTM (assuming that the DTM has same raster structure as the
Landsat image). Thus, for a diffuse surface, the rendered image faithfully displays the

radiosity results, without any transformation.

If the viewing angle is off-nadir, however, the radiosity projected in the viewing
direction varies with viewing angle, due to the roughness of the surface. For a given
viewing geometry, the rendered image can be constructed by a function which maps each
pixel (P) to a point (X) in the environment. This projected radiosity value (Bp) can be
approximated by the radiosity (B,) weighted by the corresponding form factor of the point

(X) to viewing pixel (P).

B, =B, *F (rn

p x x.p

Repeating this process for each pixel produces a discrete map (or image) of the

radiosity field rendering for a particular viewing geometry.

ANALYTIC RESULTS
Another way to present the radiosity results is to provide necessary key parameters
which are derived from the radiosity model in order to evaluate the multiple scattering.

Those quantities are all defined in the glossary at the beginning of the dissertation.

RADIOSITY RELATED TO THE RADIANCE MEASURED BY LANDSAT

Radiosity B describes the total flux density (at each wavelength) leaving a surface
in all directions within a hemisphere over the surface, in units of Wem™. In contrast.
Landsat measures the flux density in a detector that subtends only a minute fraction of
that hemisphere, such that the measured parameter is radiance L in units of Wem st
For a Lambertian surface, because the radiosity is isotropic in all directions, the radiosity

and radiance differ only by a constant factor of &t, as expressed by
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B=J'L*cosq)*dco (12)
Q

The quantity cos@ *dw is often referred to as the “projected solid angle” and Q is the

hemisphere. Solving the integral over the hemisphere, the result can be derived as

B= Lf cos@pdw = LT]ECOS([) sin odpdd
00 (13)

~

O".:i

bid

=—L!

cos@d@cosdd® = 2w i [ =¥ [

For a non-Lambertian surface, of course, L varies with ¥ and ¢ and hence must be

brought into the integral. In this case, L and B are not simply proportional.

The radiance actually measured by Landsat includes upwelling sun light scattered
from the atmosphere and downwelling sky light reflected by the surface, as well as the
direct reflected sunlight (attenuated by passage twice through the atmosphere). Even this
description is incomplete, since it does not take into consideration atmospheric scattering

of the reflected term. The approximate equation for radiance ignoring those complexities,

should be

1
L =—(B+A,)
T

or (14)

L =—(T +p, +A,)cos(z,) +p, Y B,F,, +A,,)
j=t

3|~

where Ay and A, are the down- and up-welling irradiance, respectively; /,, is the solar
irradiance on the ground, after passage through the atmosphere; and 7; is the emittance

from the surface. Emittance for most terrestrial targets is significant only at wavelengths

greater than 3 um.
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In this radiosity model, the focus was on the multiple scattering among the elements
of the rough natural surface, and atmospheric effects have been ignored. Therefore, for

VNIR wavelengths the radiosity equation can be simplified as
B, =7m*L =55+ MS, = px(I+A,)*cos(z,) +p, ) B,*F,, (15)
j=1

which is same as equation (9), including the single-scattering (SS) and multiple-scattering
(MS) terms. At some point, however, it will be useful to use the full equation 14,

especially for visible wavelengths for which atmospheric effects are important.

CONCLUSION

A new hybrid radiosity model was developed based on three existing algorithms:
double-contour integral, half-contour integral, and element-to-element methods.
Different from other radiosity models, this new model is made specifically for calculating
radiosity of natural surfaces. It provides suitable accuracy of radiosity calculation within

acceptable computation time.

The major contribution of this mode! is to solve the form-factor calculation in a
more efficient way. In order to satisfy the desired accuracy of radiosity for natural
surfaces, one of three algorithms is selected, pixel by pixel, to minimize running time
which maintaining specific performance characteristics. The threshold parameter for the
selection is a function of the distance variable, which was precalculated for ~400 cases.
The EE algorithm is 64 faster than DCI, and HCI is >60 faster than DCL. The major

increase in algorithm speed comes using from HCI as much as possible, in stead of DCI.

The current model is still limited by the Lambertian surface assumption. The

sensitivity of the model to violations of this assumption is not be considered in this study,
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but it may be an important factor for the application of the radiosity model to many

surfaces.

This chapter describes the development of the hybrid radiosity model. In the next
chapter, [ will apply this model to study the physical interaction of light with real natural

surfaces.



CHAPTER 2: MULTIPLE-SCATTERING PREDCTIONS

INTRODUCTION

The multiple-scattering component may comprise a major fraction of the reflected
light from rough natural surfaces. Many studies have shown, either directly or indirectly,
that uncorrected multiple scattering may cause inaccurate estimates of surface reflectivity
and may therefore introduce error into image analyses (Jackson et al., 1990; Lee and
Kaufman, 1986). Image calibration, topographic correction and image classification all
may be affected adversely. However, because of its complexity, multiple scattering has
not been fully understood nor corrected for image processing of terrestrial images. Solar
photons, after their first interaction with the surface, may be reflected many times among
neighboring elements of the scene. The multiple-scattering component exists at all scales
greater than the wavelength of light, and is controlled by the local surface roughness,

solar illumination, diffuse sky irradiance, and surface reflectivity.

Any rough surface will experience multiple scattering, but from the remote-sensing
standpoint it is helpful to divide multiple scattering effects into those caused by surface
roughness at the topographic scale (great than pixel size) and those caused by intrinsic
surface roughness at the subpixel scale (Figure 9), because the former can be predicted
from readily available digital terrain models (DTMs), but not the latter. These two levels
of MS effects exist simultaneously in all remotely sensed images. At the topographic
scale, MS refers to the light scattered from adjacent pixel-sized surface elements, whereas
at the subpixel scale it refers to the light scattered among surface elements within the

pixel.
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Figure 9. Radiosity decreases with incidence angle, whereas MS
increases. These data were calculated at the 30-m (pixel) scale from a
DTM for the BCI area, with E = 47°, sun azimuth = 133°, p = 30%, Fa =
10%, and solar irradiance = 200 (Wcm'z). a. Radiance vs. local incidence
angle. b. SSg and MSg, (relative to R) vs. local incidence angle.

Given an accurate DTM, both the multiple- and single-scattering components of the
measured radiance can in theory be estimated quantitatively using radiosity models
(Cohen and Greenberg, 1985; Greenberg, 1989; Siegel and Howell, 1992; Cohen and
Wallace, 1993). The radiosity-modeling approach has, however, been developed for
engineering and computer-graphics applications and not for complex natural scenes for
which radiosity calculations have required large amounts of computer time. In remote
sensing, radiosity models have been applied to simplified scenes with idealized geometric
models such as in, for example, vegetation spectral studies (Borel ef al., 1991: Gerstl and
Borel, 1992). We have adapted earlier radiosity models to operate on complex scenes for

which topographic slopes are calculated from DTMs.

In the modeling of topographic effects, previous studies have mainly used DTMs to
calibrate the topographic shadowing and shading effects by using foreshortening of direct
illumination (e.g., Teillet e al., 1982; Dozier and Frew, 1990). Few have considered the

distribution and magnitude of the higher-order multiple scattering (MS) effects in the
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image, and little attention has been given to correcting apparent reflectance for MS
effects. Indeed, Proy et al. (1989) regarded MS as subordinate to effects of geometry and
sky irradiance. Our work, however, shows that this is only true in a general sense, and
that for rough surfaces the MS component may locally be second only to direct

illumination in importance.

The objective of this chapter is to use the radiosity model to: (1) make quantitative
estimates of the amount and spatial distribution of MS for different surfaces; (2)
calculate the MS as a function of terrain roughness at the 30-m pixel scale, solar
illumination geometry, surface reflectivity, and diffuse sky illumination; (3) calculate MS
effects at the subpixel scale and determine the correlation of reflectance, or apparent

reflectivity, to surface roughness.

This is a preliminary study on the significance of MS effects for natural surfaces.
As such we have ignored some complicating effects such as the changing path length of
solar illumination at different solar elevation angles. In future applications, it will be

important to consider the whole atmospheric path length.

BACKGROUND AND METHODS

The radiosity model has been developed and discussed in detail in Chapter [. In my
dissertation, all the surface elements are usually assumed to be Lambertian and hence the
modeled radiance at the sensor (L, in units of Wcm'zsr") for each pixel is a constant
fraction of the radiosity (neglecting atmospheric effects). This fraction is just a constant

(1), which can be derived by integrating the radiance (L) over the hemisphere (see

Chapter 1 for detail). Thus, the radiance can be written as:

L=B/ _(SS+Ms)/ "
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The exitance or radiosity (B) is given by

B, =SS, + MS; =1, *p *cos(7,)+p, * Y B, *F, )
j=I
where /., is the solar irradiance (Wcm'z), p is the reflectivity and 7 is the local incidence

angle. The MS component of the radiosity or exitance depends on a geometric

relationship (the form factor, F, ) between neighboring surface elements E; and E;

Two scales of DTM data were used in this study, the first being 30-m resolution
USGS elevation data for the Bluff Creek (BC) area, near the town of Orleans in Northern
California, and the second being 1-cm topographic data measured for a gravel bar at Bluff
Creek and for the dry channel of an intermittent stream in Death Valley (DV), California.

The high-resolution (cm scale) DTMs were measured using a Ix! m pin profiler.

Our goal is to determine approximately how important the contribution of MS can
be for natural surfaces depending on viewing geometry. Hence, for simplicity we apply
the radiosity model to surfaces assumed to be Lambertian and uniformly reflective,
although the model can accommodate heterogeneous surfaces. Laboratory radiance
measurements verify that gravel surfaces can be nearly Lambertian but this is less true for
vegetation (Vanderbilt and Venecia, 1988; Deering, er al., 1992). However, as in earlier
models such as the model of Li and Strahler (1985), we have taken the preliminary
approach of assuming Lambertian scattering. Unlike the earlier models, our focus is the

estimation of multiple-scattering effects.

RESULTS

For consistency we report results that use the same illumination geometry
throughout the study, unless otherwise stated. The viewing angle is 0° (nadir-looking),

and the assigned surface reflectivity is 30% (compared to, for example, ~20% for granite
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at 0.5-2.5 um, ~40% for vegetation at 1 pm, and ~80% for snow at 0.5-1.4 pm). The
skylight is assigned to be 10% of the solar irradiance, which is fixed at a value

appropriate for clear skies at visible wavelengths (200 Wem™)

To illustrate the importance of MS, we report the results of our modeling using the

following parameters: MS, MSg, MS,, and Asq, (see glossary).

In evaluating these results it should be noted that the absolute value of multiple
scattering in Wem™ (MS) is somewhat arbitrary since it depends on our chosen value for
solar irradiance. MSg and MS, provide a measure of the relative importance of MS that
is not so dependent on the input parameters we have chosen; MSg gives the importance
of MS compared to total radiosity on a pixel by pixel basis, while MS, is the importance
of MS compared to the maximum possible radiosity in a scene (that for a pixel at zero
incidence). Parameter Asq indicates the area in a scene that might be significantly

effected by MS, whether it be MSg or MS 4.

MULTIPLE-SCATTERING EFFECTS AT THE TOPOGRAPHIC (PIXEL) SCALE.

In this section, we will demonstrate how MS in rugged terrain is affected by the
local solar incidence angle (T), roughness at the topographic scale, the sun elevation angle
(E) above the sea-level horizon, reflectivity (p) of the surface, and diffuse sky
illumination (A,.). Two subsets from the Bluff Creek DTM, each 120x120 pixels
(3600x3600 m), were selected to represent a rougher and a smoother terrain in this
mountainous area. The rougher subset (BCl) contains deep-cutting canyons with a
maximum relief of >800 m; the smoother subset (BC2) comprises a broad valley with a

maximum relief of <500 m.
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Local incidence angle at the pixel scale.

Figure 9 shows scatter plots of radiosity (B), single scattering (SS) and multiple
scattering (MS) as a function of local incidence angle (1), for the rougher subset (BCl).
Figure 9a shows the radiant flux density of each component as a function of T. On this
plot the single scattering (SS = cos (1)) plots as a line, but the multiple scattering varies
with local conditions and causes the exitance or radiosity (B=MS+S5) to plot as a scatter
of points. MS has generally low values but does increase slightly with t. Figure 9b
shows the relative contributions of SS and MS (ratioed to the local B). About 20% of the
pixels in this mountainous area experience a significant component of multiple scattering
(MSg > 5%). Since MS is relatively constant at all values of T, whereas SS varies as
cos(T), the relative contribution, MSg, tends to increase with T. Most of those pixels with
significant MSg have T >40°. That indicates that MS contributes relatively more in highly

shaded and shadowed areas.

Relative NS Relative NS
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Figure 10. Perspective views of Bluff Creek image subsets show the
variation with surface roughness in the distribution of relative MS. a).
Subset BC1 (rougher terrain). b). Subset BC2 (smoother broad valley).
For both a and b, E = 47° and sun azimuth = 133°, typical for August or
May Landsat images.
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Topography at the pixel scale.

DTM subsets BC1 and BC2 illustrate the importance of terrain relief on the MS
component. Results are shown in Figure 10 for the lighting conditions appropriate for
Landsat images acquired in August or May. For the rougher BC1 (Figure 10a) the
maximum value of MSg is twice that for BC2 (Figure 10b). The area of significant MS
(A5% for MSg) is even more strongly dependent on terrain, being a factor of five or more
greater for BCl. Table | summarizes the MS effects for BC1 and BC2 under different
illumination geometries. In both areas the spatial distributions of MS follow the same
patterns, with higher MS values concentrated in localized regions such as cliffs, deep
valley floors, and areas facing large reflecting slopes. MS is low in broad valleys and,

especially, on ridge tops.

Table I. Multiple-scattering at the 30-m scale,
Bluff Creek subsets BC1 and BC2

p = 30%, sky light = 10% | Bluff Creek Subset BC1 Subset BC2
E 21° 47° 62° 47°
Sun azimuth 155° 133° | 121° 133°
Asg, for MSA 1% 5% 8% 0.5%
A5, for MSR 38% 22% 19% 4%
Maximum MS A 7% 9% 10% 7%
Maximum MSR 42% 52% | 28% 20%

Sun elevation angle at the pixel scale.

For temperate latitudes of ~45°, the solar elevation angle (E) at noontime ranges
from ~22° in winter to ~68° in summer. Changing the solar illumination geometry affects
the shadow and shading, as well as the relative contribution of multiple scattering (MSg).
To illustrate these effects, we have chosen two extremes for DTM subset BC1 (latitude ~
42°N) which relates to available Landsat MSS images: E=21° (19 December) and E=62°

(20 June) and a third, intermediate value of 47°. The distributions of multiple scattering
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for the two extreme sun elevations are shown in Figures 11a and b. Clearly, both the
A59% and the maximum value for MSg are much greater when the sun is low on the
horizon (Figure 11a) than when it is high in the sky (Figure 11b). The maximum relative
contribution, MSg, is reached for pixels that are in shadow (SS=0) and which are
illuminated only by multiple scattering and skylight. However. in an absolute sense (in
Wem™), higher sun elevations cause an increase in both the MS and the single-scattering
component (SS), but the multiple scattering forms a smaller fraction of the radiosity,
thereby reducing the MSg term. Therefore, MSg and A59, decrease with increasing solar
elevation, and MS (in Wcm'z) increases with solar elevation angle, as does the area which

experiences a greater than 5% effect for MS,4.
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Figure 11. Perspective views of Bluff Creek subsets show the relative MS
distribution variation due to the sun elevation angle. a. Subset BC1, with
E = 21°, sun azimuth = 155° (December Landsat image), b). Subset BC1
with E = 62°, azimuth = 121° (June Landsat image). Images are 3.6 km on
a side.

In summary, pixels that experience a high degree of shading (because of slope
azimuth and angle, or low solar elevation angle) may receive a high proportion (with

respect to the total irradiance) of light scattered from surrounding slopes. The relative
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contribution of multiple scattering can be very significant for these pixels. This does not
necessarily translate into a large absolute measured effect (e.g., in DN) at the satellite

s€nsor.
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Figure 12. The fraction of the area of BC1 with > 5% of MSA and MSg as
function of (a) sun elevation angle E, (b) surface reflectivity p, and (c) sky
illumination fraction F5. For a, b, and c, sun azimuth is fixed at 133°.
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In order to investigate further the physical trend of changes in MS with solar
elevation angle, E, we have calculated the radiosity for 10° increments in E (20°<E<60°)
for BC1 (Figure 12a). Figure 12a shows that Asg of MSg drops rapidly as the sun rises
above the horizon, but changes little for E>40°, whereas Asq of MS. increases nearly
linearly with E throughout its range. The sensitivity of MSg to E is thus greater at the
lower solar elevation angles than the higher angles, but the absolute value of MS is

greater at the higher values of E.

Reflectivity at the pixel scale.

The amount of light scattered from a surface is directly proportional to the
reflectivity. In an absolute sense, increased scattering for highly reflective surfaces leads
to correspondingly more multiple scattering. The fraction of multiple scattering (MSg)
also increases with reflectivity. This is shown for DTM subset BC1 in Figure 12b, for
reflectivities varying from 5% to 40%. The area affected by significant multiple
scattering (A5%) increases quasi-linearly with reflectivity—both in a relative sense (MSg)
and in an absolute sense (MS,A). This effect is scale-independent; it influences scenes that

are rough at the level of subpixel texture as well at the level of resolved topography.

Skylight at the pixel scale.

We approximate sky illumination as perfectly diffuse and isotropic. Overlooking
skylight results in underestimating the irradiance and hence multiple scattering, especially
for shady hillslopes. However, the relative proportion of multiply scattered light (MSg)
remains about the same. Levels of sky illumination from 0% to 50% are used to test the
influence of skylight on MS (Figure 12c). The A59, calculated for MSg is affected little
by the amount of sky irradiance (solid curve), but the area of significant absolute multiple
scattering (A59 for MS,) increases linearly (dashed line). MSg remains relatively
constant because, as skylight is increased, irradiance, SS and MS all increase

proportionately.
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MULTIPLE-SCATTERING EFFECTS AT THE SUBPIXEL SCALE.

In this section, we first contrast the amount of MS predicted at the subpixel and
pixel scales, and then inspect the variation of MS with an rms-height measure of
roughness. Then we integrate subpixel effects to the 1-m scale to predict a bi-directional

reflectance distribution function (BRDF) for rough surfaces.

Using a pin-profile method, we have measured high-resolution (1-cm) DTMs at
Death Valley (DV) and Bluff Creek (BC) that allow us to study the MS effects of the
surface roughness at the subpixel scale. The DV site consists of non-sorted, angular
rocks and interstitial sand comprising a surface with an rms height of ~3.1 cm. The BC
gravels are sorted and well rounded, comprising a smoother surface with an rms height of

~2.3cm.
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Figure 13. Radiosity results as function of local solar incidence angle for
the DV cm-scale DTM (E = 47°, sun azimuth = 133°, p = 30%, and Fu =
10%). (a). Radiosity vs. local incidence angle. (b). SSg and MSg vs.
local incidence angle.
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Subpixel-scale roughness.

The micro-topography measured in the DV and BC areas at the cm scale is
relatively rougher than the topography observed at the 30-m scale (BC1 and BC2). This
can be documented using the second derivative of the topography, which has a much
greater standard deviation at the cm scale (1.5-2.0) than at the 30-m scale (0.2-0.3). The
greater local roughness is mainly because clasts have steeper sides than can be maintained
for mountain ridges and valleys. Based on the results of the last section, we should
predict that these rougher small-scale (cm resolution) landscape features will produce
more multiple scattering, although possibly over only a small fraction of the scene.

Therefore, A59% may be difficult to predict from simple statistical summaries of

roughness alone.

Table 2. Multiple-scattering at the cm scale,
Death Valley and Bluff Creek scenes

p= 30%, sky light = 10% DV scene BC scene
E 47° 47°
Sun azimuth 133° 133°
Asq, (MSA) 30% 26%
A5% (MSR) 45% 34%
Maximum MS A 20% 20%
Maximum MSR 72% 69%

Table 2 and Figure 13 summarize the MS effects and show the SSgr and MSg
distributions over the local incidence angle for the cm-scale DV pin-profile DTMs. Table
2 shows that although the maximum values of MS, and MSg in the DV and BC test areas
are similar, the areas affected by MS are much greater for the rougher surface. The A5¢,
of MSg in the rougher DV wash is about 45% which is one third greater than that for the
smoother BC gravel bar (about 34%). Thus it seems that A5g, is more strongly related to

average roughness in a scene than is the maximum MSA or MSg. This is because the
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maximum value of MS is basically dependent on local geometry, which can be the same
for surfaces of different roughness. The A59, parameter, however, is a statistical measure
that depends on the distribution of slopes, and is related to the average roughness of a

surface.

Comparison of Figures 13a and 9a shows that (1) both radiosity (B) and the
multiple-scattering component (MS) have a greater range of values at subpixel scales, and
(2) the MS component rises to much higher values at high local incidence angles. This
latter trend is all the more pronounced because steeper slopes are found for boulders and
cobbles than can be maintained for hillslopes. Comparison also shows that Asg, for
MSg, likewise, is increased at small scales, from 22% to 45% in this instance. In Figures
13 and 9, 1t >90° indicates shadowed surface elements facing away from sun, and T = 90°
includes sun-facing surface elements that are nevertheless shadowed by adjacent
topographic feature. In Figure 13b, the vertical array of points at T = 90° is due to our
arbitrary assignment of that incidence angle to shadowed but sun-facing slopes. The wide
range and high values of MSg for T > 90° arise because in shadowed areas, the SS
radiance is zero and B is dominated by sky irradiation and by MS light from adjacent,

sunlit slopes.

