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Spatial and temporal variations in past accumulation, ice thickness, and ice 

flow of polar ice sheets are weakly constrained on Earth, and are 

fundamental unknowns on Mars.  On Earth, the spatial and temporal 

histories of accumulation and ice-sheet flow are necessary to recreate ice-

volume and sea-level histories, and are important to properly interpret ice-

core chemistry.  On Mars, accumulation and ice-flow histories are necessary 

to decipher the connection between climate and ice-mass formation, 

evolution, and observable structure.    

Internal layers in ice sheets on Earth and on Mars have been 

observed with ice-penetrating radar.  These layers preserve information 

about how the ice sheet responded to past spatial and/or temporal changes 

in accumulation rate and ice flow, and present-day internal-layer shapes 

observed by radar are the most accessible remaining record of this past 

information.  Deeper layers contain information from further in the past, 

making them highly valuable, but they are more difficult to decipher.





In this work, an inverse problem is solved to infer transients in 

accumulation rate, ice-sheet thickness, and ice flow from the shapes of deep 

internal layers.  While some details of these histories can be recovered from 

ice cores, ice cores represent conditions at only a single point.  However, the 

approach presented here is more robust in combination with ice-core data.  

If internal layers are dated, for example by an intersecting ice core, then 

radar-observed internal layers provide both spatial and temporal 

information.  Each layer represents a past surface of a particular age that 

has been subsequently buried by accumulation and also modified by ice 

flow.  

In this work, the goal of solving this inverse problem is to find a set of 

model parameters (e.g. accumulation-rate history) that have the minimum 

variation required to explain the data (e.g. internal-layer shapes).  The 

process of internal-layer formation is described with a 2.5-D 

thermomechanical ice-flow flowband model.    Estimates of the data are 

matched to measured values within their uncertainties, and to an expected 

tolerance.  We seek an accumulation pattern that is spatially smooth, and a 

parameter set that is consistent with characteristic values of the 

parameters.  This dissertation presents this inverse approach, and discusses 

applications to data from Antarctica and from Mars. 
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Chapter 1 

 

 

Introduction 

 

 

1.1. Motivation and goals 

Glaciers and ice sheets evolve in response to climate, but they are 

also an important component of the Earth system that affect climate.  The 

interplay between ice, air, ocean, and land is complicated by feedback 

relationships among these systems, and also by dynamic behavior that may 

arise internal to each component.  For example, more snowfall across an ice 

sheet may cause it to thicken, which may alter atmospheric circulation, or 

may increasse the calving flux of icebergs and affect ocean circulation.  For 

the large ice sheets, dynamic behavior can include fast-flow instabilities 

(e.g. ice streams) and ice-sheet response to ice-shelf changes.  This relatively 

unstable ice-sheet behavior is exhibited today, where glaciers have changed 

speed in Greenland (e.g. Joughin and others, 2004a; Rignot and 

Kanagaratnam, 2006) and in Antarctica (e.g. Bamber and Rignot, 2002), 

and the disintegration of massive ice shelves in Antarctica has resulted in 

the speedup of outlet glaciers there (e.g. Rignot and others, 2004).  While 

this action is concentrated near ice-sheet margins, ice-sheet interiors also 

respond to this forcing. 

Although observations are advancing our understanding, the physics 

governing these processes are still not well resolved, and therefore our 

ability to accurately predict the initiation of and response to these
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instabilities is limited.  A challenge remains, that the volume-adjustment 

timescales of large ice sheets can be thousands of years, and we are trying to 

understand past and future ice-sheet behavior.   

Information about ice and climate history over longer timescales can 

be obtained from ice cores.  Deep ice cores in Greenland (e.g. NGRIP 

members, 2004) and in Antarctica (e.g. Petit and others, 1999; EPICA 

members, 2004) have provided a proxy of regional and global climate 

changes over tens to hundreds of thousands of years.  Ice-sheet flow centers, 

called ice divides, are target sites for drilling an ice core, because there has 

generally been less spatial and temporal gradients in ice flow than at off-

divide sites.  However, ice divides may have moved through time, and 

assumptions about these transients must be made in order to properly 

interpret ice-core records.  These transients may have been significant, as 

many different proxies (e.g. ocean-sediment cores, cave records, coral 

records) show that there have been significant changes ice volume, air 

temperature, and sea level; variations in ice thickness and ice-divide 

position of ice-sheet interiors can be due to local forcing (e.g. changes in 

local accumulation), regional forcing (e.g. changes in ice streams), or global 

forcing (e.g. changes in mean sea level, see e.g. Clark and Mix, 2002).     

The motivation for this dissertation is to improve understanding of 

ice-sheet history.  In particular, I focus on the transient behavior of ice 

sheets in the vicinity of ice divides (in the central regions of an ice sheet) in 

response to local changes in accumulation, and in response to regional or 

global changes in ice flux.  While valuable information can be recovered 

from ice cores, they represent conditions only at a single point.   

In this dissertation I show how we can build a spatial and temporal 

picture of changes in accumulation and ice flow in the central portions of ice 
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sheets.  A consistent estimate of these changes is critical to properly 

interpret climate history from an ice core, and it is important to predicting 

how ice sheets may evolve in the future.   

An exciting dimension of this dissertation is that the questions, data 

sets, and methods that I develop for Terrestrial ice also pertain to Martian 

ice.  New insight into the ice and climate histories on Mars is bolstered by 

terrestrial experience, and the foundation from which I construct an 

approach to infer ice and climate histories on Earth is bolstered by Martian 

experience.  

In this dissertation, I use the fact that internal layers have been 

shaped by spatial and temporal histories of ice flow and accumulation, and 

that present-day layer shapes contain a record of these histories.  Deeper 

radar-detected layers contain information from farther back in time, making 

them valuable archives.  However, the shapes of such deep layers have been 

subjected to more strain from spatial and temporal gradients in ice flow and 

accumulation, making them more complicated to interpret.  The goal of this 

dissertation is to show how these histories of ice flow and accumulation can 

be inferred from internal layers, and to demonstrate the capability of this 

new approach in preparation for application with emerging ice-sheet data. 

 The spatial scales of ice sheets, the timescales involved in their 

evolution, and the diffusive nature of ice flow create a challenge to 

understand ice-sheet response to change.  Ice-flow models are powerful tools 

to predict ice-sheet behavior, but they require estimates of initial conditions 

and boundary conditions that are often unknown.  In addition, quantitative 

measurements may not be available.  Inverse methods allow us to use ice-

flow models and ice-sheet data together, to investigate ice-sheet behavior 

(e.g. Truffer, 2004; Waddington and others, 2007; Eisen, 2008).  This 
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dissertation presents a new inverse-theory approach to infer histories of 

accumulation and ice dynamics from internal layers.  The methods 

presented here are generally applicable, but I focus on questions related to 

the history of central West Antarctic Ice Sheet (WAIS) and to the history of 

the Martian Polar Layered Deposits (PLD).  Here I outline the motivation 

for these applications.  

 

 

1.1.1. Central West Antarctica 

 The site of the WAIS Divide ice core in central West Antarctica was 

targeted because the relatively high accumulation rate there (compared to 

other parts of Antarctica) means that the ice core can be accurately dated 

for at least the past ~40,000 years.  The ice core will have higher resolution 

than other Antarctic cores, and will be ideal for comparing to ice-core 

records from Greenland (e.g. Morse and others, 2002).  Emerging evidence 

supports that the ice divide at this site has migrated over time (Neumann 

and others, 2008), and Conway & Rasmussen (2009) showed that the divide 

is migrating today due to flux changes near the margin.  However, the 

millennial history of ice-divide migration is an open question.  The ice core 

was drilled ~24 km from the present-day divide in order to minimize the 

impact of ice-divide migration on the stratigraphy, and yet be close enough 

to the divide so that the stratigraphy is not disturbed by flow.  The affects of 

divide migration and ice thickness changes on particle-path trajectories 

through the ice sheet are critical to understand in order to properly 

interpret and date the ice core.  Here I constrain the histories of 

accumulation and ice flow in order to support analyses of the WAIS Divide 

ice core, in an effort to help understand the history of West Antarctica. 
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1.1.2. Martian Polar Layered Deposits 

Past and present accumulation and ablation rates for the Martian 

PLD must be known in order to decipher the connection between climate 

and PLD formation, evolution, and observable structure.  While present-day 

ice flow on Mars may have an insignificant influence on the shape of the 

PLD, it has been proposed that ice flow was more active in the past (e.g. 

Clifford, 1987; Fisher, 2000; Pathare and Paige, 2005).  Winebrenner and 

others (2008) showed that the shape of present-day inter-trough topography 

along flowlines across Gemina Lingula, North PLD (see map in Appendix A) 

matches the shape of an ice mass that has flowed.  This evidence for past ice 

flow of at least part of the Martian North PLD requires that conditions such 

as the ice temperature or the basal-ice constitutive properties were very 

different from their present-day values.  Here I seek to understand the ice-

flow and climate history of the Martian PLD using available data to 

constrain the range of plausible conditions that could facilitate ice flow.   

 

1.2. Background 

1.2.1. Radar layers 

 Ice-penetrating radar profiles are windows to the interior of glaciers 

and ice sheets.  These views inside the ice display the bed topography, and 

also internal layers.  Each reflection is caused by variations in dielectric 

properties, density, or impurity concentration (e.g. Fujita and others, 1999), 

and is assumed to be a surface of constant age (an isochrone).  Different 

radar frequencies are used to image internal layers at different depths and 

deeper layers can be better imaged using lower frequencies.  Recent radar 

development has made it possible to obtain detailed images of the deepest 
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layers in Greenland and Antarctica, several kilometers beneath the ice (e.g. 

Laird and others, In Press).    

This is an extraordinary time in Mars’ polar science; detailed radar 

profiles of the Martian ice caps have revealed the bed topography and the 

internal structure there for the first time.  There are currently two satellite 

radar systems, the Mars Advanced Radar for Subsurface and Ionosphere 

Sounding (MARSIS; e.g. Picardi and others, 2005; Plaut and others, 2007) 

and the Shallow Subsurface Radar (SHARAD; e.g. Seu and others, 2007; 

Phillips and others, 2008).  MARSIS operates between 1.3- to 5.5-MHz with 

a 1-MHz bandwidth, and a spatial resolution of ~10 km (e.g. Picardi and 

others, 2005).   SHARAD has a 20-MHz center frequency with a 10-MHz 

bandwidth, and a spatial resolution of 3-6 km (e.g. Phillips and others, 

2008).  

 

1.2.2. Ice flow 

 Experimental work by Glen (1995) provided a physical relationship 

between applied stress and strain rate in ice; this is often called ‘Glen’s law’ 

or the flow law.  The flow law is a power-law relationship, where the flow 

exponent depends on the dominant creep mechanism.  In this work, we 

consider that ice flows primarily by dislocation creep, with a flow-law 

exponent n=3; this is the value traditionally used for ice-flow studies, and 

generally produces a good fit to observations.  Ice flow is temperature 

dependent.  The temperature-dependent ice viscosity follows an Arrhenius 

relationship; the ice viscosity is often referred to as the ice-softness 

parameter or the fluidity parameter.  Ice flow also depends on crystal size 

and on crystal orientation.  Since Glen’s law assumes that ice is isotropic, 

and this is not always an appropriate assumption, a scalar enhancement 
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factor can be included in the flow law to account for the effects of anisotropy 

(e.g. Paterson, 1994, pg. 99). 

 

1.2.3. Ice-flow models 

 Use of ice-flow models provides a means to understand glacier and 

ice-sheet behavior because an ice-flow model should run faster than it would 

take for an actual ice mass to evolve.  Ice-flow models in combination with 

laboratory analyses of ice cores are needed to infer the correct climate 

history, because climate information that is recorded in the ice has been 

affected by the history of ice flow (e.g. Paterson, 1994, pg. 276-288).  

However, ice-flow modeling is nontrivial because only the simplest cases 

have analytical solutions.  For most problems, the solution must be 

calculated numerically, meaning that the governing equations must be cast 

in a numerical form.  Finite-difference, finite-volume, and finite-element 

methods are all commonly used in glaciology (e.g. Van der Veen, 1999; 

Hooke, 2005, pg. 288).  Here I employ the finite-volume method (e.g. 

Patankar, 1980).   

To find a numerical solution, it is often necessary, or desirable, to 

make simplifying assumptions.  A common assumption in ice-flow modeling 

is the “Shallow Ice Approximation” (SIA, e.g. Hutter, 1983, pg. 256; 

Paterson, 1994, pg. 262), which applies in cases where the ice thickness is 

much smaller than the characteristic horizontal length scales over which 

thickness or stress change significantly. If the characteristic horizontal 

length scale is the lateral extent of the ice cap, then derivatives of velocities 

and stresses with respect to x (horizontal axis) are generally much smaller 

than derivatives with respect to z (vertical axis).  Here I use the SIA.  
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However, in principle the inverse problems could also be solved using full-

stress solutions to the momentum conservation equations. 

 

1.2.4. Inverse problems 

In an inverse problem, the existing data have resulted from a known 

process that depends on some unknown parameters or boundary conditions 

that we wish to find.  That is, an inverse problem needs a forward algorithm 

and an inverse algorithm.  Based on a guess of the unknown parameter 

values, the forward algorithm generates a realization of observable 

quantities.  The inverse algorithm evaluates the fit of the modeled 

observables to the actual data, and assesses whether any physical 

constraints imposed on the problem have been satisfied, in order to infer the 

best set of unknown parameter values.  In general, setting up an inverse 

problem is a powerful tactic to solve problems in solid-earth geophysics (e.g. 

Menke, 1989; Parker, 1994; Gubbins, 2004) and in physical oceanography 

(e.g. Wunsch, 1996), among other fields.   However, solving inverse problems 

is a relatively new frontier in glaciology; here I contribute to this growing 

body of work. 

 

1.3. Structure and synopsis of the dissertation 

The tools that I have integrated and developed to infer changes in ice 

flow and accumulation can be used in many applications.  However, the 

strengths and weaknesses of these tools must be understood before we can 

draw robust conclusions.  The chapters in this dissertation address 

methodology and implementation for terrestrial and Martian ice. 
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1.3.1. Inferring mass-balance patterns and topography on Mars 

Internal layers are necessary to accurately infer mass-balance 

patterns because the ice-surface shape only weakly reflects spatial 

variations in mass balance.  Additional rate-controlling information, such as 

the layer age, the ice temperature, or the ice-grain sizes and ice-crystal 

fabric, can be used to infer the absolute rate of mass balance.  An inverse 

problem is solved to infer mass balance from the shapes of internal layers.  

The solution to the inverse problem is the best set or sets of unknown 

boundary conditions or initial conditions that, when used in the calculation 

of ice-surface elevation and internal-layer shape, will generate appropriate 

predictions of observations that are available.  Internal layers can also be 

used to infer Martian paleo-surface topography from a past era of ice flow, 

even though the topography may have been largely altered by subsequent 

erosion.  Chapter 2 shows that accumulation rates and surface topography 

have been successfully inferred from internal layers in Antarctica. Using 

synthetic data, the ability of this method to solve the corresponding inverse 

problem to infer accumulation and ablation rates, as well as the surface 

topography, for Martian ice is demonstrated.   If past ice flow has affected 

the shapes of Martian internal layers, this method is necessary to infer the 

spatial pattern and rate of mass balance. 

 

1.3.2. Response timescales for Martian ice masses 

The shape of the Martian North Polar Layered Deposits (PLD) 

reconstructed by Winebrenner and others (2008) is used to estimate pairs of 

mass-balance rate and ice temperature that could generate their 

reconstructed shape.  For any ice mass, the flow rate depends on the mass-
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balance rate, on the near-basal ice temperature, and on any flow 

enhancement due to impurities in the ice or variations in the physical 

properties of the ice.  Therefore, pairs of mass-balance rate and ice 

temperature (plus any flow enhancement) can generate identical ice-surface 

topography.  Without additional information to constrain the actual rate of 

mass balance, the actual ice temperature, or the actual ice-flow constitutive 

properties, another means to constrain the plausible range of ice-flow rates 

is needed.  The volume-response timescale for an ice mass is the time for an 

ice mass to accumulate or shed enough mass approach a new steady-state 

shape following a climate change (e.g. Johannesson and others, 1989).  

Chapter 3 shows that the volume response timescale can be used to 

eliminate implausible combinations of mass-balance rate and ice 

temperature or ice-flow enhancement that take too long to adjust.    

 

1.3.3. Transient ice flow using a limited-domain model 

Some of the spatial information about ice-sheet history that is sought 

from data in the vicinity of an ice divide can be inferred by solving an 

inverse problem.  However, computational efficiency is required when 

solving inverse problems that involve many iterations of the ice-flow model, 

or when using a higher-resolution model.  Limiting the model domain to 

include only the relevant portions of the ice sheet is a way to reduce 

computation time.  It is also advantageous to limit the model domain when 

assimilating data that are available only in limited locations on the ice 

sheet.  When the domain is limited, we do not need to make estimates of 

observable quantities in regions where parameter values and boundary 

conditions are unconstrained.  However, limiting the domain of a transient 

ice-flow model is not trivial.  Chapter 4 presents a new method to accurately 
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calculate transient ice flow using a limited-domain model.  This new method 

incorporates additional information to ensure that the limited domain 

evolves consistently with the full domain within which it exists. 

 

1.3.4. Inferring transients in accumulation rate, ice-sheet thickness, 

and ice flow from internal layers 

Chapter 5 describes a method to infer histories of ice flow, ice-sheet 

thickness, and accumulation rate from the shapes of internal layers.  

Present-day internal-layer shapes observed by radar are the most accessible 

remaining record of this past information, and an inverse problem can be 

solved to infer this information.  The new aspect of this work is to 

incorporate a transient forward algorithm, using the ice-sheet evolution 

calculation described in Chapter 4.  Waddington and others (2007) solved 

the inverse problem to infer a steady-state accumulation pattern from 

internal layers using a steady-state forward algorithm, and here this 

approach is extended to infer transient histories from deeper layers.    The 

goal in solving this inverse problem is to find a set model parameters (e.g. 

accumulation-rate history) that have the minimum variation required to 

explain the data (e.g. internal-layer shapes).  To assess the capability of this 

new approach, parameter values can be prescribed to generate synthetic 

data, then the synthetic data can be used to infer these parameter values.  

Chapter 5 demonstrates how local accumulation variations and external-

flux variations (e.g. from sea-level changes leave distinct imprints on 

internal-layer structure, and how these histories can be inferred by solving 

an inverse problem. 
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1.3.5. Inferring histories of accumulation and ice dynamics for 

Central West Antarctica 

In preparation for an application to data from the West Antarctic Ice 

Sheet (WAIS) Divide ice-core site, Chapter 6 describes the available data 

and the motivation for this work.  Neumann and others (2008) found that 

the accumulation pattern may have been the same over the past 8 kyr, but 

the accumulation rate was at least 30% higher from 5-3 kyr ago.  Conway 

and Rasmussen (2009) found that the present-day ice divide is migrating 

due to variations in ice dynamics, rather than by variations in local 

accumulation.  The WAIS Divide is dynamically influenced by ice streams 

on the Ross-Sea side and the Amundsen-Sea side.  Given the recent speed 

up of Thwaites and Pine Island glaciers on the Amundsen-Sea side, and the 

recent stagnation of Kamb Ice Stream (e.g. Joughin and Tulaczyk, 2002) on 

the Ross-Sea side, it is evident that dynamical changes can be significant. 

Given the extent of present-day divide migration, the ice-flow history at this 

site is especially critical to properly interpret ice-core chemistry. 



Chapter 2  
 

 

 

A Method to Infer Past Surface Mass Balance and 

Topography from Internal Layers in Martian Polar 

Layered Deposits 

 

 
 
This chapter is published under the same title with authors M. Koutnik, E. Waddington, 

and D. Winebrenner in Icarus 204(2), 458-470.  The comments of two anonymous reviewers 

improved the manuscript. 

 

 

Internal layers in ice masses can be detected with ice-penetrating radar. In a 

flowing ice mass, each horizon represents a past surface that has been 

subsequently buried by accumulation, and strained by ice flow.  These layers retain 

information about relative spatial patterns of accumulation and ablation (mass 

balance).    Internal layers are necessary to accurately infer mass-balance patterns 

because the ice-surface shape only weakly reflects spatial variations in mass 

balance.  Additional rate-controlling information, such as the layer age, the ice 

temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer the 

absolute rate of mass balance.  To infer mass balance from the shapes of internal 

layers, we solve an inverse problem.  The solution to the inverse problem is the 

best set or sets of unknown boundary conditions or initial conditions that, when 

used in our calculation of ice-surface elevation and internal-layer shape, generate 

appropriate predictions of observations that are available.  We also show that 

internal layers can be used to infer Martian paleo-surface topography from a past 

era of ice flow, even though the topography may have been largely altered by 

subsequent erosion.  We have successfully inferred accumulation rates and surface 

topography from internal layers in Antarctica.  Using synthetic data, we 

demonstrate the ability of this method to solve the corresponding inverse problem 

to infer accumulation and ablation rates, as well as the surface topography, for 

Martian ice.   If past ice flow has affected the shapes of Martian internal layers, 

this method is necessary to infer the spatial pattern and rate of mass balance. 
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2.1. Introduction 

 The spatial pattern and rate of accumulation and ablation (mass 

balance) over an ice cap (i.e. mass exchange with the atmosphere) must be 

known in order to infer the ice-flow history.  On Earth, rates of 

accumulation can be determined by drilling an ice core, measuring the 

thickness of datable layers, and correcting for strain thinning where 

necessary, but this represents mass-balance conditions at only the single 

point of origin of each ice-core sample.  Internal layers, which in almost all 

terrestrial cases are isochrones, contain information about mass-balance 

patterns in both space and time.  The large body of radar data from 

terrestrial ice sheets has greatly increased our understanding of terrestrial 

ice-sheet evolution and climate (e.g. Paren and Robin, 1975; Morse and 

others, 1998; Conway and others, 1999; Fahnestock and others, 2001b).     

Past and present accumulation and ablation rates are fundamental 

unknowns for the Martian Polar Layered Deposits (PLD).  This information 

is necessary if we are to decipher the connection between climate and PLD 

formation, evolution, and observable structure.  Internal-layer shapes must 

be known if we want to determine past mass-balance patterns, because the 

surface topography is relatively insensitive to spatial variations in mass 

balance.  Fortunately, internal layers in the North and South PLD have 

been imaged successfully by radar (e.g. Picardi and others, 2005; Plaut and 

others, 2007; Seu and others, 2007; Phillips and others, 2008).     

While present-day ice flow on Mars may have an insignificant 

influence on the shape of the PLD, it has been proposed that ice flow was 

more important in the past (e.g. Clifford, 1987; Fisher, 2000; Pathare and 

Paige, 2005), and Winebrenner and others (2008) showed that the shape of 

present-day inter-trough topography along lines following surface gradients 

(i.e. “flowlines”) across Gemina Lingula (also referred to as Titania Lobe; 
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Pathare and Paige, 2005), North PLD matches the shape of an ice mass that 

has flowed.  We consider an era of past ice flow as a time when the influence 

of ice flow was comparable to the influence of mass balance in shaping the 

internal layers and the ice-surface topography.  In this paper, we assume 

that past ice flow affected the shapes of internal layers and the surface 

topography of the Martian PLD.  Under this assumption, an approach that 

accounts for the effect of ice flow on the internal-layer shape and depth 

must be used to infer the mass-balance pattern from internal layers; we 

demonstrate such a method here.  In addition, we emphasize that the 

shapes of internal layers alone cannot be used to determine whether an ice 

mass has flowed or not; this is discussed more fully in Section 2.3.3.  

Depending on the spatial pattern of accumulation and ablation, identical 

layer shapes can be generated in an ice mass where flow is significant and 

in an ice mass where flow is insignificant relative to other processes.  

Conversely, flowing ice sheets with similar surface topography but different 

accumulation patterns can have dramatically different internal-layer 

architecture.       

Using terrestrial glaciological experience and methods that have been 

applied to terrestrial ice sheets, we show that an inverse method can 

potentially infer mass-balance patterns during that era of flow, from 

internal-layer shapes on Mars.  To demonstrate this method, we generate 

synthetic internal layers based on a prescribed spatial mass-balance 

distribution, and then we attempt to infer the mass-balance pattern from 

these synthetic layers.  The relative mass-balance pattern can be 

successfully inferred from the shapes of internal layers; however the layer 

age, the ice temperature, the ice velocity, or the ice-grain sizes and ice-

crystal fabric must be known to constrain the absolute mass-balance rate.  

We solve different inverse problems to infer mass balance by assuming that 
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different combinations of information are available.  In the first inverse 

problem, we infer only the relative spatial pattern of mass-balance from the 

shape of an internal layer with no rate information.  This problem could 

potentially be solved with data currently available for Mars.  Then we solve 

three different inverse problems to infer the relative spatial pattern and the 

absolute rate of mass-balance in a flowing ice mass. We use (1) the ice-

surface topography and ice temperature, (2) the shape of an internal layer, 

the ice-surface topography, and ice temperature, or (3) the shape of an 

internal layer, the ice-surface topography, and ice-rheological parameters.  

Finally, we also solve an inverse problem using internal layers to infer 

surface topography from a time in the past when ice flow significantly 

shaped the surface; this is an important problem to solve with Martian 

internal layers because much of that topography has been significantly 

eroded to form the present-day surface. 

 

 

2.1.1. Internal-layer structure and depth 

In a flowing ice mass, the depth variations of an individual internal 

layer are controlled by the spatial pattern of mass balance, and by ice flow.  

Waddington and others (2007) discussed how to diagnose the appropriate 

strain regime of a particular layer.  Shallow layers (with a depth of at most 

a few percent of the ice thickness, or in the upper tens of meters in a 

terrestrial ice sheet), are not significantly altered by ice flow, and the net 

accumulation at each site can be inferred from the ice-equivalent layer 

depth divided by the layer age; this is called the Shallow Layer 

Approximation (SLA).  For shallow layers, the mass-balance pattern alone 

determines the internal-layer structure and depth.  If the influence of mass-

balance on the shapes of internal layers was always more important than 
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the influence of ice flow, the SLA would be appropriate for layers at all 

depths.  However, in a flowing ice mass, as the depth to the layer increases, 

accumulated strain due to ice flow becomes more important, and this simple 

SLA relationship between layer depth and the mass-balance pattern breaks 

down.  For intermediate layers (in the upper 10%-20%, or to a depth from 

10-100 meters in a terrestrial ice sheet), the impact of accumulated vertical 

strain on the depth of the layer can be estimated using a 1-D model of 

vertical ice flow; this is called the Local Layer Approximation (LLA).  

However, this local strain correction also can become invalid for deeper 

layers.  Deeper, older layers reflect conditions further in the past, but they 

have been more affected by horizontal gradients in strain rate and 

accumulation.  Therefore, their information is highly valuable but more 

difficult to interpret. Waddington and others (2007) demonstrated that it is 

necessary to use formal inverse methods, incorporating 2-D ice flow, to 

correctly determine the accumulation pattern recorded by deeper layers in 

terrestrial ice caps.  We cannot rule out that ice flow was important in 

shaping topography and internal structure across the PLD, especially for 

Gemina Lingula, North PLD (Winebrenner and others, 2008).  Therefore, 

we expect that an inverse method must be used to infer spatial patterns and 

rates of mass-balance from deeper layers in Martian ice.   

On terrestrial glaciers, and parts of the large terrestrial ice sheets, 

snow typically accumulates at higher elevations (the accumulation zone).  

Ice flow redistributes the excess mass to lower elevations where it ablates 

(the ablation zone). The equilibrium line demarcates the two zones.  

Internal horizons represent past ice-sheet surfaces, which have been 

subsequently buried, and the thickness of ice between any two horizons has 

been displaced and strained by ice flow.  On Earth and Mars, we assume 

that each individual horizon is an isochrone, i.e. a surface of constant age.  
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The horizons are observed with ice-penetrating radar, and at different 

depths there are different distances between each pair of horizons. In this 

paper we refer to each horizon as a ‘layer’, but we note that a layer also has 

a thickness. The shape and depth of an individual layer are influenced by 

the rate of accumulation or ablation, gravitational forces, internal stresses, 

ice-rheological parameters (which depend on the ice temperature), bedrock 

topography, and unconformities. 

 

 

2.1.2. Necessary Data 

Internal layers have been observed across the Martian PLD by the 

Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS; 

e.g. Picardi and others, 2005; Plaut and others, 2007) and by the Shallow 

Subsurface Radar (SHARAD; e.g. Picardi and others, 2005; Phillips and 

others, 2008).  The shapes of continuous internal layers along putative flow 

lines will be the primary data when we apply our method to Mars in the 

future.  We also use the PLD surface geometry, which is available from the 

Mars Orbiter Laser Altimeter (MOLA), and the ice thickness from the 

radars.  Currently, the internal-layer ages, the ice velocity at the time of 

flow, the ice temperature at the time of flow, the ice-crystal fabric, and the 

ice-grain size are not known for the PLD.  However, if any of this 

information becomes available, or can be reasonably estimated, then we can 

incorporate it as part of the inverse problem. 

 

 

2.2. Methods 

Inference of mass-balance patterns from internal layers is an inverse 

problem, which can be solved using geophysical inverse theory (e.g. Menke 
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1989; Parker 1994; Aster and others 2005).  An inverse problem is one 

where the existing data have resulted from a known process that depends 

on some unknown parameter values or boundary conditions that we wish to 

find.  In the Martian problem, the data are the shapes of individual internal 

layers and at least parts of the elevation profile of the ice surface, and the 

unknowns are the layer ages, the mass-balance pattern, and the ice 

temperature.  An inverse problem needs a forward algorithm and an inverse 

algorithm.  We calculate the shapes of layers and the surface topography 

with the forward algorithm.  Then the unknown parameters can be found by 

minimizing a performance index in the inverse algorithm.  The performance 

index is a number representing how well the observable quantities 

calculated by the forward algorithm match the data to an expected tolerance 

while, in this case, finding a spatially smooth mass-balance pattern.  Any 

simplifications made in the forward algorithm, or constraints included in 

the inverse algorithm, must be considered when interpreting the solution. 

In Section A2.1 we describe our particular forward algorithm, and in 

Section A2.2 we outline our particular inverse algorithm.  The forward 

algorithm is a steady-state flowband model that calculates ice-surface 

elevation and internal-layer shapes (Waddington and others, 2007).  A 

flowband is illustrated in Figure 2.1.  This is a 2-D model that also accounts 

for width variations; therefore it is considered to be 2.5-D.  There are many 

unknowns regarding the Martian PLD, and for this reason we start with a 

simple, steady-state forward model.  As shown in Figure 2.1, the model 

domain does not need to include an ice-sheet terminus or an ice divide; it 

can be defined over a limited domain.  The surface-profile prediction 

depends on the ice flux entering the domain, the mass-balance profile, the 

ice thickness at one point in the domain, and the constitutive properties of 

the ice.  Layer prediction in this forward calculation requires the ice-surface 
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profile, which is either known or calculated, and depends on the layer age, 

the ice flux entering the domain, and the mass-balance pattern.  The 

forward algorithm can include only a surface calculation, only a layer 

calculation, or both a surface calculation and a layer calculation (see Section 

A2.1).  Therefore, our unknown model-parameter set may consist of the 

layer age, the ice flux entering the domain, the spatial pattern of mass 

balance, the ice thickness at one point in the domain, and the ice-softness 

parameter (see Equation A2.1.5).  The inverse algorithm uses a Gradient 

solution method (e.g. Parker, 1994; Aster and others, 2005) to find 

physically reasonable values of these unknown parameters (see Section 

A2.2). The preferred parameters generate an internal layer and an ice 

surface that fits the data at an expected tolerance determined by data 

uncertainties.   

 

 

 

Figure 2.1.  Geometry of a flowband with width variations.  The ice-surface elevation (at 

least at a single point), flowband width, and bed geometry are required inputs to the 

forward algorithm.  The flowband domain can be limited in horizontal extent. 
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This general method can be modified based on site-specific conditions 

and/or data availability.  Following Waddington and others (2007), we 

illustrate this method using data from Antarctica. In preparation for using 

this method with Martian radar data, we generate synthetic Martian layers, 

and then we investigate the ability of the inverse procedure to infer a known 

synthetic mass-balance pattern from those synthetic layers.   

 

 

2.3. Results 

 Depending on which data are available, and which calculations are 

included in the forward algorithm, different quantities must be assumed, 

and different information can be inferred with this inverse approach.  The 

simplest problem uses a forward algorithm that includes only a kinematic 

layer calculation, assuming that the surface topography is known, to infer 

the relative mass-balance pattern from an undated internal layer.  We show 

that if the layer age is known, or if the ice velocity or the accumulation rate 

during the era of flow is known, we can also infer the absolute mass-balance 

rate using a forward algorithm that includes only a kinematic calculation.  

In principle, data that are currently available for Mars could be processed 

along flowlines so that some of the inverse problems here could be solved.  

The other problems further motivate challenges for future laboratory 

experiments and missions. 

Using steady-state continuity from Equation A2.1.1, and using the 

depth-averaged horizontal velocity in Equation A2.1.6, Equation 2.1 shows 

how, for any ice-sheet profile defined by the ice thickness H(x) and surface 

slope dS/dx, the accumulation rate )(xb&  and the ice-temperature-dependent 

softness parameter A(T(x)) always occur in a ratio 
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Higher accumulation rates )(xb&  can always trade off against greater ice 

softness A(T(x)) through higher temperature, to produce the same surface 

shape, and therefore the same layer shape with a younger layer age.  We 

discuss ways in which accumulation rate and ice temperature may be 

untangled. 

 

 

2.3.1. Mass Balance and Topography in Antarctica 

 Waddington and others (2007) solved the inverse problem to infer the 

relative spatial pattern and absolute rate of accumulation at Taylor Mouth, 

a flank site near Taylor Dome, Victoria Land, Antarctica.  At Taylor Mouth, 

additional data were available beyond the surface topography and internal-

layer shapes observed with radar.  Bed elevation was also measured by 

radar, and flowband width was found by interpolating velocities between 

measurement points and finding the distance between two nearby flow 

lines.  A 100-meter ice core intersects the flow line, and the average 

accumulation rate at the core site was known.  A strain network in this area 

provided velocity data at the ice surface.   

 The forward algorithm in this previous application to Taylor Mouth 

(Waddington and others 2007) included only a kinematic layer calculation.  

The unknown parameter set consisted of the ice flux entering one end of the 

flowband, the spatial pattern of accumulation (there is no ablation area near 

this site), and the age of the layer.  Use of only a kinematic forward 

algorithm was justified because the surface elevation at Taylor Mouth has 

been approximately in steady-state over the past few thousand years. 

Therefore, the dynamic calculation of surface topography could be excluded 
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to simplify the problem.  Since the surface topography is known, and 

because a dynamic calculation was excluded in the forward algorithm, rate 

information was included only through the surface-velocity measurements 

and the one accumulation-rate measurement.  At Taylor Mouth, these rate-

containing data were sufficient to constrain the magnitude of accumulation 

rate. 

   

 

2.3.1.1. Inferring Mass Balance from an Undated Layer  

To show the sensitivity of the Taylor Mouth solution (Waddington 

and others 2007) to rate information from measurements of surface-velocity 

and accumulation-rate, and to prepare for Martian applications where rate 

information is unavailable, we now solve the Taylor Mouth inverse problem 

using only internal-layer data.  In this problem, the mass-balance rate is 

determined by the layer age. If the internal layer is undated, and if no 

additional rate-controlling data exist, we can infer only the relative mass-

balance pattern.  To express this result, we represent the spatial pattern of 

accumulation, )( ixb&  at spatial positions xi, as a nondimensional spatial 

pattern of accumulation, )(
~

ixb& , having root-mean-square amplitude, i.e. 

 ∫
=

=
Lx

dxxb
L 0

2 1)(
~1
&       (2.2)  

multiplied by the magnitude B of the accumulation rate, giving  

)(
~

)( ii xbBxb && = .        (2.3) 

By representing the mass-balance pattern )( ixb&  in this way, we can compare 

the values of B that correspond to solutions using different combinations of 

rate-controlling data (e.g. the layer age or the ice temperature).  
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  Figure 2.2a shows different accumulation-rate solutions 

corresponding to different guesses of the layer age, inferred using only an 

internal layer as data, and using the known modern surface topography.  

Particles can follow the same paths and reach the same depths over a longer 

time when accumulation rate is low, or over a shorter time when 

accumulation rate is high.  The central result from this test is that similar 

spatial patterns can be inferred, regardless of the accumulation-rate 

magnitude.  Figure 2.2b shows B/Bref, the scaling factor B divided by the 

scaling factor of a reference solution Bref (here taken to be the solution from 

Waddington and others 2007), corresponding to the solutions in Figure 2.2a.   

On Mars, we are likely to know only the layer shape.  It is unlikely 

that we will know the layer age, and velocities and accumulation rates from 

the regime in which the layers formed cannot be measured.  However, by 

exploring the sensitivity of the Antarctic solution, we found that useful 

information about the relative spatial variability in mass balance can still 

be inferred, even if the absolute rate of accumulation cannot be recovered. 

 

 

2.3.1.2. Inferring Surface Topography 

 We can also infer the shape of the ice-surface topography from the 

shape of an internal layer. This will be useful for the PLD, where the 

surface shape at the time of flow has been subsequently eroded, or largely 

obliterated.  We demonstrate this using data from Taylor Mouth, 

Antarctica. 

If the surface topography is unknown, and is being solved for as part 

of the inverse problem, we still have to estimate the surface topography for 

the first iteration of the forward algorithm.  As the inferred mass-balance 

pattern is iteratively updated in the inverse algorithm, the inferred surface 
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topography is also updated, using Equation A2.1.7, and this updated surface 

is used in the subsequent iteration for the mass-balance pattern.  The 

unknown parameter set consists of the ice flux entering one end of the 

flowband Qin, the spatial pattern of accumulation )(xb& , the age of the layer 

Age, and the ice thickness at one location along the flowband H0.  In the 

absence of rate-controlling information (e.g. layer age, ice velocity), we have 

shown that we cannot determine the absolute rate, B, of mass balance.  

 

 

                       

 

Figure 2.2.  a. The accumulation-rate solution for the Taylor Mouth inverse problem using 

an undated internal layer and no rate-controlling data.  The dark gray line shows the 

solution with an initial guess at the layer age that was 25% lower (resulting in a higher 

accumulation rate) than the layer age inferred from Waddington and others (2007), and the 

light gray line shows the solution with an initial guess at the layer age that was 25% higher 

(resulting in a lower accumulation rate).  b. The numbered points correspond to the 

numbered solutions in the above panel.  The accumulation-rate magnitude B equals unity 

for the correct accumulation rate. Without additional rate information, the same internal 

layer can be generated with an older age and a lower accumulation rate, or a younger age 

and higher accumulation rate. 
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Using data from Taylor Mouth, Antarctica, we demonstrate our 

ability to infer the ice-surface topography by performing two tests.  First, we 

infer ice-surface topography from the shape of an undated internal layer, an 

estimate of elevation at one point on the ice surface, and the known ice 

temperature (referred to as test 1).  We estimate the ice-surface elevation at 

the furthest upstream point along the flowband and assume that we know 

this value within 5 m.  In this problem, with no additional rate-controlling 

data, the ice temperature determines the inferred mass-balance rate and 

the length of the ice mass (the maximum thickness is specified).   

In the second test (referred to as test 2) we infer ice-surface 

topography from the shape of an undated internal layer and at least two 

points on the ice surface.  We assume that the ice temperature is unknown, 

and the greater the horizontal distance between the two known surface-

elevation points, the better we can infer the ice-surface profile.  We show 

that we can infer a surface with the correct shape, even if the inferred rates 

are incorrect.  At the first iteration of the forward algorithm we guess that 

the ice-surface has a uniform elevation along the flowband.  We guess that 

the ice-softness parameter )(
~

xA  is five times greater than the original 

value, so that the deformation rates are five times larger.  The inferred 

mass-balance pattern together with the inferred ice-surface shape generate 

an internal layer that has the appropriate balance between smoothness and 

fit to the data, where the data are fit with a root-mean-square mismatch 

consistent with data uncertainties (see Section A2.2). 

Figure 2.3a shows that the solution from the inverse problem is 

similar to the actual ice surface at Taylor Mouth (dotted line).  Figure 2.3b 

compares the mismatches of test 1 and test 2 against the actual ice surface, 

normalized by a reasonable estimate of the measurement uncertainty of 5 

meters.  This test with Taylor Mouth data shows that the surfaces found by 
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solving these inverse problems have the same shape as the measured 

surface; this is a significant result.  The inferred values are within one 

standard deviation of the point(s) on the surface that are known, and at 

most within two standard deviations elsewhere along the profile.  

Knowledge of the ice temperature, especially if there are spatial variations 

in ice temperature, gives a slightly better solution.  However, since ice-

temperature information is not currently available for Mars, it is important 

that we can infer the shape of the surface topography from an internal layer 

and two points on the ice surface; in Section 2.3.4.5 we discuss a test to 

reconstruct paleo-surface topography using synthetic data for Mars. 

 

                        

 

Figure 2.3. a. Comparison between the actual ice-surface topography at Taylor Mouth, 

Antarctica (dotted line), initial guess of ice-surface topography (dashed line), and the best 

estimate of ice-surface topography found by solving the inverse problem using an internal 

layer, the ice-surface elevation at one point, and a known ice temperature (test 1; black-

solid line), and using an internal layer and two points on the ice surface (test 2; gray-solid 

line).  b. The actual ice surface is subtracted from itself (dotted line), from the ice-surface 

topography estimated at the initial iteration (dashed line), and from the ice surface found 

by solving the inverse problem (black and gray solid lines), all nondimensionalized by the 

uncertainty of 5 m in the measured surface elevation.   
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2.3.2. Synthetic Data for Mars 

To demonstrate the usefulness of our inverse approach, we solved 

inverse problems with synthetic “data” that we generated for Mars. Using 

our forward algorithm with prescribed maximum ice thickness, ice-softness 

parameter, mass-balance pattern, layer age, and input ice flux at the 

upstream end of the flowband, we calculated the associated ice-surface 

profile and generated shapes of synthetic internal layers.  Then we used 

these synthetic data with our inverse method to infer a model-parameter set 

that included a characteristic ice thickness, the ice-softness parameter, the 

mass-balance pattern, the layer age, and the input ice flux. In order to see 

how well our inverse procedure worked, we compared the inferred set of 

model parameters to the known values that we used to generate the 

synthetic data.  

The following assumptions were made in all our tests for the PLD.  

The modeled PLD were assumed to be pure ice, which restricts the value of 

the softness parameter A0 (in Equation A2.1.5).  The exponent in the 

constitutive relationship for ice flow, Equation A2.1.4, had a value of n = 3, 

as inferred by Winebrenner and others (2008) for Martian ice. An exponent 

of n = 3 is typical for terrestrial ice sheets and applies for deformation 

primarily by dislocation creep (e.g. Paterson, 1994, pg. 85).  The 

temperature at depth was approximated by a uniform gradient using a 

surface temperature of 170 K (e.g. Pathare and Paige, 2005) and a basal 

heat flux of 0.025 WmP

-2
P (e.g. Clifford 1987; Grott and others, 2007).  The 

maximum ice thickness and bed topography used to generate synthetic data 

resemble conditions on the present-day North PLD (e.g. Phillips and others, 

2008), as does our chosen mass-balance rate of ~0.5 mm yr-1 (e.g. Laskar 

and others, 2002).  Present-day ice temperatures (e.g. Pathare and Paige, 

2005) make ice flow very slow, but any value of ice temperature could have 
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been used.  The surface geometry for each mass-balance pattern came from 

a steady-state surface calculation based on ice dynamics using Equation 

A2.1.7.  The ice-divide thickness was chosen to be 2 km.  We assume a 

uniform flowband width, which is a simplification, and the flowband width 

could be estimated by tracking the divergence of adjacent flow paths along 

the surface of the actual topography, as done by Winebrenner and others 

(2008).   

