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Abstract

Inferring Histories of Accumulation Rate, Ice Thickness, and Ice Flow
from Internal Layers in Glaciers and Ice Sheets

Michelle R. Koutnik

Chair of Supervisory Committee:

Professor Edwin D. Waddington
Earth and Space Sciences

Spatial and temporal variations in past accumulation, ice thickness, and ice
flow of polar ice sheets are weakly constrained on Earth, and are
fundamental unknowns on Mars. On Earth, the spatial and temporal
histories of accumulation and ice-sheet flow are necessary to recreate ice-
volume and sea-level histories, and are important to properly interpret ice-
core chemistry. On Mars, accumulation and ice-flow histories are necessary
to decipher the connection between climate and ice-mass formation,
evolution, and observable structure.

Internal layers in ice sheets on Earth and on Mars have been
observed with ice-penetrating radar. These layers preserve information
about how the ice sheet responded to past spatial and/or temporal changes
in accumulation rate and ice flow, and present-day internal-layer shapes
observed by radar are the most accessible remaining record of this past
information. Deeper layers contain information from further in the past,

making them highly valuable, but they are more difficult to decipher.






In this work, an inverse problem is solved to infer transients in
accumulation rate, ice-sheet thickness, and ice flow from the shapes of deep
internal layers. While some details of these histories can be recovered from
ice cores, ice cores represent conditions at only a single point. However, the
approach presented here is more robust in combination with ice-core data.
If internal layers are dated, for example by an intersecting ice core, then
radar-observed internal layers provide both spatial and temporal
information. Each layer represents a past surface of a particular age that
has been subsequently buried by accumulation and also modified by ice
flow.

In this work, the goal of solving this inverse problem is to find a set of
model parameters (e.g. accumulation-rate history) that have the minimum
variation required to explain the data (e.g. internal-layer shapes). The
process of internal-layer formation 1is described with a 2.5-D
thermomechanical ice-flow flowband model. Estimates of the data are
matched to measured values within their uncertainties, and to an expected
tolerance. We seek an accumulation pattern that is spatially smooth, and a
parameter set that is consistent with characteristic values of the
parameters. This dissertation presents this inverse approach, and discusses

applications to data from Antarctica and from Mars.
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Chapter 1

Introduction

1.1. Motivation and goals

Glaciers and ice sheets evolve in response to climate, but they are
also an important component of the Earth system that affect climate. The
interplay between ice, air, ocean, and land is complicated by feedback
relationships among these systems, and also by dynamic behavior that may
arise internal to each component. For example, more snowfall across an ice
sheet may cause it to thicken, which may alter atmospheric circulation, or
may increasse the calving flux of icebergs and affect ocean circulation. For
the large ice sheets, dynamic behavior can include fast-flow instabilities
(e.g. ice streams) and ice-sheet response to ice-shelf changes. This relatively
unstable ice-sheet behavior is exhibited today, where glaciers have changed
speed in Greenland (e.g. Joughin and others, 2004a; Rignot and
Kanagaratnam, 2006) and in Antarctica (e.g. Bamber and Rignot, 2002),
and the disintegration of massive ice shelves in Antarctica has resulted in
the speedup of outlet glaciers there (e.g. Rignot and others, 2004). While
this action is concentrated near ice-sheet margins, ice-sheet interiors also

respond to this forcing.

Although observations are advancing our understanding, the physics
governing these processes are still not well resolved, and therefore our

ability to accurately predict the initiation of and response to these
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instabilities is limited. A challenge remains, that the volume-adjustment
timescales of large ice sheets can be thousands of years, and we are trying to

understand past and future ice-sheet behavior.

Information about ice and climate history over longer timescales can
be obtained from ice cores. Deep ice cores in Greenland (e.g. NGRIP
members, 2004) and in Antarctica (e.g. Petit and others, 1999; EPICA
members, 2004) have provided a proxy of regional and global climate
changes over tens to hundreds of thousands of years. Ice-sheet flow centers,
called ice divides, are target sites for drilling an ice core, because there has
generally been less spatial and temporal gradients in ice flow than at off-
divide sites. However, ice divides may have moved through time, and
assumptions about these transients must be made in order to properly
Iinterpret ice-core records. These transients may have been significant, as
many different proxies (e.g. ocean-sediment cores, cave records, coral
records) show that there have been significant changes ice volume, air
temperature, and sea level; variations in ice thickness and ice-divide
position of ice-sheet interiors can be due to local forcing (e.g. changes in
local accumulation), regional forcing (e.g. changes in ice streams), or global

forcing (e.g. changes in mean sea level, see e.g. Clark and Mix, 2002).

The motivation for this dissertation is to improve understanding of
ice-sheet history. In particular, I focus on the transient behavior of ice
sheets in the vicinity of ice divides (in the central regions of an ice sheet) in
response to local changes in accumulation, and in response to regional or
global changes in ice flux. While valuable information can be recovered

from ice cores, they represent conditions only at a single point.

In this dissertation I show how we can build a spatial and temporal

picture of changes in accumulation and ice flow in the central portions of ice
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sheets. A consistent estimate of these changes is critical to properly
interpret climate history from an ice core, and it is important to predicting

how ice sheets may evolve in the future.

An exciting dimension of this dissertation is that the questions, data
sets, and methods that I develop for Terrestrial ice also pertain to Martian
ice. New insight into the ice and climate histories on Mars is bolstered by
terrestrial experience, and the foundation from which I construct an
approach to infer ice and climate histories on Earth is bolstered by Martian

experience.

In this dissertation, I use the fact that internal layers have been
shaped by spatial and temporal histories of ice flow and accumulation, and
that present-day layer shapes contain a record of these histories. Deeper
radar-detected layers contain information from farther back in time, making
them valuable archives. However, the shapes of such deep layers have been
subjected to more strain from spatial and temporal gradients in ice flow and
accumulation, making them more complicated to interpret. The goal of this
dissertation is to show how these histories of ice flow and accumulation can
be inferred from internal layers, and to demonstrate the capability of this

new approach in preparation for application with emerging ice-sheet data.

The spatial scales of ice sheets, the timescales involved in their
evolution, and the diffusive nature of ice flow create a challenge to
understand ice-sheet response to change. Ice-flow models are powerful tools
to predict ice-sheet behavior, but they require estimates of initial conditions
and boundary conditions that are often unknown. In addition, quantitative
measurements may not be available. Inverse methods allow us to use ice-
flow models and ice-sheet data together, to investigate ice-sheet behavior

(e.g. Truffer, 2004; Waddington and others, 2007; Eisen, 2008). This
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dissertation presents a new inverse-theory approach to infer histories of
accumulation and ice dynamics from internal layers. The methods
presented here are generally applicable, but I focus on questions related to
the history of central West Antarctic Ice Sheet (WAIS) and to the history of
the Martian Polar Layered Deposits (PLD). Here I outline the motivation

for these applications.

1.1.1. Central West Antarctica

The site of the WAIS Divide ice core in central West Antarctica was
targeted because the relatively high accumulation rate there (compared to
other parts of Antarctica) means that the ice core can be accurately dated
for at least the past ~40,000 years. The ice core will have higher resolution
than other Antarctic cores, and will be ideal for comparing to ice-core
records from Greenland (e.g. Morse and others, 2002). Emerging evidence
supports that the ice divide at this site has migrated over time (Neumann
and others, 2008), and Conway & Rasmussen (2009) showed that the divide
is migrating today due to flux changes near the margin. However, the
millennial history of ice-divide migration is an open question. The ice core
was drilled ~24 km from the present-day divide in order to minimize the
1mpact of ice-divide migration on the stratigraphy, and yet be close enough
to the divide so that the stratigraphy is not disturbed by flow. The affects of
divide migration and ice thickness changes on particle-path trajectories
through the ice sheet are critical to understand in order to properly
interpret and date the ice core. Here I constrain the histories of
accumulation and ice flow in order to support analyses of the WAIS Divide

ice core, in an effort to help understand the history of West Antarctica.
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1.1.2. Martian Polar Layered Deposits

Past and present accumulation and ablation rates for the Martian
PLD must be known in order to decipher the connection between climate
and PLD formation, evolution, and observable structure. While present-day
ice flow on Mars may have an insignificant influence on the shape of the
PLD, it has been proposed that ice flow was more active in the past (e.g.
Clifford, 1987; Fisher, 2000; Pathare and Paige, 2005). Winebrenner and
others (2008) showed that the shape of present-day inter-trough topography
along flowlines across Gemina Lingula, North PLD (see map in Appendix A)
matches the shape of an ice mass that has flowed. This evidence for past ice
flow of at least part of the Martian North PLD requires that conditions such
as the ice temperature or the basal-ice constitutive properties were very
different from their present-day values. Here I seek to understand the ice-
flow and climate history of the Martian PLD using available data to

constrain the range of plausible conditions that could facilitate ice flow.

1.2. Background

1.2.1. Radar layers

Ice-penetrating radar profiles are windows to the interior of glaciers
and ice sheets. These views inside the ice display the bed topography, and
also internal layers. Each reflection is caused by variations in dielectric
properties, density, or impurity concentration (e.g. Fujita and others, 1999),
and 1s assumed to be a surface of constant age (an isochrone). Different
radar frequencies are used to image internal layers at different depths and
deeper layers can be better imaged using lower frequencies. Recent radar

development has made it possible to obtain detailed images of the deepest
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layers in Greenland and Antarctica, several kilometers beneath the ice (e.g.

Laird and others, In Press).

This is an extraordinary time in Mars’ polar science; detailed radar
profiles of the Martian ice caps have revealed the bed topography and the
internal structure there for the first time. There are currently two satellite
radar systems, the Mars Advanced Radar for Subsurface and Ionosphere
Sounding (MARSIS; e.g. Picardi and others, 2005; Plaut and others, 2007)
and the Shallow Subsurface Radar (SHARAD; e.g. Seu and others, 2007,
Phillips and others, 2008). MARSIS operates between 1.3- to 5.5-MHz with
a 1-MHz bandwidth, and a spatial resolution of ~10 km (e.g. Picardi and
others, 2005). SHARAD has a 20-MHz center frequency with a 10-MHz
bandwidth, and a spatial resolution of 3-6 km (e.g. Phillips and others,
2008).

1.2.2. Ice flow

Experimental work by Glen (1995) provided a physical relationship
between applied stress and strain rate in ice; this is often called ‘Glen’s law’
or the flow law. The flow law is a power-law relationship, where the flow
exponent depends on the dominant creep mechanism. In this work, we
consider that ice flows primarily by dislocation creep, with a flow-law
exponent n=3; this is the value traditionally used for ice-flow studies, and
generally produces a good fit to observations. Ice flow is temperature
dependent. The temperature-dependent ice viscosity follows an Arrhenius
relationship; the ice wviscosity 1s often referred to as the ice-softness
parameter or the fluidity parameter. Ice flow also depends on crystal size
and on crystal orientation. Since Glen’s law assumes that ice is isotropic,

and this is not always an appropriate assumption, a scalar enhancement
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factor can be included in the flow law to account for the effects of anisotropy

(e.g. Paterson, 1994, pg. 99).

1.2.3. Ice-flow models

Use of ice-flow models provides a means to understand glacier and
ice-sheet behavior because an ice-flow model should run faster than it would
take for an actual ice mass to evolve. Ice-flow models in combination with
laboratory analyses of ice cores are needed to infer the correct climate
history, because climate information that is recorded in the ice has been
affected by the history of ice flow (e.g. Paterson, 1994, pg. 276-288).
However, ice-flow modeling is nontrivial because only the simplest cases
have analytical solutions. For most problems, the solution must be
calculated numerically, meaning that the governing equations must be cast
in a numerical form. Finite-difference, finite-volume, and finite-element
methods are all commonly used in glaciology (e.g. Van der Veen, 1999;
Hooke, 2005, pg. 288). Here I employ the finite-volume method (e.g.
Patankar, 1980).

To find a numerical solution, it is often necessary, or desirable, to
make simplifying assumptions. A common assumption in ice-flow modeling
1s the “Shallow Ice Approximation” (SIA, e.g. Hutter, 1983, pg. 256;
Paterson, 1994, pg. 262), which applies in cases where the ice thickness is
much smaller than the characteristic horizontal length scales over which
thickness or stress change significantly. If the characteristic horizontal
length scale is the lateral extent of the ice cap, then derivatives of velocities
and stresses with respect to x (horizontal axis) are generally much smaller

than derivatives with respect to z (vertical axis). Here I use the SIA.
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However, in principle the inverse problems could also be solved using full-

stress solutions to the momentum conservation equations.

1.2.4. Inverse problems

In an inverse problem, the existing data have resulted from a known
process that depends on some unknown parameters or boundary conditions
that we wish to find. That is, an inverse problem needs a forward algorithm
and an inverse algorithm. Based on a guess of the unknown parameter
values, the forward algorithm generates a realization of observable
quantities. The inverse algorithm evaluates the fit of the modeled
observables to the actual data, and assesses whether any physical
constraints imposed on the problem have been satisfied, in order to infer the
best set of unknown parameter values. In general, setting up an inverse
problem is a powerful tactic to solve problems in solid-earth geophysics (e.g.
Menke, 1989; Parker, 1994; Gubbins, 2004) and in physical oceanography
(e.g. Wunsch, 1996), among other fields. However, solving inverse problems
1s a relatively new frontier in glaciology; here I contribute to this growing

body of work.

1.3. Structure and synopsis of the dissertation

The tools that I have integrated and developed to infer changes in ice
flow and accumulation can be used in many applications. However, the
strengths and weaknesses of these tools must be understood before we can
draw robust conclusions. The chapters in this dissertation address

methodology and implementation for terrestrial and Martian ice.
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1.3.1. Inferring mass-balance patterns and topography on Mars

Internal layers are necessary to accurately infer mass-balance
patterns because the ice-surface shape only weakly reflects spatial
variations in mass balance. Additional rate-controlling information, such as
the layer age, the ice temperature, or the ice-grain sizes and ice-crystal
fabric, can be used to infer the absolute rate of mass balance. An inverse
problem is solved to infer mass balance from the shapes of internal layers.
The solution to the inverse problem is the best set or sets of unknown
boundary conditions or initial conditions that, when used in the calculation
of ice-surface elevation and internal-layer shape, will generate appropriate
predictions of observations that are available. Internal layers can also be
used to infer Martian paleo-surface topography from a past era of ice flow,
even though the topography may have been largely altered by subsequent
erosion. Chapter 2 shows that accumulation rates and surface topography
have been successfully inferred from internal layers in Antarctica. Using
synthetic data, the ability of this method to solve the corresponding inverse
problem to infer accumulation and ablation rates, as well as the surface
topography, for Martian ice is demonstrated. If past ice flow has affected
the shapes of Martian internal layers, this method is necessary to infer the

spatial pattern and rate of mass balance.

1.3.2. Response timescales for Martian ice masses

The shape of the Martian North Polar Layered Deposits (PLD)
reconstructed by Winebrenner and others (2008) is used to estimate pairs of
mass-balance rate and ice temperature that could generate their

reconstructed shape. For any ice mass, the flow rate depends on the mass-
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balance rate, on the near-basal ice temperature, and on any flow
enhancement due to impurities in the ice or variations in the physical
properties of the ice. Therefore, pairs of mass-balance rate and ice
temperature (plus any flow enhancement) can generate identical ice-surface
topography. Without additional information to constrain the actual rate of
mass balance, the actual ice temperature, or the actual ice-flow constitutive
properties, another means to constrain the plausible range of ice-flow rates
1s needed. The volume-response timescale for an ice mass is the time for an
ice mass to accumulate or shed enough mass approach a new steady-state
shape following a climate change (e.g. Johannesson and others, 1989).
Chapter 3 shows that the volume response timescale can be used to
eliminate 1implausible combinations of mass-balance rate and ice

temperature or ice-flow enhancement that take too long to adjust.

1.3.3. Transient ice flow using a limited-domain model

Some of the spatial information about ice-sheet history that is sought
from data in the vicinity of an ice divide can be inferred by solving an
inverse problem. However, computational efficiency is required when
solving inverse problems that involve many iterations of the ice-flow model,
or when using a higher-resolution model. Limiting the model domain to
include only the relevant portions of the ice sheet is a way to reduce
computation time. It is also advantageous to limit the model domain when
assimilating data that are available only in limited locations on the ice
sheet. When the domain is limited, we do not need to make estimates of
observable quantities in regions where parameter values and boundary
conditions are unconstrained. However, limiting the domain of a transient

ice-flow model is not trivial. Chapter 4 presents a new method to accurately
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calculate transient ice flow using a limited-domain model. This new method
incorporates additional information to ensure that the limited domain

evolves consistently with the full domain within which it exists.

1.3.4. Inferring transients in accumulation rate, ice-sheet thickness,

and ice flow from internal layers

Chapter 5 describes a method to infer histories of ice flow, ice-sheet
thickness, and accumulation rate from the shapes of internal layers.
Present-day internal-layer shapes observed by radar are the most accessible
remaining record of this past information, and an inverse problem can be
solved to infer this information. The new aspect of this work is to
incorporate a transient forward algorithm, using the ice-sheet evolution
calculation described in Chapter 4. Waddington and others (2007) solved
the inverse problem to infer a steady-state accumulation pattern from
internal layers using a steady-state forward algorithm, and here this
approach is extended to infer transient histories from deeper layers. The
goal in solving this inverse problem is to find a set model parameters (e.g.
accumulation-rate history) that have the minimum variation required to
explain the data (e.g. internal-layer shapes). To assess the capability of this
new approach, parameter values can be prescribed to generate synthetic
data, then the synthetic data can be used to infer these parameter values.
Chapter 5 demonstrates how local accumulation variations and external-
flux variations (e.g. from sea-level changes leave distinct imprints on
internal-layer structure, and how these histories can be inferred by solving

an inverse problem.
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1.3.5. Inferring histories of accumulation and ice dynamics for

Central West Antarctica

In preparation for an application to data from the West Antarctic Ice
Sheet (WAIS) Divide ice-core site, Chapter 6 describes the available data
and the motivation for this work. Neumann and others (2008) found that
the accumulation pattern may have been the same over the past 8 kyr, but
the accumulation rate was at least 30% higher from 5-3 kyr ago. Conway
and Rasmussen (2009) found that the present-day ice divide is migrating
due to variations in ice dynamics, rather than by wvariations in local
accumulation. The WAIS Divide is dynamically influenced by ice streams
on the Ross-Sea side and the Amundsen-Sea side. Given the recent speed
up of Thwaites and Pine Island glaciers on the Amundsen-Sea side, and the
recent stagnation of Kamb Ice Stream (e.g. Joughin and Tulaczyk, 2002) on
the Ross-Sea side, it i1s evident that dynamical changes can be significant.
Given the extent of present-day divide migration, the ice-flow history at this

site is especially critical to properly interpret ice-core chemistry.
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Chapter 2

A Method to Infer Past Surface Mass Balance and
Topography from Internal Layers in Martian Polar
Layered Deposits

This chapter is published under the same title with authors M. Koutnik, E. Waddington,
and D. Winebrenner in Icarus 204(2), 458-470. The comments of two anonymous reviewers
improved the manuscript.

Internal layers in ice masses can be detected with ice-penetrating radar. In a
flowing ice mass, each horizon represents a past surface that has been
subsequently buried by accumulation, and strained by ice flow. These layers retain
information about relative spatial patterns of accumulation and ablation (mass
balance). Internal layers are necessary to accurately infer mass-balance patterns
because the ice-surface shape only weakly reflects spatial variations in mass
balance. Additional rate-controlling information, such as the layer age, the ice
temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer the
absolute rate of mass balance. To infer mass balance from the shapes of internal
layers, we solve an inverse problem. The solution to the inverse problem is the
best set or sets of unknown boundary conditions or initial conditions that, when
used in our calculation of ice-surface elevation and internal-layer shape, generate
appropriate predictions of observations that are available. We also show that
internal layers can be used to infer Martian paleo-surface topography from a past
era of ice flow, even though the topography may have been largely altered by
subsequent erosion. We have successfully inferred accumulation rates and surface
topography from internal layers in Antarctica. Using synthetic data, we
demonstrate the ability of this method to solve the corresponding inverse problem
to infer accumulation and ablation rates, as well as the surface topography, for
Martian ice. If past ice flow has affected the shapes of Martian internal layers,
this method is necessary to infer the spatial pattern and rate of mass balance.



Chapter 2: Mass balance and topography for Mars

2.1. Introduction

The spatial pattern and rate of accumulation and ablation (mass
balance) over an ice cap (i.e. mass exchange with the atmosphere) must be
known in order to infer the ice-flow history. On Earth, rates of
accumulation can be determined by drilling an ice core, measuring the
thickness of datable layers, and correcting for strain thinning where
necessary, but this represents mass-balance conditions at only the single
point of origin of each ice-core sample. Internal layers, which in almost all
terrestrial cases are isochrones, contain information about mass-balance
patterns in both space and time. The large body of radar data from
terrestrial ice sheets has greatly increased our understanding of terrestrial
ice-sheet evolution and climate (e.g. Paren and Robin, 1975; Morse and
others, 1998; Conway and others, 1999; Fahnestock and others, 2001b).

Past and present accumulation and ablation rates are fundamental
unknowns for the Martian Polar Layered Deposits (PLD). This information
1s necessary if we are to decipher the connection between climate and PLD
formation, evolution, and observable structure. Internal-layer shapes must
be known if we want to determine past mass-balance patterns, because the
surface topography is relatively insensitive to spatial variations in mass
balance. Fortunately, internal layers in the North and South PLD have
been imaged successfully by radar (e.g. Picardi and others, 2005; Plaut and
others, 2007; Seu and others, 2007; Phillips and others, 2008).

While present-day ice flow on Mars may have an insignificant
influence on the shape of the PLD, it has been proposed that ice flow was
more important in the past (e.g. Clifford, 1987; Fisher, 2000; Pathare and
Paige, 2005), and Winebrenner and others (2008) showed that the shape of
present-day inter-trough topography along lines following surface gradients

(i.e. “flowlines”) across Gemina Lingula (also referred to as Titania Lobe;

14



Chapter 2: Mass balance and topography for Mars

Pathare and Paige, 2005), North PLD matches the shape of an ice mass that
has flowed. We consider an era of past ice flow as a time when the influence
of ice flow was comparable to the influence of mass balance in shaping the
internal layers and the ice-surface topography. In this paper, we assume
that past ice flow affected the shapes of internal layers and the surface
topography of the Martian PLD. Under this assumption, an approach that
accounts for the effect of ice flow on the internal-layer shape and depth
must be used to infer the mass-balance pattern from internal layers; we
demonstrate such a method here. In addition, we emphasize that the
shapes of internal layers alone cannot be used to determine whether an ice
mass has flowed or not; this is discussed more fully in Section 2.3.3.
Depending on the spatial pattern of accumulation and ablation, identical
layer shapes can be generated in an ice mass where flow is significant and
in an ice mass where flow is insignificant relative to other processes.
Conversely, flowing ice sheets with similar surface topography but different
accumulation patterns can have dramatically different internal-layer
architecture.

Using terrestrial glaciological experience and methods that have been
applied to terrestrial ice sheets, we show that an inverse method can
potentially infer mass-balance patterns during that era of flow, from
internal-layer shapes on Mars. To demonstrate this method, we generate
synthetic internal layers based on a prescribed spatial mass-balance
distribution, and then we attempt to infer the mass-balance pattern from
these synthetic layers.  The relative mass-balance pattern can be
successfully inferred from the shapes of internal layers; however the layer
age, the ice temperature, the ice velocity, or the ice-grain sizes and ice-
crystal fabric must be known to constrain the absolute mass-balance rate.

We solve different inverse problems to infer mass balance by assuming that
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different combinations of information are available. In the first inverse
problem, we infer only the relative spatial pattern of mass-balance from the
shape of an internal layer with no rate information. This problem could
potentially be solved with data currently available for Mars. Then we solve
three different inverse problems to infer the relative spatial pattern and the
absolute rate of mass-balance in a flowing ice mass. We use (1) the ice-
surface topography and ice temperature, (2) the shape of an internal layer,
the ice-surface topography, and ice temperature, or (3) the shape of an
internal layer, the ice-surface topography, and ice-rheological parameters.
Finally, we also solve an inverse problem using internal layers to infer
surface topography from a time in the past when ice flow significantly
shaped the surface; this is an important problem to solve with Martian
internal layers because much of that topography has been significantly

eroded to form the present-day surface.

2.1.1. Internal-layer structure and depth

In a flowing ice mass, the depth variations of an individual internal
layer are controlled by the spatial pattern of mass balance, and by ice flow.
Waddington and others (2007) discussed how to diagnose the appropriate
strain regime of a particular layer. Shallow layers (with a depth of at most
a few percent of the ice thickness, or in the upper tens of meters in a
terrestrial ice sheet), are not significantly altered by ice flow, and the net
accumulation at each site can be inferred from the ice-equivalent layer
depth divided by the layer age; this is called the Shallow Layer
Approximation (SLA). For shallow layers, the mass-balance pattern alone
determines the internal-layer structure and depth. If the influence of mass-

balance on the shapes of internal layers was always more important than
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the influence of ice flow, the SLA would be appropriate for layers at all
depths. However, in a flowing ice mass, as the depth to the layer increases,
accumulated strain due to ice flow becomes more important, and this simple
SLA relationship between layer depth and the mass-balance pattern breaks
down. For intermediate layers (in the upper 10%-20%, or to a depth from
10-100 meters in a terrestrial ice sheet), the impact of accumulated vertical
strain on the depth of the layer can be estimated using a 1-D model of
vertical ice flow; this is called the Local Layer Approximation (LLA).
However, this local strain correction also can become invalid for deeper
layers. Deeper, older layers reflect conditions further in the past, but they
have been more affected by horizontal gradients in strain rate and
accumulation. Therefore, their information is highly valuable but more
difficult to interpret. Waddington and others (2007) demonstrated that it is
necessary to use formal inverse methods, incorporating 2-D ice flow, to
correctly determine the accumulation pattern recorded by deeper layers in
terrestrial ice caps. We cannot rule out that ice flow was important in
shaping topography and internal structure across the PLD, especially for
Gemina Lingula, North PLD (Winebrenner and others, 2008). Therefore,
we expect that an inverse method must be used to infer spatial patterns and
rates of mass-balance from deeper layers in Martian ice.