The spatial distributions of multiple scattering for the DV and BC test areas are
closely related to the spaces between boulders. For both, the peak values of MSy are
concentrated in the spaces between big rocks, and on their north-facing sides. The
maximum values of MSg and MS, for the two scenes, however, are very close (Table 2),
which again indicates that the maximum values are mainly dependent on the local

geometry, and are largely independent of average roughness characteristics.

Variation of MS effects over a range of roughnesses
The sensitivity of MS to roughness variation over a greater range of roughnesses

may be estimated by comparing Tables 1 and 2, and Figures 13 and 9. All measures
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studied show more multiple-scattering effects at the cm scale for gravel surfaces than at
the 30-m scale for topography. The presence of depressions and valleys, and the aspect
ratio of these features, control the amount of MS in a scene (both area and magnitude).
One measure of this aspect of a DTM is the standard deviation (20) of the second

derivative of the topography (AG). In Figure 14 the A59, (MSy4) appears to increase

linearly with Ac for a wide range of roughnesses.
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Figure 14. Variation in A59 (MSA) with two standard deviation of the

second derivative of topography (Ds) evaluated over the images. The BC1
and BC2 represent the terrain rough surfaces at 30-m resolution. The DV
and BC are gravel-bar surfaces at l-cm resolution. The bigger of Ds
indicates the rougher (at the subpixel scale) of the surfaces.

Bi-directional reflectance distribution function (BRDF)

In remote sensing, unresolved scene detail is integrated at the pixel scale. Multiple-
scattering effects, shadowing, and other radiance features below the scale of measurement
are all expressed as a single radiosity or reflectance value. The variation of this value
with illumination and viewing geometry (or BRDF) depends mainly on scene reflectivity
and roughness. Here we integrate the subpixel radiosities from the pin-profiler sites into
single 1-m pixels in order to construct the surface BRDF (Figure 15). Those curves are
shown for the DV and BC sites, as well as for an ideal, smooth Lambertian surface. The

l-m pixels are probably quite representative of the BRDF for 30-m pixels since there is
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little intermediate-scale topography between the 1-m and 30-m scales. Because the high-
resolution DTMs describe surfaces that are flat at scales of 1-30 m, and which contain no
clasts larger than cobbles, there are probably few significant roughness differences

between 1-m and 30-m pixels.
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Figure 15. The photometric function calculated using the radiosity model
for the Death Valley (DV) gravel surface and the Bluff Creek (BC) cobble
surface. The solid curve represents an ideal flat Lambertian surface. a).
The radiance as a function of view angle for a fixed solar incidence angle
of 47°. Note that radiance is that from a 1-m square. In remotely sensed
data the area viewed increases as the view becomes more oblique such
that, for a smooth Lambertian surface, the measured radiance is invariant
with view angle. b). The radiance as a function of solar incidence angle
for a fixed view angle of 90°.

For moderate illumination angles (E = 47°), both rough surfaces are darker than the

flat surface, mostly due to unresolved shadowing and shading. The relative brightness of
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the two rough surfaces, however, changes as the view angle is increased, in this case from
<75° to >75° (Figure 15a). This transition point depends on the surface roughness and
solar incidence angle and will vary from scene to scene. The sun-facing slopes of the
rougher DV surface are the brighter of the two, whereas the shaded slopes of the
smoother BC surface are the brighter (by ~5%). Therefore, it is clear that the correlation

between radiosity and roughness depends on view angle.

For remotely sensed data, the view angle is generally close to 90° or vertical (nadir-
looking). In Figure 15b we fix the viewing angle at 90° and calculate the apparent
radiances for a range of sun elevation angles (10° < E < 90°). For rough surfaces, the SS
term is reduced mainly by the shading of local slopes, whereas the MS term is increased.
For BC and DV, single scattering (SS) is reduced to 68% and 64%, respectively, of the
value for a smooth surface (sun at zenith), whereas MS is increased by only 9%.
Therefore, the overall effect of roughening a surface is to lower the reflectance and to
increase MSg. The smoother natural surface (BC) is the brighter when the sun is high in
the sky; the rough surface (DV) is the brighter when it is low on the horizon, by a few

percent.

DISCUSSION

In explaining the radiosity model I have assumed that surfaces are composed of
smooth Lambertian elements at the 1-cm or 30-m scales of measurement. Clearly, this
assumption is violated for some surfaces. For example, light scattered from leaves may
have a strong specular component. Incorporating non-Lambertian surfaces in the
radiosity model is difficult and computationally expensive, and does not seem to have
been done yet. My findings may need modification when this is accomplished. For now,
however, even a study based on Lambertian scattering offers useful insights into how

remotely sensed images record scene radiance.
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The results presented above indicate that multiple-scattering effects comprise, in
many cases, an important fraction of the total radiance leaving a pixel, sometimes
exceeding the contribution due to sky illumination. The fraction of a scene for which
multiple-scattering effects are significant ( at the 5% level or higher) may exceed 10-20%
in rugged areas, and significant MS effects are almost always present at the subpixel
scale. This has implications for many aspects of remote sensing: below, we consider
briefly the impact of MS on image calibration, topographic correction and image

classification.

Image calibration from DN (digital number) to reflectivity is required before
composition may be deduced from remotely sensed spectral data. Unless atmospheric
measurements are made during image acquisition, most calibration requires spectral
measurements in the field at selected sites. Field spectra are made at smaller scales (e.g.,
1-10 cm) than the image measurements, and may be made under different lighting
conditions. Therefore, the image data and field reflectance spectra may be differently
affected by multiple scattering. For sites for which field reflectance spectra are available
it is necessary to know the roughness in order to estimate reflectivities and adjust for the
pertinent viewing illumination geometry. The estimate of the reflectance of a surface can
then be used with the image data to obtain the appropriate atmospheric correction. In
addition, the topographically controlled MS should be accounted for. However, in this
respect one could largely avoid the MS effects by choosing sites located on ridge tops or
on wide flat plains. This atmospheric calibration would then provide the surface
reflectance for the image, but true reflectivity could only be obtained if the roughness was
known at all locations in the scene. In the usual case where roughness is highly variable
over a scene this would be problematic. Our comparison of two geologic surfaces is
encouraging in this respect since the differential effects on MS appeared to be small
despite a 60% difference in rms height at the cm scale. However, it is easy to envision

situations for which this will not be true. For instance, forest canopies may have much
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greater rms heights than gravel surfaces at this and other scales. Correction for these
subpixel effects must await further experimentation and characterization of the BRDF for

natural surfaces.

Topographic corrections are commonly performed on images in order to remove the
effects of different lighting angles on the single-scattering (SS) component of radiosity.
This is necessary if images taken at different times are to be compared, or even if image
classification is to be attempted, independent of slope and aspect. It would be a
straightforward matter to correct for pixel-scale multiple-scattering effects at the same
time, using a radiosity model and the DTM. However, to be done correctly it is first
necessary to estimate the reflectance. Probably an iterative approach is required. In such
an approach, the reflectance is first approximated from the remotely sensed radiances
corrected for illumination and viewing geometry with a DTM, and then the

approximation is successively refined with the radiosity model.

Complete correction for multiple-scattering effects is necessary if accurate scene
classification is to be performed. It is not sufficient merely to classify ratioed
reflectances; because MS can distort spectral shape as well as amplitude. Because the
amount of this distortion depends on reflectivity, it is an especially severe problem for
rough vegetation for which reflectivity may change by a factor of ~20 between 0.6 and
1.2 um. It should be noted parenthetically that canopy-top MS corrections are necessary
but insufficient to reduce remotely sensed vegetation radiances to time-invariant
reflectivities, because of the high transparency of leaves in the near-infrared, and volume

scattering within the canopy.

I have considered the problem of extracting reflectance from remotely sensed
radiances, but equally important is the inversion problem of estimating subpixel
roughnesses or textures. In principal, this can be done from visible and near-infrared

(VNIR) data, but their strong dependence on reflectivity precludes success in many cases.
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Radar images are often used to estimate surface roughness. Radar is insensitive to VNIR
albedo, of course, but is sensitive to soil moisture and other dielectric contrasts.
Therefore, neither VNIR nor radar alone can be used to extract quantitative surface
roughness information unambiguously. [ have proposed and am studying a method of
Joint analysis of VNIR and radar images that can reduce some of the ambiguities and
uncertainties inherent in roughness estimation from either data set alone (Weeks et al.,
1996; Smith et al., 1996). Further study on the inversion for texture is on-going and will

be discussed in later chapters.

SUMMARY AND CONCLUSIONS

In this chapter, I used a new, hybrid radiosity model for studying the spatial
distribution of the interaction of electromagnetic radiation with complicated natural
surfaces. This model is designed to be of practical use by keeping calculation times
within acceptable time limits. I have used the model to determine quantitatively the
multiple-scattering component of the exitance (radiosity) from various natural surfaces
under various conditions of illumination geometry in order to investigate the importance

of this term in remote-sensing imagery.

Multiple scattering occurs on most natural surfaces at all spatial scales and viewing
and lighting geometries. I find that the amount of MS in the scene is not only controlled
by roughness of the surface, but also by sky illumination, surface reflectivity, sun
elevation and viewing direction. Under commonly encountered lighting conditions
results demonstrate that multiple scattering is a more significant process than has
previously been suggested. The amount of MS can vary with scale, because small-scale
features such as boulders can maintain greater slopes than can large-scale landscape
elements. At the subpixel scale, the integrated effect of multiple scattering can account
for as much as 10% of the measured radiance. In addition to contributing a significant

proportion of the radiosity (exitance), the roughness of surfaces has a significant effect on
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the net BDRF; surfaces that are Lambertian when smooth become non-Lambertian when
rough. At the topographic scale, in Landsat images of mountainous regions for example,
the fraction of a scene with significant MS effects (>5%) may exceed 10-20%. It is

important to recognize and correct for these effects in quantitative image analysis.



CHAPTER 3: VALIDATION OF RADIOSITY MODEL

INTRODUCTION

In Chapter I, I developed a hybrid radiosity model to predict the radiosity or
exitance (B), including the single-scattering (SS) and the multiple-scattering (MS)
components, leaving a surface for any given illumination and viewing geometry. In this
model, typical digital terrain models (DTMs) are used to describe the scene structure for
computing the radiosity. The predicted radiance can be tested against the radiance
recorded, for example, on Landsat images. The radiosity results given in Chapter 2 have
visually reasonable distributions or patterns of radiance over a rough terrain at two scales.
However. for evaluating applications of the radiosity model in actual remote-sensing

projects, quantitative evaluation of the accuracy of the predicted radiosities is necessary.

From inspection of model results, it appears that there are several parameters that
control the distribution of radiosity and MS component in a scene. The most important of
these are surface roughness, surface reflectivity, and the sun-surface-viewing geometry.
Validating the radiosity model thus entails: 1) verification that this list is complete, 2)
demonstration that the model sensitivity to each parameter is within predetermined limits,
and 3) demonstration that the radiosity predicted for a range of simple natural surfaces is

accurate within selected limits.

Model validation serves to connect theoretical model and its applications. It
establishes accuracy range for radiosity prediction and indicates potential problem areas
in application where terrain light conditions, or any characteristics adversely affect the

results.
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This hybrid radiosity model was developed under several restrictive assumptions:
the surface is a Lambertian scatter; the reflectivity is known and uniform; the viewing and
illumination conditions are accurate; the atmosphere is well characterized; the DTM is
accurate; and the scene is band-limited such that no roughness elements are unresolved by
the DTM. Violation of any assumption will affect the accuracy of radiosity and MS
values. In order to validate the model accuracy, it is necessary to restrict scenes and
measurement conditions to those that fit the model assumptions well. For testing the
wider range of model predictions, experiments are extended from simple geometrical

surfaces to computer-milled surfaces specified by a DTM.

In the study of radiosity, most researchers have concentrated on developing the
basic algorithms for solving the form-factor and radiosity equations efficiently, and
consequently on the trade-off between rapid computation and accuracy (Cohen and
Greenberg, 1985; Baum et al., 1989; Troutman and Max, 1993; Zatz, 1993). Validating
these models has been largely subjectively, relying on the visual assessment of the pattern
of results (Cohen and Wallace, 1993; Ashdown, 1994). Some applications of radiosity
models in remote sensing, however, have compared the model results with actual
measurements and these comparisons found that the radiosity model predicts much closer
results to actual measurements than those from other models (Greenberg, 1989; Borel et
al., 1991). Using laboratory measurements on test surfaces to verify predicted radiosities
has not been fully exploited because, in part, the experimental setup is difficult for

realistic scene environments and surface materials.

In order to fill the gap of model verification, I have simplified many requirements
for calculating the radiosity. I have chosen some extreme materials and test surfaces to
diminish the inevitable errors in the laboratory verification. High reflective, diffuse
materials (like Matt board and white plaster) were used for building test surface, in order
to increase the signal/noise ratio. Simple geometrical surfaces were made with these

materials to aid in the comparison of predicted and measured radiosities. The focus is on
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how closely these values agree, and why they do not. Through the preliminary validation
of the radiosity model, I attempt to built confidence in application of the hybrid radiosity

model to natural surfaces at pixel and subpixel scales.

EXPERIMENTAL SETUPS AND LABORATORY MEASUREMENTS

i 4 i \\
Light I \
/ I l I \
/ \ B \
l \
SK | \
[ \
| E l Surface TA \
! JAVAVAVAN :
b. a. "open edge"
m

Figure 16. The experimental set-up for the laboratory measurements of
CCD images, and relevant geometric parameters. Some associated errors
with these parameters are: a. ‘open edge’, b. ‘slope variation,” and c. ‘E-
angle variation,’

The validation of the radiosity model has been done by matching the predicted

model results and measured radiance for two types of surfaces. Radiance measurements
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were made in the laboratory using a CCD camera system and controlled illumination.
Figure 16 shows the experimental set-up for the radiance measurements. The whole
process involves four steps: making the test surfaces, illuminating the surfaces, making

the CCD measurements, and registering the CCD images to the digital terrain models.

MAKING THE SURFACES
Two test surfaces were used: a simple geometric surface with accurate DTM:s and a
more complete and realistic surface of natural terrain. The former was made of

equilateral triangular prisms; and the latter was milled from a 7.5’ DTM.

The first surface is a one-dimensional triangular function extended in the other
direction, called the ‘TA’ surface. It was designed for maximum geometric control. The
surface material is white Matt board, which is nearly Lambertian. The Matt board was
scored and bent alternatively +60° and -60° every 5 cm, and the whole was fixed on to a
flat board for stability. The whole surface is 20x20 cm and consists of three triangular
valleys separated by ridges. Its corresponding DTM is computer-generated using the
Excel program. This DTM is accurate except near the edges of the Matt board surface
model. Fiducial markers were made using black dots on the edges of the prisms (tops and

bottoms) every 5 cm: these helped in the registration of the images and DTMs.

The second surface was fabricated by a computer-controlled milling machine
operated by Drs. X. Kuga and S. Chen in the Department of Electrical Engineering at the
University of Washington. A subset of the Bluff Creek DTM, called ‘BC,’ was used to
drive the computer. The original milled surface is a mold, from which positive subset
plaster surfaces can be made. The BC DTM subset used to make the mold was 400x400
pixels with 30-meter resolution (12x12 km) over a mountainous region. Since the milling

head was not designed to accommodate sharp changes of slope, sharp edges present in the
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DTM data are smoothed, especially ravine bottoms and ridges. Thus, the physical model

and the DTM are not perfectly matched in those particular areas.

All the surfaces are highly reflective to give the maximum contrast of signal to
noise. The reflectivity of Matt board was measured to be ~ 95% and white plaster was

measured to be ~ 87%, over much of the visible spectrum.

ILLUMINATING THE SURFACES

I used a specially designed Dedo light as the illuminant. This light has a long
focusing range which allows the hot spot to be strongly defocused. The field of view can
be controlled by a projection attachment: it ranges from 5- to 100-cm diameter at 200-cm
distance. Using the Dedo light, the biggest variation in light intensity over a 20x20 cm
surface is less than 5%. However, a major drawback of this Dedo light is that the light
intensity is decreased, especially for oblique illumination (such as low E). The Dedo light
was mounted on a tripod. The illumination direction was controlled manually and

measured with clinometer with an accuracy of +1°.

CCD CAMERA SYSTEM AND RADIOSITY MEASUREMENT

The radiance was measured by a CCD camera system, which was designed by Dr.
Milton Smith at University of Washington. The CCD itself was manufactured by Philco
Ford, Inc. It has eight channels in the visible and near infrared centered at 480, 550, 680,
724, 852, 898, 950, and 974 nm respectively, with ~100 nm bandwidths. The total image
size is 596x488 pixels. Only band 2 (550 nm) is needed in this study for validating the
radiosity model, which is not spectrally sensitive (for reflected radiation). The camera
was fixed in the nadir-looking position, looking straight down to the test surfaces,

analogous to the Landsat viewing geometry.



59

Radiances from the test surfaces were measured in a dark room with no source light
other than the controlled direct illumination. The test surfaces were laid on a flat surface
surrounded by black cloth to eliminate the bounce light from nearby counter tops and
walls. Series of CCD images were taken with illumination angles stepped from 80° to
20° elevation angles, at 10° increments. A flat reference surface, composed of the same
material as the structured test surface, was also measured under the same illumination
conditions and with the same camera integration time for use in image calibration. The
images were all saved in short integer format (2 bytes) and processed under IDL operators

on a Unix platform (DEC Alpha 3000 with a 276-Mhz processor).

REGISTRATION AND SCALING

In order to compare the CCD and predicted images, it is necessary first to register
them. [ used the “PICREG” program developed at JPL’s Image Processing Laboratory
(IPL) by Jean Lorre, and adapted and improved at UW by Steve Cothern. It uses a
geometric rectification algorithm to stretch one of image to another based on a group of
selected tie points. These tie points are crucial for the accuracy of the registration. The
DTM image was used as the reference to which the CCD image was registered. The
accuracy of registration affects the reliability of the comparison of the predicted and

measured images.

For the surface TA (the triangular prisms), the tie points were selected by matching
the black marks on the CCD image (corresponding to marks on the test surface TA), to
the corresponding points on the DTM image. Those tie points on the ridges were
matched precisely, but tie points on the valley bottoms were less accurate, because
bounce light from valley walls masked the black marks in the CCD image. The

maximum registration error was less than 1 pixel, even in the valley bottoms.

Registration for the milled surface BC is less certain than for TA, because of the

inaccuracy of the milled surface introduced in the fabrication process. For best
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registration, the DTM image was illuminated with the same geometry as the CCD image.
Since the milled surface does not have registration markers like the TA surface, its terrain
features, such as river valleys, hills, and sharp cliffs, must be chosen as the tie points.
However, the fabrication process has smoothed those sharp terrain features in the physical
model. Furthermore, because this smoothing is most pronounced on exactly these same
landscape features that were used for tie points, choosing good tie points is difficult and

maximum registration errors range up to 2 pixels locally.

The CCD measures the photons radiated from each surface element. The flux
recorded increases with camera integration (dwell) time. The full dynamic gray-scale
range for the CCD is 0-30,000 counts or DN. By changing the dwell time, the image can
be scaled to fit in this dynamic range: optimally, the scene fluxes should be scaled to fall
in the range 2000-25000. Because the geometry of the experimental setup (light-surface-
camera) changes from one measurement to another, and because the dwell times are
adjusted correspondingly, image gray levels are scaled differently from image to image.

These scaling factors must be normalized to facilitated inter-image comparisons.

To calibrate the images, I put small black and white cardboard reference targets
with known reflectivity in the scene before image acquisition. A simple linear equation
(light transfer function) relates the image DN to scene reflectivities (p=a+b*DN).
Since two (p, DN) pairs are known (for the cardboard targets: black and white), it is
possible to calculated the linear coefficients: a and b, and thus the conversion of the all
DN to p is possible. However, there was some variability DN across the cardboard
targets due to the non-uniform illumination and bounce light from the surroundings,
which can be especially important for high incident angles (low elevation angle). Thus,

the a and b may contain some errors (<5%).
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ERRORS IN LABORATORY MEASUREMENTS

Before comparing the predicted and measured radiosity images, it is necessary to
discuss some systematic errors from the measured data in order to understand the
comparison better. These errors generally refer to the geometry of surface models,

illumination geometry and radiosity model approximations.

GEOMETRIC ERRORS OF TEST SURFACES

The geometric errors arise because the test surfaces do not match their
corresponding DTM images perfectly, caused both by construction and registration errors.
Their magnitudes directly relate to the method of construction of the test surface were
made. The DTM of test surface TA was mathematically generated on computer, so it had
perfect shape: sharp edges, uniform slope and correct slope lengths. However, the real
test surface made from 2-mm-thick Matt white board was less ideal. When the board is
bent, the ridges will be expended and opened, rather than forming the sharp edges of the
DTM; the valley bottoms will be compressed, and the nearby slopes may be slightly
deformed (Figure 16a). These edges are locally curved, creating local multiple-scattering
environments that are not represented on the DTM. Therefore, the CCD images show
bright stripes along edges not predicted by the radiosity model. The nine edges of the
physical model account for about 10% of the total area of the test surface. The second
major geometric error is in the slopes of the prism faces: each face may vary from the
specified 60° by x 2° (Figure 16b). Part of the reason is because the bottoms were
supposedly fixed on equally spacing markers on the flat base board, but inevitably the
point of contact was somewhat off. Because single scattering is purely a function of the
cosine of the local incidence angle, a slope error of 2° will cause a 3.6% error in SS.
Therefore, the measured radiance values were probably in error by < 4% due to

disagreement between the physical model surface and its DTM.
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The mis-match between the milled surface BC and its DTM is caused only by the
fabrication process. The computer controlled milling machine has very accurate
geometric positioning, and the overall shape of the terrain is faithfully reproduced.
However, the drilling head, with a diameter of 2-3 pixels, smoothes the high-frequency
features of the terrain. In addition, due to mechanical failure, the milled surface BC has
2x10 mm mis-match localized in a strip in its center. This defect was filled with plaster

manually, but the detailed topography is poorly reproduced.