Using our estimate of surface temperature, heat flux, and mass-

balance rate, and because the steady-state model does not allow for past ice-

temperature transients, the resulting length of the flowband is 

approximately 20 km, and we can solve the inverse problems using only a 

limited portion of this full length.  Compared to modern flowband lengths of 

~100 km or more across the PLD, these lengths are very short because near-

basal ice at the present-day temperature of ~180 K (e.g. Pathare and Paige, 

2005) requires very steep slopes to achieve equilibrium with the present-day 

mass balance of ~0.5 mm yr-1 (e.g. Laskar and others, 2002).  Present-day 

ice is so cold that ice-flow rates are insignificant with the existing low 

surface slopes (e.g. Hvidberg, 2003; Greve and others, 2004; Greve and 

Mahajan, 2005), and conditions must have been different in the past for ice 

flow to shape the observed topography (Winebrenner and others, 2008; 

Koutnik and others, 2008).  The bed topography was chosen to be flat, but 

any topography can be used in the model.  We used an isothermal 

temperature distribution, and we assigned an age of 1 Myr to the synthetic 

data layer.   To make the inverse problem more realistic, we added red noise 

to our synthetic layer and used the perturbed layer as the data.  We set the 

standard deviation, σi(d),  on the layer data to be 3 m because we applied red 

noise with an amplitude of 3 m, and chose a correlation length of 600 m.  

Our initial guess at the layer age was several percent higher than the true 
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age of the synthetic data; any initial guess could be used.  The initial guess 

of the accumulation rate was the layer depth divided by our initial guess of 

the layer age (SLA, see Section 2.1.1).  We focused our study near the ice 

divide, where no ice flux enters the domain (i.e. Qin = 0). 

 

 

2.3.3. Internal-Layer Shapes  

Internal-layer shapes can be generated for any mass-balance pattern 

and flow regime.  For example, Fisher (2000) generated internal-layer 

shapes for the “accublation” model (Fisher, 1993, Fisher, 2000).  The 

accublation mass-balance pattern has alternating zones of accumulation 

and ablation to account for the presence of troughs on the North PLD 

landscape.  In the accublation model, the shapes of both the ice surface and 

the internal layers were significantly affected by the mass-balance pattern.  

However, it is also possible for different mass-balance patterns to result in 

similar surface profiles, yet have very different internal-layer shapes (see 

Figure 2.5).     

While the mass-balance pattern directly shapes the internal layers, 

the surface shape is relatively insensitive to details of the mass-balance 

pattern.  The ice flux q(x), given by Equation A2.1.2, is proportional to the 

integral of the mass-balance pattern.  The surface slope, given by Equation 

A2.1.7, is smooth because it depends on the mass-balance pattern only 

through the nth-root of the ice flux, q(x)1/n.  The surface slope is integrated 

to get the ice-surface topography, which further reduces the influence of 

mass-balance variability on the ice-surface topography. 
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2.3.3.1. Synthetic Mass-Balance Patterns 

 We generate steady-state internal layers over a limited part of the 

domain using several different mass-balance patterns to emphasize the 

variation of internal-layer shapes.    Figure 2.4 shows layers generated with 

a synthetic mass-balance pattern with linearly decreasing accumulation 

transitioning into linearly increasing ablation as elevation decreases.   

 

 

 

 

Figure 2.4.  Lower panel shows synthetic internal layers from the prescribed mass-balance 

pattern shown in the top panel. The mass balance decreases linearly with decreasing 

surface elevation, as net accumulation transitions into net ablation.  The layers intersect 

the surface in the ablation zone.  The accumulation and ablation zones are separated at the 

equilibrium line (EL).   

 

The equilibrium line marks the point of balance between net accumulation 

and net ablation.  Layers near the ice divide in this accumulation zone can 

have simple, nearly horizontal shapes.  Since the transition from net 

accumulation to net ablation is continuous, the internal layers trend 
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gradually toward the surface, and can intersect the surface in the ablation 

zone. In this example, layers also trend towards the surface in the 

accumulation zone because the accumulation rate decreases with decreasing 

surface elevation.  Even though the magnitude of ablation is small, ablation 

has a significant impact on the layer shape.     

 

 

 

Figure 2.5.  Lower panel shows synthetic internal layers from the prescribed mass-balance 

pattern shown in the top panel. The mass balance varies on short spatial scales and the 

layers intersect the surface in the ablation zones.  The bed is at zero meters, and layers are 

shown at equal age intervals.  The unconformity, highlighted by the gray band, develops in 

steady state.  The gray-dashed line is the ice-surface topography from Figure 2.4.  The 

shapes of the internal layers depend strongly on the mass-balance pattern, while the shape 

of the ice surface does not.  The bold layer is used in the inverse problem we solve in 

Section 2.3.4.4 and Figure 2.9. 

 

 

 Figure 2.5 shows layers generated with a more complicated mass-

balance pattern that fluctuates on smaller spatial scales.  The internal-layer 

shapes reflect these smaller-scale variations in mass balance, but as 

expected, the ice surface is insensitive to these details.  The gray-dashed 
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line in Figure 2.5 shows the ice surface generated with the mass-balance 

pattern from Figure 2.4.  While the internal-layer shapes associated with 

the different mass-balance patterns in Figures 2.4 and 2.5 are very 

different, the ice-surface profiles are nearly the same.  We use the mass-

balance pattern in Figure 2.5 to illustrate how complex layer structures, 

including unconformities, can form in a steady state.  In Section 2.3.4.3 we 

infer the mass-balance pattern using the internal layer shown in bold in 

Figure 2.5.  In Section 2.4.2 we discuss this unconformity, highlighted with 

a gray band in Figure 2.5, which develops due to localized ablation followed 

by renewed accumulation in the direction of flow. 

In addition to the mass-balance patterns used in Figures 2.4 and 2.5, 

in Section 2.3.3.2 we also generated internal layers using the idealized 

mass-balance pattern of a zone of uniform accumulation and a zone of 

uniform ablation.  Figures 2.4-2.6 show that internal layers in a flowing ice 

mass can also have very simple shapes; folded or faulted layer shapes are 

not required.  In terrestrial ice sheets, folded layers can be found near the 

base of the ice, where bed topography, shear stress, and subtle transients in 

the flow direction can have a large influence on the layer shapes (e.g. Hooke, 

2005, pg. 361).  Variations in ice rheology (e.g. Thorsteinsson and others, 

2003), movement of the ice divide (e.g. Waddington and others, 2001; 

Jacobson and Waddington, 2005), and advance and retreat of the ice margin 

(e.g. Hudleston, 1976) can also cause folded layers.  Waddington and others 

(2001) noted that folds may be clearly identifiable only for a very short time 

before they overturn, which is another reason that it is rare to observe folds 

in terrestrial ice sheets.  Layers that exhibit faulting have experienced 

brittle-type deformation, which is not indicative of the creep-type 

deformation that is associated with ice flow.  Cold temperatures promote 

brittle behavior, and it is possible that faults are indicators of colder ice 
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temperatures, whereas unfaulted layers may be indicative of warmer ice 

temperatures.  These general features of internal layers in a flowing ice 

mass should be considered when interpreting internal structure across the 

Martian PLD. 

 

 

2.3.3.2. Gemina Lingula, North PLD 

 Winebrenner and others (2008) found that the inter-trough 

topography of flowbands across Gemina Lingula, North PLD, closely 

resembled ice-surface topography generated with a simple steady-state ice-

flow algorithm.  They interpreted these inter-trough regions to be areas 

where surface topography has survived from an earlier era in which mass 

movement due to ice flow balanced mass exchange at the surface. Their 

algorithm assumed that the mass-balance pattern consisted of a zone of 

uniform accumulation and a zone of uniform ablation (Paterson, 1972).  As 

explained in Section 2.3.3, this is not a restrictive assumption, because 

surface shape is relatively insensitive to details of the mass-balance 

distribution.  By seeking the model topography that best fits the actual 

inter-trough topography, they could estimate the boundary between 

accumulation and ablation zones (the equilibrium line) when the ice was 

flowing.   

Figure 2.6 shows the internal-layer shapes corresponding to this 

idealized mass-balance pattern of a single zone of uniform accumulation and 

a single zone of uniform ablation.  We cannot put a scale on this relative 

mass-balance pattern, because the dimensional scaling factor B (see Section 

2.3.1.1) depends on additional assumptions about the layer ages or the ice 

temperature.  Figure 2.6 demonstrates that layers in a flowing ice mass can 

have simple, nearly horizontal shapes that are continuous across a broad 
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accumulation region.  In the ablation zone, layers intersect the surface.  Due 

to the discontinuity in mass balance, the layers have a discontinuous slope 

at the equilibrium line, but the shape of the ice-sheet surface is smooth.   

 

 

 

 

Figure 2.6.  Prediction of internal layers along a flowband on Gemina Lingula, North PLD, 

based on the surface topography and the idealized mass-balance pattern inferred by 

Winebrenner and others (2008).  The mass-balance pattern consists of a zone of uniform 

accumulation and a zone of uniform ablation, separated by the Equilibrium Line (EL). 

 

 

2.3.4. Past Surface Mass Balance and Topography for Mars 

We demonstrate how well we can infer the model parameters by 

solving five different inverse problems using a uniform accumulation 

pattern to generate synthetic internal-layer data.  In these inverse 

problems, in addition to the relative spatial pattern, we can infer the 

absolute rate of mass balance because the surface-elevation data, ice 

temperature, and rheological parameters may each provide rate 

information.  For most of the inverse problems that we solve, we used a 
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limited domain with a simple mass-balance pattern of uniform 

accumulation so that the results from these different inverse problems could 

be easily compared.  However, any mass-balance pattern could be used.  In 

Section 2.3.4.3, we show the results of an additional test to infer information 

from an internal layer generated using a mass-balance pattern that 

included an ablation zone; this test was done only for the case in which the 

data comprise only surface topography and an undated internal layer.  The 

parameter values inferred in Sections 2.3.4.1-2.3.4.4 are compared in Table 

2.1.  The inferred mass-balance patterns are compared in Figure 2.7.  

 

 

                       

Figure 2.7.  The spatial patterns of accumulation from four different inverse problems are 

compared to each other, to the initial guess, and to the correct values (light-gray curve).  

Using only undated internal-layer data (gray-dashed curve) we recover the correct spatial 

pattern, but the wrong magnitude.  Using only the surface-elevation data (dark-gray curve) 

we recover an accumulation-rate profile with the correct average value, but the wrong 

spatial pattern.  Using internal-layer data and surface-elevation data, in addition to either 

a known ice temperature (thin solid-black curve) or known ice rheological parameters 

(black-dashed curve) we can recover the actual spatial pattern and rate of accumulation. 
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Inverse Problem 
All Model 

Parameters 

Layer 

Age, Age 

(Myr) 

Nondimensional 

accumulation-

rate 

magnitude, 

B/Bref 

Input 

Flux, 

Qin (m3/yr 

per m 

width) 

Correct values of 

the parameters 
--- 1.0 1.0 0.3 

Undated 

internal 

layers only 

Qin, Age, )(xb&  1.13 0.88 0.261 

Ice surface and 

known ice 

temperature 

Qin, )(xb& , Sin, 

A(T) 

--- 1.02 0.28 

Undated 

internal 

layers, ice 

surface, known 

ice temperature 

Qin, Age, )(xb&  

Sin, A(T) 

1.0016 0.99 0.256 

Undated 

internal 

layers, ice 

surface, known 

ice rheology 

Qin, Age, )(xb&  

Sin, A(T), K 

1.002 0.98 0.35 

 

Table 2.1.  The layer age, nondimensional accumulation-rate magnitude B (Section 2.3.1.1) 

divided by the accumulation-rate magnitude for the correct solution Bref, and the input flux 

for four synthetic inverse problems are compared to the correct values of the model 

parameters.   

 

 

2.3.4.1. Inferring Mass Balance from an Undated Internal Layer 

In our first inverse problem, we attempt to infer the relative spatial 

pattern of mass balance )(
~

xb& , as in Equation 2.3, using a forward algorithm 

that adopts the synthetic surface and calculates only the internal-layer 

shape.  This inverse problem could be solved with Martian internal layers 

tracked along putative flowlines.  This test is similar to the Antarctic 

example (Section 2.3.1.1), where the lack of data containing rate 
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information makes it difficult to constrain the layer age; the initial guess at 

the layer age determines the rate of accumulation B inferred.  In this test, 

the initial guess at the accumulation pattern differed from the known 

pattern, and the initial guess at the layer age was several percent higher 

than the known age (any age guess could be used).  Even though we cannot 

find the correct rate, as shown in Section 2.3.1.1, the pattern of 

accumulation in the solution is a much better approximation of the true 

accumulation-rate pattern than our initial guess was, as shown in Figure 

2.7.   

 

 

2.3.4.2. Inferring Mass Balance from Surface Topography 

 In our second inverse problem, we attempt to infer the relative 

spatial pattern )(
~

xb&  and the absolute rate of mass balance B from the ice-

surface elevation S(x) alone.  As discussed in Section A2.1, the surface 

calculation uses ice dynamics and contains rate information through the 

temperature-dependent ice softness parameter (Equation A2.1.5).    Figure 

2.7 illustrates, as we anticipated, that details of the inferred mass-balance 

pattern are unlike the actual pattern.  Using the surface data alone is not 

very informative about the spatial pattern of mass balance, even when the 

mass-balance pattern is very simple. 

 

 

2.3.4.3. Inferring Mass Balance with a Known Ice Temperature 

In our third inverse problem, we attempt to infer both the relative 

spatial pattern )(
~

xb&  and the absolute rate of mass balance B from the 

internal-layer shape and the ice-surface shape, assuming that the ice 

temperature at the time of flow is known.  The results shown in Figures 2.7 
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and 2.8 used the same ice temperature that was used to create the synthetic 

data.   

 

 

Figure 2.8.  Results for the inverse problem using an internal layer, the ice-surface shape, 

and a known ice temperature; a portion of this solution is also shown in Figure 2.7.  a) The 

correct mass-balance pattern was a uniform accumulation rate of 0.3 mm/yr.  b) The 

synthetic data layer and the layer predicted by the forward algorithm using the model 

parameters found by solving the inverse problem.  c) Paths of particles whose end points 

create a modeled layer.  d) The resolving function (bold line) shows the best ability of the 

solution to recover the single-node perturbation (thin line).   

 

 

Using the internal layer and the ice-surface elevation as data, the 

inverse algorithm generates a model-parameter set that is very similar to 

the actual parameter values; the values are listed in Table 2.1.  Figure 2.8a 

shows the mass-balance solution compared to the known mass-balance 

pattern and an initial estimate of the mass-balance pattern from the 

Shallow Layer Approximation (SLA; Section 2.1.1) based on a poor estimate 
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of the layer-age parameter.  Figure 2.8b shows the internal-layer solution 

compared to the synthetic layer data, and to the initial guess of the layer 

calculated using an initial guess of the accumulation rate estimated from 

the SLA.  Figure 2.8c shows the paths of particles moving through the ice to 

form the internal layer, and Figure 2.8d shows the resolving functions for 

this inverse problem. 

 

 

Figure 2.9.  Results for the inverse problem using an internal layer, the ice-surface shape, 

and a known ice temperature.  a) The correct mass-balance pattern varied on short spatial 

scales and included a zone of ablation.  The initial guess was the depth of the layer divided 

by the estimated layer age.  b) The synthetic data layer and prediction by the forward 

algorithm using the model parameters found by solving the inverse problem.  c)  Paths of 

particles whose end points create a modeled layer.  d) The resolving function (bold line) 

shows the best ability of the solution to recover the single-node perturbation (thin line).   

 

 

Resolving functions, which indicate the ability of an inverse 

algorithm to resolve structure in the model parameters (see Section A2.2), 

show that structure in the spatial variability of accumulation can be better 
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resolved closer to the divide.  The spread of the resolving functions increases 

due to increasing length of particle paths further from the divide.  Figure 

2.8c (and Figure 2.9c) shows the paths of particles starting on the surface as 

they move through the steady-state velocity field and map out an internal 

layer of a particular age.  Particle paths near the downstream end of the 

domain extend farther, and the particles can move through larger changes 

in accumulation and strain rate, effectively integrating information about 

the mass-balance pattern as they move.  In addition, we desire a spatially 

smooth accumulation-rate solution, and we enforce this smoothness 

criterion in the inverse algorithm (Equation A2.2.1).  Therefore, only 

weighted averages of accumulation rate over the width of the resolving 

function can be inferred.   

We also generated synthetic internal-layer data with a mass-balance 

pattern, shown in Figure 2.5, which varied on shorter spatial scales, and 

included an ablation zone.  If an internal layer intersects the surface in the 

ablation zone, information about this mass-balance pattern can be inferred 

from that layer only over the upstream area where the internal layer exists.  

Figure 2.9a shows the mass-balance solution compared to the known mass-

balance pattern, and to the initial guess from the Shallow Layer 

Approximation (SLA).   

Figure 2.9b shows the internal-layer solution compared to the 

synthetic layer data and the initial guess at the layer using an accumulation 

rate estimated from the SLA.  Figure 2.9c shows the paths of particles 

moving through the ice to form the internal layer, and Figure 2.9d shows 

the resolving functions.  Figure 2.9 demonstrates that we can infer a mass-

balance pattern that varied on short spatial scales; we can also recover 

information about the pattern of ablation from the shape of an internal 

layer as it trends towards the surface.  The individual influences of ice 
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temperature and mass-balance rate are uncoupled by assuming that the ice 

temperature is known.  For any estimate of ice temperature on Mars, the 

ice-surface topography and the internal-layer shape can be used to recover 

the corresponding absolute rate of mass balance. 

 

 

2.3.4.4. Inferring Mass Balance with Known Ice Rheology 

In our fourth inverse problem, we attempt to infer the relative spatial 

pattern )(
~

xb&  and the absolute rate of mass balance B from the internal-

layer shape and the ice-surface shape, assuming that the ice temperature is 

unknown.  If both the layer age and the ice temperature are unknown, 

additional information must be used to uniquely determine the 

accumulation-rate magnitude and deformation rate, in order to infer the 

correct values of accumulation and ice temperature (see Equation 2.1).  We 

demonstrate that including a third rate factor through a more general 

constitutive relation for strain rate may allow us to resolve both mass-

balance rate and ice temperature in some circumstances. 

 Glen’s flow law (Glen, 1955; Equation A2.1.4) describes ice flow by a 

non-linear constitutive relationship between strain rate and deviatoric 

stress, where deformation occurs primarily by dislocation creep.  The flow-

law exponent, n, is typically assumed to have a value of 3.  However, under 

different temperature and stress conditions, and for different ice-grain sizes, 

deformation of ice may be influenced by, or even controlled by, processes 

other than dislocation creep.  The mechanisms of dislocation creep, grain-

boundary-sliding-limited creep, and basal-slip-limited creep, can have 

unique flow-law exponents n, ice-grain-size exponents p, and activation 

energies for creep Q (Goldsby and Kohlstedt, 1997, Goldsby and Kohlstedt, 

2001; Durham and others, 2001).  In addition, the shape of an ice sheet 
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differs when different mechanisms are dominant (e.g. Pettit and 

Waddington, 2003).   

The stress and grain-size conditions for the different regimes in 

which each mechanism is dominant can be illustrated with a “deformation 

map” (e.g. Goldsby, 2006).  Goldsby and Kohlstedt (2001) proposed a 

generalized flow law that explicitly accounted for several of these 

deformation processes.  Pettit and Waddington (2003) proposed a simpler 

modified flow law (discussed in Appendix 2.3) which we use here to 

illustrate how the existence of multiple deformation regimes can be 

exploited to extract rate information.  The constitutive relation in Equation 

A2.3.1, which is a generalized version of Equation A2.1.4, can account for a 

range of dominant deformation processes in terrestrial ice sheets, by 

blending n=3 processes with n=1 processes, and it can be incorporated easily 

into an ice-flow model.   This modified flow law (Pettit and Waddington, 

2003) has a second rate factor because there can be different activation 

energies for creep when n=1 or when n=3, producing different temperature 

dependencies for n=1 and n=3 processes.  When the temperature, stress, 

and grain size fall in a regime where both terms in the Pettit and 

Waddington (2003) flow law have similar magnitudes, i.e. near a boundary 

in a deformation map, we show that the additional rate factor can allow us 

to separate the individual influences of accumulation rate and ice 

temperature in the inverse problem, and therefore to infer both 

accumulation rate and ice temperature uniquely.   

Using the flow law in Equation A2.3.1, expressed in the form of 

Equation A2.3.2, we solve an inverse problem with both Γ  (defined by 

Equation A2.3.3) and k (defined by Equation A2.3.4) as model parameters.  

The parameter Γ , which corresponds to A(T), given by Equation A2.1.5, 

contains one rate factor in )/exp( 101 RTQA − , and k incorporates another rate 
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factor through )/exp( 202 RTQA − , where Q is the activation energy for creep 

and R is the gas constant.  Incorporating only one additional model 

parameter, the crossover stress k, instead of solving for all the rheological 

parameters and coefficients directly, is the simplest way to demonstrate the 

influence of an additional rate factor.  We generated an internal layer and 

ice surface with  k equal to 3×105 Pa, using the same accumulation rate, ice 

thickness, and temperature from the previous synthetic tests (Section 2.3.3).    

In the inverse problem with only two rate factors (in the temperature-

dependent softness parameter A(T) from Equation A2.1.5, and the 

accumulation rate) we could not infer the correct value of the layer age and 

the ice temperature when both values were unknown.  Many different pairs 

of these values could also fit the data, and the pair selected by our inverse 

procedure depended on our initial guesses.  However, in the inverse problem 

with three rate factors, we can better infer the correct values of the layer 

age and the ice temperature in some cases when both terms in Equation 

A2.3.2 make comparable contributions to the strain rate ijε& .  Table 2.1 and 

Figure 2.7 show the results.  The spatial pattern best matches the correct 

value because the crossover stress used to make the synthetic data leaves a 

distinct imprint on the ice-surface shape.  In this case, the inferred ice-

softness parameter Γ  differs by ~1% from the correct value and the 

crossover stress k differs by less than 3% from the correct value, compared 

to initial guesses that differed by 10%.   

 To use this additional rate factor as a constraint when solving inverse 

problems with Martian radar data, it would be most accurate to use a 

generalized flow law such as that of Goldsby and Kohlstedt (2001).  This 

requires that we know the ice-grain size (e.g. Barr and Milkovich, 2008) in 

the target area at the era of flow of the PLD and the activation energies, 

grain-size exponents, and ice-softness parameters associated with this fully 
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mechanism-based constitutive relationship.  Not all of this information is 

currently available, but our synthetic tests provide another reason why they 

would be valuable to obtain.  This is a challenge for future laboratory 

experiments and missions.  Our synthetic test indicates that including an 

additional rate factor can help to constrain the timing in some cases, if the 

ice-rheological parameters are known, and if the ice mass is in a regime 

where at least two of the most important terms in the flow law (e.g. 

Equation A2.3.2) have a similar magnitude. 

 

 

2.3.4.5. Inferring Paleo-Surface Topography 

In our fifth inverse problem, we attempt to infer the surface 

topography during an era of ice flow.  We have shown in Section 2.3.1.2 that 

we can successfully solve this inverse problem using data from Antarctica.  

The surface topography across most of the PLD has been significantly 

altered by trough formation, and there might not be many locations where 

inter-trough surface topography from a past era of ice flow is still intact 

(Winebrenner and others 2008).  We show how internal layers can be used 

to reconstruct ice-surface topography across the PLD if we can assume that 

there was an era of ice flow.   

As in Section 2.3.1.2, we perform two tests of this inverse problem.  

First we assume that we know the elevation of one point on the ice surface 

and we know the ice temperature.  Second, we assume that we know the 

elevation at two or more points on the ice surface and we do not know the 

ice temperature.   In the first test, the surface generated with this inferred 

mass-balance pattern closely matched the original surface used to generate 

the synthetic internal-layer data.  In the second test, we assume that the ice 

temperature is unknown, but at least two points on the ice surface are 
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available.  We find that this information about the thickness at different 

elevations along the flowband length allow us to reconstruct surface 

topography when the ice temperature is unknown.  However, inferring the 

correct mass-balance rate B still requires correct ice-temperature 

information, or other rate-controlling information. 

This inverse problem to infer surface topography using just two 

elevation-data points on the ice surface can be solved using Martian 

internal layers tracked along putative flowlines across the PLD.  Even if 

rate-controlling information were unavailable for the PLD, the shape of the 

past topography can be inferred from internal layers.  

 

 

2.4. Discussion 

2.4.1. Implications of ice flow 

Based on our understanding of terrestrial ice masses, we expect that 

Martian ice experiences flow at some rate.  The real question is how 

significant this flow might be in relation to other processes.  If ice flow has a 

minor influence on PLD structure, then both the internal-layer shape and 

surface shape are determined by the mass-balance pattern.  This is similar 

to the situation in the upper tens of meters in terrestrial ice sheets and to 

terrestrial ice caps that have stagnated (e.g. Meighen Ice Cap; Paterson, 

1969) or have recently built up (e.g. Hans Tausen Ice Cap; Hvidberg and 

others, 2001).  A terrestrial ice mass whose slope is determined by the mass-

balance pattern alone can take on a much broader range of surface shapes 

than an ice mass whose slope is determined by a balance between surface 

mass exchange and ice flow.  The two different mass-balance patterns 

shown in Figure 2.4 and in Figure 2.5 generate very differently-shaped 
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internal layers, but, as shown in Figure 2.5, they produce nearly-identical 

surfaces. 

The inverse method that we used in this paper assumes steady state, 

so that ice flow, at some rate, has an influence on the topography and on the 

shapes of internal layers. If an episode of ice flow shaped the North PLD, as 

proposed by Winebrenner and others (2008), then our steady-state method 

is appropriate to infer information about the most recent episode of ice flow.  

Even in the case of transient flow, transient ice-surface topography 

resembles steady-state ice-surface topography, but the internal-layer shapes 

will be different.  In the future, we could extend this method using a time-

dependent forward algorithm and multiple internal layers, to infer spatial 

and temporal patterns of accumulation while allowing for transient ice-

surface topography.  However, as we have demonstrated here, some 

fundamental unknowns about the Martian PLD can be determined with this 

simple, steady-state approach. 

 

 

2.4.2. Unconformities 

 Unconformities on various scales have been identified visually in 

troughs and scarps across the North and South PLD with imagery (e.g.  

Murray and others, 2001; Tanaka, 2005; Fortezzo and Tanaka, 2006; Kolb 

and Tanaka, 2006; Tanaka and others, 2008).  Subsurface unconformities 

have also been detected with radar observations (e.g. Seu and others, 2007; 

Milkovich and Plaut, 2008; Putzig and others, 2009).  While unconformities 

limit the amount of information that we can infer directly from the shape of 

a deeper internal layer, understanding the cause and timing of these breaks 

in the stratigraphic record is necessary in order to accurately decipher the 

history of the PLD and the climate record archived within these deposits. 
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Figure 2.5a shows that an unconformity can develop in steady-state 

flow when ice moves through multiple zones of accumulation and ablation.  

Ice is removed in the ablation zone, but ice is deposited on the erosional 

surface when it moves into the adjacent downstream accumulation zone.  

This causes spatial gaps in layers of the same age, and causes younger ice to 

be deposited directly onto much older ice.   

 

 

2.5. Conclusions 

We can successfully solve the inverse problem to infer the spatial 

variability in mass balance using the shapes of internal layers.  Waddington 

and others (2007) applied this method to Antarctica, and here we have 

shown that it is possible to infer spatial patterns of accumulation and 

ablation, and possibly also the rates of accumulation and ablation, for Mars.  

While the mass-balance pattern can be inferred, the layer age, the ice 

velocity, the ice temperature, or the grain size and the crystal fabric must be 

known before the correct magnitude of the mass-balance rate can be 

inferred, because steady-state ice-surface topography and layer shapes are, 

in general, consistent with a wide range of pairs of ice temperature and 

mass-balance rate magnitude.  The ice velocity or ice temperatures 

necessary in this inverse problem are the values during an era when ice 

flow closely equilibrated with surface mass balance to produce the surface 

topography and internal-layer architecture; because the North PLD is 

probably stagnant today, present-day ice temperatures and accumulation 

rates are probably not relevant.  Therefore, estimating the age of the layer 

when flow stopped, or determining the ice-grain sizes and conducting 

laboratory experiments to find the activation energies, ice-softness 
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parameters, and exponents for the flow law on Mars could lead to more 

appropriate constraints on the mass-balance rate.   

Internal layers are necessary to resolve spatial variations in mass 

balance because surface topography alone retains little of this information.  

The ice-surface topography can also be inferred from the shape of an 

internal layer, because there is an ice-surface shape that is consistent with 

a given mass-balance pattern that together will generate a given internal 

layer.   If the ice temperature at the time of flow is known, then the 

internal-layer shape and one point on the ice surface can be used to 

reconstruct the topography.  If the ice temperature is unknown, but the 

internal-layer shape and at least two points widely separated on the ice 

surface are known, we can also reconstruct the correct topography; this is a 

problem we can solve with data currently available for Mars.  To solve this 

problem we require internal layers from radar observations that follow 

putative flowlines.  Reconstructed topography across the PLD could be 

compared to the shape of the present-day ice surface in areas of the PLD 

that have been significantly altered by trough formation and other 

sublimation or deposition processes.   Inferring surface topography, mass-

balance patterns, and possibly rates and ice temperatures associated with 

an era of significant ice flow, would be a valuable step towards deciphering 

the climate history recorded in the PLD.   
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A2.1. Forward Algorithm 

 

The basis of this algorithm is steady-state continuity (e.g. Paterson, 

1994, pg. 256), 
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Along-flow gradients in the volumetric flux of ice q(x), in a flowband with 

surface profile, S(x), bedrock profile, B(x), and width, W(x), must balance the 

rate of surface accumulation or ablation, b& (x), and any basal melting, m& (x).  

A time-dependent problem would allow the surface elevation to change over 

time to accommodate an imbalance in this equality.  By integrating 

Equation A2.1.1 from the boundary where ice flux is specified, the ice flux 

can be represented kinematically by 
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where qBinB (in m3 yr-1; we use Earth years) is the ice flux entering at one end 

of the flowband domain (x=xin).  An equivalent ice flux can also be 

represented dynamically, where the flux of ice passing through a cross-

sectional area )()( xHxW × , is related to the depth-averaged horizontal 

velocity )(xu  in that cross-section by 

    )()()()( xuxHxWxq =           (A2.1.3) 

and )(xu  is calculated from the applied gravitational stress together with 

the constitutive relation for ice.  The ice thickness H(x) = S(x) – B(x). 

The forward algorithm has two components.  The first component 

generates a steady-state ice surface, calculated by equating the ice fluxes, 

q(x), in Equation A2.1.2 (kinematic flux) and Equation A2.1.3 (dynamic 

flux).  The surface calculation is a dynamic calculation because it 

incorporates the constitutive relation for strain rate.  The second component 
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of the forward algorithm generates internal layers using a kinematic 

particle-tracking calculation.   

In the dynamic calculation, the depth-averaged horizontal velocity 

comes from the Shallow Ice Approximation (SIA, e.g. Hutter, 1983 pg. 256; 

Paterson, 1994, pg. 262).  The SIA is a simplifying assumption that applies 

in cases where the ice thickness is much smaller than the characteristic 

horizontal length scales over which thickness or stress change significantly. 

If the characteristic horizontal length scale is the lateral extent of the ice 

cap, then derivatives of velocities and stresses with respect to x (horizontal 

axis) are generally much smaller than derivatives with respect to z (vertical 

axis).  Using the SIA, a constitutive relationship for ice flow (Glen 1955) is, 

    n
xzxz zxTA τε )),((=&           (A2.1.4) 

where xzε& =(1/2) zu ∂∂ /  is the simple-shear strain rate along a horizontal 

plane,  T(x,z) is the ice temperature, xzτ  is the shear stress along a 

horizontal plane, and based on laboratory experiments n typically has a 

value of 3 for dislocation creep (e.g. Paterson, 1994, pg. 85), and A(T(x,z)) is 

the temperature-dependent softness parameter (in Pa-n yr-1; e.g. Paterson 

1994, pg. 86): 

    )/exp()( 0 RTQATA −=          (A2.1.5) 

where A0 is the temperature-independent ice-softness parameter, Q is the 

activation energy for creep, and R is the universal gas constant.  Using the 

flow law in Equation A2.1.4 and writing shear stress as 

dxdSzSgxz /)( −−= ρτ  using the SIA, and integrating strain rate over depth 

to get velocity, and integrating again to get the depth-averaged horizontal 

velocity, 
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where ρ is density, g is gravitational acceleration, S(x) is ice-surface 

elevation, H(x) is ice thickness, and )(
~

xA  is an effective isothermal softness 

parameter.  The effective isothermal softness parameter is found by 

equating a depth-averaged ice velocity using a temperature-dependent 

softness parameter A(T(x,z)), with depth-varying temperature T(x,z), with 

the depth-averaged ice velocity for an isothermal column at temperature 

T(x), as in Equation A2.1.6, and solving for the effective isothermal 

temperature T(x), and corresponding softness parameter )(
~

xA  required to 

give the same depth-averaged velocity and ice flux.   

By representing depth-averaged velocity )(xu  in terms of ice flux and 

ice thickness using Equation A2.1.3, and representing ice thickness as the 

difference between the surface and the known bed elevations, H(x) = S(x) – 

B(x), Equation A2.1.6 can be rearranged to produce a nonlinear ordinary 

differential equation for the steady-state ice surface S(x),  
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The ice flux, q(x), is found kinematically using Equation A2.1.2.  The ice-

surface elevation at one point along the flowband is required as an initial 

condition to solve Equation A2.1.7. 

In the calculation used here, the paths of particles starting on the 

surface are tracked through space and time by integrating the velocity field, 

given below.  We represent the horizontal velocity, u(x,z), in terms of its 

depth-averaged value, )(xu , and a non-dimensional shape function, )ˆ,( zxφ ,  

which captures variations with depth (Reeh, 1988), 

   )ˆ,()(),( zxxuzxu φ=             (A2.1.8) 

where ẑ  is the normalized non-dimensional height above the bed, 
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The choice of the appropriate shape functions )ˆ,( zxφ  from a 

thermomechanical calculation can depend on the particular inverse problem 

being solved.  Here we chose to use shape functions for an isothermal, 

parallel-sided slab (e.g. Paterson, 1994, pg. 251).   

We invoke mass conservation to find the vertical velocity. Since ice is 

incompressible, 
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where u is the horizontal velocity along the flowband, v is the velocity 

transverse to the central flow line in the flowband as required to make flow 

tangential to the flowband width, and w is the vertical velocity.  In a 

flowband, the transverse strain rate (e.g. Paterson, 1994, pg. 257) is, 
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The vertical velocity is, 
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is called the vertical-velocity shape function, and )ˆ,( zxφ  is called the 

horizontal-velocity shape function in Equation A2.1.8. 

 The calculated horizontal and vertical velocity fields are then 

integrated over time to obtain the paths of particles that started on the ice 

surface.  A layer of a particular age is found by connecting the end points of 

particle paths calculated over a time span equal to the age of the layer.  A 
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sequence of steady-state layers subject to the same mass-balance pattern 

can be generated using a sequence of layer ages.  

 

 

 

A2.2. Inverse algorithm 

 

 For a particular inverse problem with an associated forward 

algorithm, different inversion procedures should yield similar solutions.  

Different procedures may have different advantages and disadvantages 

affecting the accuracy, uniqueness, stability, and computation time.  We 

chose an inverse procedure that is computationally fast and converges on a 

single solution that satisfies our criterion for an appropriate match to our 

data.   

In an inverse problem, the observable quantities (e.g. internal layers) 

may not contain enough information to discriminate against accumulation-

rate solutions that are physically unreasonable on other grounds. Because 

observations contain errors, we do not want to fit these data exactly; a 

solution found by minimizing only the mismatch between the data and the 

forward-algorithm prediction could overfit the data.  To find a physically 

reasonable solution, we stabilize, or regularize, the inverse algorithm.  As 

part of this regularization, we require that the mass-balance pattern vary 

smoothly along the flowband, because variability on small spatial scales is 

unexpected.  Because roughness is penalized, any variability in the solution 

is clearly required by the data.  We also require a solution that fits the data 

with a root-mean-square mismatch consistent with data uncertainties.   The 

solution to this problem is a “model”, i.e. a vector of the model parameters 

(e.g. mass-balance rate at discrete points) that we seek.  Obtaining a smooth 
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model that fits the data at an expected tolerance can be achieved by 

minimizing a performance index IBpB given by 

            )Tdν(+m=I p
222 −             (A2.2.1) 

In this application, the squared model norm, m 2, contains the square of the 

curvature of the accumulation-rate profile integrated along the flowband.   

For model parameters that do not fall in this spatial sequence, the model 

norm incorporates deviations of the inferred values of these parameters 

from expected values, in which we have a known confidence.  Penalizing 

large values of m 2 prevents the solution from exhibiting roughness in the 

accumulation-rate profile or deviating too far from expected values of the 

other parameters.  The squared data norm, ||d||2,P

 
Pis the sum of squared 

mismatches between the Nd observations, oiP

(d)
P, and the forward-algorithm 

predictions of the same observable quantities, oiP

(m)
P, normalized by the 

standard deviations σ iP
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The factor ν is a trade-off parameter, which is adjusted until the 

solution produces a data norm that equals a defined tolerance, T~ N , 

which is based on the statistical uncertainties N of the data (Parker, 1994, 

pg. 124).  The data-mismatch criterion, 

    022 =− Td            (A2.2.3) 

is then satisfied.  This value of ν sets the most appropriate trade-off 

between smoothness and fit.  A smaller value of ν puts more emphasis on a 

smooth model, whereas a larger value of ν puts more emphasis on closely fit 

data (Parker, 1994).   

Our inverse method performs a local search for the most-likely 

solution by finding the minimum of Ip in the model space that is most 
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accessible from the initial guess of the parameter set.  This steepest-descent 

approach locates only one solution, and that solution may be only a local 

minimum.  To address this issue, we can start from multiple initial guesses 

of the parameter set.  In addition, most inverse problems are nonlinear, 

making them more difficult to solve.  Our problem is nonlinear because 

predictions of the data by the forward algorithm are nonlinear functions of 

the model parameters.  We address this complication by linearizing our 

problem. This means that instead of solving for the solution directly, we 

iteratively solve for corrections to trial values of the unknown parameters.  

The parameter values are guessed at the first iteration, and are then 

adjusted in subsequent iterations as the inverse algorithm minimizes the 

performance index (Equation A2.2.1).  The forward algorithm makes 

predictions of the data using estimates of the model parameters from the 

previous iteration.  For any given value of the trade-off parameter ν, a 

solution is found when adjustments to the model parameters become small.  

We then adjust the value of ν and repeat the solution procedure until the 

solution also satisfies the data-mismatch criterion (Equation A2.2.3).   

Formal inverse theory allows us to investigate our ability to infer 

unknown parameters; this ability is known as the resolving power.  The 

preferred solution from our regularized algorithm minimizes the 

performance index IP in Equation A2.2.1, and fits the data at an expected 

tolerance, satisfying Equation A2.2.3.  However, we still do not know 

whether we have found the best values and spatial variability of the 

parameters.  It is important to assess the ability to resolve those parameters 

before making physical inferences from the preferred solution.  Parker 

(1994, pg. 200-213) showed that, when using a regularized algorithm, the 

inferred structure is a version of the true structure that has been smoothed 

by a set of narrowly peaked model-resolving functions.  The half-width of 



 Chapter 2:  Mass balance and topography for Mars 

57 

the resolving function at each spatial position gives the physical scale over 

which meaningful structure can be resolved.  Features with shorter spatial 

extent than this cannot be resolved with confidence from these data and this 

algorithm. 

 

 

 

A2.3. Modified flow law 

 

The modified flow law from Pettit and Waddington (2003), in tensor 

notation, is 
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where ijε&  is the strain-rate tensor, E1 and E2 are the two enhancement 

factors, A01 and A02 are the two temperature-independent softness 

parameters, d is the average grain diameter, exponents P1 and P2 express 

grain-size dependencies, Q1 and Q2 are the activation energies for creep, R is 

the gas constant, ijτ  is the deviatoric-stress tensor, and effτ  is the effective 

deviatoric stress (
2

effτ  is the second tensor invariant of ijτ ).  The first term 

in Equation A3.1 is linear in the deviatoric stress ijτ , while the second term 

is a non-linear (Glen) term with n=3.  When the coefficient of 
2

effτ  in the 

second term is extracted as a common factor on the left-hand side of 

Equation A2.3.1, the strain rate ijε&  can be expressed as, 

    ijeffij k ττε ][ 22 +Γ=           (A2.3.2) 

where k is called the crossover stress because it is the deviatoric stress at 

which the linear and non-linear terms contribute equally to the strain rate; 

Γ is given by 
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and k is given by   
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Pettit and Waddington (2003) showed that a linear constitutive relationship 

produces an ice divide with a more-rounded (less-peaked) shape.  In order to 

successfully resolve an unknown mass-balance rate and an unknown ice 

temperature using the additional rate factor in Equation A2.3.1, the ice 

sheet must have been in a regime where the linear and the non-linear terms 

in Equation A2.3.1 have similar magnitudes. 

 



 

Chapter 3 
 

 

 

Response Timescales for Martian Ice Masses and 

Implications for Past Climate and Ice Flow 

 

 

 

 

On Earth and Mars, ice masses experience changes in precipitation, temperature, 

and radiation.  In an attempt to equilibrate to a new climate state, ice masses will 

adjust in length and in thickness.  When ice flow is equilibrated by mass exchange 

at the surface, the response toward a new equilibrium has a characteristic 

timescale.  A flowing ice mass also has a predictable shape, which is a function of 

ice temperature, ice rheology, and surface mass-exchange rate.  We show that the 

present-day geometry of Martian ice masses could be indicative of past climate 

conditions on Mars.  We use the current topography across Gemina Lingula, North 

Polar Layered Deposits to infer characteristics of past ice temperatures, or past 

climate conditions, in which ice-flow rates were more significant than today. A 

range of plausible mass-balance rates and plausible volume response timescales 

associated with a range of near-basal ice temperatures and a range of ice-flow 

enhancement factors can generate the characteristic geometry of an ice mass that 

has been shaped by flow.    
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3.1. Introduction 

On Earth, a valuable archive of past-climate information can be 

accessed directly by drilling an ice core.  However, it is important to 

recognize that ice-surface topography and the shapes of internal layers are 

also informative about terrestrial ice-sheet and climate histories.  It is likely 

that the Polar Layered Deposits (PLD) of Mars play a role similar to the 

terrestrial ice sheets, by archiving information about past Martian climate.  

Even though a Martian ice core has not yet been recovered, topographic 

data, radar observations, and images of the Martian PLD are accessible, 

and these data can be informative about the ice and climate histories on 

Mars. 

Winebrenner and others (2008) used a simple ice-flow model to infer 

parameters (i.e. PLD geometry, mass-balance pattern) that generated 

excellent reconstructions of the inter-trough Mars Orbiter Laser Altimeter 

(MOLA) topography along flowbands across Gemina Lingula, North PLD.   

Their inferred parameters relate to an era of ice flow across Gemina 

Lingula, when mass exchange at the surface (accumulation and ablation) 

was approximately balanced by ice flow, i.e. the ice mass was in, or near, 

steady state, and the troughs dissecting the present-day surface were filled 

with ice.  For any ice mass, the ice-flow rate depends on the mass-balance 

rate and on the near-basal ice temperature and any flow enhancement due 

to impurities in the ice or variations in the physical properties of the ice.  

Therefore, pairs of mass-balance rate and ice temperature (plus any flow 

enhancement) can generate identical ice-surface topography.  We use the 

ice-surface shape reconstructed by Winebrenner and others (2008) to 

estimate pairs of mass-balance rate and ice temperature that would 

generate their reconstructed shape.  However, without additional 

information to constrain the actual rate of mass balance, the actual ice 
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temperature, or the actual ice-flow constitutive properties, we need another 

way to constrain the plausible range of ice-flow rates.  We use the volume-

response timescale for an ice mass, which is the time for an ice mass to 

accumulate or shed enough mass approach a new steady-state shape 

following a climate change (e.g. Johannesson and others, 1989), to narrow 

the range of plausible mass-balance rate and ice-temperature pairs by 

eliminating implausible combinations that take too long to adjust.    