On terrestrial glaciers, and parts of the large terrestrial ice sheets,
snow typically accumulates at higher elevations (the accumulation zone).
Ice flow redistributes the excess mass to lower elevations where it ablates
(the ablation zone). The equilibrium line demarcates the two zones.
Internal horizons represent past ice-sheet surfaces, which have been
subsequently buried, and the thickness of ice between any two horizons has
been displaced and strained by ice flow. On Earth and Mars, we assume

that each individual horizon is an isochrone, 1.e. a surface of constant age.
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The horizons are observed with ice-penetrating radar, and at different
depths there are different distances between each pair of horizons. In this
paper we refer to each horizon as a ‘layer’, but we note that a layer also has
a thickness. The shape and depth of an individual layer are influenced by
the rate of accumulation or ablation, gravitational forces, internal stresses,
ice-rheological parameters (which depend on the ice temperature), bedrock

topography, and unconformities.

2.1.2. Necessary Data

Internal layers have been observed across the Martian PLD by the
Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS;
e.g. Picardi and others, 2005; Plaut and others, 2007) and by the Shallow
Subsurface Radar (SHARAD; e.g. Picardi and others, 2005; Phillips and
others, 2008). The shapes of continuous internal layers along putative flow
lines will be the primary data when we apply our method to Mars in the
future. We also use the PLD surface geometry, which is available from the
Mars Orbiter Laser Altimeter (MOLA), and the ice thickness from the
radars. Currently, the internal-layer ages, the ice velocity at the time of
flow, the ice temperature at the time of flow, the ice-crystal fabric, and the
lce-grain size are not known for the PLD. However, if any of this
information becomes available, or can be reasonably estimated, then we can

incorporate it as part of the inverse problem.

2.2. Methods

Inference of mass-balance patterns from internal layers is an inverse

problem, which can be solved using geophysical inverse theory (e.g. Menke
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1989; Parker 1994; Aster and others 2005). An inverse problem is one
where the existing data have resulted from a known process that depends
on some unknown parameter values or boundary conditions that we wish to
find. In the Martian problem, the data are the shapes of individual internal
layers and at least parts of the elevation profile of the ice surface, and the
unknowns are the layer ages, the mass-balance pattern, and the ice
temperature. An inverse problem needs a forward algorithm and an inverse
algorithm. We calculate the shapes of layers and the surface topography
with the forward algorithm. Then the unknown parameters can be found by
minimizing a performance index in the inverse algorithm. The performance
index 1s a number representing how well the observable quantities
calculated by the forward algorithm match the data to an expected tolerance
while, in this case, finding a spatially smooth mass-balance pattern. Any
simplifications made in the forward algorithm, or constraints included in
the inverse algorithm, must be considered when interpreting the solution.

In Section A2.1 we describe our particular forward algorithm, and in
Section A2.2 we outline our particular inverse algorithm. The forward
algorithm is a steady-state flowband model that calculates ice-surface
elevation and internal-layer shapes (Waddington and others, 2007). A
flowband is illustrated in Figure 2.1. This is a 2-D model that also accounts
for width variations; therefore it is considered to be 2.5-D. There are many
unknowns regarding the Martian PLD, and for this reason we start with a
simple, steady-state forward model. As shown in Figure 2.1, the model
domain does not need to include an ice-sheet terminus or an ice divide; it
can be defined over a limited domain. The surface-profile prediction
depends on the ice flux entering the domain, the mass-balance profile, the
ice thickness at one point in the domain, and the constitutive properties of

the ice. Layer prediction in this forward calculation requires the ice-surface
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profile, which is either known or calculated, and depends on the layer age,
the ice flux entering the domain, and the mass-balance pattern. The
forward algorithm can include only a surface calculation, only a layer
calculation, or both a surface calculation and a layer calculation (see Section
A2.1). Therefore, our unknown model-parameter set may consist of the
layer age, the ice flux entering the domain, the spatial pattern of mass
balance, the ice thickness at one point in the domain, and the ice-softness
parameter (see Equation A2.1.5). The inverse algorithm uses a Gradient
solution method (e.g. Parker, 1994; Aster and others, 2005) to find
physically reasonable values of these unknown parameters (see Section
A2.2). The preferred parameters generate an internal layer and an ice
surface that fits the data at an expected tolerance determined by data

uncertainties.

Accumulation rate,

J b) L l

Ice Surface, S(x) Width, W(x)

Ice Flux,

Qin $
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Figure 2.1. Geometry of a flowband with width variations. The ice-surface elevation (at
least at a single point), flowband width, and bed geometry are required inputs to the
forward algorithm. The flowband domain can be limited in horizontal extent.
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This general method can be modified based on site-specific conditions
and/or data availability. Following Waddington and others (2007), we
1llustrate this method using data from Antarctica. In preparation for using
this method with Martian radar data, we generate synthetic Martian layers,
and then we investigate the ability of the inverse procedure to infer a known

synthetic mass-balance pattern from those synthetic layers.

2.3. Results

Depending on which data are available, and which calculations are
included in the forward algorithm, different quantities must be assumed,
and different information can be inferred with this inverse approach. The
simplest problem uses a forward algorithm that includes only a kinematic
layer calculation, assuming that the surface topography is known, to infer
the relative mass-balance pattern from an undated internal layer. We show
that if the layer age is known, or if the ice velocity or the accumulation rate
during the era of flow is known, we can also infer the absolute mass-balance
rate using a forward algorithm that includes only a kinematic calculation.
In principle, data that are currently available for Mars could be processed
along flowlines so that some of the inverse problems here could be solved.
The other problems further motivate challenges for future laboratory
experiments and missions.

Using steady-state continuity from Equation A2.1.1, and using the
depth-averaged horizontal velocity in Equation A2.1.6, Equation 2.1 shows
how, for any ice-sheet profile defined by the ice thickness H(x) and surface

slope dS/dx, the accumulation rate b(x) and the ice-temperature-dependent

softness parameter A(7T(x)) always occur in a ratio
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Higher accumulation rates b(x) can always trade off against greater ice

softness A(7T(x)) through higher temperature, to produce the same surface
shape, and therefore the same layer shape with a younger layer age. We
discuss ways in which accumulation rate and ice temperature may be

untangled.

2.3.1. Mass Balance and Topography in Antarctica

Waddington and others (2007) solved the inverse problem to infer the
relative spatial pattern and absolute rate of accumulation at Taylor Mouth,
a flank site near Taylor Dome, Victoria Land, Antarctica. At Taylor Mouth,
additional data were available beyond the surface topography and internal-
layer shapes observed with radar. Bed elevation was also measured by
radar, and flowband width was found by interpolating velocities between
measurement points and finding the distance between two nearby flow
lines. A 100-meter ice core intersects the flow line, and the average
accumulation rate at the core site was known. A strain network in this area
provided velocity data at the ice surface.

The forward algorithm in this previous application to Taylor Mouth
(Waddington and others 2007) included only a kinematic layer calculation.
The unknown parameter set consisted of the ice flux entering one end of the
flowband, the spatial pattern of accumulation (there is no ablation area near
this site), and the age of the layer. Use of only a kinematic forward
algorithm was justified because the surface elevation at Taylor Mouth has
been approximately in steady-state over the past few thousand years.

Therefore, the dynamic calculation of surface topography could be excluded
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to simplify the problem. Since the surface topography is known, and
because a dynamic calculation was excluded in the forward algorithm, rate
information was included only through the surface-velocity measurements
and the one accumulation-rate measurement. At Taylor Mouth, these rate-
containing data were sufficient to constrain the magnitude of accumulation

rate.

2.3.1.1. Inferring Mass Balance from an Undated Layer

To show the sensitivity of the Taylor Mouth solution (Waddington
and others 2007) to rate information from measurements of surface-velocity
and accumulation-rate, and to prepare for Martian applications where rate
information is unavailable, we now solve the Taylor Mouth inverse problem
using only internal-layer data. In this problem, the mass-balance rate is
determined by the layer age. If the internal layer is undated, and if no
additional rate-controlling data exist, we can infer only the relative mass-

balance pattern. To express this result, we represent the spatial pattern of

accumulation, b(xi) at spatial positions xi, as a nondimensional spatial

pattern of accumulation, b(xi) , having root-mean-square amplitude, i.e.

X=L ~

% [ b2(dx=1 (2.2)

multiplied by the magnitude B of the accumulation rate, giving
b(x,) = Bb(x). (2.3)
By representing the mass-balance pattern b()(i) in this way, we can compare

the values of B that correspond to solutions using different combinations of

rate-controlling data (e.g. the layer age or the ice temperature).
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Figure 2.2a shows different accumulation-rate solutions
corresponding to different guesses of the layer age, inferred using only an
internal layer as data, and using the known modern surface topography.
Particles can follow the same paths and reach the same depths over a longer
time when accumulation rate is low, or over a shorter time when
accumulation rate is high. The central result from this test is that similar
spatial patterns can be inferred, regardless of the accumulation-rate
magnitude. Figure 2.2b shows B/Bref, the scaling factor B divided by the
scaling factor of a reference solution Bre (here taken to be the solution from
Waddington and others 2007), corresponding to the solutions in Figure 2.2a.

On Mars, we are likely to know only the layer shape. It is unlikely
that we will know the layer age, and velocities and accumulation rates from
the regime in which the layers formed cannot be measured. However, by
exploring the sensitivity of the Antarctic solution, we found that useful
information about the relative spatial variability in mass balance can still

be inferred, even if the absolute rate of accumulation cannot be recovered.

2.3.1.2. Inferring Surface Topography

We can also infer the shape of the ice-surface topography from the
shape of an internal layer. This will be useful for the PLD, where the
surface shape at the time of flow has been subsequently eroded, or largely
obliterated. We demonstrate this using data from Taylor Mouth,
Antarctica.

If the surface topography is unknown, and is being solved for as part
of the inverse problem, we still have to estimate the surface topography for
the first iteration of the forward algorithm. As the inferred mass-balance

pattern is iteratively updated in the inverse algorithm, the inferred surface
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topography is also updated, using Equation A2.1.7, and this updated surface
1s used in the subsequent iteration for the mass-balance pattern. The
unknown parameter set consists of the ice flux entering one end of the

flowband @i, the spatial pattern of accumulation b(x), the age of the layer

Age, and the ice thickness at one location along the flowband Ho. In the
absence of rate-controlling information (e.g. layer age, ice velocity), we have

shown that we cannot determine the absolute rate, B, of mass balance.

rate (m/yr)

accumulation
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Figure 2.2. a. The accumulation-rate solution for the Taylor Mouth inverse problem using
an undated internal layer and no rate-controlling data. The dark gray line shows the
solution with an initial guess at the layer age that was 25% lower (resulting in a higher
accumulation rate) than the layer age inferred from Waddington and others (2007), and the
light gray line shows the solution with an initial guess at the layer age that was 25% higher
(resulting in a lower accumulation rate). b. The numbered points correspond to the
numbered solutions in the above panel. The accumulation-rate magnitude B equals unity
for the correct accumulation rate. Without additional rate information, the same internal
layer can be generated with an older age and a lower accumulation rate, or a younger age
and higher accumulation rate.
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Using data from Taylor Mouth, Antarctica, we demonstrate our
ability to infer the ice-surface topography by performing two tests. First, we
infer ice-surface topography from the shape of an undated internal layer, an
estimate of elevation at one point on the ice surface, and the known ice
temperature (referred to as test 1). We estimate the ice-surface elevation at
the furthest upstream point along the flowband and assume that we know
this value within 5 m. In this problem, with no additional rate-controlling
data, the ice temperature determines the inferred mass-balance rate and
the length of the ice mass (the maximum thickness is specified).

In the second test (referred to as test 2) we infer ice-surface
topography from the shape of an undated internal layer and at least two
points on the ice surface. We assume that the ice temperature is unknown,
and the greater the horizontal distance between the two known surface-
elevation points, the better we can infer the ice-surface profile. We show
that we can infer a surface with the correct shape, even if the inferred rates
are incorrect. At the first iteration of the forward algorithm we guess that

the ice-surface has a uniform elevation along the flowband. We guess that
the ice-softness parameter ,&(x) is five times greater than the original

value, so that the deformation rates are five times larger. The inferred
mass-balance pattern together with the inferred ice-surface shape generate
an internal layer that has the appropriate balance between smoothness and
fit to the data, where the data are fit with a root-mean-square mismatch
consistent with data uncertainties (see Section A2.2).

Figure 2.3a shows that the solution from the inverse problem is
similar to the actual ice surface at Taylor Mouth (dotted line). Figure 2.3b
compares the mismatches of test 1 and test 2 against the actual ice surface,
normalized by a reasonable estimate of the measurement uncertainty of 5

meters. This test with Taylor Mouth data shows that the surfaces found by
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solving these inverse problems have the same shape as the measured
surface; this i1s a significant result. The inferred values are within one
standard deviation of the point(s) on the surface that are known, and at
most within two standard deviations elsewhere along the profile.
Knowledge of the ice temperature, especially if there are spatial variations
in ice temperature, gives a slightly better solution. However, since ice-
temperature information is not currently available for Mars, it is important
that we can infer the shape of the surface topography from an internal layer
and two points on the ice surface; in Section 2.3.4.5 we discuss a test to

reconstruct paleo-surface topography using synthetic data for Mars.
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Figure 2.3. a. Comparison between the actual ice-surface topography at Taylor Mouth,
Antarctica (dotted line), initial guess of ice-surface topography (dashed line), and the best
estimate of ice-surface topography found by solving the inverse problem using an internal
layer, the ice-surface elevation at one point, and a known ice temperature (test 1; black-
solid line), and using an internal layer and two points on the ice surface (test 2; gray-solid
line). b. The actual ice surface is subtracted from itself (dotted line), from the ice-surface
topography estimated at the initial iteration (dashed line), and from the ice surface found
by solving the inverse problem (black and gray solid lines), all nondimensionalized by the
uncertainty of 5 m in the measured surface elevation.
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2.3.2. Synthetic Data for Mars

To demonstrate the usefulness of our inverse approach, we solved
inverse problems with synthetic “data” that we generated for Mars. Using
our forward algorithm with prescribed maximum ice thickness, ice-softness
parameter, mass-balance pattern, layer age, and input ice flux at the
upstream end of the flowband, we calculated the associated ice-surface
profile and generated shapes of synthetic internal layers. Then we used
these synthetic data with our inverse method to infer a model-parameter set
that included a characteristic ice thickness, the ice-softness parameter, the
mass-balance pattern, the layer age, and the input ice flux. In order to see
how well our inverse procedure worked, we compared the inferred set of
model parameters to the known values that we used to generate the
synthetic data.

The following assumptions were made in all our tests for the PLD.
The modeled PLD were assumed to be pure ice, which restricts the value of
the softness parameter Ao (in Equation A2.1.5). The exponent in the
constitutive relationship for ice flow, Equation A2.1.4, had a value of n = 3,
as inferred by Winebrenner and others (2008) for Martian ice. An exponent
of n = 3 1is typical for terrestrial ice sheets and applies for deformation
primarily by dislocation creep (e.g. Paterson, 1994, pg. 85). The
temperature at depth was approximated by a uniform gradient using a
surface temperature of 170 K (e.g. Pathare and Paige, 2005) and a basal
heat flux of 0.025 Wm-2 (e.g. Clifford 1987; Grott and others, 2007). The
maximum ice thickness and bed topography used to generate synthetic data
resemble conditions on the present-day North PLD (e.g. Phillips and others,
2008), as does our chosen mass-balance rate of ~0.5 mm yr! (e.g. Laskar
and others, 2002). Present-day ice temperatures (e.g. Pathare and Paige,

2005) make ice flow very slow, but any value of ice temperature could have
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been used. The surface geometry for each mass-balance pattern came from
a steady-state surface calculation based on ice dynamics using Equation
A2.1.7. The ice-divide thickness was chosen to be 2 km. We assume a
uniform flowband width, which i1s a simplification, and the flowband width
could be estimated by tracking the divergence of adjacent flow paths along
the surface of the actual topography, as done by Winebrenner and others
(2008).

Using our estimate of surface temperature, heat flux, and mass-
balance rate, and because the steady-state model does not allow for past ice-
temperature transients, the resulting length of the flowband 1is
approximately 20 km, and we can solve the inverse problems using only a
limited portion of this full length. Compared to modern flowband lengths of
~100 km or more across the PLD, these lengths are very short because near-
basal ice at the present-day temperature of ~180 K (e.g. Pathare and Paige,
2005) requires very steep slopes to achieve equilibrium with the present-day
mass balance of ~0.5 mm yr! (e.g. Laskar and others, 2002). Present-day
ice is so cold that ice-flow rates are insignificant with the existing low
surface slopes (e.g. Hvidberg, 2003; Greve and others, 2004; Greve and
Mahajan, 2005), and conditions must have been different in the past for ice
flow to shape the observed topography (Winebrenner and others, 2008;
Koutnik and others, 2008). The bed topography was chosen to be flat, but
any topography can be used in the model. We used an isothermal
temperature distribution, and we assigned an age of 1 Myr to the synthetic
data layer. To make the inverse problem more realistic, we added red noise
to our synthetic layer and used the perturbed layer as the data. We set the
standard deviation, 0@, on the layer data to be 3 m because we applied red
noise with an amplitude of 3 m, and chose a correlation length of 600 m.

Our initial guess at the layer age was several percent higher than the true
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age of the synthetic data; any initial guess could be used. The initial guess
of the accumulation rate was the layer depth divided by our initial guess of
the layer age (SLA, see Section 2.1.1). We focused our study near the ice

divide, where no ice flux enters the domain (i.e. Qin = 0).

2.3.3. Internal-Layer Shapes

Internal-layer shapes can be generated for any mass-balance pattern
and flow regime. For example, Fisher (2000) generated internal-layer
shapes for the “accublation” model (Fisher, 1993, Fisher, 2000). The
accublation mass-balance pattern has alternating zones of accumulation
and ablation to account for the presence of troughs on the North PLD
landscape. In the accublation model, the shapes of both the ice surface and
the internal layers were significantly affected by the mass-balance pattern.
However, it is also possible for different mass-balance patterns to result in
similar surface profiles, yet have very different internal-layer shapes (see
Figure 2.5).

While the mass-balance pattern directly shapes the internal layers,
the surface shape is relatively insensitive to details of the mass-balance
pattern. The ice flux q(x), given by Equation A2.1.2, is proportional to the
integral of the mass-balance pattern. The surface slope, given by Equation
A2.1.7, is smooth because it depends on the mass-balance pattern only
through the nth-root of the ice flux, q(x)!/». The surface slope is integrated
to get the ice-surface topography, which further reduces the influence of

mass-balance variability on the ice-surface topography.
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2.3.3.1. Synthetic Mass-Balance Patterns

We generate steady-state internal layers over a limited part of the
domain using several different mass-balance patterns to emphasize the
variation of internal-layer shapes. Figure 2.4 shows layers generated with
a synthetic mass-balance pattern with linearly decreasing accumulation

transitioning into linearly increasing ablation as elevation decreases.
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Figure 2.4. Lower panel shows synthetic internal layers from the prescribed mass-balance
pattern shown in the top panel. The mass balance decreases linearly with decreasing
surface elevation, as net accumulation transitions into net ablation. The layers intersect
the surface in the ablation zone. The accumulation and ablation zones are separated at the
equilibrium line (EL).

The equilibrium line marks the point of balance between net accumulation
and net ablation. Layers near the ice divide in this accumulation zone can
have simple, nearly horizontal shapes. Since the transition from net

accumulation to net ablation is continuous, the internal layers trend
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gradually toward the surface, and can intersect the surface in the ablation
zone. In this example, layers also trend towards the surface in the
accumulation zone because the accumulation rate decreases with decreasing
surface elevation. Even though the magnitude of ablation is small, ablation

has a significant impact on the layer shape.
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Figure 2.5. Lower panel shows synthetic internal layers from the prescribed mass-balance
pattern shown in the top panel. The mass balance varies on short spatial scales and the
layers intersect the surface in the ablation zones. The bed is at zero meters, and layers are
shown at equal age intervals. The unconformity, highlighted by the gray band, develops in
steady state. The gray-dashed line i1s the ice-surface topography from Figure 2.4. The
shapes of the internal layers depend strongly on the mass-balance pattern, while the shape
of the ice surface does not. The bold layer is used in the inverse problem we solve in
Section 2.3.4.4 and Figure 2.9.

Figure 2.5 shows layers generated with a more complicated mass-
balance pattern that fluctuates on smaller spatial scales. The internal-layer
shapes reflect these smaller-scale variations in mass balance, but as

expected, the ice surface is insensitive to these details. The gray-dashed
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line in Figure 2.5 shows the ice surface generated with the mass-balance
pattern from Figure 2.4. While the internal-layer shapes associated with
the different mass-balance patterns in Figures 2.4 and 2.5 are very
different, the ice-surface profiles are nearly the same. We use the mass-
balance pattern in Figure 2.5 to illustrate how complex layer structures,
including unconformities, can form in a steady state. In Section 2.3.4.3 we
infer the mass-balance pattern using the internal layer shown in bold in
Figure 2.5. In Section 2.4.2 we discuss this unconformity, highlighted with
a gray band in Figure 2.5, which develops due to localized ablation followed
by renewed accumulation in the direction of flow.

In addition to the mass-balance patterns used in Figures 2.4 and 2.5,
in Section 2.3.3.2 we also generated internal layers using the idealized
mass-balance pattern of a zone of uniform accumulation and a zone of
uniform ablation. Figures 2.4-2.6 show that internal layers in a flowing ice
mass can also have very simple shapes; folded or faulted layer shapes are
not required. In terrestrial ice sheets, folded layers can be found near the
base of the ice, where bed topography, shear stress, and subtle transients in
the flow direction can have a large influence on the layer shapes (e.g. Hooke,
2005, pg. 361). Variations in ice rheology (e.g. Thorsteinsson and others,
2003), movement of the ice divide (e.g. Waddington and others, 2001;
Jacobson and Waddington, 2005), and advance and retreat of the ice margin
(e.g. Hudleston, 1976) can also cause folded layers. Waddington and others
(2001) noted that folds may be clearly identifiable only for a very short time
before they overturn, which is another reason that it is rare to observe folds
in terrestrial ice sheets. Layers that exhibit faulting have experienced
brittle-type deformation, which 1s not indicative of the creep-type
deformation that is associated with ice flow. Cold temperatures promote

brittle behavior, and it is possible that faults are indicators of colder ice
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temperatures, whereas unfaulted layers may be indicative of warmer ice
temperatures. These general features of internal layers in a flowing ice

mass should be considered when interpreting internal structure across the

Martian PLD.

2.3.3.2. Gemina Lingula, North PLD

Winebrenner and others (2008) found that the inter-trough
topography of flowbands across Gemina Lingula, North PLD, closely
resembled ice-surface topography generated with a simple steady-state ice-
flow algorithm. They interpreted these inter-trough regions to be areas
where surface topography has survived from an earlier era in which mass
movement due to ice flow balanced mass exchange at the surface. Their
algorithm assumed that the mass-balance pattern consisted of a zone of
uniform accumulation and a zone of uniform ablation (Paterson, 1972). As
explained in Section 2.3.3, this i1s not a restrictive assumption, because
surface shape is relatively insensitive to details of the mass-balance
distribution. By seeking the model topography that best fits the actual
inter-trough topography, they could estimate the boundary between
accumulation and ablation zones (the equilibrium line) when the ice was
flowing.

Figure 2.6 shows the internal-layer shapes corresponding to this
1dealized mass-balance pattern of a single zone of uniform accumulation and
a single zone of uniform ablation. We cannot put a scale on this relative
mass-balance pattern, because the dimensional scaling factor B (see Section
2.3.1.1) depends on additional assumptions about the layer ages or the ice
temperature. Figure 2.6 demonstrates that layers in a flowing ice mass can

have simple, nearly horizontal shapes that are continuous across a broad
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accumulation region. In the ablation zone, layers intersect the surface. Due
to the discontinuity in mass balance, the layers have a discontinuous slope

at the equilibrium line, but the shape of the ice-sheet surface is smooth.
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Figure 2.6. Prediction of internal layers along a flowband on Gemina Lingula, North PLD,
based on the surface topography and the idealized mass-balance pattern inferred by
Winebrenner and others (2008). The mass-balance pattern consists of a zone of uniform
accumulation and a zone of uniform ablation, separated by the Equilibrium Line (EL).