The geometric errors and their effects on radiance can be inferred from comparison
of predicted and measured radiance images, especially if the errors were localized.

Overall, their effects compound with errors in illumination and registration.

ILLUMINATION ERROR

The illumination of the physical surfaces results in two kinds of errors: those due to
illumination geometry and those due to non-uniform intensity. The former source is
manifest both as local registration errors (due to shadowing) and general radiometric
errors (Figure 16c). The local mis-registrations are worse at low sun elevation angles, but
rarely exceed 1 pixels, at least for the illumination geometries used in this study. The
global radiometric errors are due to the difference between the assumed and actual
incidence angles. This difference does not vary with terrain, but the radiometric effect
does, because the irradiance for each element is only proportional to its cos(t). The
latter source of error, illumination “hot spots,” introduces low-frequency error on the
order of <5% for oblique lighting. The illumination inhomogeneities are less severe for
higher elevation angles. This error does not affect the visual appearance of the images,
which is dominated by high-frequency features, but it does affect the statistical

comparison.
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Lighting intensity can vary across the test surface by as much as 50% for regular
incandescent sources. For the defocused Dedo-light, this variability is reduced to ~5%
yet it remains the single largest source of radiometric inaccuracy, and the light must be
normalized if the model comparison are to be meaningful. In order to do this, the
radiance was measured for a white reference board of known reflectivity in place of the
test surface, using with same integration time and illumination geometry. This image is a
record of illumination variability. The problem is that, because the actual surface is not
flat, the light intercepted each surface element is different than the light for the equivalent
element of the flat, especially at oblique illumination angles (Figure 16). The error due to
lighting heterogeneity varies with the illumination angle and with the local relief of the

surface. For most cases, the radiometric error should be less than 2-3% of the average

value.

The reference CCD measurements were scaled by normalization accordingly with
corresponding test surfaces, and used directly as irradiance inputs in the radiosity model ,
replacing the assumed constant illumination. Since the overall radiometric errors were

quite small (<2-3%), correction was not attempted.

Inaccurate center-pointing of the light source also contributes to radiometric errors.
Seated on a tripod, the position of the light was controlled manually with bubble levels in
three directions, and the elevation angle and azimuth angles may include inaccuracies of
1-2° %. The centers of illuminated field and the test surface, aligned by eye, introduced
error of another *1 %. In the worst case, the elevation angle can affect the single-
scattered radiance at the level of < 5% of the radiosity. Centering and orientation errors
and residual heterogeneity lighting will not be significant for isotropic surfaces, but could
be important for anisotropic scenes. Overall, the maximum inaccuracy caused by the

illumination errors is less than 4% of the local radiosity value.



STRAY LIGHT

The experiment was not conducted in a perfectly dark room, Some stray light came
from the sides of Dedo light housing and from windows, and some of this was reflected
from surrounding walls. For high elevation angles and a close light source, stray light
was negligible, but it was 5-10% of total irradiance when the direct lighting was oblique
or distant and, therefore, of lower intensity. The effect of stray light in the CCD
measurements is not clear. Intuitively, it may increase the total irradiance and therefore,
the multiple scattering in the scene, but the ratio of the MS and irradiance may be

decrease. The flat reference surface was not used for correcting the radiometric effect of

the stray light.

RADIOSITY APPROXIMATION

Another type of error is from the radiosity model itself. Radiosity model errors
arise from the approximations in calculating the form-factors, early termination of the
iterative calculation, and inaccuracies in the input reflectivity value. Although the
magnitude of the errors lies within the limits discussed in Chapter [, the actual errors are
unknown because they are due to local unknown geometric or reflectivity uncertainties.

These random model errors are difficult to separate from the systematic errors.

Most of the errors discussed above are compounded as total errors, and are present
in the image either systematically or randomly. However, low-frequency geometric

distortions are manifested as local but non-random errors.

COMPARING THE PREDICTED, MEASURED AND RADIOSITY IMAGES

Comparisons of the predicted and measured radiance are presented in two ways:
subjective evaluation of the images (photo-interpretation) and quantitative analysis of

differences. The former method involves comparing not only the radiosity (B) images
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themselves, but also the histograms and inspections of the predicted SS and MS images.
The latter method, however, presents a good quantitative comparison of the spatial
distributions of radiance mismatches and the distributions of the local ratio of MS/B.
Below, comparisons of each type are reported separately, followed by a discussion of the

possible causes of the disagreements between the predicted and measured radiance.

The radiosity results are sensitive to illumination geometric errors, especially for
low illumination (or sun) elevation angles, because the effect of geometric errors of the
test surfaces are exaggerated there. With high illumination angles, the errors with respect
to the local radiosities are smaller than with low illumination angle. In order to minimize

this error, the illumination at 70° elevation angle is used as an example for the

comparisons of the predicted and measured radiosity.

For comparing radiosity (B) in units of Wem™ and measured radiance (L) in units of
Wemsr', one of them must be scaled to have the same units as the other. As I discussed
in Chapter I, the radiosity is only different from the radiance by a factor of &t for diffuse
surfaces. For convenience, the use of the term “scaled radiosity (B/m) or predicted

radiance” below refers to the radiosity scaled by &, unless stated otherwise explicitly.

IMAGE MATCHING

Histogram match and scattering plot

The first step in validating the radiosity-model results is to match the histograms of
the calculated scaled radiosity (B/rt) and the measured radiance (L). The histograms of
the scaled single-scattering (SS/r), scaled radiosity, and CCD images display the general
population distributions of these parameters (Figure 17). The matching of the histograms

would indicate the similarity of their radiance distributions.
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Figure 17. Histograms of predicted radiance (scaled radiosity), predicted
single-scatter radiance, and measured radiance (CCD) for the surface. a)
TA and b). BC. ‘N’ is the number of pixels. Radiosity and single-scatting

component have been scaled by .

For a given surface under direct, uniform illumination, single scattering varies only
with local incidence angle. The scaled SS histogram reflects the population distribution
of the sunlit and the shaded areas in the image. However, if the direct illumination is not
constant from pixel to pixel (it varies with cos(t) and non-uniformity of light), the scaled
SS will be affected directly. The intensity of the Dedo light, used to illuminate test
surfaces TA and BC, varies by 5% across the image and is brighter near the center than
near the edges. This variability introduces uncertainties into the measured SS, which

should be reflected in the histograms.

The radiosity is the sum of the MS and the S8, so it has a higher value than SS at
each pixel. In its histogram, the scaled radiosity distribution is generally spread towards
higher values than the scaled SS, but has formed smaller peaks of population than scaled

SS due to uneven amount of MS among pixels.
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The measured radiance records all the energy leaving the surface, including both the
MS and SS terms. Its histogram should be similar to scaled radiosity curve. Details of

the histograms for surfaces TA and BC are further discussed below (Figure 17).

Surface TA

The histogram of the scaled SS component (solid line) for surface TA was bimodal
(Figure 17a): one peak for sun-facing slopes and the other for shadowed slopes. The
peaks were sharp with little spreading: less than 8 Wem™sr™! out of a maximum of 160.
Because of the simplicity of TA, even this dispersion is unexpected and is probably
caused by the non-uniformity of the Dedo light source. The histogram for the scaled
radiosity for TA (dashed line, Figure 17a) is also bimodal, but each mode is asymmetric,
due to the addition of the multiple-scattering component. The residual distinct peaks
spreading out towards higher radiance values indicate that some areas received little or no
MS illumination. These areas are mostly around the tops of hills. The CCD radiance
data for TA (dotted line), stretched to the same scale as discussed earlier, are also plotted
in Figure 17a. It is clear that the CCD data more closely match the scaled radiosity than
the scaled SS. Although the two histograms are not matched exactly, probably due to
artifacts in the physical model, the overall shape and range of gray values correspond well

between the CCD radiance and the radiosity histograms.

Surface BC

The surface BC has typical, complicated landscape features and comprises hill
slopes up to 40°. The distribution of the scaled SS data, shown in Figure 17b (solid line),
has less strongly bi-modal shape than for the TA surface (Figure 17a), because of the
wider range of slopes and orientations. The scaled radiosity histogram (dashed line) has
been shifted upwards, forming a weakly skewed, normal distribution. The CCD radiance
curve (dotted line) is similar to scaled radiosity curve, except the “tail” in CCD data is

shorter than in the radiosity distribution, and a small gap is formed in the range of 70-100
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units. Both discrepancies are probably caused by inaccuracies in the milled surface BC.
The former is related to the smoothed valley floors in the milled surface, leading to
anomalously lower radiosities there: the latter is related to both DTM and registration

errors, which may produce locally inaccurate SS and MS predictions.

Radiance
Wemsr!

I ocal Inardence Ancele. T

Measured radiance (Red), scaled radiosity
(Green), and scaled single scattering (Blue).

Figure 18. Distributions of mismatch areas between predicted and
measured radiance are shown in the Bluff Creek (BC) DEM image (a and
b) relative to their scatter plot (c) of predicted radiance (scaled radiosity),
predicted single scattering radiance, and CCD measured radiance. a). The
distribution of scaled radiosity values that are not matched by the
measured radiance. b). The distribution of measured radiance data that
were not predicted by the scaled radiosity. c). The scatter plot of the
measured radiance data and scaled radiosity and single scattering results
vs. the local incidence angle. Note that the mismatch data in both a and b
have a similar pattern.
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Figure 18c shows the scatter plots of the scaled radiosity, scaled single scattering,
and the measured CCD radiance versus local incidence angle (1) and Figure 18a and b
show the corresponding spatial distributions of their radiance mismatches in colors. The
scaled SS data, plotted in blue, follows a cosine curve; the scaled radiosity data, in green,
are scattered above this curve; the cluster of CCD radiance measurements, in red, overlies
the scaled radiosity cluster, except for some radiance mismatched areas at lower
incidence angles (green dots only). In mismatch regions, the CCD data tend to be lower
than the scaled radiosity values. The corresponding geographic locations are displayed in
green in Figure [8a; where they are preferentially along the valleys. The spatial
clustering suggests that the radiance mismatch is due to the inaccurate smoothed milled
surface, the errors of which were most pronounced in valley due to maximized geometric
errors. In contrast, in almost same region of the T in Figure 18c, CCD values fall below
the scaled SS curve (red cross only). Their locations are shown in red in Figure 18b,
distributing almost same areas as high radiosities were displayed in Figure 18a. This
geographic coincidence of the anomalous data further points to systematic errors (local
slope distortion) near the valley floors in BC. As discussed above, smoothing in the
milling process has reduced the steep valley slopes there, leading to lower CCD radiances
by increasing the local incidence angle. Similarly, the multiple-scattering component is

decreased locally, because the roughness of the surface BC is reduced.

Overall, the histograms and scattering plots for both surface TA and BC have shown
the predicted and the measured radiances in close agreement. This similarity is evidence

of the validity of the radiosity model.

Visual comparison of predicted and measured radiance
Comparison of images instead of 1-D histograms permits more detailed comparison
of predicted and measured radiances at each local incidence angle. However, radiosity

and MS images both strongly rely on the local geometry. Their spatial variations
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therefore closely relate to local location: radiosity is strongly influenced by SS on the
sunlit slopes, but dominated by MS on the shaded slopes. Ideally, the CCD image should
have same radiance pattern as the radiosity image. Below, the measured CCD image is

compared to predicted scaled radiosity images.

Surface TA

Figure 19. Scaled single-scattering component (a,d), scaled radiosity (b,e),
and measured radiance (CCD) (c, f) images for test surfaces TA (a-c) and
BC (c-f).

The prismatic surface TA has only two local incidence angles; its scaled SS image
consists of only two color stripes (Figure 19a), corresponding to its histogram as the two
peaks in Figure 17a. For a given illumination angle, the brightnesses on the two sides of
the ridges are constant, except for a little variation due inhomogeneities of the source
light. This percentage of bright and dark area in the image would change with the
illumination elevation angle. The scaled radiosity image, however, has an additional

complexity: three bright elongate enclosures along the three valley floors (Figure 19b).
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They are all asymmetric, brighter on the light-facing slopes and darker on shaded slopes,
following the cosine law of irradiance. In comparison, the similar pattern in the CCD
image (Figure 19¢) seem more “noisy” than in the scaled radiosity image. Overall.
however, the brightness patterns match well, with only minor discrepancies. First, the
boundaries of the enclosures in the CCD images are irregular, which could be due to mis-
registration and departures from ideal Lambertian behavior of the physical surface.
Second, the three enclosures are shifted a little to the top (shaded side), probably because
the illumination angle for the CCD image was higher than specified in the radiosity
calculation by a degree or two. Third, boundaries along the ridge tops show radiance
mismatching due to inaccuracies in the DTM. These three discrepancies are minor

compared with overall agreement of the major patterns.

Surface BC

Surface BC has more complicated landscape features than TA. Its scaled SS image
(Figure 19d) displays the basic structure of the mountainous terrain, brighter on the sunlit
slopes and darker on shaded slopes of the prismatic ridges. The scaled radiosity and CCD
images (Figure 19e and f) both show increasing brightness in valleys relative to the scaled
SS images. Most highly shaded areas in the scaled SS image (in valleys), shown in
Figure 19d with low values in purple color, have been brightened in the scaled radiosity
image by the addition of the MS component. Therefore, both the scaled radiosity and
CCD images have less purple area than the scaled SS image. The CCD image resembles
more closely the scaled radiosity than the scaled SS image, although the similarity is less
than it was for surface TA. This is probably because there are more systematic errors in
the DTM of BC than TA. In detail, those errors are revealed as radiance mismatching
areas in the valley floors (Figure 18), areas that are brighter in the scaled radiosity image
than in the CCD image. In addition, patterns in the scaled radiosity image of BC have

sharper boundaries and edges than those in CCD image. This discrepancy maybe



attributed to the milling inaccuracies:
the relative lack of high-frequency
detail in the CCD image reduces the

amount of multiple scattering.
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Figure 20. The diagrams show how the distribution of the MS component
in scene varies with the illumination elevation angle (E) for test surface
TA. The “measured MS” is found by subtracting the scaled SS component
from the CCD measured radiance, and the “predicted MS” is found by
subtracting the SS component from the scaled radiosity. The horizontal
axis is the fraction of the radiosity due to multiple scattering in each pixel,
and the vertical axis is the area fraction in the scene. Note the y-axis scale
is different from histogram to histogram.



MS histograms: variable illumination

The MS distribution is not only controlled by the surface structure or roughness, but
also by the illumination direction (both elevation and azimuth angles). The changes of
the illumination direction will change the distribution pattern of direct illumination (8S)
and consequently will affect the multiple scattering (MS). In order to verify the
prediction consistency for varied illumination directions from this hybrid radiosity model,
[ compare histograms of the scaled MS component calculated for surface TA for a range
of illumination elevation angles. In Figure 20, scaled MS histograms from both the
model (“predicted”) and the CCD measurements (“measured”) are plotted together for

each illumination elevation angle.

In Figure 21, the “measured” data represent scaled MS calculated by taking
difference of the scaled SS and the CCD image, and “predicted” data represent MS
calculated from the model. The horizontal axis is the amount of MS light, normalized by
the local radiosity at each pixel. The vertical axis is the area fraction of the whole image.
In the lower range of illumination elevation angles (less than 60°), the scaled MS
histograms are bimodal. The peak for high values corresponds to shaded slopes and
shadows, where the SS is very small, so that the radiosity is dominated by MS. The other
peak represents MS in sunlit areas, where direct illumination accounts for a high fraction
of radiosity. These two peaks migrate towards the center of the X-axis and start to merge

as the illumination elevation angle is increased.

MS histograms for both the predicted and measured terms appear similar for 20° <
E < 80°, indicating that the MS predicted from the model is well verified by the CCD
measurements. The change of histograms over the illumination elevation angles for both
“predicted” and “measured” MS is almost identical: the bimodal histograms at low
illumination elevation angles (20°-60°) become unimodal at E > 60°. There are only

minor discrepancies between the predicted and measured histograms (Figure 20). Those
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errors are attributed to the DTM geometric mismatch between the physical surface TA

and the computer-simulated DEM of surface TA, as discussed above.

QUANTITATIVE ANALYSIS OF MATCHING DIFFERENCES

In this section, I will discuss in detail the discrepancies among the different images,
assessed both visually and quantitatively. The difference between the scaled radiosity and
CCD images shows the spatial distribution of the areas of disagreement. To aid in the
comparisons, [ have calculated a residual image of (B/m - L)/( B/m), the radiance
difference (“predicted” and CCD “measured” radiance) normalized by the local predicted
radiance (scaled radiosity). If the two input images are the same, the residual image
should ideally be flat with zero values, but in reality it has no zero values at all, because
of errors in geometric location, illumination geometry, and radiosity estimations. Most of
the radiance mismatches due to the geometric errors (between the physical and computer
simulated surfaces) can be predicted and evaluated by the pattern of error in the residual

images. The residual images for both surfaces TA and BC are discussed below.

Overall, the residual image for surface TA has low contrast and low values (<5%)
for the whole image, except for seven narrow high-value strips along the ridges and valley
bottoms (Figure 21a). Over most of the hillsides, the radiance mismatch term is less than
2-3%, but the errors are quite different on the two slopes at the ends of the surface model
(north and south); 0% on the north and <10% on the south. There was no MS
contribution on these slopes, only direct illumination, because of the finite nature of the
surface extent. The north-end slope was in shadow with zero value. The high errors on
the south-end slope were caused solely by inaccuracies in slope and illumination angles,
which mainly affected the SS component. The high values (up to 25%) of radiance
mismatch values along the ridges and valley bottoms were obviously related to DTM
inaccuracies there. After taking account of the geometric mismatch and registration

errors in the range of 3-4%, the residual image (<5%) shows good agreement for the
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hillslopes interior to the model, indicating that the predicted radiance is accurate within |-

2%. Most of the high errors are independent of the radiosity model.

Figure 21. Residual (difference) images for test surface TA (a.) and BC
(b.). The residual images are the differences of predicted radiance B/t and
measured radiance R normalized by the maximum B,,/m. The scale on
the right shows the color-coded residuals in the range of 0% to 100%.

The residual image for surface BC shows greater discrepancies. Most high radiance
mismatch areas (10-20%) are located in valleys and follow the drainage pattern (Figure
21b). Because the geometric discrepancies between the milled surface and the DTM
model are large, the residual image is strongly affected by topographic geometry. In
general, the bigger and deeper the valley is, the greater the discrepancy. The complexity
of the BC surface has increased the difficulty in separating the radiance mismatches
caused by the systemic errors from the radiosity prediction, so it is not clear what the

accuracy of the radiosity model is.

RADIANCE MISMATCH AT DIFFERENT ILLUMINATION ELEVATION ANGLES

The radiance mismatches of the scaled radiosity and CCD images are also affected

by the illumination geometry. Lower illumination elevation angles (E) usually enhance
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these mismatch errors, because SS depends on cos(t). When E decreases, for typical
terrain slopes of 10° -30° the local incidence angle (1) typically increases and, in turn,
increases the sensitivity 9B/0t of radiosity (B =1 ~COST+ MS) to T, which is
proportional to dcost/dt=sint. Thus, the SS error from the DTM is exaggerated by

decreasing the illumination elevation angle.
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Figure 22. Cumulative histograms of mismatch errors (residuals) for test
surface TA (a) and BC (b). The mismatch error in percentage is (B/nt-
L)/Bmax/T. E is the illumination elevation angle.

The cumulative histograms of radiance mismatch also show this trend. Figure 22
shows the cumulative area fractions plotted against the mismatch error (in percentage of
radiosity) for surfaces TA and BC. Both histograms rise steeply from low values (areas)
as the mismatch fraction is increased, gradually leveling off at high values. The steeper

the slope, the smaller the mismatch, and, therefore, the better the match results. In other
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words, a high value area fraction at low radiance mismatch values indicates that most of

the image is affected by only small mismatches.

Figures 22 shows the cumulative histograms for different illumination angles. The
most obvious feature is that the steep slopes of the histograms become even steeper as the
illumination elevation angle is increased. The area fraction at low illumination angles is
always smaller than at high illumination angles for every radiance mismatch value. This
trend is much stronger for surface BC than for TA. For example, for surface BC, the area
fraction value (as example, the radiance mismatch is < 20%) increases from 0.2 at E=20°
to almost 0.7 at E=80° ; for surface TA, the same area fraction value increases from 0.45
to 0.85. The other feature is that all the high plateaus in the histograms for surface TA
have similar values around 80%, whereas for surface BC the plateau value increases from
40% to 90% as E increases from 20° to 80°. These differences suggest that the CCD
measured radiance is much closer to the scaled radiosity for surface TA than for surface
BC, and also indicate that the accuracy of the radiosity model is closely related to the

complexity of a surface.