   

3.2. Background and theory 

Since the accumulation rate, the ablation rate, and the ice 

temperature during the postulated era of significant ice flow on Mars are all 

unknown, Winebrenner and others (2008) used a nondimensionalized model 

to infer parameter values that would generate ice-surface topography that 

matched the MOLA data at specific locations along flowbands across 

Gemina Lingula.  While Ivanov and Muhlemen (2000) showed that the 

present-day surface topography across Planum Boreum, North PLD could 

have been dominantly shaped by ice sublimation, their results were 

inconclusive across Gemina Lingula; this result is consistent with 

Winebrenner and others (2008), where Winebrenner and others (2008) 

noted that Gemina Lingula could have been shaped by a near balance 

between ice flow and mass balance, but their results were inconclusive 

across Planum Boreum.   The model used by Winebrenner and others (2008) 

assumed a simple mass-balance pattern that consisted of a zone of uniform 

accumulation c and a zone of uniform ablation a, separated at the 

equilibrium line R (Paterson, 1972).  The parameter values they inferred 

were the flow law exponent n (see Equation 1), the ratio of accumulation 

rate to ablation rate (c/a), the maximum ice thickness H, and the flowband 
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length L.  While they found that there was smooth spatial variation in 

parameter values that they inferred independently for 51 flowbands, this 

variation was small and is not central to the results presented here, and we 

use parameter values associated with only one characteristic flowband.   

 

 

3.2.1. Ice flow and ice-surface topography 

The relationship between shear strain rate and shear stress for ice 

(the flow law) has been determined from laboratory experiments (e.g. Glen, 

1955): 

n
xzxz zxTEA τε )),((=&       (3.1) 

where =(1/2)  is the simple-shear strain rate along a horizontal 

plane,  E is the dimensionless ice-flow enhancement factor, T(x,z) is the ice 

temperature,  is the shear stress along a horizontal plane, and based on 

laboratory experiments n typically has a value of 3 for dislocation creep (e.g. 

Paterson, 1994, pg. 85), and A(T(x,z)) is the temperature-dependent softness 

parameter for ice Ih (in Pa-n yr-1; e.g. Paterson, 1994, pg. 86) follows an 

Arrhenius relationship: 
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where Q is the activation energy for creep (Q ~ 60 kJ mol-1 for temperatures 

below 10− º C), A0 is the temperature-independent ice-softness parameter 

(A0 ~ 4 ×10-4 kPa-3 s-1 for a flow-law exponent n=3, and Q ~ 60 kJ mol-1, 

calculated based on values from Paterson, 1994, pg. 97), and R0 is the 

universal gas constant (R0 = 8.314 J mol-1 K-1).   The ice-flow enhancement 

factor E can account for variations in the physical properties of ice that 

enhance or retard the deformation rate (e.g. Paterson, 1994, Ch. 5). 

xzε& zu ∂∂ /

xzτ
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In the Paterson (1972) model for ice-surface topography, the 

maximum ice thickness H is related to length L through, 
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where K is given by,  
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where  ρ is density, and g is gravity. We assume the density of pure ice with 

ρ=917 kg m-3 and Martian gravity g=3.72 m s-2.  From Equations 3 and 4, 

the ablation rate a is 
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Using the flow law exponent n, the accumulation-to-ablation ratio (c/a), the 

maximum ice thickness H, and the flowband length L inferred by 

Winebrenner and others (2008) for one typical flowband across Gemina 

Lingula, we can calculate the accumulation rate c and the ablation rate a for 

any combination of ice temperature T and ice-flow enhancement factor E. 

 

 

3.2.2. Volume response time 

The response of ice masses to small perturbations can be estimated 

using linearized kinematic wave theory (e.g. Nye, 1960; Johannesson and 

others, 1989; Hooke, 2005, ch. 14).  From this fundamental theory, 

Jóhannesson and others (1989) showed that the volume response time for an 

ice mass to evolve from an initial (datum) state to a new steady state after a 

change in climate can be approximated by 
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)(La

H
V =τ        (3.6) 

where H is the maximum ice thickness and a(L) is the ablation rate at the 

terminus, both in the datum state.  The volume response time is the e-

folding time needed for the ice mass to accumulate (or ablate) enough ice to 

reach a new steady-state shape.  An ice mass of any ice thickness, with any 

ice temperature and any ice-flow enhancement, has a corresponding mass-

balance rate and volume response timescale.  See Appendix F for additional 

details. 

 

 

3.3. Results 

To constrain the conditions necessary to facilitate ice flow, we 

constrain the plausible range of mass-balance rates and the plausible range 

of volume response timescales associated with pairs of ice temperature and 

ice-flow enhancement.  The ice temperature that we prescribe is the near-

basal ice temperature, because this is the value that is important for ice 

deformation.  Near-basal ice temperature can be simply related to the 

surface temperature using Fourier‘s law of heat conduction in 1-D (e.g. 

Paterson, 1994, pg. 206), 

    
z

T
TKQ

∂
∂−= )(     (3.7) 

where Q is the heat flux (in mWm-2), K is the conductivity (in Wm-1K-1), T is 

the temperature (in K), and z is the depth (in m).  The conductivity is a 

function of temperature (e.g. Paterson, 1994, pg. 205), given by 

K(T) = 9.828 * exp( -0.0057 * T ) .     (3.8) 

Figure 3.1 shows the surface temperature required to produce near-basal 

temperatures from 200-270 K for different values of Martian heat flux.  We 
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compare surface temperatures associated with heat fluxes of 5 – 50 mW m-2 

(where a value of 20-30 mW m-2 is often assumed, e.g. Clifford, 1987; Grott 

and others, 2007), and a total ice thickness of 1900 m.  For example, if the 

heat flux is 20 mW m-2, and the near-basal ice temperature is 230 K, the 

surface temperature would be ~215 K.       

In our calculation of mass-balance rate and volume-response time, we 

consider near-basal ice temperatures from 180-260 K, and we consider ice-

flow enhancement factors from E = 1-100; the range of E is chosen based on 

terrestrial experience, and the physical significance of E is discussed in 

Section 3.4.1.  All rates are given in Earth years. 

 

 

 

 

Figure 3.1.  Required surface temperature to produce near-basal ice temperature for a 

plausible range of basal heat fluxes, calculated using Equation 3.7, where thermal 

conductivity is a function of ice temperature (Equation 3.8). 
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3.3.1. Geometry of a flowing ice mass 

An ice mass that has been shaped by ice flow has a surface slope that 

can be well predicted by an ice-flow model (e.g. Paterson, 1994; Winebrenner 

and others, 2008).  In order for a stagnant ice mass to achieve the surface 

shape of a flowing ice mass, a very specific, and persistent, spatial pattern of 

mass balance is required at each point along the entire profile length; this 

specific mass-balance pattern must vary with elevation, and an atmospheric 

mechanism on Mars that would produce this pattern has not yet been 

identified.  In comparison, the shape of a flowing ice mass reflects the 

integral of the spatial pattern of mass-balance along the profile length.   

While the present-day inter-trough topography of Gemina Lingula 

has the shape characteristic of a flowing ice mass, the actual history of ice 

flow is unknown.  Winebrenner and others (2008) were able to match the 

inter-trough MOLA topography with their ice-flow model and their inferred 

parameter values, but we do not know if the present-day thickness of 

Gemina Lingula is the same as the ice thickness during the era of flow.  It is 

possible that the characteristic shape of a flowing ice mass could be 

maintained if subsequent accumulation or ablation was extremely uniform.  

To incorporate this possibility, we use the ratio of inferred ice thickness to 

inferred length H/L from Winebrenner and others (2008) to calculate the 

mass-balance rate and the volume response time associated with an ice 

mass of any thickness or of any length that has this H/L ratio; our results 

do not apply to a specific ice thickness, but the apply to a specific ice 

thickness to length ratio.   
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Figure 3.2. Ice-surface shapes generated using a Paterson (1972) model (Equation 1), and 

three different mass-balance distributions.  At the equilibrium-line position R/L the zone of 

uniform accumulation transitions to the zone of uniform ablation.  R/L=0.63 was inferred 

by Winebrenner and others (2008) for a characteristic profile along Gemina Lingula, North 

PLD.  The vertical lines highlight equilibrium-line positions. 

 

 

Although the ice-surface shape is sensitive to the flow-law exponent, 

this parameter was determined to be n=3 by Winebrenner and others 

(2008).  For ice masses with the same maximum thickness H and length L, 

the surface shape is sensitive to differences in the integral of the mass-

balance pattern along the profile.   This is shown in Figure 3.2, which 

compares the normalized shapes of three different ice masses that have 

uniform width and the same ice thickness and length, but were generated 

using three different mass-balance patterns.  In the Paterson (1972) model, 

the mass-balance pattern is characterized by the ratio of accumulation rate 

to ablation rate c/a, and the zone of uniform accumulation and the zone of 

uniform ablation are separated at the equilibrium-line position R.  If the 

length L and the equilibrium-line position R are known, c/a = (L-R)/R.  

Therefore, if the equilibrium line R=0.1L, the accumulation zone is much 
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smaller than the ablation zone, and the ice mass will be thinner along the 

profile length compared to an ice mass with an equilibrium line R=0.9L, 

where the accumulation zone is much larger than the ablation zone.  As 

shown in Figure 3.2, these differences in equilibrium-line position R/L (or 

the corresponding mass-balance distribution c/a) result in significantly 

different surface shapes; the maximum difference in surface elevation along 

the profile between the R=0.1L and the R=0.9L surfaces is greater than 

10%. 

 

 

 

Figure 3.3.  Contours of volume response time (from Equation 3.5) and ablation rate (from 

Equation 3.4) for all pairs of near-basal ice temperature T=180-260 K, and ice-flow 

enhancement factor E=1-100 and an ice mass with maximum thickness H=2 km.  For H=1 

km, multiply these values by 0.5.  For H=3 km, multiply these values by 1.5. 
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Using different mass-balance patterns (i.e. R/L=0.1 or R/L=0.9) we 

calculated the mass-balance rates (Equation 3.5) and the volume response 

times (Equation 3.6) and found that the differences in these values were 

relatively small compared to the spread in these values over the range of 

possible ice temperatures.  In addition, Winebrenner and others (2008) used 

their inferred mass-balance ratio c/a, together with their inferred ice 

thickness H, length L, and flow-law exponent n, to generate surface shapes 

that matched the inter-trough MOLA data to within ~1% along the 

flowband for most profiles included in their study.  This quality of fit to the 

data, compared to the differences in surface shape of order 10% that can 

result from major differences in the mass-balance pattern (Figure 3.2), 

indicates that the mass-balance ratio associated with the reconstructed 

topography across Gemina Lingula has been suitably resolved.  This 

justifies using the inferred mass-balance ratio c/a=0.56 from Winebrenner 

and others (2008).   

 

 

3.3.2. Mass-balance rate and response time 

To calculate the mass-balance rate and the volume response time, we 

use the mass-balance ratio c/a=0.56, the geometric ratio of thickness to 

length H2/L=11.4 (from H= 1900 m and L~316.67 km), and the flow law 

exponent n=3 inferred by Winebrenner and others (2008) from a typical 

flowband along Gemina Lingula.  We calculate the ablation rate using 

Equation 3.5, and we calculate the volume response time using Equation 3.6 

for an ice mass with a maximum ice thickness of 1 km, 2 km, or 3 km.  The 

ablation rate required for steady state scales linearly with the ice-flow 

enhancement factor, and the ice-softness parameter A(T) follows an 

Arrhenius relation (Equation 3.3).   
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Figure 3.3 shows the ablation rate a required for steady state (where 

the accumulation rate c = 0.56a) and the volume response time τ for all pairs 

of ice temperature T=180-260 K and enhancement factor E=1-100 for an ice 

mass with maximum thickness H=2 km.  For all pairs of ice temperature 

and enhancement factor, and assuming that the ice mass has a thickness to 

length ratio H2/L=11.4, an ice mass with H=1 km has a volume response 

time that is 0.5 times the value at H=2 km (a thinner ice mass responds 

faster), and an ice mass with H=3 km has a volume response time that is 1.5 

times the value at H=2 km (a thicker ice mass responds slower). 

                    

3.3.3. Constraining the accumulation rate 

Based on observational estimates of modern accumulation rates (e.g. 

Laskar and others, 2002; Milkovich and Head, 2005; Fishbaugh and 

Hvidberg, 2006) and modern ablation rates (e.g. Pathare and Paige, 2005), 

as well as model-based estimates of past mass-balance rates (e.g. Levrard 

and others, 2004), the polar mass-balance rate on Mars has likely been on 

the order ~0.1-1 mm/yr over at least the past 10 Myr.  With an 

accumulation rate of ~0.1-1 mm/yr and E=1, the near-basal ice temperature 

must have been ~240-260 K to produce topography similar to that along 

Gemina Lingula.  Alternatively, with a near-basal ice temperature of ~180 

K, the ice-flow enhancement factor must be ~20,000 to equilibrate a mass-

balance rate of 0.1 mm/yr, and ~210,000 to equilibrate a mass-balance rate 

of 1 mm/yr.    While a near-basal ice temperature of 180 K is plausible, we 

know of no way to make water ice at least ~20,000 times softer.  If Martian 

ice flow was ever near equilibrium with mass balance, and if ice flow was 

not substantially enhanced, the ice temperature required to equilibrate a 

mass-balance rate ~0.1-1 mm/yr is one argument for warmer ice. 
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Near-basal ice 

temperature (K) 

Ice-flow 

enhancement 

factor 

Ablation rate 

(mm/yr) 

Volume 

response time 

180 1 4.7 × 10-6 425 Byr 

215 100 0.3 6.2 Myr 

230 50 1.4 1.4 Myr 

250 50 17.6 113 kyr 

 

Table 3.1.  Calculated values for select pairs of near-basal ice temperature and ice-flow 

enhancement factor, corresponding to an ice mass with ice thickness H=2 km.  For an ice 

mass following H2/L=11.4, if H=1 km, multiply these values by 0.5.  For H=3 km, multiply 

these values by 1.5. 

 

3.3.4. Constraining the volume response time 

In addition to limiting the range of plausible ice temperatures based 

on the plausible range of mass-balance rates, we further constrain the ice 

temperature using the physically-based characteristic volume response 

timescale for an ice mass, given by Equation 3.5.     By putting upper bounds 

on plausible response times, we put lower bounds on the past mass-balance 

rate and the past ice temperature, and/or the enhancement factor.  Figure 

3.3 shows that volume response times associated with near-basal ice 

temperatures less than ~200 K, without any ice-flow enhancement, are 

physically implausible; these temperatures imply response times that are 

older than the age of the planet.  The ice-flow enhancement factor is a 

scaling factor.  Ice temperature effects flow following an Arrhenius relation 

(Equation 3.2), and therefore can have a more significant effect on ice 

softness.  Table 3.1 highlights pairs of values from Figure 3.3. 

 

3.4. Discussion 

3.4.1. Variations in basal-ice temperature  

Surface temperatures at the North Pole, subject to orbital-parameter 

variations over the past 10 Myr, have been calculated (e.g. Pathare and 
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Paige, 2005; Levrard and others, 2007; Schorghofer, 2008), and the annual-

average surface temperature at 80-90º N was always below ~180 K.  

Pathare and Paige (2005) showed that the summertime maximum 

temperature at the North Pole was ~220 K, and could even reach ~270 K 

depending on the perihelion configuration, obliquity, and eccentricity.  

Despite these relatively warm summertime temperatures, the annual-

average temperature is very low, due in part to the cold wintertime 

temperatures and the cold-trapped CO2 frost cover that presently has a 7 

mbar frost-point temperature of 148 K (Kieffer and others, 1976).  Annual-

average surface temperatures would be higher if there was a reduction in 

the extent or duration of seasonal CO2 deposition across the North PLD.  

Surface warming would be further enhanced if there was a decrease in 

surface albedo from the formation of a dust-lag deposit, which must have 

been present if the North PLD survived the last period of high obliquity 

from 4-10 Ma (e.g. Mischna and Richardson, 2005; Levrard and others, 

2007).  A simple estimation using the Stefan-Boltzman Law indicates that 

an albedo change from 0.6 (minimum value for a snow surface; e.g. Paterson 

1994, pg. 59) to 0.3 (typical value for a soil-type surface) can yield a change 

in surface temperature (in degrees Kelvin) of more than 10%.  However, to 

affect the rate of ice flow, changes in surface temperature must propagate to 

the near-basal ice, and this deep ice can warm only by diffusion.   The 

length of the diffusion time for an ice sheet ~2 km thick can range from ~10-

100 ka depending on the thermal conductivity.  Larsen and Dahl-Jensen 

(2000) showed that if this time is comparable to the length of an obliquity 

cycle, there would have been a delay before the surface temperature during 

a given obliquity period propagated to the base.  Therefore, an orbital state 

with minimal variation would best promote warmer ice.  On Mars, orbital 

states with minimal variation have occurred every ~2-3 Myr in the past 20 
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Myr and have lasted for ~300 Kyr (e.g. Laskar and others, 2002).  The near-

basal ice can also be warmed by variations in basal heat flux.  While spatial 

variations in terrestrial heat-flux can be surprisingly substantial (e.g. 

Fahnestock and others, 2001a; NGRIP members, 2004), on Mars, Phillips 

and others (2008) estimate that the crustal heat flux beneath the North 

PLD is as low as 8 mWm-2 (previous estimates of ~20 mWm-2 have been 

used, e.g. Grott and others, 2007).  To warm the near-basal ice of a 2 km 

thick ice mass to 230 K, a heat flux of ~95 mWm-2 is required if the surface 

temperature is 170 K, and a heat flux of ~45 mWm-2 is required if the 

surface temperature is 200 K (using Fourier’s Law, Equation 3.7).  The ice 

temperature near the base of an ice mass is the value important for ice flow 

because shear strain rates are largest there (see also Section A3.3).   

 

3.4.2. Variations in basal-ice properties 

In the absence of a significant change in the near-basal ice 

temperature, it is possible that there were also changes in the properties of 

ice that enhanced ice flow (see also Section A3.4).  Including an ice-flow 

enhancement factor in the ice-flow law could account for variations in the 

physical properties of ice, such as grain size, crystal orientation, and 

impurity content that can enhance or retard deformation rate (e.g. Paterson, 

1994, Ch. 5).  When these variations are concentrated in the basal layer of a 

glacier or ice sheet, their effect on ice flow can be especially significant (e.g. 

Knight, 1997).   

There is the potential for CO2 or CO2 clathrate to be a constituent of 

the PLD (e.g. Ross and Kargel, 1998, pg. 32).  The Phoenix lander found 

perchlorate in the surface soil at ~68º S (e.g. Hecht and others, 2009), and 

even though the distribution and mode of formation of the perchlorate 

remains unknown, there is the potential for percholorate to be a constituent 
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of the PLD.  Perchlorate is highly water soluble, and could depress the 

freezing point as much as 70º C for a brine mixture (Hecht and others, 

2009).  In addition, Delory and others (2006) report that Martian dust 

storms may generate strong enough electrostatic fields to dissociate CO2 

and H2O, to eventually form hydrogen peroxide (H2O2) that subsequently 

falls out of the Martian atmosphere.  Dust storms of all scales are 

omnipresent on Mars, and the largest dust storms typically occur during 

perihelion, when Southern hemisphere summer temperatures are relatively 

high (e.g. Martin and Zurek, 1993).  If hydrogen peroxide snow, or any other 

chemical constituent, is entrained in Northern hemisphere winter 

precipitation, this could change the hardness, and therefore the deformation 

rate of the PLD ice relative to pure H2O ice. 

 

 

3.5. Conclusions 

Warmer near-basal ice temperatures, most likely in combination with 

enhanced ice flow, are required for near-equilibrium ice flow to generate 

topography with the shape characteristic of topography across Gemina 

Lingula, North PLD in a plausible amount of time, and with a plausible rate 

of mass balance.  We do not propose a specific mechanism, or combination of 

mechanisms, that could warm the ice or enhance the flow, but we present a 

range of combinations of ice temperature and ice-flow enhancement that can 

inform future analyses of PLD geometry, internal structure, and ice 

rheology.  Any history of ice flow requires conditions that are very different 

from the present day.   
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A3.1.  

 

Inferred parameter Value 

Maximum ice thickness, H 1900 m 

Flowband length, L 320 km 

Equilibrium line position, R 203 km 

Ratio of accumulation to ablation, c/a 0.56 

Flow law exponent, n 3 

 

Table A3.1. Values for a typical flowband on Gemina Lingula, North PLD (from 

Winebrenner and others 2008).  

 

 

 

 

 

A3.2. Present-day Polar Layered Deposits 

 

The present-day mean annual surface temperature of the North PLD 

is ~170 K (e.g. Pathare and Paige, 2005; Levrard and others, 2007; 

Schorghofer 2008), the present-day ablation rate is estimated to be ~0.2 

mm/yr (e.g. Pathare and Paige, 2005), and the present-day accumulation 

rate is estimated to be ~0.5-0.6 mm/yr (e.g. Laskar and others, 2002; 

Milkovich and Head, 2005).  For a surface temperature of 170 K, and 

assuming a heat flux of 20 mWm-2, the ice temperature at a depth of 1900 m 

~180 K.  Using these values, Figure A3.1 shows the surface shape of a 

steady-state flowing ice mass calculated from Equation 3.3 with a maximum 

ice thickness of 1900 m, a surface temperature of 170 K, an accumulation 

rate of 0.5 mm/yr, and with a mass-balance ratio c/a=0.56.  This surface 

shape is compared to the MOLA topography along a profile across Gemina 

Lingula, and, unlike the results from Winebrenner and others (2008), these 
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surfaces are very different.  Present-day Martian surface temperature is too 

cold, and the mass-exchange rates are too high (even though the actual 

values are physically very low) to develop the present-day topography across 

Gemina Lingula.  In order for ice flow to be significant at very cold 

temperature, and to equilibrate this rate of accumulation, the surface slopes 

have to be very high.  It has already been shown that present-day ice flow 

has an insignificant affect on the surface topography, and that Martian ice 

must have been warmer to flow at a significant rate (e.g. Greve and others, 

2004; A. Pathare, personal communication); Figure A3.1 emphasizes this 

result. 

   

                         

Figure A3.1.  Thick black line shows the steady-state ice surface calculated with a surface 

temperature T=170 K, an accumulation rate c=0.5 mm/yr, and an ablation rate a=0.2 

mm/yr.  The thin gray line shows the present-day MOLA topography along the study 

flowband on Gemina Lingula, North PLD.  The surface slopes must be very high for ice flow 

to balance the relatively high mass flux for ice at 170 K. 
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A flowing ice mass has a predictable surface slope, and this 

corresponds to a characteristic relationship between ice thickness and basal 

shear stress.  For terrestrial ice sheets, the ice thickness is ~1-4 km, and the 

length is ~100-200 km (L~200 km in Antarctica), giving H/L~0.01-0.02.  

However, any mass of material that does not flow following the constitutive 

relation given by Equation 3.1 is unlikely to have a similar relationship 

between maximum ice thickness and length.  For example, the North polar 

sand erg, Olympia Undae, has a maximum thickness of ~1 km and a half 

width of ~250-350 km (e.g. Byrne and Murray, 2002), giving H/L~0.003-

0.004. 

Figure A3.2 compares different estimates of ice thickness and length 

for terrestrial ice masses (shown in black) and Martian ice masses (shown in 

gray).  The points represent actual values for PLD and terrestrial ice sheets 

and ice caps, and the lines are model fits to these points that are associated 

with an ice temperature specified to fit these points.  As shown in Figure 

A3.1, an ice mass in steady-state with present-day surface temperature and 

mass fluxes does not match the geometry of the PLD.  The ice thickness and 

length point values for the North and South PLD domes are estimated from 

the central portions of the PLD excluding the chasmata, and they do not 

follow this curve.  Instead, the PLD domes have a thickness-length 

relationship similar to that of Greenland and Antarctica.  The North/South 

PLD-dome curve (2) is generated with a near-basal ice temperature of ~210 

K, consistent with a volume response timescale of ~100 Myr.  The 

Greenland curve (3) is generated with a near-basal ice temperature of ~260 

K, an accumulation rate of 10 cm/yr, and an ablation rate of 20 cm/yr, which 

are consistent with present-day values (e.g. Paterson 1994, pg. 346; Ohmura 

and others, 1999).  The ice-thickness and length relationship for Gemina 

Lingula does not fit along the curve for the PLD domes.  The Gemina 
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Lingula curve (4) is generated with a near-basal ice temperature of ~240 K, 

a mass-balance rate ~0.1 mm/yr, and a volume response time of ~18 Myr. 

 

                    

Figure A3.2.  Comparison of maximum ice thickness and length for terrestrial ice masses 

(shown in black) and for martian ice masses (shown in gray).  The curves are generated 

with prescribed values of near-basal ice temperature T, accumulation rate c, and ablation 

rate a.  The curve for present-day Mars (1) is calculated with T=170 K, c=0.5 mm/yr, and 

a=0.2 mm/yr.  The point estimates for the North and South PLD domes, are estimated from 

the central portions of the PLD to the margin (excluding the chasma).  The North/South 

PLD-dome curve (2) is calculated with T=210 K, c=0.01 mm/yr, and a=0.05 mm/yr (c and a 

are consistent with a response time of 100 Myr for the study flowband on Gemina Lingula).  

The Greenland curve (3) is calculated with T=260 K, c=10 cm/yr, and a=20 cm/yr.  The 

Gemina Lingula curve (4) is calculated with T=230 K, c=0.01 mm/yr, and a=0.05 mm/yr (c 

and a are consistent with a response time of 100 Myr).  

 

 

 While the relationship between thickness and length for the Planum 

Boreum and for the Planum Australe portions of the PLD may indicate that 

these surfaces are consistent with past ice flow, Winebrenner and others 

(2008) find that trough formation or sublimation and deposition may have 

significantly modified the surface of these portions of the PLD, and the 
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inverse problem to recover information about the ice-flow history cannot be 

solved with the same approach. However, even if the shape of the 

topography from a past era of ice flow has been significantly modified, if it is 

known that there was a history of ice flow, it is possible that we can use the 

shapes of radar-detected internal layers to reconstruct the ice-surface 

topography (Koutnik and others, 2009). 

 

 

A3.3. Ice temperature 

 

Albedo is important because surface temperature depends on the 

fraction of incoming shortwave radiation from the sun that is absorbed by 

the surface.   Mischna and Richardson (2005) showed that the polar ice caps 

must be insulated at high obliquity in order to avoid completely subliming 

away, and that the polar contribution to the global water budget is limited 

at high obliquity.   Levrard and others (2007) also found that the North PLD 

ice was unstable at high obliquity (~30-35º), whenever the absorbed 

insolation was greater than 300 Wm-2.   Unless an efficient dust-lag deposit 

formed to protect the North PLD, the north-polar ice would quickly 

sublimate and redeposit in the midlatitudes during the high-obliquity 

conditions from 4-10 Myr ago, because the seasonal sublimation rates 

during high obliquity are an order of magnitude greater than the seasonal 

accumulation rates.  High-obliquity conditions with a mean value ~41.8º are 

statistically preferred over the last 5 Byr, but the solution for the chaotic 

obliquity is nonunique (Laskar and others, 2004).  Unless the entire North 

PLD are less than ~4 Myr old, protection of at least some portion of the 

North PLD from higher insolation 4-10 Myr ago, and possibly for many 

millions or billions of years, must have occurred.  We know that a dust 
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deposit has effectively protected the South PLD from complete sublimation 

during high obliquity because the surface exposure age of the South PLD is 

30-100 Myr (e.g. Plaut and others, 1988; Herkenhoff and Plant, 2000; Koutnik 

and others, 2002), and the present-day South PLD surface has a very low 

thermal inertia (e.g. Paige and Keegan, 1994; Vasavada and others, 2000).  

The South PLD has also received ~4-11% more insolation on an annual 

average over the past 20 Myr (from calculations by Laskar and others 2004).  

However, the nature of the preserved cratering record, where the floors of 

craters greater than ~800 m in diameter have viscously relaxed (e.g. 

Pathare and others, 2005), but the crater rims have been maintained (e.g. 

Koutnik and others, 2002; Pathare and others, 2005), attests to the 

efficiency of the lag deposit in preserving the underlying ice.  If the 

sublimation rate at the South Pole was ~0.2 mm/yr, a rim height of ~10 m 

would be removed in less than 50,000 years, which has not been the case.  

The thickness of the lag deposit is minimally ~5 mm (e.g. Skorov and others 

2001), but could be ~50 cm (e.g. Paige and Keegan, 1994; Ellehoj, 2007); the 

lag deposit could also be thicker, as the actual thickness is unknown.  The 

state of the South PLD is an indication that the dust-lag deposit has 

potentially protected the underlying ice for millions of years; this means 

that the South PLD surface, at least in the summertime, could have 

maintained a low albedo for millions of years.  Even though the South PLD 

received more insolation than the North PLD over the past 20 Myr, and the 

South PLD surface has been covered by a dark-albedo lag deposit over that 

time, there is no evidence that these effects have warmed the ice.  The ice 

temperature is determined by the long-term average surface temperature 

and basal heat flux.  As long as CO2 frost at ~148 K covers the PLD surface 

in the wintertime, the annual-average temperature will always be low 

relative to the summertime maximum temperature, regardless of enhanced 
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summertime warming from increased insolation or decresed albedo.  

However, if the extent or the duration of wintertime frost cover was reduced 

for at least hundreds of thousands of years, the near-basal ice temperature 

could become warmer. 

Terrestrial heat-flux variations can be surprisingly large.  For 

example, basal melting was found at the base of the North Greenland Ice-

Core Project (NGRIP) site that required a heat flux of ~130 mWm-2 (e.g. 

Fahnestock and others, 2001a; NGRIP members, 2004; Buchardt and Dahl-

Jensen, 2007), which is approximately twice the expected value.  On Mars, 

the present-day planetary heat flux was been estimated at ~20 mWm-2 (e.g. 

Clifford 1987; Grott and others 2007), but the actual value of heat flux and 

the spatial variation in heat flux, especially in the past, is not well known.  

Presently, Mars’ internal dynamics are assumed to be inactive, and this is 

supported by radar observations that show a lack of deflection of the crust 

beneath the North PLD (e.g. Picardi and others 2005; Phillips and others 

2008).  Based on these observations, Phillips and others (2008) estimate 

that the crustal heat flux beneath the North PLD is ~8 mWm-2.  

 What heat flux is required to warm the basal ice to 230 K?  For a 

specified surface temperature, and using Equation 3.7, we can calculate the 

heat flux at a depth of 2 km that is required to achieve an ice temperature of 

230 K at this depth.  For a surface temperature of 170 K, a heat flux 95 

mWm-2 is required to reach 230 K at 2 km depth, and for a surface 

temperature of 200 K, a heat flux 45 mWm-2 is required.  If there was a 

region of higher heat flux in the geologically recent martian past, it is 

presumed to be due to a transient tectono-thermal or volcanic event (e.g. 

Clifford 1987; Benito and others, 1997;Anguita and others, 2000; Fishbaugh 

and Head, 2002; Hovius and others, 2008).  We do not address the 

plausibility or timing of such a thermal event here, but a heat flux of 
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approximately 50-100 mWm-2 may be possible if thermal heat-flux 

transients occurred on Mars.   

 

 

 

A3.4. Ice rheology 

 

In our calculations, we assumed that deformation occurred entirely 

by creep, and that there was no sliding at the base.  However, a water- or 

till-lubricated base could cause sliding that could significantly quicken the 

rate of ice flow.  While a mechanism to facilitate sliding of the PLD cannot 

be ruled out (e.g. Fisher and others, 2009), we focus our discussion on 

mechanisms to enhance the rate of internal deformation.  In addition to the 

ice temperature, the rate of ice deformation is also controlled by the physical 

properties of ice, such as grain size, crystal orientation, and impurity 

content, which can enhance or retard deformation (e.g. Paterson 1994, Ch. 

5).  The influence of these properties on ice flow can be especially significant 

in the basal layer of a glacier or ice sheet (e.g. Knight 1997).  We briefly 

review the primary ways that variations in ice properties affect the rate of 

ice deformation on Earth, and we consider how these mechanisms may be 

relevant to ice deformation on Mars. 

The flow law for ice used to calculate the depth-averaged horizontal 

velocity in Equation 3.1 includes an enhancement factor E, which on Earth 

typically accounts for changes in the creep rate for anisotropic ice compared 

to isotropic ice at the same stress and temperature.  Ice crystals subject to 

strain in excess of 10% develop a preferred orientation that facilitates glide 

along basal planes in the direction of the applied stress (for simple shear), 

and the c-axes will typically align close to vertical (e.g. Paterson 1994, pg. 

99).  Therefore, development of ice fabric makes the ice easier to shear, but 
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harder to compress.  Most terrestrial ice masses are anisotropic to some 

degree in some places, but ice sheets are often considered to be isotropic to 

simplify theoretical studies of ice-sheet behavior.  While sophisticated flow 

laws that incorporate enhancement from anisotropy have been developed 

(e.g. Azuma, 1994), a multiplicative enhancement factor is a simple way to 

account for any mechanism, including anisotropy, that changes the flow 

rate.  The enhancement factor represents enhancement in the dominant 

strain-rate component. 

Analysis of ice cores has shown that anisotropy can change the creep 

rates by an order of magnitude (e.g. Paterson 1994, pg. 99), and therefore it 

is important to account for this effect.  Thorsteinsson and others (1997) 

analyzed the variation in crystal size and crystal fabric in the Greenland Ice 

Core Project (GRIP) ice core, and how differences between glacial and inter-

glacial periods have a marked impact on the properties of the ice and the 

pattern of deformation.  For example, glacial ice has a higher impurity 

content, which slows crystal growth and leads to finer-grained ice that can 

deform more rapidly, and the opposite is true for inter-glacial ice (e.g. 

Thorsteinsson and others, 1997).   

Therefore, while crystal fabric plays a role in either enhancing or 

retarding ice deformation, the impurity content of the ice is also important.  

An impurity can replace a water molecule in the ice crystal, fit within the 

crystal lattice, or exist at the ice-crystal grain boundaries (e.g. Paterson 

1994, pg. 88).  From analyses on the Vostok, Antarctica ice core, Petit and 

others (1999) reported that aerosol fallout (both dust and chemical impurity) 

increased during cold periods.  From analyses on the EPICA Dome C ice 

core, Lambert and others (2008) found that dust concentration increased by 

~25 times during glacial periods.  They attributed this to an increase in the 

source of dust from South America, and because of an increase in 
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atmospheric transport of dust when the hydrological cycle is reduced.  For 

terrestrial ice sheets, the overall dust content is still low, and dust has a 

relatively minor influence on ice rheology.  However, sand-sized impurities, 

particularly those entrained in the near-basal ice, can have a major 

influence on the rheology.  For example, Hooke and others (1972) found that 

the creep rate of ice containing fine-grain sand decreased exponentially as a 

function of sand content for temperatures greater than -10º C and for high 

sand concentrations, but results were inconclusive for lower sand 

concentrations (e.g. Paterson, 1994, pg. 88).  The strength of ice with a high 

sand content can also be less than the strength of clean ice, increasing the 

creep rate (e.g. Cuffey, 2000; Fitzsimons and others, 2001).  This agrees 

with tunnel-closure observations, which detected localized enhanced 

deformation of the debris-rich basal layers of Taylor Glacier, Antarctica (e.g. 

Fitzsimons and others, 1999; Samyn and others, 2005).  It also agrees with 

modeling of the observed strain rates at Taylor Glacier (Whorton and 

others, In Preparation), with basal ice from the Byrd, Antarctica ice core 

(e.g. Gow and others 1968), and with studies of the basal ice at Meserve 

Glacier, Antarctica (e.g. Paterson 1994, pg. 287).   

Carbon dioxide (CO2) ice precipitates out of the Martian atmosphere, 

and it has been proposed PLD (e.g. Ross and Kargel 1998, pg. 32) that it 

might be present in the.  While it is likely that it is only a relatively minor 

constituent of the PLD (e.g. Nye, 2000), CO2 ice or clathrate hydrate, if 

present, could influence the rate of ice flow.  Durham and others (2000) 

demonstrated that CO2 ice is weaker than water ice, but that clathrate 

hydrate is stronger, and also has a lower conductivity.    

Li and others (2009) showed that sulfuric acid (H2S04) reduces the 

strength of ice proportional to the square root of the sulfuric acid 

concentration.  Notably, Li and others (2009) found that sulfuric acid was 
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more effective at softening the ice at lower temperature; they showed 

results for -10° C compared to -20° C.  Soluble impurities, such as HF and 

HCl, at concentrations of only a few parts per million, can increase the creep 

rate by a factor of 10 (Paterson 1994, pg. 88) because the impurities cause 

point defects in the crystal structure.  These experimental results that 

indicate ice can be significantly softened with even minor impurity content 

are typically valid at ice temperatures above the eutectic point; at 

temperatures below the eutectic point the impurities may provide only 

limited ice-flow enhancement. 

 



 



 

Chapter 4 
 

 

 

An Efficient Model of Transient Ice Flow Using a Spatially 

Limited Domain 

 

 

 

 

To develop a computationally efficient ice-flow model that can assimilate data that 

exist over only a portion of an ice sheet, it is advantageous to limit the model 

domain.  A limited-domain model is particularly well suited as part of the forward 

algorithm in a computationally intensive inverse problem, and as part of an 

investigation of transient ice flow near an ice divide (near ice-core sites).  We 

present a way to accurately model the evolution of a limited-domain ice sheet that 

crosses an ice divide, and has no termini.  In a limited-domain model, accurately 

calculating ice-sheet evolution in response to spatial and temporal changes in ice 

flow and climate depends on accurately calculating the ice flux crossing the 

limited-domain boundaries.  Simple extrapolations or estimations of ice flux at the 

limited-domain boundaries can be numerically or physically incorrect, resulting in 

incorrect ice-sheet evolution.  We develop a new approach to provide boundary-

value information to our limited-domain model without conventionally “nesting” 

the limited model in a full model.  We show that evolution of only part of an ice 

sheet can be consistent with the full ice sheet within which it exists.   
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4.1. Introduction 

Numerical ice-flow models are widely used to solve problems in 

glaciology that cannot be solved analytically (e.g. Van der Veen, 1999; 

Hooke, 2005, pg. 288), and ice-flow models can generate realizations of ice-

sheet behavior that exceed our observational capabilities. To make these 

models more realistic, we can use an ice-flow model in combination with any 

available information about past and present ice-sheet geometry, ice-sheet 

internal structure, and climate variables that, for example, can be 

determined from ice-penetrating radar (e.g. Conway and others, 1999; 

Vaughan and others, 1999), from ice cores (e.g. NGRIP members, 2004), or 

from glacial-geological reconstructions (e.g. Denton and Hughes, 2002; 

Stone and others, 2003).  Ice divides are regions of the ice sheet where a 

variety of these geophysical and paleoclimatic data have often been collected 

at the same site.  Ice-flow models are needed in combination with laboratory 

analyses of ice-core samples to infer the correct climate history, because 

climate information that is recorded in the ice has been affected by the 

history of ice flow (e.g. Paterson, 1994, pg. 276-288).  While an ice-core site 

is chosen because the history of ice flow there is usually simpler to decipher 

than at other sites on an ice sheet, the ice-divide thickness and the ice-

divide location can change due to spatial and temporal changes in 

accumulation rate and ice dynamics.  These spatial changes influence 

particle-path trajectories through the ice, and the spatial dimension should 

be included in an ice-flow model that is used to interpret an ice-core record 

where ice-divide variations may have been significant.   

Some of the spatial information about ice-sheet history that is sought 

from data in the vicinity of an ice divide can be inferred by solving an 

inverse problem.  However, computational efficiency is required when 

solving inverse problems that require many iterations of the ice-flow model, 
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or when using a higher-resolution model.  Limiting the model domain to 

include only the relevant portions of the ice sheet is a way to reduce 

computation time.  It is also advantageous to limit the model domain when 

assimilating data that are available only in limited locations on the ice 

sheet.  When the domain is limited, we do not need to make estimates of 

observable quantities in regions where parameter values and boundary 

conditions are unconstrained.  However, limiting the domain of a transient 

ice-flow model is not trivial.  Accurate calculation of the boundary values in 

the limited model requires additional information to ensure that the limited 

domain evolves consistently with the full domain within which it exists. 

In practice, additional information can be provided to the limited 

model by embedding the limited-domain (regional) model in a full-domain 

(global) model.  There are at least two approaches to embedding a limited 

domain in a full domain.  In a commonly used embedding approach, the 

limited-domain boundary values are provided directly from calculations 

performed within a full model that is solved jointly with the limited model; 

this is referred to as a “nested” model.  In our new approach, the limited-

domain boundary values are provided from calculations performed within a 

limited model that rely on information about the behavior characteristics of 

the full model rather than specifically on its detailed evolution; we refer to 

this case simply as a “limited-domain” model.    

 

 

4.1.1. “Nested” ice-flow model 

Nesting (embedding) schemes are common in numerical models of 

physical processes; for example, a regional climate model that is driven by 

the lower-resolution output of a global climate model (e.g. IPCC, 2007, Ch. 

11; Salathe and others, 2007).  In ice-sheet modeling, higher resolution 
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and/or higher-order physics that are important in specific regions of an ice 

sheet are often nested into a full ice-flow model with coarser resolution 

and/or simplified physics.  For example, there have been numerous models 

of ice-sheet evolution in which regions of fast ice flow, or regions requiring 

higher-order physics, are nested into a 3-D thermomechanically coupled 

model of the entire ice sheet (e.g. Marshall and Clarke, 1997; Fastook, 2005; 

Huybrechts and others, 2007); these modifications result in global ice-sheet 

evolution that is more realistic, while remaining more computationally 

tenable compared to a global model at the resolution of the nested 

component.  In addition to directly incorporating sub-grid physics into a 

global model, global calculations may also provide necessary boundary 

values for the regional model.  For example, Gagliardini and Meyssonnier 

(2002) used a global ice-flow model to calculate lateral boundary conditions 

for their regional anisotropic flow model.  The limited model and the full 

model can have different spatial and/or temporal resolution, but they are 

calculated in step with each other, and therefore ice-sheet evolution within 

both models is always consistent.   

 

 

4.1.2. “Limited-domain” ice-flow model 

We define a limited-domain ice-flow model as any ice-flow model 

whose spatial domain includes only a limited (regional) portion of an ice 

sheet.  In the problem of transient ice flow, as an ice sheet experiences 

spatial and temporal changes in accumulation and in flow, the ice thickness 

must change in order for the ice sheet to conserve mass.  To solve the mass-

conservation equation for ice-sheet evolution (Equation 4.1), the ice 

thickness must be known or estimated as an initial condition at the first 

timestep.  Then, the calculation of ice-thickness evolution depends on the 



Chapter 4:  An efficient model of transient ice flow 

91 

calculation of ice flux through the domain, which depends on the ice 

thickness, the surface slope, and basal conditions (e.g. Section A4.1).  In a 

full-domain model, there is a zero-flux boundary condition or a calving 

condition at the terminus, and the ice thickness can be calculated 

everywhere.  However, in a limited-domain model, the ice flux crossing the 

limited-domain boundaries is unknown. As discussed in Section 4.2.1, 

improperly calculating the boundary flux can lead to numerically driven ice-

sheet transients and unphysical ice-sheet behavior.   

 Our strategy to deal with this boundary-flux problem is analogous to 

problems where information is known about the behavior of the boundary 

forcing, but the actual boundary values are unknown.  For example, Cuffey 

and others (1995) estimated air-temperature forcing in central Greenland 

using a calibrated �18O record; these transfer functions were then used to 

prescribe the necessary temperature forcing in different applications (e.g. 

Cuffey and Clow, 1997; Marshall and Cuffey, 2000).   

 

 

4.1.3. Synopsis 

We introduce our new approach to efficiently calculate physically 

realistic ice-sheet evolution with a limited domain; in Section A4.1 we 

present the details of our solution for ice-sheet evolution within a 2.5-D 

limited-domain flowband.  Our approach can be summarized in three steps, 

which are discussed in detail in Section 4.2.2.1 – Section 4.2.2.3.  The first 

step is to embed the limited model in a full model that includes an ice sheet 

terminus.  By including a terminus, the boundary condition at the end of the 

domain is known.  If the limited domain includes an ice divide, or begins 

near an ice divide, we embed the limited model in a full domain that 

extends off both sides of the divide and includes two termini.  The second 
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step is to characterize the behavior of the full ice sheet.  We do this by 

calculating the response of the full ice sheet to an impulsive perturbation in 

accumulation. This impulse-response function provides information about 

how the full model would respond to a change in volume over time.  The 

third step is to use the response functions evaluated at the limited-domain 

boundaries to determine how much flux to enter in to or discharge out of the 

limited domain.  This enables the limited-domain model to adjust to any 

volume change at a glaciologically realistic rate that is compatible with a 

full ice-sheet model experiencing the same climate changes.  In Section 

4.3.2.3 we discuss how to incorporate changes in ice-flow and climate forcing 

that originate outside the limited domain.  These externally forced changes 

(e.g. changes in sea level) will affect ice-sheet evolution in the limited 

domain, and we must consider how to inform the limited model about these 

external changes.   Our approach is a general formulation that could be 

applied to transient ice-flow problems using ice-flow models of varying 

complexity. 