2.3.4. Past Surface Mass Balance and Topography for Mars

We demonstrate how well we can infer the model parameters by
solving five different inverse problems using a uniform accumulation
pattern to generate synthetic internal-layer data. In these inverse
problems, in addition to the relative spatial pattern, we can infer the
absolute rate of mass balance because the surface-elevation data, ice
temperature, and rheological parameters may each provide rate

information. For most of the inverse problems that we solve, we used a
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limited domain with a simple mass-balance pattern of uniform
accumulation so that the results from these different inverse problems could
be easily compared. However, any mass-balance pattern could be used. In
Section 2.3.4.3, we show the results of an additional test to infer information
from an internal layer generated using a mass-balance pattern that
included an ablation zone; this test was done only for the case in which the
data comprise only surface topography and an undated internal layer. The
parameter values inferred in Sections 2.3.4.1-2.3.4.4 are compared in Table

2.1. The inferred mass-balance patterns are compared in Figure 2.7.
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Figure 2.7. The spatial patterns of accumulation from four different inverse problems are
compared to each other, to the initial guess, and to the correct values (light-gray curve).
Using only undated internal-layer data (gray-dashed curve) we recover the correct spatial
pattern, but the wrong magnitude. Using only the surface-elevation data (dark-gray curve)
we recover an accumulation-rate profile with the correct average value, but the wrong
spatial pattern. Using internal-layer data and surface-elevation data, in addition to either
a known ice temperature (thin solid-black curve) or known ice rheological parameters
(black-dashed curve) we can recover the actual spatial pattern and rate of accumulation.
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Nondimensional Input
All Model Layer accumulation- Flux,
Inverse Problem p Age, Age rate Qin (m3/yr
arameters .
(Myr) magnitude, per m
B/Brer width)
Correct values of 10 10 03
the parameters
Undated _
internal Qin, Age, b(X) 1.13 0.88 0.261
layers only
Ice surface and :
known ice Qin. D). S, 1.02 0.28
temperature A(T)
Undated
internal :
layers, ice Qin, Age, b(X) 1.0016 0.99 0.256
surface, known Sin, A(T)
ice temperature
Undated
internal :
layers, ice Qin, Age, b(X) 1.002 0.98 0.35
surface, known Sin, A(T), K

ice rheology

Table 2.1. The layer age, nondimensional accumulation-rate magnitude B (Section 2.3.1.1)
divided by the accumulation-rate magnitude for the correct solution B, and the input flux

for four synthetic inverse problems are compared to the correct values of the model

parameters.

2.3.4.1. Inferring Mass Balance from an Undated Internal Layer

In our first inverse problem, we attempt to infer the relative spatial

pattern of mass balance b(x), as in Equation 2.3, using a forward algorithm

that adopts the synthetic surface and calculates only the internal-layer

shape. This inverse problem could be solved with Martian internal layers

tracked along putative flowlines.

example (Section 2.3.1.1),

This test i1s similar to the Antarctic
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information makes it difficult to constrain the layer age; the initial guess at
the layer age determines the rate of accumulation B inferred. In this test,
the initial guess at the accumulation pattern differed from the known
pattern, and the initial guess at the layer age was several percent higher
than the known age (any age guess could be used). Even though we cannot
find the correct rate, as shown in Section 2.3.1.1, the pattern of
accumulation in the solution is a much better approximation of the true
accumulation-rate pattern than our initial guess was, as shown in Figure

2.7.

2.3.4.2. Inferring Mass Balance from Surface Topography

In our second inverse problem, we attempt to infer the relative

spatial pattern b(x) and the absolute rate of mass balance B from the ice-

surface elevation S(x) alone. As discussed in Section A2.1, the surface
calculation uses ice dynamics and contains rate information through the
temperature-dependent ice softness parameter (Equation A2.1.5). Figure
2.7 illustrates, as we anticipated, that details of the inferred mass-balance
pattern are unlike the actual pattern. Using the surface data alone is not
very informative about the spatial pattern of mass balance, even when the

mass-balance pattern is very simple.

2.3.4.3. Inferring Mass Balance with a Known Ice Temperature

In our third inverse problem, we attempt to infer both the relative

spatial pattern b(x) and the absolute rate of mass balance B from the

internal-layer shape and the ice-surface shape, assuming that the ice

temperature at the time of flow is known. The results shown in Figures 2.7

38



Chapter 2: Mass balance and topography for Mars

and 2.8 used the same ice temperature that was used to create the synthetic

data.
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Figure 2.8. Results for the inverse problem using an internal layer, the ice-surface shape,
and a known ice temperature; a portion of this solution is also shown in Figure 2.7. a) The
correct mass-balance pattern was a uniform accumulation rate of 0.3 mm/yr. b) The
synthetic data layer and the layer predicted by the forward algorithm using the model
parameters found by solving the inverse problem. c¢) Paths of particles whose end points
create a modeled layer. d) The resolving function (bold line) shows the best ability of the
solution to recover the single-node perturbation (thin line).

Using the internal layer and the ice-surface elevation as data, the
inverse algorithm generates a model-parameter set that is very similar to
the actual parameter values; the values are listed in Table 2.1. Figure 2.8a
shows the mass-balance solution compared to the known mass-balance
pattern and an initial estimate of the mass-balance pattern from the

Shallow Layer Approximation (SLA; Section 2.1.1) based on a poor estimate
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of the layer-age parameter. Figure 2.8b shows the internal-layer solution
compared to the synthetic layer data, and to the initial guess of the layer
calculated using an initial guess of the accumulation rate estimated from
the SLA. Figure 2.8c shows the paths of particles moving through the ice to
form the internal layer, and Figure 2.8d shows the resolving functions for

this inverse problem.
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Figure 2.9. Results for the inverse problem using an internal layer, the ice-surface shape,
and a known ice temperature. a) The correct mass-balance pattern varied on short spatial
scales and included a zone of ablation. The initial guess was the depth of the layer divided
by the estimated layer age. b) The synthetic data layer and prediction by the forward
algorithm using the model parameters found by solving the inverse problem. ¢) Paths of
particles whose end points create a modeled layer. d) The resolving function (bold line)
shows the best ability of the solution to recover the single-node perturbation (thin line).

Resolving functions, which indicate the ability of an inverse
algorithm to resolve structure in the model parameters (see Section A2.2),

show that structure in the spatial variability of accumulation can be better
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resolved closer to the divide. The spread of the resolving functions increases
due to increasing length of particle paths further from the divide. Figure
2.8c (and Figure 2.9c) shows the paths of particles starting on the surface as
they move through the steady-state velocity field and map out an internal
layer of a particular age. Particle paths near the downstream end of the
domain extend farther, and the particles can move through larger changes
in accumulation and strain rate, effectively integrating information about
the mass-balance pattern as they move. In addition, we desire a spatially
smooth accumulation-rate solution, and we enforce this smoothness
criterion in the inverse algorithm (Equation A2.2.1). Therefore, only
weighted averages of accumulation rate over the width of the resolving
function can be inferred.

We also generated synthetic internal-layer data with a mass-balance
pattern, shown in Figure 2.5, which varied on shorter spatial scales, and
included an ablation zone. If an internal layer intersects the surface in the
ablation zone, information about this mass-balance pattern can be inferred
from that layer only over the upstream area where the internal layer exists.
Figure 2.9a shows the mass-balance solution compared to the known mass-
balance pattern, and to the initial guess from the Shallow Layer
Approximation (SLA).

Figure 2.9b shows the internal-layer solution compared to the
synthetic layer data and the initial guess at the layer using an accumulation
rate estimated from the SLA. Figure 2.9c shows the paths of particles
moving through the ice to form the internal layer, and Figure 2.9d shows
the resolving functions. Figure 2.9 demonstrates that we can infer a mass-
balance pattern that varied on short spatial scales; we can also recover
information about the pattern of ablation from the shape of an internal

layer as it trends towards the surface. The individual influences of ice
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temperature and mass-balance rate are uncoupled by assuming that the ice
temperature is known. For any estimate of ice temperature on Mars, the
ice-surface topography and the internal-layer shape can be used to recover

the corresponding absolute rate of mass balance.

2.3.4.4. Inferring Mass Balance with Known Ice Rheology

In our fourth inverse problem, we attempt to infer the relative spatial

pattern b(x) and the absolute rate of mass balance B from the internal-

layer shape and the ice-surface shape, assuming that the ice temperature is
unknown. If both the layer age and the ice temperature are unknown,
additional information must be used to uniquely determine the
accumulation-rate magnitude and deformation rate, in order to infer the
correct values of accumulation and ice temperature (see Equation 2.1). We
demonstrate that including a third rate factor through a more general
constitutive relation for strain rate may allow us to resolve both mass-
balance rate and ice temperature in some circumstances.

Glen’s flow law (Glen, 1955; Equation A2.1.4) describes ice flow by a
non-linear constitutive relationship between strain rate and deviatoric
stress, where deformation occurs primarily by dislocation creep. The flow-
law exponent, n, is typically assumed to have a value of 3. However, under
different temperature and stress conditions, and for different ice-grain sizes,
deformation of ice may be influenced by, or even controlled by, processes
other than dislocation creep. The mechanisms of dislocation creep, grain-
boundary-sliding-limited creep, and basal-slip-limited creep, can have
unique flow-law exponents n, ice-grain-size exponents p, and activation
energies for creep @ (Goldsby and Kohlstedt, 1997, Goldsby and Kohlstedt,
2001; Durham and others, 2001). In addition, the shape of an ice sheet
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differs when different mechanisms are dominant (e.g. Pettit and
Waddington, 2003).

The stress and grain-size conditions for the different regimes in
which each mechanism is dominant can be illustrated with a “deformation
map” (e.g. Goldsby, 2006). Goldsby and Kohlstedt (2001) proposed a
generalized flow law that explicitly accounted for several of these
deformation processes. Pettit and Waddington (2003) proposed a simpler
modified flow law (discussed in Appendix 2.3) which we use here to
illustrate how the existence of multiple deformation regimes can be
exploited to extract rate information. The constitutive relation in Equation
A2.3.1, which is a generalized version of Equation A2.1.4, can account for a
range of dominant deformation processes in terrestrial ice sheets, by
blending n=3 processes with n=1 processes, and it can be incorporated easily
into an ice-flow model. This modified flow law (Pettit and Waddington,
2003) has a second rate factor because there can be different activation
energies for creep when n=1 or when n=3, producing different temperature
dependencies for n=1 and n=3 processes. When the temperature, stress,
and grain size fall in a regime where both terms in the Pettit and
Waddington (2003) flow law have similar magnitudes, i.e. near a boundary
in a deformation map, we show that the additional rate factor can allow us
to separate the individual influences of accumulation rate and ice
temperature 1in the inverse problem, and therefore to infer both
accumulation rate and ice temperature uniquely.

Using the flow law in Equation A2.3.1, expressed in the form of
Equation A2.3.2, we solve an inverse problem with both I' (defined by
Equation A2.3.3) and % (defined by Equation A2.3.4) as model parameters.
The parameter ', which corresponds to A(7), given by Equation A2.1.5,

contains one rate factor in A, exptQ,/RT), and & incorporates another rate
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factor through A,,exptQ,/RT), where  is the activation energy for creep

and R is the gas constant. Incorporating only one additional model
parameter, the crossover stress k, instead of solving for all the rheological
parameters and coefficients directly, is the simplest way to demonstrate the
influence of an additional rate factor. We generated an internal layer and
ice surface with k& equal to 3x105 Pa, using the same accumulation rate, ice
thickness, and temperature from the previous synthetic tests (Section 2.3.3).
In the inverse problem with only two rate factors (in the temperature-
dependent softness parameter A(7) from Equation A2.1.5, and the
accumulation rate) we could not infer the correct value of the layer age and
the ice temperature when both values were unknown. Many different pairs
of these values could also fit the data, and the pair selected by our inverse
procedure depended on our initial guesses. However, in the inverse problem
with three rate factors, we can better infer the correct values of the layer
age and the ice temperature in some cases when both terms in Equation

A2.3.2 make comparable contributions to the strain rate £;. Table 2.1 and

Figure 2.7 show the results. The spatial pattern best matches the correct
value because the crossover stress used to make the synthetic data leaves a
distinct imprint on the ice-surface shape. In this case, the inferred ice-
softness parameter [ differs by ~1% from the correct value and the
crossover stress k differs by less than 3% from the correct value, compared
to initial guesses that differed by 10%.

To use this additional rate factor as a constraint when solving inverse
problems with Martian radar data, it would be most accurate to use a
generalized flow law such as that of Goldsby and Kohlstedt (2001). This
requires that we know the ice-grain size (e.g. Barr and Milkovich, 2008) in
the target area at the era of flow of the PLD and the activation energies,

grain-size exponents, and ice-softness parameters associated with this fully
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mechanism-based constitutive relationship. Not all of this information is
currently available, but our synthetic tests provide another reason why they
would be valuable to obtain. This is a challenge for future laboratory
experiments and missions. Our synthetic test indicates that including an
additional rate factor can help to constrain the timing in some cases, if the
ice-rheological parameters are known, and if the ice mass is in a regime
where at least two of the most important terms in the flow law (e.g.

Equation A2.3.2) have a similar magnitude.

2.3.4.5. Inferring Paleo-Surface Topography

In our fifth inverse problem, we attempt to infer the surface
topography during an era of ice flow. We have shown in Section 2.3.1.2 that
we can successfully solve this inverse problem using data from Antarctica.
The surface topography across most of the PLD has been significantly
altered by trough formation, and there might not be many locations where
inter-trough surface topography from a past era of ice flow is still intact
(Winebrenner and others 2008). We show how internal layers can be used
to reconstruct ice-surface topography across the PLD if we can assume that
there was an era of ice flow.

As in Section 2.3.1.2, we perform two tests of this inverse problem.
First we assume that we know the elevation of one point on the ice surface
and we know the ice temperature. Second, we assume that we know the
elevation at two or more points on the ice surface and we do not know the
ice temperature. In the first test, the surface generated with this inferred
mass-balance pattern closely matched the original surface used to generate
the synthetic internal-layer data. In the second test, we assume that the ice

temperature is unknown, but at least two points on the ice surface are
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available. We find that this information about the thickness at different
elevations along the flowband length allow us to reconstruct surface
topography when the ice temperature is unknown. However, inferring the
correct mass-balance rate B still requires correct ice-temperature
information, or other rate-controlling information.

This inverse problem to infer surface topography using just two
elevation-data points on the ice surface can be solved using Martian
internal layers tracked along putative flowlines across the PLD. Even if
rate-controlling information were unavailable for the PLD, the shape of the

past topography can be inferred from internal layers.

2.4. Discussion

2.4.1. Implications of ice flow

Based on our understanding of terrestrial ice masses, we expect that
Martian ice experiences flow at some rate. The real question is how
significant this flow might be in relation to other processes. If ice flow has a
minor influence on PLD structure, then both the internal-layer shape and
surface shape are determined by the mass-balance pattern. This is similar
to the situation in the upper tens of meters in terrestrial ice sheets and to
terrestrial ice caps that have stagnated (e.g. Meighen Ice Cap; Paterson,
1969) or have recently built up (e.g. Hans Tausen Ice Cap; Hvidberg and
others, 2001). A terrestrial ice mass whose slope is determined by the mass-
balance pattern alone can take on a much broader range of surface shapes
than an ice mass whose slope is determined by a balance between surface
mass exchange and ice flow. The two different mass-balance patterns

shown in Figure 2.4 and in Figure 2.5 generate very differently-shaped
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internal layers, but, as shown in Figure 2.5, they produce nearly-identical
surfaces.

The inverse method that we used in this paper assumes steady state,
so that ice flow, at some rate, has an influence on the topography and on the
shapes of internal layers. If an episode of ice flow shaped the North PLD, as
proposed by Winebrenner and others (2008), then our steady-state method
1s appropriate to infer information about the most recent episode of ice flow.
Even in the case of transient flow, transient ice-surface topography
resembles steady-state ice-surface topography, but the internal-layer shapes
will be different. In the future, we could extend this method using a time-
dependent forward algorithm and multiple internal layers, to infer spatial
and temporal patterns of accumulation while allowing for transient ice-
surface topography. However, as we have demonstrated here, some
fundamental unknowns about the Martian PLD can be determined with this

simple, steady-state approach.

2.4.2. Unconformities

Unconformities on various scales have been identified visually in
troughs and scarps across the North and South PLD with imagery (e.g.
Murray and others, 2001; Tanaka, 2005; Fortezzo and Tanaka, 2006; Kolb
and Tanaka, 2006; Tanaka and others, 2008). Subsurface unconformities
have also been detected with radar observations (e.g. Seu and others, 2007,
Milkovich and Plaut, 2008; Putzig and others, 2009). While unconformities
limit the amount of information that we can infer directly from the shape of
a deeper internal layer, understanding the cause and timing of these breaks
in the stratigraphic record is necessary in order to accurately decipher the

history of the PLLD and the climate record archived within these deposits.
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Figure 2.5a shows that an unconformity can develop in steady-state
flow when ice moves through multiple zones of accumulation and ablation.
Ice is removed in the ablation zone, but ice is deposited on the erosional
surface when it moves into the adjacent downstream accumulation zone.
This causes spatial gaps in layers of the same age, and causes younger ice to

be deposited directly onto much older ice.

2.5. Conclusions

We can successfully solve the inverse problem to infer the spatial
variability in mass balance using the shapes of internal layers. Waddington
and others (2007) applied this method to Antarctica, and here we have
shown that it is possible to infer spatial patterns of accumulation and
ablation, and possibly also the rates of accumulation and ablation, for Mars.
While the mass-balance pattern can be inferred, the layer age, the ice
velocity, the ice temperature, or the grain size and the crystal fabric must be
known before the correct magnitude of the mass-balance rate can be
inferred, because steady-state ice-surface topography and layer shapes are,
in general, consistent with a wide range of pairs of ice temperature and
mass-balance rate magnitude. The ice velocity or ice temperatures
necessary in this inverse problem are the values during an era when ice
flow closely equilibrated with surface mass balance to produce the surface
topography and internal-layer architecture; because the North PLD is
probably stagnant today, present-day ice temperatures and accumulation
rates are probably not relevant. Therefore, estimating the age of the layer
when flow stopped, or determining the ice-grain sizes and conducting

laboratory experiments to find the activation energies, ice-softness
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parameters, and exponents for the flow law on Mars could lead to more
appropriate constraints on the mass-balance rate.

Internal layers are necessary to resolve spatial variations in mass
balance because surface topography alone retains little of this information.
The ice-surface topography can also be inferred from the shape of an
internal layer, because there is an ice-surface shape that is consistent with
a given mass-balance pattern that together will generate a given internal
layer. If the ice temperature at the time of flow is known, then the
internal-layer shape and one point on the ice surface can be used to
reconstruct the topography. If the ice temperature is unknown, but the
internal-layer shape and at least two points widely separated on the ice
surface are known, we can also reconstruct the correct topography; this is a
problem we can solve with data currently available for Mars. To solve this
problem we require internal layers from radar observations that follow
putative flowlines. Reconstructed topography across the PLD could be
compared to the shape of the present-day ice surface in areas of the PLD
that have been significantly altered by trough formation and other
sublimation or deposition processes. Inferring surface topography, mass-
balance patterns, and possibly rates and ice temperatures associated with
an era of significant ice flow, would be a valuable step towards deciphering

the climate history recorded in the PLD.
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A2.1. Forward Algorithm

The basis of this algorithm is steady-state continuity (e.g. Paterson,

1994, pg. 256),

i —aQ(X) =L -n
W(x)( ™ j b(x) — m(x) (A2.1.1)

Along-flow gradients in the volumetric flux of ice g(x), in a flowband with
surface profile, S(x), bedrock profile, B(x), and width, W(x), must balance the
rate of surface accumulation or ablation, b(x), and any basal melting, m(x).
A time-dependent problem would allow the surface elevation to change over
time to accommodate an imbalance in this equality. By integrating
Equation A2.1.1 from the boundary where ice flux is specified, the ice flux

can be represented kinematically by
A(0= iy + [ (B WIS (A2.1.2)
Xin

where gin (in m3 yr1; we use Earth years) is the ice flux entering at one end
of the flowband domain (x=xin). An equivalent ice flux can also be
represented dynamically, where the flux of ice passing through a cross-
sectional area W(x)xH(x), is related to the depth-averaged horizontal
velocity U(x) in that cross-section by

g(x)=W(x)H (x)u(x) (A2.1.3)
and U(x) 1s calculated from the applied gravitational stress together with
the constitutive relation for ice. The ice thickness H(x) = S(x) — B(x).

The forward algorithm has two components. The first component
generates a steady-state ice surface, calculated by equating the ice fluxes,
q(x), in Equation A2.1.2 (kinematic flux) and Equation A2.1.3 (dynamic
flux). The surface calculation is a dynamic calculation because it

Iincorporates the constitutive relation for strain rate. The second component
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of the forward algorithm generates internal layers using a kinematic
particle-tracking calculation.

In the dynamic calculation, the depth-averaged horizontal velocity
comes from the Shallow Ice Approximation (SIA, e.g. Hutter, 1983 pg. 256;
Paterson, 1994, pg. 262). The SIA is a simplifying assumption that applies
in cases where the ice thickness is much smaller than the characteristic
horizontal length scales over which thickness or stress change significantly.
If the characteristic horizontal length scale is the lateral extent of the ice
cap, then derivatives of velocities and stresses with respect to x (horizontal
axis) are generally much smaller than derivatives with respect to z (vertical
axis). Using the SIA, a constitutive relationship for ice flow (Glen 1955) is,

&, =AT(X 2)r,, (A2.1.4)
where £,=(1/2)du/0z is the simple-shear strain rate along a horizontal

plane, T(x,z) is the ice temperature, 7, 1s the shear stress along a

horizontal plane, and based on laboratory experiments n typically has a
value of 3 for dislocation creep (e.g. Paterson, 1994, pg. 85), and A(7(x,z)) is
the temperature-dependent softness parameter (in Pa™ yrl; e.g. Paterson

1994, pg. 86):
A(T)= A, expQ/ RT) (A2.1.5)

where Ao is the temperature-independent ice-softness parameter, Q is the
activation energy for creep, and R is the universal gas constant. Using the
flow law in Equation A2.1.4 and writing shear stress as

T,, =—PJ(S—2)dS/dx using the SIA, and integrating strain rate over depth

to get velocity, and integrating again to get the depth-averaged horizontal

velocity,

as” (_ dS]H " (%) (A2.1.6)
dx

u(x)= 2209 gy =

+2
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where p is density, g is gravitational acceleration, S(x) is ice-surface
elevation, H(x) is ice thickness, and A(X) is an effective isothermal softness

parameter. The effective isothermal softness parameter is found by
equating a depth-averaged ice velocity using a temperature-dependent
softness parameter A(7T(x,z)), with depth-varying temperature 7T(x,z), with
the depth-averaged ice velocity for an isothermal column at temperature
T(x), as in Equation A2.1.6, and solving for the effective isothermal

temperature 7(x), and corresponding softness parameter ,&(x) required to

give the same depth-averaged velocity and ice flux.

By representing depth-averaged velocity u(x) in terms of ice flux and
ice thickness using Equation A2.1.3, and representing ice thickness as the
difference between the surface and the known bed elevations, H(x) = S(x) —
B(x), Equation A2.1.6 can be rearranged to produce a nonlinear ordinary
differential equation for the steady-state ice surface S(x),

9S(x) _ _( i, (n+2)a(x) Jﬂn (A2.1.7)
dx 2A(X)(09)"W (X)(S™* ()~ B"*(x))

The ice flux, g(x), is found kinematically using Equation A2.1.2. The ice-
surface elevation at one point along the flowband is required as an initial
condition to solve Equation A2.1.7.

In the calculation used here, the paths of particles starting on the
surface are tracked through space and time by integrating the velocity field,
given below. We represent the horizontal velocity, u(x,z), in terms of its

depth-averaged value, U(x), and a non-dimensional shape function, ¢(x,2),

which captures variations with depth (Reeh, 1988),

u(x, 2)= u(x)¢(x, 2) (A2.1.8)
where Z is the normalized non-dimensional height above the bed,
= 27BOJ) (A2.1.9)
S(x) = B(x)

52



Chapter 2: Mass balance and topography for Mars

The choice of the appropriate shape functions ¢(x,2) from a

thermomechanical calculation can depend on the particular inverse problem
being solved. Here we chose to use shape functions for an isothermal,
parallel-sided slab (e.g. Paterson, 1994, pg. 251).

We invoke mass conservation to find the vertical velocity. Since ice is

incompressible,

ow_ _[u ov (A2.1.10)
9z lox oy

where u 1s the horizontal velocity along the flowband, v is the velocity
transverse to the central flow line in the flowband as required to make flow
tangential to the flowband width, and w is the vertical velocity. In a
flowband, the transverse strain rate (e.g. Paterson, 1994, pg. 257) is,

ov(x, 2) _ 1 dw

oy W) dx u(x, 2) (A2.1.11)
The vertical velocity is,
W(X, 2)= b (x, 2) —m(X)L- (X, 2))] + (A2.1.12)
dB  .dS 6¢(x )
u(x, z)[(l z)—x+ zd—} T(X)H (X) j d’
where
W(x, 2)= j AxL)d¢ (A2.1.13)

is called the vertical-velocity shape function, and ¢(x,2) is called the

horizontal-velocity shape function in Equation A2.1.8.

The calculated horizontal and vertical velocity fields are then
integrated over time to obtain the paths of particles that started on the ice
surface. A layer of a particular age is found by connecting the end points of

particle paths calculated over a time span equal to the age of the layer. A
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sequence of steady-state layers subject to the same mass-balance pattern

can be generated using a sequence of layer ages.

A2.2. Inverse algorithm

For a particular inverse problem with an associated forward
algorithm, different inversion procedures should yield similar solutions.
Different procedures may have different advantages and disadvantages
affecting the accuracy, uniqueness, stability, and computation time. We
chose an inverse procedure that is computationally fast and converges on a
single solution that satisfies our criterion for an appropriate match to our
data.