SIGNIFICANCE OF MULTIPLE-SCATTERING

The area contaminated by a given amount of MS (e.g., 20%), which is represented
by Ax MS, is a parameter that describes the percentage of an image containing a
significance amount of MS. In Chapter 2, the Asq MS fraction was adopted to show the
percentage of a image being affected by the MS for the surface reflectivity of 30%. Here,
because a surface reflectivity of ~90% was used, a higher threshold value must be chosen
in order to show the changes of the area fraction with illumination elevation angles

properly: otherwise the area with 5% MS will cover >90% of the image.
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Figure 23. Plots of the area fraction as a function of illumination elevation
angle, E. a). Area of the surface TA for which MS/B; > 20%. b). Area of

surface BC for which MS¢/B; >15%.

Figure 23a shows the area fractions (Aie MS/B) plotted against illumination
elevation angle for both the “predicted” and “measured” MS images of surface TA. The
overall shape of the two curves (calculated from the predicted radiance and the CCD
radiance, respectively) are matched well, although they are offset. The high peak values
(A20% MS) occur at both low illumination angles (E = 20°) and high illumination angles
(E = 80°), whereas the minimum occurs near E = 50°. The value of Az has a close
relationship with E: when E is low, larger areas of the image are in shadow, and MS is the
dominant factor in B; and as E increases, the shadow area decreases, and Aqq is reduced.

As E increases further, the increasing area being illuminated leads to more MS in the
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scene. When E exceeds a certain value (e.g., E = 50°), the effect of increasing MS

overcomes the effect from decreasing shadowed area, and therefore, Ay gz MS increases.

The two curves in Figure 23a are offset by a constant ~10%. This offset, which is
consistent through all illumination angles, indicates a systematic radiance error between
B/t and L. As noted above, surface TA has extensive edge effects. In all, the seven
edges (three on top and four at the bottom) count for about ~10% of the total surface area
-- the same as the offset between the curves. By removing the 10% offset here attributed
to the inaccurate DTM, the two curves match closely, indicating that the radiosity model
has predicted the MS component correctly outside of the identified problem areas. This
evidence further indicates that radiosity model has only <1-2% error after accounting for

the systematic geometric errors.

Aisz MS has been selected as the threshold values for surface BC in Figure 23b,
because of its surface complexity and smoother than surface TA . The curves are more
linear than for TA, but still show the area fraction increases (from 0.8 to 0.9) as E is
increased from 20° to 80° . In comparison with surface TA, surface BC has a smoother
topography (lower aspect ratio). From E = 20° to 80°, the CCD measured radiance curve
has almost identical linear shape to the predicted, except for some differences between E
=20 ° and 50°. As discussed above, at low elevation angles, the radiance mismatch from
inaccurate DEM is exaggerated. Even though the DTM for surface BC has numerous
problems, the radiance mismatch for the worst case affects less than 5% of the image,

again showing the accuracy of the radiosity model.

The radiance mismatches between the two curves due to the DTM inaccuracies also
vary with the threshold values of area fraction (e.g., Asq to Asxg). The trend of
dependency is complicated, but surely relates to the degree and geometric location of the

inaccuracies of DTM. In general, the higher threshold the value, the more radiance
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differences occur between the predicted and the measured, because of the higher variation

of high frequency of DEM between physical surface and the digital surface.

DISCUSSIONS AND CONCLUSION

The radiosity model was validated by laboratory measurements for two different
surfaces. The results predicted by the model were compared to CCD radiance
measurements for different illumination geometries, using 1-D histograms, scatter plots
and 2-D images, for a simple geometric surface (TA) and a real landscape surface (BC).
Comparison was made by direct matching of results, by analysis of mismatches, and by
comparison of local MS effects at a scene element to integrated effects over an image.
All the comparisons showed that the majority of modeling results are well matched by the

measured CCD images.

The verification of the radiosity model confirms the conclusion that using SS to
approximate the radiosity is not accurate, and that MS is a major component in the
reflectance from rough surface. Conventional image calibration without considering the
MS in a image is not accurate, especially for highly reflective surfaces, such as snow or
NIR vegetation. Inaccurate reflectances resulting from this oversight may introduce

errors in remote-sensing applications.

Inaccurate DTMs are the major source of uncertainty in the verification of the
radiosity model. They cause consistent systematic errors for all the comparisons,
affecting both the SS and MS components. As the illumination elevation angle decreases,
the effect of the inaccurate DTM is magnified. The worst situation is when the

illumination angle is close to the local slope, resulting in large local incidence angles.

In general, the maximum MS and radiosity are both strongly sensitive to the local
changes in the DTMs. The inaccurate steeper slopes of DTM may cause overestimation

of MS and radiosity values, but the inaccurate smoother slopes may cause
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underestimation of MS and radiosity values. However, the area with a given amount of
MS is less sensitive to the high-frequency variation of the DTM than to the overall terrain
shape, or low-frequency component of the DTM. It describes the total coverage of MS in

the scene.

The scattering properties of the surface may also affect the radiosity. Because the
materials used in this study to construct surfaces were nearly Lambertian, the effects of
violating the Lambertian assumption is not clear. This is an important issue from the

practical point of view, and should be examined in the future studies.

Making allowance for the systematic errors in the experiment, the comparison of the
radiosity model and CCD image showed great similarity. The overall modeling results
were well matched by the measured CCD images, indicating the new hybrid radiosity
model is correct and accurate and its prediction is reliable and applicable. From
quantitative evaluation of the mismatches in two situations -- difference images and Aagq
MS -- the accuracy of the predictions from the radiosity model proved to be less than |-

2%.



CHAPTER 4: SEMI-EMPIRICAL INVERSION OF TM IMAGES FOR SURFACE
ROUGHNESS

INTRODUCTION

Visible and near-infrared (VNIR) radiance recorded in Landsat TM images
primarily contains information on two attributes of natural surfaces: surface roughness
and composition of surface materials. Separation of surface roughness information from
the image data is of importance in many fields. Surface roughness contains an integrated
record of past climate conditions, since it is influenced by erosion, aeolian deposition,
desert pavement formation, and other geological processes. Surface roughness is a key
parameter to reconstruct past climate to the understanding of impact of contemporary
global changes on the Earth’s surface, leading perhaps to the reconstruction of climatic
history (Evans et al., 1992; Sellers et al., 1995). In geology, surface roughness relates to
the age and history of a surface, and can be used to infer tectonic history and sedimentary
environment (Farr, 1992). Because it controls unresolved shading patterns and shadows,
roughness is also important to the interpretation of most remotely sensed images. Driven
by those reasons, a great amount of work has been directed to the problem of determining
surface roughness from Landsat imagery (Schaber et al., 1976; Evans et al., 1992; Farr,

1992; Austin et al., 1994; Weeks et al., 1996).

Most of roughness inversion models have been developed for airborne or
spaceborne synthetic aperture radar (SAR) data (Zebker and Goldstein, 1986; Evans et
al., 1988; Evans et al., 1992; Shoshany, 1993; Weeks et al., 1996; Smith et al., 1996).
These inversion models basically fall into two categories: theoretical models such as the
small-perturbation model (e.g., Zebker et al., 1987; van Zyl et al., 1991) and empirical

models based on experimentally determined relationships (e.g., Oh et al., 1992: Dubois et
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al., 1995; Shoshany, 1993). In general, both the approaches are successful under
restricted conditions and often work well in the geographic and physical circumstances in
which they were developed and tested. However, roughness inversion models with more
general applicability have yet to be demonstrated. One of the major difficulties is
attributed to the complexity of natural surface to which the radar signal is sensitive. Any

changes of the geometry of the surface structure will affect the inversion results greatly.

The radiosity of a surface varies with the roughness, as presented in Chapter 2,
because of shading, shadowing, and multiple scattering in the scene. Thus, in principal,
VNIR data could be used to characterize and quantify surface roughness. However, using
VNIR images to study surface roughness has not yet widely been attempted because of
difficulties in separating the reflectivity and shadowing (roughness) information. One
effort to extract roughness information from VNIR images (Weeks et al., 1996) exploits
the theoretical relationship of reflectance to surface roughness in TM images. Weeks et
al. (1996), however, stopped short of inverting the surface roughness from an image
directly. Instead, they used empirical approaches from field and image data to optimize
the inversion filter. Empirical methods inevitably contain errors from both field and
image training data and therefore, produce unstable results of the inversion. A semi-
empirical inversion of VNIR data, which relies only on laboratory spectral measurements
and the theoretical relationship of radiance and roughness, could limit these errors and
produce relatively stable estimation of surface roughness. The radiosity model enables
the computing of the theoretical relationship, which could be used to separate the albedo
and shadowing information. At the subpixel scale, multiple scattering has been proved to
be important component of the radiosity values (see Chapter 2). For quantifying the

radiance response to roughness, it is necessary to consider the MS component.

The primary goal in this chapter is to estimate the surface roughness from the
spectra of a Landsat TM image, as an application of the radiosity model. Using the

theoretical relationship of surface reflectance and roughness calculated by the radiosity
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model, a semi-empirical inversion of surface roughness was generated based on a strategy
termed as “foreground/background analysis” or FBA (Smith et al., 1994; 1996), which
basically is an application of the principal component analysis algorithm. The FBA
essentially separates the image data into two groups: foreground and background, to
quantify explicitly the effect of background factors (such as vegetation, rock types, water,
and more) on the interpretation and inversion for a foreground entity such as roughness
(Smith et al., 1994; 1996; Weeks et al., 1996). This inversion model is expected to
reduce the unstable factors caused by differences in sampling scales and locations. The
new inversion results are compared with other inversion methods driven by field and

image data.

A major focus in developing the semi-empirical inversion is on techniques for
determining finite impulse response filters (FIRs) for different data sets. A FIR filter is a
principal component optimized by a set of training data to indicate the foreground.
Differing from empirical approaches, which rely on field data or image data to define the
foreground vector in the multiple dimension space -- the multiple spectral bands in TM
images -- the semi-empirical inversion uses the laboratory spectral measurements and the
theoretical relationship of radiance to roughness to determine a stable FIR, which will
produce consistent estimates of surface roughness for each image. Thus, the roughness
inversion of FBA equipped with this semi-empirical filter could provide stable, reliable

estimates of surface roughness from Landsat TM images.

INVERSION MODEL

In fact, FBA represents an extension of spectral mixture analysis (Adams et al.,
1986; 1989; Smith et al., 1990a, b; Gillespie et al., 1990; Gillespie, 1992; Sabol et al.,
1992) that allows any number of spectra to be included in the unmixing process by
separating them into two categories: foreground and background spectra. The foreground

refers to spectra which give a substantial contribution from a desired physical variable
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such as surface roughness, and the background includes the spectra which has minimal
contribution from that same variable and a contribution from undesired variables (such as

roughness at large scales or vegetation).

The FBA inversion can be changed by optimizing different FIR filters. There are
three ways to optimize the FIR filter: using image data, field data, or theoretical
relationships. In the field-data method, actual field data (in this case, roughness Y,) are
used to optimize the selection of the FIR filter weights wj, by solving the general equation

of the FIR filter, using singular value decomposition:
m
Y, =D (w,o,)+K+e¢ (1)
b=1

where roughness Y, (n: sample number) is the output of the filter, o, refers the TM image

data for six bands (b = 1, 2, ... 6), m is the number of the bands, K is a constant which is
required because the radiance of shadow in the TM image may not be zero in DN, and ¢
is an error or fit term. The error in solving for w, in equation (1), although not shown
explicitly, is in units of the driving measure Y, (e.g., for roughness this would be in units
of rms height, slope, or offset). By comparing the standard deviation of this error to the
range of a given parameter within an image, the detectability of the foreground with

respect to the background can be estimated.

For finding the w;, vector, both Y, and 0, must be known for all TM bands. In the
field-data method, the Y, are calculated from field measurements at the meter scale with a
technique of close-up stereophotography (Weeks et al., 1996) -- indicating roughness of a
geological surface, whereas the g, are sampled from the TM image at the 30-meter scale

(and include topographic roughness information such as canyons, ravines, washes). The

actual roughness extracted from a TM image may be different from what can be measured
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in the field at a different scale. This scaling error will propagate into the wj; calculation

and will introduce inevitable errors in this inversion method.

In the image-data method, the FIR filters are calculated in a slightly different way.
First, the image is treated as a composite of areas of foreground (roughness) and

background (other variables). Image-derived spectra, O, . comprising the foreground and

background sets, are used to find the solution vector, w, such that the projection of all
background vectors along wj, is as close as possible to zero, and the projection of all
foreground TM image data vector onto w; is as close as possible to unity. The w; vector
defines an optimum projection in the hyperspace defined by the multiple spectral bands
(six TM bands in this study), separating the foreground from the background. A set of

equations is generated for a collection of background and foreground spectra as follows:

Foreground
1= Zwb,db, +K +¢ )
bl=1
Background
m
0= Zwbzo'b2+K+e 3)
b2=1

Again, singular-value decomposition is used to determine a single w, vector and
constant K that optimizes both foreground and background equations simultaneously.
Solutions can be sought that minimize the effects of surface orientation, intermediate-
scale topography, or other spectral variations, by choosing spectra from the image that

assign such variability to the background.

Precise and accurate selection of foreground and background for optimizing the w;
vector is critical for the image-data method. Some field knowledge of the foreground and

background components is required for selecting training data sets. Rough surfaces, for
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example, can be selected from large-boulder alluvial fan surfaces, and the different types
of surfaces materials as background can be selected from lake deposits, sand dunes, or
volcanic deposits. It would be ideal to select the background surfaces that are of same
roughness, but have different reflectivities. Usually, the selection of appropriate test sites
is affected by human knowledge of the field, so that the inversion for roughness using this

method could be unstable.

The third method, called the theoretical relationship method (or semi-empirical
inversion method), is similar to field-data method and uses the same singular value
decomposition of equation 1. Instead of using field data to optimize the FIR filter, the
semi-empirical method applies a theoretical relationship for deriving the filter. In this
approach, o, (reflectance for six bands) is calculated based on semi-empirical data rather
than the field roughness measurements. The details of defining the theoretical

relationship and the ways to compute o, are discussed in the next section.

The theoretical-relationship method will reduce the inevitable sampling errors in
field-data and image-data methods, because the rock spectra are measured on flat
prepared surfaces in the laboratory, and the theoretical relationship of surface reflectance
to roughness is calculated for computer-simulated surfaces. However, uncertainty will be
introduced by the simulation of the surfaces, because the simulated surfaces are generated
mathematically with a limited numbers of the parameters, which may not be enough to

describe natural surfaces.

OPTIMIZED FINITE-IMPULSE-RESPONSE (FIR) FILTER

To calculate the w,, vector by the theoretical relationship method, first it is necessary
to define quantitatively the theoretical relationship of the surface reflectance to surface

roughness. The radiosity model is used to construct the relationship for a series of

computer-simulated rough surfaces.
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COMPUTER-SIMULATED SURFACES

It is important to select an appropriate method to generate simulated surfaces that
are similar to natural surfaces in terms of their reflectance changes with surface
roughness.  There are several models commonly used to describe the roughness of a
surface mathematically from their DTMs, such as rms height, and the surface spectral
power-law method (described by two parameters: the slope and offset of lines fitting
Fourier spectra of a DTM). One-parameter methods (such as rms height) are of simple
form, but are not sufficient for describing and constructing complicated two-dimensional
surfaces (Weeks et al., 1996). Two or more parameters (as in the power-law method) can
give more accurate descriptions of real surface structure, but require additional
complicated mathematical treatment. Weeks et al. (1996) have suggested adding a third

parameter: the phase angle in Fourier transform. Mathematically, this has prove difficult

to implement.

Previous work on natural surfaces has indicated that, in many cases, one-
dimensional power spectra obey a power law (Sayles and Thomas, 1978: Brown and
Scholz, 1985; Austin et al., 1994). Some application studies have supported this finding
(Farr et al., 1986; Evans et al., 1992; Farr, 1992). The power-law spectral presentation of
surface roughness is a more complete description than rms height, since it contains the
scaling and complete statistical information, if phase is included (Weeks et al.. 1996;
Goff, 1995). In reconstructing the simulated surface, the power-law method produces
more natural appearing surfaces than the rms-height method. Therefore, in this study, [
chose the power-law method, inverting the slope and offset of power-law spectra using
the FFT (fast Fourier transform) with randomized phases to create DTMs of simulated

natural surfaces.

The general approach (Austin et al., 1994) of parameterizing the power-law
spectrum is to fit a function (F(k)) to the mean power spectral density calculated from the

FFT of the DTM:
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F(k)=Ck™, 4)

where k is wavenumber (2p/A: A is the wavelength), and C is the amplitude of each wave.

The equation is linear in log-log space:
log(F(k)) = log(C) - mlog(k), (5)

and the two parameters, log(C) and m, are the offset and slope of the power spectrum,
respectively. Field surveys of surface roughness by Weeks et al. (1996) indicate that
many natural surfaces are defined by the slope (m) in the range of -2 < m < -3 cm® and the
offset (log(C)) in the range of -2 <log(C) < -4 cm. As would be expected, the rms
height of the surface, being related to the area under the spectrum, is positively correlated

withlog(C), the offset term.

Given the pairs of slope and offset from field measurements, computer-simulated
surfaces were generated using the inverse FFT, assuming random phase angle. This
assumption is a major source of error in the simulated surfaces generated this way
(detailed discussion in Weeks et al., 1996) and this problem does not appear to have been
satisfactorily solved. Even through the power spectral method has this unsatisfying
problem, the simulated surfaces produced this way appear to be better than these
produced by the rms method (Pak et al. 1995; Weeks et al. 1996). The FORTRAN code
from Pak et al. (1995) was used to generate the computer-simulated surfaces for different
slope and offset terms. The radiosity model was then applied directly to these surfaces
for computing the radiance response to surface roughness. Examples of simulated
surfaces are shown in Figure 24. There are two main circular paths in the figure showing
how the surfaces are changed by varying the slope term (upper circle) and the offset term
(lower circle). The upper circle displays the surface changes for slopes of -1.45, -2.05
and -2.95 (cm3) with a fixed offset term of -1.73 (cm). As the slope is increased, the

spacing of surface features increase, but their amplitudes do not. In the lower circle, the
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amplitude of the surface structure decreases dramatically as the offset is reduced from -
1.73 to -2.53 to -3.73 (cm), while the slope is held constant at -1.45 (cm®). It is clear that

the offset term is the dominant one controlling the roughness of surfaces.

Figure 24. Examples of computer-simulated surfaces generated from the
offset and slope terms of synthetic power-law spectra with random phase
angles. The upper circle (indicated by arrows) shows the changes of
surfaces as the slope term is changed; the lower circle shows the changes
of surfaces as the offset term is changed. For these examples, the spatial
scale and field of view are arbitrary: the simulated surface might represent
the surface of a sand dune or it might represent a mountain range of equal
offset values. The offsets is in unit of cm and the slope is in units of cm™.
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REFLECTANCE FROM SIMULATED SURFACES

The radiosity model was used to calculate the reflectance from the simulated rough
surfaces. Each simulated surface has been subdivided into 100x100 elements. The
reflectance was integrated over all the radiosities calculated for the individual elements.

As presented in an earlier chapter, the radiosity values are computed using following

equation;

B, =p *1,, *cos(i,)+p, * A, +p, 3 B, *F,, ©)

j=t

By assuming the surface has uniform reflectivity, and by ignoring the downwelling

atmosphere radiation, the equation is simplified as:

B, =p(L,, *cos(i,) + >, B, *F,,) @
j=1

Normalized
radiance

Slope (cm?)

Figure 25. VNIR normalized radiance (to flat surface) as a function of

slope and offset parameters for simulated rough surfaces, defined by
power-law spectra with random phase angles.
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Given the irradiance term (/,,4 =200 Wcm'z), the radiosity value varies only with

surface reflectivity p; and surface roughness, a function of cos(i) and F;;. Under the

Lambertian assumption, the reflectance from each rough surface element is directly

proportional to the radiosity (B) with a factor of 1t (see Chapter 1).

Before applying the radiosity calculation to rough surfaces, it is important to know
how sensitive the reflectance is to each coefficient (offset and slope) of the power-law
spectra. For this purpose, I have first fixed the surface reflectivity and then computed the
reflectance for each rough surface by varying either the slope or offset term. Thus, the
reflectance as a function of slope and offset was obtained, as shown in Figure 25.
Clearly, the VNIR reflectance has a strong dependency on the offset, but almost no
dependency on the slope term in the rage of -1.45 < slope < -2.95 cm®. This offset
dependency illustrates that the reflectance varies mainly with the amplitude (power) of
the surface structure, instead of with the surface wavelengths at different scales. Thus, in
this study, only the one parameter of roughness, the offset term, is used for relating
surface reflectance and reflectivity for rough surfaces. By fixing the slope of the power
spectrum at -2.05 cm’, which is a common value for natural surfaces (Weeks et al., 1996),
[ have calculated the reflectance as function of reflectivity for representative offset values.
Figure 26 shows the variation of the calculated reflectance (or radiance) to the surface
reflectivity and roughness. Figures 26a and c give the calculated reflectance (or radiance)
with and without MS, whereas Figures 26b and d show the ratios of radiance normalized
by the value of a flat surface of the same reflectivity. Comparison between Figure 26b
and d shows the difference of reflectance due to the MS in the scene. Without MS, the
radiance ratio does not vary with the surface reflectivity, whereas with MS, the radiance
ratio increases with the surface reflectivity. This effect confirms that MS is proportional
to the surface reflectivity, as discussed in Chapter 2. For a given irradiance (/,, =200

Wcm™), and including the MS in the scene, Figure 26c represents the theoretical
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relationship of surface reflectance to surface roughness, and provides the basis for

building the FIR filter for semi-empirical inversion.