 

 

4.2. Boundary conditions for a limited-domain model 

To calculate ice-thickness evolution we solve the mass-continuity 

equation (e.g. Paterson, 1994, pg. 256): 
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where h(x,t) is the ice thickness, W(x) is the flowband width, q(x,t) is the ice 

flux, and ),( txb&  is the accumulation rate.  A flowband model is a 2-D model 

that also accounts for width variations; therefore it is considered to be 2.5-D.  

We solve this conservation equation numerically using an implicit approach 

(e.g. Patankar, 1980); details are given in Section A4.2.  To solve for ice-
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thickness evolution, we need to calculate the ice flux q(x,t).  The 

accumulation-rate history ),( txb&  is prescribed, or can be inferred as part of 

an inverse problem if internal-layer data are available. 

We use the Finite (Control)-Volume Method (FVM; Patankar, 1980; 

Versteeg and Malalasekera, 1995) discretization scheme.  Using the FVM, 

the model domain is divided into discrete volumes.  Ice thickness is 

calculated at finite-volume center points, and ice flux is calculated at finite-

volume edges.  In this paper, we discuss a generic problem with a limited 

domain that crosses an ice divide, and therefore has two unknown boundary 

conditions.   

 

 

4.2.1. Incorrect boundary conditions 

There is no physical basis for any generic extrapolation scheme from 

inside the limited domain when we want to calculate the value of ice flux 

q(x,t) crossing the limited-domain boundaries, that adequately approximates 

the flux crossing this point in a full ice sheet.  This includes extrapolating 

the ice flux from upstream values, which can be very inaccurate because 

this extrapolation assumes that flux variations are spatially linear.  If 

variations in accumulation are not spatially linear (or do not combine to be 

spatially linear), then the linear extrapolation is incorrect. We cannot 

assume spatial linearity of accumulation and flow-band width for a 

transient problem.  However, a higher-order extrapolation is also 

inadequate.  The correct boundary-flux treatment on each side of the 

domain requires information from both sides of the domain. 

In pursuit of the most-accurate estimation of the value of ice flux 

crossing the limited-domain boundaries, we identify other estimations that 

are also incorrect.   For example, ice flux can be determined dynamically 
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from Equation A4.1.2 using the depth-averaged velocity ),( txu and ice 

thickness H(x,t) across the flowband width W(x).  In a finite-volume 

formulation, the dynamic flux crossing a limited-domain edge is dependent 

on the ice thickness and surface slope evaluated there.  A way to evaluate 

the ice thickness and surface slope at a finite-volume edge would be to 

quadratically extrapolate the ice thickness and to linearly extrapolate the 

surface slope from neighboring quantities. Instead of using neighboring 

values of ice flux to extrapolate the ice flux crossing the limited-domain 

boundaries, we could extrapolate the upstream ice thicknesses and surface 

slopes, and calculate the flux dynamically.  Unfortunately, some 

extrapolations will under-predict the flux and some extrapolations will over-

predict the flux at this boundary, and the limited-domain model is unable to 

hold steady state under a constant climate.  Figure 4.1a shows four points 

on an initial ice surface that are then tracked under steady-state forcing 

conditions.  Figure 4.1b shows how the ice thickness changes at each point, 

and Figure 4.1c shows how the ice flux changes over time; however there 

should be no time variation in the ice thickness and the ice flux under 

steady-state forcing.   

These variations originate at the limited-domain boundary because of 

the poor representation of ice flux there. The ice thickness will continue to 

evolve until the extrapolation matches a different steady-state solution, 

resulting in a solution that has migrated for strictly numerical reasons.  

This migration is physically possible because there are infinitely many 

surface profiles that have the same flux profile, and the numerical 

calculation determines the solution.  If the value of flux is not calculated 

adequately for a limited-domain model with an unknown span, the surface 

can migrate to another solution; a model with a known span does not have 

this problem.   
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Figure 4.1.  An example of a limited-domain model that does not hold steady state when 

the boundary flux at the right margin is calculated dynamically.  a) Steady-state-ice-

surface profile that crosses an ice divide.  The labeled points 1-4 correspond to the time 

evolution of ice thickness in panel b.  b) Evolution of ice thickness for four points on in a 

limited-domain model, under steady-state conditions (no change in forcing).  The ice 

thickness changes because the ice flux at the limited-domain boundary on the right side of 

the divide is incorrect.  c) Evolution of the ice-flux profile after 100, 200, and 300 years, 

driven by an incorrect value at the right-side boundary, under steady-state conditions.   

 

 

Instead of using a direct extrapolation of ice flux, or a dynamic 

calculation based on an extrapolation of ice thickness and slope, we could 

estimate the flux crossing the last downstream finite-volume edge with a 

kinematic calculation.  The kinematic flux (Equation A4.1.1) is calculated by 

integrating the continuity equation (Equation 4.1).  The accumulation rate 

),( txb&  is known, and the rate of ice-surface change at the current timestep 

),( itxh&  can be estimated from the known value of ),( 1−itxh&  at the previous 
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timestep.  Calculating the boundary flux kinematically would allow the 

limited-domain model to retain information about the original steady-state 

surface.  While this boundary condition is more physically based, and would 

allow the model to hold steady state, it is not physically realistic.  To retain 

information about the initial steady-state solution, the kinematic 

calculation forces any additional mass that enters the domain in a given 

timestep to be exported instantaneously.  However, instantaneous export is 

not glaciologically realistic.  To address these concerns, we present a new 

approach to calculate the boundary flux in a limited-domain model that is 

accurate and achieves our physical expectation of real ice-sheet behavior. 

 

 

4.2.2. Physically-based boundary condition 

 

4.2.2.1. Embed the limited model in a full model 

We embed our limited-domain model in a full-domain model in order 

to calculate impulse-response functions for the full domain; we do this at the 

start of the calculation, and we do not need to embed the limited domain at 

each timestep.  Analytical solutions of steady-state ice-surface profiles can 

be good approximations to actual ice-sheet surfaces (e.g. Paterson, 1994, pg. 

244).  Therefore, it is reasonable to embed our limited domain in a simple 

full model that captures the essential behavior of a full ice sheet.  A simple 

full-domain model is also computationally efficient.  The shape of the full-

domain model is matched to the shape of the limited-domain model over the 

horizontal extent of the limited domain, but the shape of the full model is 

extended to include a terminus.  An analytical ice-sheet surface that could 

be used to extend a limited-domain model is discussed in Appendix 4.3, and 
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a steady-state surface equation that can be solved numerically is given by 

Equation A4.2.8; any ice-surface model could be used for the full domain.   

 

 

Figure 4.2. a) The accumulation and ablation rates used to generate a full-domain surface 

profile using a Paterson (1972) model.  The Paterson (1972) model assumes that the mass 

balance consists of a zone of uniform accumulation c and a zone of uniform ablation a, given 

by the ratio c/a; we pick c/a=0.1, and there is an ablation rate of ~1 m yr-1 across the 

wedge-shaped termini.  b) Ice-surface profile for a limited domain that crosses an ice divide 

(solid line), and for the corresponding full domain (dashed line) within which it is 

embedded.   The marked location at the right-side boundary of the limited domain relates 

to subsequent figures. 

 

 

To facilitate physical terminus behavior (i.e. ice-sheet length changes 

in response to accumulation changes) in our numerical calculations with our 

simple full-domain model, we replace the terminus with a wedge shape, and 

conserve mass across the wedge (e.g. Nye, 1963; Hooke, 2005, pg. 376); this 

allows the terminus to advance and retreat.  Our wedge-terminus 

formulation in a finite-volume scheme is discussed in Section A4.3.  If the 
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limited-model domain is focused near an ice divide, the terminus will be far 

from the limited-domain region of study, and the solution for ice-sheet 

evolution will be relatively insensitive to the numerical treatment of 

terminus dynamics.   

The solid curve in Figure 4.2a shows a limited domain that crosses an 

ice divide with a maximum thickness of ~1000 m, a limited extent of 25 km, 

and an average accumulation rate of 20 cm/yr.  The dashed curve shows the 

extension of this limited surface to a full domain that includes a terminus.  

As discussed in Section A4.3, our full-domain surface is from an analytical 

ice-surface model with a zone of uniform accumulation c and a zone of 

uniform ablation a (Paterson 1972), and we use the mass-balance ratio 

c/a=0.1.  For the specific limited domain shown in Figure 4.2a, and for this 

specific full-model extension (we note that any extension could be used), the 

full model crosses an ice divide and is ~60 km long, with an average 

accumulation rate of 20 cm yr-1, an average ablation rate of ~2 cm yr-1, and 

an ablation rate across the terminus wedge of ~2 m yr-1.  

 

 

4.2.2.2. Response functions for the full model 

To characterize the behavior of the full model within which the 

limited model is embedded, we solve for the ice-thickness evolution of the 

full-domain model in response to an impulsive perturbation in 

accumulation.  Using our implicit numerical scheme (Section A4.2) to 

calculate ice-thickness evolution with the full-domain model, we first 

confirm that the analytically-derived full-domain surface holds steady state 

in this numerical calculation, and then we can calculate the ice-thickness 

response of the full-domain to an impulsive perturbation in accumulation.  

The impulse-response function for ice thickness h1 is the evolution of ice 



Chapter 4:  An efficient model of transient ice flow 

99 

thickness at any single point along the full-domain surface, from the time of 

the impulsive perturbation until the time when the surface has returned to 

a new steady state.  As shown by Nye (1960), ice-thickness response and ice-

flux response can be related using kinematic-wave theory.  For small 

perturbations (denoted with ‘1’) from the datum state (denoted with ‘0’), the 

ice-flux response function q1 at any position x can be given by a series 

expansion, 

      .    (4.2) 

The coefficients of ice thickness h and surface slope α are 
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where n is the exponent in the flow law.  The quantity c0 is the kinematic-

wave velocity per unit width, in units (m yr-1).  The quantity D0 is the 

kinematic-wave diffusivity per unit width, in units (m2 yr-1). The surface 

slope xh ∂∂= /α ; surface slope is positive on the left side of the ice divide, 

and is negative on the right side of the ice divide.   

Following Nye (e.g. 1960), this perturbation theory applied to ice 

sheets assumes that the impulsive accumulation-perturbation term is 

spatially uniform.  However, in our case the response function is used to 

characterize the behavior of a full ice sheet, and actual changes in 

accumulation are likely to be nonuniform.  Therefore, we explore the 

sensitivity of ice-sheet evolution to spatially nonuniform perturbations 

(Section 4.3.1).   The accumulation pattern for the impulse-response 

calculation is given by the sum of the steady-state pattern )(0 xb& and a 

perturbation ),(1 txb&  
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         ),()(),( 10 txbxbtxb &&& += .         (4.5) 

We need only the ice-thickness response at the limited-domain boundaries 

to calculate the ice-flux response at these positions, and the solid black 

curve in Figure 4.2b shows the ice-thickness impulse-response function and 

the ice-flux impulse-response function at the limited-domain boundary on 

the right side of the ice divide, as marked in Figure 4.2a.  Since this is a 

numerical calculation, we must define the full-adjustment time of ice 

volume (when the ice surface has returned to steady state after the 

impulsive perturbation).  The impulse-response function is defined as the 

ice-sheet response from the time of the perturbation to the time when the 

ice thickness returns to within our chosen threshold of 10-6 meters of the 

initial steady-state value (see Appendix J).  It is the shape of the response 

function that is used in our calculation of a physically-based boundary 

condition.    

 

 

4.2.2.3. Boundary values for the limited model 

The boundary condition for our limited-model calculations is the time 

series of ice flux at each limited-domain boundary.  Therefore, we convert 

our ice-thickness impulse-response functions at the limited-domain 

boundaries to ice-flux impulse-response functions at the limited-domain 

boundaries using Equation 4.2.  We need the response functions at the 

limited-domain boundaries xLD only, and the datum-state values of ice flux 

q, ice thickness h, and surface slope α are the values at each limited-domain 

boundary at the timestep t0 when the limited-domain has been embedded in 

the full domain to calculate (or recalculate) the response functions there.  In 

our finite-volume formulation, the limited-domain boundary xLD can be on 

the left side of the ice divide at the western finite-volume edge xw1, or on the 
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right side of the ice divide at the eastern finite-volume edge xeend.  The 

equations given below are identical for each boundary, but flux to the left 

side of the divide is negative, and flux to the right side of the divide is 

positive; the ice flux is equal to zero at the ice divide.   

The steady-state ice flux is given by 

∫+==
LD

div

x

tx

LDooinLDLD dbtxQxQtxQ
)(

0
0

0

0

)(),()(),( ζζ&

   (4.6) 

where the integration limits in Equation 4.6 start from the ice-divide 

position in steady state (at the first timestep) xdiv(t0); this describes the 

steady-state flux at the limited-domain boundary, and we want to calculate 

changes in ice flux relative to this steady-state value.  Ice-sheet evolution 

within the limited domain is driven directly by ice-flow and climate changes 

that occur within the limited domain.  It is also driven indirectly by 

externally-forced changes that occur outside the limited domain.  The 

change in the amount of global ice volume within the limited domain over a 

timestep t∆ , given by ),( txV&∆ , is the change in kinematic ice flux due to 

changes in the accumulation rate (Equation 4.5), giving 
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The ice flux is negative on the left side of the ice divide, so the change in 

boundary flux is negative when a positive volume is added.  The ice flux is 

positive on the right side of the ice divide, so the change in boundary flux is 

positive when a positive volume is added.  However, the ice divide may also 

migrate, and therefore we must also calculate the change in ice volume from 

ice-divide migration.  Changes in ice flux due to ice-divide migration are 
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found by integrating the steady-state ice flux from the steady-state ice-

divide position at time t0, to the new divide position at time t 

             ∫=∆
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Equation 4.8 accounts for the fact that some amount of the steady-state flux 

might move across a different limited-domain boundary as the divide 

migrates over each timestep; if the divide moves to the left of the steady-

state divide position, more flux goes out the right boundary of the limited 

domain, and vice versa.  Since the ice flux is negative on the left side of the 

divide, the change in the value of ice flux from changes in ice volume due to 

divide migration is positive if the divide moves to the left, and it is negative 

if the divide moves to the right.  On the right side, the change in the value of 

ice flux from changes in ice volume due to divide migration is positive if the 

divide moves to the left, and it is negative if the divide moves to the right.   

The time-variation of ice thickness ),(1 txh LD , and of surface slope ),(1 txLDα , 

at the limited-domain boundaries xLD in response to an impulsive 

perturbation in accumulation are calculated with the full-domain model.  

Using these values, the ice-flux response function ),(1 txq LD  can be calculated 

from Equation 4.2, 

          ),(
),(

),(
),(

),(

),(
),( 1

00

0
1

0

0
1 tx

tx

txq
txh

txh

txq
txq LD

LD

LD
LD

LD

LD
LD α

α 








∂
∂

+








∂
∂

=              (4.9) 

      ),(),(),(),( 100100 txtxDtxhtxc LDLDLDLD α+= .  

 

We evaluate the kinematic-wave velocity c0(xLD,t0) and the kinematic-

wave diffusion coefficient D0(xLD, t0) at the limited-domain boundaries (Nye 

1960; Hooke 2005, pg. 373-375) in the steady (datum) state.  The time 

variation of ice flux at each limited-domain boundary is the ice-flux impulse-

response function  ),(1 txq LD , which we call FLD(t).  For example, Figure 4.4a 
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and Figure 4.4b show the ice-flux impulse-response functions corresponding 

to the geometry in Figure 4.2b.  The impulse-response function 

characterizes a particular geometry, and corresponds to a particular 

accumulation-rate perturbation.  In Section 4.3.1 we discuss how the 

response function changes as a function of accumulation-rate perturbation 

and ice-sheet geometry, and in Section 4.4.1 we discuss the utility of any 

particular response function.  

In a kinematic calculation for the boundary flux (Section 4.2.1), the 

change in volume ),( txV∆ over each timestep is exported or accumulated 

completely over each timestep.  As we discussed in Section 4.2.1, and is 

supported by the duration of the impulse-response function, for example in 

Figure 4.2b, instantaneous adjustment is not physically realistic.  For 

realistic ice-sheet evolution across the limited-domain boundaries, we form 

a vector of volume perturbations over time by multiplying the scalar value 

of volume change ),( txV LD
b&∆  (Equation 7) or ),( txV LD

div∆  (Equation 8) at 

each timestep with the impulse-response function )(tF b
LD

&

or )(tF div
LD , 

formulated from Equation 9.  The impulse-response functions associated 

with changes in accumulation )(tF b
LD

&

, and the impulse-response function 

associated with changes in divide position )(tF div
LD may not be the same.  As 

discussed in Section 4.3.1, the impulse-response function depends on the 

spatial pattern of the perturbation.  For a given impulse-response function, 

the flux of ice crossing the limited-domain boundary due to accumulation-

rate perturbations ),( txQ LD
b&∆  at a particular time t is the convolution of 

volume-perturbation functions for that timestep and all applicable previous 

timesteps: 
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A similar equation is used to calculate the changes in ice flux due to ice-

divide migration ),,( txQ LD
div∆  
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Figure 4.3b illustrates that the volume added or removed from the 

domain over time is determined by convolving the volume-perturbation time 

series (the change from the steady-state value), illustrated in Figure 4.3a, 

with the appropriate impulse-response function.  At any timestep, the 

change in ice flux from the known steady-state value is the sum of the 

changes in ice flux from all applicable previous timesteps.  Contributions 

from previous timesteps are included until the entire volume perturbation 

has been accounted for, which occurs when the value of the impulse-

response function goes back to zero or when the duration of the model 

calculation is reached.  In the simple scenario depicted in Figure 4.3, the 

change in the rate of input ice flux that has to be exported through each 

boundary could be due to a change in accumulation, a change in ice-divide 

position, or a change in external forcing.  The ice-flux boundary condition 

),( txq LD  at the limited-domain boundaries xLD on the left side and on the 

right side of the divide at each timestep t is given by the sum of the steady-

state ice flux )(0
LDxQ  (Equation 4.6), with the change in ice flux due to 

accumulation perturbations ),( txQ LD
b&∆  (Equation 4.7), and with the change 

in ice flux due to ice-divide migration ),( txQ LD
div∆  (Equation 4.8), and with 

the change in ice flux due to external forcing ),( txQ LD
ext∆  (see Section 4.3.2.3  
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and Section 4.4.2), giving 
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div
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.           (4.12)
 

These four terms account for the total flux crossing the limited-domain 

boundary on the left side of the divide or on the right side of the divide at 

any time ti. 

 

 

                

Figure 4.3.  a) Example change in ice volume from steady state, which may be due to 

changes in accumulation (Equation 7), changes in ice-divide position (Equation 8), or 

changes in external forcing.  b) The change in ice volume at each timestep is scaled by a 

response function, and added to or removed from the limited domain over multiple 

timesteps.  The actual change in ice volume at any timestep is the convolution of changes in 

ice volume from all applicable previous timesteps with the impulse-response function.  In 

this illustration, the convolution value is the sum of changes in ice volume (marked with a 

dot) at each timestep (marked with vertical lines).   

 

 

 

 



Chapter 4:  An efficient model of transient ice flow 

106 

4.3. Results 

 

We have described a new approach to calculate a physically-realistic 

value for the flux crossing the boundaries of a limited-domain model.  The 

accuracy of the solution from our limited-domain model depends on the 

suitability of the impulse-response functions.  In practice, the full-domain 

model is used only to calculate impulse-response functions that are required 

for the limited-domain boundary-flux calculation.  However, ice-sheet 

evolution in the limited-domain model with the correct boundary flux must 

be consistent with ice-sheet evolution in the full-domain model within which 

it is embedded.  The full-domain solution and the limited-domain solution 

should be equivalent, and we show how this can be achieved.      

Unless stated otherwise, the standard limited-domain model we use 

in our tests has a maximum initial ice thickness H of 1000 m, crosses an ice 

divide with a limited-domain length L= 25 km, has a mean accumulation 

rate ��=20 cm yr-1, has a uniform flowband width W(x), and has ice flux 

leaving the left-side boundary Qin= -2500 m3 yr-1; ice flux on the left side of 

the divide is negative, because the surface slopes there are positive.  The 

ice-divide position is the spatial location with the highest surface elevation. 

 

 

4.3.1. Impulse-response functions 

 Following the linearized kinematic-wave theory that was applied to 

glaciers by Nye (e.g. 1960), the accumulation-rate perturbation ),(1 txb&  in 

Equation 4.5 has a small magnitude and has a spatially uniform 

distribution.  An impulse-response function can well characterize the 

response of glaciers and ice sheets to changes in climate (e.g. Hooke 2005, 

pg. 373-375).  We use the impulse-response function not only to gain a 

characteristic understanding of ice-sheet response time, but the shape of the 
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impulse-response function is the primary information supplied to the 

limited model to facilitate realistic ice-sheet evolution.  In this case, the 

response function to a spatially uniform impulse of accumulation can well 

describe the evolution of a limited domain to spatially uniform 

perturbations, but the actual accumulation perturbations may not be 

spatially uniform.  In addition, the impulse-response functions are 

calculated for specific limited-domain geometry, and this geometry may 

change over time.  We must quantify the utility of a given impulse-response 

function to properly characterize ice-sheet behavior as the limited model 

evolves to different ice-sheet geometries and experiences different 

accumulation-rate perturbations.  Since we aim for the most efficient 

calculation of ice-thickness evolution, it is an advantage to recalculate the 

response function only when necessary. 

 Four impulse-response functions )(tFLD are required in a limited-

domain model, and they may all be different.  The impulse-response 

functions control volume perturbations across the limited domain, and these 

perturbations may be attributable to accumulation variations or to divide 

migration.  For a limited domain that crosses an ice divide, accumulation-

rate perturbations are transported across both the left-side boundary and 

across the right-side boundary.  To properly control volume perturbations 

due to changes in accumulation, we use separate impulse-response 

functions )(tF b
LD

&

 for each boundary.  Another impulse-response function 

)(tF div
LD  is also required to control volume perturbations due to changes in 

divide position, we again use separate impulse-response functions )(tF div
LD  for 

each boundary.  We explore the sensitivity of the solution for ice-sheet 

evolution with the limited-domain model to the four impulse-response 

functions used in the problem.   

 



Chapter 4:  An efficient model of transient ice flow 

108 

      

 

Figure 4.4.  Response functions and ice-sheet evolution for the right-side boundary of the 

limited domain in Figure 4.2b.  The ice-thickness response function is calculated by solving 

the continuity equation (Equation 4.1) with an implicit numerical scheme (Appendix 4.2).  

The ice-flux response function is calculated using this ice-thickness response function and 

kinematic wave theory (Section 4.2.3.2).  a) Impulse-response functions to a uniform 

accumulation perturbation that spans only the extent of the limited domain. b) Impulse-

response functions to a uniform accumulation perturbation that spans the full domain.  c) 

Evolution of divide thickness in response to a step change in accumulation rate.  Solutions 

from the limited-domain model (gray lines), using impulse-response functions from a) and 

from b), are the same as the solutions from a full model; using the correct impulse-response 

functions in the limited model can yield correct ice-sheet evolution.   

 

 

4.3.1.1 Sensitivity to the extent of the accumulation perturbation 

 The extent over which the accumulation perturbation is distributed 

over the full domain will affect the response of the ice sheet.  Figure 4.4a 

shows the response functions associated with a uniform perturbation that is 
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restricted to the extent of the limited domain, and Figure 4.4b shows the 

response functions associated with a uniform perturbation that covers the 

entire span of the full domain; all response functions are for the right-side 

boundary of the limited domain shown in Figure 4.2b.  The ice-flux response 

function is calculated from the ice-thickness and surface-slope evolution 

using Equation 4.9.  

  If the accumulation perturbation is restricted to a limited portion of 

the ice sheet, the local surface slope changes are initially larger than if the 

entire ice sheet is responding directly to the accumulation perturbation.  

Therefore, the ice-flux response function in Figure 4.4a is different from the 

ice-flux response function in Figure 4.4b because the slope term in Equation 

4.9 depends on the extent of the impulsive perturbation.   

 Figure 4.4c shows that correct ice-sheet evolution can be achieved if 

the correct response function is used in the limited-model calculations.  If 

actual volume perturbations in the limited domain are restricted to the 

extent of the limited domain, the response functions in Figure 4.4a will be 

appropriate.  In reality, we expect that actual spatial and temporal 

variations in accumulation rate will occur over the full span of the ice sheet, 

and will not be restricted to the arbitrary extent of the limited-domain 

model.  In the subsequent sensitivity tests and results shown here, we use 

response functions associated with an accumulation perturbation that was 

distributed over the entire span of the full model.   

 

 

4.3.1.2 Sensitivity to the distribution of the perturbation 

The spatial pattern of the impulsive perturbation in accumulation 

over an ice sheet will affect the response time.  For example, as shown in 

Figure 4.5, a spike in accumulation that is spatially concentrated near the 
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ice divide will be discharged from the limited domain at a faster rate than a 

spatially uniform perturbation with the same volume.  It is important to 

consider the sensitivity of the impulse response function to the perturbation 

used to calculate the response function, because actual ice-volume 

perturbations across the limited domain may not be spatially uniform.   

We compare the shape of the impulse-response functions associated 

with accumulation perturbations ),(1 txb&  across the entire span of the full 

domain that are (a) spatially uniform, (b) linearly varying across the 

domain, and (c) a delta function at the divide.  A delta function can be 

represented as the limit of a Gaussian distribution (e.g. Arfken and Weber, 

pg. 81),   

),exp( 22ax
a −=
π

δ
              (4.13) 

where a is the width of the Gaussian distribution, and a→0 in the definition 

of the delta function.  We evaluate Gaussian functions with a=1/2 and 

a=1/10 (by definition, a=1/10 is a narrower spike).  Figure 4.5a displays the 

shapes of the four accumulation perturbations, and Figure 4.5b shows the 

response curves for the limited-domain boundary.  Each accumulation 

perturbation adds the same ice volume impulsively over the full domain.  By 

definition, the impulse-response function integrates to unity over the full 

response time (in this case when the ice thickness at the limited-domain 

boundary has returned to within 10-6 of the steady-state value).  The volume 

response time τ is an e-folding time, which is the time to reach )1( 1−− e  of 

the new equilibrium value.  Figure 4.5b shows that the re-equilibration of 

the ice sheet to a narrow spike in accumulation is very different from the re-

equilibration of the ice sheet to a uniformly distributed accumulation 

perturbation.  In Figure 4.5c we show the evolution of surface elevation at 

the limited-domain boundary in response to an accumulation history that 
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increases as a step function by 5% from the steady-state value at t=1500 

years and returns to the initial steady-state value at t=5500 years.  The 

thickness response is influenced by the response function used to calculate 

this solution.  When the actual accumulation perturbation is spatially 

uniform, but an impulse-response function derived from a spatially 

restricted spike perturbation is used to characterize ice-sheet behavior, ice 

added to the domain is evacuated too quickly. 

In reality it is unlikely that the spatial pattern of accumulation 

perturbations will be so spatially restricted.  Ice-sheet evolution is 

determined primarily by long-term average changes in accumulation rate, 

and not by localized, even if large in magnitude, excursions in the 

accumulation rate.  Therefore, to calculate the impulse-response function 

used to control actual ice-volume perturbations due to changes in 

accumulation )(tF b
LD

&

 within the limited-domain model we use a spatially 

uniform accumulation-rate perturbation ),(1 txb& .  However, changes in ice 

input directed toward one boundary or the other due to ice-divide migration 

are better characterized by a spike function.  Under steady-state 

accumulation forcing (i.e. with no accumulation perturbation), divide 

migration can redirect some of this accumulation toward one boundary or 

another.  Therefore, to calculate the impulse-response function used to scale 

actual ice-volume changes due to divide migration )(tF div
LD  within the 

limited-domain model we use an accumulation-rate perturbation ),(1 txb&  that 

is a function with a=1/10 centered at the initial divide. 
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Figure 4.5. a) Accumulation perturbations that are spatially uniform (dashed line), 

linearly varying (thick solid line), a Gaussian function (Equation 4.13) with a=1/2 (thin 

line), and a Gaussian function with a=1/10 (gray line); these are examples of the 

perturbation term ),(1 txb&
 
in Equation 4.5, and all perturbations add the same ice volume 

in one timestep.  The vertical line marks the position of the limited-domain boundary on 

the right side of the ice divide, as in Figure 4.2b.  b) Response curves associated with 

response functions associated with the impulsive perturbations in a).  The volume response 

time τ is an e-folding time, the time to reach (1-1/e) of the new equilibrium.  c) Ice-sheet 

evolution from the limited-domain model in response to a step change in uniformly 

distributed accumulation, using the different response functions that characterize uniform 

and nonuniform perturbations. 

 

 

 

4.3.1.3. Sensitivity to ice-sheet geometry 

 Jóhannesson and others (1989) showed that the volume response time 

for an ice sheet can be estimated as the ratio of the maximum ice thickness 

to the ablation rate at the terminus, i.e. the impulse-response function is 
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dependent on the ice thickness.  The response function is associated with 

specific ice-sheet geometry, and in this case it is the full domain in which 

limited-domain model is embedded.  However, in a transient problem, the 

ice thickness and the ice-divide position can change.  Our impulse response 

functions should produce longer response times for thicker ice sheets. 

 

 

 

Figure 4.6.  Ice-sheet surfaces generated with an ice thickness at the left side of the 

limited domain of 800 m (thick line), 1000 m (dashed line), and 1200 m (thin line).  The ice 

divide is at 0 km along the flowband.  The dots mark the spatial location of the time-

varying response functions shown below.  b) Response curves for impulse-response 

functions calculated from a uniform accumulation perturbation across a full model in which 

each ice-sheet surface in a) was embedded.  The volume response time τ is an e-folding 

time, the time to reach (1-1/e) of the new equilibrium. c)  Ice-sheet evolution from a limited-

domain model that is ~1000 m thick, in response to a step change in uniformly distributed 

accumulation, using response functions that characterize a ~800 m thick ice sheet and a 

~1200 m thick ice sheet.  The dashed line shows the correct solution, a thicker ice sheet has 

a longer response time, and a thinner ice sheet has a shorter response time. 



Chapter 4:  An efficient model of transient ice flow 

114 

We calculate impulse-response functions associated with ice sheets of 

different ice thicknesses.  Figure 4.6b shows the response curves for ice 

thicknesses of 1000 m, 800 m, and 1200 m, shown in Figure 4.6a.  We 

calculate the evolution of our standard 1000-meter thick ice sheet in 

response to a step 5% increase in accumulation rate, but we use impulse-

response functions for an ice sheet that is 200 m thicker (at 1200 m), and for 

an ice sheet that is 200 m thinner (at 800 m) than the standard ice sheet.  

Figure 4.6c shows that ice-thickness evolution is sensitive to the ice-sheet 

geometry from which the impulse-response function is calculated.  In 

Section 4.4.1 we discuss how to assess the range of applicability of a specific 

response function, and how to estimate when the response function must be 

recalculated because the ice-sheet geometry has changed.    

 

 

4.3.2. Efficient transient calculations  

Our limited-domain calculations require appropriate impulse-

response functions.  For efficiency, we do not update the impulse-response 

functions throughout the calculation for ice-sheet evolution.  We assume 

that an impulse-response function generated with a spatially uniform 

accumulation perturbation is appropriate to control volume discharges due 

to accumulation variations )(tF b
LD

&

, and we use an impulse-response function 

generated with a Gaussian-function accumulation perturbation to control 

volume discharges associated with ice-divide migration )(tF div
LD .  Given the 

other sources of uncertainty in the ice-thickness solution that we seek, we 

show that this is a reasonable procedure. 

While the primary purpose of the full-domain model is to calculate 

the impulse-response functions required to properly calculate the limited-

domain boundary flux, we can also use the solution for ice-sheet evolution 
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from the full-domain model to test our limited-domain solution.  In Section 

A4.3 we show that the full-domain model exhibits ice-sheet evolution that is 

consistent with our physical expectation.  Therefore, we can require that the 

limited-domain model exhibit the same behavior as the full-domain model.  

In tests of ice-sheet evolution with the limited-domain model, we must 

prescribe the accumulation-rate history ),( txb& .  We must also prescribe the 

history of externally forced changes in ice flux on the left side of the divide 

)(tQ L
ext∆ , and on the right side of the divide )(tQ R

ext∆ .  The accumulation-rate 

and external-forcing histories, together with the impulse-response 

functions, contain all of the information about ice-sheet evolution that is 

required by the limited-domain model calculations. 

 

 

4.3.2.1. Ice-thickness evolution and ice-divide migration 

 If the correct impulse-response functions are used, the ice sheet can 

thicken and thin in exactly the same way as a full-domain model for small 

perturbations.  If an impulse-response function associated with a spatially 

uniform perturbation is used to scale ice-volume perturbations that are not 

strictly uniform, the ice sheet will thicken and thin in a similar, but not 

exactly the same, way to a full-domain model.   Figure 4.7 shows that if 

there are no mass-balance perturbations outside the limited domain, the ice-

sheet history can be well reproduced by using information from the impulse-

response functions alone.  As illustrated in Figure 4.7a, the accumulation-

rate history for this test varies in space and time across the limited domain, 

but remains at the steady-state values elsewhere.  Figure 4.7b and Figure 

4.7c show that using one set of impulse-response functions does not exactly 

capture the behavior of the full domain.  However, the results are similar.  

We argue that this is a simplified test, and that the errors accrued by not 



Chapter 4:  An efficient model of transient ice flow 

116 

recalculating the impulse-response functions are minor compared to other 

uncertainties; this is discussed in more detail in Section 4.4.1. 

 

 

 

Figure 4.7. a) Accumulation-rate history that changes in space and time across the extent 

of the limited domain, but is constant outside the limited domain.  This accumulation-rate 

history over the full domain is used to calculate ice-sheet evolution in the full-domain 

model; the portion covering the limited domain is used to calculate ice-sheet evolution in 

the limited-domain model.  The limited model uses response functions from an 

accumulation perturbation that extends over the limited domain only.   b) Ice-thickness 

evolution at the right-side boundary of the limited domain (as in Figure 4.2b).  c) Ice-divide 

position from the limited-domain model and from the full-domain model.  The solutions 

from the limited model and from the full model are not identical because the impulse-

response function cannot provide information about proper ice-divide migration. 
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A realistic full-domain ice sheet will experience changes in ice flow 

and climate across its entire extent.  Therefore, a more realistic test is to 

prescribe accumulation-rate variations across the full domain, and compare 

the solutions for ice-sheet history from the limited-domain model and from 

the full-domain model.  Figure 4.8a shows an accumulation history that 

changes from a spatially uniform pattern, to a pattern that has a strong 

spatial gradient across the divide; the variation across the limited domain is 

the same as in Figure 4.7a.   In this case, external forcing is a significant 

driver of divide migration.   

Figure 4.8b and Figure 4.8c confirm our expectation that when 

external forcing is significant, the impulse-response functions alone cannot 

provide enough information to facilitate accurate ice-sheet evolution.  If the 

impulse-response functions are generated with a spatially uniform 

impulsive perturbation that spans the entire full domain (as in Figure 4.4b), 

the solution in Figure 4.8 is better approximated than if the impulse-

response functions are generated with an impulsive perturbation that spans 

the limited domain only (as in Figure 4.4a, and in Figure 4.7).  However, if 

the influence of external forcing on the boundary is not adequately 

described by spatially uniform mass balance outside the limited domain, 

additional information is required; this is demonstrated by the mismatch in 

Figure 4.8b and Figure 4.8c. 
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Figure 4.8. a) Accumulation-rate history that changes in space and time across the full 

domain.  This history is used to calculate ice-sheet evolution in the full-domain model; the 

portion covering the extent of the limited domain (bounds shown with white lines) is used 

to calculate ice-sheet evolution in the limited-domain model.  The limited-domain model 

uses response functions from an accumulation perturbation that extends over the full 

domain.   b) Ice-thickness evolution at the right-side boundary of the limited domain (as in 

Figure 4.2b).  c) Ice-divide position from the limited-domain model and from the full-

domain model.  The solutions from the limited model and from the full model are identical 

if the correct external-flux forcing Qext is known. 

 

 

4.4. Discussion 

 

4.4.1. Utility of the impulse-response functions 

We must establish over what timescales and over which ice-sheet 

geometries the impulse-response function is valid.  For efficiency, we 

propose that the impulse-response functions are not recalculated for 
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accumulation perturbations with different spatial distributions, and are 

recalculated only when changes in ice thickness have been significant.  In 

the case of the evolution of large ice sheets, we propose that the threshold 

for a significant ice-thickness change be determined by the point when the 

time )1( 1−− e  to export additional ice volume has changed by more than 10%.  

The volume response time could be tabulated for many ice sheets with 

different ice thicknesses.  As ice thickness is changing in the limited-domain 

calculation of ice-sheet evolution, this look-up table could be used as a proxy 

to determine when a given ice thickness would result in a volume response 

time that is significantly different.  Crossing this ice-thickness threshold 

implies that the impulse-response functions should be recalculated for this 

geometry. 

 

 

4.4.2. Inferring external forcing 

On glacial-interglacial timescales, ice-sheet interiors will change in 

ice thickness due to local changes in accumulation and ice flux, but also in 

response to externally forced global changes in ice volume.  In particular, 

ice-sheet margins respond directly to changes in sea level by advancing or 

retreating.  These changes in ice-sheet span influence the overall ice-sheet 

geometry, and therefore changes at the margin drive changes in the 

interior.  The impulse-response function we have presented is associated 

with a full ice sheet with a specific geometry, and it is used to regulate 

volume perturbations that originate within the limited domain.  Since the 

limited domain does not have any information about global changes in ice 

volume, these externally-forced changes at the limited-domain boundary 

),( txQ LD
ext∆  must be prescribed differently than our treatment of volume 



Chapter 4:  An efficient model of transient ice flow 

120 

perturbations due to accumulation variations and ice-divide migration; we 

prescribe this information through the ),( txQ LD
ext∆  term in Equation 4.12.   

The correct value of ),( txQ LD
ext∆  at the limited-domain boundaries xLD 

over time t must come directly from a full-model calculation, or must be 

estimated using a proxy for the externally forced perturbations (e.g. changes 

in sea level).  However, it may be that the history of external forcing is 

largely unknown.  To infer this value, we could infer the change in ice flux 

due to external forcing ),( txQ LD
ext∆ at the limited-domain boundaries as part 

of an inverse problem.  In particular, we will use this efficient model for 

transient ice flow to infer histories of accumulation and ice dynamics from 

the shapes of radar-observed internal layers.  By solving this inverse 

problem, we can infer histories of ice thickness, ice-divide position, 

accumulation rate, and external forcing that are consistent with internal-

layer architecture and ice-surface topography.   

 

 

4.5. Conclusions 

We have demonstrated how to setup a limited-domain model that can 

efficiently calculate transient ice flow.  This efficient limited-domain model 

is well suited as part of an inverse problem, and in particular, a problem 

that is focused near an ice divide.  There are two key insights that promote 

efficiency and accuracy in this problem.  First, rather than calculate ice-

sheet evolution using a limited model that is always nested in a full model, 

we embed the limited model only at limited points in the calculation.  

Second, we use the full model only to provide information about 

characteristic behavior of this full ice sheet, not to provide exact values of 

the required boundary conditions.  The behavior of a full ice sheet is 

characterized using impulse-response functions.  We have illustrated how 
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the impulse response of an ice sheet depends on the spatial distribution of 

the accumulation perturbation, in addition to the ice-sheet geometry.  In the 

calculation of ice-sheet evolution with a limited-domain model, different 

impulse-response functions should be used to realistically control changes in 

ice volume that may be due to changes in accumulation rate or to changes in 

ice-divide position. 
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A4.1. Ice-sheet flowband model  

 

We use a flowband model, which is a 2.5-D representation of ice flow, 

where the boundaries are defined by two nearby flowlines and the volume is 

bounded vertically beneath these flowlines.   

 

    

Figure A4.1.  Geometry of an ice-sheet flowband with a limited domain.  The flux leaving 

the domain on the left side QL(t) and on the right side QL(t) are calculated, and the spatial 

and temporal history of accumulation rate �� ��, �� is prescribed as a boundary condition. For 

this model, the bed topography and the width function do not change in time.   

 

 

Figure A4.1 illustrates the geometry of a flowband. Horizontal 

variations in the bed topography B(x) and in the flowband width W(x) are 

specified.  We assume that glacial-isostatic, tectonic, or erosional processes 

are not changing the bed topography over time.  In reality, the flowband 

width and the bed topography could change over time, but as a first-order 

assumption we assume that the flowband width and the bed topography are 
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constant over time.  The ice thickness h(x,t) is related to the ice-surface 

elevation by h(x,t) = S(x,t)-B(x). If a steady-state surface calculation is 

performed to estimate the initial ice surface, the ice-surface elevation at one 

point at the first timestep S0(t0) and the ice flux entering the domain at the 

first timestep Q0(x0) are both required initial conditions.  The boundary 

conditions include the spatial and temporal accumulation rate ),( txb&  and 

the externally-forced change in ice flux QLDext(t).  These values must be 

known, be estimated, or be solved for as a part of an inverse problem (e.g. 

Waddington and others, 2007). 

By integrating Equation 4.1 from the boundary at x0 where ice flux is 

specified, the ice flux at the end of the domain xend can be represented 

kinematically by 

∫ −−+=
endx

x

dWtmthtbtQtxq
0

)()),(),(),(()(),( 0 χχχχχ &&& ,        (A4.1.1) 

where Q0(t) is the time variation of ice flux entering at one end of the 

flowband domain, ),( txh& is the rate of change in ice thickness, and ),( txm&  is 

the basal melt rate.   

Dynamically, the flux of ice passing through a cross-sectional area 

W(x)×h(x,t) at any point x and at any time t, is related to the depth-

averaged horizontal velocity ),( txu  in that cross-section by 

       ),(),()(),( txutxhxWtxq = .          (A4.1.2) 

We can calculate ),( txu  using the Shallow Ice Approximation (SIA; e.g. 

Hutter, 1983, pg. 256-332; Paterson, 1994, pg. 262); the SIA is a simplifying 

assumption that can be applied in cases where the ice thickness h(x,t) is 

much smaller than the horizontal span of the ice sheet.  Therefore, 

derivatives of velocities and stresses with respect to x are generally much 

smaller than derivatives with respect to z.  The constitutive relationship for 

ice flow (Glen, 1955) using the SIA is, 
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n
xzxz tzxTA τε )),,((=&           (A4.1.3) 

where xzε&  is the simple-shear strain rate along a horizontal plane, 

A(T(x,z,t)) is the temperature-dependent ice-softness parameter, xzτ is the 

component of the shear-stress tensor acting horizontally along a horizontal 

plane, and we choose the flow law exponent n=3 (e.g. Paterson, 1994, pg. 

85).  The component of the strain-rate tensor along a horizontal plane is 

    








∂
∂+

∂
∂=

x

w

z

u
xz 2

1ε&           (A4.1.4) 

Following the SIA, the derivatives of velocities with respect to x are 

negligible, giving zuxz ∂∂≈ /2ε&  (e.g. Paterson, 1994, pg. 262). Using the flow 

law given by Equation A4.1.3 for the SIA, and assuming that the 

temperature is uniform with depth for each position in x (T(x,z,t)=T(x,t)), the 

depth-averaged horizontal velocity can be found by integrating zu ∂∂ /  twice 

over depth z, 
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where ρ  is density, g is gravitational acceleration, S(x,t) is the ice-surface 

elevation, and h(x,t) is the ice thickness.   

If the ice temperature is not uniform with depth at each location, we 

can solve for an effective isothermal softness parameter ),(
~

txA  that gives 

the same depth-averaged velocity and ice flux as a depth-varying-

temperature-dependent softness parameter A(T(x,z,t)).  We calculate the 

effective isothermal value by equating the depth-averaged ice velocity ),( txu  

with A(T(x,z,t)), 
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to the depth-averaged velocity ),( txu  from Equation A4.1.5, and solving for 

A(T(x,t)), given as here as ),(
~

txA , 

   ∫ ∫ −+=
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where ẑ  is a nondimensional elevation given by  
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Using Equation A4.1.5 for the depth-averaged velocity, but with the 

effective isothermal softness parameter from Equation A4.1.7, and then by 

representing average velocity ),( txu  in terms of ice flux q(x,t) and ice 

thickness h(x,t) using Equation A4.1.2 and h(x,t) = S(x,t) - B(x), we can 

rearrange this equation to formulate a nonlinear ordinary differential 

equation for a steady-state ice surface,  

  

n

nn xBtxSxWgtxA

txqn

dx

txdS
/1

2
000

000

))(),()(())(,(
~

2

),()2(),(









−
+

=
+ρ

       (A4.1.9) 

We use this ice-surface profile S0(x,t0) as the required initial condition to 

solve for the ice-thickness evolution h(x,t) that we find by solving Equation 

1; therefore, all the values used in this calculation are for the first time, t=t0. 