In an inverse problem, the observable quantities (e.g. internal layers)
may not contain enough information to discriminate against accumulation-
rate solutions that are physically unreasonable on other grounds. Because
observations contain errors, we do not want to fit these data exactly; a
solution found by minimizing only the mismatch between the data and the
forward-algorithm prediction could overfit the data. To find a physically
reasonable solution, we stabilize, or regularize, the inverse algorithm. As
part of this regularization, we require that the mass-balance pattern vary
smoothly along the flowband, because variability on small spatial scales is
unexpected. Because roughness is penalized, any variability in the solution
is clearly required by the data. We also require a solution that fits the data
with a root-mean-square mismatch consistent with data uncertainties. The
solution to this problem is a “model”, i.e. a vector of the model parameters

(e.g. mass-balance rate at discrete points) that we seek. Obtaining a smooth
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model that fits the data at an expected tolerance can be achieved by

minimizing a performance index I, given by

=™+ (el - 7%) (A2.2.1)

In this application, the squared model norm, ||r‘r“ 2 contains the square of the

curvature of the accumulation-rate profile integrated along the flowband.
For model parameters that do not fall in this spatial sequence, the model
norm incorporates deviations of the inferred values of these parameters
from expected values, in which we have a known confidence. Penalizing

large values of ||n1|2 prevents the solution from exhibiting roughness in the

accumulation-rate profile or deviating too far from expected values of the
other parameters. The squared data norm, | |d| |2, is the sum of squared
mismatches between the Nag observations, 0i@, and the forward-algorithm
predictions of the same observable quantities, 0i), normalized by the

standard deviations i@ of the data:

.

, v (@™ -0 @) 2
o =2 e 1222

The factor v is a trade-off parameter, which is adjusted until the

solution produces a data norm that equals a defined tolerance, T~JIN ,
which 1s based on the statistical uncertainties N of the data (Parker, 1994,

pg. 124). The data-mismatch criterion,
ld|* -T2 =0 (A2.2.3)

1s then satisfied. This value of v sets the most appropriate trade-off
between smoothness and fit. A smaller value of v puts more emphasis on a
smooth model, whereas a larger value of v puts more emphasis on closely fit
data (Parker, 1994).

Our inverse method performs a local search for the most-likely

solution by finding the minimum of I, in the model space that is most
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accessible from the initial guess of the parameter set. This steepest-descent
approach locates only one solution, and that solution may be only a local
minimum. To address this issue, we can start from multiple initial guesses
of the parameter set. In addition, most inverse problems are nonlinear,
making them more difficult to solve. Our problem is nonlinear because
predictions of the data by the forward algorithm are nonlinear functions of
the model parameters. We address this complication by linearizing our
problem. This means that instead of solving for the solution directly, we
iteratively solve for corrections to trial values of the unknown parameters.
The parameter values are guessed at the first iteration, and are then
adjusted in subsequent iterations as the inverse algorithm minimizes the
performance index (Equation A2.2.1). The forward algorithm makes
predictions of the data using estimates of the model parameters from the
previous iteration. For any given value of the trade-off parameter v, a
solution is found when adjustments to the model parameters become small.
We then adjust the value of v and repeat the solution procedure until the
solution also satisfies the data-mismatch criterion (Equation A2.2.3).
Formal inverse theory allows us to investigate our ability to infer
unknown parameters; this ability is known as the resolving power. The
preferred solution from our regularized algorithm minimizes the
performance index Ip in Equation A2.2.1, and fits the data at an expected
tolerance, satisfying Equation A2.2.3. However, we still do not know
whether we have found the best values and spatial variability of the
parameters. It is important to assess the ability to resolve those parameters
before making physical inferences from the preferred solution. Parker
(1994, pg. 200-213) showed that, when using a regularized algorithm, the
inferred structure is a version of the true structure that has been smoothed

by a set of narrowly peaked model-resolving functions. The half-width of
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the resolving function at each spatial position gives the physical scale over
which meaningful structure can be resolved. Features with shorter spatial
extent than this cannot be resolved with confidence from these data and this

algorithm.

A2.3. Modified flow law

The modified flow law from Pettit and Waddington (2003), in tensor

notation, is

: E _ E i}

g = 1':})1 e(-Q/RT) 4 2?202 X QZIRT)(Tjﬂ) 7, (A2.3.1)
d d

where ¢&; 1s the strain-rate tensor, E: and E2 are the two enhancement

factors, Ao:r and Ao2 are the two temperature-independent softness
parameters, d is the average grain diameter, exponents P; and P2 express
grain-size dependencies, @: and Q2 are the activation energies for creep, R is

the gas constant, 7, is the deviatoric-stress tensor, and 7 is the effective

deviatoric stress (7~ is the second tensor invariant of r;). The first term
in Equation A3.1 1s linear in the deviatoric stress 7, while the second term

1s a non-linear (Glen) term with n=3. When the coefficient of 7 eﬁz in the

second term 1s extracted as a common factor on the left-hand side of

Equation A2.3.1, the strain rate &; can be expressed as,
& = Fk* + 75 I7; (A2.3.2)
where £k is called the crossover stress because it is the deviatoric stress at

which the linear and non-linear terms contribute equally to the strain rate;

I is given by
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E _
r= (jf;oz (- /RD) (A2.3.3)
and k is given by
P2 Q-0 1/2
k{Elﬁmd_Ple = } (A2.3.4)
EZAJZ d

Pettit and Waddington (2003) showed that a linear constitutive relationship
produces an ice divide with a more-rounded (less-peaked) shape. In order to
successfully resolve an unknown mass-balance rate and an unknown ice
temperature using the additional rate factor in Equation A2.3.1, the ice
sheet must have been in a regime where the linear and the non-linear terms

in Equation A2.3.1 have similar magnitudes.
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Response Timescales for Martian Ice Masses and
Implications for Past Climate and Ice Flow

On Earth and Mars, ice masses experience changes in precipitation, temperature,
and radiation. In an attempt to equilibrate to a new climate state, ice masses will
adjust in length and in thickness. When ice flow is equilibrated by mass exchange
at the surface, the response toward a new equilibrium has a characteristic
timescale. A flowing ice mass also has a predictable shape, which is a function of
ice temperature, ice rheology, and surface mass-exchange rate. We show that the
present-day geometry of Martian ice masses could be indicative of past climate
conditions on Mars. We use the current topography across Gemina Lingula, North
Polar Layered Deposits to infer characteristics of past ice temperatures, or past
climate conditions, in which ice-flow rates were more significant than today. A
range of plausible mass-balance rates and plausible volume response timescales
associated with a range of near-basal ice temperatures and a range of ice-flow
enhancement factors can generate the characteristic geometry of an ice mass that
has been shaped by flow.
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3.1. Introduction

On Earth, a valuable archive of past-climate information can be
accessed directly by drilling an ice core. However, it is important to
recognize that ice-surface topography and the shapes of internal layers are
also informative about terrestrial ice-sheet and climate histories. It is likely
that the Polar Layered Deposits (PLD) of Mars play a role similar to the
terrestrial ice sheets, by archiving information about past Martian climate.
Even though a Martian ice core has not yet been recovered, topographic
data, radar observations, and images of the Martian PLD are accessible,
and these data can be informative about the ice and climate histories on
Mars.

Winebrenner and others (2008) used a simple ice-flow model to infer
parameters (i.e. PLD geometry, mass-balance pattern) that generated
excellent reconstructions of the inter-trough Mars Orbiter Laser Altimeter
(MOLA) topography along flowbands across Gemina Lingula, North PLD.
Their inferred parameters relate to an era of ice flow across Gemina
Lingula, when mass exchange at the surface (accumulation and ablation)
was approximately balanced by ice flow, i.e. the ice mass was in, or near,
steady state, and the troughs dissecting the present-day surface were filled
with ice. For any ice mass, the ice-flow rate depends on the mass-balance
rate and on the near-basal ice temperature and any flow enhancement due
to impurities in the ice or variations in the physical properties of the ice.
Therefore, pairs of mass-balance rate and ice temperature (plus any flow
enhancement) can generate identical ice-surface topography. We use the
ice-surface shape reconstructed by Winebrenner and others (2008) to
estimate pairs of mass-balance rate and ice temperature that would
generate their reconstructed shape. However, without additional

information to constrain the actual rate of mass balance, the actual ice
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temperature, or the actual ice-flow constitutive properties, we need another
way to constrain the plausible range of ice-flow rates. We use the volume-
response timescale for an ice mass, which is the time for an ice mass to
accumulate or shed enough mass approach a new steady-state shape
following a climate change (e.g. Johannesson and others, 1989), to narrow
the range of plausible mass-balance rate and ice-temperature pairs by

eliminating implausible combinations that take too long to adjust.

3.2. Background and theory

Since the accumulation rate, the ablation rate, and the ice
temperature during the postulated era of significant ice flow on Mars are all
unknown, Winebrenner and others (2008) used a nondimensionalized model
to infer parameter values that would generate ice-surface topography that
matched the MOLA data at specific locations along flowbands across
Gemina Lingula. While Ivanov and Muhlemen (2000) showed that the
present-day surface topography across Planum Boreum, North PLD could
have been dominantly shaped by ice sublimation, their results were
inconclusive across Gemina Lingula; this result is consistent with
Winebrenner and others (2008), where Winebrenner and others (2008)
noted that Gemina Lingula could have been shaped by a near balance
between ice flow and mass balance, but their results were inconclusive
across Planum Boreum. The model used by Winebrenner and others (2008)
assumed a simple mass-balance pattern that consisted of a zone of uniform
accumulation ¢ and a zone of uniform ablation a, separated at the
equilibrium line R (Paterson, 1972). The parameter values they inferred
were the flow law exponent n (see Equation 1), the ratio of accumulation

rate to ablation rate (c/a), the maximum ice thickness H, and the flowband

61



Chapter 3: Response timescales for Martian ice masses

length L. While they found that there was smooth spatial variation in
parameter values that they inferred independently for 51 flowbands, this
variation was small and is not central to the results presented here, and we

use parameter values associated with only one characteristic flowband.

3.2.1. Ice flow and ice-surface topography
The relationship between shear strain rate and shear stress for ice
(the flow law) has been determined from laboratory experiments (e.g. Glen,
1955):
&, = EA(T(x,2)1,, 3.1)
where &,=(1/2) 0u/0z is the simple-shear strain rate along a horizontal

plane, FE is the dimensionless ice-flow enhancement factor, 7(x,z) is the ice

temperature, 7, is the shear stress along a horizontal plane, and based on

laboratory experiments n typically has a value of 3 for dislocation creep (e.g.
Paterson, 1994, pg. 85), and A(7(x,z)) is the temperature-dependent softness
parameter for ice In (in Pan® yrl; e.g. Paterson, 1994, pg. 86) follows an

Arrhenius relationship:
A(T)= A, ex -Q (3.2)
R,T

where @ 1s the activation energy for creep (Q ~ 60 kJd mol-! for temperatures
below —-10° C), Ao is the temperature-independent ice-softness parameter
(Ao ~ 4 x104 kPa3 s for a flow-law exponent n=3, and Q ~ 60 kJ mol-1,
calculated based on values from Paterson, 1994, pg. 97), and Ry is the
universal gas constant (Ro = 8.314 J mol-! K-1). The ice-flow enhancement
factor E can account for variations in the physical properties of ice that

enhance or retard the deformation rate (e.g. Paterson, 1994, Ch. 5).
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In the Paterson (1972) model for ice-surface topography, the

maximum ice thickness H is related to length L through,

H2H @) = e (3.3)

where K is given by,

K=2(n+2)1/”( c jl/n( a j”” (3.4)
fo.0] 2EA(T) c+a

where p is density, and g is gravity. We assume the density of pure ice with
=917 kg m-3 and Martian gravity g=3.72 m s2. From Equations 3 and 4,
the ablation rate a is

a[H_j ()" oppy @t(Cla) 3.5)
L 2"(n+2) (c/a)

Using the flow law exponent n, the accumulation-to-ablation ratio (c/a), the
maximum ice thickness H, and the flowband length L inferred by
Winebrenner and others (2008) for one typical flowband across Gemina
Lingula, we can calculate the accumulation rate ¢ and the ablation rate a for

any combination of ice temperature 7" and ice-flow enhancement factor E.

3.2.2. Volume response time

The response of ice masses to small perturbations can be estimated
using linearized kinematic wave theory (e.g. Nye, 1960; Johannesson and
others, 1989; Hooke, 2005, ch. 14). From this fundamental theory,
Johannesson and others (1989) showed that the volume response time for an
ice mass to evolve from an initial (datum) state to a new steady state after a

change in climate can be approximated by
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H

I, = m (36)

where H is the maximum ice thickness and a(L) is the ablation rate at the
terminus, both in the datum state. The volume response time is the e-
folding time needed for the ice mass to accumulate (or ablate) enough ice to
reach a new steady-state shape. An ice mass of any ice thickness, with any
ice temperature and any ice-flow enhancement, has a corresponding mass-
balance rate and volume response timescale. See Appendix F for additional

details.

3.3. Results

To constrain the conditions necessary to facilitate ice flow, we
constrain the plausible range of mass-balance rates and the plausible range
of volume response timescales associated with pairs of ice temperature and
ice-flow enhancement. The ice temperature that we prescribe is the near-
basal ice temperature, because this is the value that is important for ice
deformation. Near-basal ice temperature can be simply related to the
surface temperature using Fourier's law of heat conduction in 1-D (e.g.

Paterson, 1994, pg. 206),
oT
Q=-KM)— (3.7)
0z

where @ is the heat flux (in mWm-2), K is the conductivity (in Wm1K-1), T is
the temperature (in K), and z is the depth (in m). The conductivity is a
function of temperature (e.g. Paterson, 1994, pg. 205), given by

K(T)=9.828 * exp(-0.0057 * T') . (3.8)
Figure 3.1 shows the surface temperature required to produce near-basal

temperatures from 200-270 K for different values of Martian heat flux. We
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compare surface temperatures associated with heat fluxes of 5 — 50 mW m-2
(where a value of 20-30 mW m-2 is often assumed, e.g. Clifford, 1987; Grott
and others, 2007), and a total ice thickness of 1900 m. For example, if the
heat flux 1s 20 mW m-2, and the near-basal ice temperature is 230 K, the
surface temperature would be ~215 K.

In our calculation of mass-balance rate and volume-response time, we
consider near-basal ice temperatures from 180-260 K, and we consider ice-
flow enhancement factors from E = 1-100; the range of E is chosen based on
terrestrial experience, and the physical significance of E is discussed in

Section 3.4.1. All rates are given in Earth years.
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Figure 3.1. Required surface temperature to produce near-basal ice temperature for a
plausible range of basal heat fluxes, calculated using Equation 3.7, where thermal
conductivity is a function of ice temperature (Equation 3.8).
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3.3.1. Geometry of a flowing ice mass

An ice mass that has been shaped by ice flow has a surface slope that
can be well predicted by an ice-flow model (e.g. Paterson, 1994; Winebrenner
and others, 2008). In order for a stagnant ice mass to achieve the surface
shape of a flowing ice mass, a very specific, and persistent, spatial pattern of
mass balance is required at each point along the entire profile length; this
specific mass-balance pattern must vary with elevation, and an atmospheric
mechanism on Mars that would produce this pattern has not yet been
identified. In comparison, the shape of a flowing ice mass reflects the
integral of the spatial pattern of mass-balance along the profile length.

While the present-day inter-trough topography of Gemina Lingula
has the shape characteristic of a flowing ice mass, the actual history of ice
flow is unknown. Winebrenner and others (2008) were able to match the
inter-trough MOLA topography with their ice-flow model and their inferred
parameter values, but we do not know if the present-day thickness of
Gemina Lingula is the same as the ice thickness during the era of flow. It is
possible that the characteristic shape of a flowing ice mass could be
maintained if subsequent accumulation or ablation was extremely uniform.
To incorporate this possibility, we use the ratio of inferred ice thickness to
inferred length H/L from Winebrenner and others (2008) to calculate the
mass-balance rate and the volume response time associated with an ice
mass of any thickness or of any length that has this H/L ratio; our results
do not apply to a specific ice thickness, but the apply to a specific ice
thickness to length ratio.
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Figure 3.2. Ice-surface shapes generated using a Paterson (1972) model (Equation 1), and
three different mass-balance distributions. At the equilibrium-line position R/L the zone of
uniform accumulation transitions to the zone of uniform ablation. R/L=0.63 was inferred
by Winebrenner and others (2008) for a characteristic profile along Gemina Lingula, North
PLD. The vertical lines highlight equilibrium-line positions.

Although the ice-surface shape is sensitive to the flow-law exponent,
this parameter was determined to be n=3 by Winebrenner and others
(2008). For ice masses with the same maximum thickness H and length L,
the surface shape is sensitive to differences in the integral of the mass-
balance pattern along the profile. This is shown in Figure 3.2, which
compares the normalized shapes of three different ice masses that have
uniform width and the same ice thickness and length, but were generated
using three different mass-balance patterns. In the Paterson (1972) model,
the mass-balance pattern is characterized by the ratio of accumulation rate
to ablation rate ¢/a, and the zone of uniform accumulation and the zone of
uniform ablation are separated at the equilibrium-line position R. If the
length L and the equilibrium-line position R are known, c/a = (L-R)/R.

Therefore, if the equilibrium line R=0.1L, the accumulation zone is much
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smaller than the ablation zone, and the ice mass will be thinner along the
profile length compared to an ice mass with an equilibrium line R=0.9L,
where the accumulation zone is much larger than the ablation zone. As
shown in Figure 3.2, these differences in equilibrium-line position R/L (or
the corresponding mass-balance distribution c¢/a) result in significantly
different surface shapes; the maximum difference in surface elevation along
the profile between the R=0.1L and the R=0.9L surfaces is greater than
10%.
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Figure 3.3. Contours of volume response time (from Equation 3.5) and ablation rate (from
Equation 3.4) for all pairs of near-basal ice temperature 7=180-260 K, and ice-flow
enhancement factor £=1-100 and an ice mass with maximum thickness H=2 km. For H=1
km, multiply these values by 0.5. For H=3 km, multiply these values by 1.5.
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Using different mass-balance patterns (i.e. R/L=0.1 or R/L=0.9) we
calculated the mass-balance rates (Equation 3.5) and the volume response
times (Equation 3.6) and found that the differences in these values were
relatively small compared to the spread in these values over the range of
possible ice temperatures. In addition, Winebrenner and others (2008) used
their inferred mass-balance ratio c/a, together with their inferred ice
thickness H, length L, and flow-law exponent n, to generate surface shapes
that matched the inter-trough MOLA data to within ~1% along the
flowband for most profiles included in their study. This quality of fit to the
data, compared to the differences in surface shape of order 10% that can
result from major differences in the mass-balance pattern (Figure 3.2),
indicates that the mass-balance ratio associated with the reconstructed
topography across Gemina Lingula has been suitably resolved. This
justifies using the inferred mass-balance ratio ¢/a=0.56 from Winebrenner

and others (2008).

3.3.2. Mass-balance rate and response time

To calculate the mass-balance rate and the volume response time, we
use the mass-balance ratio ¢/a=0.56, the geometric ratio of thickness to
length H2/L=11.4 (from H= 1900 m and L~316.67 km), and the flow law
exponent n=3 inferred by Winebrenner and others (2008) from a typical
flowband along Gemina Lingula. We calculate the ablation rate using
Equation 3.5, and we calculate the volume response time using Equation 3.6
for an ice mass with a maximum ice thickness of 1 km, 2 km, or 3 km. The
ablation rate required for steady state scales linearly with the ice-flow
enhancement factor, and the ice-softness parameter A(7) follows an

Arrhenius relation (Equation 3.3).
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Figure 3.3 shows the ablation rate a required for steady state (where
the accumulation rate ¢ = 0.56a) and the volume response time 7 for all pairs
of ice temperature 7=180-260 K and enhancement factor E=1-100 for an ice
mass with maximum thickness H=2 km. For all pairs of ice temperature
and enhancement factor, and assuming that the ice mass has a thickness to
length ratio H2/L=11.4, an ice mass with H=1 km has a volume response
time that 1s 0.5 times the value at H=2 km (a thinner ice mass responds
faster), and an ice mass with H=3 km has a volume response time that is 1.5

times the value at H=2 km (a thicker ice mass responds slower).

3.3.3. Constraining the accumulation rate

Based on observational estimates of modern accumulation rates (e.g.
Laskar and others, 2002; Milkovich and Head, 2005; Fishbaugh and
Hvidberg, 2006) and modern ablation rates (e.g. Pathare and Paige, 2005),
as well as model-based estimates of past mass-balance rates (e.g. Levrard
and others, 2004), the polar mass-balance rate on Mars has likely been on
the order ~0.1-1 mm/yr over at least the past 10 Myr. With an
accumulation rate of ~0.1-1 mm/yr and E=1, the near-basal ice temperature
must have been ~240-260 K to produce topography similar to that along
Gemina Lingula. Alternatively, with a near-basal ice temperature of ~180
K, the ice-flow enhancement factor must be ~20,000 to equilibrate a mass-
balance rate of 0.1 mm/yr, and ~210,000 to equilibrate a mass-balance rate
of 1 mm/yr. While a near-basal ice temperature of 180 K is plausible, we
know of no way to make water ice at least ~20,000 times softer. If Martian
ice flow was ever near equilibrium with mass balance, and if ice flow was
not substantially enhanced, the ice temperature required to equilibrate a

mass-balance rate ~0.1-1 mm/yr is one argument for warmer ice.
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Near-basal ice enli(:r}l_(f:le(;:lven ¢ Ablation rate Volume.
temperature (K) factor (mm/yr) response time

180 1 4.7 X 10 425 Byr

215 100 0.3 6.2 Myr

230 50 1.4 1.4 Myr

250 50 17.6 113 kyr

Table 3.1. Calculated values for select pairs of near-basal ice temperature and ice-flow

enhancement factor, corresponding to an ice mass with ice thickness H=2 km. For an ice
mass following H2/L=11.4, if H=1 km, multiply these values by 0.5. For H=3 km, multiply
these values by 1.5.

3.3.4. Constraining the volume response time

In addition to limiting the range of plausible ice temperatures based
on the plausible range of mass-balance rates, we further constrain the ice
temperature using the physically-based characteristic volume response
timescale for an ice mass, given by Equation 3.5. By putting upper bounds
on plausible response times, we put lower bounds on the past mass-balance
rate and the past ice temperature, and/or the enhancement factor. Figure
3.3 shows that volume response times associated with near-basal ice
temperatures less than ~200 K, without any ice-flow enhancement, are
physically implausible; these temperatures imply response times that are
older than the age of the planet. The ice-flow enhancement factor is a
scaling factor. Ice temperature effects flow following an Arrhenius relation

(Equation 3.2), and therefore can have a more significant effect on ice

softness. Table 3.1 highlights pairs of values from Figure 3.3.

3.4. Discussion

3.4.1. Variations in basal-ice temperature
Surface temperatures at the North Pole, subject to orbital-parameter

variations over the past 10 Myr, have been calculated (e.g. Pathare and
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Paige, 2005; Levrard and others, 2007; Schorghofer, 2008), and the annual-
average surface temperature at 80-90° N was always below ~180 K.
Pathare and Paige (2005) showed that the summertime maximum
temperature at the North Pole was ~220 K, and could even reach ~270 K
depending on the perihelion configuration, obliquity, and eccentricity.
Despite these relatively warm summertime temperatures, the annual-
average temperature is very low, due in part to the cold wintertime
temperatures and the cold-trapped CO2 frost cover that presently has a 7
mbar frost-point temperature of 148 K (Kieffer and others, 1976). Annual-
average surface temperatures would be higher if there was a reduction in
the extent or duration of seasonal CO:z deposition across the North PLD.
Surface warming would be further enhanced if there was a decrease in
surface albedo from the formation of a dust-lag deposit, which must have
been present if the North PLD survived the last period of high obliquity
from 4-10 Ma (e.g. Mischna and Richardson, 2005; Levrard and others,
2007). A simple estimation using the Stefan-Boltzman Law indicates that
an albedo change from 0.6 (minimum value for a snow surface; e.g. Paterson
1994, pg. 59) to 0.3 (typical value for a soil-type surface) can yield a change
in surface temperature (in degrees Kelvin) of more than 10%. However, to
affect the rate of ice flow, changes in surface temperature must propagate to
the near-basal ice, and this deep ice can warm only by diffusion. The
length of the diffusion time for an ice sheet ~2 km thick can range from ~10-
100 ka depending on the thermal conductivity. Larsen and Dahl-Jensen
(2000) showed that if this time is comparable to the length of an obliquity
cycle, there would have been a delay before the surface temperature during
a given obliquity period propagated to the base. Therefore, an orbital state
with minimal variation would best promote warmer ice. On Mars, orbital

states with minimal variation have occurred every ~2-3 Myr in the past 20
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Myr and have lasted for ~300 Kyr (e.g. Laskar and others, 2002). The near-
basal ice can also be warmed by variations in basal heat flux. While spatial
variations in terrestrial heat-flux can be surprisingly substantial (e.g.
Fahnestock and others, 2001a; NGRIP members, 2004), on Mars, Phillips
and others (2008) estimate that the crustal heat flux beneath the North
PLD is as low as 8 mWm2 (previous estimates of ~20 mWm2 have been
used, e.g. Grott and others, 2007). To warm the near-basal ice of a 2 km
thick ice mass to 230 K, a heat flux of ~95 mWm-2 is required if the surface
temperature is 170 K, and a heat flux of ~45 mWm2 is required if the
surface temperature is 200 K (using Fourier’s Law, Equation 3.7). The ice
temperature near the base of an ice mass is the value important for ice flow

because shear strain rates are largest there (see also Section A3.3).