Figure 26. Radiance response to offset (roughness at subpixel scale) and
reflectivity of simulated surfaces. Power spectrum slope has been fixed at
-2.05 cm. a) Radiance (L in unit of Wcm'zsr") from rough surfaces
without MS. b) Radiance ratio (L, /Lsm) of rough to smooth surface,
without MS. ¢) Radiance (L) from rough surface with MS. d) Radiance
ratio (L, /Lsn) of rough to smooth with MS. Color bands show zones of
equal radiance or ratio.

LABORATORY MEASUREMENT OF ROCK SPECTRA

Twelve rock samples were collected from Grotto Canyon (GC) Wash in the Death

Valley field area. They bracket a range of lithologies (mostly, limestone and dolomite),
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but are only lightly weathered. The rock spectra were measured using a laboratory

spectrometer (Perkin Elmer Lambda 19DM UV/VIS/NIR). They are shown in Figure 27

and listed in Table 3.
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Figure 27. Spectra of twelve rock samples collected from Grotto Canyon
Wash, Death Valley.

All the spectra were measured on a flat surface (2 cm diameter) in order to eliminate
roughness effects on the spectra, which are inevitable in the image-based and field-based
methods. The w; vector, which was constructed based on the laboratory spectra of these
rock samples, would contain no component of the roughness foreground in the
assemblage of background vectors; therefore the estimates of roughness using the semi-
empirical inversion contained less variations caused by background factors than other
methods. If the collected rock samples do not cover all the rock types in the field, the w,

vector will not recover the foreground (roughness) properly, resulting in an imperfect

estimate of roughness.
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Table 3. Rock reflectivities for TM bands

Sample ™ | ™ 2 ™ 3 ™ 4 ™ 5 ™7
#1 0.31 0.34 0.33 0.32 0.40 0.37
#2 0.23 0.24 0.24 0.23 0.20 0.19
#3 0.28 0.31 0.32 0.32 0.34 0.32
#4 0.28 0.34 0.37 0.37 0.47 0.37
#5 0.36 0.43 0.52 0.54 0.68 0.55
#6 0.28 0.32 0.35 0.35 0.41 0.39
#7 0.26 0.28 0.29 0.28 0.27 0.22
#8 0.30 0.32 0.33 0.33 0.34 0.33
#9 0.23 0.31 0.38 041 0.47 0.39

# 10 0.35 0.45 0.55 0.61 0.69 0.56

#11 0.27 0.27 0.27 0.25 0.23 0.21

#12 0.25 0.25 0.25 0.25 0.23 0.22
FIR FILTER

When both a spectral library and theoretical relationship between radiance and
roughness are obtained, the reflectance responses to surface roughness as represented by
the offset term are calculated from each type of rock sample, as shown in Figure 26¢c. A
fourth-order two-dimensional polynomial was used (with consideration of accuracy and
computation) to fit the reflectance data for each simulated scene. Thus, the function of

radiance O}, to surface reflectivity p and roughness Y, was defined for computing the wy

m
vector in equation 1:Y, =Y (w,0,)+ K +¢&. Each surface roughness corresponds to
b=1

different reflectances in the six TM six bands. Six different roughnesses in the range of -

1.73 to -3.73 (cm?), which represent most common surfaces in Death Valley alluvial fans

(Weeks et al., 1996), were used. The results are listed in Appendix 1.

Six roughnesses and twelve rock samples give a total of 72 linear functions
(equation 1) for finding w, for the six TM bands. This is an over-determined problem,

easily solved. The solution is:

wp = [0.29084, -0.31833, 0.01017, 0.08707, -0.14929, 0.20232].
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This is the semi-empirical FIR filter for estimating of surface roughness with the
FBA inversion algorithm.

Figure 28. Landsat TM image of Death Valley, California shows the sites
of roughness measurements on two alluvial fan systems: Kit Fox Hills and
Grotto Canyon. At each site, the micro-topographic profiles have been
measured using a close-up photogrammetric technique. “A” shows an
unnamed alluvial fan. “B” indicates the playa unit in the upper left of the
image.
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RESULTS

Death Valley TM image acquired on December 09, 1982, was chosen to test the
semi-empirical inversion method for surface roughness (Figure 28). Death Valley is a
good site for the study of surface roughness because it is vast, largely vegetation-free and
has alluvial fans of various ages and lithologies as well as lake deposits and sand dunes.
The low vegetation cover in the valley provides an opportunity to measure the surface
roughness of these geological units from aircraft and satellite images. Many studies have
characterized the surface roughness using remotely sensed radar images (Wall et al.,
1991; Farr, 1992; Evans et al., 1992). However, little attention has been given to using
the remotely sensed VNIR data (e.g., Weeks et al., 1996). Recently, detailed field
surface-roughness measurements were collected using close-up (2-m) stereophoto-
grammetry, for many locations on the alluvial fans in the Death Valley. These field data
provide “ground truth” for testing remote estimates of surface roughness (Weeks et al.,
1996). Location for the ground-truth sample sites are given in Figure 28, and their

roughness measurements are listed in Table 4.

The TM image was calibrated using a simple empirical-line calibration method
(Roberts, 1991). Two anchor points selected from shadow and gravel bar sites define the
conversion line in a DN vs. reflectance plot. The coefficients of the conversion line for
each band were then calculated. This calibration has not considered the differential
atmospheric effects due to elevation differences within the scene (its effects may be less
than 10%: A. R. Gillespie, informal discussion, 1997). There is 1000 to 1500 m elevation

difference, which may cause < 4% variations of atmospheric scattering effects.

In this result section, I will present surface roughnesses estimated from these sites
using the three different methods: the semi-empirical inversion, field-data inversion, and
image-data inversion. A “shade” image, calculated using the fraction of darkness with

assumption zero-radiance in shadow, is also presented and compared with these three
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methods. All the inversion results were verified using the ground-truth surface-roughness

data (Table 4).

Table 4. Roughness parameters calculated
measurements of surface roughness by close-up
stereophoto grammetry at 11 sites in Death Valley

Site Offset (cm) Slope (cm3 )
kfr -1.88 -2.37
ot -1.86 -2.45
kf3 -1.77 -2.50
gcl -1.71 -2.62
kfw -1.69 -2.41
kfl -1.64 -2.71
kf2 -1.59 -2.57
mc -1.58 -2.52
gco -1.54 -2.29
gcw -1.47 -2.44

ESTIMATES OF SURFACE ROUGHNESS

The semi-empirical inversion, in which the wp vector was calculated from the
theoretical relationship shown in Figure 26c, together with the rock spectra shown in
Figure 28, applied equation 1 directly to the calibrated TM image data (g, ) to estimate
the roughness offset term. Essentially, the TM image data are projected onto the
foreground/background line direction defined by the w, vector in the hyperspectral
radiance space of the six TM bands. The inversion result created a single image of the

spatial distribution of roughness (Figure 29a).

For the field-data method, the w, vector was optimized using the roughness data
(offsets) measured in the field (Table 4), and reflectances (0, ) sampled from the TM
image for the same sites. Estimates of roughness using wj, vector are displayed in Figure
29b. Notice that this method contains estimated error from the sampling scale difference

problem. The roughness measured in the field (at scale <10 m) is somewhat different
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from the roughness shown in the image at 30-m resolution. This is an unavoidable source

of errors.

Figure 29. Surface roughness estimates from Landsat TM data using four
methods. The brighter the roughness of the surfaces. Mountainous areas
is not in consideration for subpixel roughness estimation. a). theoretical
relationship (semi-empirical method) in which the FIR filter is optimized
by modeling and Lab sepctra. b). Field-data method in which the FIR
filter is optimized by field roughness measurements. c). Image-data
method in which the FIR filter is optimized by the image training data with
known varied roughness. d). Shade-image method in which the FIR filter
is optimized by the training data with known shade fraction.
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The image-data method uses equations 2 and 3 to optimize the w, vector. The
training sites of both foreground (rougher surfaces) and background (smoother surfaces of
various lithologies) were selected by inspecting the TM image. Field experience is
important in selecting the training sites. Generally, the more diverse the background
materials, the better the estimation of the foreground roughness. I have selected five
training sites: a “rough” site on the Grotto Canyon alluvial fans; a “smooth” site on the
playa surface; two intermediate sites on the Kit Fox fan and the “A” fan (Figure 28); and
second “smooth” site on sand dunes. The estimated roughness image is shown in Figure

29c.

The “shade” image not only relates to the roughness (unresolved subpixel
roughness), but also contains spectral information. In general, the shade fraction of a
surface is proportional to its roughness (offset term), because of shadowing. However,
poorly reflective surfaces can mimic areas of high shade in images, even though the
surface maybe smooth. Surfaces with the same roughness but different reflectivities, will
have different radiance or reflectances and will look different in the shade image. Thus,
the shade image can only be used to predict a minimum value for surface roughness. The
shade image is a minimum estimates of roughness for comparing the other three

roughness images and is shown in Figure 29d.

Each roughness image has been scaled individually for maximum contrast to show
the variation of the roughness values. For all four images, the brighter areas refer to
rougher surfaces, and the darker areas to smoother areas. Mountainous areas, all subject
to shading at the topographic (resolved) scale and therefore, give invalid estimates of
roughness. Thus, the focus here is on roughness estimation for the valley floor areas,
including alluvial fans, lake and aeolian deposits. The different estimates of roughness

from these methods are discussed in next section.
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CORRELATION OF ESTIMATES OF ROUGHNESS WITH “GROUND TRUTH”

I correlated the estimated roughnesses to “ground-truth” field measurements in
order to verify the estimated results for the four inversion methods. Roughnesses were
estimated from the images for locations where the ground-truth data were collected, but
over much larger areas due to the 30-m sampling scale. Regression of the estimated
roughnesses to the field measurements indicated their correlation for these particular

sample sites.

As expected, the roughness image estimated from field data gives the best
correlation coefficient (R2 = 0.94) (Figure 30a), because its w, vector was optimized using
the same ground-truth data that were used to correlate with the estimates. The small
fraction of the scatter above the fitted line is probably caused by the roughness variation
from different sampling scales. However, the extendibility of the estimated roughness

outside the training areas is not clear and requires more field data to evaluate.

The semi-empirical method estimates the roughness from the calibrated TM image.
The regression coefficient is R*= 0.72 over the same field measurements as the data used
in field-data method (Figure 30b). Even through its regression coefficient is smaller, this
is misleading, and the roughnesses are actually better estimated, because they were
obtained independently from the field measurements, and have no heritage from these
field data. The R* = 0.72 thus indicates the true correlation of estimated and field-

measured roughness.

Estimates of roughness using the same method were also made from the
uncalibrated TM image. The regression to the field data is worse, R* = 0.60, because the
wjp vector was based on the laboratory spectra, while the uncalibrated image has different
spectra due to the contamination of atmospheric scattering effects. Thus, the calibrated
image is required for the semi-empirical method. The quality of calibration may affect

the precision of estimation of the surface roughness.
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Field-data inversion.
inversion. d) Shade-image method.

Linear regression of estimated roughness with field
measurements for four methods. Note the y axis scales are all different. a)

b) Semi-empirical inversion. c) Image-data

The regression coefficients for the image-data method (Figure 30c) is less than for

the semi-empirical method, R* = 0.59. The shade-image method has the minimum

coefficient value among the four, R> = 0.41 (Figure 31d). As discussed above, both

estimated roughness images contain the effect of spectral variability due to different rock

types. From the two regression plots (Figure 30c and d), there are two separable data

groups: one group below the regression line consisting of gcl, gco, gew; and the other

above the line consisting of rest of the data. By looking at the location of these field sites
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(in Figure 28), it is clear that these two groups belong to two geological units: the Grotto
Canyon alluvial fan and the Kit Fox alluvial fans. The two fan systems have different
rock types (limestone and dolomite), causing spectral variations. In the two estimated-
roughness images, the spectral variations are not well separated from actual roughness
information. If the regression was applied to one group at a time, the coefficients are 0.15
higher. The accuracy of the image-data method may be improved if the foreground and
background are better selected to optimize the FIR filter, but detailed knowledge of the
scene is required to achieve that goal. In contrast, the shade-image method has no

potential for excluding the spectral variation from the estimated roughness.

From the R? regression coefficients above, the evaluation of each method is quite
limited, because a good match of predicted and field measurements implies that the
particular inversion method is sufficient for the test sites, but does not imply that the
method is extendible to other areas. For example, the field-data method has a high R*
value, but it is unclear if that value is valid for other areas. However, if w, is optimized
from other methods which do not use these field data, then the correlation of estimated
roughness to the field data is an independent test that is a useful estimate of performance.
In the semi-empirical inversion, the w;, vector is optimized based on laboratory spectra
and simulated surfaces, so that the correlation of estimated roughnesses to the field data
indicates not only its accuracy, but also its extendibility. The R? coefficient value in the

>0.7 range is probably of general significance for the semi-empirical inversion.

VISUAL COMPARISON OF ROUGHNESS ESTIMATES AMONG THE FOUR METHODS

Visual comparison is based on generalized knowledge of the large geologic units in
the Death Valley TM image. Two units are selected for the comparison among the four
roughness images (Figure 29): a large alluvial fan from a canyon in the upper right-hand
corner of the image, labeled as A; and the playa in the left upper area, labeled as B.

Physically, unit A has similar roughness to the Kit Fox alluvial fans on its left, but has a
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different mixture of lithologies. The gravels of fan A can be clearly traced upslope, to the
top of the image, shown as the darker unit in shade image. Unit B, the playa surface, is
very smooth and may be subdivided on the basis of composition, mainly silt, halite, and
other evaporate minerals. The wide range of spectral variation in unit B is clearly shown

in the TM images (Figure 28).

If the roughness inversion methods work well, the estimated resuits should describe
only the foreground information (roughness). Thus, unit A should have same apparent
roughness as the Kit Fox fan, and unit B should be represented as smooth, by a dark

color.

The shade image is not only a function of shade and shadow in the image, but is
also affected by the spectral variation of the surface materials. Dark units could be rough
and shadowed, or could be poorly reflective. The Figure 29d shows the estimated
roughness from the shade-image method. Unit A in Figure 29d is represented with a dark
color and has clear boundaries, darker than the Kit Fox alluvial fans; unit B is represented
by many sub-units with different colors. Clearly, the two units in Figure 29d have
inaccurately estimated roughnesses, because of the varied reflectivities of the surface

materials.

Both the image-data method (Figure 29c) and field-data method (Figure 29b)
separate the roughness and albedo information, but the separation relies entirely on the
selection of sites used to select the wy, vector. If the training data do not represent all the
materials in the scene, the albedo information (background) may “leak™ into the
roughness estimation (foreground). In these two methods, unit A is more similar to the
Kit Fox alluvial fans than in the shade image (Figure 30d), even though a weak difference
is still evident. Unit B still contains much spectral variation, as shown by sub-units in

different colors. However, these sub-units have less color contrast than in the shade

image.
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The semi-empirical inversion method (Figure 29a) improves the estimation of
roughness for units of A and B. With this approach, it is difficult to distinguish unit A
from the Kit Fox alluvial fans (pointed by arrows). In the foreground image, both have
same brightness (roughness), defining as a continuous unit at the front piedmont west of
the Kit Fox Hills, and showing no difference in surface composition, even though the fan
gravels have different provenances. Unit B is represented by a uniform dark color,
indicating a smooth surface. The sub-units of unit B, which are seen in shade image, are
not recognized in the semi-empirical roughness image. The playa incorrectly appears
rough (light) in the other three roughness images, but is correctly represented as smooth

(dark) in the semi-empirical inversion image.

The comparison among the roughness images made by the four methods has
demonstrated that the semi-empirical inversion of roughness gives the most accurate

representation and the best extendibility outside the training areas.

DISCUSSION

Inversions based on Foreground Background Analysis depend on how the finite
impulse response (FIR) filter is optimized. In other words, they depend on the training
data used for calculating the FIR filter, or w;, vector. The image- and field-data inversion
methods rely on field measurements, together with some ground knowledge, so that their
results are strongly affected by many factors, as discussed above. However, in the semi-
empirical method, the w, vector was optimized based on purely the theoretical
relationship and rock spectra measured in the laboratory. The theoretical relationship was
calculated by applying the radiosity model to a series of computer-simulated rough
surfaces. Thus, the semi-empirical FIR filter was less sensitive to inaccurate field
measurements and human knowledge. Modeling error associated with the semi-empirical
inversion is related to the sensitivity of the reflectance to surface structure and to the

variation of surface reflectivities. The amount of change of reflectance responses to the
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surface structure without the random phase angle assumption is important to the
theoretical-based inversion method. Changing the surface type from gravel bar to
vegetation canopy may affect the theoretical relationship of reflectance to the surface

roughness in different ways.

In semi-empirical inversion method, the “power-law spectra” method was used for
generating computer-simulated surfaces. Both slope and offset of the power-law
spectrum were used for characterizing the degree of the roughness, assuming random
phase angles. However, Weeks et al. (1996) have demonstrated that complicated natural
surfaces cannot be fully described by the power-law method with this assumption.
Significant differences between the natural and simulated surfaces, defined by the same
slope and offset, are introduced by the random-phase assumption. These affect the
theoretical relationship of the reflectance to roughness and, therefore, affect the semi-
empirical inversion for the surface roughness. In this study, however, this complexity

was overlooked. Its effect is not clear and requires further study to understand.

The variability of rock and soil spectra also affects the semi-empirical inversion
method. In this study, all twelve rock samples were collected from one site, Grotto
Canyon wash, and this severely under-represents the lithologies present in the Death
Valley region. This bias in sampling unavoidably affects the inversion results, but the

sensitivity of its effectiveness is very complicated and has not been explored.

Uncertainty of reflectance response to the changes of surface types from vegetation,
to sand, or soil may be high for the semi-empirical inversion method. This may limit the
reliability with which the reflectance may be calculated for simulated surfaces, and, thus
how well the power-law method describes various surfaces. However, vegetation is
sparse (5-10%) in the Death Valley study area, which minimizes complexity from that
quarter. Obviously, for densely vegetated forest areas, this source of uncertainty must be

addressed in detail if the semi-empirical inversion is to be applied.
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In general, inversions for roughness parameters only coarsely resolve surface
roughnesses. The resolution of the roughness estimation for all inversion methods
appears to be limited to major geological units. This results from the inherent
indeterminacy of inversion problems. There are two reasons for the limited roughness
resolution: 1. the remote-sensing data resolution (30-m), and 2. a certain amount of
spectral information in foreground limits the accuracy with which the FIR filter is chosen,

resulting in loss of separation of background and foreground.

The difficulty of model validation is a common problem in remote sensing,
especially for the surface roughness, because the ground truth for roughness is difficult to
measure using current techniques. Some techniques used in the field include close-up
stereophotography and direct measurement of topography at the cm scale with pin
profilers. However, all field measurements of roughness are at much finer resciution than
Landsat images, so many intermediate-scale features are not accounted for. Field
measurement is also labor-intensive, so that sufficient data to bridge these scales are hard
to acquire. Thus, it is necessary to validate the inversion models using available ground-

truth data, while remembering that this effort will necessarily be incomplete.

As discussed above, some ambiguities remain in the semi-empirical inversion
method because of background/foreground blurring due to spectral variation mimicking
the roughness, and due to limitations of the method itself. Several techniques can be used
to reduce these ambiguities. “Extended-spectral” remote sensing can provide roughness
estimates from different viewpoints, based on different physical light/surface interactions:
thermal infrared for roughness and emisivity, microwave radar for roughness and
dielectric constant. Furthermore, improvement may result if images taken at different
illumination angles are used. Thus, the uncertainty of inversion of NIR images could be
reduced by inversion of several kinds images of the same scene. The joint analysis has

been suggested by Weeks et al. (1996).
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CONCLUSIONS

1. In this study, a new, semi-empirical roughness inversion method was developed
based on the FBA model to estimate surface roughnesses from Landsat TM images. The
basic element of the FBA inversion is the definition of a finite impulse response (FIR)
filter using training data. The FIR filter for the semi-empirical inversion is optimized by
using the theoretical relationship of reflectance to surface roughness and a surface-

material spectral library.

2. The theoretical relationship was calculated using a radiosity model to derive the
response of reflectance to the surface roughness. Mathematically, a series of computer-
simulated surfaces were defined from two input parameters (slope and offset) describing
the power-law spectra of surface roughness, assuming random phase angles. The
reflectance response predominately depends on the offset term. Therefore, the correlation
to roughness may be defined by the offset term alone. The spectral library was

constructed from samples collected in Death Valley, all from Grotto Canyon.

3. The semi-empirical inversion model has been applied to a Landsat TM image of
Death Valley. The roughness results have been verified by field roughness measurements
and geological knowledge of this area. Regression of the estimated data to field

. . . 2
measurement gives correlation coefficients of R"> 0.7.

4. Comparisons were made with three other inversion methods: the field-data
method, the image-data method, and the shade-image method. For the field data sites
alone, the field-data method is the best with R = 0.94, but for other areas, the semi-
empirical inversion method has the highest overall accuracy. There are two important
advantages of the semi-empirical inversion. One is the extendibility of the model, which
means the inversion is good not only for training sites, but also for other areas. The other
advantage is that inversion results are stable (or repeatable). Once the FIR filter is
obtained, the estimate of roughness for the same TM image is uniquely determined,

subject only to measurement errors in the image to be inverted.