 

 

 

A4.2. Numerical solution using the Finite-Volume Method 

 

We use numerical methods to solve the mass-conservation equation 

for ice flow (Equation 4.1).  The background on numerical methods applied 

to glaciological problems is rich (e.g. Van der Veen, 1999, pg. 218), but we 

discuss only the methods we have chosen to use in this work.  Solving an 

equation numerically is done by replacing the values represented by a 
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continuous function, in this case in Equation 4.1, by values at discrete 

points.  We use the Finite-Volume Method (FVM; e.g. Patankar, 1980; 

Versteeg and Malalaskera, 1995), also known as the Control-Volume 

Method, to discretize the domain.  The set of individual volumes fill the 

domain.  In the FVM, each volume in the domain has a finite size, and is 

defined by a volume-center point and two edge points, as illustrated and 

described in Appendix G.  In the FVM solution of the mass-continuity 

equation (Equation 4.1), we evaluate the ice thickness at each volume center 

and we evaluate the flux across each volume edge (west and east along the 

horizontal domain from each center point).  Ice flux is calculated at the 

finite-volume western edge xw and the eastern edge xe, but it is a function of 

ice thickness and surface slope that are calculated at finite-volume center 

points xP.  Therefore, in order to evaluate the ice flux, the ice thickness and 

surface slope must be evaluated at the finite-volume edges, and this 

relationship is discussed further in Appendix G.  However, at the first 

western finite-volume edge xw1 and the last eastern finite-volume edge xeend, 

no information exists outside the limited domain to interpolate the ice 

thickness and slopes at the limited domain boundaries, and values 

extrapolated from inside the limited domain are inadequate.  As discussed 

in Section 4.2.1, this is why we need a careful treatment of the calculated 

flux across the limited-domain boundary.  Discretization using the FVM is 

discussed further in Appendix G, and how to address the nonlinear 

dependence of the ice flux on the ice thickness is discussed in Appendix I.   

Here we use a fully-implicit timestepping scheme, which is described 

in detail in Appendix H.  In Appendix H we also compare a fully-explicit 

scheme, a Crank-Nicolson (semi-implicit scheme), and a fully-implicit 

scheme.  Following Patankar (1980, pg. 57), we use a fully-implicit scheme, 

but we verify that our fully-implicit solution matches an appropriately time-



Chapter 4:  An efficient model of transient ice flow 

127 

stepped fully-explicit solution.  In addition, we invoke underrelaxation to 

stabilize our procedure to solve a nonlinear problem that has been 

linearized between iterative calculations of updates to the solution values.  

As described by Patankar (1980, pg. 67), underrelaxation is a way to slow 

down convergence of the solution by using a weighted contribution of values 

from previous iterations. 

  The problem is nonlinear because the ice flux q(x,t) in Equation 4.1, 

calculated dynamically using Equation A4.1.2 with Equation A4.1.5, is a 

nonlinear function of ice thickness h(x,t) and surface slope dS(x,t)/dx; the 

ice thickness and surface slope are the values we are trying to find.  The 

solution for ice-thickness evolution must satisfy Equation 4.1, and the 

treatment of the nonlinearity is discussed further in Appendix I.  We use an 

iterative procedure, and we stop iterations when changes in the solution are 

smaller than a threshold value (e.g. Patankar, 1980, pg. 47; Waddington, 

1982, pg. 239; Van der Veen, 1999, pg. 226); here we use a threshold value 

of 10-6, and the choice of this value is discussed further in Appendix J.   

 

 

 

A4.3. Full-domain model 

 

As sketched in Figure 4.2a, the full-domain surface is extended from 

the limited-domain surface. Any full domain could be used to embed the 

limited domain, but here we use a simple analytical ice-sheet surface in 

which the mass-balance distribution is given by a zone of uniform 

accumulation c over part of the domain, and a zone of uniform ablation a 

over the rest of the domain.  The two zones are separated at the equilibrium 

line R; this is the Paterson model (Paterson, 1972; Paterson, 1994, pg. 245), 
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and this model is discussed further in Appendix E.  The ablation rate 

depends on the size of the ablation zone, expressed as the position of the 

equilibrium line R (or equivalently the ratio c/a of the accumulation rate to 

the ablation rate).  Since the ablation rate influences the ice-sheet response 

time, we prescribe a ratio of accumulation rate to ablation rate c/a that 

gives a realistic rate of ablation.  Our limited-domain model crosses an ice 

divide, and must be embedded in a full domain that extends off both sides of 

the divide.   

The calculation of the full-domain surface shape from the analytical 

Paterson (1972) model requires the length of the full domain.  If the full-

domain length cannot be estimated from a map of the ice-sheet study site, 

the full length L on either side of the divide could be calculated by matching 

the full-domain surface to the limited-domain surface hLD at the limited-

domain-boundary position xLD on either side of the divide for the ice-sheet 

model used to represent the full domain.  For the Paterson (1972) model, 

this is given by 
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where x0 is the position of the ice divide, H0 is the thickness at the ice 

divide, and c/a is the ratio of accumulation rate to ablation rate. 

In a model that includes an ice-sheet terminus, as the distance along 

the flowline approaches the total length of the flowline, the ice flux and the 

ice thickness will approach zero at the terminus.   This means that the 

velocity at the terminus will also approach zero (e.g. following Equation 

A4.1.5).  As pointed out by Nye (1960; 1963), this resulted in the non-

physical situation of an immobile terminus; the terminus should be able to 

advance and retreat. To address this problem in our discretized model, the 

region near the terminus can be replaced by a wedge with a defined angle to 
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the surface and a discrete area (e.g. Nye, 1963; Waddington, 1982, pg. 247).  

Mass conservation and the flow law are satisfied separately in the wedge.     

Figure A4.2 sketches the finite-volume geometry for our wedge-

shaped terminus, which is implemented on both sides of the divide.  We cut 

off the full-domain surface at a finite-volume edge point close to the 

terminus, which we call xLc on the left side of the divide, and xRc on the right 

side of the divide.  The surface slope at the cut-off point is the slope of the 

wedge surface, and can be defined by the surface slope between the 

upstream finite-volume center points.  The surface slope at the cut-off point 

on the right side of the divide xRc (Figure 4.2b) is: 
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where SPc  is the last finite-volume center point used at the position xRc, and 

SWc is the center point upstream of SPc.  Analogously, the surface slope at 

the cut-off point on the left side of the divide xLc is: 
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where SPc  is the last finite-volume center point used at the position xLc, and 

SEc is the center point upstream of SPc.  Note the difference in subscript 

between w (edge-point value) and W (center-point value).  Using these 

slopes, we can evaluate the equation for a line, y=mx+b, at y=S(xRc) for the 

y-intercept bR:

 
    

c
PR

c
PR xmSb −=            (A4.3.4) 

and y=S(xLc) for the y-intercept bL: 
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Using these y-intercepts bL and bR, we can again solve the equation for a 

line to calculate the wedge lengths Lwedge at the termini where the ice 

thickness goes to zero, where y=0.  The length of the wedge on the right side 

of the divide is: 

             c
wRR

R
wedge xmbL −−= )/(          (A4.3.6) 

The length of the wedge on the left side of the divide is: 
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A wedge is in steady-state when the ice flux entering the wedge from 

upstream at either x=xLc or x=xRc is removed by ablation on the wedge.  The 

ice flux (in m3 yr -1) entering the domain is ablated over the area of the 

wedge (in m2), defining an ablation rate (in m yr -1).  The ice flux entering 

the wedge is calculated dynamically using Equation A4.1.2.   

To solve for ice-thickness and length changes within either wedge, we define 

the volume in the wedge at any timestep as 

    wedgewedge
c
w WLxhV )(

2

1=          (A4.3.8) 

where Lwedge is the wedge length given by Equation A4.3.6 or Equation 

A4.3.7, and Wwedge is the flowband width at the terminus. The change in 

volume of the wedge from time t to time tt ∆+  can be defined by 

   balanceflux VVtVttVV δδδ −=−∆+= )()(         (A4.3.9) 

where fluxVδ  is the change in volume due to changes in ice flux, and δ Vbalance 

is the change in volume due to changes in accumulation or ablation 

(balance). This conservation equation must be satisfied in order to solve for 

ice thickness in the wedge at a future timestep h(xPc, tt ∆+ ).  Since the 

change in volume due to changes in ice flux )()( tVttVV fluxfluxflux −∆+=δ  is a 

nonlinear function of the ice thickness h(xP, tt ∆+ ) at the timestep tt ∆+ , we 

use an iterative scheme to find the correct values at a future timestep.  The 
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estimate of ice thickness at tt ∆+  used in the flux calculation to calculate ice 

thickness at tt ∆+  is iteratively updated until the mass-conservation 

equation (Equation 4.1) is satisfied.  In the conservation equation for the 

wedge (Equation A4.3.8), the total volume change Vδ  is also a function of 

the wedge length Lwedge ( tt ∆+ ), which is a function of the ice-surface 

elevation at the future timestep S(xLc, tt ∆+ ) and S(xRc, tt ∆+ ), which are 

the values we are solving for.   We use a similar iterative scheme to that for 

the nonlinearity (Appendix I) to find the correct value of wedge length Lwedge 

( tt ∆+ ).  In this formulation, if the ice flux entering the wedge does not 

equal the amount of ice lost by ablation, the terminus will advance or 

retreat.   

 

                          

Figure A4.2  Sketch of wedge terminus in the full-domain model, for the right side of the 

ice divide (a similar wedge is emplaced on the left side of the divide).  The full domain is cut 

off at a point that we call xPc at some distance before the actual terminus, at xe.  The 

terminus position at xe is defined from the upstream slope between the cut-off point and 

next upstream finite-volume center point, in this case xWc.  The wedge is highlighted with 

dashed lines, and extends from the last western finite-volume edge xwc to the last eastern 

finite-volume edge xe, with a length Lwedge. 
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In our formulation, the wedge terminus is always represented by one 

grid cell at the end of the domain.  While Lam and Dowdswell (1996) 

suggested that an adaptive-grid scheme could be used at the terminus in 

order to best represent ice-sheet behavior in the numerical model, we are 

solving for this full-domain model in response to small perturbations only, 

and therefore the simple regridding treatment presented here is adequate.  

However, this is a consideration when we use this full-domain model to 

validate the solution from our limited-domain model.  In addition, before we 

can use the full-domain model to validate the limited-domain model, we 

check that the evolution of our full-domain model is similar to the evolution 

that is characteristic of an ice sheet with the same geometry and mass-

balance distribution. 

Jóhannesson and others (1989) characterized volume response 

timescales for ice masses in response to small perturbations, which are 

discussed further in Section 4.4.1 and Appendix F.  Jóhannesson and others 

(1989) also showed that the evolution of ice volume in response to a step-

change in mass balance is well approximated by the curve ))/exp(1( vt τ− , 

where termV bH &/max−=τ  is the volume response time calculated from the 

maximum ice thickness maxH  and the ablation rate at the terminus termb& .   

Hooke (2005, pg. 373-374) showed that this exponential behavior can be 

derived from the kinematic-wave equation (Appendix F), and that it 

characterizes the response of a steady-state ice mass to a uniform, step 

change in accumulation as it approaches a new steady state.  To validate 

our full-domain model, we compare the ))/exp(1( vt τ−  curve to the response 

of the full model.  
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Figure A4.3 Ice-volume evolution V(t) in a full-domain model that has been extended from 

the limited model in Figure 4.2a using a Paterson (1972) model (gray band), or a Vialov 

(1958) model (solid line), compared to a theoretical expectation for long-term ice-volume 

evolution (dashed line, e.g Jóhannesson and others, 1989).  The gray band shows the 

solutions for a Paterson model with a mass-balance ratio of c/a=0.1 to c/a=0.05; different 

mass-balance distributions influence the rate of ablation at the terminus.  Time is given as 

a ratio of the volume response time termbH &/max=τ , where maxH  is the maximum ice 

thickness and termb&  is the ablation rate at the terminus. 

 

 

 

 We prefer to embed the limited domain in a Paterson-model surface 

profile, compared to a Vialov-model profile, because the Paterson model 

gives a magnitude of ablation at the terminus that is more physically 

realistic.  The mass-balance distribution in a Paterson model determines the 

rate of ablation at the terminus, which influences the volume response time.  

We find that an ablation rate with a comparable order of magnitude to the 

accumulation rate results in ice-sheet evolution that best matches our 
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theoretical expectations (following e.g. Jóhannesson and others, 1989).  

Figure A4.3 shows the evolution of the geometry in Figure 4.2a in response 

to a step-change in accumulation, extended using both a Paterson (1972) 

model and a Vialov (1958) model.  The evolution of ice volume for a full 

model with a Paterson extension, shown in Figure A4.3 with a gray band 

representing c/a in the range 0.05-0.1, gives a better fit to the ))/exp(1( vt τ−  

curve.  While embedding the limited domain in a Paterson model results in 

a more physical evolution of ice volume, both extensions conserve mass, 

allowing the limited domain to hold steady state and to return to the same 

steady state after a perturbation. 

    



 



 

Chapter 5 
 

 

 

A Method to Infer Transients in Accumulation Rate, Ice 

Thickness, and Ice Flow from Internal Layers 
 
 

 

 

 

 
Ice-sheet internal layers preserve information about how the ice sheet responded to 

past spatial and temporal changes in accumulation rate, ice-sheet thickness, and 

ice flow, and present-day internal-layer shapes observed by radar are the most 

accessible remaining record of this past information.  To infer transients in 

accumulation rate, ice-sheet thickness, and ice flow from the shapes of internal 

layers, we solve an inverse problem.  We present a new algorithm to solve this 

inverse problem, and we address the capabilities of this new approach.   While 

some details of the accumulation history and the ice-flow history can be recovered 

from an ice core, ice cores are temporal measurements that provide limited spatial 

information.  However, the solution to this inverse problem is better constrained in 

combination with ice-core data.  If internal layers are dated, for example by an 

intersecting ice core, then radar-observed internal layers provide both spatial and 

temporal information about accumulation rate, ice thickness, and ice flow.   
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5.1. Introduction 

 

Internal layers of glaciers and of ice sheets have been imaged with 

ice-penetrating radar (e.g. Paren and Robin, 1975).  Internal layers are 

assumed to be isochrones, horizons of constant age, and they have distinct 

chemical properties that cause a radar reflection.  Each layer represents a 

past surface of a different age that has been subsequently buried by 

accumulation and also displaced and strained by ice flow.  Ice-sheet internal 

layers preserve information about how the ice sheet responded to past 

spatial and temporal changes in accumulation rate and ice flow, and 

present-day internal-layer shapes are the most accessible remaining record 

of this past information.  Deeper layers contain information from further in 

the past, making them highly valuable.  However, deep layers have also 

likely been subjected to greater spatial and temporal gradients in strain 

rate, making them more difficult to decipher.  To infer transients in ice flow, 

ice-sheet thickness, and accumulation rate from the shapes of radar-

observed internal layers, we solve an inverse problem.  While some details 

of these histories can be recovered from ice cores, ice cores represent 

conditions at only a single point.  However, utilizing internal layers with our 

inverse approach is more robust in combination with ice-core data.  In 

particular, if the internal layers are dated, for example by an intersecting 

ice core, then radar-observed internal layers provide both spatial and 

temporal information.   

The spatial and temporal histories of ice-sheet flow and of 

accumulation are necessary to recreate ice-volume and sea-level histories.  

In addition, understanding large-scale evolution of ice sheets over long 

timescales is critical in order to properly interpret ice-core chemistry and to 

properly date an ice core, especially in portions of the core where annual-
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layer counting is no longer reliable.   For example, we can infer the 

accumulation rate at the location and time where each piece of ice in the ice 

core originated on the ice surface to convert chemical concentrations into 

fluxes from the atmosphere, or we can infer temporal changes in 

accumulation and ice thickness at one location on the surface to test general 

circulation model (GCM) simulations of past climate.  These spatial and 

temporal histories are necessary to properly date an ice core with occluded 

gases because the difference between the age of the gas and the age of the 

ice at pore close off depends on accumulation rate (e.g. Sowers and others, 

1989).  Histories of accumulation and ice flow are imprinted upon internal-

layer architecture, and we present an inverse approach to recover this 

information. 

 

 

5.1.1. Previous work 

Recent studies have advanced our understanding of the general 

relationships among internal-layer shape, accumulation, and ice flow (e.g. 

Parrenin and others, 2006; Hindmarsh and others, 2006; Parrenin and 

Hindmarsh, 2007; Leysinger-Vieli and others, 2007; Martin and others, 

2009).   Understanding the relationship between internal-layer shapes and 

ice-sheet history helps us to make appropriate assumptions when inferring 

information from the layers.     

Incorporating internal-layer shapes as a constraint in ice-flow models 

is informative about ice-sheet history (e.g. Nereson and Raymond, 2001; 

Nereson and Waddington, 2002; Martin and others, 2006).  In addition, 

numerous colleagues have inferred spatial patterns of accumulation directly 

from the shapes of internal layers (e.g. Pinglot and others, 2001; Spikes and 

others, 2004), and by using an ice-flow model (e.g. Morse and others, 1999; 
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Vaughan and others, 1999; Nereson and others, 2000; Fahnestock and 

others, 2001b; Baldwin and others, 2003; Siegert, 2003; Leysinger-Vieli and 

Gudmundsson, 2004; Siegert and Payne, 2004).  For internal layers whose 

shapes have not been affected by spatial gradients in strain rate or in 

accumulation, the previous studies to infer accumulation rates from internal 

layers directly, or by using a 1-D vertical strain correction, have been 

successful.  However, these assumptions cannot always be made. 

Waddington and others (2007) presented a quantitative metric to 

define a “deep” internal layer, whose shape has been affected by spatial 

gradients in strain rate or accumulation rate; an internal layer that is 

shallow compared to the total ice thickness, can be deep in this context.  As 

the depth to the layer increases to a larger fraction of the total ice thickness, 

accumulation-rate estimates based on depth variations alone, or that have 

been corrected using a 1-D flow model, are no longer appropriate.  

Waddington and others (2007) demonstrated that in most cases properly 

recovering information from deep layers is an inverse problem, in which 2-D 

ice flow must be incorporated to determine the correct histories of mass 

balance and ice dynamics; it is imperative to account for the cumulative 

vertical strain experienced by particles moving through the ice to map out 

deep internal layers.   

Previous work by Waddington and others (2007), and corroborated by 

Steen-Larsen and others (In Press) with a different inverse approach, 

established that steady-state spatial patterns of accumulation can be 

inferred from the architecture of deep internal layers by solving an inverse 

problem.  The next step is to use internal layers, and other available data, to 

infer spatial and temporal patterns of accumulation and ice flow.  The time-

dependent problem is especially relevant for inferring accumulation 

patterns from the deepest internal layers observed by radar, where a 
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steady-state assumption is no longer valid.  As detailed images of the 

deepest internal layers are being collected (e.g. Laird and others, In Press), 

the ability to infer histories of accumulation and ice flow from these data is 

a mounting imperative.  However, solving this time-dependent inverse 

problem is computationally intensive, and it is necessary to use a time-

dependent ice-flow model and an inverse algorithm that are 

computationally fast.  Chapter 4 showed how to reduce computation time in 

an ice-flow model by limiting the model domain to include only the relevant 

portions of the ice sheet.  In addition, Waddington and others (2007) 

demonstrated that a gradient inverse method is an efficient and robust way 

to solve an inverse problem. 

  

 

5.1.2. Solving an inverse problem 

In an inverse problem, the existing data have resulted from a known 

process that depends on some unknown parameter values or boundary 

conditions that we wish to find.  An inverse problem needs a forward 

algorithm and an inverse algorithm.  Based on a guess of the unknown 

parameter values, the forward algorithm generates a realization of 

observable quantities.  The inverse algorithm evaluates the fit of the 

modeled observables to the actual data, and assesses if any physical 

constraints imposed on the problem have been satisfied, in order to infer the 

best set of unknown parameter values.  The same inverse problem could be 

solved with different forward algorithms and with different inverse 

algorithms, both of which could be developed with different assumptions.  

Any simplifications made in the forward algorithm, or constraints included 

as part of the inverse algorithm, must also be considered when interpreting 

the solution. 
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In the language of inverse theory, a problem that consists of a finite 

number of data points and a finite number of model parameters is called a 

discrete inverse problem (also called a parameter estimation problem); 

compared to a continuous inverse problem where the data and the model 

parameters are continuous functions (e.g. Aster and others, 2005, pg. 2).  

Continuous inverse problems can often be effectively discretized, which can 

make their solution more accessible.  For a discrete and linear system, an 

inverse problem can be stated in a general algebraic form as 

     dGppG ==)(      (5.1) 

where G is a matrix operator (e.g. a differential equation), p refers to the 

vector of model parameters, and d refers to the vector of data parameters.  

However, linear inverse problems can still be difficult to solve.   

 If the matrix G in Equation 5.1 is rank deficient, this means that 

there exists a nontrivial null space that can complicate finding a unique 

solution (e.g. Aster and others, 2005, pg. 233).  For a discrete ill-posed 

problem, the singular-value decomposition (see Section A5.3) of G yields a 

singular-value spectrum that decays gradually to zero, the condition 

number (the ratio of the largest singular value to the smallest singular 

value) is large and finite, and the left and right singular vectors of G exhibit 

more variability (i.e. sign changes) as the index number i of Gi increases 

(e.g. Aster and others, 2005, pg. 73; Hansen, 1987).  Our problem is a 

discrete ill-posed inverse problem, and therefore we focus on techniques to 

stabilize the inverse algorithm and find a unique solution.  Most geophysical 

inverse problems are also ill-posed, and the techniques we discuss here are 

generally applicable. 

Stabilization can be achieved through regularization.  One way to 

regularize the problem is to use a coarser discretization to reduce the 

number of parameter values, or to utilize singular value decomposition 
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(SVD; e.g. Aster and others, 2005, pg. 55) and truncate the set of singular 

values.  However, valuable information can also be lost in these stabilizing 

processes.  In particular, it is difficult to determine at which point to 

truncate the singular values, especially if the singular-value set does not 

transition abruptly from nonzero to near-zero values (e.g. Menke, 1989, pg. 

123).  While a truncated SVD solution may still be necessary (e.g. Eisen, 

2008), we rely primarily on stabilization through the commonly used 

damped least-squares solution procedure called Tikhonov regularization, 

which minimizes both prediction error and solution error (e.g. Aster and 

others, 2005, pg. 89; Section A5.3).  We incorporate a priori information so 

that the solution that does not overfit noisy data. 

 

 

5.1.3. Inverse problems in glaciology 

The spatial scales of ice sheets, the timescales involved in their 

evolution, and the diffusive nature of ice flow creates a challenge for the 

glaciological community, which relies on measurable quantities to 

understand glaciological processes.  Ice-flow models are powerful tools to 

predict ice-sheet behavior, but they require estimates of initial conditions 

and boundary conditions that are often largely unknown.   In addition, 

desirable information about glaciers and ice sheets is often intensive or 

impossible to obtain.  Therefore, inverse methods can be an ideal 

complement to use with ice-flow models and with data from glaciers and ice 

sheets (e.g. Truffer, 2004; Waddington and others, 2007; Eisen, 2008).  In 

general, setting up an inverse problem is a powerful tactic to solve problems 

in solid-earth geophysics (e.g. Menke, 1989; Parker, 1994; Gubbins, 2004), 

and also in physical oceanography (e.g. Wunsch, 1996), among other fields.   

However, solving inverse problems is a relatively new frontier in glaciology.  
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As discussed by Aster and others (2005, pg. 11), issues regarding solution 

existence, solution uniqueness, and stability must be considered for every 

inverse problem; these issues are especially relevant to inverse problems in 

glaciology.   

A well-known glaciological inverse problem is the inference of basal-

ice velocity from surface-velocity measurements.  This problem is an 

example of an ill-posed (or ill-conditioned) geophysical inverse problem.  

The degree of ill-posedness is defined by the degree to which a small change 

in a measurement value can result in a large change in the parameter 

values (e.g. Aster and others 2005, pg. 12; Hansen 1987).  In addition, 

problems that do not have a definitive solution, for example because they 

are defined by an inexact model, are inexorably ill-posed (e.g. Wunsch 1996, 

pg. 11).  Both of these types of ill-posedness can complicate stably finding a 

unique solution.  With respect to the ill-posed basal-ice velocity inverse 

problem, different algorithms have been employed to successfully find an 

approximate solution.  These have included a force-balance method (e.g. van 

der Veen and Whillans, 1989), a control method (e.g. Macayeal, 1993; 

Joughin and others, 2004b), an analytical power-series expansion (Bahr 

1994), a gradient inverse method (Truffer, 2004), a transfer-function 

approach (Raymond and Gudmundsson, 2005), a Monte-Carlo method 

(Chandler and others, 2006), and an accelerated iterative scheme (Maxwell 

and others, 2008).  These different algorithms have different advantages 

and disadvantages between accuracy, uniqueness, stability, and 

computation time, and the appropriate algorithm must be chosen based on 

the goal of solving the inverse problem.  For example, the goal may be to 

analyze the statistics of possible solution sets, or to find a solution with the 

minimum structure required to fit the data. 
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We describe our forward and inverse algorithms to solve the inverse 

problem to infer ice-sheet and accumulation-rate histories from internal 

layers.  Our forward algorithm describes the process of ice-sheet evolution 

and internal-layer structure.  Our inverse algorithm is a gradient method 

that finds updates to the unknown parameter values by minimizing a 

performance index.  The performance index is a number representing how 

well the predictions of observable quantities calculated by the forward 

algorithm match the data to an expected tolerance while, in this case, 

finding a spatially smooth accumulation pattern and a parameter set that is 

consistent with physically characteristic values of the parameters.  Our goal 

in solving this inverse problem is to infer the smoothest set of model 

parameters that is required to explain the data.  See Table 5.1 for a list of 

possible incorporated data values, and see Table 5.2 for a list of possible 

unknown model parameters in our problem. 

 

 

5.2. Forward Algorithm 

 

 We describe our forward algorithm, which is a 2.5-dimensional 

thermomechanical ice-flow model used to make predictions of observable 

quantities, in particular the shapes of internal layers.  At present, it is too 

computationally intensive to use a 3-dimensional ice-flow model and, for the 

problem that we aim to solve, this extra dimensionality adds unnecessary 

complexity.  We desire a computationally efficient forward algorithm, so we 

utilize all numerical approximations and physical simplifications that are 

appropriate.  For example, our model domain includes only a limited portion 

of the ice sheet (Chapter 4), and we use the Shallow Ice Approximation 

(SIA; e.g. Hutter, 1983, pg. 256-332; Paterson, 1994, pg. 262).  In addition, 



Chapter5:  Inferring transients from internal layers 

145 

the ice-temperature distribution can be prescribed, or it can be 

thermomechanically coupled to the ice flow.  The appropriate forward 

algorithm depends on the site conditions of each specific application, and 

the goal of solving the inverse problem.    

 Our forward algorithm solves for ice-sheet surface topography, an ice-

velocity field, and an ice-temperature field, and integrates the velocity field 

to map out internal layers of a specified age.  This algorithm generates 

realizations of all data values that may be incorporated as part of the 

inverse problem (see Table 5.1).  Here we give a generic description of the 

governing equations for our 2.5-dimensional flowband model.  In Section 

A5.1 we discuss specific assumptions that we make regarding the ice-

velocity field, and in Section A5.2 we discuss specific initial conditions and 

boundary conditions that we use the applications of our algorithm.  

 

 

5.2.1. Ice-surface evolution 

Ice-thickness evolution is found by solving the mass-continuity 

equation (e.g. Paterson, 1994, pg. 256).  In a flowband, this is given by 
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where h(x,t) is the ice thickness, W(x) is the flowband width, q(x,t) is the ice 

flux, and ),( txb&  is the accumulation rate.  The ice thickness h(x,t) = S(x,t)-

B(x), where S(x,t) is the ice-surface elevation, and we assume that the bed 

topography B(x) does not change in time.  Any numerical scheme and any 

physical parameterizations may be invoked to solve this equation.  

However, the computational cost must be minimized when calculating ice-

surface evolution as part of an inverse problem, especially for long 

calculation times, and for higher-resolution calculation domains.   



Chapter5:  Inferring transients from internal layers 

146 

We solve this conservation equation numerically using an implicit 

approach with a finite-volume numerical scheme (e.g. Patankar, 1980); 

details are given in Chapter 4.  The calculation of ice-thickness evolution 

depends on the calculation of ice flux through the domain, which depends on 

the ice thickness and the surface slope.  In a full-domain model, there is a 

zero-flux boundary condition at the terminus, and by knowing this boundary 

condition the ice thickness can be calculated everywhere.  However, in a 

limited-domain model, the ice flux crossing the limited-domain boundaries 

is unknown. Improperly calculating the boundary flux can lead to 

numerically driven ice-sheet transients and unphysical ice-sheet behavior.  

Chapter 4 describes a new approach to efficiently calculate physically 

realistic ice-sheet evolution with a limited domain.  We do this by 

characterizing the behavior of a full ice sheet using impulse-response 

functions, and we use these response functions to calculate actual flux 

transients at the boundaries of our limited domain. 

 

 

5.2.2. Kinematic and dynamic descriptions of flow 

By integrating Equation 5.2 from the boundary at x0 where ice flux is 

specified to the end of the domain xend, the ice flux can be represented 

kinematically by 

∫ −−+=
endx
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where Q0(t) is the time variation of ice flux entering at one end of the 

flowband domain, ),( txh& is the rate of change in ice thickness, and ),( txm&  is 

the melt rate.  Dynamically, the flux of ice passing through a cross-sectional 

area W(x)×h(x,t) at any point x and at any time t, is related to the depth-

averaged horizontal velocity ),( txu  in that cross-section by 
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We represent depth z through ẑ , a non-dimensional height above the bed, 
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For flexibility, we represent the horizontal velocity ),ˆ,( tzxu  in terms of the 

depth-averaged horizontal velocity ),ˆ,( tzxu , and a non-dimensional function 

as 

),ˆ,(),(),ˆ,( tzxtxutzxu φ=      (5.6) 

where ),ˆ,( tzxφ is called the horizontal-velocity shape function.  In a 

flowband, the strain rate transverse to the direction of flow is 
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The vertical velocity then follows from incompressibility (e.g. Paterson 1994, 

pg. 255) 
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Integrating Equation 5.8 over depth z, gives an expression for the vertical-

velocity field 
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where ),ˆ,( tzxψ is called the vertical-velocity shape function, and is defined 

as 

ζζφψ ˆ),ˆ,(),ˆ,(
ˆ

0

dtxtzx
z

∫=              (5.10) 



Chapter5:  Inferring transients from internal layers 

148 

The horizontal-velocity shape function and the vertical-velocity shape 

function ),ˆ,( tzxψ are defined according to the depiction of ice dynamics used 

in each specific application of this algorithm.  For example, in Section A5.1 

we define horizontal-velocity shape functions using the Shallow Ice 

Approximation (SIA), and using a shape-function parameterization for 

divide flow from Nereson and Waddington (2002). 

 

 

5.2.3. Constitutive relationship 

 The constitutive relationship for ice flow describes the specific 

mechanical relationship between strain rate and applied stress in ice.  The 

commonly used flow law (Glen, 1955; Paterson 1994, pg. 259) relates 

deviatoric stress and strain rate, assuming that ice is incompressible and 

that the ice-crystal distribution is isotropic.  This so-called Glen’s law is 

    ij
n
effij TA ττε 1)( −=&

              (5.11)
 

 where strain rate ijε&  and applied stress ijτ are tensors where i and j can 

have values from 1 to 3, effτ  is the effective shear stress, n is the flow-law 

exponent, and A(T) is the temperature-dependent ice-softness parameter.  

The individual components of the strain-rate tensor are given by 
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where ui and uj are different components of the velocity field in different 

directions xi and xj.  The flow law exponent n=3 for dislocation creep (e.g. 

Paterson, 1994, pg. 85).  The temperature-dependent ice-softness parameter 

(in Pa-n yr-1; e.g. Paterson 1994, pg. 86) follows an Arrhenius relationship, 

given by 

   )),ˆ,(/exp()),ˆ,(( 0 tzxRTQAtzxTA −=             (5.13) 
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where A0 is the temperature-independent ice-softness parameter (see e.g. 

Paterson 1994, pg. 97), Q is the activation energy for creep, and R is the 

universal gas constant.  

 

 

5.2.4. Thermomechanical flow calculation 

The ice-temperature field 	��, 
̂, ��  can be prescribed, or calculated 

independently of the ice-flow field.  However, in reality the thermodynamics 

and the mechanics of ice flow are coupled because ice-viscosity is 

temperature dependent, and the contribution of advection to the ice-

temperature field depends on the ice-flow field (e.g. Paterson, 1994, pg. 216; 

Hooke, 2005, pg. 303).  Conservation of energy is given by   
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where T is temperature, t is time, ui is the component of velocity in the xi 

direction, ρ is density, c is specific heat capacity, k is thermal conductivity, 

σij is the stress-tensor component in the ij direction, and ijε&  is the strain-

rate tensor component in the ij direction.   Specific heat capacity c and 

thermal conductivity k are a function of temperature, we follow the 

formulations given by Paterson (1994, pg. 205). 

In a numerical model of thermomechanical ice flow, the mechanical 

calculation requires an estimate of the thermal field, and iterative updates 

to these coupled fields are calculated in order to find an ice-temperature and 

an ice-sheet evolution that are thermally and mechanically consistent; here 

we follow the standard iterative approach to couple our thermal and 

mechanical models (e.g. Van der Veen, 1999, pg. 231; Hooke 2005, pg. 303).  

At each timestep ti in the numerical model for ice-surface evolution, an ice-

temperature field 	�

��, 
̂, �� is estimated, and the ice-surface topography 
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��

��, �� and the ice-flow field ��


��, 
̂, �� are calculated.  Then, an ice-

temperature field 	�
���, 
̂, �� is calculated using this ice-surface topography 

��

��, �� and this ice-flow field ��


��, 
̂, ��.  Unless the temperature 

distribution is well-known at the first iteration, the difference between 

	�

��, 
̂, �� and 	�

���, 
̂, �� will be significant, so that when 	�
���, 
̂, �� is used to 

recalculate the ice-surface topography ��
���, 
̂, �� and the ice-flow field 

��
���, 
̂, ��, these fields will be different from their values in the first 

iteration.  The ice-temperature field, the ice-surface topography, and the ice-

flow field are iteratively updated until the difference in the temperature 

field �	�
���, 
̂, �� � 	�

�����, 
̂, ��� between iteration j and iteration j-1 becomes 

small; we choose a temperature difference threshold of 10-6 °C.  See Figure 

K1 for a flowchart depiction of this iterative process. 

 Our model of thermomechanically-coupled flow uses a finite-volume 

thermal calculation from Price and others (2007).  If thermomechanical 

coupling is not utilized, the ice temperature can be isothermal at a 

prescribed ice temperature, or temperature variations with depth can be 

calculated using Fourier’s Law describing the linear relationship between a 

prescribed surface temperature and a prescribed geothermal flux (e.g. Van 

der Veen 1999, pg. 178).  If the ice-temperature field is not isothermal, an 

effective isothermal ice-softness parameter ��(T(x,t)) is calculated (see 

Section A5.1) for use in the ice-flow calculations. 

 

 

5.2.5. Internal-layer calculation 

 To generate internal layers, we track particles through time by 

integrating the velocity field.  Each particle starts at the surface S(xi) at 

time t=t0, and the position of each particle i can be given by the material 

derivative   
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where u is the horizontal velocity and w is the vertical velocity, and (x,z) are 

the particle position and particle depth at any time t.  The coupled 

differential equations given by Equation 5.15 are integrated numerically.  A 

layer of any given age is constructed by joining the endpoints of particle 

paths at the time equal to the age of the layer. 

 

 

 

Table 5.1.  Possible set of incorporated data values  

    

 

 

 

 

 

 

 

 

 

 

 

Table 5.2. Possible set of unknown model parameters 

 

Model parameter Size Symbol 

Accumulation-rate history Nt × Nx ),( txb&  

External-flux history Nt × [ Nx1 Nxend ] Qext(x,t) 

Ice flux entering the domain at initial 

timestep 
1 

inQ0  

Ice thickness at first spatial node 

at initial timestep 
1 

inS0  

Temperature-independent ice-softness 

parameter 
1 A0 

Average geothermal flux 1 Qgeo 

 

Data value Size Symbol 

Internal-layer shapes Nlayers × Nh hd(x,z) 

Modern ice-surface topography NS S(x,t0) 

Modern accumulation rate b
N &  ),( 0txb&  

Modern surface velocity Nu u(x,t0) 
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5.3. Inverse Algorithm 

 

The inverse algorithm used here is a gradient (steepest-descent) 

solver that uses Tikhonov regularization to stabilize the algorithm and to 

find a physically meaningful solution.  This inverse algorithm follows 

Waddington and others (2007), where they solved a steady-state version of 

this inverse problem, to infer a steady-state accumulation pattern from an 

internal layer.  A gradient solver is well-suited for our transient problem 

because it is computationally fast and it is designed to converge upon a 

single, though robust, solution (e.g. Parker, 1994; Aster and others, 2005).  

This algorithm performs a local search for the most-likely solution by 

finding the minimum of Ip in the model space that is most accessible from 

the initial guess of the parameter set.  While this steepest-descent approach 

locates only one solution, and that solution may be only a local minimum, 

we can start from multiple initial guesses of the parameter set to search 

other parts of the model space.  The steady-state results from Waddington 

and others (2007) using a gradient inverse algorithm were corroborated by 

Steen-Larsen and others (In Press) using a Monte Carlo inverse algorithm 

that performed a complete search of the model space; the results of these 

previous studies give us confidence that this inverse algorithm is 

appropriate to solve this problem.   

 

 

5.3.1. Regularization 

Regularization is a way to stabilize ill-posed inverse problems, where 

a relatively insignificant change in the measurement can lead to a 

significant change in the solution (e.g. Aster and others 2005, pg. 73; 

Hansen 1987).  In an inverse problem, the observable quantities (e.g. 
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internal layers) may not contain enough information to discriminate against 

solutions (e.g. the spatial and temporal history of accumulation rate) that 

are physically unreasonable on other grounds.  In addition, because the 

observations contain errors, we do not want to fit these data exactly; a 

solution found by minimizing only the mismatch between the data and the 

forward-algorithm prediction could overfit the data (e.g. Parker, 1994).   

The solution to an inverse problem is a “model”, i.e. a vector of the 

model parameters (e.g. mass-balance rate at discrete points) that we seek.  

The model parameter set is size Np number of parameters, and all spatial 

and temporal parameters are defined at discrete points.  It is desirable to 

find a solution (set of model parameters) that minimizes a combination of 

prediction error and length of the solution vector.  Generally speaking, this 

can be described by minimizing a performance index Ip given by 

             
22

dp ν+=I p  
                      (5.16) 

where p 2 is the squared model norm (see Section 5.3.4), and d 2  is the 

squared data norm (see Section 5.3.5).  The factor ν is a positive trade-off 

parameter, where the best value of ν gives an appropriate balance between 

fitting the data (minimizing the prediction error), and finding a smooth 

model (minimizing the solution length).  In this case, the underdetermined 

part of the problem has been damped, and the solution to this problem is 

called a damped least squares solution; this approach is also referred to as 

Tikhonov regularization (e.g. Aster and others, 2005).   

As discussed in Section 5.3.1, to minimize the solution error we chose 

a model norm p
 
that minimizes the roughness of model parameters that 

occur in a spatial sequence (i.e. the accumulation-rate pattern at any time), 

and/or in a temporal sequence (i.e. the accumulation-rate history at any 

point), and that minimizes the variation in model parameters from 

estimations of their given characteristic values within a given tolerance.  
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However, the data have uncertainties, and we do not want to strictly 

minimize the prediction error.  Obtaining a smooth model that fits the data 

at an expected tolerance can be achieved by minimizing a performance 

index Ip given by 

             )Tν(+=I p
222 −dp                 (5.17) 

where T is a defined tolerance, which is commonly assumed to be based on 

the statistical uncertainties N of the number of data (Parker, 1994, pg. 124), 
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We want to find the vector of model parameters p and the value of the 

trade-off parameter ν that minimize the performance index in Equation 

5.17.  The Np+1 number of equations, 
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            (5.19) 

can be solved simultaneously, where pj represents each model parameter in 

the set.  In this case, the trade-off parameter ν is a Lagrange multiplier (e.g. 

Menke, 1989, pg. 56; Aster and others, 2005, pg. 276).  The solution will 

minimize the model norm p , and satisfy the data-mismatch criterion, 

     022 =− Td               (5.20) 

where the appropriate value of ν sets the most appropriate trade-off 

between smoothness and fit.  A smaller value of ν puts more emphasis on a 

smooth model, whereas a larger value of ν puts more emphasis on closely fit 

data (Parker, 1994).   We follow the solution procedure used by Waddington 

and others (2007); details are given in Section A5.3. 
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5.3.2. Linearized problem 

In a nonlinear inverse problem, the forward algorithm predictions of 

the observable quantities are nonlinear functions of the model parameters.  

Our problem is nonlinear because estimates of internal layers are nonlinear 

functions of the accumulation-rate history and our other parameter values; 

this can be seen more explicitly in the analytical expressions given in 

Appendix N.  A nonlinear problem is not as straightforward to solve as a 

linear problem, but we address this problem by assuming that values of the 

unknown parameters can be approximated by a linear expansion in the 

vicinity of their trial values; this is how we linearize the problem.  Instead of 

solving for the unknown parameter values p directly (as in Equation 5.1), 

corrections estp-pp =∆ to trial values of the unknown parameters pest are 

found (e.g. Menke 1989, pg. 152).  In a linear problem, 

      )()()( estest ppGpGpG −+≈ .             (5.21) 

Using this form of G(p) in Equation 5.1, gives 

    )()( 1
est

n pGdpG −=∆ + .             (5.22)
 

In a linearized problem, matrix G is a Jacobian matrix, expressing how 

changes in each model parameter pj affect the value of each modeled 

observable m
io ,  
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             (5.23)

 

In Equation 5.22, )( estpGd −  are the residuals between the actual data 

values d and the model estimates of the data values calculated using the 

estimate of the model parameters pest.  Each parameter value n
jp  is guessed 

at the first iteration n, and then is iteratively adjusted by finding j
np 1+∆  that 
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further minimizes the performance index (Equation 5.17).  The updated 

parameter set is given by 

    j
n

j
n

j
n ppp 11 ++ ∆+=

              (5.24)
 

For any given value of the trade-off parameter ν, this iterative procedure is 

stopped (i.e. a solution is found) when adjustments to the model parameters 

j
np 1+∆  from one iteration to the next iteration insignificantly change the 

value of the performance index (i.e. do not further reduce the value to zero).  

This cutoff criterion is preferable to simply stopping the iterative procedure 

when the parameter changes become small (e.g. Gubbins 2004, pg. 131).  

Once we have a converged solution for one value of ν, we repeat the solution 

procedure for different values of ν, and find the solution corresponding to 

the value of ν that satisfies the data-mismatch criterion (Equation 5.20).   

In a linearized ill-posed problem, instability in the solution procedure 

means that the solution will not converge; changes in the performance index 

between iterations for a given value of ν do not stably approach the cutoff 

criterion.  Stabilization techniques for linearized ill-posed inverse problems 

are the same as the techniques for linear ill-posed problems (e.g. Tikhonov 

regularization).  However, regularization of a linear problem damps the 

underdeterminancy of the problem by directly minimizing the prediction 

error and the solution error, whereas regularization of a nonlinear problem 

damps the iteratively calculated parameter-value updates j
np 1+∆  by 

minimizing the prediction error and solution error (e.g. Gubbins 2004, pg. 

131).   If Tikhonov regularization alone does not stabilize the problem, the 

singular values can also be truncated if there is a natural break in 

distribution between larger and smaller values (e.g. Eisen 2008). 