3.4.2. Variations in basal-ice properties

In the absence of a significant change in the near-basal ice
temperature, it is possible that there were also changes in the properties of
ice that enhanced ice flow (see also Section A3.4). Including an ice-flow
enhancement factor in the ice-flow law could account for variations in the
physical properties of ice, such as grain size, crystal orientation, and
1mpurity content that can enhance or retard deformation rate (e.g. Paterson,
1994, Ch. 5). When these variations are concentrated in the basal layer of a
glacier or ice sheet, their effect on ice flow can be especially significant (e.g.
Knight, 1997).

There is the potential for CO2 or COz2 clathrate to be a constituent of
the PLD (e.g. Ross and Kargel, 1998, pg. 32). The Phoenix lander found
perchlorate in the surface soil at ~68° S (e.g. Hecht and others, 2009), and
even though the distribution and mode of formation of the perchlorate

remains unknown, there is the potential for percholorate to be a constituent

73



Chapter 3: Response timescales for Martian ice masses

of the PLD. Perchlorate is highly water soluble, and could depress the
freezing point as much as 70° C for a brine mixture (Hecht and others,
2009). In addition, Delory and others (2006) report that Martian dust
storms may generate strong enough electrostatic fields to dissociate COq
and H20, to eventually form hydrogen peroxide (H202) that subsequently
falls out of the Martian atmosphere. Dust storms of all scales are
omnipresent on Mars, and the largest dust storms typically occur during
perihelion, when Southern hemisphere summer temperatures are relatively
high (e.g. Martin and Zurek, 1993). If hydrogen peroxide snow, or any other
chemical constituent, is entrained in Northern hemisphere winter
precipitation, this could change the hardness, and therefore the deformation

rate of the PLD ice relative to pure H20 ice.

3.5. Conclusions

Warmer near-basal ice temperatures, most likely in combination with
enhanced ice flow, are required for near-equilibrium ice flow to generate
topography with the shape characteristic of topography across Gemina
Lingula, North PLD in a plausible amount of time, and with a plausible rate
of mass balance. We do not propose a specific mechanism, or combination of
mechanisms, that could warm the ice or enhance the flow, but we present a
range of combinations of ice temperature and ice-flow enhancement that can
inform future analyses of PLD geometry, internal structure, and ice
rheology. Any history of ice flow requires conditions that are very different

from the present day.

74



Chapter 3: Response timescales for Martian ice masses

A3.1.

Inferred parameter Value
Maximum ice thickness, H 1900 m
Flowband length, L 320 km
Equilibrium line position, R 203 km
Ratio of accumulation to ablation, ¢/a 0.56
Flow law exponent, n 3

Table A3.1. Values for a typical flowband on Gemina Lingula, North PLD (from
Winebrenner and others 2008).

A3.2. Present-day Polar Layered Deposits

The present-day mean annual surface temperature of the North PLD
1s ~170 K (e.g. Pathare and Paige, 2005; Levrard and others, 2007,
Schorghofer 2008), the present-day ablation rate is estimated to be ~0.2
mm/yr (e.g. Pathare and Paige, 2005), and the present-day accumulation
rate 1s estimated to be ~0.5-0.6 mm/yr (e.g. Laskar and others, 2002;
Milkovich and Head, 2005). For a surface temperature of 170 K, and
assuming a heat flux of 20 mWm-2, the ice temperature at a depth of 1900 m
~180 K. Using these values, Figure A3.1 shows the surface shape of a
steady-state flowing ice mass calculated from Equation 3.3 with a maximum
ice thickness of 1900 m, a surface temperature of 170 K, an accumulation
rate of 0.5 mm/yr, and with a mass-balance ratio ¢/a=0.56. This surface
shape is compared to the MOLA topography along a profile across Gemina

Lingula, and, unlike the results from Winebrenner and others (2008), these
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surfaces are very different. Present-day Martian surface temperature is too
cold, and the mass-exchange rates are too high (even though the actual
values are physically very low) to develop the present-day topography across
Gemina Lingula. In order for ice flow to be significant at very cold
temperature, and to equilibrate this rate of accumulation, the surface slopes
have to be very high. It has already been shown that present-day ice flow
has an insignificant affect on the surface topography, and that Martian ice
must have been warmer to flow at a significant rate (e.g. Greve and others,
2004; A. Pathare, personal communication); Figure A3.1 emphasizes this

result.
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Figure A3.1. Thick black line shows the steady-state ice surface calculated with a surface
temperature 7=170 K, an accumulation rate ¢=0.5 mm/yr, and an ablation rate a=0.2
mm/yr. The thin gray line shows the present-day MOLA topography along the study
flowband on Gemina Lingula, North PLD. The surface slopes must be very high for ice flow
to balance the relatively high mass flux for ice at 170 K.
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A flowing ice mass has a predictable surface slope, and this
corresponds to a characteristic relationship between ice thickness and basal
shear stress. For terrestrial ice sheets, the ice thickness is ~1-4 km, and the
length 1s ~100-200 km (L~200 km in Antarctica), giving H/L~0.01-0.02.
However, any mass of material that does not flow following the constitutive
relation given by Equation 3.1 is unlikely to have a similar relationship
between maximum ice thickness and length. For example, the North polar
sand erg, Olympia Undae, has a maximum thickness of ~1 km and a half
width of ~250-350 km (e.g. Byrne and Murray, 2002), giving H/L~0.003-
0.004.

Figure A3.2 compares different estimates of ice thickness and length
for terrestrial ice masses (shown in black) and Martian ice masses (shown in
gray). The points represent actual values for PLD and terrestrial ice sheets
and ice caps, and the lines are model fits to these points that are associated
with an ice temperature specified to fit these points. As shown in Figure
A3.1, an ice mass in steady-state with present-day surface temperature and
mass fluxes does not match the geometry of the PLD. The ice thickness and
length point values for the North and South PLD domes are estimated from
the central portions of the PLD excluding the chasmata, and they do not
follow this curve. Instead, the PLD domes have a thickness-length
relationship similar to that of Greenland and Antarctica. The North/South
PLD-dome curve (2) is generated with a near-basal ice temperature of ~210
K, consistent with a volume response timescale of ~100 Myr. The
Greenland curve (3) is generated with a near-basal ice temperature of ~260
K, an accumulation rate of 10 cm/yr, and an ablation rate of 20 cm/yr, which
are consistent with present-day values (e.g. Paterson 1994, pg. 346; Ohmura
and others, 1999). The ice-thickness and length relationship for Gemina
Lingula does not fit along the curve for the PLD domes. The Gemina
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Lingula curve (4) is generated with a near-basal ice temperature of ~240 K,

a mass-balance rate ~0.1 mm/yr, and a volume response time of ~18 Myr.
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Figure A3.2. Comparison of maximum ice thickness and length for terrestrial ice masses
(shown in black) and for martian ice masses (shown in gray). The curves are generated
with prescribed values of near-basal ice temperature 7T, accumulation rate ¢, and ablation
rate a. The curve for present-day Mars (1) is calculated with 7=170 K, ¢=0.5 mm/yr, and
a=0.2 mm/yr. The point estimates for the North and South PLD domes, are estimated from
the central portions of the PLD to the margin (excluding the chasma). The North/South
PLD-dome curve (2) is calculated with 7=210 K, ¢=0.01 mm/yr, and ¢=0.05 mm/yr (¢ and a
are consistent with a response time of 100 Myr for the study flowband on Gemina Lingula).
The Greenland curve (3) is calculated with 7=260 K, ¢=10 cm/yr, and a=20 cm/yr. The
Gemina Lingula curve (4) is calculated with 7=230 K, ¢=0.01 mm/yr, and a=0.05 mm/yr (c
and a are consistent with a response time of 100 Myr).

While the relationship between thickness and length for the Planum
Boreum and for the Planum Australe portions of the PLD may indicate that
these surfaces are consistent with past ice flow, Winebrenner and others
(2008) find that trough formation or sublimation and deposition may have

significantly modified the surface of these portions of the PLD, and the
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inverse problem to recover information about the ice-flow history cannot be
solved with the same approach. However, even if the shape of the
topography from a past era of ice flow has been significantly modified, if it is
known that there was a history of ice flow, it is possible that we can use the
shapes of radar-detected internal layers to reconstruct the ice-surface

topography (Koutnik and others, 2009).

A3.3. Ice temperature

Albedo 1s important because surface temperature depends on the
fraction of incoming shortwave radiation from the sun that is absorbed by
the surface. Mischna and Richardson (2005) showed that the polar ice caps
must be insulated at high obliquity in order to avoid completely subliming
away, and that the polar contribution to the global water budget is limited
at high obliquity. Levrard and others (2007) also found that the North PLD
ice was unstable at high obliquity (~30-35°), whenever the absorbed
insolation was greater than 300 Wm-2. Unless an efficient dust-lag deposit
formed to protect the North PLD, the north-polar ice would quickly
sublimate and redeposit in the midlatitudes during the high-obliquity
conditions from 4-10 Myr ago, because the seasonal sublimation rates
during high obliquity are an order of magnitude greater than the seasonal
accumulation rates. High-obliquity conditions with a mean value ~41.8° are
statistically preferred over the last 5 Byr, but the solution for the chaotic
obliquity is nonunique (Laskar and others, 2004). Unless the entire North
PLD are less than ~4 Myr old, protection of at least some portion of the
North PLD from higher insolation 4-10 Myr ago, and possibly for many

millions or billions of years, must have occurred. We know that a dust
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deposit has effectively protected the South PLD from complete sublimation
during high obliquity because the surface exposure age of the South PLD is
30-100 Myr (e.g. Plaut and others, 1988; Herkenhoff and Plant, 200&outnik
and others, 2002), and the present-day South PLD surface has a very low
thermal inertia (e.g. Paige and Keegan, 1994; Vasavada and others, 2000).
The South PLD has also received ~4-11% more insolation on an annual
average over the past 20 Myr (from calculations by Laskar and others 2004).
However, the nature of the preserved cratering record, where the floors of
craters greater than ~800 m in diameter have viscously relaxed (e.g.
Pathare and others, 2005), but the crater rims have been maintained (e.g.
Koutnik and others, 2002; Pathare and others, 2005), attests to the
efficiency of the lag deposit in preserving the underlying ice. If the
sublimation rate at the South Pole was ~0.2 mm/yr, a rim height of ~10 m
would be removed in less than 50,000 years, which has not been the case.
The thickness of the lag deposit is minimally ~5 mm (e.g. Skorov and others
2001), but could be ~50 cm (e.g. Paige and Keegan, 1994; Ellehoj, 2007); the
lag deposit could also be thicker, as the actual thickness is unknown. The
state of the South PLD is an indication that the dust-lag deposit has
potentially protected the underlying ice for millions of years; this means
that the South PLD surface, at least in the summertime, could have
maintained a low albedo for millions of years. Even though the South PLD
received more insolation than the North PLD over the past 20 Myr, and the
South PLD surface has been covered by a dark-albedo lag deposit over that
time, there is no evidence that these effects have warmed the ice. The ice
temperature is determined by the long-term average surface temperature
and basal heat flux. As long as COz frost at ~148 K covers the PLD surface
in the wintertime, the annual-average temperature will always be low

relative to the summertime maximum temperature, regardless of enhanced
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summertime warming from increased insolation or decresed albedo.
However, if the extent or the duration of wintertime frost cover was reduced
for at least hundreds of thousands of years, the near-basal ice temperature
could become warmer.

Terrestrial heat-flux variations can be surprisingly large. For
example, basal melting was found at the base of the North Greenland Ice-
Core Project (NGRIP) site that required a heat flux of ~130 mWm-2 (e.g.
Fahnestock and others, 2001a; NGRIP members, 2004; Buchardt and Dahl-
Jensen, 2007), which is approximately twice the expected value. On Mars,
the present-day planetary heat flux was been estimated at ~20 mWm2 (e.g.
Clifford 1987; Grott and others 2007), but the actual value of heat flux and
the spatial variation in heat flux, especially in the past, is not well known.
Presently, Mars’ internal dynamics are assumed to be inactive, and this is
supported by radar observations that show a lack of deflection of the crust
beneath the North PLD (e.g. Picardi and others 2005; Phillips and others
2008). Based on these observations, Phillips and others (2008) estimate
that the crustal heat flux beneath the North PLD is ~8 mWm-2.

What heat flux is required to warm the basal ice to 230 K? For a
specified surface temperature, and using Equation 3.7, we can calculate the
heat flux at a depth of 2 km that is required to achieve an ice temperature of
230 K at this depth. For a surface temperature of 170 K, a heat flux 95
mWm=2 is required to reach 230 K at 2 km depth, and for a surface
temperature of 200 K, a heat flux 45 mWm2 is required. If there was a
region of higher heat flux in the geologically recent martian past, it is
presumed to be due to a transient tectono-thermal or volcanic event (e.g.
Clifford 1987; Benito and others, 1997;Anguita and others, 2000; Fishbaugh
and Head, 2002; Hovius and others, 2008). We do not address the

plausibility or timing of such a thermal event here, but a heat flux of
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approximately 50-100 mWm2 may be possible if thermal heat-flux

transients occurred on Mars.

A3.4. Ice rheology

In our calculations, we assumed that deformation occurred entirely
by creep, and that there was no sliding at the base. However, a water- or
till-lubricated base could cause sliding that could significantly quicken the
rate of ice flow. While a mechanism to facilitate sliding of the PLD cannot
be ruled out (e.g. Fisher and others, 2009), we focus our discussion on
mechanisms to enhance the rate of internal deformation. In addition to the
ice temperature, the rate of ice deformation is also controlled by the physical
properties of ice, such as grain size, crystal orientation, and impurity
content, which can enhance or retard deformation (e.g. Paterson 1994, Ch.
5). The influence of these properties on ice flow can be especially significant
in the basal layer of a glacier or ice sheet (e.g. Knight 1997). We briefly
review the primary ways that variations in ice properties affect the rate of
ice deformation on Earth, and we consider how these mechanisms may be
relevant to ice deformation on Mars.

The flow law for ice used to calculate the depth-averaged horizontal
velocity in Equation 3.1 includes an enhancement factor E, which on Earth
typically accounts for changes in the creep rate for anisotropic ice compared
to isotropic ice at the same stress and temperature. Ice crystals subject to
strain in excess of 10% develop a preferred orientation that facilitates glide
along basal planes in the direction of the applied stress (for simple shear),
and the c-axes will typically align close to vertical (e.g. Paterson 1994, pg.

99). Therefore, development of ice fabric makes the ice easier to shear, but
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harder to compress. Most terrestrial ice masses are anisotropic to some
degree in some places, but ice sheets are often considered to be isotropic to
simplify theoretical studies of ice-sheet behavior. While sophisticated flow
laws that incorporate enhancement from anisotropy have been developed
(e.g. Azuma, 1994), a multiplicative enhancement factor is a simple way to
account for any mechanism, including anisotropy, that changes the flow
rate. The enhancement factor represents enhancement in the dominant
strain-rate component.

Analysis of ice cores has shown that anisotropy can change the creep
rates by an order of magnitude (e.g. Paterson 1994, pg. 99), and therefore it
1s important to account for this effect. Thorsteinsson and others (1997)
analyzed the variation in crystal size and crystal fabric in the Greenland Ice
Core Project (GRIP) ice core, and how differences between glacial and inter-
glacial periods have a marked impact on the properties of the ice and the
pattern of deformation. For example, glacial ice has a higher impurity
content, which slows crystal growth and leads to finer-grained ice that can
deform more rapidly, and the opposite is true for inter-glacial ice (e.g.
Thorsteinsson and others, 1997).

Therefore, while crystal fabric plays a role in either enhancing or
retarding ice deformation, the impurity content of the ice is also important.
An 1mpurity can replace a water molecule in the ice crystal, fit within the
crystal lattice, or exist at the ice-crystal grain boundaries (e.g. Paterson
1994, pg. 88). From analyses on the Vostok, Antarctica ice core, Petit and
others (1999) reported that aerosol fallout (both dust and chemical impurity)
increased during cold periods. From analyses on the EPICA Dome C ice
core, Lambert and others (2008) found that dust concentration increased by
~25 times during glacial periods. They attributed this to an increase in the

source of dust from South America, and because of an increase in
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atmospheric transport of dust when the hydrological cycle is reduced. For
terrestrial ice sheets, the overall dust content is still low, and dust has a
relatively minor influence on ice rheology. However, sand-sized impurities,
particularly those entrained in the near-basal ice, can have a major
influence on the rheology. For example, Hooke and others (1972) found that
the creep rate of ice containing fine-grain sand decreased exponentially as a
function of sand content for temperatures greater than -10° C and for high
sand concentrations, but results were inconclusive for lower sand
concentrations (e.g. Paterson, 1994, pg. 88). The strength of ice with a high
sand content can also be less than the strength of clean ice, increasing the
creep rate (e.g. Cuffey, 2000; Fitzsimons and others, 2001). This agrees
with tunnel-closure observations, which detected localized enhanced
deformation of the debris-rich basal layers of Taylor Glacier, Antarctica (e.g.
Fitzsimons and others, 1999; Samyn and others, 2005). It also agrees with
modeling of the observed strain rates at Taylor Glacier (Whorton and
others, In Preparation), with basal ice from the Byrd, Antarctica ice core
(e.g. Gow and others 1968), and with studies of the basal ice at Meserve
Glacier, Antarctica (e.g. Paterson 1994, pg. 287).

Carbon dioxide (COz2) ice precipitates out of the Martian atmosphere,
and it has been proposed PLD (e.g. Ross and Kargel 1998, pg. 32) that it
might be present in the. While it is likely that it is only a relatively minor
constituent of the PLD (e.g. Nye, 2000), COz ice or clathrate hydrate, if
present, could influence the rate of ice flow. Durham and others (2000)
demonstrated that CO:z ice is weaker than water ice, but that clathrate
hydrate is stronger, and also has a lower conductivity.

Li and others (2009) showed that sulfuric acid (H2S04) reduces the
strength of ice proportional to the square root of the sulfuric acid

concentration. Notably, Li and others (2009) found that sulfuric acid was
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more effective at softening the ice at lower temperature; they showed
results for -10° C compared to -20° C. Soluble impurities, such as HF and
HCI, at concentrations of only a few parts per million, can increase the creep
rate by a factor of 10 (Paterson 1994, pg. 88) because the impurities cause
point defects in the crystal structure. These experimental results that
indicate ice can be significantly softened with even minor impurity content
are typically valid at ice temperatures above the eutectic point; at
temperatures below the eutectic point the impurities may provide only

limited ice-flow enhancement.
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Chapter 4

An Efficient Model of Transient Ice Flow Using a Spatially
Limited Domain

To develop a computationally efficient ice-flow model that can assimilate data that
exist over only a portion of an ice sheet, it i1s advantageous to limit the model
domain. A limited-domain model is particularly well suited as part of the forward
algorithm in a computationally intensive inverse problem, and as part of an
investigation of transient ice flow near an ice divide (near ice-core sites). We
present a way to accurately model the evolution of a limited-domain ice sheet that
crosses an ice divide, and has no termini. In a limited-domain model, accurately
calculating ice-sheet evolution in response to spatial and temporal changes in ice
flow and climate depends on accurately calculating the ice flux crossing the
limited-domain boundaries. Simple extrapolations or estimations of ice flux at the
limited-domain boundaries can be numerically or physically incorrect, resulting in
incorrect ice-sheet evolution. We develop a new approach to provide boundary-
value information to our limited-domain model without conventionally “nesting”
the limited model in a full model. We show that evolution of only part of an ice
sheet can be consistent with the full ice sheet within which it exists.
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4.1. Introduction

Numerical ice-flow models are widely used to solve problems in
glaciology that cannot be solved analytically (e.g. Van der Veen, 1999;
Hooke, 2005, pg. 288), and ice-flow models can generate realizations of ice-
sheet behavior that exceed our observational capabilities. To make these
models more realistic, we can use an ice-flow model in combination with any
available information about past and present ice-sheet geometry, ice-sheet
internal structure, and climate variables that, for example, can be
determined from ice-penetrating radar (e.g. Conway and others, 1999;
Vaughan and others, 1999), from ice cores (e.g. NGRIP members, 2004), or
from glacial-geological reconstructions (e.g. Denton and Hughes, 2002;
Stone and others, 2003). Ice divides are regions of the ice sheet where a
variety of these geophysical and paleoclimatic data have often been collected
at the same site. Ice-flow models are needed in combination with laboratory
analyses of ice-core samples to infer the correct climate history, because
climate information that is recorded in the ice has been affected by the
history of ice flow (e.g. Paterson, 1994, pg. 276-288). While an ice-core site
1s chosen because the history of ice flow there is usually simpler to decipher
than at other sites on an ice sheet, the ice-divide thickness and the ice-
divide location can change due to spatial and temporal changes in
accumulation rate and ice dynamics. These spatial changes influence
particle-path trajectories through the ice, and the spatial dimension should
be included in an ice-flow model that is used to interpret an ice-core record
where ice-divide variations may have been significant.

Some of the spatial information about ice-sheet history that is sought
from data in the vicinity of an ice divide can be inferred by solving an
inverse problem. However, computational efficiency is required when

solving inverse problems that require many iterations of the ice-flow model,
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or when using a higher-resolution model. Limiting the model domain to
include only the relevant portions of the ice sheet is a way to reduce
computation time. It is also advantageous to limit the model domain when
assimilating data that are available only in limited locations on the ice
sheet. When the domain is limited, we do not need to make estimates of
observable quantities in regions where parameter values and boundary
conditions are unconstrained. However, limiting the domain of a transient
ice-flow model is not trivial. Accurate calculation of the boundary values in
the limited model requires additional information to ensure that the limited
domain evolves consistently with the full domain within which it exists.

In practice, additional information can be provided to the limited
model by embedding the limited-domain (regional) model in a full-domain
(global) model. There are at least two approaches to embedding a limited
domain in a full domain. In a commonly used embedding approach, the
limited-domain boundary values are provided directly from calculations
performed within a full model that is solved jointly with the limited model,
this is referred to as a “nested” model. In our new approach, the limited-
domain boundary values are provided from calculations performed within a
limited model that rely on information about the behavior characteristics of
the full model rather than specifically on its detailed evolution; we refer to

this case simply as a “limited-domain” model.

4.1.1. “Nested” ice-flow model

Nesting (embedding) schemes are common in numerical models of
physical processes; for example, a regional climate model that is driven by
the lower-resolution output of a global climate model (e.g. IPCC, 2007, Ch.
11; Salathe and others, 2007). In ice-sheet modeling, higher resolution
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and/or higher-order physics that are important in specific regions of an ice
sheet are often nested into a full ice-flow model with coarser resolution
and/or simplified physics. For example, there have been numerous models
of ice-sheet evolution in which regions of fast ice flow, or regions requiring
higher-order physics, are nested into a 3-D thermomechanically coupled
model of the entire ice sheet (e.g. Marshall and Clarke, 1997; Fastook, 2005;
Huybrechts and others, 2007); these modifications result in global ice-sheet
evolution that is more realistic, while remaining more computationally
tenable compared to a global model at the resolution of the nested
component. In addition to directly incorporating sub-grid physics into a
global model, global calculations may also provide necessary boundary
values for the regional model. For example, Gagliardini and Meyssonnier
(2002) used a global ice-flow model to calculate lateral boundary conditions
for their regional anisotropic flow model. The limited model and the full
model can have different spatial and/or temporal resolution, but they are
calculated in step with each other, and therefore ice-sheet evolution within

both models is always consistent.

4.1.2. “Limited-domain” ice-flow model

We define a limited-domain ice-flow model as any ice-flow model
whose spatial domain includes only a limited (regional) portion of an ice
sheet. In the problem of transient ice flow, as an ice sheet experiences
spatial and temporal changes in accumulation and in flow, the ice thickness
must change in order for the ice sheet to conserve mass. To solve the mass-
conservation equation for ice-sheet evolution (Equation 4.1), the ice
thickness must be known or estimated as an initial condition at the first

timestep. Then, the calculation of ice-thickness evolution depends on the
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calculation of ice flux through the domain, which depends on the ice
thickness, the surface slope, and basal conditions (e.g. Section A4.1). In a
full-domain model, there is a zero-flux boundary condition or a calving
condition at the terminus, and the ice thickness can be calculated
everywhere. However, in a limited-domain model, the ice flux crossing the
limited-domain boundaries 1s unknown. As discussed in Section 4.2.1,
improperly calculating the boundary flux can lead to numerically driven ice-
sheet transients and unphysical ice-sheet behavior.

Our strategy to deal with this boundary-flux problem is analogous to
problems where information is known about the behavior of the boundary
forcing, but the actual boundary values are unknown. For example, Cuffey
and others (1995) estimated air-temperature forcing in central Greenland
using a calibrated 6180 record; these transfer functions were then used to
prescribe the necessary temperature forcing in different applications (e.g.

Cuffey and Clow, 1997; Marshall and Cuffey, 2000).

4.1.3. Synopsis

We introduce our new approach to efficiently calculate physically
realistic ice-sheet evolution with a limited domain; in Section A4.1 we
present the details of our solution for ice-sheet evolution within a 2.5-D
limited-domain flowband. Our approach can be summarized in three steps,
which are discussed in detail in Section 4.2.2.1 — Section 4.2.2.3. The first
step 1s to embed the limited model in a full model that includes an ice sheet
terminus. By including a terminus, the boundary condition at the end of the
domain is known. If the limited domain includes an ice divide, or begins
near an ice divide, we embed the limited model in a full domain that

extends off both sides of the divide and includes two termini. The second
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step is to characterize the behavior of the full ice sheet. We do this by
calculating the response of the full ice sheet to an impulsive perturbation in
accumulation. This impulse-response function provides information about
how the full model would respond to a change in volume over time. The
third step 1s to use the response functions evaluated at the limited-domain
boundaries to determine how much flux to enter in to or discharge out of the
limited domain. This enables the limited-domain model to adjust to any
volume change at a glaciologically realistic rate that is compatible with a
full ice-sheet model experiencing the same climate changes. In Section
4.3.2.3 we discuss how to incorporate changes in ice-flow and climate forcing
that originate outside the limited domain. These externally forced changes
(e.g. changes in sea level) will affect ice-sheet evolution in the limited
domain, and we must consider how to inform the limited model about these
external changes. Our approach is a general formulation that could be
applied to transient ice-flow problems using ice-flow models of varying

complexity.