109

5. The estimation accuracy in the semi-empirical inversion model is due to two
major factors: the sensitivity of reflectance to the accuracy of the simulated natural
surfaces; and the sensitivity of FIR filter to the variation of the surface types. These two
factors are the most important for the semi-empirical inversion method, and have not

been explored in detail in this study. Future work on the semi-empirical inversion model

is required to do so.



CHAPTER 5: TOPOGRAPHIC CORRECTION OF A TM IMAGE USING THE
CANOPY PHOTOMETRIC FUNCTION

INTRODUCTION

The classification and monitoring of mountainous forest is important to the
management and protection of forest resources. Detection of change in forests is of even
more significance for studies of land use, forest management, climate monitoring, and
other environmental issues (Anderson, 1977; Ingram et al., 1981; Singh, 1989; Collins
and Woodcock, 1996). Remotely sensed images are potentially common powerful tools
in studies of change. However, the use of remotely sensed data in rugged terrain can be
hindered by variations in illumination and reflection geometry caused by different slope
angles and orientations (Civco, 1989). Images acquired by high-resolution sensors such
as the Landsat Thematic Mapper (TM) and the SPOT are particularly affected by these
problems (Lepriuer et al., 1988), with the result that topographic shading and shadowing
mimics unresolved or subpixel shadowing from and in the trees themselves (Mustard and
Pieters, 1987; Itten and Meyer, 1993; Schaaf and Strahler, 1993; Schaaf et al., 1994).

Yet, it is this subpixel darkening due to the forest canopy that is a major key in forest

mapping.

Various topographic correction models have been developed and used to remove
slope effects from images (Civco, 1989). Most conventional topographic corrections
have used simplified photometric functions to characterize the bi-directional reflectance
distribution function (BRDF) of natural surfaces: examples include the simple cosine
function, or Lambert “law” (Hall-Konyves, 1987; Jones et al., 1988; Kawata et al., 1988;
Meyer et al., 1993), the Minnaert law (Smith et al., 1980), and their modifications (Teillet
et al., 1982). For many natural surfaces, especially including vegetation canopies, these

models correct for topographic effects poorly, causing under- and/or over-correction,
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basically because they are over-simplified and/or not physically based (Kriebel, 1978: Lee
and Kaufman, 1986; Johnson, 1994). A model based on characteristics of unresolved
subpixel scene structure, called SCS correction (sun-canopy-sensor) by Gu and Gillespie
(1997), is tuned for forested slopes. This is because the SCS model accounts for the
distinctive geometric feature of trees: the independence of tree orientation and
topographic slope. The SCS model is a step closer to characterizing the BRDF than other
methods for forest at least, but its accuracy is limited by variability in the shape and

spacing of the trees.

The attempt to define adequate BRDFs for vegetation canopies has led to the
development of forward models of radiation scattering (Li and Strahler, 1985: Liang and
Strahler, 1993). Li and Strahler (1985) developed a “Geometric-Optic” canopy model
based on the mutual shadowing among trees. This model has been used to study the
BRDF of canopies and the effects of terrain slope (Li and Strahler, 1986; Schaaf and
Strahler, 1993). However, multiple scattering has not been accounted for in the model,
even though it has been shown to be important in rough terrain (Shoshany, 1989; Li et al.,
1996) and, therefore, in forest canopies. Thus, the radiosity model, which accounts for

multiple scattering, is necessary for calculating accurate BRDFs.

As a function of sun-surface-sensor geometry, the BRDF describes the directional
reflectance properties of a surface. Much research with forward models (Suits, 1972:
Norman, 1984; Smith et al, 1984; Reyna and Badhwar, 1985) and in-situ field
measurements (Bauer et al., 1986; Deering, 1989; Jackson et al., 1990; Jon-Ranson et al.,
1994) has shown that BRDFs for realistic rough surfaces may be anisotropic, or not
ideally diffuse (Lambertian). Shaaf et al. (1994) has recently demonstrated that, for
forests, BRDFs vary not only with canopy type, but also with the terrain slope and aspect.
The geotropism of trees, which has been pointed out and used in topographic correction
by Gu and Gillespie (1997), determines the dependency of surface structure and its BRDF

on the terrain slope. In order to characterize the surface photometric function properly,
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the BRDF should calculated for given sun-surface-sensor geometries and the terrain slope

and aspect.

In this study, in order to correct the topographic effect on vegetated terrain in TM
images, the BRDF is calculated for each image using the radiosity model. A canopy
function (CF) as a special case of a BRDF is calculated with fixed viewing angle (nadir
looking) and varying terrain slope. This case is feasible only for images like Landsat
images, which have been acquired with a narrow range of viewing angles and sun
directions, so that the CF is effectively a function only of terrain slope, s (or local
incidence angle 7), and slope orientation (azimuth angle), z. To simulate the forest
canopy, I designed a “virtual” tree of simple shape consisting of the cone-shaped crown
of a conifer. The CF is then built for a surface consisting of these trees having specified
sizes and spacing, and viewed under a given illumination geometry, all for various
topographic slopes and aspects. Terrain correction using these CFs has been tested on
Landsat TM image subsets in Bluff Creek region, and the results have been compared

with those of three previous models: cosine correction Minnaert correction, and sun-

canopy-sensor correction.

RADIOSITY MODEL FOR CALCULATING THE CANOPY FUNCTION (CF)

CF TOPOGRAPHIC CORRECTION MODEL
The CF topographic correction model can be derived from the radiosity model
(equation 15 of Chapter 1) with some simple modifications. By definition, the surface
reflectance r; is the ratio of radiosity (B) and irradiance (I,): r: = %,, . The reflectance is
normalized radiance over a rough surface near the ground surface, which is affected by
local slope and azimuth angles. From the equation 15 of Chapter 1, the surface

reflectivity can solved by
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i
pi= n ° (l)
cos(z )+ F, +Z'/ *F,

J=1

where F, = A% in percentage.

The equation 1 is actually a cosine correction function adjusted for sky light and
multiple scattering, all for an intrinsically Lambertian surface. Since reflectance of the
forest canopy is characterized by the BRDF, equation | becomes the CF correction model

if cos(t;) is replaced by CF(1, z), the generalized function. The corrected reflectivity

thus is

Ii

P = . )

CF(ri,z)+FA +2rj *F,,
J=1

Note that the MS term in equation 2 is still based on the Lambertian assumption.
With the substitution of CF(7, z), the calculation of the MS term is no longer accurate but
merely an approximation. However, this approximation may be sufficient enough for
describing the diffuse component in rugged terrain surfaces, because there exists some
degree of randomness of terrain slopes and some Lambertian component of the scattering
from a vegetation canopy. This claim is supported in a later section (results section) on

topographic correction with MS considered.

Using equation 2 requires accurate image calibration to convert the measured
radiance (DN) to canopy-surface reflectance (p). An incorrectly calibrated image will
introduce errors into the topographic correction, especially for poorly illuminated or

shadowed areas, due to a high signal/noise ratio there.
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For application to uncalibrated data, the CF correction model (equation 2) has been
further modified by the substitution of calibration coefficients and uncalibrated
measurement (DN) for the reflectance. The r term can be replaced by the DN using
empirical line calibration method (Roberts et al. 1990; 1993; Farrand et al., 1994). Its

simple form is; DN = g*r+o0, where g and o are the coefficients of the empirical line.

Thus, the modified CF correction becomes
p; =(DN, - o)/g/CF(t,..z‘) + FA+2(DNJ -0)/g*Fy. (3)
J=1

Because the calculation time of the MS term at the pixel scale increases
quadratically with the size of the image array, it is the major time-consuming task in
running the model. The effect of the MS term for high sun angles, at least, are relatively
small (less than 20% area with > 5% MSg, from Chapter 2) and, in the interest of
economy, the simplified CF topographic correction model ignores them. Thus, the

modified correction becomes

_ DN
ap; = /cF(r,. .z,) + F, @)

where DN = DN -0, and the offset term o includes sky irradiance and instrumental
effects. In this equation, a preliminary calibration is required to remove the offset term
with an approximation method. In this study, [ have simply selected the DNs from lakes
or resolved streams, and/or minimum values in the Landsat image, to approximate the
offset term. The slope coefficient is not calibrated in this preliminary calibration. The F,
is another term which has to be estimated. The correction will be affected by the

estimation of F,. Detailed discussion on the estimation is in a later section. The images

corrected using equation 4 will be in terms of gp.
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Figure 31. The canopy-surface model diagram. a). The geometry and parameters of
the canopy surface (E sun elevation angle, s terrain slope, -t local incidence angle).
b). The simulated canopy surface image on a 30° slope (trees are randomly distributed
with same height and size). The “box” surrounding the plot is a device to
approximate MS from neighboring plots in an infinite forest. The vertical patterns in
the box walls are the insides of trees where they overlap the edge of the plot.
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CANOPY SURFACE MODELS

A simple canopy surface model was specified by a high-resolution DTM
constructed from simple geometric shapes representing individual trees. Conifer forests
in the Pacific Northwest were simulated in this study. Each tree is represented by a solid,
opaque cone on a pole. A group of these “trees” are distributed randomly on a flat

surface (but with settable dip) such that they may touch but not overlap (Figure 31).

The simulated canopy surface is subdivided into raster elements. To ensure
accuracy, these elements must be much smaller than a tree diameter (e.g., < 10%) so that
the calculated radiosities are well approximated everywhere. The apparent reflectance
from this canopy model is the average of reflectance received at the sensor from all the
elements. I have chosen 100x100 pixels as the size of the canopy surface model by
considering the image resolution and computation time. In the image, each tree

comprises about 10 pixels.
For this preliminary study, additional simplifying assumptions have been made:

. all the surface elements are perfectly diffuse (Lambertian surface),

including the tree crowns, trunks and the background or substrate.

2. all the trees are the same size, including the height and the ratio of crown

to trunk height.
3. the trees are opaque.
4. the canopy model surface is isotropic.

From the remote-sensing viewpoint, an important characteristic of a forest is that
the trees are geotropic: their trunks are vertical regardless of the slope of the hillside.
That makes the BRDF of vegetated surfaces distinct from those of soil and rock surfaces,
because much of the radiative interaction is independent of topographic slope. As an

analogy, the changes of canopy surface structure with topographic slope resemble a deck



117

of cards being sheared: as the slope increases, more tree surface is exposed, although the

trees themselves are unchanged.

To minimize edge effects in the small (100x100 pixel) canopy model, the model
was surrounded by opaque walls with the same height to the trees. This simulates
extending the forest by allowing no illumination to reach the sides of the model. When
the sun illumination angle equals the slope angle of back-facing hillsides, there is no light

on the canopy surface and the reflectance of the surface is zero.

All the surfaces of tree crowns and trunks, and of the background, are assumed to
be ideally diffuse or Lambertian. However, at the pixel scale the canopy surface is no
longer Lambertian because of canopy structure. The CF, calculated from the canopy

model, represents this anisotropy.

CFS FOR LANDSAT TM IMAGES

TEST SITES

Two Landsat TM images of the same area within the Bluff Creek watershed in the
Pacific Northwest were chosen as test images for this study: one (“Image 84") was
acquired on August 31, 1984, with 60.8° sun elevation angle (E) and 123.6° azimuth
angle; and the other (“Image 90) was acquired on November 8, 1990, with 37.5° sun
elevation angle and 145.0° azimuth angle. These two images are representative of most

Landsat images acquired with middle to high sun elevations in temperate regions.

The test sites are 300x300 pixels in size, with 30-m resolution (9x9 km?). They are
centered at 123°46’ latitude and 41°50° longitude. The test sites were selected in high
rugged areas supporting old-growth conifer forest (Douglas fir). There are several small

patches of clearcut and snow, together accounting for less than 10% of the test sites. The
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old-growth canopy closure is about 70-80%, as estimated by our own field measurements

in 1996.

At the scale of the DEM, most slopes within the test site are under 50°, and average
20°-30°. Because of this, the local incidence angles (t) for Image 84 mostly fall between
0° and 70° (0.35 < cos(T) < 1.0), but extend to their full range (0°-90°) in Image 90. The

sun elevation angle controls the fraction of the test area shadowed or heavily shaded.

The simulated canopy surface model for this test site was made of 115 trees. Each
tree is 30 pixels tall, 10 pixels in diameter, and the crown-to-height ratio is 67%. The

apex angle of the tree crowns is 25°.

CFs FOR THE TWO IMAGES

The canopy functions for the two images were calculated using equation 1 within
the range of -60° (shaded side) to 60° (sunlit side) slope angle, at increment of 10°
(Figure 31). Because of the isotropy of the canopy model and the symmetry of the sunlit
and shaded sides, the range of 0° to 90° azimuth angle (increment, 10°) will cover all
slope orientations (0°-360°). Because of calculations of the MS at the subpixel scale,
building the CF using equation 1 is the major cost of running the CF-correction model.
The 13 slope and 10 azimuth-angle values required a total of 130 executions of the model
algorithm, each taking about 90 minutes using a DEC Alpha-3000 station with a 276-
MHz processor. Although the expensive computation is a major drawback for setting up
the CF correction model, once the CF is known for a given sun elevation angle it can be

used for all images that have the same illumination angle.

Figure 32 shows a 3-D plot of the CFs for Image 90 relating CF to the slope, s, and
the azimuth angles, z. In the principal plane, where the slope azimuth is zero, the CF has

the maximum sensitivity to slope angle. Perpendicular to the principal plane where the
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azimuth is 90°, the curve is flat, indicating that the reflectance is largely independent of
the slope at this illumination direction. Other CF features will be compared with

equivalent cosine correction features in the next section.
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Figure 32. The canopy function of topographic correction is calculated for
Image 90 (the Landsat image acquired on the November 8, 1990, with
37.5° sun elevation angle and 145° azimuth angle), when p = 25%.
Normalized radiance refers to the radiosity is normalized by the single
scattering value at T = 0° (o = 30°). Color shows zones of radiance.

The canopy surfaces used in this study are rough, as indicated by the input aspect
ratio. Deep and narrow holes between trees cause a large amount of shadowing at all but
nearly vertical sun elevation angle. They also generate large amounts of multiple
scattering, which increase with the intrinsic reflectivity (see Chapter 2). Thus, the CFs
depended strongly on the surface reflectivity. In order to bracket the CFs for a single
multispectral Landsat image (with different reflectivities at the different wavelengths), a

series of CFs was calculated for surface reflectivities from 0% to 55% at 5% increments
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(Figure 33). The topographic correction for each band will require a different CF

correction model.

In the preliminary study, I have assume constant p for all components of the canopy
surface. The difference of the CF for actual reflectivity distribution patterns (crown,

trunks, substrate) will be discussed in a later section (discussion section).
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Figure 33. The canopy functions (CFs) of Image 84 for surface
reflectivities from p = 0% to 55% in the principle plane, compared with
the cosine curve of the local incidence angle. Region 1 is the negative-
angle range (T < 0°). Region 2 is the middle-angle range (0° <t < 60°).
Region 3 is the high-angle range (60° <t < 90°).

CHARACTERISTICS OF THE CF

When compared to the cosine function, the CF shows three distinct characteristics
(Figure 33). The three features directly relate to a three ranges of the local incidence

angle: a negative-angle region, a low-middle-angle region, and a high-angle region.

1. The negative-angle range (T < 0) includes all negative values of the local

incidence angle (on the camera side of surface normal). Such values are formed on the
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upper side of the surface normal (Figure 31a). The CFs show a continuous linear increase
as the surface slope increases from the zero incidence angle (or s = 30°), whereas the
cosine function is symmetrical about the surface normal (Tt = 0°). This linear feature is
caused by the increasing area of canopy exposed to sun light as the slope increases.
Inaccurate correction caused by using the cosine function becomes worse in this region.
Fortunately, data in this region are not common in most Landsat images, because they
require both high terrain slopes and a high sun elevation angle. For example, in order for

Tto be negative, an image with 60° sun elevation angle requires that the slopes must be

greater than 30°.

Normalized radiance

0 0.2 0.4 0.6 0.8 1
Cos (T)

Figure 34. The normalized radiance data calculated from simulated
canopy surfaces related to the cosine of the local incidence angle for all
sun-surface-camera geometries. It is similar to Figure 35 by projecting all
the data on to the principle plane in the range 0 < cos(t) < 1. The scatter
of the data near cos(t) = 1 is caused by the high radiance in the negative
angle range. The solid line is the linear curve for a flat Lambertian
surface. The terrain slopes are from -50° to 50°. Surface reflectivity is
25%. The data is normalized to the single-scattering radiance value for T =

0°.
This feature of the CF causes the normalized radiances to scatter when plotted

against cos(7), as shown in Figure 34. Unlike Figure 32, Figure 34 shows all data,
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regardless slope azimuth. Figure 34 was constructed simply by projecting a 3-D plot of
Figure 32 onto a 2-D plot. Because the cosine of the incidence angle has the same value
for both positive and negative incidence angles, the projected data are “folded” about
cos(T;)=1, and it is this that causes the vertical scattering on the right-hand side of Figure
34. The most scatter occurs near cos(T;) = 1. However, this indicates that the scattering
of real image data may not be entirely due to measurement errors and the natural
variability within scene classes, as interpreted in some studies; instead, it is likely caused

by the structure of the trees themselves.

I. The middle-angle region refers to the range of 0° < T < 60° (or 30° 25 = -30°). In
this region, the CFs are linear, similar to the cosine curve, but with small slope
differences. Within this region the surface is essentially Lambertian. As the slope varies,
the reflectance of the canopy surface also varies, and is given by the cosine of the local

incidence angle.

The Lambertian quality of forest canopies at 0° < T < 60° is significant in
topographic correction, because most Landsat images are acquired at a high sun elevation
angle and have terrain slopes of less than 20°, such that most data fall within this range of
incidence angles. Under these conditions, the CF model is nearly Lambertian, and there is
little to be gained by using other than simple cosine correction. In a later section, I will

demonstrate this similarity of correction results for different models.

2. The high-angle range is 60° < T < 90° (or -30° > 5 > -60°). Each CF curve in this
range has a small “bump,” a convex curve, with higher values than the cosine curve,
indicating that there is a stronger backscattering component from a canopy surface than

from a Lambertian surface.

The sizes of the bumps are controlled by the tree spacing, surface structure (shape
of the tree), and the surface reflectivity. These bumps play a critical role in topographic
correction, especially for images illuminated with a low sun elevation angle, in which

many areas are shaded or shadowed (in the high-angle range). The problems caused by
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over-correction in most other topographic correction models are avoided by this stronger

backscattering feature in the CF.

TOPOGRAPHIC CORRECTION OF A LANDSAT TM IMAGE

Image 84 was used to exercise the CF topographic-correction model. The CFs built
for the 60° sun elevation angle were used in equation 2, together with a variation of
surface reflectivities from 0%-55%. The calculated CFs are shown in Figure 33. Priorto

the correction, some image preprocessing was required, as described below.

IMAGE PREPROCESSING

The first step prior to topographic correction was to register the TM image to the
DTM. The registration was done using the ‘PICREG’ function in [DL image-processing
software (which was adapted by Steven Cothern at UW from a VICAR program at JPL).
The misregistration errors have great impact on the analysis of image data among the
different images and other data maps (Townshend et al., 1992). As discussed in Chapter
3, the accuracy of registration (geometric errors) is a critical factor to the radiosity
calculation for the CF. The errors caused by the registration will greatly affect the

topographic correction.

The second step is to calibrate the image. Using equation 2 and accounting for MS
requires full calibration of the image. The empirical-line method is to obtain a linear
regression for the image radiances or DN to the reflectance measured in the laboratory,
for a particular surface material in the image. In this study, I have chosen a small lake
and a gravel bar as anchor points. However, this simple calibration contains some errors
caused by variation or deviation between the laboratory and TM data of these two anchor
points. The variation for water could be caused by sky light, secondary illumination from
trees, and sediment in the lake. The variation for the gravel bar could be caused by its

rough surface. The errors in the calibrated image in turn affect the topographic correction
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results. These errors are minimized if the sun elevation angle is high, because the

signal/noise ratio is reduced.

Using equation 4 without MS requires a preliminary calibration of the image. This
was done by simply removing the offset term caused in part by the upwelling sky light.
The offset terms for all bands were determined based on the water spectrum measured in
the TM image and/or the minimum DNs in the image. The offset coefficients were
determined by assuming that the spectrum of pure water has zero reflectances in TM
image bands 3, 4, and 5, and that the minimum DNs in the image correspond to these
values. For Image 84, the offset terms were found to be 4 DN for band 3, 2 DN for band
4, and O DN for band 5.

DOWNWELLING SKY ILLUMINATION AND SURFACE REFLECTIVITIESEFFECTS TO THE CF

Downwelling sky illumination (F,) and surface reflectivity ( p ) have
complementary influence on the magnitude of the CF correction. In equations 2 and 4,
F, reduce the CF correction by simply adding a constant offset to the CF; p increases the
CF correction by reducing the offset term due to multiple scattering, as shown in Figure
34. The complementary effects of the two terms will produce same correction results for
different combination of the two terms. A best topographic correction, which has
minimum dependency on the terrain slope after correction (discussed in a next section), is
not unique to a specific combination of the F, and the p; if only the data dependency on

slope is considered.