     Due to the nonlinearity of this problem, both in the forward algorithm 

and in the inverse algorithm, several iteration loops must be performed in 

order to calculate the final set of model parameters, which is the solution to 
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the inverse problem. The outermost loop of the inverse problem is to find the 

value of the trade-off parameter ν; a full solution must be found for each 

sampled value of the trade-off parameter, and we seek the trade-off 

parameter that satisfies the data-mismatch criterion in Equation 5.20.  

Since the nonlinear inverse problem has been linearized to solve for changes 

in the parameter values j
np 1+∆ , rather than the parameter values directly, 

the next loop iterates until further changes in the parameter values 

insignificantly change the value of the performance index.  In the forward 

algorithm, an iteration is required on the nonlinearity in the implicit 

solution for the ice-surface evolution S(x,t).  If the forward algorithm is 

thermomechanically coupled, there is an additional iteration to find a 

consistent thermal and mechanical solution in the forward algorithm.  See 

Appendix K for flowcharts of all calculations in the forward and inverse 

algorithms. 

 

 

5.3.3. Model parameters 

 In an inverse problem, the unknown model parameters are the set of 

unknown values that are required in the forward algorithm.  For example, 

unknown initial conditions or boundary conditions are part of the parameter 

set.  Generally speaking for this problem, the model parameter set could 

include the ice flux entering the domain at the initial timestep Qin(t0), the 

ice flux across the limited domain due to forcing from outside of the domain 

Qext(t), the piecewise bilinear spatial and temporal pattern of accumulation 

rate ),( txb& , the spatial and temporal pattern of basal melt rate ),( txm& , the 

ice-surface elevation at one location at the initial timestep Sin(t0), the 

temperature-independent ice-softness parameter A0, and the spatial and 

temporal variation in geothermal flux Qgeo(x,t).   The values that must be 
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included in the model parameter set will depend on which values are 

unknown at each site where this inverse problem is being solved.  Any of 

these parameters can be excluded from the set of model parameters if they 

are known and can be prescribed, or if they are not necessary in the forward 

calculation. 

 

 

5.3.4. Model norm 

 In this inverse problem to infer histories of accumulation, ice 

thickness, and ice flow from internal layers (introducted in Section 5.1), we 

expect the accumulation-rate solution ),( txb&  to be spatially smooth, so we 

chose the model norm p  to be the curvature of the accumulation-rate 

solution integrated along the flow band (i.e. the roughness of the 

accumulation-rate solution).  Other model norms could be used in this 

problem, and we discuss possibilities in Section 5.6.4. 

The accumulation history ),( txb&  is piecewise bilinear, and the second 

derivative is zero everywhere except the (xj, tj) nodes, where it can be 

infinite.  For this reason, following Waddington and others (2007), we 

estimate roughness by attributing a uniform curvature to each x-interval 

that joins the midpoints of the two linear segments upstream (xj+1, tj) and 

downstream (xj-1, tj) from the position (xj, tj).  We calculate curvature based 

on these values in the vicinity of each point (xj, tj) using a centered-

difference approximation for the derivative,  
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where jx̂  is the normalized position, and cjj Lxx /ˆ = , where cL is a 

characteristic length scale.  The upstream surface slope is given by a 

backward difference, 
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where Lc is the characteristic length scale, and cb& is the characteristic 

accumulation rate that are used to normalize the slope.  The downstream 

surface slope is given by a forward difference, 
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Equations 5.25, 5.26, and 5.27 give the non-dimensional curvature in the jth 

spatial interval as 
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At the spatial edges of the domain, where Equation 5.28 is undefined, we 

minimize the difference between the slope at each edge of the domain and 

the slope of the adjacent value within the domain.  

The model norm should include contributions from all model 

parameters pj.   So, for model parameters that do not fall in a spatial 

sequence, we incorporate deviations of the estimates of these parameters 

from a given characteristic value, within a given tolerance.  For any 

parameter pj that is not accumulation rate, 
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j
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c

δ
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=                (5.29)  

where c
jp  is an estimate of the characteristic value of the parameter, and 

c
jpδ  is the characteristic acceptable deviation in this estimate.  The model 

norm used in Equation 5.17 is then given by,  
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where 2)( c
jw  are positive non-dimensional weights corresponding to each 

type of model parameter.  If the model parameter is a value of accumulation 

rate, the weight wj is the length over which each segment is integrated jx∆  

divided by the average segment distance x∆ .   

 

 

5.3.5. Data norm 

 The squared data norm 
2

d  is the sum of squared mismatches 

between the observations d
io , and the forward-algorithm predictions of the 

same observable quantities m
io  , normalized by the standard deviations d

iσ of 

the data.  The data norm used in Equation 5.17 is then given by,  
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The data norm includes residuals between all existing data and their 

corresponding predictions from the forward algorithm, where Nd is the 

number of data values.  In this problem, the primary data are the shapes of 

internal layers imaged with ice-penetrating radar.  Additional data may 

include the modern ice-surface topography, the modern ice-surface velocity, 

or the modern accumulation-rate (see Table 5.1).  These modern data 

provide rate control, and it is important that these data are available.  

While internal-layer shapes at all depths directly provide valuable spatial 

information, these layers must be dated by an intersecting ice core to 

provide accurate temporal information.  Accurate dating is especially 

important when inferring information from deeper layers, where present-

day rate control is a less-effective constraint on the problem.  The amount 
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and types of data included in the problem depend on site-specific data 

availability.   

 

 

5.4. Results with synthetic data 

 To assess the capability of our new algorithm to infer histories of 

accumulation rate and ice flow, we first solve the inverse problem using 

synthetic data.  We generate synthetic data by prescribing parameter 

values, we perturb the data with red noise, and then we try to infer the 

original parameter values using this synthetic data set.  While this is a 

simple test, especially because the forward algorithm used to estimate the 

data is the same algorithm that we used to generate the data.  However, the 

procedure allows us to explore the sensitivity of our algorithm.  Comparing 

the inferred parameter values to the known parameter values shows how 

well we can recover each parameter value for a given test. 

In the three tests performed here (see Sections 5.4.2-5.4.4), we 

assume that the layer ages are known (e.g. from an ice core).  Figure 5.1a 

illustrates the site conditions used in our synthetic tests.  The ice thickness, 

bed topography, and magnitude of accumulation are similar to values near 

the West Antarctic Ice Sheet (WAIS) Western Divide (e.g. Neumann and 

others, 2008; Conway and Rasmussen, 2009).  We assume that the ice 

temperature does not change in time (i.e. there is no thermomechanical 

coupling), but that temperature variations with depth are prescribed as the 

present-day values calculated by Neumann and others (2008) for WAIS 

Divide, with a geothermal flux of 70 mW m-2 (Figure 5.1b).   
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Figure 5.1.  a) Synthetic geometry of a site analogous to the West Antarctic Ice Sheet 

(WAIS) Divide.  b) Temperature with depth profile for this synthetic site; these values are 

comparable to modeled values for present-day WAIS Divide from Neumann and others 

(2008). 

 

 

 We represent the accumulation rate in space and time as a piecewise 

bilinear function.  Our spatial and temporal parameter grid is lower 

resolution than our spatial and temporal calculation grid.  For example, 

Figure 5.2a shows the parameter grid at ∆x=1500 m and ∆t=2000 years, and 

Figure 5.2b shows the calculation grid at ∆x=900 m and ∆t=200 years.  The 

accumulation-rate solution on the parameter grid is interpolated onto the 

higher-resolution grid for ice-surface, ice-temperature, and ice-velocity 

calculations.  

 

 



Chapter5:  Inferring transients from internal layers 

163 

        

Figure 5.2.  Accumulation rate as a piecewise bilinear function of space and time on a) the 

parameter grid with ∆t= 2000 yr and ∆x=1500 m, and b) the calculation grid with ∆t= 200 

yr and ∆x=900 m.  The accumulation-rate history is inferred on a coarser grid, and 

interpolated to a finer grid for calculations with the forward algorithm.  

 

 

 

5.4.1. Imprint of ice-sheet transients on internal layers 

 The primary data for our inverse problem are the shapes and 

locations of internal layers.  If we are to recover realistic histories of 

accumulation rate and of ice flow, these histories must have left a distinct 

imprint on the internal-layer architecture.  We perform synthetic tests with 

two different accumulation-rate histories.  One history has only a change in 

the accumulation rate, and one history has only a change in external-flux 

forcing, but they both drive a similar history of divide migration.  Figure 5.3 

shows internal layers generated with these two different histories.  Layers 

shown with a solid line were generated by an accumulation history that 

varies linearly in time across the ice divide.  Layers shown with a dashed 

line were generated by an accumulation history that is uniform over all 

time, but has prescribed external-flux changes that force the same history of 

divide migration exhibited by the linearly varying accumulation history.  

The deepest layer shown in Figure 5.3 is 10 kyr.   
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Figure 5.3.  Internal-layer shapes for two different accumulation-rate and ice-flow 

histories.  The solid lines are layers generated with a mass-balance history that varies 

linearly in time, with no external-flux forcing.  The dashed lines are layers generated with 

a mass-balance history that is uniform in space and time, but divide-migration is driven by 

variations in external-flux forcing.  The layers span 10 kyr and are separated by 1 kyr in 

age. 

 

 

 

5.4.2. Spatial and temporal variation in accumulation 

 In the first test, we generate synthetic internal-layer data, ice-surface 

velocity data, and accumulation-rate data using an accumulation history 

that varies linearly over time, with no variation in external-flux forcing; 

there is no change in Qext(t), but there are changes in the flux on the left side 

of the limited domain QL(t) and on the right side of the domain QR(t) due to 

local accumulation-rate changes.  These synthetic data are used to solve the 
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inverse problem for these known histories of accumulation and ice flow, and 

Figure 5.4 shows the results of this test.   

 

 

 

Figure 5.4. Solid lines represent the target solution, dashed lines represent the solution 

inferred by solving the inverse problem, and dotted lines represent the initial guess.  a) The 

accumulation rate at three times (-9 kyr, -6 kyr, -4 kyr).  b) The change in ice-divide 

position associated with this accumulation forcing. 

 

 

 

The inferred history of accumulation well approximates the target history, 

and this provides a history of divide migration that also well approximates 

the target history.  We initially guessed that there were no variations in 

external flux, and we imposed a constraint to seek a solution with minimum 

external-flux variability.  Since the data could be fit and the constraints 
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could be satisfied without external-flux variations, we found a solution that 

properly attributed divide migration to accumulation-rate variations. 

 

 

5.4.3. Temporal variation in external-flux forcing 

While variations in the spatial pattern of accumulation can drive 

divide migration, we expect that externally forced changes in ice flux will be 

the primary control on longer-term variations in ice-divide position.  For 

example, Conway and Rasmussen (2009) found that the present-day WAIS 

Western Divide is undergoing dynamically forced migration toward the Ross 

Sea.  Ice sheets can experience significant changes in ice flux at their 

margins, especially if the ice-sheet margins are marine based.  This has 

occurred most notably at glacial-interglacial transitions, and in particular 

from the last glacial maximum to the present, when sea-level was more 

than 100 meters lower than it is today (e.g. Lambeck and Chappell, 2001).  

Ice-divide position is influenced by changes in margin geometry that can 

affect flow at the center of the ice sheet, and also by changes in ice-stream 

activity.     

In the second test, we generate synthetic internal-layer data, ice-

surface velocity data, and accumulation-rate data using an accumulation 

history that does not vary in space or time, but does have variations in 

external flux.  These synthetic data are used to solve the inverse problem for 

these known histories of accumulation and ice flow, and Figure 5.5 shows 

the results of this test.  We start from an initial guess with no flux 

variation, but set a high tolerance on our initial guess so that the external-

flux history can vary if dictated by the data.  Figure 5.5 shows that the 

imprint of external flux on internal-layer shapes is distinct enough that we 

can recover changes in divide position when these layer shapes are used in 
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an inverse problem.  However, divide migration can be attributed to local 

accumulation-rate variations, or to external-flux variations.  If the data do 

not provide enough information to properly attribute divide migration to the 

correct forcing, we must use constraints to find the best history that can 

reproduce the data.  In the results shown in Figure 5.5, we used a constraint 

that the accumulation rate should be spatially smooth. 

 

             

 

 

Figure 5.5.  Solution to the inverse problem with constant accumulation forcing, and 

divide migration from external-flux variations.  Solid lines represent the target solution, 

dashed lines represent the solution inferred by solving the inverse problem, and dotted 

lines represent the initial guess.  a) The accumulation rate at three times (-9 kyr, -6 kyr, -4 

kyr); the target accumulation is constant.  b) The change in ice-divide position.  c)  The 

change in external flux on the left side of the divide. 
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Figure 5.5 shows that some variation in the rate and pattern of 

accumulation over time can also fit the data and satisfy the constraints.  We 

apply an additional constraint to better infer the actual accumulation and 

external-flux histories.   

 

 

 

      

Figure 5.6.  Solution to the inverse problem with a constant accumulation history, but 

divide migration forced by external-flux variations.  Black lines represent the target 

solution, dashed lines represent the solution inferred by solving the inverse problem, and 

dotted lines represent the initial guess.  a) The accumulation rate at three times (-9 kyr, -6 

kyr, -4 kyr); the target accumulation is constant.  b) The change in ice-divide position.  c)  

The change in external flux on the left side of the divide. 
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Figure 5.6 shows the results of a test where we use a constraint that 

the accumulation rate should be spatially smooth and also should be 

temporally smooth.  By penalizing solutions that exhibit accumulation-rate 

variations in both space and time, we can infer the correct histories of 

external-flux forcing and of accumulation forcing. 

 

 

 

5.4.4. Variations in accumulation and external-flux forcing 

In the third test, we generate synthetic internal-layer data, ice-

surface velocity data, and accumulation-rate data using an accumulation 

history that varies in space and time, and with external-flux forcing that 

varies in time.  These synthetic data are used to solve the inverse problem 

for these known histories of accumulation and ice flow, and Figure 5.7 

shows the results of this test.  In this test, we constrained accumulation rate 

to be spatially smooth. 

 As part of the accumulation-rate history in Figure 5.7a, the spatial 

pattern of accumulation may vary linearly through time, but also may vary 

as a sine function.  We used the constraint that the accumulation rate 

should be spatially smooth, but Figure 5.7b shows that there must be some 

spatial variation in accumulation in order to fit the data.  A smoothed 

version of the actual accumulation history can still fit the data.  This 

accumulation history, and the well-reproduced history of external-flux 

forcing, give a history of divide position that well approximates the actual 

history (Figure 5.7c). 
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Figure 5.7.   Solution to the inverse problem where accumulation-rate varies in space and 

time, and external flux varies in time. a) Actual accumulation-rate history.  b) Inferred 

accumulation-rate history.  c) Change in divide position associated with changes in 

accumulation and changes in external flux.  

 

 

 

5.5. Results with data from Taylor Mouth, Antarctica 

 

5.5.1. Steady-state results 

 Waddington and others (2007) solved the inverse problem to infer a 

steady-state pattern of accumulation using an internal layer, a modern 

accumulation-rate measurement, and modern ice-velocity measurements 

from Taylor Mouth, a flank site off Taylor Dome, Antarctica.  The internal 

layer used by Waddington and others (2007) was undated.  In addition to 
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solving for the spatial pattern of accumulation, the layer age and the ice flux 

entering the flowband were treated as unknown parameters in their inverse 

problem.  There were four ice-velocity measurements and one accumulation-

rate measurement available.  The internal layer that they used had an 

inferred age of ~1660 years, and was ~100-200 m below the surface (the 

shallowest layer shown in Figure 5.8).  Waddington and others (2007) 

reported that the accumulation rate in this area has been roughly in steady-

state over the past 6,000 years.  Therefore, we expect that an accumulation-

rate pattern inferred using other internal layers with ages less than ~6,000 

years should be similar to the stready-state pattern inferred by Waddington 

and others (2007) from the ~1660 year-old layer.   

 

                       

Figure 5.8.  Internal layers and ice-sheet geometry at Taylor Mouth, Antarctica.  Gray 

dots mark the location of surface-velocity measurements.  An accumulation-rate estimate is 

available at the ice-core site.  The shallowest layer (bold) was used in the steady-state 

problem solved by Waddington and others (2007).   

   

 

First, we solve the inverse problem three additional times using the steady-

state forward algorithm from Waddington and others (2007) with three 
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additional internal layers that span ~3000 years.  Figure 5.8 shows these 

additional internal layers and the surface and bed topography of this profile 

from Taylor Mouth.  Figure 5.9a shows the inferred steady-state pattern of 

accumulation from each layer, found by solving the inverse problem using 

one internal layer at a time and using the same surface-velocity 

measurements and the one accumulation-rate measurement at this site, as 

given by Waddington and others (2007).  

 

 

5.5.2. Transient results 

 Next we solve an inverse problem using a transient forward 

algorithm and all four internal layers from Taylor Mouth (Figure 5.8) 

together to find an accumulation history that is consistent with all four 

layers.  We use the layer ages inferred by solving the steady-state inverse 

problem using each layer individually. 

Figure 5.9b shows the accumulation-rate history found by solving an 

inverse problem using a transient ice-flow model and all four internal 

layers.  In this test, we constrained the accumulation rate to be spatially 

smooth.  This solution shows spatial and temporal variability in 

accumulation that is not exhibited in the accumulation patterns inferred by 

solving four separate steady-state inverse problems.  This occurs because 

few data are available and minimal constraints were applied to constrain 

this transient problem.  For example, no layers are available from 1660 

years to the present, and there are no reliable modern accumulation-rate 

measurements.  The few data available can be fit with an accumulation 

history that varies through time, and without additional constraints an 

accumulation history that changes in time is not penalized.  In addition, in a 

transient problem there can be trade-offs between accumulation variations 
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and ice-thickness variations.  Those tradeoffs can lead to a solution with 

more structure than the solution to the steady-state problem.  

  

 

      

 

Figure 5.9.  Results from solving inverse problems using data from Taylor Mouth. a) Four 

patterns of accumulation, found by solving four separate steady-state inverse problems 

(following Waddington and others 2007). b) History of accumulation rate found by solving a 

transient inverse problem with all layers.  ‘SS’ is the steady-state solution for layer 1 from 

panel a, and ‘modern’ is the present-day pattern.  c)  Transient solutions constrained to 

produce a temporally smooth accumulation history.  d) Transient solutions using a known 

initial ice thickness, and constrained to produce a temporally smooth accumulation history. 

 

 

 Figure 5.9c shows the accumulation-rate history found by solving a 

transient inverse problem using all four internal layers, and constraining 

the accumulation rate to be temporally smooth.  This additional constraint 
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is warranted in this case because we expect that these few data come from 

an ice sheet in steady state, and because we seek the minimum variation in 

accumulation that is required to fit the data.  By imposing an additional 

constraint, a solution with less temporal variability is found.  However, the 

ice-sheet thickness still changes in time.  This leads to a spatial pattern that 

differs from the steady-state solutions. 

Figure 5.9d shows the accumulation history found by solving a 

transient inverse problem using all four internal layers, constraining the 

accumulation rate to be temporally smooth, and assuming that the ice 

thickness initial condition ( inS0 ) is known.  Compared to Figure 5.9b and 

Figure 5.9c, a different accumulation rate is found.  This demonstrates that 

available data and imposed constraints influence the solution.  Especially in 

the case where few data are available to constrain a transient problem, the 

a priori information imposed on the problem is very important. 

 

 

5.6. Discussion 

 

5.6.1. Initial estimate of parameter values 

To solve the inverse problem, all parameter values must be estimated 

at the first iteration; the iteration loop on the nonlinearity in this problem is 

discussed in Section 5.3.2, and illustrated in a flowchart in Appendix K.  

The initial ice flux entering the domain Qin at the first node, the initial ice-

surface elevation at the first node inS0 , the ice-flux forcing external to the 

limited domain Qext(x,t), the temperature-independent ice-softness 

parameter A0, and the geothermal flux Qgeo are all estimated using any 

knowledge of these parameters at each specific site.  This may come from 

present-day measurements, or from ice-core measurements.  The internal 
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layers are assumed to be well-dated, and we these values for their initial 

estimates.  If the layer ages were unknown, we could solve for them as part 

of the inverse problem, but additional data or additional constraints may be 

necessary to find a unique solution.  The accumulation rate at each time 

node and at each spatial node is initially estimated from a 1-D vertical 

strain approximation (called the Local Layer Approximation, Waddington 

and others 2007) using the depth and age of the internal layer.   

Unlike a Monte-Carlo algorithm, our gradient algorithm does not 

search the entire model space to find the best parameter set.  There may be 

multiple minima (i.e. multiple solutions); a gradient method can find only 

one solution, and a Monte-Carlo method can find multiple solutions.  The 

gradient algorithm has the advantage of being computationally efficient, but 

it has the disadvantage of possibly being dependent on the initial estimate 

of the parameter values.  For the steady-state version of this problem 

(Waddington et al., 2007), Steen-Larsen and others (In Press) showed that a 

gradient algorithm and a Monte-Carlo algorithm gave similar results.  

While we assume that the gradient algorithm yields a robust result, we can 

start from different initial estimates of the parameter values in order to 

express the range in the inferred parameter set due to the dependence of the 

solution on this initial estimate.  This may also identify multiple solutions 

to the problem, and is a compromise between using only a gradient 

algorithm and using a Monte-Carlo algorithm; a Monte-Carlo solution to 

this transient problem is too computationally intensive to perform now with 

this transient ice-flow model. 
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5.6.2. Solution sensitivity to unknown parameters 

Formal inverse theory allows us to investigate our ability to infer 

unknown parameters; this ability is known as the resolving power.  The 

preferred solution from our regularized algorithm is a model that minimizes 

the performance index IP in Equation 5.17, and fits the data at an expected 

tolerance, satisfying Equation 5.20.  However, we still do not know whether 

we have found the best parameter values and the most realistic spatial 

variability of the parameters.  It is important to assess the ability to resolve 

those parameters before making physical inferences from the preferred 

solution.  In a linear problem, model resolution can be straightforward to 

assess (e.g. Aster and others 2005, pg. 63).  However, Parker (1994, pg. 200-

213) showed that when using a regularized algorithm, the inferred structure 

is a version of the true structure that has been smoothed by a set of 

narrowly peaked model-resolving functions.  The half-width of the resolving 

function at each spatial position gives the physical scale over which 

meaningful structure can be resolved.  Features with shorter spatial extent 

than this cannot be resolved with confidence from these data and this 

forward algorithm.  The resolving power will depend on the specific 

problem, but in general we expect that the spatial resolving power will 

decrease with distance from the divide (Waddington and others 2007), and 

that the resolving power will decrease back in time. 

 

 

5.6.3. Additional data 

 We are solving an inherently ill-posed problem, and utilizing all 

available data will give the best ability to stably find a unique solution.  In 

particular, additional data that constrain the history of accumulation rate 

will be the most valuable to this problem.  As reported by Spencer and 
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others (2006), a promising prospect for estimates of past accumulation rates 

could come from the number-density of bubbles in an ice core.    Past 

accumulation rates may also be available from beryllium-10 measurements 

(e.g. Raisbeck and others, 1981).  However, uncertainties in these estimates 

may be high.  We can establish the precision required for these data to 

provide useful constraints to this inverse problem. 

 While we are target deep layers because they contain information 

from further in the past, shallow layers are important because they describe 

the modern accumulation-rate pattern.  As shown in Figure 5.9b, if there is 

a significant temporal gap between the youngest layer and the present day, 

the accumulation history during this time may be poorly constrained.  In 

addition, the resolving power of our algorithm decreases with distance from 

the divide because particle-path lengths increase with distance from the 

divide (Waddington et al., 2007).  Modern accumulation-rate, ice-thickness, 

or ice-velocity data that exist away from the divide are stronger constraints 

on the solution.   

 

 

5.6.4. Additional regularization 

While penalizing large values of 
2

p  given by Equation 5.30 does 

help to prevent the solution from exhibiting roughness that is not required 

by the data, in a transient problem we may need an additional constraint.  

In our transient problem, information about the accumulation history and 

the ice-thickness history comes primarily from dated internal layers.  The 

internal layers alone may not be able to properly attribute temporal changes 

that may be required to fit the data; temporal changes in accumulation and 

temporal changes ice thickness can have a similar affect on internal-layer 

structure and depth.  In addition to penalizing spatial or temporal 
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roughness of the accumulation-rate solution, we could penalize deviations 

from an average value, or strictly require that global parameter values (e.g. 

input flux Qin, ice-thickness value Sin, temperature-independent ice-softness 

parameter A0) cannot deviate from their characteristic values within a given 

tolerance. 

Since the imposed constraints influence the solution, it is important 

to apply spatial and/or temporal constraints at locations or at times that 

they are expected to apply.  For example, a temporally smooth accumulation 

history may be expected in the past few thousand years of the Holocene, but 

not during the last glacial-interglacial transition.  If a priori information is 

limited, we advocate imposing as many constraints necessary to find a 

physically meaningful solution.  Seeking the minimum structure that is 

required to fit the data will help to avoid overfitting the data.   

The solution reflects a balance between fitting the data and finding a 

smooth model, and that balance is weighted by the trade-off parameter 

(Equation 5.17).  We expect a trade-off parameter that is order one.  

Therefore, the value of the trade-off parameter indicates whether the 

constraints are oversmoothing (or undersmoothing) information that is 

actually reflected in the data.  For example, if a trade-off parameter must be 

much larger (or smaller) than unity to find a solution that fits the data, 

solutions using different constraints should be investigated.  

 Regularization by solving a damped least-squares problem (Tikhonov 

regularization) may not be enough to stabilize the problem and find a 

unique solution.  This is discussed generally in Section A5.3, and Parker 

(1994, pg.160) discusses how to use SVD to assess the reliability of the 

solution to a given problem.  Regularization should sufficiently reduce the 

influence of nonphysical parameter values, either by damping or removing 

their contribution to the solution.  It is insightful to use the singular vectors 
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associated with the model space (V in Equation A5.3.6, known as the right 

singular vectors) to analyze effect of regularization.   

 

 

        

Figure 5.9.  a) Singular-value spectrum for a regularized solution.  b) Two singular vectors 

associated with small singular values (parameter index 170 and 175). The black line shows 

noise that contributes nonphysical information about the solution, and the dashed line 

shows useful information about the solution.   

 

 

 In our problem that has been regularized by Tikhonov regularization, 

the singular vectors associated with the largest singular values are 

projections of our smoothness constraint (the model norm).  The singular 

vectors containing the physical structure of our solution is often associated 

with the smallest singular values, and therefore truncating the singular 

value set in an already regularized problem could discard useful information 

about the solution.  However, if the problem has not been sufficiently 

regularized, the singular vectors associated with the smallest singular 
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values could introduce noise to the solution.  Figure 5.10 illustrates this 

case.  The singular-value spectrum is shown in Figure 5.10a, and if no 

singular values are truncated, both singular vectors shown in Figure 5.10b 

will contribute to the solution.  The spike function (solid line) in Figure 

5.10b does not contain physical information about the solution, whereas the 

singular vector associated with a slightly larger singular value (dashed line) 

does contain useful information about the solution.  Even though the 

singular value associated with the unphysical singular vector is small, it 

must be set to zero to remove the influence on the solution.       

The magnitude of the singular values is determined by how each 

contribution to the Jacobian matrix is scaled in the inverse algorithm (see 

Equation A5.3.3).  Finding an appropriate weighting scheme is critical to 

suitable regularization, and to account for the relative contributions of 

different physical parameters.  For example, Jacobian elements of the 

partial derivatives of modeled observables with respect to input ice flux 

Qin(t0), to ice-surface elevation at one location at the initial timestep Sin(t0), 

to temperature-independent ice-softness parameter A0, or to geothermal flux 

Qgeo may be different orders of magnitude, and these parameters can 

influence every modeled observable.  In comparison, changes in an 

individual spatial and temporal value of accumulation rate �� ��� , ��� will have 

a limited influence on the set of modeled observables. 

 

 

5.7. Conclusions  

 Internal layers are the most accessible archive of the history of 

accumulation rate, ice thickness, ice-divide migration, and external flux 

forcing.  Using a new inverse approach, we can infer these histories from 

internal-layer shapes.  We present this new method, and demonstrate that 
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prescribed histories can be inferred from synthetic data.  Using data from 

Taylor Mouth, Antarctica, we highlight the sensitivity of the solution to the 

data available and to the imposed constraints.  To stably find a unique and 

physically meaningful solution, it is necessary to use a priori information to 

constrain the solution.  The constraints should be chosen carefully.  If 

limited a priori information is available, we advocate finding a solution with 

the minimum variation that is required to fit the data and satisfy the 

constraints.  

The solution to this inverse problem is better defined if the internal 

layers are dated by an intersecting ice core.  This approach is well-suited to 

data in the vicinity of ice divides, and can provide information that is 

essential to ice-core interpretation and ice-volume reconstructions.   
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A5.1. Ice-velocity shape functions 

 

We can calculate the average horizontal velocity ),( txu  using the 

Shallow Ice Approximation (SIA; e.g. Hutter, 1983, pg. 256-332; Paterson, 

1994, pg. 262); the SIA is a simplifying assumption that can be applied in 

cases where the ice thickness h(x,t) is much smaller than the horizontal 

span of the ice sheet.  Therefore, derivatives of velocities and stresses with 

respect to x are generally much smaller than derivatives with respect to z.  

The constitutive relationship for ice flow (Glen, 1955) using the SIA is, 

n
xzxz tzxTA τε )),,((=&           (A5.1.1) 

where xzε&  is the simple-shear strain-rate along a horizontal plane, 

A(T(x,z,t)) is the temperature-dependent ice-softness parameter, xzτ is the 

shear-stress tensor along a horizontal plane, and we choose the flow law 

exponent n=3 (e.g. Paterson, 1994, pg. 85).  The temperature-dependent ice-

softness parameter A(T(x,z,t)) follows an Arrhenius relationship (e.g. 

Paterson 1994), given by Equation 5.13.   

The components of the strain-rate tensor along a horizontal plane are 
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Following the SIA, the derivatives of velocities with respect to x are 

negligible, giving zuxz ∂∂≈ /2ε&  (e.g. Paterson, 1994, pg. 262). Using the flow 

law given by Equation A5.1.1 for the SIA, and assuming that the 

temperature is uniform with depth for each position in x (T(x,z,t)=T(x,t)), the 

depth-averaged horizontal velocity can be found by integrating zu ∂∂ /  twice 

over depth z, 
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where ρ  is density, g is gravitational acceleration, S(x,t) is the ice-surface 

elevation, and h(x,t) is the ice thickness.   

If the ice temperature is not uniform with depth at each location 

(T(x,z,t) is not equal T(x,t)), we can solve for an effective-isothermal value of 

the ice-softness parameter.  The effective isothermal-softness parameter 

),(
~

txA  is the isothermal softness parameter required to give the same 

depth-averaged velocity and ice flux as using a depth-varying-temperature-

dependent softness parameter A(T(x,z,t)).  We calculate the effective 

isothermal value by using the depth-averaged ice velocity ),( txu  with 

A(T(x,z,t)), 
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and equating to the depth-averaged velocity ),( txu  from Equation A5.1.3, 

and solving for A(T(x,t)), given as here as ),(
~

txA , 
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 The ice-velocity field u(x,z,t) is calculated from the average velocity 

and from a velocity shape function (Equation 5.6), where 

),(/),ˆ,(),ˆ,( txutzxutzx =φ .  For example, the horizontal velocity shape 

function for an isothermal temperature field and using the SIA is given by 
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However, we target ice-sheet interior sites, and our approach is particularly 

well suited for use with ice-sheet data that span an ice divide.  Therefore, 

depending on the specific problem, we can also employ shape functions that 

are appropriate for ice-divide flow.  Following Nereson and Waddington 

(2002), the horizontal velocity shape function is split into two terms, 
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including a contribution from pure ice-divide flow and a contribution from 

pure flank (off divide) flow.  For our transient problem this is given by 

  ),ˆ()](1[),ˆ()(),ˆ,( tzxtzxtzx fd φαφαφ −+=          (A5.1.7) 

As described by Nereson and Waddington (2002), )(xα  is a partitioning 

function that assigns the relative contributions of divide flow and of flank 

flow across the domain, where 1=α  at the divide and decreases to zero 

away from the divide.  Using a Dansgaard-Johnsen description of the 

velocity shape functions (Dansgaard and Johnsen, 1969) results in a 

horizontal velocity shape function ),ˆ( tzφ given by 
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where hf is representative of flank flow and hd is representative of divide 

flow such that 10 <<< df hh .  The vertical velocity shape function is the 

integral of the horizontal-velocity shape function.  In this Dansgaard-

Johnsen formulation, following Nereson and Waddington (2002), the 

vertical velocity shape function is given by 
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The appropriate value for hf and hd is a site-specific decision; we chose 

hf=0.2 and hd=0.6. 

 

 

 

 



Chapter5:  Inferring transients from internal layers 

185 

A5.2. Boundary and initial conditions 

 

 In our calculation of ice-sheet evolution, the ice-surface profile S(x) is 

required as an initial condition.  We estimate this ice-surface profile using a 

steady-state calculation, which requires the ice thickness at one location in 

the domain as a boundary condition.  This boundary value, which we define 

at the start of our domain and we refer to as S0in, is treated as an unknown 

parameter in our inverse problem. 

 To calculate the ice-temperature field T(x,z,t) in a 

thermomechanically-coupled problem we must estimate the temperature 

field in order to calculate ice-surface evolution and the ice-velocity field.  

The temperature field is iteratively updated with these calculation values 

until a consistent ice-temperature field, ice surface, and ice-velocity field are 

found.  If the temperature field does not change in time, and therefore is not 

thermomechanically coupled to the transient ice-flow field, we can still 

achieve a realistic temperature field by prescribing the boundary conditions 

of surface temperature and of geothermal flux.  From these boundary 

conditions, the depth variation in ice temperature follows from Fourier’s 

Law of heat conduction (e.g. Van der Veen 1999, pg. 178) 

    z
K

Q
zxTzxT geo ˆ)1ˆ,()ˆ,( ∆+==         (A5.2.1) 

where 1ˆ =z  at the surface and )1ˆ,( =zxT is the surface temperature 

boundary condition, K is the thermal conductivity (which may be a function 

of ice temperature, Paterson 1994 pg. 205), Qgeo is the geothermal flux, and 

ẑ∆  is the depth increment.  The geothermal flux Qgeo is treated as an 

unknown parameter in our inverse problem.  This temperature field is used 

to calculate the effective-isothermal ice-softness parameter (Equation 

A5.1.5) in the flow law.   
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A5.3. Damped least-squares solution 

 

 A least-squares solution is one where the inferred model parameters 

minimize a 2-norm of residuals dGmr −= , and enables an approximate 

solution be found when an exact solution to Equation 5.1 does not exist; the 

least-squares solution is considered to be “the next best thing” to an exact 

solution (e.g. Menke, 1989, pg. 45).  However, the standard least-squares 

solution procedure can fail if multiple solutions exist (e.g. Menke, 1989, pg. 

45).  In this case, not enough information is available to find a unique 

solution, and the problem is at least partially underdetermined.  The 

problem may also be ill-posed, making the least-squares solution procedure 

unstable.  As discussed in Section 5.3.1, regularization is used to find a 

unique solution, and to stabilize the solution procedure.  A least-squares 

solution that has been regularized with Tikhonov regularization is called a 

damped least-squares solution (e.g. Aster and others 2005, pg. 91).   The 

damped least-squares solution procedure used here is the same procedure 

used by Waddington and others (2007).   

As discussed in Section 5.3.2, we have linearized our otherwise 

nonlinear problem to find updates to the unknown parameter values ∆p 

such that we minimize the performance index Ip, given by Equation 5.17, 

until Equation 5.20 is satisfied.  Following Waddington and others (2007), if 

the model residuals and data residuals are combined into a single vector e 

of size (Nd + Mp), their respective weights (given by ν1/2 for the data 

residuals) combined into a matrix W of size (Nd + Mp) × Mp, and the 

Jacobians (see Section A5.4) are combined into a single matrix J of size (Nd 

+ Mp) × Mp, the reformulated performance index Ip is 
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It follows that the partial deriviative jp pI ∂∂ /  is 
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This set of linear equations can be expressed as normal equations for the 

least-squares problem (e.g. Aster and others 2005, pg. 237).  From Equation 

A5.3.2 this is given by 

    WJeWJpWWJ TTTT =∆          (A5.3.3) 

where ∆p is the vector of parameter-value updates that we are solving for: 

     [ ] WJeWJWJWJp TT-1TT=∆         (A5.3.4) 

If A=WJ, x = ∆p, and b=We, Equation A5.3.3 regains the standard normal-

equation form 

    bAAxA TT =             (A5.3.5) 

Singular value decomposition (SVD) is an important way to examine and 

solve a least-squares problem, in particular one that is rank-deficient and/or 

ill-posed (e.g. Aster and others 2005, pg. 55).  In the form of Equation 

A5.3.5, the SVD of matrix A yields, 

      TVUA Λ=            (A5.3.6) 

where U are the unit basis vectors that span the data space, V are the basis 

vectors that span the model space, and Λ are the singular values.  The 

singular values are ordered by size, largest to smallest, and some of the 

singular values may be zero; A is rank deficient if it contains any singular 

values that are equal to zero, and if there is a sharp transition between 

nonzero and zero singular values (e.g. Aster and others 2005, pg. 67).  The 

SVD can be used to calculate the generalized inverse of A, which is given by 

    T-1-1 UVA Λ=            (A5.3.7) 

Unfortunately, even damped, small singular values can still cause 

instability in the generalized inverse solution.  Fortunately, the SVD allows 
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the singular-value spectrum to be analyzed, and the trivial (but nonzero) 

singular values can be neglected (i.e. set to zero) to improve stability (e.g. 

Aster and others 2005, pg. 64; Eisen 2008).  If the set of singular values Λ 

transitions abruptly to zero, it is more obvious where to truncate the 

singular-value set, but otherwise this cutoff must be chosen.  Truncating the 

singular-value set requires finding a balance between stability and solution 

accuracy; truncating singular values can eliminate useless information, as 

well as useful information.  We chose to not cutoff additional singular 

values, but to regularize our problem primarily with our smoothness 

constraint.  Suitable regularization may be sensitive to how the Jacobian 

matrix J is weighted using the matrix W; consistent normalization can be 

critical if the Jacobian is comprised of different physical quantities.   In the 

case where Tikhonov regularization alone is not sufficient, and since 

truncating singular values is a useful regularization tactic, we discuss this 

strategy in more detail. 

Generally speaking, if A has size N × M, where N represents the 

number of data and M represents the number of model parameters.  Matix 

A can be reduced based on its rank.  The rank is the number of non-zero 

singular values (e.g. Aster and others 2005, pg. 233).  In a numerical 

problem, zero may be determined by machine precision, and it is possible 

that these very smallest singular values could still introduce noise, and it is 

good practice to reduce the matrix A by its rank.  As discussed by Eisen 

(2008), the SVD of A can also be given by 

     
T

RRR VUA Λ=          (A5.3.8) 

where A has been reduced by its rank R.  SVD, and this reduced-rank form 

of A, is highly flexible because it is valid for over-determined (N > M) and 

under-determined (N < M) problems.  This is accomplished by handling both 

a possible model null space (if R < M there exists V spanning M × (M-R)) 



Chapter5:  Inferring transients from internal layers 

189 

and a possible data null space (if R < N there exists U spanning N × (N-R)).  

If there is a non-trivial data null space, it will not be possible to fit the data 

exactly.  If there is a non-trivial model null space, the model parameters 

cannot be recovered exactly.  Suppressing non-trivial null spaces is a central 

purpose of regularization, and if this has not been accomplished by 

Tikhonov regularization alone, we set values in the null spaces of A to zero.  

As discussed by Wunsch (1996, pg. 147), setting null-space values to zero 

further removes structure in the solution that the data do not require.  

Another way to judge if additional truncation of the singular-value set may 

be required is if the condition number of the reduced A remains large; in 

particular if there is a significant difference in the order of magnitude of the 

largest singular value and all other singular values.  For example, the 

condition number might be approximately the inverse of the machine 

precision, indicating that small, but not exactly zero, singular values may 

influence the solution.  In this case the system is nearly linearly dependent 

and singular values less than a prescribed cutoff value may need to be set to 

zero.  

The prescribed cutoff is best chosen in context of the specific problem 

onhand, and some suggestions are given by Eisen (2008) and Menke (1989, 

pg. 123).  For example, if there is a distinct break in the distribution 

between large and small singular values, a truncation point may be obvious.  

However, in a discrete ill-posed problem, the singular-value spectrum does 

not exhibit a distinct break in slope, and the truncation point may not be 

obvious.  A meaningful way to determine this cutoff point is to analyze the 

basis vectors (singular vectors) that span the model space, V from the SVD 

of A using Equation A5.3.6.  As illuminated in an example by Parker (1995, 

pg. 160), assessing if the structure in each singular vector is or is not a 

meaningful representation of structure in the expected solution set is very 
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insightful. Fortunately, by nullifying the singular values associated with 

these unphysical singular vectors, the singular vectors containing 

meaningful structure can form the solution; the problem is effectively 

regularized. 

 In addition to regularization, in some cases it was necessary to use 

underrelaxation to stabilize the algorithm.  Underrelaxation further damps 

the magnitude of the inferred parameter changes at each iteration; this is 

similar to the form of underrelaxation used for the implicit ice-surface 

calculation in Chapter 4.  If necessary, we used a relaxation factor of 0.5.           

 

 

 

A5.4 Calculation of Jacobian Matrix 

 

 To solve our linearized problem, we must calculate a Jacobian that 

expresses how changes in each model parameter pj affect the value of each 

modeled observable m
io .  The Jacobian matrix is of size (Nd + Mp) × Mp.  The 

partial-derivative components of the Jacobian can be calculated by 

approximating each derivative numerically, or by formulating analytical 

expressions that directly relate model parameters to predictions of data 

values.  While we use a strictly numerical calculation here, analytical 

expressions for some partial derivatives have been derived, and are given in 

Appendix N.  

 A derivative can be approximated numerically using a finite-

difference scheme, and commonly used difference schemes include the 

forward difference, backward difference, and centered difference (e.g. 

Carnahan and others 1969, pg. 35).  The order of the difference scheme 

depends on how many terms from the Taylor expansion are retained.  In 
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general form, a first-order centered-difference derivative of a function F(x) is 

given by 

   ( ))()(
2

1)(
xxFxxF

xdx

xdF δδ
δ

−−+=          (A5.4.1) 

where δx is small. 

The numerical Jacobian calculation can be highly sensitive to the 

finite-difference scheme used to approximate the derivative, and higher-

order schemes are more computationally expensive.  We want to use the 

simplest difference approximation possible, but we require stability and 

accuracy in the calculation.  In our problem, different approximations of the 

derivative and different perturbation sizes δx can hugely influence the 

accuracy of the calculation.  While a centered-difference approximation 

requires twice as many calculations as a forward difference or a backward 

difference, we find that it is much more accurate.  Therefore, we use a 

centered-difference scheme to approximate the derivatives in our Jacobian 

matrix.  We perturb each parameter in turn by adding a small perturbation 

δpj, and in a separate calculation by subtracting a small perturbation δpj, 

and we calculate a new set of modeled observables corresponding to these 

two different sets of perturbed parameter values; this requires 2Mp 

calculations of the forward algorithm.  We find that the perturbation length 

used in the numerical calculation is critical for accuracy.  Onur and Eyi 

(2005) derive an optimal perturbation that balances truncation error and 

computer round-off error.  For a nondimensionalized problem where the 

parameter values are order one, Onur and Eyi (2005) suggest that the 

optimal perturbation length to be MΣ2 , where MΣ  is the machine-working 

precision.  In our case the perturbation length is the fraction of change in 

each parameter value δpj.  Our double-precision calculations are good to 

within 52102 −× , and a suitable perturbation length is 8109.2 −× .  While the 
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parameter values in our calculation of the Jacobian matrix are not all order 

one, we tried a range of perturbation lengths and found that values from  

10-6 to 10-8 gave consistent approximations of the partial derivatives in this 

problem. 



 



 

Chapter 6 

 

 

Inferring Histories of Accumulation Rate, Ice Thickness, 

and Ice Flow for Central West Antarctica 

 

 

Tom Neumann, Howard Conway, and Kenny Matsuoka provided the data presented in this 

chapter. 

 

A deep ice core is currently being drilled in Central West Antarctica.  As discussed 

in Chapter 5, histories of accumulation and ice dynamics are necessary to 

properly interpret ice-core chemistry, and to develop a depth-age scale for 

the parts of the core where annual-layer counting is no longer possible.  