4.2. Boundary conditions for a limited-domain model

To calculate ice-thickness evolution we solve the mass-continuity

equation (e.g. Paterson, 1994, pg. 256):

oh(xt) __ 1 (aq(x,t)j +B(x.1) (4.1)
ot W(X) 0x ’ '

where A(x,t) is the ice thickness, W(x) is the flowband width, q(x,t) is the ice
flux, and b(x,t) is the accumulation rate. A flowband model is a 2-D model

that also accounts for width variations; therefore it is considered to be 2.5-D.
We solve this conservation equation numerically using an implicit approach

(e.g. Patankar, 1980); details are given in Section A4.2. To solve for ice-
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thickness evolution, we need to calculate the ice flux q(x,t). The
accumulation-rate history b(x,t) is prescribed, or can be inferred as part of

an inverse problem if internal-layer data are available.

We use the Finite (Control)-Volume Method (FVM; Patankar, 1980;
Versteeg and Malalasekera, 1995) discretization scheme. Using the FVM,
the model domain is divided into discrete volumes. Ice thickness 1is
calculated at finite-volume center points, and ice flux is calculated at finite-
volume edges. In this paper, we discuss a generic problem with a limited
domain that crosses an ice divide, and therefore has two unknown boundary

conditions.

4.2.1. Incorrect boundary conditions

There is no physical basis for any generic extrapolation scheme from
inside the limited domain when we want to calculate the value of ice flux
q(x,t) crossing the limited-domain boundaries, that adequately approximates
the flux crossing this point in a full ice sheet. This includes extrapolating
the ice flux from upstream values, which can be very inaccurate because
this extrapolation assumes that flux variations are spatially linear. If
variations in accumulation are not spatially linear (or do not combine to be
spatially linear), then the linear extrapolation is incorrect. We cannot
assume spatial linearity of accumulation and flow-band width for a
transient problem. However, a higher-order extrapolation is also
inadequate. The correct boundary-flux treatment on each side of the
domain requires information from both sides of the domain.

In pursuit of the most-accurate estimation of the value of ice flux
crossing the limited-domain boundaries, we identify other estimations that

are also incorrect. For example, ice flux can be determined dynamically
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from Equation A4.1.2 using the depth-averaged velocity u(x,t)and ice

thickness H(x,t) across the flowband width W(x). In a finite-volume
formulation, the dynamic flux crossing a limited-domain edge is dependent
on the ice thickness and surface slope evaluated there. A way to evaluate
the ice thickness and surface slope at a finite-volume edge would be to
quadratically extrapolate the ice thickness and to linearly extrapolate the
surface slope from neighboring quantities. Instead of using neighboring
values of ice flux to extrapolate the ice flux crossing the limited-domain
boundaries, we could extrapolate the upstream ice thicknesses and surface
slopes, and calculate the flux dynamically. Unfortunately, some
extrapolations will under-predict the flux and some extrapolations will over-
predict the flux at this boundary, and the limited-domain model is unable to
hold steady state under a constant climate. Figure 4.1a shows four points
on an initial ice surface that are then tracked under steady-state forcing
conditions. Figure 4.1b shows how the ice thickness changes at each point,
and Figure 4.1c shows how the ice flux changes over time; however there
should be no time variation in the ice thickness and the ice flux under
steady-state forcing.

These variations originate at the limited-domain boundary because of
the poor representation of ice flux there. The ice thickness will continue to
evolve until the extrapolation matches a different steady-state solution,
resulting in a solution that has migrated for strictly numerical reasons.
This migration is physically possible because there are infinitely many
surface profiles that have the same flux profile, and the numerical
calculation determines the solution. If the value of flux is not calculated
adequately for a limited-domain model with an unknown span, the surface
can migrate to another solution; a model with a known span does not have

this problem.
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Figure 4.1. An example of a limited-domain model that does not hold steady state when
the boundary flux at the right margin is calculated dynamically. a) Steady-state-ice-
surface profile that crosses an ice divide. The labeled points 1-4 correspond to the time
evolution of ice thickness in panel b. b) Evolution of ice thickness for four points on in a
limited-domain model, under steady-state conditions (no change in forcing). The ice
thickness changes because the ice flux at the limited-domain boundary on the right side of
the divide is incorrect. c¢) Evolution of the ice-flux profile after 100, 200, and 300 years,
driven by an incorrect value at the right-side boundary, under steady-state conditions.

Instead of using a direct extrapolation of ice flux, or a dynamic
calculation based on an extrapolation of ice thickness and slope, we could
estimate the flux crossing the last downstream finite-volume edge with a
kinematic calculation. The kinematic flux (Equation A4.1.1) is calculated by

integrating the continuity equation (Equation 4.1). The accumulation rate

b(x,t) is known, and the rate of ice-surface change at the current timestep

h(xt)) can be estimated from the known value of h(xt_) at the previous
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timestep. Calculating the boundary flux kinematically would allow the
limited-domain model to retain information about the original steady-state
surface. While this boundary condition is more physically based, and would
allow the model to hold steady state, it is not physically realistic. To retain
information about the 1initial steady-state solution, the kinematic
calculation forces any additional mass that enters the domain in a given
timestep to be exported instantaneously. However, instantaneous export is
not glaciologically realistic. To address these concerns, we present a new
approach to calculate the boundary flux in a limited-domain model that is

accurate and achieves our physical expectation of real ice-sheet behavior.

4.2.2. Physically-based boundary condition

4.2.2.1. Embed the limited model in a full model

We embed our limited-domain model in a full-domain model in order
to calculate impulse-response functions for the full domain; we do this at the
start of the calculation, and we do not need to embed the limited domain at
each timestep. Analytical solutions of steady-state ice-surface profiles can
be good approximations to actual ice-sheet surfaces (e.g. Paterson, 1994, pg.
244). Therefore, it is reasonable to embed our limited domain in a simple
full model that captures the essential behavior of a full ice sheet. A simple
full-domain model is also computationally efficient. The shape of the full-
domain model is matched to the shape of the limited-domain model over the
horizontal extent of the limited domain, but the shape of the full model is
extended to include a terminus. An analytical ice-sheet surface that could

be used to extend a limited-domain model is discussed in Appendix 4.3, and
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a steady-state surface equation that can be solved numerically is given by

Equation A4.2.8; any ice-surface model could be used for the full domain.
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Figure 4.2. a) The accumulation and ablation rates used to generate a full-domain surface
profile using a Paterson (1972) model. The Paterson (1972) model assumes that the mass
balance consists of a zone of uniform accumulation ¢ and a zone of uniform ablation a, given
by the ratio c¢/a; we pick ¢/a=0.1, and there is an ablation rate of ~1 m yr-! across the
wedge-shaped termini. b) Ice-surface profile for a limited domain that crosses an ice divide
(solid line), and for the corresponding full domain (dashed line) within which it is
embedded. The marked location at the right-side boundary of the limited domain relates
to subsequent figures.

To facilitate physical terminus behavior (i.e. ice-sheet length changes
in response to accumulation changes) in our numerical calculations with our
simple full-domain model, we replace the terminus with a wedge shape, and
conserve mass across the wedge (e.g. Nye, 1963; Hooke, 2005, pg. 376); this
allows the terminus to advance and retreat. Our wedge-terminus

formulation in a finite-volume scheme is discussed in Section A4.3. If the
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limited-model domain is focused near an ice divide, the terminus will be far
from the limited-domain region of study, and the solution for ice-sheet
evolution will be relatively insensitive to the numerical treatment of
terminus dynamics.

The solid curve in Figure 4.2a shows a limited domain that crosses an
ice divide with a maximum thickness of ~1000 m, a limited extent of 25 km,
and an average accumulation rate of 20 cm/yr. The dashed curve shows the
extension of this limited surface to a full domain that includes a terminus.
As discussed in Section A4.3, our full-domain surface is from an analytical
ice-surface model with a zone of uniform accumulation ¢ and a zone of
uniform ablation a (Paterson 1972), and we use the mass-balance ratio
c¢/a=0.1. For the specific limited domain shown in Figure 4.2a, and for this
specific full-model extension (we note that any extension could be used), the
full model crosses an ice divide and is ~60 km long, with an average
accumulation rate of 20 cm yr-l, an average ablation rate of ~2 cm yr-!, and

an ablation rate across the terminus wedge of ~2 m yr-1.

4.2.2.2. Response functions for the full model

To characterize the behavior of the full model within which the
limited model is embedded, we solve for the ice-thickness evolution of the
full-domain model in response to an impulsive perturbation in
accumulation. Using our implicit numerical scheme (Section A4.2) to
calculate 1ice-thickness evolution with the full-domain model, we first
confirm that the analytically-derived full-domain surface holds steady state
in this numerical calculation, and then we can calculate the ice-thickness
response of the full-domain to an impulsive perturbation in accumulation.

The impulse-response function for ice thickness Ai is the evolution of ice
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thickness at any single point along the full-domain surface, from the time of
the impulsive perturbation until the time when the surface has returned to
a new steady state. As shown by Nye (1960), ice-thickness response and ice-
flux response can be related using kinematic-wave theory. For small
perturbations (denoted with ‘1’) from the datum state (denoted with ‘0’), the

ice-flux response function g1 at any position x can be given by a series

_(9a 9q
o=l o2

The coefficients of ice thickness A and surface slope a are

expansion,

_(9a) _ Y
Co (X) _(ahjo =(n+2) a, (4.3)
DO(X) = (ﬂj = n& (4.4)
oa), a,

where n is the exponent in the flow law. The quantity co is the kinematic-
wave velocity per unit width, in units (m yrl). The quantity Do is the
kinematic-wave diffusivity per unit width, in units (m2 yr!). The surface
slope a =0h/0x; surface slope is positive on the left side of the ice divide,
and is negative on the right side of the ice divide.

Following Nye (e.g. 1960), this perturbation theory applied to ice
sheets assumes that the impulsive accumulation-perturbation term is
spatially uniform. However, in our case the response function is used to
characterize the behavior of a full ice sheet, and actual changes in
accumulation are likely to be nonuniform. Therefore, we explore the
sensitivity of ice-sheet evolution to spatially nonuniform perturbations

(Section 4.3.1). The accumulation pattern for the impulse-response

calculation i1s given by the sum of the steady-state pattern bo(x) and a

perturbation b, (x,t)
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b(x,t) = by (x) + by (x.t). (4.5)
We need only the ice-thickness response at the limited-domain boundaries
to calculate the ice-flux response at these positions, and the solid black
curve in Figure 4.2b shows the ice-thickness impulse-response function and
the ice-flux impulse-response function at the limited-domain boundary on
the right side of the ice divide, as marked in Figure 4.2a. Since this is a
numerical calculation, we must define the full-adjustment time of ice
volume (when the ice surface has returned to steady state after the
impulsive perturbation). The impulse-response function is defined as the
ice-sheet response from the time of the perturbation to the time when the
ice thickness returns to within our chosen threshold of 106 meters of the
initial steady-state value (see Appendix J). It is the shape of the response
function that is used in our calculation of a physically-based boundary

condition.

4.2.2.3. Boundary values for the limited model

The boundary condition for our limited-model calculations is the time
series of ice flux at each limited-domain boundary. Therefore, we convert
our 1ice-thickness impulse-response functions at the Ilimited-domain
boundaries to ice-flux impulse-response functions at the limited-domain
boundaries using Equation 4.2. We need the response functions at the
limited-domain boundaries xzp only, and the datum-state values of ice flux
q, ice thickness A, and surface slope a are the values at each limited-domain
boundary at the timestep to when the limited-domain has been embedded in
the full domain to calculate (or recalculate) the response functions there. In
our finite-volume formulation, the limited-domain boundary xLp can be on

the left side of the ice divide at the western finite-volume edge xw!, or on the
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right side of the ice divide at the eastern finite-volume edge xee2d. The
equations given below are identical for each boundary, but flux to the left
side of the divide is negative, and flux to the right side of the divide is
positive; the ice flux is equal to zero at the ice divide.

The steady-state ice flux is given by

XLp

Qo :te) = Q°(X5) = QX te) + [B5(¢15)dC
Xy (to) (46)

where the integration limits in Equation 4.6 start from the ice-divide
position in steady state (at the first timestep) xdiv(to); this describes the
steady-state flux at the limited-domain boundary, and we want to calculate
changes in ice flux relative to this steady-state value. Ice-sheet evolution
within the limited domain is driven directly by ice-flow and climate changes
that occur within the limited domain. It is also driven indirectly by
externally-forced changes that occur outside the limited domain. The
change in the amount of global ice volume within the limited domain over a

timestep At, given by AV(xt), is the change in kinematic ice flux due to

changes in the accumulation rate (Equation 4.5), giving

XLp XLp

DV® (xp,t) = [(0(6,1) =By (W()de = [ (b, (6HW({)de. (4.7)

Xdiv (tO) Xdiv (IO)

The ice flux is negative on the left side of the ice divide, so the change in
boundary flux is negative when a positive volume is added. The ice flux is
positive on the right side of the ice divide, so the change in boundary flux is
positive when a positive volume is added. However, the ice divide may also
migrate, and therefore we must also calculate the change in ice volume from

ice-divide migration. Changes in ice flux due to ice-divide migration are
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found by integrating the steady-state ice flux from the steady-state ice-

divide position at time Zo, to the new divide position at time ¢

Xaiv (1)
MV (x5,0) = [by(¢15)dd (4.8)

Xaiv (to)

Equation 4.8 accounts for the fact that some amount of the steady-state flux
might move across a different limited-domain boundary as the divide
migrates over each timestep; if the divide moves to the left of the steady-
state divide position, more flux goes out the right boundary of the limited
domain, and vice versa. Since the ice flux is negative on the left side of the
divide, the change in the value of ice flux from changes in ice volume due to
divide migration is positive if the divide moves to the left, and it is negative
if the divide moves to the right. On the right side, the change in the value of
ice flux from changes in ice volume due to divide migration is positive if the
divide moves to the left, and it is negative if the divide moves to the right.

The time-variation of ice thickness h (X ,t), and of surface slope a,(X,t),

at the limited-domain boundaries xzp 1n response to an impulsive
perturbation in accumulation are calculated with the full-domain model.

Using these values, the ice-flux response function ¢, (X ,t) can be calculated

from Equation 4.2,

_[9d(Xp5,to) 09(X.p,to)
0 (X p,1) = (—6h(xLD | to)Jhl(xLD )+ (—aa(xm | to)lal(xw 1) (4.9)

= CO (XLD 7t0)h(XLD 7t) + DO (XLD 7t0)a1(XLD ’t) .

We evaluate the kinematic-wave velocity co(xLp,t0) and the kinematic-
wave diffusion coefficient Do(xLp, to) at the limited-domain boundaries (Nye
1960; Hooke 2005, pg. 373-375) in the steady (datum) state. The time
variation of ice flux at each limited-domain boundary is the ice-flux impulse-

response function @, (X y,t), which we call Fin(t). For example, Figure 4.4a
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and Figure 4.4b show the ice-flux impulse-response functions corresponding
to the geometry in Figure 4.2b. The impulse-response function
characterizes a particular geometry, and corresponds to a particular
accumulation-rate perturbation. In Section 4.3.1 we discuss how the
response function changes as a function of accumulation-rate perturbation
and ice-sheet geometry, and in Section 4.4.1 we discuss the utility of any
particular response function.

In a kinematic calculation for the boundary flux (Section 4.2.1), the

change in volume AV(x,t)over each timestep is exported or accumulated

completely over each timestep. As we discussed in Section 4.2.1, and is
supported by the duration of the impulse-response function, for example in
Figure 4.2b, instantaneous adjustment is not physically realistic. For
realistic ice-sheet evolution across the limited-domain boundaries, we form
a vector of volume perturbations over time by multiplying the scalar value
of volume change AV®(x,,t) (Equation 7) or AV®(x_,t) (Equation 8) at
each timestep with the impulse-response function FLbD (t)or FLd,iDV(t),
formulated from Equation 9. The impulse-response functions associated
with changes in accumulation FLbD (t), and the impulse-response function

associated with changes in divide position FJ'(t)may not be the same. As

discussed in Section 4.3.1, the impulse-response function depends on the
spatial pattern of the perturbation. For a given impulse-response function,

the flux of ice crossing the limited-domain boundary due to accumulation-
rate perturbations AQ®(x,,,t) at a particular time ¢ is the convolution of

volume-perturbation functions for that timestep and all applicable previous

timesteps:

AQY (Xi5,1) = AVE (X0, 0 * F (0 = [AVE (00, DFS (L-0)d7.  (4.10)
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A similar equation is used to calculate the changes in ice flux due to ice-

divide migration AQ™ (X y.,t),

;
AQ™ (Xip,t) = AV ™ (x50 * FZ' () = [AV™ (X0, FS (t - 7).
Cw (4.11)

Figure 4.3b illustrates that the volume added or removed from the
domain over time is determined by convolving the volume-perturbation time
series (the change from the steady-state value), illustrated in Figure 4.3a,
with the appropriate impulse-response function. At any timestep, the
change in ice flux from the known steady-state value is the sum of the
changes in ice flux from all applicable previous timesteps. Contributions
from previous timesteps are included until the entire volume perturbation
has been accounted for, which occurs when the value of the impulse-
response function goes back to zero or when the duration of the model
calculation is reached. In the simple scenario depicted in Figure 4.3, the
change in the rate of input ice flux that has to be exported through each
boundary could be due to a change in accumulation, a change in ice-divide
position, or a change in external forcing. The ice-flux boundary condition

g(X,,t) at the limited-domain boundaries xzp on the left side and on the
right side of the divide at each timestep ¢ is given by the sum of the steady-
state ice flux Q° (X,p) (Equation 4.6), with the change in ice flux due to

accumulation perturbations AQB(XLD ,1) (Equation 4.7), and with the change
in ice flux due to ice-divide migration AQ™ (x,t) (Equation 4.8), and with

the change in ice flux due to external forcing AQ* (X ,,t) (see Section 4.3.2.3
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and Section 4.4.2), giving
Ad(Xpti) = QO(XLD) + AQB (Xp,t) + AQdiv(XLD ) +AQ% (X0, 1) ) (4.12)
These four terms account for the total flux crossing the limited-domain

boundary on the left side of the divide or on the right side of the divide at

any time t;.
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Figure 4.3. a) Example change in ice volume from steady state, which may be due to
changes in accumulation (Equation 7), changes in ice-divide position (Equation 8), or
changes in external forcing. b) The change in ice volume at each timestep is scaled by a
response function, and added to or removed from the limited domain over multiple
timesteps. The actual change in ice volume at any timestep is the convolution of changes in
ice volume from all applicable previous timesteps with the impulse-response function. In
this illustration, the convolution value is the sum of changes in ice volume (marked with a
dot) at each timestep (marked with vertical lines).
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4.3. Results

We have described a new approach to calculate a physically-realistic
value for the flux crossing the boundaries of a limited-domain model. The
accuracy of the solution from our limited-domain model depends on the
suitability of the impulse-response functions. In practice, the full-domain
model is used only to calculate impulse-response functions that are required
for the limited-domain boundary-flux calculation. However, ice-sheet
evolution in the limited-domain model with the correct boundary flux must
be consistent with ice-sheet evolution in the full-domain model within which
it is embedded. The full-domain solution and the limited-domain solution
should be equivalent, and we show how this can be achieved.

Unless stated otherwise, the standard limited-domain model we use
1n our tests has a maximum initial ice thickness H of 1000 m, crosses an ice
divide with a limited-domain length L= 25 km, has a mean accumulation
rate b=20 cm yr-l, has a uniform flowband width W(x), and has ice flux
leaving the left-side boundary Qin= -2500 m3 yr-1; ice flux on the left side of
the divide is negative, because the surface slopes there are positive. The

ice-divide position is the spatial location with the highest surface elevation.

4.3.1. Impulse-response functions

Following the linearized kinematic-wave theory that was applied to
glaciers by Nye (e.g. 1960), the accumulation-rate perturbation b, (x,t) in
Equation 4.5 has a small magnitude and has a spatially uniform
distribution. An impulse-response function can well characterize the
response of glaciers and ice sheets to changes in climate (e.g. Hooke 2005,
pg. 373-375). We use the impulse-response function not only to gain a

characteristic understanding of ice-sheet response time, but the shape of the
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impulse-response function is the primary information supplied to the
limited model to facilitate realistic ice-sheet evolution. In this case, the
response function to a spatially uniform impulse of accumulation can well
describe the evolution of a limited domain to spatially uniform
perturbations, but the actual accumulation perturbations may not be
spatially uniform. In addition, the impulse-response functions are
calculated for specific limited-domain geometry, and this geometry may
change over time. We must quantify the utility of a given impulse-response
function to properly characterize ice-sheet behavior as the limited model
evolves to different ice-sheet geometries and experiences different
accumulation-rate perturbations. Since we aim for the most efficient
calculation of ice-thickness evolution, it is an advantage to recalculate the
response function only when necessary.

Four impulse-response functions F(t)are required in a limited-

domain model, and they may all be different. The impulse-response
functions control volume perturbations across the limited domain, and these
perturbations may be attributable to accumulation variations or to divide
migration. For a limited domain that crosses an ice divide, accumulation-
rate perturbations are transported across both the left-side boundary and
across the right-side boundary. To properly control volume perturbations

due to changes in accumulation, we use separate impulse-response

functions FLbD (t) for each boundary. Another impulse-response function
FLd,iDV(t) 1s also required to control volume perturbations due to changes in
divide position, we again use separate impulse-response functions FLdEi,V (t) for
each boundary. We explore the sensitivity of the solution for ice-sheet

evolution with the limited-domain model to the four impulse-response

functions used in the problem.
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Figure 4.4. Response functions and ice-sheet evolution for the right-side boundary of the
limited domain in Figure 4.2b. The ice-thickness response function is calculated by solving
the continuity equation (Equation 4.1) with an implicit numerical scheme (Appendix 4.2).
The ice-flux response function is calculated using this ice-thickness response function and
kinematic wave theory (Section 4.2.3.2). a) Impulse-response functions to a uniform
accumulation perturbation that spans only the extent of the limited domain. b) Impulse-
response functions to a uniform accumulation perturbation that spans the full domain. c)
Evolution of divide thickness in response to a step change in accumulation rate. Solutions
from the limited-domain model (gray lines), using impulse-response functions from a) and
from b), are the same as the solutions from a full model; using the correct impulse-response
functions in the limited model can yield correct ice-sheet evolution.

4.3.1.1 Sensitivity to the extent of the accumulation perturbation
The extent over which the accumulation perturbation is distributed
over the full domain will affect the response of the ice sheet. Figure 4.4a

shows the response functions associated with a uniform perturbation that is
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restricted to the extent of the limited domain, and Figure 4.4b shows the
response functions associated with a uniform perturbation that covers the
entire span of the full domain; all response functions are for the right-side
boundary of the limited domain shown in Figure 4.2b. The ice-flux response
function is calculated from the ice-thickness and surface-slope evolution
using Equation 4.9.

If the accumulation perturbation is restricted to a limited portion of
the ice sheet, the local surface slope changes are initially larger than if the
entire ice sheet is responding directly to the accumulation perturbation.
Therefore, the ice-flux response function in Figure 4.4a is different from the
ice-flux response function in Figure 4.4b because the slope term in Equation
4.9 depends on the extent of the impulsive perturbation.

Figure 4.4c shows that correct ice-sheet evolution can be achieved if
the correct response function is used in the limited-model calculations. If
actual volume perturbations in the limited domain are restricted to the
extent of the limited domain, the response functions in Figure 4.4a will be
appropriate. In reality, we expect that actual spatial and temporal
variations in accumulation rate will occur over the full span of the ice sheet,
and will not be restricted to the arbitrary extent of the limited-domain
model. In the subsequent sensitivity tests and results shown here, we use
response functions associated with an accumulation perturbation that was

distributed over the entire span of the full model.

4.3.1.2 Sensitivity to the distribution of the perturbation
The spatial pattern of the impulsive perturbation in accumulation
over an ice sheet will affect the response time. For example, as shown in

Figure 4.5, a spike in accumulation that is spatially concentrated near the
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ice divide will be discharged from the limited domain at a faster rate than a
spatially uniform perturbation with the same volume. It is important to
consider the sensitivity of the impulse response function to the perturbation
used to calculate the response function, because actual ice-volume
perturbations across the limited domain may not be spatially uniform.