A good topographic correction, defined by a particular pair of F4 and p , must be
physically meaningful for a particular TM image. In other words, F4 and p must vary
only in a limited range. For example, F, on a clear day is usually near ~10% in TM band
3, ~5% in TM band 4, and ~0% in TM band 5; and p for vegetation is ~5% for TM band
3, ~40% for TM band 4, and ~25% for TM band 5. These values for F4 and p can be
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derived from laboratory spectrum of vegetation and the illumination geometry of the TM
image (Gao and Goetz, 1994). In order to achieve the best topographic correction results
with the proper set of the two complementary parameters, several pairs of F,4 and p are

used in calculating the correction (Table 5).

Table 5. Slopes of the regression line of the TM
image data for all combinations of F4 and P

Band 3 Band 4 Band 5

ye) F,=6 F,=8 F,=10 Fo=2 Fy=3 F,=4| F,=0 F,=1 F,=2
00% 0.017 0.010 0.004
05% 0.016 0.010 0.005 0.0003 -0.008 -0.016
15% 0.016 0.011 0.006 -0.012  -0.024 -0.035 0.001 -0.006 -0.013
25% 0.017 0.012 0.008 -0.006 -0.016 -0.026 0.002 -0.003 -0.009
35% 0.003 -0.006 -0.014 0.006 0.001 -0.003
45% 0.019 0.012 0.005 0.006
55% 0.04 0.034 0.028

Correction results were evaluated by correlating the corrected image to the local
incidence angle. Before correction, the image data were strongly affected by the terrain
slopes.  After correction, this dependency should be removed. Hence, a statistical
regression line was fitted to the scatter plot of the image data before and after correction
to the local incidence angle. A zero slope of the line would indicate independence of the

image data to slope.

TOPOGRAPHIC CORRECTION WITHOUT MULTIPLE-SCATTERING

The topographic correction was first applied to the test site in Image 84 using
equation 4 and ignoring MS at the DTM scale (pixel scale). The best possible
combinations of F, and p for each band (i.e., yielding zero correlation of corrected image

data to terrain slope) is given as a bold number in Table 5.
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Figure 35. Comparison of the topographic correction for Image 84 using
CFs. a). Color composite of three bands: 3 (green), 4 (blue), and 5 (red). b).
The data scatter plots before and after topographic correction for band 4.

The corrected and uncorrected images are displayed in Figure 35. The major terrain
shading features have been removed from the original image (Figure 35a). In general, the
corrected image looks flat, even though these remains some shading variation in the
shaded sides of hills. These correction errors can be caused by several conditions:

inefficient topographic correction, registration error, or high noise/signal ratio in the
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shaded slope. From the pattern of the mis-corrected areas, it is most likely caused by the

last two factors.

Table 6. Comparisons of the regressions of image
data before and after topographic correction

using the CFs
Regression Band-3 Band-4 l Band-5
line Before After Before After Before After
Slope (9) -0.157 0.005 -0.766 0.012 -0.42 -0.003
Offset (DN) 21.6 189 88.4 55 47.8 36.6
Mean (DN) 16 18 60.8 55.6 326 36.5
Stdev '(DN) 20 22 21.1 14.7 13.7 13

The comparison has been further evaluated quantitatively by using scatter plots of
image data DN vs. local incidence angle (or slope) (Figure 35b). An evaluation of the use
of regression lines to fit the scatter plot is given in Table 6. Comparisons of the
regression slopes before and after correction show a reduction in the dependency of image

data on terrain slope.

The offset, mean and standard deviation (stdev) of the regression line are less
important than slope-angle parameter for evaluating the correction. The offset value at T
= 0 indicates the spectral value of the surfaces on which the light incident vertically, and
it is close to the mean value of the image data (reflectances) after correction. The
standard deviation term describes the scattering of the image data. In general, the smaller

the standard deviation, the better the correction.

TOPOGRAPHIC CORRECTION WITH MS
Topographic correction has been improved by compensating for multiple scattering
as well as illumination geometry, even though the MS was only approximated by using

equation 2. The biggest improvements are in the high-shade and shadow areas. Image
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90, with 37.5° sun elevation angle, was used to demonstrate the effect of MS on the

topographic correction.

To reduce computing time, the test site was re-sampled to reduce image size to
150x150 pixels, with 60-m resolution. The image was first fully calibrated using the
empirical line method, converting the encoded measured radiance (DN) to reflectance.
The sky illumination and surface reflectivity were selected using the same procedure
discussed in the previous section. As an example, band 4 was used comparing
corrections with and without MS. The reason is that MS effect in this band is stronger

than other band for vegetated surfaces due to high reflectivity (from Chapter 2).

Table 7. Comparisons of the topographic
corrections with and without Multiple-Scattering

Regression Image 90 Band-4
line Parameters Before Without MS With MS
Slope () 0.16 -0.03 -0.002
Offset (DN) 6.8 16.5 14.2
Mean (DN) 15.6 14.7 14.1
Stdev (DN) 5.5 12.3 7.3

Figure 36 and Table 7 show the comparison of the corrections with and without MS
in three different ways. First, the scatter plots in Figures 36a and b show less scattering
with MS than without MS at low incidence angles. Second, the standard deviation of the
corrected reflectances plotted against cos(7) in Figure 36c, shows that the correction
without MS reflects more spatial variation and stronger dependency of slope than the
correction with MS. Third, the slope of the regression line for the correction with MS is
less than it is without MS, as shown in Table 7. However, the over-correction of data,
which are scattered far off the main cluster at low incidence angles (Figure 36a), is not
totally adjusted by using the radiosity model, as shown in Figure 36b. These

overcorrected data were possibly caused by several conditions: MS that has not been
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properly predicted by the radiosity model with the assumption of a Lambertian surface;

registration errors; and/or calibration errors.

a. Withouat MVIS

b MWoath VIS

HI\\_‘hUI‘ Scatter d - -
/_ . o Lower Scatter :
Radiance g : . / :

(Wem“sr™') 8

e —
. “r an » .-

CoseT CosT)

0.2 4

0151 _— Without MS

0.1 -

Standard Deviation of reflectance

With MS

v -

01 02 03 04 05 06 07 0.8 09 1

c. Cos(1)

Figure 36. The comparison of topographic correction of Image 84 with
and without MS, using CFs. a). A scatter plot of CF correction without
MS, and b). The scatter plot of CF correction with MS. Both plots are
resampled by 1/7 for clearer display. c). The comparison of the standard
deviations of the two corrected reflectances.

DISCUSSION

All the topographic corrections presented above were made assuming that the

preliminary and/or full image calibrations were accurate. If the offset term in the
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calibration is inaccurate, the CF topographic corrections will be affected, causing the
image data to be over- or under-corrected. The magnitude of effects is, however, also
modified by the combinations of both downwelling atmospheric scattering F4 and surface
reflectivity p, because F, increases the base level of the CF by increasing irradiance to
every pixel, whereas p reduces the intercept (offset) of the CFs by the increasing the
amount of MS (Figure 33). Thus, the three parameters, by controlling the offset term of
either the image data or correction functions, have similar effects to the topographic
correction. For the same correction results, there is no unique set of values for the three
parameters, because increasing one of them can be compensated for by adjusting the other
two. Choosing the best combination of the three parameters requires additional
information. For example, the reflectivity can be measured from laboratory: atmospheric

scattering (up- and down- welling) may be inferred from other images;

The application of the CF correction model to Landsat TM images has been
presented in simplified form, relying on several assumptions. However, even though the
simplified form of the CF produces reasonable results, its accuracy is still the key factor
for obtaining the best correction possible. As discussed earlier, the basic form of the CF
is controlled by the canopy structure, but the shape of CF can be modified by many
important parameters, including tree shape, tree spacing, surface reflectivity, transmission
of light through the tree, and actual reflectivity distribution patterns. Understanding how

these parameters affect the CF could enable us to refine the CF corrections.

TREE SHAPE

Two of the most common shapes of trees are approximated by cones (conifers) and
ellipsoids (deciduous trees). The different types of trees that compose a forest affect its
surface structure and roughness. Conifer trees have a higher aspect ratio (the ratio of tree

height to spacing) than the ellipsoidal deciduous trees, and therefore a coniferous forest
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has a rougher surface. The surface roughness affects the BRDF of the forest, and thus the

CFs for the two types of forest ought to be different.
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Figure 37. The Canopy Functions (CFs) for various type of canopy surfaces. a). CFs
for canopy surfaces made of cone-shape trees (conifer) and ellipsoidal trees,
compared with cosine curve. b). CFs for canopy surfaces of different canopy closure,
from 0% - 90%. c). Comparisons among the canopies containing opaque trees with p
= 25%, transmissive trees with r = 25% (“trans.”), trees with a distributed pattern of p
(crown = 40%, trunk = 5%, and substrate = 25%, “trans. patt.”), and cosine curve. Y
axis is scaled radiance normalized by the radiance at t = 0°.
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[ have designed a deciduous tree model composed of ellipsoid-shaped trees that is
otherwise similar to the conifer tree model. In order to compare the two, I have kept all
of the other canopy parameters the same in the deciduous forest model and in the conifer
forest model. I have calculated CFs for the deciduous forest exactly as reported above for

the conifer forest.

The two CFs are compared in the principal plane (the sun-surface-camera plane), as
shown in Figure 37a. The two curves have similar shapes except for that the CF of the
deciduous tree has smaller slope than that of the coniferous tree. The cause for the
difference is quite complicated. Part of it is due to the different amount of MS
component predicted by the two surface models. Part may also caused by the sun-
canopy-camera geometry. For example, when the sun elevation angle is fixed, the
fraction of the single- and multiple-scattering component for each pixel could be different
for the two kinds of canopy surfaces, because the surface exposure areas of the two are
different due to their different apex angles. A complicating factor is that the ratio of
single scattering to multiple scattering varies with the topographic slope. Additional

studies are required to understand in detail how the CFs depend on the canopy-surface

structure.

TREE SPACING

The tree spacing is a significant characteristic of the forest model. It is closely
related to maturity stage, health status, and fire and logging history (Kleman, 1987;
Abuelgasim and Strahler, 1994; Muchoney and Haack, 1994; Olsson, 1994; Syren, 1994).
Variation of tree spacing directly affects the shade fraction in the image, and therefore the
BRDF (Franklin et al., 1986; Franklin and Strahler, 1988; Franklin and Turmer, 1992).
The shade faction (darkness) is mainly controlled by the single scattering and reduced by

the multiple scattering (Li et al., 1996). Below, the CFs are compared among various tree
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spacings from zero (flat, Lambertian surface) to 90% tree coverage with 15% gaps

(Figure 37b).

The major changes of the CFs caused by the tree spacing occur for high (~70°) and
negative (0° =2 T 2 -30°) local incidence angles. Under the Lambertian surface
assumption, the zero density forest (100% tree spacing) is a flat, perfectly diffuse surface,
giving an exact cosine curve response. As the tree coverage (density) increases
progressively from 5% to 90%, the reflectance in the high incidence-angle region, initially
less than that of the unforested surface, increases to the same (50% cover) and higher
values (>50% cover). This is basically because the domination of the shadowed over the
directly illuminated forest is reversed when the forest cover is increased to about 60% or
more. In negative incidence-angle regions, however, as the forest cover increases the
reflectance also increases steadily from cosine curve to a straight line. This is because the

exposed area of the trees in this illumination range is proportional to the increase of the

tree coverage.

Changing the tree spacing shows an important character of CFs. The size of the
“bump” in CFs in the high local incidence angles is strongly influenced by the forest
cover: higher cover will cause a bigger bump (Figure 37b). This is significant for forest
terrain correction, especially at low sun elevation angles, because most image data will be

in the high local incidence angles.

ADJUSTMENT REQUIRED FOR TRANSMISSIVE TREES

In the simple model, I have assumed that the individual trees are opaque. In reality,
this is not the case, especially in the NIR spectral region (Roberts, 1991). Light
transmitted through the trees, will increase the incident light in shaded areas and,
therefore, increase both the single and multiple scattering. Thus, the CFs must be

adjusted to accommodate these changes.
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Using the same canopy surface model of a stand of conifers, I have examined the
sensitivity of the CF to tree transmissivity for two cases: a scene with uniform p=025
and a scene with variable p. For the second case, the energy transmitted through the tree
was assumed to decrease exponentially with the path-length of light in the tree. The p
image was constructed such that p for tree crowns was 45%, p for tree trunks was 5%,
and p for substrate was 25%. These two terrain-corrected images are compared to their
equivalents corrected with the cosine function, and CF-corrected assuming opaque

instead of translucent trees (Figure 37c).

The CF for case | (uniform p ) is almost same as the CF for the opaque-tree model,
except it is slightly higher for negative local incidence angles. The CF for case 2,
however, shows a strong difference for high local incidence angles. The bigger “bump”

formed in high 7 region is generated mainly by the high reflectivity of the crown surface.

REFLECTIVITY

The reflectivity of vegetation varies strongly with wavelength, from 5% (near 0.65
um) to 50% or higher (near 1.2 um). Thus, the topographic correction for the different
bands of a multiple spectral image requires different CFs based on the proper
reflectivities. In Chapter 2, it was demonstrated that increasing the surface reflectivity
increases the MS in an image. In the result section of this Chapter, the uses of CFs with
different p for topographic correction in different bands have demonstrated the

dependency of the CFs on the reflectivity. The changes of CFs with p are mainly caused

by the multiple-scattering component.
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COMPARISON WITH OTHER METHODS

Many topographic correction models are being used to correct terrain effects in
remotely sensed images. Three are representative and are used here for comparison to the
CF model: cosine correction (Hall-Konyves, 1987; Jones et al., 1988: Kawata et al., 1988;
Meyer et al., 1993), SCS (sun-canopy-sensor) correction (Gu and Gillespie, 1997), and

Minnaert correction (Smith et al., 1980) .

COSINE CORRECTION

The cosine correction is the most basic method used for equalizing the illumination
variation over rugged surfaces. It accounts for changes in illumination intensity at
different illumination angles, for perfectly diffuse reflection. Equation 3 gives the
formula of cosine correction for flat Lambertian surface, considering also down-welling
sky illumination and multiple scattering. Cosine correction is most appropriate for

smooth, unvegetated surfaces.

SCS (SUN-CANOPY-SENSOR) CORRECTION

The SCS model was developed for the topographic correction of vegetated terrain.
It is based on the subpixel-scale geometric character of the forest canopy. The trees are
geotropic, growing straight up independent of the terrain slope below. This leads to a
simple relationship of apparent reflectance of vegetated surface with the terrain slopes
and aspects. Differing from most other models, the SCS changes the topographic
correction focus from the sun-terrain-sensor geometry to sun-canopy-sensor geometry.
The bi-directional reflectance function is formulated as the cosine function of the slopes

and the local incidence angle, which is written as

Lcoss
= (5)
cosST
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where p is the surface reflectivity, L is the radiance, s is the slope angle and tis the local

incidence angle.

MINNAERT CORRECTION
The Minnaert function was originally used to describe reflectance measured in
telescopic observations of the moon at different phases. It has been applied to
characterize the photometric function of some natural surfaces (Smith et al., 1980: Meyer
et al., 1993). It is the modified cosine function of local incidence angle I and exitance
angle e, with an empirical exponential coefficient k that varies from surface to surface:
-—= (6)

cos® 7, cos* ' e

where the exitance angle e is approximately the slope angle for the nadir-looking Landsat
images. The Minnaert constant k is a measure of how closely the scattering is
Lambertian; for a Lambertian surface, k =1, and the Minnaert function is reduced to the
simple cosine function. For many natural surfaces k < 1, the value of k can be found

from an image if p and the viewing/illumination geometries are known.

COMPARISON OF THE METHODS

In this section, the four topographic correction models are compared for the two
Bluff Creek subset images: Image 84 and Image 90. For simplicity the CF models
generated in the results section are used here. Parameters are not suitable for any one of
the correction models have been eliminated: for example, the MS term is not considered
in either the SCS and the Minnaert models, so that it is also eliminated from the CF
model. Both Image 84 and Image 90 were corrected only by removing the upwelling sky
illumination (path radiance), which is the offset term in empirical-line calibration method.

The down-welling sky illumination and the MS component are ignored for all the models.
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Band 4 is used for this comparison, because the typically high reflectivity in band 4
provides a wider range of radiance variation with the slope, so comparison among the

four methods is more obvious.

The correction models are evaluated on the basis of the distribution of corrected
reflectances, plotted against the cos(7). Two critical parameters for the evaluation are
the slope of line regressed to the data, and the standard deviation of the data about that
line. The best model should produce the smallest slope of the regression line, and the

smallest standard deviation of the corrected data across all ranges of 7.

TOPOGRAPHIC CORRECTIONS FOR IMAGE 84
Due to the high sun elevation angle (E = 60°), most areas in Image 84 are fully

illuminated (where 7< 70°). The corrections using the four models turn out to be similar.
Figure 38 displays the scatter plots of the corrected data, and Table 8 lists the statistical
parameters for their regressions. Before correction, the image data exhibit a strong
correlation to the local incidence angle, and the slope coefficient of the regression line is
0.78. After correction, the regression lines are nearly horizontal, with slope coefficient

near zero; -0.035 for CF, 0.065 for SCS, 0.049 for Minnaert, and -0.049 for cosine

respectively.
Table 8. Comparisons of four topographic
corrections for Image 84

Regression Before After correction

line parameters | correction CF SCS Minnaert Cosine
Slope coef. 0.23 -0.035 0.065 0.049 -0.049
Offset (DN) 53 60 71.1 65.7 83.1
Mean (DN) 60.8 57.2 76.2 69.5 79.3
Stdev (DN) 21.1 15.1 19.7 18.3 20.7

" stdev = standard deviation
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Figure 38. Scatter plots of radiance data (Wcm™sr!) before and after
using four different methods of topographic correction on band 4 of Image
84.

Detailed comparison among the four models, however, shows that the CF model
gives better results than the other models. The scatter plot for the CF correction shows

noticeably less scatter above the regression line. Figure 39 shows the standard deviations
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of the corrected radiance distributions against cos(7) for Image 84 (Figure 39a) and
Image 90 (Figure 39b). In both Figures 39a and b, the standard deviations of the CF-
corrected images are the smallest. They are also relatively stable across the entire range
of cos(t). Physically, the constant standard deviation indicates the radiance variation is

independent of the terrain slope.
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Figure 39. The standard deviations of topographically corrected
reflectance about the regression lines in the scatter plots of radiance vs.
cos(T). In both diagrams, the CF’s have the smallest standard deviation for
all local incidence angles. a). Standard deviations for corrected Image 84
from Figure 38. b). Standard deviations for corrected Image 90 from
Figure 40.

Certainly, the differences of the four correction models applied to Image 84 are not

large enough to determine which model is best, because at high sun elevation angle, the
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image data distribution fall in middle region (region 2) of the CF (Figure 33), where all
the models have similar linear functions. In order to compare the four models in a
broader way, the corrections of the image with a lower sun elevation angle are considered

and compared in the next section.

TOPOGRAPHIC CORRECTIONS FOR IMAGE 90

When the sun elevation angle changes from 60° to 40°, many areas in the image fall
into high-shade regions, where the local incidence angle 7is high. At these angles, the
topographic corrections of the four models for Image 90 show quite different results
(Figure 40). The cosine correction causes the worst over-correction in the high-shade
regions. For the Minnaert, SCS and CF models, the over-correction is progressively

reduced. Clearly, the CF model performs the best terrain correction for the low-sun

Image 90.
Table 9. Comparisons of four topographic
corrections for Image 90
Regression Before After Correction
line Parameters | Correction CF SCS Minnaert Cosine
Slope coef. -0.5 0.11 0.29 042 0.53
Offset (DN) 77 76.6 1204 144.8 175.1
Mean (DN) 54.6 58.6 74.1 76.5 89.3
Stdev *(DN) 17.6 31.3 407.2 755.6 955.1

* stdev = standard deviation.

The slope and standard deviation of the linear regression for the CF are far smaller

than for the other models (Table 9). The distribution of the standard deviation shown in
Figure 39b is the lowest and has the least variability with T demonstrating the reliability

of the CF method in the high-shade area.
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Figure 40. The scatter plots of the topographic correction before and after
using four different methods on band 4 of Landsat Image 90.

The four models perform differently on the two images primarily due to the BRDF
of the canopy surface. In the high-illumination range, where local incidence angle is low,

the BRDF of the canopy surface is nearly constant, similar to the cosine function of a
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Lambertian surface (Figure 35), as also noted by (Chihlar et al., 1994). Once the sun
elevation angle is low, many areas are shadowed, and the relevant parts of the BRDF of
the canopy surface have distinctive features, which only the CF models accounts for.
Clearly, the serious over-estimation of the data corrected with the three other models is
due to underestimating the reflectance. The “bump” of the CF in high-shade region (high

local incidence angle) is a critical characteristic, and serves to reduce the over-correction.

Even so, there still remains some over-estimation in the CF-corrected data, which
could be caused by several factors. First, the high noise/signal ration in high-shade areas
will be exaggerated in correction. Second, the errors from mis-registration can extend
into the correction results. Third, the uncertainty of the CF itself may affect the proper
correction strength in this region. All these effects are interconnected, and are difficult to
separate. If MS is properly considered, the over-correction can be further reduced, as

discussed above.