Solving the 2.5-D transient inverse problem is the appropriate way to infer 

histories from internal-layer shapes, because we expect that spatial and 

temporal variations in accumulation were significant.  Here we describe the 

context for inferring histories of accumulation rate and ice dynamics in 

Central West Antarctica, and discuss data available to solve this inverse 

problem near the WAIS Divide ice-core site.
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6.1. Introduction 

 A deep ice core is currently being drilled in Central West Antarctica; 

this core is referred to as the West Antarctic Ice Sheet (WAIS) Divide ice 

core.  The high accumulation rates at this site should allow annual-layer 

counting back ~40 kyr, which will facilitate detailed comparison with 

Northern Hemisphere ice-core records.  The high accumulation rate also 

means that the age difference between the occluded gas and the 

surrounding ice will be small, because this delta-age value at pore close-off 

depth depends on the accumulation rate (e.g. Sowers and others 1989).  

However, the geothermal flux in this area is poorly known, and the oldest 

ice at this site may have been lost to basal melting (e.g. Morse and others, 

2002; Neumann and others, 2008).  In addition, the divide position may 

have migrated, and the ice core is being drilled ~24 km off the present-day 

divide to avoid stratigraphic disturbances and complications from divide 

migration.   

 As discussed in Chapter 5, histories of accumulation and ice dynamics 

are necessary to properly interpret ice-core chemistry, and to develop a 

depth-age scale for the parts of the core where annual-layer counting is no 

longer possible.  In addition, solving the 2.5-D transient inverse problem is 

the appropriate way to infer histories from internal-layer shapes, because 

we expect that spatial and temporal variations in accumulation were 

significant.  Here we describe the context for inferring histories of 

accumulation rate and ice dynamics in Central West Antarctica, and discuss 

data available to solve this inverse problem near the WAIS Divide ice-core 

site. 
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6.1.1. Previous Work 

 Site-selection criteria for the WAIS Divide ice core are described by 

Morse and others (2002).  A long-term, high-resolution record was desired, 

and therefore a site with thicker ice, higher accumulation rate, and 

hopefully lower heat flux was chosen.   Morse and others (2002) found that 

there is a strong spatial gradient in accumulation rate, with values 

increasing to the North across the divide.  Neumann and others (2008) 

tracked radar layers between the WAIS Divide site and the Byrd ice-core 

site ~185 km away (e.g. Gow and others, 1968), and using layer dated from 

the Byrd core they developed a depth-age relationship at WAIS Divide.  

Then, following Waddington and others (2005), they found suitable 

combinations of the accumulation-rate history, ice-thickness history, and 

basal-melting history that could match their derived depth-age relationship 

within the measurement uncertainty.  Neumann and others (2008) used a 1-

D model with simplified ice dynamics to calculate histories of accumulation 

rate and ice dynamics.  The deepest layer they used was 8400 years B.P., 

and they found that the accumulation rate was higher from 3000-5000 years 

ago and that the divide has been migrating through the Holocene.    

Present-day divide migration has been reported by Conway and 

Rasmussen (2009).  They find that the present-day divide is moving towards 

the Ross Sea at 10 m yr-1, and thinning at ~0.08 m yr-1.  Conway and 

Rasmussen (2009) find that this magnitude of divide migration is driven by 

ice dynamics, rather than by local accumulation-rate variations.  The WAIS 

Divide is dynamically influenced by ice streams on the Ross-Sea side and 

the Amundsen-Sea side.  Given the recent speed up of Thwaites and Pine 

Island glaciers on the Amundsen-Sea side, and the recent stagnation of 

Kamb Ice Stream (e.g. Joughin and Tulaczyk, 2002) on the Ross-Sea side, it 

is evident that dynamical changes can be significant. 
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Figure 6.1. Map of West Antarctica highlighting the WAIS Divide ice-core site, the Byrd 

ice-core site, and the Siple Dome ice-core site. Ross Ice Streams and Thwaites and Pine 

Island glaciers are outlined. Map from Morse and others (2002). 

 

 

Siegert and Payne (2004) used internal layers and a 1-D vertical 

strain model to estimate accumulation rates over the past 16,000 years 

across Central West Antarctica.  However, it is likely that internal-layer 

depths have been affected by spatial variations in total vertical strain over 

this time.  Siegert and Payne (2004) suggest that the accumulation rate 

from has been relatively stable over the past 3100 years, but it was lower 

6400-16,000 years ago.  This result is influenced by the actual ice-thickness 

history, but is supported by modeling results from Huybrechts (2002), and is 

consistent with Neumann and others (2008).  

 

6.2. Data 

6.2.1. Internal layers 

 Neumann and others (2008) describe ground-based radar data that 

were collected during the 2002-03 and 2003-04 field seasons.  A 7-MHz 
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radar was used to detect layers from 30

MHz radar was used to detect layers from 300 m below the surface to the 

bed.  The deepest continuous layer is an extremely bright reflection because 

it has high-acidity content (

“Old Faithful” layer is dated to ~1

2005b).  In these ground

traced to the Byrd core between 8400 and 17,400 years.  Figure 6.2 shows 

eight layers detected with the 1

B.P. (e.g. Neumann and others

 

Figure 6.2.  Ground-based radar data across the WAIS Divide from Neumann 

(2008).  Left panel shows travel

continuous internal layers that are traced to the Byrd core.  The same internal layers are 

shown in the right panel, where travel time has been converted to depth, and the ice

geometry and ice-core site are shown for context.  The internal layers are dat

~4.3 ka, ~4.6 ka, ~4.85 ka, ~5.95 ka, ~7.2 ka, ~7.8 ka, and ~17.3 ka.  

 

 Airborne radar data were collected across the WAIS Divide during 

the 1999-2000 season.  Figure 6.3 shows the locations of the SOAR flight 

lines in the vicinity of the WAI

connects to the Byrd core, and other
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radar was used to detect layers from 30-1000 m below the surface, and a 1

MHz radar was used to detect layers from 300 m below the surface to the 

bed.  The deepest continuous layer is an extremely bright reflection because 

dity content (Hammer and others, 1997), and this so

“Old Faithful” layer is dated to ~17,500 years B.P. (e.g. Jacobel and Welch, 

).  In these ground-based radar data, no layers can be continuously 

traced to the Byrd core between 8400 and 17,400 years.  Figure 6.2 shows 

eight layers detected with the 1-MHz radar, dated from 3500 – 

and others 2008). 

 

based radar data across the WAIS Divide from Neumann 

(2008).  Left panel shows travel-time returns from 1-MHz radar, and white lines highlight 

inuous internal layers that are traced to the Byrd core.  The same internal layers are 

shown in the right panel, where travel time has been converted to depth, and the ice

core site are shown for context.  The internal layers are dat

~4.3 ka, ~4.6 ka, ~4.85 ka, ~5.95 ka, ~7.2 ka, ~7.8 ka, and ~17.3 ka.   

Airborne radar data were collected across the WAIS Divide during 

2000 season.  Figure 6.3 shows the locations of the SOAR flight 

lines in the vicinity of the WAIS Divide ice-core site.  One flight line

to the Byrd core, and other flight lines follow ice-flow lines.  The 
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1000 m below the surface, and a 1-

MHz radar was used to detect layers from 300 m below the surface to the 

bed.  The deepest continuous layer is an extremely bright reflection because 

), and this so-called 

Jacobel and Welch, 

based radar data, no layers can be continuously 

traced to the Byrd core between 8400 and 17,400 years.  Figure 6.2 shows 

 17,345 years 

 

based radar data across the WAIS Divide from Neumann and others 

MHz radar, and white lines highlight 

inuous internal layers that are traced to the Byrd core.  The same internal layers are 

shown in the right panel, where travel time has been converted to depth, and the ice-sheet 

core site are shown for context.  The internal layers are dated ~3.5 ka, 

Airborne radar data were collected across the WAIS Divide during 

2000 season.  Figure 6.3 shows the locations of the SOAR flight 

core site.  One flight line 

flow lines.  The 
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Center for Remote Sensing of Ice Sheets (CReSIS) at the University of 

Kansas has collected radar data that target the deepest layers near the 

WAIS Divide (e.g. Laird and others, In Press).  It may be possible to 

interpolate these data to ice-flow lines, and then to use these high-

resolution views of internal layers throughout the depth of the ice sheet.   

 

Figure 6.3.  Locations of SOAR radar flight lines (thick gray lines) in the vicinity of the 

WAIS Divide ice-core site (marked with a red dot).  Background is surface elevation 

contours from BEDMAP, ranging from 1650 to 1900 m.  Thin gray lines show measured 

flow vectors, ranging from 0.1 to 5.9 m yr-1.  Figure courtesy of K. Matsuoka. 

 

6.2.2. Accumulation-rate measurements 

 Modern accumulation rates are available from the International 

Trans-Antarctic Scientific Expedition (ITASE).  ITASE core 00-1 is near the 
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WAIS Divide ice-core site.  Neumann and others (2008) used ice-core 

chemistry from the 105-meter core, which goes back to 1651 AD (Dixon and 

others 2004), in combination with high-frequency radar to infer spatial 

variations in the modern accumulation rate.  Neumann and others (2008) 

found that the accumulation rate over the past ~350 years increased from 

~25 cm yr-1 at the ice-core site to ~35 cm yr-1 at ~40 km farther North 

(towards the Amundsen Sea). 

 

6.2.3. Surface-velocity measurements  

 Conway and Rasmussen (2009) presented surface-velocity 

measurements from a Global Positioning System (GPS) network established 

near the WAIS Divide during the 2002-2003 and 2003-2004 field seasons.  

The surface-velocity measurements have an uncertainty of 4 cm yr-1.      

They find that the ice divide is presently migrating toward the Ross Sea at 

~10 m yr-1. 

 

6.3. Inferring transients from internal layers 

 Neumann and others (2008) showed that the accumulation rate 

across the WAIS Divide has changed over time.  They used a time-

dependent ice-flow model to infer an accumulation-rate history, but their 

model used simplified ice dynamics in one dimension.  Spatial gradients in 

accumulation are observed in this area, and the spatial and temporal 

influence on internal-layer depth should be taken into account.  Ultimately 

the goal is to infer histories of accumulation rate and ice dynamics from 

internal layers by solving a 2.5-D transient inverse problem.  Here we first 

infer steady-state accumulation patterns from internal layers by solving a 
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2.5-D steady-state inverse problem.  We use the algorithm developed by 

Waddington and others (2007).   

   

                                

Figure 6.4.  Steady-state accumulation-rate patterns inferred by solving seven steady-

state inverse problems using internal layers spanning 3.5 ka to ~7.8 ka.  The seven internal 

layers are shown in Figure 6.2. 

 

We use the seven shallowest layers in Figure 6.2 to infer seven 

different steady-state accumulation patterns; the layers were dated ~3.5 ka 

to ~7.8 ka.  Resolving power decreases further from the divide, so we focus 

on the internal layers from 15-35 km of a radar line that spans 1-40 km.  

The ice divide is at ~28.5 km along the flowband.  Different steady-state 

accumulation patterns are inferred from different internal layers.  This 

suggests that the accumulation rate has changed over time, and that the 

accumulation pattern has remained roughly the same; this is consistent 

with Neumann and others (2008).  Neumann and others (2008) inferred that 

accumulation rates have been roughly stable for the past 3,000 years, and 
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that there was an increase in accumulation rate of at least 30% from 5,000 

to 3,000 years ago.  We inferred ~6% change in the magnitude of steady-

state accumulation from ~3.5 ka to ~7.8 ka.  This estimation is not 

inconsistent with how accumulation transients inferred by Neumann and 

others (2008) could be averaged over time by a steady-state estimation.   

In Figure 6.4, the kilometer-scale spatial variations in the 

accumulation pattern that we infer by solving seven different steady-state 

inverse problems reflect kilometer-scale spatial variations in the shape of 

the internal layers.  However, solving separate steady-state problems will 

give a different history of accumulation than solving a transient problem.   

Ice-thickness changes and ice-divide position changes are an important part 

of the history of the WAIS Divide.  As we expected, it will be necessary to 

solve a transient inverse problem to accurately infer transients in 

accumulation rate and ice dynamics at this site. 

 

 

6.4. Conclusions and future work 

 Solving the inverse problem to infer transients in accumulation rate, 

ice thickness, and ice-divide position will provide valuable, and necessary, 

constraints on WAIS evolution.  Neumann and others (2008) used a 1-D 

model to infer histories of accumulation and ice dynamics for Holocene 

layers that were dated by the Byrd ice core.  We target deeper layers, which 

will be dated by annual-layer counting of the WAIS Divide ice core. 

 Understanding changes in ice volume during the transition from the 

last glacial period to the present interglacial is central to our understanding 

of ice-sheet evolution; this is a goal of solving the transient inverse problem 
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with deep layers from central West Antarctica.  This dramatic change in 

climate led to significant changes in Northern Hemisphere ice volume, but 

also led to major changes in Antarctica, especially in West Antarctica.  

While Antarctic ice cores can recover climate histories for many hundreds of 

thousands of years (e.g. Petit and others, 1999; EPICA members, 2004), we 

focus on the past ~100,000 years of ice-sheet evolution because there are 

more data available to constrain this period.  We will use our inverse 

approach to infer histories of accumulation rate, ice thickness, and ice-

divide position from internal layers over the past tens of thousands of years.  

Solutions to an inverse problem to constrain the ice-volume history during 

the transition from the last glacial maximum (LGM) to the present can be 

compared to estimates from ice-flow models with prescribed forcing (e.g. 

Ritz and others, 2001; Huybrechts 2002), and from geologic mapping of 

terrestrial glacial features (e.g. Ackert and others, 1999; Stone and others, 

2003), and mapping of submarine glacial features (e.g. Anderson and others, 

2002).   

Spatial and temporal gradients in accumulation rate and ice 

dynamics are significant near the WAIS Divide.  Older ice originated 

further upstream, and as these particle paths traverse significant spatial 

and temporal gradients, it is no longer appropriate to approximate the total 

vertical strain using a 1-D model.  Our inferred histories will be consistent 

with the internal structure of the ice sheet, and with present-day 

measurements.  The history of accumulation rate, ice thickness, and ice-

divide position are necessary to properly interpret the WAIS Divide ice core, 

and will provide context for modern changes in ice-sheet flow. 



 

Chapter 7 
 

 

 

Synthesis 
 

 

 

7.1. Summary 

 This dissertation presents a method to solve the inverse problem to 

infer accumulation rates from internal-layer architecture.  As part of this 

inverse problem, a steady-state forward algorithm or a transient forward 

algorithm could be used.  I have demonstrated how a suite of steady-state 

problems can be formulated, and how they could be solved using radar data 

across the Martian Polar Layered Deposits (PLD).  This application with 

Martian radar data assumes that past ice flow was important in shaping 

the internal layers and the ice-surface topography on Mars, and I 

constrained the necessary conditions for Martian ice to flow at a significant 

rate.  Building from the steady-state inverse problem, I have developed an 

efficient transient forward algorithm that is well-suited as part of the 

transient inverse problem to infer histories of accumulation rate, ice 

thickness, and ice flow.  The method I present to solve the transient inverse 

problem is a valuable new tool that can be used to understand ice-sheet 

history. 

 In the process of constructing a numerical model to calculate ice-sheet 

flow and solve an inverse problem, I have utilized foundational theory in 

glaciology (e.g. Paterson 1994; Van der Veen 1999; Hooke 2005) and in 
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inverse theory (e.g. Menke 1989, Parker 1994; Aster and others 2005), as 

well as foundational theory in numerical methods (e.g. Patankar 1980).  The 

physical equations and physical assumptions necessary to solve this 

problem have been relayed in this dissertation.  However, the effort to find 

accurate numerical representations and numerical solutions to these 

equations are also contributions to the field.   

A noteworthy aspect of this work is the wide range of questions and 

data sets to which these theoretical and numerical tools can be applied.  

While the applications presented here already span Mars to Antarctica, I 

think this work has the potential to extend much further.  We have focused 

on inferring past accumulation rates, but other parameters, for example the 

geothermal flux, are also poorly known.  In addition to solving this inverse 

problem with data from different regions and for different parameter values, 

portions of the forward algorithm could be used independently, or the 

inverse algorithm could be adapted solve a different inverse problem.  

Another possibility is that this entire algorithm could be integrated as part 

of a solution to a larger-scale problem.  Specific ideas are discussed in 

Section 7.4. 

 

7.2. Implications for ice-sheet dynamics 

 While many 3-D models describe the behavior of large ice sheets to 

prescribed forcing, there are relatively sparse data available to validate 

these estimates of ice-sheet evolution.  Critical information about ice-sheet 

history is derived primarily from ice cores, but this information represents 

only a single point.  Internal layers are a powerful data set for 

understanding histories of ice dynamics because they contain both spatial 
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and temporal information.  Our inverse approach is a new and powerful 

method for understanding histories of ice dynamics because it assimilates 

and recovers spatial and temporal information.   

 Histories of ice-sheet thickness and ice-divide position are necessary 

to reconstruct ice-volume histories.  One of the principal questions facing 

the glaciology community is how glaciers and ice sheets will contribute to 

sea-level rise in the coming decades to millennia.  Ice sheets respond slower 

than glaciers and smaller ice caps, but ice-sheet volumes are significantly 

larger.  To gain insight into future ice-sheet behavior, we must understand 

how ice sheets responded to past climate changes.  For example, during the 

last glacial-interglacial transition, global ice volume was nearly twice the 

present-day value (e.g. Clark and Mix, 2002).  While there are compelling 

explanations for the evolution of ice-sheet geometries through this 

transition, specifics are poorly known, and model-based estimates and 

observational estimates need to be better combined; an inverse approach 

like the one I have presented in this dissertation is a way to bring together 

models and observations.  In addition, while changing environmental 

conditions at ice-sheet margins can lead to large and rapid ice-sheet changes 

there, ice-sheet interiors are also influenced by these changes at the 

margins.  Understanding the evolution of ice-sheet interiors is central to 

understanding changes in global ice volume and sea level.  As we use 

present-day changes in the flow speed of outlet glaciers to gauge potential 

ice-sheet behavior, we must take into account the timescales over which this 

short-term activity can govern global ice-sheet evolution. 

 Histories of ice-sheet thickness and ice-divide position are necessary 

to interpret ice-core chemistry.  The relationship between oxygen isotopes 

and surface air temperatures is complicated by changes in ice thickness and 

ice-divide position, changes in ice flow, and variations in the distribution 
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and sources of precipitation (e.g. Paterson 1994, pg. 383).  Reconstructing 

the ice-flow history is necessary to develop an accurate depth-age scale for 

an ice core.  In addition, converting chemical concentrations to fluxes from 

the atmosphere requires the accumulation rate at the time and location of 

deposition.  All of these histories are poorly constrained, but all of these 

histories can be self-consistently inferred by solving the transient inverse 

problem.  Any bounds on the actual ice-sheet history in the vicinity of ice-

core sites could be used directly by the ice-core community.  Our inverse 

approach is more robust in combination with estimates of the age of radar 

layers that intersect the core, and with any estimates of past accumulation 

rate that can be made from ice-core analyses (e.g. bubble-number densities 

or beryllium-10 measurements).  Solving inverse problems is a way to 

answer questions pertinent to both the ice-core community and to the ice-

dynamics community. 

 However, there are challenges to solving any inverse problem.  To 

ensure stability of the solution algorithm, and uniqueness of the solution, 

we must impose constraints based on a priori information.  Since there may 

be limited data available, and there may be limited a priori information 

about the solution, we advocate finding the minimum variation that is 

required to fit the data and satisfy constraints.  Finding the minimum 

variation will help to avoid overfitting the available data.  A smoothed 

version of the actual history is still valuable to our understanding of ice-

sheet history. 
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7.3. Implications for Mars’ polar history 

Martian surface topography often evokes terrestrial landscapes, even 

though the two planets are very different, and the actual evolution of the 

Martian topography can be difficult to discern remotely.  However, radar 

data across Mars have been revolutionary to our understanding of Martian 

surface processes.  For the PLD, we now have radar delineations of the bed 

topography and preliminary views of the internal structure.  If the PLD 

have experienced significant ice flow in the past, an inverse approach that 

accounts for variations in total vertical strain on particle positions through 

the ice must be used to infer past mass-balance patterns from internal-layer 

shapes.  However, the ice-flow history cannot be determined from internal-

layer shapes alone.  If the mass-balance history and the ice-flow history are 

both unknown, internal layer shapes cannot be used to determine the mass-

balance history and the ice-flow history.  However, as emphasized by 

Winebrenner and others (2008), a flowing ice mass has a predictable surface 

shape.  The ice surface spatially integrates the mass balance, and the most 

recent episode of steady-state ice flow can be inferred from present-day ice-

surface topography.  Then, assuming that the PLD have experienced 

significant ice flow in the past, an inverse approach can be used to infer past 

mass balance, as well as past surface topography, from the shapes of 

internal layers.  Inferring past surface topography is important because the 

modern PLD surface topography has undergone significant erosion, which is 

concentrated in deeply incising circumpolar troughs.  Winebrenner and 

others (2008) showed that there are few locations with relict topography 

from which to infer an ice-flow history, and reconstructing topography that 

is consistent with internal structure would be informative about PLD 

evolution. 
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 Ice flow at a significant rate on Mars implies that the ice was much 

warmer than today, and it is likely that significant ice flow also implies that 

there were variations in the mechanical properties of ice that enhanced the 

flow.  Warmer ice implies warmer surface temperatures, and constraining 

the ice-flow history is a way to constrain the climate history.  The climate 

that controlled layer formation and evolution is fundamentally unknown, 

and the PLD chronology is also poorly constrained.  Predicting the evolution 

of the PLD subject to episodes of significant and also insignificant flow, and 

subject to constraints from present-day surface topography and internal-

layer shapes, could be a new way to decipher the ice-flow history of the PLD. 

 

7.4. Future research 

 The methods presented here use a 2.5-D flowband model, and 

therefore the data that we need in order to solve this problem must be 

oriented along a flowline.  While most ice-sheet radar data that have been 

collected do not follow flowlines, radar coverage can be dense across polar 

ice sheets.  On Earth, ice-penetrating radar is critical to identify suitable 

ice-core sites, and therefore radar data along flowlines often exist in the 

vicinity of deep ice cores.  On Mars, satellite-radar paths are not targeted to 

follow putative flowlines, but there is a high-density of data at the poles, 

and some paths are appropriate.  For existing radar data on both planets, 

more effort to accurately project gridded data to align along flow paths 

would be worthwhile.  For future radar-data collection, concerted effort to 

follow flow paths would benefit studies of ice dynamics.  

 The two components of this inverse approach, the forward algorithm 

and the inverse algorithm, require independent assumptions.  For example, 

the governing equations must be represented numerically in the forward 
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algorithm, and physical expectations about the unknown parameters must 

be introduced to stabilize the inverse algorithm.  These assumptions are 

well known and often used, but the implications of these approximations in 

varied applications are often unknown.  It is necessary to evaluate these 

components individually, and also to formally characterize the potential of 

this inverse approach to answer specific questions.  Stemming from this 

dissertation, there are numerous worthwhile directions and questions to 

pursue regarding this new method.  A few of them are summarized here: 

 

• It is necessary to know what data are required to answer a given 

question.  For example, how many internal layers are necessary to 

recover centennial-millennial climate variability?  The method 

presented here can determine how large the climate forcing must be 

in order to be recorded in the ice.  

 

• In addition to radar profiles, this work relies on any available 

measurements of ice-surface topography, bed topography, modern ice-

surface velocity, or modern accumulation rate.  While we target deep 

layers, it may be important to have a shallow layer (i.e. a few 

hundred years old) available to constrain the recent pattern of 

accumulation.  Constraints on past accumulation are also helpful 

measurements, and we can quantify what uncertainty is required for 

these data to be effective in our problem. 

 

• Computing the resolving power and calculating error bars by starting 

from different initial guesses of the solution should be done for each 

solution. 
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• Physical relationships between all the parameter values should be 

established in order to formalize the weighting scheme used in this 

inverse algorithm.  For example, if individual parameter values can 

trade off against each other to fit the data, can physical information 

about how these values should co-vary be imposed to help distinguish 

the individual influence of each parameter?  Or, can the resolving 

functions be used to weight the influence of each parameter?  The 

effect of additional constraints and of different model norms should be 

explored. 

 

 

7.4.1. Specific directions 

 The high accumulation rates at the WAIS Divide ice-core site may 

allow layer counting back ~40,000 years.  However, deeper layers must be 

dated using flow models, or distinct horizons must be identified and dated 

by other means.  For example, a strong reflection in the vicinity of the WAIS 

Divide core site that can be traced for hundreds of kilometers, is dated to 

~17,500 years old (e.g. Jacobel and Welch, 2005a), and is a bright reflection 

because of high acidity (e.g. Hammer and others, 1997).  In addition, radars 

can now image the deepest layers in the ice at high resolution (e.g. Laird 

and others, In Press); these data may help to constrain the history of the 

Ross-Amundsen divide.  Conway and Rasmussen (2009) showed that the 

divide is migrating today, but modern measurements cannot determine how 

long migration towards the Ross Sea has been occurring, or the extent over 

which the divide has migrated in the past.  There is also considerable effort 

to understand how recent thinning and speed up of Pine Island Glacier (e.g. 

Shepherd and others, 2001) would affect flow of interior ice. 

 This inverse approach is well suited to use with data from Greenland 

and the Arctic ice caps.  In the Arctic, higher accumulation rates there mean 
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that internal layers can be more accurately dated (e.g. Rasmussen and 

others, 2006).  Questions about the pronounced climate variability that 

punctuated the glacial climate in the Northern Hemisphere, and rapid 

present-day changes in the Arctic, need to be reconciled with past behavior.  

There are myriad valuable questions to address with the radar data and ice-

core data available across Greenland.  For example, isotopic changes in the 

Camp Century ice core in Northwest Greenland point to an ice thickness 

change of approximately 800 m since the last glacial period (e.g. Dansgaard 

and others, 1982), compared to relatively minor thickness changes 

experienced in central Greenland (e.g. Marshall and Cuffey 2000; Reeh and 

others, 2002).  An independent estimate of ice-thickness changes during this 

glacial-interglacial transition, and the role of accumulation gradients on ice-

sheet evolution during this time are important goals to target (e.g. NGRIP 

members, 2004).  Marshall and Cuffey (2000) showed that divide migration 

is pronounced during glacial-interglacial transitions, and that the divide 

may have migrated ~65 km in the past 110 kyr.  Using internal layers to 

solve the inverse problem, we can compare to divide-migration predictions 

from forward models (e.g. Marshall and Cuffy 2000; Anandakrishnan and 

others, 1994). 

 The history of ice volume and ice flow on Mars must be consistent 

with the history of Mars’ climate, and therefore the ice can provide past 

constraints to help unravel the actual climate history.  So far we have 

targeted questions about the ice-flow history that can be addressed using a 

steady-state ice-flow model.  I think that using internal layers and the ice-

surface topography with a transient ice-flow model could constrain plausible 

histories of ice flow.  For example, since orbital variations are so extreme on 

Mars, and the PLD are stagnant today (assuming that the PLD are pure 

water ice), it is likely that any history of ice flow included transitions 
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between flowing and stagnant states; it would be interesting to explore how 

this type of flow history is imprinted on the shapes of internal layers. 

 Material in this dissertation provides a springboard for future work.  

This algorithm could be directly incorporated as part of a larger-scale 

problem, or it may be possible and fruitful to solve this problem using a 3-D 

forward algorithm.  In addition, it could be insightful to compare solutions 

to this same problem using other methods.  This inverse approach is aligned 

with the types of data that are available and that are being collected, with 

our physical understanding of ice flow, and with critical questions facing the 

glaciology community.                                                   
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Appendix A: Constants and symbols 
 

 

 

Symbol  Parameter     Value 

 

g   acceleration of gravity   9.81 m s-2 

ρ   density of ice    916 kg m-3 

n   flow-law exponent    3 

Q   activation energy for creep 

    below -10 °C    42 - 84 kJ mol-1 

    above -10 °C    139 kJ mol-1  

R   gas constant     8.314 J mol-1 K-1 

 

 

 

Age   internal-layer age 

A0   temperture-independent ice-softness parameter 

A(T)   temperature-dependent ice-softness parameter 

α    surface slope 

a   ablation rate 

b&    accumulation rate 

c   accumulation rate (Chapter 3) 

E   ice-flow enhancement factor 

ε&    strain rate 

h   ice thickness 

H   maximum ice thickness 

φ    horizontal velocity shape function 

Ip   performance index 

L   ice-mass length 

m   slope 

m&    basal-melt rate 
0
inQ    ice-flux initial condition 

geoQ    geothermal flux 

0
inS    ice-thickness initial condition 

S   ice-surface elevation 

t   temporal coordinate 

T   ice temperature 

τ    shear stress 
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Symbol  Parameter  

 

 

u   horizontal velocity 

u    average horizontal velocity 

v   vertical velocity 

V   volume 

ψ    vertical velocity shape function 

W   flowband width 

x   horizontal coordinate 

x̂    normalized horizontal coordinate 

z   vertical coordinate  

ẑ    normalized horizontal coordinate 
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Appendix B: Maps 
 

 

 

 

 
 

Figure B.1. North Polar Layered Deposits, Mars.  Figure from Fishbaugh and others 

(2008).  Image is shaded-relief topography. 
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Figure B.2. South Polar Layered Deposits, Mars.  Figure from Fishbaugh and others 

(2008).  Image is shaded-relief topography. 

 

 



 

 

 
Figure B.3. AVHRR (Advanced Very High Resolution Radiometer)

including deep ice core sites.  Figure from Ice Core Working Group (2003).
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AVHRR (Advanced Very High Resolution Radiometer) map of Antarctica, 

including deep ice core sites.  Figure from Ice Core Working Group (2003). 
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Appendix C:  Parameters for Earth and Mars 

 

 Earth Mars 

Mean radius (m) 6371 3389 

Mass (1023 kg) 59.736 6.4185 

Density (g cm-3) 5.515 3.933 

Sidereal rotation period (h) 23.93419 24.622962 

Equatorial gravity (m s-2) 9.78 3.69 

Obliquity of axis 23.45 º 25.19 º 

 
 
Table C1. Geophysical parameters for Earth and Mars (values from Planetary Sciences, 

Imke de Pater and Jack Lissauer 2001, Cambridge Univ. Press). 

 

 

 

 Definition Earth Mars 

Argument of 

perihelion (1) 

The angle between the ascending node 

(going north, the point in the orbit where 

the ecliptic is crossed) and the perihelion 

measured counter-clockwise along the 

plane of the orbit 

102.8º 336 º 

Eccentricity (2) Shape of the orbit, eccentricity is zero for 

a circular orbit 
0.0167 º 0.093 º 

Inclination (3) The angle between the plane of the orbit 

and the plane of the ecliptic (plane of the 

Earth’s orbit around the sun) 

0 º 1.85 º 

Longitude of the 

Ascending node 

(4) 

The angle between the vernal equinox 

and the ascending node, measured 

counter-clockwise 

-- 49.6 

Semimajor axis 

of orbit (5) 

The longer half of the axes of the orbital 

ellipse 
1 AU 1.524 AU 

 
Table C2. Orbital elements for Earth and Mars (values from Fundamental Astronomy, 

Karttunen and others 1996, Springer). 
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 Effect Range of 

values 

Periodicity 

Eccentricity of orbit Strong seasonal effect 

(e.g. dust storms); small 

effect on insolation 

~0-0.1 99 Kyr, 2.4 

Myr 

Inclination of orbit No direct effect on 

insolation but effects 

obliquity 

~0º -5º 1.2 Myr 

Precession of orbit No direct effect on 

insolation but can lead 

to secular spin-orbit 

resonance 

-- 72 Kyr 

Precession of spin 

axis 

Latitudinal effect on 

seasonal insolation and 

can lead to secular spin-

orbit resonance 

-- 51 Kyr 

Obliquity of spin 

axis 

Also altered by changes 

in other parameters, 

strong latitudinal effect 

on annual insolation 

~13º -48º 120 Kyr, 95 

Kyr 

“Precession” of the 

Equinoxes 

Not an orbital 

parameter, but has a 

strong latitudinal effect 

on annual insolation 

-- 150 Kyr 

 

Table C3. Parameter Variations for Mars for the last ~20 Myr (Ward, Mars book 1992; 

Laskar and others 2002; Fishbaugh, ISSI presentation 2008). 
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Martian Seasons 

Martian seasons are measured by the areocentric longitude of the Sun (Ls), 

which is the angle between Mars and the Sun measured with respect to the 

Northern hemisphere at the vernal equinox, where Ls=0º (e.g. Kieffer and 

others, 1992; Laskar and others 2004).  A Martian day (sol) is 88775.245 

seconds, and a Martian year is 668.6 sols.  A Martian month spans Ls=30º, 

and due to the eccentricity of the orbit the length of a month ranges from 

46-67 sols. 

 

 

Month Ls range Sol range Duration Events 

1 0-30 0-61.2 61.2 NH Vernal equinox, 

Ls=0 

2 30-60 61.2-126.6 65.4 -- 

3 60-90 126.6-193.3 66.7 Aphelion at Ls=71 

4 90-120 193.3-257.8 64.5 NH Summer solstice, 

Ls=90 

5 120-150 257.-8-317.5 59.7 -- 

6 150-180 317.5-371.9 54.4 -- 

7 180-210 371.9-421.6 49.7 NH Autumnal equinox, 

Ls=180 

8 210-240 421.6-468.5 46.9 Perihelion at Ls=251 

9 240-270 468.5-514.6 46.1 NH Winter solstice, 

Ls=270 

10 270-300 514.6-562 47.4 -- 

11 300-330 562-612.9 50.9 -- 

12 330-360 612.9-668.6 55.7 -- 

 
Table C4. (values from Laskar: 

                       http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html) 
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Appendix D:  Insolation variations on Mars 

Mars’ orbital parameters are highly chaotic compared to Earth 

because of secular spin-orbit resonance between Mars and nearby planetary 

objects (e.g. Touma and Wisdom, 1993).  Due to this chaotic interaction, the 

obliquity, the eccentricity, and the precession can be reliably reconstructed 

only over the past 10-20 Myr (e.g. Laskar and others 2004); solutions from 

further in the past are nonunique.  Presently, Mars has an Earth-like 

obliquity of 25.2º, but over the last 10 Myr, Mars’ obliquity reached a 

minium value of ~14º and a maximum value of ~48º, cycling from higher to 

lower values every 104-105 years with an average of ~32º (Touma and 

Wisdom, 1993; Laskar and others 2004).  From ~4-10 Myr ago, obliquity 

fluctuated about 35º, whereas from ~4 Myr ago to the present, obliquity 

fluctuated about 25º (Touma and Wisdom, 1993; Laskar and others 2004).  

As noted by Pathare and Paige (2005), the obliquity variation is severe, and 

Mars’ obliquity remains within 5º of any given value for less than 10,000 

years. However, every 2-3 Myr there are periods where obliquity varies only 

slightly, which has been the situation from 0.5 Myr ago to the present.   

The present-day eccentricity is 0.093 (e.g. Ward, 1992) and Mars 

experiences quasiperiodic variations in eccentricity of 0.04 every ~105 years, 

in addition to a larger variation of 0.1 every ~2 Myr.  In addition, over the 

past 10 Myr, Mars’ eccentricity is highest during the few-thousand-year 

periods when the obliquity varies only slightly.  Mars has an argument of 

perihelion of 251º, describing the direction of the major axis during orbit 

around the sun. This varies from 90 º -270º with an ~50,000 year period 

(Ward, 1992).  See Appendix C for a comparison of orbital parameters for 

Earth and Mars, and the range and periodicity of orbital-parameter 

variation for Mars.  
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Figure D.1.  Annual-average insolation compared to summer-average insolation at 90 N 

over the past 20 Myr (data from Laskar and others 2004). 

 

 

The effects of orbital variations on Mars’ surface temperature have 

been calculated (e.g. Pathare and Paige 2005; Levrard and others 2007; 

Schorghofer 2008), and the annual-average surface temperature at 80-90 º N 

is always below ~180 K.  As shown in Figure D.1, calculated using values 

from Laskar and others (2004), the summertime insolation at the North 

Pole is ~2.5 times greater than the annual-average temperature at the 

North Pole.  However, the annual-average temperature remains much lower 

than the summertime temperature at least in part because the North PLD 

are covered with carbon dioxide (CO2) frost during the winter, which has a 7 

mbar frost-point temperature of 148 K (Kieffer and others 1976).   

Sublimation of water ice at the poles is affected by insolation 

variations, but how is accumulation of water ice affected by changes in 

insolation?  Richardson and Wilson (2002) showed that due to the inter-

hemispheric difference in topography, there is an orbital-independent 



Appendix D 

242 

atmospheric-circulation bias that favors water-ice deposition at the North 

Pole compared to the South Pole.  While the influence of topography is 

typically greater than the influence of orbital variations, Montmessin and 

others (2007) showed that due to the present-day timing of perihelion, 

localized water-ice deposition is presently favored at the South Pole. 

Levrard and others (2004) showed that the distribution of polar 

accumulation is sensitive to obliquity, but the rate of polar accumulation is 

comparatively insensitive.  For example, at an obliquity of 30º there is no 

water ice accumulation in the South polar region, and only limited 

accumulation in the North.  Whereas, at an obliquity of ~25º there is limited 

accumulation in the South and moderate accumulation in the North, and at 

~15-20º obliquity the accumulation in the North and South are maximized, 

but the accumulation rate is higher in the North (Levrard and others, 2004).  

However, for 15-30º obliquity, Levrard and others (2004) found that the 

accumulation rate at the poles was always ~0.1-2 mm/yr.  In order to 

quantify how insolation variations have affected the PLD, it will be 

important to incorporate our understanding of global and local patterns of 

water-ice sublimation and deposition. 

To affect the rate of ice flow, changes in surface temperature must 

propagate to the near-basal ice.  The propagation of changes in surface 

temperature occurs primarily via diffusion, and the characteristic timescale 

for diffusion is: 

    
)(

2

T

H
d κ

τ =         (D.1) 

where H is the ice thickness and )(Tκ is the temperature-dependent 

diffusivity (in m2yr-1), and )(/)()( TcTKT ρκ = , where K(T) is the 

temperature-dependent thermal conductivity (e.g. Paterson 1994, pg. 205), 

ρ  is the ice density, and c(T) is the temperature-dependent specific heat 
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capacity (e.g. Paterson 1994, pg. 205).  In Figure D.2a we show how 

conductivity K, specific heat capacity c, and diffusivity κ change as a 

function of temperature.  Conductivity increases by ~1.7 as temperature 

increases from 150 to 270 K.   Specific heat capacity decreases by ~0.5 as 

temperature increases from 150 to 270 K.  Diffusivity is calculated with a 

density of 917 kg m-3, and decreases by ~0.3 as temperature increases from 

150 to 270 K.  Figure D.2b shows how the diffusion timescale changes as a 

function of near-basal ice temperature for a 2 km thick ice mass with a 

density of 917 kg m-3, of 1000 kg m-3, and of 1100 kg m-3.  For a density of 

917 kg m-3 and a temperature range of 150-270 K, the diffusion timescale 

goes from ~100-30 Kyr because colder ice has a higher diffusivity.   

 

 

                      

Figure D.2.  a) Specific heat capacity, thermal conductivity, and thermal diffusivity as a 

function of ice temperature, all normalized by their values at 150 K.  b) Characteristic 

timescale for diffusion as a function of near-basal ice temperature for ice density of 917, 

1000, and 1100 kg m-3. 
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Appendix E: Steady-state surface models 

 

 

The steady-state continuity equation (e.g. Paterson 1994, pg. 256; 

Chapter 2, Equation A2.1.1) can be solved analytically and numerically for a 

steady-state ice-surface profile.  Simplifying assumptions must be made in 

order to solve the equation analytically.  The simplest surface-profile 

solution is found by representing the depth-averaged horizontal ice velocity 

u with the ‘Shallow Ice Approximation’ (e.g. Hutter, 1983 pg. 256; Paterson, 

1994, pg. 262; Chapter 2, Section A2.1).  Then, an analytical solution can be 

found to the mass-conservation equation uxhcx )(= , where c is the 

accumulation rate, x is the distance along the profile, and h(x) is the ice 

thickness along the profile (Paterson, 1994, pg. 243).  The solution to this 

differential equation can be nondimensionalized by the length of the profile 

L and by the ice thickness H0 at the ice divide at the position x0.  This is 

called the Vialov solution (Vialov, 1958; Paterson, 1994, pg. 243): 

 

    1
)(

/11

0

/12

0

=






 −
+








++ nn

L

xx

H

xh
             (E.1) 

 

where n is the flow-law exponent.  The Vialov solution assumes that the 

mass-balance pattern consists of accumulation over the entire domain (and 

that ablation occurs at an infinitely small region at the terminus).  While 

this mass-balance pattern is not always a physically realistic assumption, 

this surface profile is a good approximation to actual ice-sheet surfaces.   

 A second analytical solution assumes that the mass-balance pattern 

consists of uniform accumulation c in the upper zone of the ice sheet, and 

uniform ablation a in the lower zone of the ice sheet, and the two zones are 

separated at the equilibrium line R; this is the Paterson solution (Paterson, 
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1972; Paterson, 1994, pg. 245). The Paterson solution satisfies the steady-

state criterion: 

    0)( =−− RLacR                (E.2) 

The Paterson-surface profile is given by (e.g. Paterson, 1994, pg. 245): 
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A surface profile generated using a Vialov model and a surface profile 

generated using a Paterson model can be compared to a numerical solution 

of the continuity equation.  Figure E.1a compares these three profiles for the 

case where the maximum ice thickness, the accumulation rate, and the 

profile length are the same for all profiles.  For a mass-balance pattern of 

uniform accumulation over the entire domain, the numerical solution is 

equivalent to the Vialov model.  However, the Paterson model includes an 

ablation zone, and with a ratio of accumulation rate to ablation rate 

c/a=0.1, the Paterson profile is thinner compared to a Vialov profile of the 

same length.  Figure E.1b compares the difference in length that is required 

for a Paterson profile with c/a=0.1 to match a Vialov profile over most of the 

domain.   
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Figure E.1. a) Steady-state-ice-sheet surface profiles with the same full-span length, 

calculated using a Vialov model, a Paterson model with a mass-balance distribution of 

c/a=0.1, and solved numerically (see Chapter 2). b) A Paterson profile with a surface shape 

that is matched to the Vialov profile and to the numerical solution over most of the domain.   
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Appendix F:  Kinematic-wave theory and response timescales 
 

 

Mass-balance changes, ice-flux changes, or local ice-thickness 

changes drive ice-sheet thickness changes and the development of kinematic 

waves (Weertman, 1958; Nye, 1960, 1963; Hooke, 2005, pg. 365).  Kinematic 

waves act to restore stability so that ice masses conserve mass. These waves 

may not be physically recognizable, compared to waves in an ocean, for 

example; they are waves of constant ice flux moving through the ice mass at 

a speed which is different from the average speed of the ice. The kinematic-

wave equation describes this response as a perturbation from a datum state, 

in terms of ice flux or ice thickness (e.g. Hooke, 2005, pg. 373). The datum 

state is the initial condition. For any known accumulation-rate perturbation 

b1, the ice flux in the perturbed state q1 can be found from the ice thickness 

in the perturbed state h1 using the kinematic-wave equation. To derive this 

relationship, we assume that the flux q, at any position x, is a function of ice 

thickness h and surface slope dS/dx (=α ), q = q(x,h,α ), and continuity in 

the perturbed state is 
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For small perturbations from the datum state, q1 at any position x can be 

given by a series expansion (e.g. Nye, 1960), 
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The coefficients of ice thickness and surface slope are 
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where n is the exponent in the flow law.  The quantity c0 is the kinematic-

wave velocity per unit width, in units (m yr-1).  The quantity D0 is the 

kinematic-wave diffusivity per unit width, in units (m2 yr-1). The surface 

slope can be represented in terms of ice thickness xh ∂−∂= /α .  While the 

idealizations of kinematic-wave theory break down near the ice-sheet 

terminus, where surface slopes become large, replacing the terminus with a 

wedge shape addresses this problem (see also Chapter 4). This was 

suggested by Nye (e.g. 1960, 1963), since c0 should remain non-zero while D0 

goes to zero at the terminus (Nye, 1963).   