We compare the shape of the impulse-response functions associated

with accumulation perturbations b,(xt) across the entire span of the full

domain that are (a) spatially uniform, (b) linearly varying across the
domain, and (c) a delta function at the divide. A delta function can be

represented as the limit of a Gaussian distribution (e.g. Arfken and Weber,

pg. 81),

Jziexp(—xzaz),
T

Jr (4.13)

where a is the width of the Gaussian distribution, and a—0 in the definition
of the delta function. We evaluate Gaussian functions with a=1/2 and
a=1/10 (by definition, a=1/10 is a narrower spike). Figure 4.5a displays the
shapes of the four accumulation perturbations, and Figure 4.5b shows the
response curves for the limited-domain boundary. Each accumulation
perturbation adds the same ice volume impulsively over the full domain. By
definition, the impulse-response function integrates to unity over the full
response time (in this case when the ice thickness at the limited-domain
boundary has returned to within 10-6 of the steady-state value). The volume

response time T is an e-folding time, which is the time to reach (1—e™) of

the new equilibrium value. Figure 4.5b shows that the re-equilibration of
the ice sheet to a narrow spike in accumulation is very different from the re-
equilibration of the ice sheet to a uniformly distributed accumulation
perturbation. In Figure 4.5¢ we show the evolution of surface elevation at

the limited-domain boundary in response to an accumulation history that
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increases as a step function by 5% from the steady-state value at t=1500
years and returns to the initial steady-state value at t=5500 years. The
thickness response is influenced by the response function used to calculate
this solution. When the actual accumulation perturbation is spatially
uniform, but an impulse-response function derived from a spatially
restricted spike perturbation is used to characterize ice-sheet behavior, ice
added to the domain is evacuated too quickly.

In reality it is unlikely that the spatial pattern of accumulation
perturbations will be so spatially restricted. Ice-sheet evolution 1is
determined primarily by long-term average changes in accumulation rate,
and not by localized, even if large in magnitude, excursions in the
accumulation rate. Therefore, to calculate the impulse-response function

used to control actual ice-volume perturbations due to changes in

accumulation F’ (t) within the limited-domain model we use a spatially

uniform accumulation-rate perturbation b (x,t). However, changes in ice

input directed toward one boundary or the other due to ice-divide migration
are better characterized by a spike function. Under steady-state
accumulation forcing (i.e. with no accumulation perturbation), divide
migration can redirect some of this accumulation toward one boundary or
another. Therefore, to calculate the impulse-response function used to scale

actual ice-volume changes due to divide migration F{'(t) within the

limited-domain model we use an accumulation-rate perturbation b, (x,t) that

is a function with a=1/10 centered at the initial divide.
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Figure 4.5. a) Accumulation perturbations that are spatially uniform (dashed line),
linearly varying (thick solid line), a Gaussian function (Equation 4.13) with a=1/2 (thin
line), and a Gaussian function with a=1/10 (gray line); these are examples of the
perturbation term bl(x,t) in Equation 4.5, and all perturbations add the same ice volume
in one timestep. The vertical line marks the position of the limited-domain boundary on
the right side of the ice divide, as in Figure 4.2b. b) Response curves associated with
response functions associated with the impulsive perturbations in a). The volume response
time T is an e-folding time, the time to reach (1-1/e) of the new equilibrium. ¢) Ice-sheet
evolution from the limited-domain model in response to a step change in uniformly

distributed accumulation, using the different response functions that characterize uniform
and nonuniform perturbations.

4.3.1.3. Sensitivity to ice-sheet geometry
Johannesson and others (1989) showed that the volume response time
for an ice sheet can be estimated as the ratio of the maximum ice thickness

to the ablation rate at the terminus, i.e. the impulse-response function is
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dependent on the ice thickness. The response function is associated with
specific ice-sheet geometry, and in this case it is the full domain in which
limited-domain model is embedded. However, in a transient problem, the
ice thickness and the ice-divide position can change. Our impulse response

functions should produce longer response times for thicker ice sheets.
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Figure 4.6. Ice-sheet surfaces generated with an ice thickness at the left side of the
limited domain of 800 m (thick line), 1000 m (dashed line), and 1200 m (thin line). The ice
divide is at 0 km along the flowband. The dots mark the spatial location of the time-
varying response functions shown below. b) Response curves for impulse-response
functions calculated from a uniform accumulation perturbation across a full model in which
each ice-sheet surface in a) was embedded. The volume response time T is an e-folding
time, the time to reach (1-1/e) of the new equilibrium. ¢) Ice-sheet evolution from a limited-
domain model that is ~1000 m thick, in response to a step change in uniformly distributed
accumulation, using response functions that characterize a ~800 m thick ice sheet and a
~1200 m thick ice sheet. The dashed line shows the correct solution, a thicker ice sheet has
a longer response time, and a thinner ice sheet has a shorter response time.
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We calculate impulse-response functions associated with ice sheets of
different ice thicknesses. Figure 4.6b shows the response curves for ice
thicknesses of 1000 m, 800 m, and 1200 m, shown in Figure 4.6a. We
calculate the evolution of our standard 1000-meter thick ice sheet in
response to a step 5% increase in accumulation rate, but we use impulse-
response functions for an ice sheet that is 200 m thicker (at 1200 m), and for
an ice sheet that is 200 m thinner (at 800 m) than the standard ice sheet.
Figure 4.6¢c shows that ice-thickness evolution is sensitive to the ice-sheet
geometry from which the impulse-response function is calculated. In
Section 4.4.1 we discuss how to assess the range of applicability of a specific
response function, and how to estimate when the response function must be

recalculated because the ice-sheet geometry has changed.

4.3.2. Efficient transient calculations

Our limited-domain calculations require appropriate impulse-
response functions. For efficiency, we do not update the impulse-response
functions throughout the calculation for ice-sheet evolution. We assume
that an impulse-response function generated with a spatially uniform
accumulation perturbation is appropriate to control volume discharges due

to accumulation variations FJ, (t), and we use an impulse-response function

generated with a Gaussian-function accumulation perturbation to control

volume discharges associated with ice-divide migration F'(t). Given the

other sources of uncertainty in the ice-thickness solution that we seek, we
show that this is a reasonable procedure.

While the primary purpose of the full-domain model is to calculate
the impulse-response functions required to properly calculate the limited-

domain boundary flux, we can also use the solution for ice-sheet evolution
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from the full-domain model to test our limited-domain solution. In Section
A4.3 we show that the full-domain model exhibits ice-sheet evolution that is
consistent with our physical expectation. Therefore, we can require that the
limited-domain model exhibit the same behavior as the full-domain model.
In tests of ice-sheet evolution with the limited-domain model, we must

prescribe the accumulation-rate history b(x,t). We must also prescribe the

history of externally forced changes in ice flux on the left side of the divide

AQ., (t), and on the right side of the divide AQZ (t). The accumulation-rate

and external-forcing histories, together with the impulse-response
functions, contain all of the information about ice-sheet evolution that is

required by the limited-domain model calculations.

4.3.2.1. Ice-thickness evolution and ice-divide migration

If the correct impulse-response functions are used, the ice sheet can
thicken and thin in exactly the same way as a full-domain model for small
perturbations. If an impulse-response function associated with a spatially
uniform perturbation is used to scale ice-volume perturbations that are not
strictly uniform, the ice sheet will thicken and thin in a similar, but not
exactly the same, way to a full-domain model. Figure 4.7 shows that if
there are no mass-balance perturbations outside the limited domain, the ice-
sheet history can be well reproduced by using information from the impulse-
response functions alone. As illustrated in Figure 4.7a, the accumulation-
rate history for this test varies in space and time across the limited domain,
but remains at the steady-state values elsewhere. Figure 4.7b and Figure
4.7c show that using one set of impulse-response functions does not exactly
capture the behavior of the full domain. However, the results are similar.

We argue that this is a simplified test, and that the errors accrued by not
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recalculating the impulse-response functions are minor compared to other

uncertainties; this is discussed in more detail in Section 4.4.1.
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Figure 4.7. a) Accumulation-rate history that changes in space and time across the extent
of the limited domain, but is constant outside the limited domain. This accumulation-rate
history over the full domain is used to calculate ice-sheet evolution in the full-domain
model; the portion covering the limited domain is used to calculate ice-sheet evolution in
the limited-domain model. The limited model uses response functions from an
accumulation perturbation that extends over the limited domain only. b) Ice-thickness
evolution at the right-side boundary of the limited domain (as in Figure 4.2b). c¢) Ice-divide
position from the limited-domain model and from the full-domain model. The solutions
from the limited model and from the full model are not identical because the impulse-
response function cannot provide information about proper ice-divide migration.
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A realistic full-domain ice sheet will experience changes in ice flow
and climate across its entire extent. Therefore, a more realistic test is to
prescribe accumulation-rate variations across the full domain, and compare
the solutions for ice-sheet history from the limited-domain model and from
the full-domain model. Figure 4.8a shows an accumulation history that
changes from a spatially uniform pattern, to a pattern that has a strong
spatial gradient across the divide; the variation across the limited domain is
the same as in Figure 4.7a. In this case, external forcing is a significant
driver of divide migration.

Figure 4.8b and Figure 4.8c confirm our expectation that when
external forcing is significant, the impulse-response functions alone cannot
provide enough information to facilitate accurate ice-sheet evolution. If the
impulse-response functions are generated with a spatially uniform
impulsive perturbation that spans the entire full domain (as in Figure 4.4b),
the solution in Figure 4.8 is better approximated than if the impulse-
response functions are generated with an impulsive perturbation that spans
the limited domain only (as in Figure 4.4a, and in Figure 4.7). However, if
the influence of external forcing on the boundary is not adequately
described by spatially uniform mass balance outside the limited domain,
additional information is required; this is demonstrated by the mismatch in

Figure 4.8b and Figure 4.8c.
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Figure 4.8. a) Accumulation-rate history that changes in space and time across the full
domain. This history is used to calculate ice-sheet evolution in the full-domain model; the
portion covering the extent of the limited domain (bounds shown with white lines) is used
to calculate ice-sheet evolution in the limited-domain model. The limited-domain model
uses response functions from an accumulation perturbation that extends over the full
domain. b) Ice-thickness evolution at the right-side boundary of the limited domain (as in
Figure 4.2b). c¢) Ice-divide position from the limited-domain model and from the full-
domain model. The solutions from the limited model and from the full model are identical
if the correct external-flux forcing Qex: is known.

4.4. Discussion

4.4.1. Utility of the impulse-response functions
We must establish over what timescales and over which ice-sheet
geometries the impulse-response function is valid. For efficiency, we

propose that the impulse-response functions are not recalculated for
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accumulation perturbations with different spatial distributions, and are
recalculated only when changes in ice thickness have been significant. In
the case of the evolution of large ice sheets, we propose that the threshold
for a significant ice-thickness change be determined by the point when the

time (1-e™) to export additional ice volume has changed by more than 10%.

The volume response time could be tabulated for many ice sheets with
different ice thicknesses. As ice thickness is changing in the limited-domain
calculation of ice-sheet evolution, this look-up table could be used as a proxy
to determine when a given ice thickness would result in a volume response
time that is significantly different. Crossing this ice-thickness threshold
implies that the impulse-response functions should be recalculated for this

geometry.

4.4.2. Inferring external forcing

On glacial-interglacial timescales, ice-sheet interiors will change in
ice thickness due to local changes in accumulation and ice flux, but also in
response to externally forced global changes in ice volume. In particular,
ice-sheet margins respond directly to changes in sea level by advancing or
retreating. These changes in ice-sheet span influence the overall ice-sheet
geometry, and therefore changes at the margin drive changes in the
interior. The impulse-response function we have presented is associated
with a full ice sheet with a specific geometry, and it is used to regulate
volume perturbations that originate within the limited domain. Since the
limited domain does not have any information about global changes in ice

volume, these externally-forced changes at the limited-domain boundary

AQ™ (X,p,t) must be prescribed differently than our treatment of volume
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perturbations due to accumulation variations and ice-divide migration; we

prescribe this information through the AQ* (x,5,t) term in Equation 4.12.

The correct value of AQ® (X ,t) at the limited-domain boundaries xp

over time t must come directly from a full-model calculation, or must be
estimated using a proxy for the externally forced perturbations (e.g. changes
in sea level). However, it may be that the history of external forcing is
largely unknown. To infer this value, we could infer the change in ice flux

due to external forcing AQ® (X ,,t) at the limited-domain boundaries as part

of an inverse problem. In particular, we will use this efficient model for
transient ice flow to infer histories of accumulation and ice dynamics from
the shapes of radar-observed internal layers. By solving this inverse
problem, we can infer histories of ice thickness, ice-divide position,
accumulation rate, and external forcing that are consistent with internal-

layer architecture and ice-surface topography.

4.5. Conclusions

We have demonstrated how to setup a limited-domain model that can
efficiently calculate transient ice flow. This efficient limited-domain model
1s well suited as part of an inverse problem, and in particular, a problem
that is focused near an ice divide. There are two key insights that promote
efficiency and accuracy in this problem. First, rather than calculate ice-
sheet evolution using a limited model that is always nested in a full model,
we embed the limited model only at limited points in the calculation.
Second, we use the full model only to provide information about
characteristic behavior of this full ice sheet, not to provide exact values of
the required boundary conditions. The behavior of a full ice sheet is

characterized using impulse-response functions. We have illustrated how
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the impulse response of an ice sheet depends on the spatial distribution of
the accumulation perturbation, in addition to the ice-sheet geometry. In the
calculation of ice-sheet evolution with a limited-domain model, different
impulse-response functions should be used to realistically control changes in
ice volume that may be due to changes in accumulation rate or to changes in

ice-divide position.
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A4.1. Ice-sheet flowband model

We use a flowband model, which is a 2.5-D representation of ice flow,
where the boundaries are defined by two nearby flowlines and the volume is

bounded vertically beneath these flowlines.

Accumulation rate,

l bixt) |,

Ice divide

Q, ()

Bed, B(x)

Figure A4.1. Geometry of an ice-sheet flowband with a limited domain. The flux leaving
the domain on the left side Qz(¢) and on the right side Qr(¢) are calculated, and the spatial
and temporal history of accumulation rate b(x, t) is prescribed as a boundary condition. For

this model, the bed topography and the width function do not change in time.

Figure A4.1 illustrates the geometry of a flowband. Horizontal
variations in the bed topography B(x) and in the flowband width W(x) are
specified. We assume that glacial-isostatic, tectonic, or erosional processes
are not changing the bed topography over time. In reality, the flowband
width and the bed topography could change over time, but as a first-order

assumption we assume that the flowband width and the bed topography are
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constant over time. The ice thickness A(x,t) is related to the ice-surface
elevation by h(x,t) = S(x,t)-B(x). If a steady-state surface calculation is
performed to estimate the initial ice surface, the ice-surface elevation at one
point at the first timestep So(fo) and the ice flux entering the domain at the
first timestep Qo(xo) are both required initial conditions. The boundary

conditions include the spatial and temporal accumulation rate b(x,t) and

the externally-forced change in ice flux Qrp*(t). These values must be
known, be estimated, or be solved for as a part of an inverse problem (e.g.
Waddington and others, 2007).

By integrating Equation 4.1 from the boundary at xo where ice flux is
specified, the ice flux at the end of the domain xend can be represented

kinematically by
Xend
a(x,t)= Qy(t) + j(b(/\’ 1) =h(x.t) - MmOy )Wy, (A4.1.1)
%

where Qo(t) 1s the time variation of ice flux entering at one end of the
flowband domain, h(x,t)is the rate of change in ice thickness, and m(x,t) is

the basal melt rate.
Dynamically, the flux of ice passing through a cross-sectional area
W(x)xh(x,t) at any point x and at any time ¢, is related to the depth-

averaged horizontal velocity T(x,t) in that cross-section by
g(x,t)=W(x)h(x,t)u(x,t). (A4.1.2)

We can calculate u(x,t) using the Shallow Ice Approximation (SIA; e.g.

Hutter, 1983, pg. 256-332; Paterson, 1994, pg. 262); the SIA is a simplifying

assumption that can be applied in cases where the ice thickness A(x,t) is
much smaller than the horizontal span of the ice sheet. Therefore,
derivatives of velocities and stresses with respect to x are generally much

smaller than derivatives with respect to z. The constitutive relationship for

ice flow (Glen, 1955) using the SIA is,
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&, = AT(xzt)r,, (A4.1.3)
where &, 1s the simple-shear strain rate along a horizontal plane,
A(T(x,z,t)) is the temperature-dependent ice-softness parameter, 7,is the

component of the shear-stress tensor acting horizontally along a horizontal
plane, and we choose the flow law exponent n=3 (e.g. Paterson, 1994, pg.

85). The component of the strain-rate tensor along a horizontal plane is

£, = (a“ awj (A4.1.4)
20z 0x

Following the SIA, the derivatives of velocities with respect to x are

negligible, giving 2¢,, =0u/0z (e.g. Paterson, 1994, pg. 262). Using the flow

law given by Equation A4.1.3 for the SIA, and assuming that the
temperature is uniform with depth for each position in x (T(x,z,t)=T(x,t)), the
depth-averaged horizontal velocity can be found by integrating du/0dz twice
over depth z,

as["

- 2A(T(x,1)) n
(X)= """ () &

u( X
n+2 dx

( dsjh( X)L (A4.1.5)

where p is density, g is gravitational acceleration, S(x,t) is the ice-surface
elevation, and A(x,t) is the ice thickness.

If the ice temperature is not uniform with depth at each location, we
can solve for an effective isothermal softness parameter ;‘\(x,t) that gives

the same depth-averaged velocity and ice flux as a depth-varying-
temperature-dependent softness parameter A(7T(x,zt)). We calculate the

effective isothermal value by equating the depth-averaged ice velocity U(x,t)

with A(T(x,z,t)),

()= 2 pg 25 t)] h(x)"”j j ex p( #J(l—é)“dedz, (A116)

RT(¢,t)
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to the depth-averaged velocity U(x,t) from Equation A4.1.5, and solving for

A(T(x,t)), given as here as A(x,t),

12
A(X,t) = (n+ 2)” AT (X, ¢, )(L-¢)"dddz. (A4.1.7)
00
where Z is a nondimensional elevation given by
5= 27BXW (A4.1.8)
S(x,t) — B(X)

Using Equation A4.1.5 for the depth-averaged velocity, but with the
effective 1sothermal softness parameter from Equation A4.1.7, and then by
representing average velocity U(x,t) in terms of ice flux ¢(x,t) and ice
thickness h(x,t) using Equation A4.1.2 and h(x,t) = S(x,t) - B(x), we can
rearrange this equation to formulate a nonlinear ordinary differential

equation for a steady-state ice surface,

1/n

dS, (x.t,) _ (n+2)a(xt,)
dx 2A(%,t,)(09) "W(X)(S, (X, to) = B(X))"™

(A4.1.9)

We use this ice-surface profile So(x,t0) as the required initial condition to
solve for the ice-thickness evolution A(x,t) that we find by solving Equation

1; therefore, all the values used in this calculation are for the first time, t=to.

A4.2. Numerical solution using the Finite-Volume Method

We use numerical methods to solve the mass-conservation equation
for ice flow (Equation 4.1). The background on numerical methods applied
to glaciological problems is rich (e.g. Van der Veen, 1999, pg. 218), but we
discuss only the methods we have chosen to use in this work. Solving an

equation numerically is done by replacing the values represented by a
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continuous function, in this case in Equation 4.1, by values at discrete
points. We use the Finite-Volume Method (FVM; e.g. Patankar, 1980;
Versteeg and Malalaskera, 1995), also known as the Control-Volume
Method, to discretize the domain. The set of individual volumes fill the
domain. In the FVM, each volume in the domain has a finite size, and is
defined by a volume-center point and two edge points, as illustrated and
described in Appendix G. In the FVM solution of the mass-continuity
equation (Equation 4.1), we evaluate the ice thickness at each volume center
and we evaluate the flux across each volume edge (west and east along the
horizontal domain from each center point). Ice flux is calculated at the
finite-volume western edge xw and the eastern edge x., but it is a function of
ice thickness and surface slope that are calculated at finite-volume center
points xp. Therefore, in order to evaluate the ice flux, the ice thickness and
surface slope must be evaluated at the finite-volume edges, and this
relationship is discussed further in Appendix G. However, at the first
western finite-volume edge xw! and the last eastern finite-volume edge x.end,
no information exists outside the limited domain to interpolate the ice
thickness and slopes at the limited domain boundaries, and values
extrapolated from inside the limited domain are inadequate. As discussed
in Section 4.2.1, this is why we need a careful treatment of the calculated
flux across the limited-domain boundary. Discretization using the FVM is
discussed further in Appendix G, and how to address the nonlinear
dependence of the ice flux on the ice thickness is discussed in Appendix 1.
Here we use a fully-implicit timestepping scheme, which is described
in detail in Appendix H. In Appendix H we also compare a fully-explicit
scheme, a Crank-Nicolson (semi-implicit scheme), and a fully-implicit
scheme. Following Patankar (1980, pg. 57), we use a fully-implicit scheme,

but we verify that our fully-implicit solution matches an appropriately time-
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stepped fully-explicit solution. In addition, we invoke underrelaxation to
stabilize our procedure to solve a nonlinear problem that has been
linearized between iterative calculations of updates to the solution values.
As described by Patankar (1980, pg. 67), underrelaxation is a way to slow
down convergence of the solution by using a weighted contribution of values
from previous iterations.

The problem is nonlinear because the ice flux q(x,t) in Equation 4.1,
calculated dynamically using Equation A4.1.2 with Equation A4.1.5, is a
nonlinear function of ice thickness A(x,t) and surface slope dS(x,t)/dx; the
ice thickness and surface slope are the values we are trying to find. The
solution for ice-thickness evolution must satisfy Equation 4.1, and the
treatment of the nonlinearity is discussed further in Appendix I. We use an
iterative procedure, and we stop iterations when changes in the solution are
smaller than a threshold value (e.g. Patankar, 1980, pg. 47; Waddington,
1982, pg. 239; Van der Veen, 1999, pg. 226); here we use a threshold value

of 10-¢, and the choice of this value is discussed further in Appendix J.

A4.3. Full-domain model

As sketched in Figure 4.2a, the full-domain surface is extended from
the limited-domain surface. Any full domain could be used to embed the
limited domain, but here we use a simple analytical ice-sheet surface in
which the mass-balance distribution is given by a zone of uniform
accumulation ¢ over part of the domain, and a zone of uniform ablation a
over the rest of the domain. The two zones are separated at the equilibrium

line R; this is the Paterson model (Paterson, 1972; Paterson, 1994, pg. 245),
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and this model is discussed further in Appendix E. The ablation rate
depends on the size of the ablation zone, expressed as the position of the
equilibrium line R (or equivalently the ratio ¢/a of the accumulation rate to
the ablation rate). Since the ablation rate influences the ice-sheet response
time, we prescribe a ratio of accumulation rate to ablation rate c/a that
gives a realistic rate of ablation. Our limited-domain model crosses an ice
divide, and must be embedded in a full domain that extends off both sides of
the divide.

The calculation of the full-domain surface shape from the analytical
Paterson (1972) model requires the length of the full domain. If the full-
domain length cannot be estimated from a map of the ice-sheet study site,
the full length L on either side of the divide could be calculated by matching
the full-domain surface to the limited-domain surface hrp at the limited-
domain-boundary position xzp on either side of the divide for the ice-sheet
model used to represent the full domain. For the Paterson (1972) model,
this is given by
X 5 = %o

-t - (ho 1 H )™ i@+ cra)

(A4.3.1)

1+(1/n)

where xo is the position of the ice divide, Ho is the thickness at the ice
divide, and c¢/a is the ratio of accumulation rate to ablation rate.