CONCLUSIONS

The radiosity model has been used to compute the bi-directional reflectance
distribution function (BRDF) of canopy surfaces, in order to build a proper topographic
correction canopy function (CF) used for the topographic normalization of vegetated
terrain. For the first time, MS effects of canopy structure at the subpixel scale have been
considered in constructing the CF. Model forest canopies constructed from cones and

ellipsoids were constructed and used for calculating the canopy function.

Three major features of the CF are distinguished by comparison with the cosine
correction function. These correspond to three ranges of the cosine of the local incidence
angle: a negative-angle region (T < 0°), a middle region (0°< T £60°), and a high-angle
region (60°< t <90°). In the negative-angle region, the CF shows increasing reflectance

as slopes increase, whereas the cosine function predicts decreasing reflectance, indicating
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the non Lambertian feature when sun elevation angle is very high. In the low-middle
region, both the CF and cosine are similar linear functions, indicating the forest is nearly
Lambertian for moderate sun elevation angles. In the high incidence-angle region (high
shade areas) the CF, instead of smoothly decreasing as a function of cos(t), forms a small

‘bump,’ the magnitude of which is affected by many other parameters.

The shape and amplitude of the CF is controlled by several parameters: tree shape,
tree spacing, tree surface reflectivity, and tree transmissivity. The basic shape of the CF,
however, is directly related to the tree density, because shade and shadow are such a
dominant factor controlling reflectance. Other parameters have smaller effects on the CF.
The knowledge of all these effects enables us to understand intrinsic physical meaning of

the bi-directional reflectance distribution function of a canopy surface.

The simple CF model has been applied to two Landsat TM images of vegetated
terrain in the Pacific Northwest. One image was acquired in 1984, with a 60° sun
elevation angle and a 123° zenith angle. The other image was acquired in 1990, with a
37.5° sun elevation angle and a 147° zenith angle. The results of the corrections show

that the CF is an efficient topographic correction model for vegetated terrain.

In comparisons with the three other models, the CF model demonstrated the
greatest advantage in the correction of forested terrain. The CF-corrected images have
the smallest and constant standard deviations over the range of cos(t) and the least
dependency on the hillslope angles, indicating that the CF model characterizes the
reflectance distribution of vegetated surfaces better than the others. Correction at two
different sun elevation angles shows the strong potential for correcting images at low sun

elevation angles, where other models exhibit the most problems.

The topographic correction from the radiosity model has great flexibility for various

surfaces. Using a forward-modeling approach, the radiosity model can compute the
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suitable topographic corrections or functions (BRDF) for any simulated surface, such as
soil, grass, or gravel bars. In dealing with complicated natural surfaces, many
adjustments for this model will naturally be necessary; a major strength of the approach is

that these adjustments are feasible.



SUMMARY

Separation of spectral and surface-structure information has been a major problem
in using remotely sensed data. Mapping of land cover requires accurate recovery of
spectral data for each type of material, but the remotely sensed data records only the
radiant flux from the ground, and hence contains commingled information on both
composition and roughness. In most remote-sensing studies, the surface has been
assumed to be Lambertian and flat, having only direct reflectance. In fact, this
assumption is not accurate, especially for rocky surfaces and vegetated surfaces in rugged
terrain. The overall objective of this study is to develop an efficient numerical tool to
separate the spectral and structural information, to help understand the physical properties
of remotely sensed scenes, and to utilize the remotely sensed data more correctly and

efficiently.

My dissertation is concentrated on two main subjects: modeling and application.
The modeling part includes the radiosity model development, multiple-scattering
prediction for two types of surfaces, and model verification. The application part
includes the estimation of surface roughness (the extraction of surface structure
information from images) and the correction of images of forests for topographic shading

(the retrieval of reflectivity from images).

MODELING

As a primary tool, A practical hybrid radiosity model is adapted from existing
algorithms in computer graphics and thermal engineering fields, and further developed for

use in remote sensing. This new radiosity model accurately predicts radiosity from
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natural surfaces, described by digital terrain models (DTMs), within acceptable precision
and computation time limits. A complicated algorithm selects among three basic
methods for calculating the radiosity, each having different speed and precision. These
three are the double-contour integral, half-contour integral, and element-to-element
algorithms. For each pixel in the image, the fastest algorithm is selected that will satisfy
user-set limits of accuracy and precision. The radiosity calculation for an image of
100x 100 pixels, with 2% error allowance, will take about 1.5 hour on an DEC Alpha-
3000 station with a 278 MHz processor.

After the model was built, it was first used to specify the multiple-scattering
component of the radiosity from various natural surfaces under a range of illumination
geometries in order to investigate the importance of this term. Multiple scattering is
determined by both reflectivity and surface structure, and thus is an important parameter
for calculating these two parameters. For a flat surface, the multiple scattering is zero,
increasing as the surface gets rough or as the reflectivity is increased. Multiple scattering

occurs on most natural surfaces at all spatial scales and viewing and lighting geometries.

The radiosity model was applied to two typical land surfaces, at the pixel and
subpixel scales. The results showed that the magnitude of MS in the scene varies with
many parameters, including roughness of the surface, surface reflectivity, sky
illumination, sun elevation angle and viewing direction. Under commonly encountered
lighting conditions, the results demonstrated that multiple scattering is a more significant
process than has previously been suggested. The amount of MS can vary with scale,
because small-scale features such as boulders can maintain greater slopes than large-scale
landscape elements. At the subpixel scale, the integration to the pixel scale of multiple-
scattering effects can account for as much as 10% of the measured radiance. In addition
to contributing a significant proportion of the radiosity, the surface roughness has a
significant effect on the net BRDF; surfaces that are Lambertian when smooth become

non-Lambertian when rough. At the pixel scale, in Landsat images of mountainous
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regions for example, the fraction of a scene with significant (>5%) MS effects may
exceed 10-20%. It is important to recognize and correct for these effects in quantitative

image analysis

Verification of the radiosity model is necessary if it is to be used to predict the
radiance from natural surfaces. Verification is presented in Chapter 3. The measuring
experiments were conducted in the laboratory for two different types of surfaces. All the
predictions from the model were compared with CCD radiance measurements made from
various directions, by means of 1-D histograms, scatter plots and 2-D images, for a
simple geometric surface (TA) and a real landscape surface (BC). The major mismatches
between predicted and measured radiances were caused by the errors in the DTMs,
geometric misregistration between the CCD image and the DTMs. Other errors are due
to the illumination geometry for the physical surfaces and approximations made by the

radiosity model.

The verification effort supports the conclusion that using SS to approximate the
radiosity may cause 20% errors in general case, even up to 100% errors in shadow (if
atmospheric down-welling irradiance is ignored). Therefore, it is at least sometimes
necessary to account for MS in qualitative studies involving satellite images. It is also
clear that MS is a major component in the reflectance from rough surfaces. Conventional
image calibration, in which the surface is assumed to be flat and diffuse, is not accurate,
especially for highly reflective surfaces such as snow, or vegetation in the NIR.
[naccurate reflectances calculated using the Lambertian assumption may introduce errors

in remote-sensing applications.

The verification experiments have also demonstrated that the radiosity results are
strongly sensitive to the accuracy of the DTM, especially in local environments, such as
deep valleys, and cliffs. Overall, however, the hybrid radiosity model appeared to work

properly and its predictions are accurate, reliable and applicable. From quantitatively
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evaluating predictions and measurements, it appears that model accuracies are about 1-

2%.

APPLICATIONS

I applied the radiosity model in two examples, first to retrieve the roughness
information for a desert scene using an inversion method, and second to retrieve

reflectivity for a forest in mountainous terrain by suppressing topographic information.

Estimating surface roughness using the radiosity model requires separating
roughness and reflectivity influences on the measured reflectance. In Chapter 4, I have
developed a new, semi-empirical inversion method based on foreground/background
analysis (FBA) to estimate surface roughness from Landsat TM images. The central issue
is to define a finite impulse response (FIR) filter with laboratory spectral measurements

and the theoretical relationship of radiance response to surface roughness.

In this application, the radiosity model was used for correlating the radiosity with
surface roughness and reflectivity. A series of rough surfaces, as was defined by the
power-law spectral method, were simulated by inversion of specified Fourier transforms.
The reflectivity spectra were measured for rock samples collected in the test areas. Thus,
the sensitivity of the reflectance changes in the roughness and reflectivity of a surface
may be computed and hence, the theoretical relationship of radiance to surface roughness
may be established. The FIR filter was optimized using this theoretical relationship, in
contrast to previously published methods, which use image data or field data to define the

filter.

The semi-empirical inversion for roughness was applied to a Landsat TM image of
Death Valley, chosen because Death Valley was a well-studied site used in previous
investigations of surface roughness and radar data. Inversion results showed a good

coincidence of estimation with field measurements, with regression coefficients of >0.7
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for non-training areas. Spectral variability of the background was suppressed in
calculated roughness image. For example, different geological units, having the same
roughness but different lithologies and reflectivities (unit A, and the Kit Fox alluvial fans;
Figure 28), were classified as a single unit in the roughness map, indicating success in

retrieving the roughness information.

The semi-empirical inversion was compared with other methods for choosing the
FIR: the field-data method, the image-data method, and the shade-image method.
Comparison has shown that the semi-empirical inversion is more stable and accurate than
the three other methods, for the non-training areas. There are two main factors which
affect the accuracy of the semi-empirical inversion: sensitivity of reflectance to the phase
information in the power-law spectrum; and the sensitivity of FIR filter to the variation of
surface types in the scene. The former is related to the structure of the surface, and the
later is related to the composition. The magnitudes of the effects from both factors are

still in question, and require further study to estimate.

In topographic correction with the radiosity model, the model was used to construct
a photometric function characterizing reflectance sensitivity to the view and illumination
geometry of a rugged forested terrain. This abbreviated BRDF is here called the “canopy
function’ (CF). The CF actually is a special case of bi-directional reflectance distribution
function (BRDF) of canopy surfaces, and varies only with the illumination direction
(azimuth angle) and terrain slope angles. For the first time, MS effects in canopy
structure, at the subpixel scale, have been considered in topographic correction. Three
major features of the CF are distinguished by comparison with the cosine correction
function. These features correspond to three ranges of the cosine of the local incidence
angle: a negative-angle region (7 < 0°), a middle region (0°-60°), and a high-angle region
(60°-90°). In the negative-angle region, the CF shows increasing reflectance as slopes
increase, whereas the cosine function predicts decreasing reflectance. In the low-middle

region, both the CF and cosine are similar linear functions, indicating the forest is nearly
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Lambertian for these slopes and sun angles. In the high incidence-angle region (high
shade areas) the CF, instead of smoothly decreasing as a function of cos(T;), forms a small

“bump,” the magnitude of which is affected by many other parameters.

Topographic correction based on the CF has been applied to two Landsat TM
images of a forested test area in the Bluff Creek region of the Pacific Northwest. One
image was acquired in the summer and has high sun elevation angle (60°), and the other
was acquired in winter and has low sun elevation angle (37.5°). Correction results have
shown that the CF model is an efficient, reliable topographic correction model for
vegetated terrain. For the summer image, the CF-corrected reflectances are independent
of terrain slope angles, as indicated by linear regression (slope = -0.003 for band 5) For
the winter image, however, the CF-corrected data still show some residual terrain effects
for shaded or shadowed slopes, probably because the high noise/signal ration in these
areas. By taking account of the pixel-scale MS in the topographic correction, the over-
‘corrections were reduced to some extent, even though the Lambertian assumption made

in the CF correction is invalid for canopy surfaces.

Comparison has been made between the CF correction with other three methods:
cosine correction, CSC correction and Minnaert correction. Of the four correction
models, the CF method gave the best topographic-correction results, as indicated by the
lowest slope of a linear regression of the corrected reflectances vs. terrain slope.
Especially, the winter image, with a large area in shade or shadow, MS is an important

factor and, therefore, the CF method has the greatest potential.

The CF method is flexible and can be readily adapted to different surface structures,
and reflectivities. The CF can be constructed for any physical surface that can be
described by the DTMs. For vegetated surfaces, it can be adjusted for the density of the

canopy (tree spacing), the transmissivity of the trees, and different tree shapes. This
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ability of the CF is a great advantage in topographic correction for different types of

surfaces, and can be a useful tool for classifying the landcover.

The shape and amplitude of the CF is controlled by several parameters: the surface
structure of the canopy (tree shape), tree spacing, tree surface reflectivity, and tree
transmissivity. The basic shape of the CF, however, is directly related to the density of
tree coverage, because shade and shadow are such a dominant factor controlling
reflectance. Other parameters have smaller effects on the CF. The knowledge of all these
effects enables us to understand the intrinsic physical meaning of the bi-directional

reflectance distribution function of a canopy surface.

Through this study, I have developed a better tool for separating surface reflectivity
and subpixel roughness or structure information from remotely sensed data. The radiosity
model is a new technology in the remote-sensing field, but it has already demonstrated its
importance in studying remotely sensed data quantitatively. From the two applications
discussed above, it appears to have led to the development of more realistic physical
models of radiative transfer than were possible before. However, the radiosity model
discussed in this dissertation is still based on the Lambertian assumption, which is
demonstrably incorrect for most natural surfaces. Therefore, a future model of greater
complexity, one which can accommodate non-Lambertian scattering element is necessary.
As a first step towards developing this model, it is necessary to know how sensitive the

predictions from the current radiosity model are to the Lambertian assumption.

Most applications of the radiosity model in this dissertation have been limited to
first-order problems, studied under many simplifying assumptions. Therefore, many
questions remain. For example, the CF correction has been applied to heavily vegetated
terrain. How well it works on rock or soil surface, or on forest containing different types
of trees, remains to be determined. The potential for using the CF function to

differentiate canopy types and cover estimates and seral stage likewise deserves study.
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This dissertation has perhaps generated fewer answers than questions, but it has at least

pointed out some possible fruitful avenues for future study, and some potential pitfalls in

current ones.
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APPENDIX A: REFLECTANCES CALCULATED USING RADIOSITY MODEL
FROM THE COMPUTER-SIMULATED SURFACE FOR DIFFERENT ROCK

SAMPLES

Offse’  TM'I T™?2 TM3 TM4 ™S TM7
Sample | 1.73 15827 15962 15936 15863 16227 16.077
2.13 18532 18.689 18.659 18574  18.995 18.822
253 21.379 21.556 21.522 21426 21.903 21.707
293 24388 24.585 24547 2444 24.97 24.752
3.33 27579 27.794 27754 27636  28.215 27.978
373 30974 31.206 31.162 31.036  31.657 31.402
Sample 2 .73 15491 15536 15516 15473  15.358 15.276
2.13  18.143 18.195 18.171  18.122  17.988 17.894
2.53 20938 20.997 2097 20913  20.762 20.654
293 23897 23962 23932 23869  23.701 23.581
333 27.042 27.114 27081 27012 26828 26.696
3.73 30396 30474 30438 30364  30.165 30.023
Sample 3 1.73 15709 15848 15871 15868 15972 15.879
213  18.396 18.556 18.583  18.58 18.7 18.592
253  21.224 21406 21437 21433  21.569 21.447
293 24216 24418 24452 24448  24.599 24.463
333  27.391 27612 27.649 27.645 27.81 27.662
3.73  30.772  31.0l 31.05  31.045  31.222 31.063

Sample 4 1.73  15.707 15947 16.099  16.11 16.532 16.1
2.13 18393 18.671 18.847  18.86 19.347 18.848
2,53  21.222  21.537 21.735  21.75 22.3 21.737
293 24213 24563 24.783 24.8 25.41 24.786
333 27388 27.771  28.011 28.029 28.694 28.014
373 30.769 31.18 31439 31458  32.171 31.441
Sample 5 1.73  16.039 16356 16.725  16.837 17.39 16.844
2.13 18778 19.143  19.568 19.698  20.333 19.706
2.53  21.657 22.07 2255 22,696 2341 22.705
293 24697 25.156 25.687 25848  26.636 25.858
333 27917 28417 28996 29.171  30.027 29.182
373 31337 31.874 32494 32682  33.597 32.694

' Offset of the line fitting to Fourier spectra of a surface
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Sample 6 1.73 15.701  15.877 15.996 16.026 16.282 16.187
2.13 18.387 18.59 18.728 18.763 19.059 18.948
2.53 21.214  21.445 21.601 21.64 21.975 21.85
2.93 24.204 24461 24.635 24.678 25.049 24911
3.33 27.379  27.659 27.849  27.897 28.302 28.15
3.73 30.759 31.06 31.264 31.315 31.75 31.588
Sample 7 1.73 15.599 15.686 15.731 15.698 15.634 15.422
2.13 18.269  18.369 18.421 18.383 18.308 18.063
2.53 21.08 21.193 21.253 21.21 21.125 20.847
2.93 24.055 24.181 24.247 242 24.105 23.796
3.33 27.216 27.354 27426 27.374 27.27 26.932
3.73 30.583  30.732 30.809  30.753 30.642 30.277
Sample 8 1.73 15.777  15.875 15.909 15.898 15.946 15915
2.13 18.474  18.588 18.627 18.614 18.67 18.634
2.53 21313 21.442 21.486 21472 21.535 21.494
2.93 24315 24458 24507  24.491 24.562 24515
3.33 27.5 27.656 27.71 27.692 27.769 27.719
3.73 30.888  31.057 31.114  31.095 31.179 31.124
Sample 9 1.73 15.48 15.838 16.119 16.25 16.514 16.174
2.13 18.13 18.545 18.87 19.022 19.326 18.933
2.53 20.923 21.394  21.761 21.933 22.276 21.833
2.93 23.88 24404 24813  25.003 25.384 24.892
3.33 27.024 27.597 28.043  28.251 28.666 28.13
3.73 30.377  30.993 31473  31.696 32.141 31.566
Sample 10 1.73 16.011 16.453 16.841 17.13 17.442 16.897
2.13 18.745  19.255 19.703  20.034 20.393 19.767
2.53 21.62 22,197 22702 23.075 23.477 22774
2.93 24656 25296 25.854 26.266 26.71 25.934
3.33 27.872  28.57 29.178  29.626 30.107 29.265
3.73 31.289  32.038 32.69 33.168 33.682 32,782
Sample 11 1.73 15.632  15.653 15.656 15.582 15.486 15.386
2.13 18.307 18.331 18.334 18.248 18.137 18.021
2.53 21.124  21.15 21.155  21.057 20.931 20.799
2.93 24.104 24.134  24.138 24.03 23.889 23.742
3.33 27.269  27.301 27.307  27.188 27.033 26.873
3.73 30.64 30.675 30.681 30.553 30.387 30.214
Sample 12 1.73 15.553 15.576 15.58 15.546 15.473 15.432
2.13 18.215 18.242 18.246 18.207 18.123 18.074
2.53 21.02 21.05 21.054 21.01 20914 20.859
2.93 23988 24.022 24.026 23977 23.871 23.81
3.33 27.142  27.179  27.184  27.131 27.014 26.947
3.73 30.504  30.543 30.549  30.491 30.365 30.293




VITA

Wen-Hao Li
University of Washington

1997

PERSONAL INFORMATION

Date of Birth: May 20, 1959

City of Birth: Tianjin, P. R. China
EDUCATION:

1992-present: Ph.D. candidate, Department of Geological Sciences, University
of Washington, Seattle, Washington. Adviser: Prof. Alan R.

Gillespie.

1990-1992: M.S., Geology, Humboldt State University, Arcata, California.
July 1992. Adyviser: Prof. Gary Carver.

1982-1985: M.S., Remote sensing/GIS, Institute of Remote Sensing
Applications, Peking University, P.R. CHINA, July 1985.

1978-1982: B.S., Geology, Peking University, P. R. CHINA, July 1982.

PAPERS AND REPORTS:

Li, Wen-Hao, Weeks, R., and Gillespie, A. R., 1996, Multiple scattering in the
remote sensing of natural surfaces, International Journal of Remote Sensing,
submitted.

Li, Wen-Hao, 1992, The late Holocene Subsidence Stratigraphy in the Eel River
Syncline, northern California, in Carver, G.A., and Aalto, K.R., eds., Field guide
to the late Cenozoic subduction tectonics and sedimentation of northern coastal
California, GB-71: Pacific section, American Association of Petroleum
Geologists, p.55-57.

Li, Wen-Hao and Xiang, H.F., Fang, ZJ., Li, R.Z. and Zhang, W.X., 1992,
Preliminary study on the activity of the Miyun-Qianmen hidden fault zone, North
China Earthquake Sciences, v.10, no.2, p.43-48.



171

Li, Wen-Hao, 1989, Seismotectonic surveys in 1966 Xing-Tai m=7.2 earthquake
area, Final-report to State Seismological Bureau (SSB), P.R. CHINA, pp 10.

Weeks, R., Smith, M. O., Pak, K., Li, W.-H. 1996, Surface roughness, radar
backscatter and visible and near-infrared reflectance in Death Valley, California,
Journal Geophys. Res. vol. 101, no. E10, p-23077-23090.

Qiang, Zuji and Li, Wen-Hao, 1988, The Statistical Correlation of Linear features
and Earthquake Epicenters, Northeastern Seismology, Vol. 3, No. 3, pp 8.

ABSTRACTS:

Gillespie, A. R., Li, Wen-Hao, Gu, D.-G., Adams, J. B., and Kahle, A. B., 1995,
Measuring Change in forests with EOS/ASTER, EOS Transactions, American
Geophysical Union, v.76, n.46.

Li, Wen-Hao, and G. A. Cover, 1992, Late Holocene Subsidence Stratigraphy of Eel
River Syncline, Humboldt County, California, GSA Abstracts with Programs,
Cordilleran Section, vol. 24, no. 5.