Using Equation F.1 in Equation F.2, gives the linearized kinematic-

wave equation, derived by Nye (1960): 
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This shows how the response of ice masses to small perturbations can be 

determined using linearized kinematic wave theory.  Each term describes 

how ice thickness will change over time due to a perturbation in 

accumulation, and how the kinematic wave will propagate and diffuse over 

the ice-mass length.  From this solution for a spatially uniform step-change 

in mass balance, from b0 (x) to b0 (x) + b1, Jóhannesson and others (1989) 

showed that the response time to approach the new total ice volume (the 

volume response time) is 

01

1

lb

V
V =τ                (F.6) 

where V1 is the volume perturbation, 1b  is the average accumulation 

perturbation, and l0 is the length in the datum state. Jóhannesson and 

others (1989) also formulated a propagation timescale, cτ :  
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and a diffusion timescale, Dτ : 
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Hooke (2005, pg. 377) noted that the 2π  term in Equation F.8 arises from 

the Fourier solution of the diffusion equation.  The volume response time is 

significantly longer than the propagation or diffusion timescales because ice 

flow can redistribute mass along the surface more quickly than the 

additional mass in the perturbed state can accumulate or ablate (e.g. Hooke, 

2005, pg. 377).  All of these response timescales are e-folding timescales; the 

amount of time calculated is the time it takes to reach approximately two-

thirds of the way to the new steady state.   

Jóhannesson and others (1989) showed that the volume response time 

can be simplified by approximating the volume perturbation V1 as equal to 

the maximum thickness of the glacier in the datum state H0max multipled by 

the change in length ∆L.  Then, the annual gain in mass from the 

perturbation must equal the mass lost at the terminus: 

     LLbLb ∆= )( 001     (F.9) 

where  )( 0Lb  is the absolute value of the ablation rate at the terminus in 

the datum state (e.g. Jóhannesson and others1989; Hooke 2005, pg. 378).  

Therefore, the volume perturbation is 
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and the volume response time is  
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This representation of the volume response can be calculated simply in 

terms of the maximum ice thickness max0H  and the ablation rate at the 
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terminus )( 00 Lb , which are relatively straightforward to calculate or 

estimate. 

 A relaxation time for an ice mass can also be derived from a zero-

dimensional ice-flow model (Oerlemans, 1981; van der Veen and Oerlemans, 

1984; Van der Veen, 1999, pg. 261); the description of the response time 

associated with this model is given in Van der Veen (1999, pg. 265), and is 

summarized here.  The zeroth-order model is 
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Representing the time variation in these values in terms of a perturbation 

from steady state, i.e. ice thickness '0 HHH +=  and '0 bbb += , then 

expanding this equation as a Taylor series, and subtracting the steady-state 

continuity equation (Equation F.12) from this perturbation equation, gives 

an equation for the rate of change of perturbations in ice thickness, 
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where the relaxation time Rτ  is given by 
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Appendix G: Finite Volume Method 

 

 

The Finite Volume Method (FVM), where the governing equations are 

solved in the integral form, stands in comparison to the Finite-Difference 

Method (FDM), where the governing equations are solved in the differential 

form. The finite-difference approximation of the derivative is a truncated 

Taylor series expansion (discussed further in Appendix H). In the FDM, the 

governing equation is satisfied only over the entire domain, and 

discretization must be performed on a uniform grid, or there must be a 

coordinate transformation to relate the non-uniform grid to a uniform grid.  

The FDM is easy to implement, but the quality of the approximation 

between grid points can be highly dependent on how the derivative is 

defined and on the order of the approximation (e.g. first-order forward 

differences compared to second-order centered differences), as well as on the 

discretization grid size (e.g. van den Berg and others, 2006). The Finite-

Element Method (FEM) is another method that, similar to the FVM, solves 

the governing equations in the integral form. The FEM is designed to 

facilitate complicated domain geometries. 

While all three methods have been used to solve the equations for ice 

flow (e.g. Van der Veen, 1999, pg. 215; Hooke, 2005, pg. 288; Price and 

others, 2007), an inevitable aspect of numerical analysis is to find the 

appropriate balance between accuracy and numerical cost. We chose the 

FVM because satisfying conservation across each finite volume allows for 

flexible grid spacing, and the FVM is an efficient low-order discretization 

scheme that has been thoroughly described and rigorously tested by 

Patankar (1980) and by Versteeg and Malalasekera (1995).   
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Figure G.1.  Sketch illustrating the notation adopted for the finite-volume method 

(following Patankar, 1980).  Centerpoints are denoted by capitals (P for center volume, W 

for western volume, and E for eastern volume), and edges are denoted by lowercase (w for 

western edge, and e for eastern edge).  Distances between volume centerpoints, and the 

finite-volume length is given by the corresponding ∆x. 

 

 

We follow the notation given by Patankar (1980, pg. 32).  A given 

center point is denoted by P, the western (upstream) edge point is denoted 

by w, and the eastern (downstream) edge point is denoted by e.  The 

adjacent western finite-volume center point is denoted by W and the 

adjacent eastern finite-volume center point is denoted by E. There is a 

discrete distance from each center point to each edge point, and from each 

center point to each center point. The distance from center point W to center 

point P is wx∆ , the distance from center point P to center point E is ex∆ , and 

the distance from edge point w to edge point e is Px∆ .  These finite volume 

relationships are illustrated in Figure G.1. 
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Figure G.2. Sketch of how edge thicknesses and slopes are defined in a finite-volume 

representation, following Equations G.1 and G.2.  Western and eastern values that lie 

outside the domain must be extrapolated. 

 

 

Ice thicknesses at the western edges and at the eastern edges are 

given by the known ice thickness at the neighboring upstream and 

downstream center points: 
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Surface slopes at the western edges and at the eastern edges are similarly 

interpolated from the known ice thicknesses at the neighboring center 

points: 
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However, the western-most and the eastern-most edge values of ice 

thickness and surface slope must be extrapolated.  Figure G.2 illustrates the 

piecewise-linear relationship between the known ice thickness at the finite-

volume center points and the interpolated ice thickness at the finite-volume 

edge points, expressed by Equations G.1 and G.2.   
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Appendix H: Explicit, Implicit, and Crank-Nicolson Numerical   

                          Schemes 
 

 

Solving a differential equation by numerical integration involves time 

marching over discrete time steps, which is different than an analytical 

integration over a continuous function of time.  The analytical and 

numerical evaluations both require a known initial condition, and the 

numerical evaluation should yield a similar solution to the same problem 

solved analytically.  Accuracy and stability are essential in numerical 

analysis, and the numerical scheme is often chosen based on these 

considerations.   

Most numerical integration methods for differential equations can be 

derived from a Taylor’s series expansion, where the time-derivative term is 

evaluated to find an unknown value at a future time step tt ∆+  in terms of a 

known value at the current time step t.  For example, the ice-thickness 

profile h(x), at a discrete time tt ∆+ , can be expressed as 
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It is common to truncate the series and use a first-order approximation; this 

is known as the Euler method, or the explicit method, because it is based on 

explicit time stepping in terms of known values.  Therefore, an explicit 

scheme assumes that the solution at time tt ∆+ depends on known values at 

time t, in other words, the known values at time t apply over nearly the 

entire time step t∆ . In comparison, an implicit scheme assumes that the 

solution at time tt ∆+  depends on values at time tt ∆+ , in other words, the 

(possibly unknown) values at time tt ∆+  apply over nearly the entire 
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timestep t∆ .  An alternative is the Crank-Nicolson scheme, which assumes 

that the solution at time tt ∆+ depends on an equally-weighted linear 

combination of values at time t and values at time tt ∆+  (Patankar, 1980); 

other semi-implicit schemes with different weighting factors could also be 

used, but θ must be between 0 and 1.  After Patankar (1980, pg. 56), Figure 

H.1 sketches the difference between a fully-implicit, a fully-explicit, and a 

semi-implicit scheme.  Choosing the proper numerical scheme depends on 

the physical response of the modelled system, as well as on the required grid 

resolution and on computation-time constraints. 

   

 

     
 
Figure H.1. Sketch showing the relationship between a fully implicit, a fully explicit, and a 

Crank-Nicolson solution scheme (after Patankar, 1980, pg. 56). 

 

 

 We can represent the mass-conservation equation in the form of a 

diffusion equation, and directly employ the numerical solution method from 

Patankar (1980, pg. 55).  To do this, we represent xq ∂∂ /  as xhD ∂∂ / , where 

D acts like a diffusion coefficient, and is discussed in Appendix I.  It is 
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assumed that the value of D is known at each timestep, and Appendix I also 

addresses how to iteratively update the estimate of D, because it is a 

nonlinear function of the ice thickness and surface slope values that we are 

trying to find.   

Following Patankar (1980), the mass-conservation equation is 

integrated over each finite volume from the western edge xw to the eastern 

edge xe, and over each timestep from t to t+ t∆ : 
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This equation is evaluated across each discrete finite volume in the domain, 

and from this set of equations a linear matrix system can be setup to solve 

for ice thickness at finite-volume center points at the unknown future 

timestep ),( ttxh P ∆+ , 

    SBhAh ttt +=∆+      (H.3) 

 

with the solution for ice thickness given by,  

    )(1 SBhAh ttt += −∆+
     (H.4) 

 

In this case, A is a matrix of implicit coefficients, B is a matrix of explicit 

coefficients, and S is a vector of constant boundary values and source terms.  

Following Patankar (1980, pg. 55), A is a tridiagonal matrix with 

coefficients for a western volume aW, a center volume aP, and an eastern 

volume aE, and B is a matrix of center-point values aP0, giving 
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with, 
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The subscripts w and e represent values at finite-volume edges, and θ  is the 

scaling factor for explicit and implicit contributions (θ =1 for a fully implicit 

scheme, θ =0.5 for a Crank-Nicolson scheme, and θ =0 for a fully explicit 

scheme). The vector of boundary values and source terms depends on the 

specific problem, and for our mass-flow problem it is given by, 
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Equations H.6- H.10 are modified at the boundaries, where the first aW 

value and the last aE value do not exist in the domain because it has a 

discrete start value and a discrete end value.  Therefore, the boundary value 

of ice thickness, or the boundary ice flux must be known or must be treated 

as a separate calculation (e.g. using the method described in Chapter 4). 

The explicit scheme is the most straightforward scheme because the 

solution is found explicitly from known values (the values at time t), and for 

the nonlinear ice-flow problem this is an advantage because the equation for 

ice thickness can be evaluated directly (see Appendix I).  However, the 

explicit scheme can become numerically unstable, giving a physically 

unrealistic solution if the timesteps t∆  exceed a threshold value (Patankar, 
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1980, pg. 57).  Problems that require extremely small step sizes to remain 

numerically stable are referred to as stiff, and this method can be severely 

restricting when solving the stiff problem for ice-thickness evolution (e.g. 

Hindmarsh and Payne, 1996).  In addition to temporal-grid constraints for 

accuracy and stability, there may also be spatial-grid constraints required to 

find an accurate and stable solution for the ice-flow problem (e.g. Van den 

Berg and others, 2006).   

Patanakar (1980, pg. 57) and Patankar and Baliga (1978) argue that 

a fully implicit scheme is more desirable than a Crank-Nicolson scheme.  

The Crank-Nicolson scheme is often considered to be unconditionally stable, 

but this does not mean that the solution is unconditionally realistic.  

Patankar and Baliga (1978) show that as the timestep increases, a scheme 

split between implicit and explicit values can develop numerical oscillations.  

In terms of the matrix equations, in particular in Equation H.10, Patankar 

(1980, pg. 57) shows that these oscillations can occur when 1≠θ , because 

the coefficient of hPt, given by ))(1(0
WEP aaa +−− θ , can become negative 

unless 1=θ . Therefore, the Crank-Nicolson scheme is mathematically 

stable, as the oscillations will eventually die out, but the oscillations can 

still develop, and they are physically unrealistic.  This is the primary reason 

Patankar and Baliga (1978) argue that a fully-implicit scheme better 

represents reality, particularly for the heat-flow problem; unless the 

timestep is acceptably small, the assumption that the values will change 

linearly is not valid where the values change exponentially over the 

timestep.  In the highly non-linear ice-flow problem, we encounter this exact 

problem.  In the semi-implicit scheme, which includes the Crank-Nicolson 

equal-weighting scheme, whenever the timestep is not small enough, we 

also find that physical instabilities can develop (as described by Patankar, 
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1980, pg. 57).  However, these oscillations do not form using the fully-

implicit scheme. 

Since the explicit scheme is more straightforward to implement, and 

a correctly implemented fully-explicit scheme and a correctly implemented 

fully-implicit scheme should yield a similar solution, we verify that our 

fully-implicit solution matches an appropriately time-stepped fully-explicit 

solution.  The timestep size required for the explicit scheme, in combination 

with our own computational constraints, limit this test to a runtime of a few 

hundred years.  Figure H.2 compares these two solutions for 150 years of ice 

sheet evolution in response to a step change in accumulation.  The explicit 

scheme uses 0.05 year timesteps, and the implicit scheme uses one year 

timesteps (two and five year timesteps give nearly the same solution).   The 

fully implicit solution value for ice flux (or ice thickness) at the limited-

domain boundary is within a fraction of a percent of the fully explicit 

solution value for this 150-year calculation of ice-thickness response to an 

impulse in accumulation.  The computation time required for a stable 

solution with an explicit scheme is approximately two orders of magnitude 

longer than solving the equivalent problem with an implicit scheme (i.e. an 

explicit calculation that requires ~1000 seconds could be performed with an 

implicit calculation in ~10 seconds).  We want to minimize the computation 

time, and we want to avoid unstable and unphysical behavior, so we use a 

fully-implicit scheme. 
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Figure H.2. Comparison of the solution for ice-thickness evolution using an explicit 

calculation (0.05 year timestep), and using an implicit calculation (2 year timestep).  The 

run is for 150 years in response to an impulsive perturbation in accumulation.  
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Appendix I: Nonlinearity 

 

In the continuity equation for ice flow, the value of ice flux is a 

nonlinear function of ice thickness, which means that this governing 

nonlinear equation cannot be solved directly for the evolution of ice 

thickness.  To linearize our problem, we group the nonlinear terms in the 

dynamic flux into a coefficient, consisting of the ice thickness and the 

surface slope, and assume that this coefficient has a known value.  

Following this step, the mass-continuity equation can be represented in a 

generic differential-equation form that consists of an unsteady term, a 

diffusion term, an advection term, and a source term: 
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where α  is a weighting factor to split contributions from the diffusion and 

the advection terms, ),( txu is the depth-averaged horizontal velocity, and 

D(x,t) acts like a diffusion coefficient given by 
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We considered the case 0≠α , where the discretization equation is solved 

using an advection term.  However, unless this term is necessary to include, 

Patankar (1980, pg. 41) typically excludes the advection term to facilitate a 

simpler solution. While it is possible, and often necessary, to include the 

advection term in the heat-flow problem (e.g. Patankar, 1980, chapter 5), we 

think including an advection term in the mass-flow problem adds 

unnecessary complexity, especially because there is no physical requirement 

to include this term.  The schemes described in Patankar (1980, pg. 79-95) 
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for the heat-flow problem rely on mass continuity to justify that the 

strength of the advection, given by uF ρ= , is equal across eastern and 

western finite-volume edges Fe=Fw; this means that Fe-Fw=0.  When solving 

a mass-flow problem, there is no global constraint that can be utililized to 

justify Fe=Fw, and therefore justify Fe-Fw=0 in the discretization equation. 

Since the value of Fe=Fw for the mass-flow problem is a function of the 

unknown value of the ice thickness, this adds additional complexity.  

Therefore, we feel that it is unnecessary to include an advection term. We 

favor a linearization that groups the nonlinearity into a single coefficient 

D(x,t), giving an equation with a diffusion form (Equation I.1 with 0=α ; 

this is the linearization form used by e.g. Waddington, 1982, pg. 239; Van 

der Veen, 1999, pg. 226).   

The numerical solution to Equation I.1 is found by integrating over 

each finite volume from the west edge xw to the east edge xe, and from the 

current timestep t to the future timestep tt ∆+ .  Ice thickness h(x,t) and ice-

surface elevation S(x,t) are related by S(x,t) = h(x,t) + B(xP).  Ice-surface 

elevation is calculated at finite-volume centers S(xP, tt ∆+ ): 
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   (I.3)            

 

where D(xw, tt ∆+ ) and D(xe, tt ∆+ ) are the values of the diffusion coefficient 

evaluated at western and eastern finite-volume edges, respectively. The 

coefficients at finite-volume edges require the values of ice thickness and 

surface slope there, we linearly extrapolate the ice thickness and we 

quadratically extrapolate the surface slope from the calculated values at 
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finite-volume centers. The flux coming in across the edge of one volume is 

equal to the ice flux going out through the adjacent upstream volume edge.  

The ice flux at one boundary must be prescribed as a boundary condition, 

and the ice flux at the other boundary in the domain must be calculated as 

part of the solution for ice-thickness evolution.   

The value of the coefficient D(x, tt ∆+ ) is a function of h(x, tt ∆+ ) and 

dS/dx (x, tt ∆+ ), and at time tt ∆+  these values are of course unknown, 

since we are solving the problem for h(x, tt ∆+ ); this is the nonlinearity in 

our problem. To address this quandary, we follow an iterative approach (e.g. 

Patankar, 1980, pg. 47).  The iterative sequence starts by estimating the 

coefficient values as function of the known values at time t, so that at the 

first iteration, D(x, tt ∆+ ) = D(x, t).  However, in a transient problem it is 

unlikely that a solution with this initial estimate will satisfy continuity, so 

we must iteratively adjust this estimate of the diffusion coefficient so that 

the solution for S(x, tt ∆+ ) calculated with D(x, tt ∆+ ) will satisfy the 

continuity equation.  We iteratively update the estimate of D(x, tt ∆+ ) using 

the new estimate of S(x, tt ∆+ ), until continuity is satisfied. There are two 

ways to check that mass conservation holds: (1) directly calculate the 

residual of the continuity equation and iterate until this residual is small, or 

(2) calculate the difference in the ice-thickness solution from iteration i-1 to 

iteration i and iterate until this difference is small.  We find that both of 

these approaches yield the same ice-thickness solution, but the second 

approach requires less computation time. 

The degree to which the continuity equation is satisfied at each 

iteration i, which we call the residual of the continuity equation, is given by 
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We seek a value of 
ittxD ),( ∆+  that, when calculated using an appropriate 

),( ttxS ∆+ , will satisfy ri=0.  Following Waddington (1981, pg. 241), the 

Taylor expansion of ri about zero is a set of equations that can be solved for 

changes in the ice thickness ihδ  at each iteration that will result in a 

smaller residual of the continuity equation: 

    ∑
=

∆+∂
∂=

J

k
ktt

k

i
i S

S

r
r

1

δ       (I.5) 

where k is an index over each spatial value of ice thickness.  This can be 

represented in matrix form as 

   ii SAr δ= ,  ii rAS 1−=δ      (I.6) 

The calculated changes iSδ  are subtracted from the current estimate of ice 

thickness, 

   
iii SttxSttxS δ−∆+=∆+ −1),(),(      (I.7) 

and the new 
ittxS ),( ∆+ is used to estimate an updated diffusion coefficient 

1),( +∆+ ittxD , and then a new solution for ice thickness 
1),( +∆+ ittxS .  

Iterations continue until the residual ri is small, and we require r < 10-6 (see 

Appendix J) 

 While we required that our solution satisfy continuity, a simpler 

approach can be followed that yields the same solution.  The second 

approach is to iterate until changes in ice thickness from iteration i-1 to 

iteration i are small.  In this case the residual ri is given by 
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1),(),( −∆+−∆+= iii ttxSttxSr      (I.8) 

The new estimate of 
ittxS ),( ∆+  is used to calculate an updated diffusion 

coefficient 
1),( +∆+ ittxD , and then a new solution for ice thickness 

1),( +∆+ ittxS .  Iterations with this approach continue until the residual ri is 

small, and we also require ri < 10-6.  This approach requires more iterations 

to find a solution, but it is faster because it avoids calculating the Jacobian 

matrix given by Equation I.5.  While linearization with this approach 

facilitates a simpler and faster numerical solution, the mass-flow problem is 

highly nonlinear and for the numerical scheme to be stable, we must invoke 

underrelaxation.  As described by Patankar (1980, pg. 67), underrelaxation 

is a way to slow down convergence of the solution by using a weighted 

contribution of values from previous iterations.  For example, we estimate 

1),( +∆+ ittxD  using contributions of ice thickness and surface slope from the 

current i, and from iteration i-1, using a weighting factor β, giving the 

weighted value of w
ittxS ),( ∆+  : 

 

  S(x, tt ∆+ )iw = β S(x, tt ∆+ )i + (1- β) S(x, tt ∆+ )i-1    (I.9) 

 

if β=1, only the estimate from the current iteration is used.  We found that  

β ≤ 0.1 stabilized this iterative solution procedure.  
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Appendix J: Convergence criteria 

 As discussed in Appendix I, our implicit numerical scheme iteratively 

solves the nonlinear continuity equation with the flow-law equation for ice-

sheet evolution.  Iterations for this solution stop when the residual of the 

continuity equation is small, or when subsequent changes to the ice-

thickness profile are negligible.  Waddington (1981, pg. 350-353) discussed 

the appropriate cutoff value to use for a similar iterative procedure, so that 

the residual error in the solution is acceptable.  Following Waddington 

(1981, pg. 350-353) for flow of a laminar slab with unit width, where slope 

and flux vary slowly with distance along the flowline, the residual error r is 

related to the error from solution convergence eh by, 

     her 310−= .      (J.1) 

As pointed out by Waddington (1981, pg. 353), for the ice-thickness solution 

to be accurate to 10-6, given ice-thickness changes over each timestep of  

~10-1, the residual convergence criterion, 

     410−<r .      (J.2) 

 A convergence criterion is required to calculate the impulse-response 

functions, where we solve for ice-sheet evolution in response to a small 

perturbation in one timestep.  A convergence criterion is also required to 

calculate ice-sheet evolution, where we calculate the ice-thickness history in 

response to centimeter-scale variations in accumulation that occur over each 

timestep.  To reduce computation time while remaining accurate, we use 

610−<r  in the surface calculation for the impulse-response functions, and 

we use 510−<r  in the calculation of ice-sheet evolution.        
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Appendix K: Algorithm Flowcharts 

 

 

Figure K.1. Main program. 
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Figure K.2. Surface-evolution calculation. 
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Figure K.3. Velocity-field calculation. 
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Figure K.4. Particle-tracking module. 
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Figure K.5. Inverse algorithm. 
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Appendix L: Linear interpolating functions 

 

Between any pair of spatial nodes xin and xni+1 separated by 

n
i

n
ii xxx −=∆ +1 , we define a local non-dimensional position variable Xi, which 

varies between 0 and 1 in interval i,  
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We define two linear interpolating functions on a generic interval, 
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10 ≤≤ iX
 

These functions are defined to be zero everywhere outside their interval i.  

Then, any piecewise-linear function f(x,t) with values fi(t) at nodes i can be 

express as 
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    [ ]∑
−

=
−+=

1

1
110 )()()(

xN

i
iii XXtf γγ  

with Nx functions fi(t) at the spatial nodes.  We must ensure that 

0)()( 110 == XX
xN γγ , because the interpolating functions are not defined 

there. 

 We can also explicitly express the time-dependence through 

piecewise-linear functions expressed in terms of nodal values.  Between any 

pair of temporal nodes tjn and tnj+1 separated by n
j

n
jj ttt −=∆ +1 , we define a 

local non-dimensional time variable Tj analogous to Xi, which varies 
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between 0 and 1 in time-interval j.  The same interpolating functions as 

Equation L.3 can be used to express time-dependent variables at 

intermediate times 
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Again, we must ensure that 0)()( 110 == TT
tN γγ . 

 Next, we define integrals of products of the interpolating functions, 
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where m and n can take the values 0 or 1, giving 
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Appendix M: Bilinear and trilinear interpolation 

 

 Any 2-dimensional grid, with coordinate values x and y, can be 

parameterized as a 2-dimensional field, and if the coordinate system is 

chosen such that the four grid points where a function F is known are at 

(0,0), (0,1), (1,0), (1,1), the function F can be parameterized by the 

interpolation equation 

          ���, �� � ��0,0��1 � ���1 � �� � ��1,0���1 � �� 

                                 ���0,1��1 � ��� � ��1,1���             (M.1) 

 

This can also be represented as  

                               ���, �� � �� � �� � ��� � �            (M.2) 

where the coefficients A, B, C, and D are given by A= F (0,0), B= F (1,0)- F 

(0,0), C= F (0,1)- F (0,0), and D= F (0,0)- F (1,0)- F (0,1)+F(1,1).   

Any 3-dimensional grid, with coordinate values x, y, and z, can be 

parameterized as a 3-dimensional field, and if the coordinate system is 

chosen such that the nine grid points where the function F is known start at 

(0,0,0) and span (1,1,1), the function F can be parameterized by the 

interpolation equation 

 ���, �, 
� � ��0,0,0��1 � ���1 � ���1 � 
� 

                                   ���1,0,0���1 � ���1 � 
� �  ��0,1,0��1 � ����1 � 
� 

                                   ���0,0,1��1 � ���1 � ��
 � ��1,0,1���1 � ��
 

                                    ���0,1,1��1 � ���
 � ��1,1,0����1 � 
� 

                                    ���1,1,1���
                                                                (M.3) 
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This can also be represented as 

  ���, �, 
� � �� � �� � �
 � ��� �  �
 � ��
 � !��
 � "      (M.4) 

These equations hold if the grid is rectangular, therefore we track particles 

in a normalized vertical coordinate system ẑ , given by 

    
)(),(

)(
ˆ

xBtxS

xBz
z

−
−=               (M.5) 

These parameterizations are used in our particle-tracking routine for 

mapping out an internal layer.  In comparison to standard interpolation 

from known grid values, it is computationally faster to retrieve particle 

positions from any arbitrary location in the grid by evaluating a 

parameterized function.     
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Appendix N: Analytical Jacobians 

 

To solve this nonlinear inverse problem discussed in Chapter 5, we 

must calculate the Jacobian matrix, which in our case consists of the partial 

derivatives of each modeled observable (N values) with respect to each 

model parameter (M values), producing a matrix of size NM × ; see Chapter 

5, Section A5.3).  The modeled observables are estimates of the data values, 

and this may include the internal-layer shape, the present-day ice velocity, 

measurements of the accumulation rate, or the ice-surface elevation.  The 

model parameters are the unknown values that we solve for in the inverse 

problem, and may include the initial condition for the ice flux entering the 

domain, the changes in ice flux that are from external forcing, the spatial 

and temporal pattern of accumulation rate, the layer ages, the initial 

condition for the ice-surface elevation, the temperature-independent ice-

softness parameter, or the geothermal flux.  One column of the Jacobian 

matrix describes how each modeled observable changes with respect to one 

model parameter; the full matrix describes how changes in all the model 

parameters will result in a better estimate of all the modeled observables. 

 The Jacobian matrix is expensive to compute numerically.  So, if it is 

possible, we want to calculate components of the Jacobian matrix 

analytically.  To calculate the Jacobians analytically we must represent the 

modeled observables (e.g. the internal layer) in terms of the model-

parameter values (e.g. the accumulation rate), and then derive an analytical 

expression for the partial derivative of the modeled observable with respect 

to each parameter value.  Analytically evaluating components of the 

Jacobian matrix can substantially reduce the required computation time.  

While we can derive expressions for the layer depth, the ice velocity, and the 

accumulation rate in terms of the model parameters of the accumulation 
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rate, the ice flux entering the domain, and the layer age, it is not 

straightforward to represent all components of the Jacobian matrix 

analytically.  In particular, to take these analytical partial derivatives we 

must hold the ice-thickness history h(x,t) constant; this same assumption 

cannot be made for the numerical calculations.  Therefore, some numerical 

calculations are always required, and we decided that computational 

consistency of the Jacobian elements was more important than 

computational efficiency.  In addition, the analytical advantage in this case 

was not as great because our analytical calculations also required a 

reasonable computational load.   

 However, in the event that a numerical calculation is unfeasible, or if 

it is desirable to solve a different version of this inverse problem, we present 

analytical expressions for the layer depth, ice flux, ice velocity, and 

accumulation rate in terms of the model parameters of accumulation rate, 

ice flux, and layer age.  The scheme presented here follows an original 

derivation by E.D. Waddington (unpublished), and builds on steady-state 

relationships derived by Waddington and others (2007).   

 

 

N.1. Layer depth 

 To represent the depth of an internal layer in terms of the model 

parameters (e.g. accumulation rate), we must consider transient effects on 

particle-path position.   In steady state, Reeh (1989) noted that at any 

position x along the ith modeled particle path, which originates on the 

surface at x = xis, the ice flux transported below the depth hm(x, tP) of the 

modeled internal layer at the present time tP, is equal to the flux q(xis, tP) at 

xis, and the ice flux above hm(x, tP) is equal to the difference between the 

total flux q(xih, tP) and the flux at the surface q(xis, tP), 
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qh(xih, tP) = q(xih, tP) – q(xis, tP).                (N.1) 

 

 

                                

Figure N.1.  Sketch of particle-path and ice-sheet geometry. 

 

 

This is a consequence of mass conservation, and the fact that no flux can 

cross a streamline in steady state.  If xih is the location at which the ith 

particle path xiP(t) intersects the layer at depth hm(x, tP), the partial flux 

qh(xih, tP) that is transported above the depth hm(xih, tP) at x = xih, at time tP, 

can also be written in terms of the velocity and geometry at xih, as 

   ),()(),()(),( P
h
im

h
iP

h
i

h
ihP

h
ih txhxWtxuxtxq φ=   (N.2) 

where )( h
ixφ  is the average value of the horizontal-velocity shape function 

),ˆ,( Ptzxφ  between the surface and the path at depth hm(xih, tP).  Since the 

shape functions ),ˆ,( Ptzxφ  and ),ˆ,( Ptzxψ are related by vertical integration 

(see Chapter 5, Section A5.1), and the measured depth of the layer hd(xih, tP) 

is known, )( h
ixφ  can be expressed as 
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If we can solve for qh(xih, tP) in Equation N.2 in terms of accumulation rate, 

this is a way to express the layer depth hm(xih, tP) in terms of the model 

parameters.  In steady state, this can be evaluated simply, where the 

modeled layer depth is given by 

   







−=

)(

)(
1

)(

)(
)(

h
i

s
i

h
i

h
ih

im xq

xq

x

xH
xh

φ
     (N.5) 

However, this must be considered more generally in a transient problem. 

 If a curve Fi(x) starts on or below the current surface S(x,tP) at x = xis, 

and ending at depth hm(xih, tP) at x = xih, Fi(x) can be represented 

parametrically as a position vector xiF(s), where s measures the distance 

along the curve, or as xiF(t), where t describes the time at which a particle 

moving along the curve passes xiF.  If xiF(t) is not a streamline, then 

continuity still specifies that no net flux can cross the closed surface of a 

prism bounded by vertical surfaces defined by the flowband width W(x) on 

the sides, and by the curve xiF(t) on its upper surface, by vertical faces 

joining xiF(t) to the bed at its upstream and downstream ends x = xis and x = 

xih, and by the bed B(x) between x = xis and x = xih.   No flux can cross the 

sides of W(x), which are defined by streamlines, and we assume that there is 

no loss or gain of ice along the bed. 

 We assume that a flux ),(),ˆ,( P
s
iP

s
i

s
i txqtzxψ  enters at the upstream 

end.  The factor ),ˆ,( P
s
i

s
i tzxψ  accounts for the case that zis may lie below the 
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present-day surface S(tP).  The flux transported below the curve xiF(t) at the 

downstream end xih of the prism is then given by the sum of this input flux 

and any “leakage” of flux into the prism across the curve xiF(t).  This output 

flux is also equal to the difference between the total flux q(xih, tP) and the 

partial flux qh(xih, tP) that is transported above the depth hm(xih, tP) at x = 

xih, at time tP:   
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where )),(( P
F
i tsxu  is the velocity vector along Fi(x) = xiF(s) at time tP, )(ˆ sn  is 

the outward (i.e. upward) unit normal vector to the curve, and s measures 

the distance along the curve, in the direction of increasing x.  The inner 

product in the integrand can also be written as 
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where )(ˆ st  is the unit tangent vector to Fi(x), and yê  is the horizontal unit 

vector in the y direction, transverse to the flowband.  When the curve xiF(t) 

is a particle path xiP(t) = [xiP(t),ziP(t)], its unit tangent vector is: 
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The surface elevation can change over time due to ice-sheet transients.  This 

means that the position where the path started xiP(tiS) = [xiS(t),S(xiS,tiS)] 

might not fall exactly on the present-day surface S(x,tP), and the integral 

along the curve Fi(x) must account for this possibility.  If xiP(tiS) falls below 

S(x,tP), then we just close the surface across which the flux integrates to 
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zero at that interior point xiP of the ice sheet.  If xiP(tiS) falls above S(x,tP),  

then we close the surface across which the flux integrates to zero at the 

point where the path crosses the present-day surface. 

Equation N.2 for the partial flux at the depth of the internal layer can 

now be expressed as 

∫ ⋅×+−=
P

s
i

t

t

yiPi
P
iP

s
iP

s
i

s
iP

h
iP

h
ih dttttttxWtxqtzxtxqtxq exuxu ˆ)]),(()),(())[((),(),ˆ,(),(),( PPψ     

     +−= ),(),ˆ,(),( P
s
iP

s
i

s
iP

h
i txqtzxtxq ψ  

            ∫ −
P

s
i

t

t

PiiiPi
P
i dtttwttuttwttutxW )]),(()),(()),(()),(())[(( PPPP xxxx   (N.9)

  

where )),(( P
Pi tsxu  is defined by Equation N.7.  If the transient particle path 

xiP(t) is also a streamline at t=tP, the integrand vanishes because )),(( P
Pi ttxu  

and )),(( P ttixu  are always parallel; steady state is a special case of this 

situation.  However, if the paths are unaltered, but the speed of particles 

along a path scales with the contemporary accumulation rate, then the 

integral also vanishes. 

 Combining Equation N.2 and Equation N.9 leads to and expression 

for the depth hm(xih) of the path at the point xih at which it reaches the 

correct age of the layer: 
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where 
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To calculate the depth of the kth layer, each particle is tracked from 

the starting point on the surface [xis, S(xis, tis)] at time tis = tP – Agek, to its 
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position [xih, S(xih, tP) - hm(xih)] at t=tP.  In order to find each partial 

derivative with respect to one parameter, with the other parameters held 

constant, we must be sure to stay at the same Agek and at the same x=xih, as 

the parameters are perturbed.  Conceptually, this means that we must move 

to different paths as the upstream accumulation rates or ice flux entering 

the domain are perturbed.  To allow this, we must consider the starting 

position xis to also be an implicit function of the parameter values.  

Following this requirement, differentiating Equation N.10 with respect to 

each parameter pj (e.g. the accumulation rate, the incoming ice flux, and the 

layer age), gives 
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The average horizontal-velocity shape function ),ˆ,( tzxφ  and the ice 

thickness h(x,t) are evaluated at xih at time tP, and the vertical-velocity 

shape function ),ˆ,( tzxψ  is evaluated at xih.  The ice flux q(x,t) is calculated 

using Equation N.2, and is evaluated at the particle-path starting positions 

xis and the particle-path ending positions xih.  In Equation N.12, there are 

five additional derivatives that must be evaluated.   

First, the partial derivatives of ice flux with respect to the parameters 

jptxq ∂∂ /),(  are given by Equation N.43 – Equation N.44.   
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Second, 
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Third, starting with the known particle path [xiP(t), ziP (t)] between xis 

and xih, where xis is defined by 
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Differentiating with respect to parameters pj, gives 
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where the first term in Equation N.15 gives the rate at which the path from 

xis lengthens as we seek an older layer.  To see this, note that tis = tP – Agek.  

When pj=Agek, where Agek is the age of the layer reached by path i, this 

term is just the negative value of the horizontal velocity u(xis(tis), tis) at the 

starting point xis(tis) for the path.  This term is identically zero if parameter 

pj is not Agek. 

 The second term in Equation N.15 expresses how the velocity along 

the reference path changes as the parameters change.  The integrand in this 

term can be written as 
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which can be integrated numerically because the ith path [xiP(t), ziP (t)] is 

known.  The last term in Equation N.15 expresses how the velocity changes 

as we move through the velocity gradient to an adjacent path, in order to 

always be on a path that reaches Agek at position xih as the parameters pj 

are perturbed.  Equation N.15 contains j
P px ∂∂ / , which comprises all 
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intermediate values of j
s
i px ∂∂ /  along the path.  It also contains j

P pz ∂∂ / , 

which expresses the rate at which we have to move vertically to stay on a 

path that reaches Agek at position x=xih as the parameters pj are perturbed.  

This means that we need solve simultaneously for both j
P px ∂∂ /  and 

j
P pz ∂∂ / .  The corresponding equation for rates of vertical path-hopping is 
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The first term in Equation N.17 describes the rate at which depth must be 

increased to find a new path that reaches the correct Agek at position x=xih 

as the parameters are perturbed (or alternatively, it represents the height 

above or below the surface from which the path must start at xis in order to 

reach the “correct” depth hm(xih) at x=xih).  The second term shows how 

changes in vertical velocity along the reference path contribute to the rate of 

change of the path with depth with changing parameters.  Differentiating 

the vertical-velocity field (e.g. Chapter 5, Equation 5.9), the first integrand 

in Equation N.17 can be expressed as 
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where )(txx P
i=  and )(ˆˆ tzz P

i=  are known functions of time t.  The final term 

in Equation N.17 expresses how the vertical velocity changes as we move 

through the gradients of vertical velocity w(x,z) to find a new path.  The 

velocity gradients xu ∂∂ / , zu ∂∂ / , xw ∂∂ / , zw ∂∂ /  can be found numerically or 

analytically.  The analytical expressions can be complex, especially when 
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the shape functions are complicated, for example when they vary in both x 

and z (i.e. due to a strong or variable temperature gradient).  The numerical 

calculation is not overly computationally expensive, so the numerical 

evaluation is used here.  The velocity gradients are found by differencing 

velocities at nearby points.  The coupled Equations N.15 and N.17 are found 

by integrating from s
itt =  to Ptt = , and starting from the initial conditions: 
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 Fourth, in Equation N.12, for paths that lead to the layer of age Agek, 

and tis = tP – Agek, and Agek is, for example, parameter m, then 
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where δ  is the kronecker delta function.  We treat time tis, which can 

depend on some parameters, as the variable that determines the location xis 

(rather than the other way around).   

Fifth, in Equation N.12, G(tP,t) is a function of the velocity 

components along the particle paths using Equation N.11, and the 

derivative with respect to parameters is given by, 
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 This representation of changes in layer depth with respect to changes 

in parameter values holds for flank flow, and for ice sheets that experience 
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minimal divide migration.  However, if there has been significant divide 

migration, there is a chance that particle paths will change direction and 

cross in the vicinity of the divide; this scenario is sketched in Figure N.2.  

Therefore, we also provide a generalized formulation of the partial 

derivative of layer depth with respect to parameter values, following an 

original derivation by E.D. Waddington (unpublished). 

 

                                        

 

Figure N.2.  Sketch of the scenario of particle-path crossing, which may occur in the 

vicinity of ice divides where there has been significant divide migration. 

 

 

Instead of representing the particle path parametrically with time as 
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we could describe the path in differential equation form rather than integral 

form: 
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             (N.25) 

Then, instead of taking the partial derivative of N.22 and N.23 with respect 

to parameters pj, as done in Equation N.15 and N.17, we could differentiate 

Equations N.24 and N.25. For horizontal velocity, 
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and for vertical velocity, 
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These two coupled equations can be solved numerically, for example with a 

Runge-Kutta method.  For example, 
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and 
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and Equations N.30 and N.31 are given by N.16 and N.18, respectively.  

Then, 
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and 
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These derivatives can be calculated using finite differences along each path 

i.  To solve for [f1(t), f2(t)], the initial conditions are 
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To solve these coupled equations, the boundary condition at the end of each 

path must be estimated, and iteratively updated.  For example, guess that

0/ =∂∂ j
s
i px , and iteratively update this value until Equation N.34 is 

satisfied.  This formulation numerically calculates the velocity gradients 

along the path, and the path displacement rates along the paths with 

changes in parameters pj. 

 Internal-layer depth is given by the difference between the present 

surface at h
ix  and the present elevation of the particle on path i: 
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To find the changes in layer depth with respect to changes in parameters, 

take the partial derivative of Equation N.36 with respect to pj with the 

surface history and layer depth fixed, using Equation N.23 and Equation 

N.36.  Compared to Equation N.12, this is given by 

  ( )












∂
∂−

∂
∂

−
∂

∂
=

∂
∂

∫
P

s
i

t

t

P
i

P
i

jj

s
i

s
i

j

P
h
i

j

m dzxw
pp

tz

p

txS

p

h τττ )(),(
)(),(

          (N.37) 

The first term is equal to zero because the surface is not adjusted with 

respect to parameters, and the second term is found by solving the coupled 

Equations N.28 and N.29.  The last term in Equation N.37 is given by 
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The first term in Equation N.38 is equal to zero because the present time 

along the path is held constant.  The second term is non-zero only when the 

parameter pj is the layer age.  To integrate along the path and solve for the 

third term in Equation N.38, we need to express 
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where the first term represents the change in speed along path i when pj is 

changed, the second term represents the change in speed due to shifts in the 

path position x at time t, and the last term represents the change in speed 
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due to shifts in the path position z at time t.  The first term is given by N.18, 

and the velocity gradients along the path have been evaluated numerically 

from the velocity solutions as the particle moves along the path i (Equations 

N.32 and N.33). 

 

 

N.2. Ice flux 

 Ice flux, when expressed kinematically (e.g. Chapter 5, Equation 5.4), 

is a function of the model parameters.  To analytically evaluate the integral 

in this kinematic expression, we use linear interpolating functions (see 

Appendix L).  The ice flux q(x,t) can be expressed in terms of the parameters 

by 
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when the integrals are evaluated with the appropriate products of the linear 

interpolating functions, this gives    
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where Xie is the endpoint of integration within the integral i.  When xni+1 ≤ x, 

the integration covers the entire interval [xni, xni+1] and Xie=1 (see Appendix 

L).  Only the single summation had to be retained because the interpolating 

functions are defined to be zero outside their respective intervals. 
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 Ice thickness h(x,t) is calculated on a different set of spatial and 

temporal nodes than the accumulation-rate parameter values, and so this 

integral is complicated to represent in terms of the nodal values of its 

piecewise-linear integrand components W(x) and ),( txh& .  Fortunately, the 

integral ∫ χχχ dWth )(),(&  does not need to be calculated in our evaluation of 

ice flux in terms of model parameters.  While the ice-thickness change over 

time is physically a function of the accumulation-rate history, we assume 

that the ice-thickness history is known at each iteration of the inverse 

problem (i.e. from a previous iteration); the integral ∫ χχχ dWth )(),(&  is not 

considered a function of the model parameters.  By replacing the dummy 

index i by i-1 in the bi+1(t) terms, q(x,t) can be expressed as a function of bi(t) 

only, rather than bi(t) and bi+1(t), 
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 Equation N.42 can be differentiated to find the partial derivatives of 

ice flux with respect to the model parameters jptxq ∂∂ /),( , where 
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where Xje, which is the nondimensional endpoint for integration in the 

interval j (Appendix L) contains information about the spatial position k. 

N.3. Ice velocity  

 The horizontal velocity at the surface at any location xju where the 

velocity has been measured at time t, is described by 
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where 1ˆ =z  at the surface S(x,t), and the ice flux q(xju,t) is given by Equation 

N.42.  By differentiating Equation N.45, the partial derivatives at the 

location xis of the ith measured surface velocity are 
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where the derivatives of ice flux with respect to the model parameters 

j
u
i ptxq ∂∂ /),(  are given by Equation N.43 and Equation N.44.  

 

 

N.4. Accumulation rate 

 When the accumulation rate ),( txb b
kd

&  is measured at xkb within the 

interval [xni, xni+1] at time t, the corresponding modeled value ),( txb b
km

&  is 

interpolated from bi(t) and bi+1(t), i.e. 
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where 
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If t is not a time node, then bi(t) and bi+1(t) must be expressed in terms of the 

earlier and later nodal values, as in Appendix L. 

 The partial derivative of the kth measurement of accumulation is zero 

for all parameters except the accumulation rates at the spatial nodes 

upstream and downstream from xkb, and at the time nodes that bracket tkb.  
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and the derivatives with respect to all other parameters are equal to zero. 
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