In a model that includes an ice-sheet terminus, as the distance along
the flowline approaches the total length of the flowline, the ice flux and the
ice thickness will approach zero at the terminus. This means that the
velocity at the terminus will also approach zero (e.g. following Equation
A4.1.5). As pointed out by Nye (1960; 1963), this resulted in the non-
physical situation of an immobile terminus; the terminus should be able to
advance and retreat. To address this problem in our discretized model, the

region near the terminus can be replaced by a wedge with a defined angle to
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the surface and a discrete area (e.g. Nye, 1963; Waddington, 1982, pg. 247).
Mass conservation and the flow law are satisfied separately in the wedge.
Figure A4.2 sketches the finite-volume geometry for our wedge-
shaped terminus, which is implemented on both sides of the divide. We cut
off the full-domain surface at a finite-volume edge point close to the
terminus, which we call xz¢ on the left side of the divide, and xr¢ on the right
side of the divide. The surface slope at the cut-off point is the slope of the
wedge surface, and can be defined by the surface slope between the
upstream finite-volume center points. The surface slope at the cut-off point
on the right side of the divide xr¢ (Figure 4.2b) is:
aS(0¢) _SE-Si
x o, (A4.3.2)

where Spe 1s the last finite-volume center point used at the position xr¢, and
Swe is the center point upstream of Sr¢. Analogously, the surface slope at
the cut-off point on the left side of the divide xr¢ is:
dS(x7) _ St -Sp _
dx dx

e

m, (A3.3)

where Spe is the last finite-volume center point used at the position xz¢, and
Sec 1s the center point upstream of Spr. Note the difference in subscript
between w (edge-point value) and W (center-point value). Using these
slopes, we can evaluate the equation for a line, y=mx+b, at y=S(xr°) for the

y-intercept bg:

b, =S5 —mgXg (A4.3.4)
and y=S(xr¢) for the y-intercept br:
b, =S -mx;
(A4.3.5)

129



Chapter 4: An efficient model of transient ice flow

Using these y-intercepts bz and br, we can again solve the equation for a
line to calculate the wedge lengths Luwedse at the termini where the ice
thickness goes to zero, where y=0. The length of the wedge on the right side
of the divide is:

Lﬁedge =—(bg /my) — X, (A4.3.6)
The length of the wedge on the left side of the divide is:

Lo = XS + (b, /M)

(A4.3.7)

A wedge is in steady-state when the ice flux entering the wedge from
upstream at either x=xr¢ or x=xg¢ is removed by ablation on the wedge. The
ice flux (in m3 yr ‘1) entering the domain is ablated over the area of the
wedge (in m2), defining an ablation rate (in m yr -!). The ice flux entering
the wedge 1s calculated dynamically using Equation A4.1.2.
To solve for ice-thickness and length changes within either wedge, we define

the volume in the wedge at any timestep as
V= % AOXE ) Lo W (A4.3.8)

where Luwedge 1s the wedge length given by Equation A4.3.6 or Equation
A4.3.7, and Wuyedge is the flowband width at the terminus. The change in
volume of the wedge from time ¢ to time t + At can be defined by

N =V (t+A) -V () = dV,, -,

balance

(A4.3.9)

flux

where V., is the change in volume due to changes in ice flux, and 0 Vealance

flux

is the change in volume due to changes in accumulation or ablation
(balance). This conservation equation must be satisfied in order to solve for
ice thickness in the wedge at a future timestep h(xr, t+At). Since the
=V (t+A1) -V

change in volume due to changes in ice flux oV (t) is a

flux flux

nonlinear function of the ice thickness A(xp, t +At) at the timestep t+At, we

use an iterative scheme to find the correct values at a future timestep. The
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estimate of ice thickness at t +At used in the flux calculation to calculate ice
thickness at t+At is iteratively updated until the mass-conservation
equation (Equation 4.1) is satisfied. In the conservation equation for the
wedge (Equation A4.3.8), the total volume change dV is also a function of
the wedge length Luwedge (t+At), which is a function of the ice-surface
elevation at the future timestep S(xr¢, t+At) and S(xr¢, t+At), which are
the values we are solving for. We use a similar iterative scheme to that for
the nonlinearity (Appendix I) to find the correct value of wedge length Luwedge
(t+At). In this formulation, if the ice flux entering the wedge does not
equal the amount of ice lost by ablation, the terminus will advance or

retreat.
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Figure A4.2 Sketch of wedge terminus in the full-domain model, for the right side of the
ice divide (a similar wedge is emplaced on the left side of the divide). The full domain is cut
off at a point that we call xp¢ at some distance before the actual terminus, at x.. The
terminus position at x. is defined from the upstream slope between the cut-off point and
next upstream finite-volume center point, in this case xw*. The wedge is highlighted with
dashed lines, and extends from the last western finite-volume edge x.¢ to the last eastern
finite-volume edge xe, with a length Luedge.
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In our formulation, the wedge terminus is always represented by one
grid cell at the end of the domain. While Lam and Dowdswell (1996)
suggested that an adaptive-grid scheme could be used at the terminus in
order to best represent ice-sheet behavior in the numerical model, we are
solving for this full-domain model in response to small perturbations only,
and therefore the simple regridding treatment presented here is adequate.
However, this is a consideration when we use this full-domain model to
validate the solution from our limited-domain model. In addition, before we
can use the full-domain model to validate the limited-domain model, we
check that the evolution of our full-domain model is similar to the evolution
that i1s characteristic of an ice sheet with the same geometry and mass-
balance distribution.

Johannesson and others (1989) characterized volume response
timescales for ice masses in response to small perturbations, which are
discussed further in Section 4.4.1 and Appendix F. Jéhannesson and others
(1989) also showed that the evolution of ice volume in response to a step-

change in mass balance is well approximated by the curve (1-exp(/7,)),
where 1, =-H, /b, is the volume response time calculated from the

maximum ice thickness H,__ and the ablation rate at the terminus b,

x
Hooke (2005, pg. 373-374) showed that this exponential behavior can be
derived from the kinematic-wave equation (Appendix F), and that it
characterizes the response of a steady-state ice mass to a uniform, step
change in accumulation as it approaches a new steady state. To validate

our full-domain model, we compare the (L—exp{/7,)) curve to the response

of the full model.

132



Chapter 4: An efficient model of transient ice flow

1 E—— RS EES
0.8f e
,l
,I
,/
,I
0.6} s
I’
I”
0.4t ’,/
III
0.2} ,:" V()N (ec): Paterson ||
/ c/a=0.1 to c/a=0.05
/ — V({)/V(): Vialov
N — [1-exp(-t/x)]
0 | . | ‘
0 1 5 : : |

Time (1/7)

Figure A4.3 Ice-volume evolution V(%) in a full-domain model that has been extended from
the limited model in Figure 4.2a using a Paterson (1972) model (gray band), or a Vialov

(1958) model (solid line), compared to a theoretical expectation for long-term ice-volume
evolution (dashed line, e.g Jéhannesson and others, 1989). The gray band shows the

solutions for a Paterson model with a mass-balance ratio of ¢/a=0.1 to ¢/a=0.05; different
mass-balance distributions influence the rate of ablation at the terminus. Time is given as

a ratio of the volume response time 7T = Hmax/bterm, where Hmax is the maximum ice

thickness and bterm is the ablation rate at the terminus.

We prefer to embed the limited domain in a Paterson-model surface
profile, compared to a Vialov-model profile, because the Paterson model
gives a magnitude of ablation at the terminus that is more physically
realistic. The mass-balance distribution in a Paterson model determines the
rate of ablation at the terminus, which influences the volume response time.
We find that an ablation rate with a comparable order of magnitude to the

accumulation rate results in ice-sheet evolution that best matches our
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theoretical expectations (following e.g. Johannesson and others, 1989).
Figure A4.3 shows the evolution of the geometry in Figure 4.2a in response
to a step-change in accumulation, extended using both a Paterson (1972)
model and a Vialov (1958) model. The evolution of ice volume for a full
model with a Paterson extension, shown in Figure A4.3 with a gray band
representing c¢/a in the range 0.05-0.1, gives a better fit to the (L—exp(/7,))
curve. While embedding the limited domain in a Paterson model results in
a more physical evolution of ice volume, both extensions conserve mass,
allowing the limited domain to hold steady state and to return to the same

steady state after a perturbation.
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Chapter 5

A Method to Infer Transients in Accumulation Rate, Ice
Thickness, and Ice Flow from Internal Layers

Ice-sheet internal layers preserve information about how the ice sheet responded to
past spatial and temporal changes in accumulation rate, ice-sheet thickness, and
ice flow, and present-day internal-layer shapes observed by radar are the most
accessible remaining record of this past information. To infer transients in
accumulation rate, ice-sheet thickness, and ice flow from the shapes of internal
layers, we solve an inverse problem. We present a new algorithm to solve this
inverse problem, and we address the capabilities of this new approach. While
some details of the accumulation history and the ice-flow history can be recovered
from an ice core, ice cores are temporal measurements that provide limited spatial
information. However, the solution to this inverse problem is better constrained in
combination with ice-core data. If internal layers are dated, for example by an
intersecting ice core, then radar-observed internal layers provide both spatial and
temporal information about accumulation rate, ice thickness, and ice flow.
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5.1. Introduction

Internal layers of glaciers and of ice sheets have been imaged with
ice-penetrating radar (e.g. Paren and Robin, 1975). Internal layers are
assumed to be isochrones, horizons of constant age, and they have distinct
chemical properties that cause a radar reflection. Each layer represents a
past surface of a different age that has been subsequently buried by
accumulation and also displaced and strained by ice flow. Ice-sheet internal
layers preserve information about how the ice sheet responded to past
spatial and temporal changes in accumulation rate and ice flow, and
present-day internal-layer shapes are the most accessible remaining record
of this past information. Deeper layers contain information from further in
the past, making them highly valuable. However, deep layers have also
likely been subjected to greater spatial and temporal gradients in strain
rate, making them more difficult to decipher. To infer transients in ice flow,
ice-sheet thickness, and accumulation rate from the shapes of radar-
observed internal layers, we solve an inverse problem. While some details
of these histories can be recovered from ice cores, ice cores represent
conditions at only a single point. However, utilizing internal layers with our
inverse approach is more robust in combination with ice-core data. In
particular, if the internal layers are dated, for example by an intersecting
ice core, then radar-observed internal layers provide both spatial and
temporal information.

The spatial and temporal histories of ice-sheet flow and of
accumulation are necessary to recreate ice-volume and sea-level histories.
In addition, understanding large-scale evolution of ice sheets over long
timescales is critical in order to properly interpret ice-core chemistry and to

properly date an ice core, especially in portions of the core where annual-
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layer counting is no longer reliable. For example, we can infer the
accumulation rate at the location and time where each piece of ice in the ice
core originated on the ice surface to convert chemical concentrations into
fluxes from the atmosphere, or we can infer temporal changes in
accumulation and ice thickness at one location on the surface to test general
circulation model (GCM) simulations of past climate. These spatial and
temporal histories are necessary to properly date an ice core with occluded
gases because the difference between the age of the gas and the age of the
ice at pore close off depends on accumulation rate (e.g. Sowers and others,
1989). Histories of accumulation and ice flow are imprinted upon internal-
layer architecture, and we present an inverse approach to recover this

information.

5.1.1. Previous work

Recent studies have advanced our understanding of the general
relationships among internal-layer shape, accumulation, and ice flow (e.g.
Parrenin and others, 2006; Hindmarsh and others, 2006; Parrenin and
Hindmarsh, 2007; Leysinger-Vieli and others, 2007; Martin and others,
2009). Understanding the relationship between internal-layer shapes and
ice-sheet history helps us to make appropriate assumptions when inferring
information from the layers.

Incorporating internal-layer shapes as a constraint in ice-flow models
1s informative about ice-sheet history (e.g. Nereson and Raymond, 2001;
Nereson and Waddington, 2002; Martin and others, 2006). In addition,
numerous colleagues have inferred spatial patterns of accumulation directly
from the shapes of internal layers (e.g. Pinglot and others, 2001; Spikes and
others, 2004), and by using an ice-flow model (e.g. Morse and others, 1999;
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Vaughan and others, 1999; Nereson and others, 2000; Fahnestock and
others, 2001b; Baldwin and others, 2003; Siegert, 2003; Leysinger-Vieli and
Gudmundsson, 2004; Siegert and Payne, 2004). For internal layers whose
shapes have not been affected by spatial gradients in strain rate or in
accumulation, the previous studies to infer accumulation rates from internal
layers directly, or by using a 1-D vertical strain correction, have been
successful. However, these assumptions cannot always be made.

Waddington and others (2007) presented a quantitative metric to
define a “deep” internal layer, whose shape has been affected by spatial
gradients in strain rate or accumulation rate; an internal layer that is
shallow compared to the total ice thickness, can be deep in this context. As
the depth to the layer increases to a larger fraction of the total ice thickness,
accumulation-rate estimates based on depth variations alone, or that have
been corrected using a 1-D flow model, are no longer appropriate.
Waddington and others (2007) demonstrated that in most cases properly
recovering information from deep layers is an inverse problem, in which 2-D
ice flow must be incorporated to determine the correct histories of mass
balance and ice dynamics; it is imperative to account for the cumulative
vertical strain experienced by particles moving through the ice to map out
deep internal layers.

Previous work by Waddington and others (2007), and corroborated by
Steen-Larsen and others (In Press) with a different inverse approach,
established that steady-state spatial patterns of accumulation can be
inferred from the architecture of deep internal layers by solving an inverse
problem. The next step is to use internal layers, and other available data, to
infer spatial and temporal patterns of accumulation and ice flow. The time-
dependent problem 1is especially relevant for inferring accumulation

patterns from the deepest internal layers observed by radar, where a
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steady-state assumption is no longer valid. As detailed images of the
deepest internal layers are being collected (e.g. Laird and others, In Press),
the ability to infer histories of accumulation and ice flow from these data is
a mounting imperative. However, solving this time-dependent inverse
problem is computationally intensive, and it is necessary to use a time-
dependent ice-flow model and an inverse algorithm that are
computationally fast. Chapter 4 showed how to reduce computation time in
an ice-flow model by limiting the model domain to include only the relevant
portions of the ice sheet. In addition, Waddington and others (2007)
demonstrated that a gradient inverse method 1s an efficient and robust way

to solve an inverse problem.

5.1.2. Solving an inverse problem

In an inverse problem, the existing data have resulted from a known
process that depends on some unknown parameter values or boundary
conditions that we wish to find. An inverse problem needs a forward
algorithm and an inverse algorithm. Based on a guess of the unknown
parameter values, the forward algorithm generates a realization of
observable quantities. The inverse algorithm evaluates the fit of the
modeled observables to the actual data, and assesses if any physical
constraints imposed on the problem have been satisfied, in order to infer the
best set of unknown parameter values. The same inverse problem could be
solved with different forward algorithms and with different inverse
algorithms, both of which could be developed with different assumptions.
Any simplifications made in the forward algorithm, or constraints included
as part of the inverse algorithm, must also be considered when interpreting

the solution.
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In the language of inverse theory, a problem that consists of a finite
number of data points and a finite number of model parameters is called a
discrete inverse problem (also called a parameter estimation problem);
compared to a continuous inverse problem where the data and the model
parameters are continuous functions (e.g. Aster and others, 2005, pg. 2).
Continuous inverse problems can often be effectively discretized, which can
make their solution more accessible. For a discrete and linear system, an
inverse problem can be stated in a general algebraic form as

G(p) =Gp =d (5.1)
where G is a matrix operator (e.g. a differential equation), p refers to the
vector of model parameters, and d refers to the vector of data parameters.
However, linear inverse problems can still be difficult to solve.

If the matrix G in Equation 5.1 is rank deficient, this means that
there exists a nontrivial null space that can complicate finding a unique
solution (e.g. Aster and others, 2005, pg. 233). For a discrete ill-posed
problem, the singular-value decomposition (see Section A5.3) of G yields a
singular-value spectrum that decays gradually to zero, the condition
number (the ratio of the largest singular value to the smallest singular
value) 1s large and finite, and the left and right singular vectors of G exhibit
more variability (i.e. sign changes) as the index number i of Gi increases
(e.g. Aster and others, 2005, pg. 73; Hansen, 1987). Our problem is a
discrete ill-posed inverse problem, and therefore we focus on techniques to
stabilize the inverse algorithm and find a unique solution. Most geophysical
inverse problems are also ill-posed, and the techniques we discuss here are
generally applicable.

Stabilization can be achieved through regularization. One way to
regularize the problem is to use a coarser discretization to reduce the

number of parameter values, or to utilize singular value decomposition
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(SVD; e.g. Aster and others, 2005, pg. 55) and truncate the set of singular
values. However, valuable information can also be lost in these stabilizing
processes. In particular, it is difficult to determine at which point to
truncate the singular values, especially if the singular-value set does not
transition abruptly from nonzero to near-zero values (e.g. Menke, 1989, pg.
123). While a truncated SVD solution may still be necessary (e.g. Eisen,
2008), we rely primarily on stabilization through the commonly used
damped least-squares solution procedure called Tikhonov regularization,
which minimizes both prediction error and solution error (e.g. Aster and
others, 2005, pg. 89; Section A5.3). We incorporate a priori information so

that the solution that does not overfit noisy data.

5.1.3. Inverse problems in glaciology

The spatial scales of ice sheets, the timescales involved in their
evolution, and the diffusive nature of ice flow creates a challenge for the
glaciological community, which relies on measurable quantities to
understand glaciological processes. Ice-flow models are powerful tools to
predict ice-sheet behavior, but they require estimates of initial conditions
and boundary conditions that are often largely unknown. In addition,
desirable information about glaciers and ice sheets is often intensive or
impossible to obtain. Therefore, inverse methods can be an ideal
complement to use with ice-flow models and with data from glaciers and ice
sheets (e.g. Truffer, 2004; Waddington and others, 2007; Eisen, 2008). In
general, setting up an inverse problem is a powerful tactic to solve problems
in solid-earth geophysics (e.g. Menke, 1989; Parker, 1994; Gubbins, 2004),
and also in physical oceanography (e.g. Wunsch, 1996), among other fields.

However, solving inverse problems is a relatively new frontier in glaciology.
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As discussed by Aster and others (2005, pg. 11), issues regarding solution
existence, solution uniqueness, and stability must be considered for every
inverse problem; these issues are especially relevant to inverse problems in
glaciology.

A well-known glaciological inverse problem is the inference of basal-
ice velocity from surface-velocity measurements. This problem is an
example of an ill-posed (or ill-conditioned) geophysical inverse problem.
The degree of ill-posedness is defined by the degree to which a small change
in a measurement value can result in a large change in the parameter
values (e.g. Aster and others 2005, pg. 12; Hansen 1987). In addition,
problems that do not have a definitive solution, for example because they
are defined by an inexact model, are inexorably ill-posed (e.g. Wunsch 1996,
pg. 11). Both of these types of ill-posedness can complicate stably finding a
unique solution. With respect to the ill-posed basal-ice velocity inverse
problem, different algorithms have been employed to successfully find an
approximate solution. These have included a force-balance method (e.g. van
der Veen and Whillans, 1989), a control method (e.g. Macayeal, 1993;
Joughin and others, 2004b), an analytical power-series expansion (Bahr
1994), a gradient inverse method (Truffer, 2004), a transfer-function
approach (Raymond and Gudmundsson, 2005), a Monte-Carlo method
(Chandler and others, 2006), and an accelerated iterative scheme (Maxwell
and others, 2008). These different algorithms have different advantages
and disadvantages between accuracy, uniqueness, stability, and
computation time, and the appropriate algorithm must be chosen based on
the goal of solving the inverse problem. For example, the goal may be to
analyze the statistics of possible solution sets, or to find a solution with the

minimum structure required to fit the data.
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We describe our forward and inverse algorithms to solve the inverse
problem to infer ice-sheet and accumulation-rate histories from internal
layers. Our forward algorithm describes the process of ice-sheet evolution
and internal-layer structure. Our inverse algorithm is a gradient method
that finds updates to the unknown parameter values by minimizing a
performance index. The performance index is a number representing how
well the predictions of observable quantities calculated by the forward
algorithm match the data to an expected tolerance while, in this case,
finding a spatially smooth accumulation pattern and a parameter set that is
consistent with physically characteristic values of the parameters. Our goal
in solving this inverse problem is to infer the smoothest set of model
parameters that is required to explain the data. See Table 5.1 for a list of
possible incorporated data values, and see Table 5.2 for a list of possible

unknown model parameters in our problem.

5.2. Forward Algorithm

We describe our forward algorithm, which i1s a 2.5-dimensional
thermomechanical ice-flow model used to make predictions of observable
quantities, in particular the shapes of internal layers. At present, it is too
computationally intensive to use a 3-dimensional ice-flow model and, for the
problem that we aim to solve, this extra dimensionality adds unnecessary
complexity. We desire a computationally efficient forward algorithm, so we
utilize all numerical approximations and physical simplifications that are
appropriate. For example, our model domain includes only a limited portion
of the ice sheet (Chapter 4), and we use the Shallow Ice Approximation
(SIA; e.g. Hutter, 1983, pg. 256-332; Paterson, 1994, pg. 262). In addition,
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the ice-temperature distribution can be prescribed, or it can be
thermomechanically coupled to the ice flow. The appropriate forward
algorithm depends on the site conditions of each specific application, and
the goal of solving the inverse problem.

Our forward algorithm solves for ice-sheet surface topography, an ice-
velocity field, and an ice-temperature field, and integrates the velocity field
to map out internal layers of a specified age. This algorithm generates
realizations of all data values that may be incorporated as part of the
inverse problem (see Table 5.1). Here we give a generic description of the
governing equations for our 2.5-dimensional flowband model. In Section
A5.1 we discuss specific assumptions that we make regarding the ice-
velocity field, and in Section A5.2 we discuss specific initial conditions and

boundary conditions that we use the applications of our algorithm.

5.2.1. Ice-surface evolution
Ice-thickness evolution is found by solving the mass-continuity

equation (e.g. Paterson, 1994, pg. 256). In a flowband, this is given by

oh(xt) _ 1 (aq(x,t)
ot WL ox

where h(x,t) is the ice thickness, W(x) is the flowband width, q(x,t?) is the ice

j+mxn (5.2)

flux, and b(x,t) is the accumulation rate. The ice thickness A(x,t) = S(x,t)-

B(x), where S(x,t) is the ice-surface elevation, and we assume that the bed
topography B(x) does not change in time. Any numerical scheme and any
physical parameterizations may be invoked to solve this equation.
However, the computational cost must be minimized when calculating ice-
surface evolution as part of an inverse problem, especially for long

calculation times, and for higher-resolution calculation domains.
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We solve this conservation equation numerically using an implicit
approach with a finite-volume numerical scheme (e.g. Patankar, 1980);
details are given in Chapter 4. The calculation of ice-thickness evolution
depends on the calculation of ice flux through the domain, which depends on
the ice thickness and the surface slope. In a full-domain model, there is a
zero-flux boundary condition at the terminus, and by knowing this boundary
condition the ice thickness can be calculated everywhere. However, in a
limited-domain model, the ice flux crossing the limited-domain boundaries
1s unknown. Improperly calculating the boundary flux can lead to
numerically driven ice-sheet transients and unphysical ice-sheet behavior.
Chapter 4 describes a new approach to efficiently calculate physically
realistic ice-sheet evolution with a limited domain. We do this by
characterizing the behavior of a full ice sheet using impulse-response
functions, and we use these response functions to calculate actual flux

transients at the boundaries of our limited domain.

5.2.2. Kinematic and dynamic descriptions of flow
By integrating Equation 5.2 from the boundary at xo where ice flux is

specified to the end of the domain xend, the ice flux can be represented

kinematically by
Xend
A0 t= Qo (1) + [(BOx.t) = h(x,t) =y, W (x)dy , (5.3)
X

where Qo(t) i1s the time variation of ice flux entering at one end of the
flowband domain, h(x,t)is the rate of change in ice thickness, and m(x,t) is

the melt rate. Dynamically, the flux of ice passing through a cross-sectional
area W(x)xh(x,t) at any point x and at any time ¢, is related to the depth-

averaged horizontal velocity U(x,t) in that cross-section by
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S(x,t)
a(x,t)=W(x) ju(x, {,1)dd 2W(x)h(x,t)u(x,t). (5.4)

B(x)
We represent depth z through 7 a non-dimensional height above the bed,

z-B(X)

S(x,t) — B(x) 65

7=

For flexibility, we represent the horizontal velocity u(x,2t) in terms of the
depth-averaged horizontal velocity U(x,Z2t), and a non-dimensional function
as

u(x, z,t) = u(x,t)¢(x, z,1) (5.6)
where ¢(x,2t)is called the horizontal-velocity shape function. In a

flowband, the strain rate transverse to the direction of flow is

ov(x,zt) _ 1 dw
oy W(x) dx

u(x, z,t) (5.7)

The vertical velocity then follows from incompressibility (e.g. Paterson 1994,

pg. 255)

a_vv:— a_u+@ (58)
0z ox oy

Integrating Equation 5.8 over depth z, gives an expression for the vertical-

velocity field
w(x, 2,t) = =(B(x,t) = h(x, ) b (x, 2,1) (5.9)

+u(X, 2,t)[(1— 2)3—5 + 2%)

_(x 2,t)h(x,t)f% dé

where (x,2,1)is called the vertical-velocity shape function, and is defined

as

WX, 2,t) = j Ax ¢ t)dl (5.10)
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The horizontal-velocity shape function and the vertical-velocity shape

function ¢(x,Z,t) are defined according to the depiction of ice dynamics used

in each specific application of this algorithm. For example, in Section A5.1
we define horizontal-velocity shape functions using the Shallow Ice
Approximation (SIA), and using a shape-function parameterization for

divide flow from Nereson and Waddington (2002).

5.2.3. Constitutive relationship

The constitutive relationship for ice flow describes the specific
mechanical relationship between strain rate and applied stress in ice. The
commonly used flow law (Glen, 1955; Paterson 1994, pg. 259) relates
deviatoric stress and strain rate, assuming that ice is incompressible and

that the ice-crystal distribution is isotropic. This so-called Glen’s law is

" — n-1

& =AM )Ty T, (5.11)
where strain rate £; and applied stress 7, are tensors where i and j can
have values from 1 to 3, 7 is the effective shear stress, n is the flow-law

exponent, and A(7T) is the temperature-dependent ice-softness parameter.
The individual components of the strain-rate tensor are given by
& = %(g%} + %} (5.12)
where ui and u; are different components of the velocity field in different
directions x; and x;. The flow law exponent n=3 for dislocation creep (e.g.
Paterson, 1994, pg. 85). The temperature-dependent ice-softness parameter
(in Pam yri; e.g. Paterson 1994, pg. 86) follows an Arrhenius relationship,
given by
A(T (X, Z,t))= A, expQ/ RT (X, Z,t)) (5.13)
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where Ao is the temperature-independent ice-softness parameter (see e.g.
Paterson 1994, pg. 97), @ is the activation energy for creep, and R is the

universal gas constant.

5.2.4. Thermomechanical flow calculation

The ice-temperature field T(x,2,t) can be prescribed, or calculated
independently of the ice-flow field. However, in reality the thermodynamics
and the mechanics of ice flow are coupled because ice-viscosity is
temperature dependent, and the contribution of advection to the ice-
temperature field depends on the ice-flow field (e.g. Paterson, 1994, pg. 216;

Hooke, 2005, pg. 303). Conservation of energy is given by
oT _  oT .1 9 (ka_T}aLs‘u
C

— = (5.14)
ot 0x;,  pcox

where T is temperature, t is time, u; is the component of velocity in the x;
direction, p is density, c is specific heat capacity, k 1s thermal conductivity,

0ij 1s the stress-tensor component in the i direction, and £; is the strain-

rate tensor component in the ij direction. Specific heat capacity ¢ and
thermal conductivity k& are a function of temperature, we follow the
formulations given by Paterson (1994, pg. 205).

In a numerical model of thermomechanical ice flow, the mechanical
calculation requires an estimate of the thermal field, and iterative updates
to these coupled fields are calculated in order to find an ice-temperature and
an ice-sheet evolution that are thermally and mechanically consistent; here
we follow the standard iterative approach to couple our thermal and
mechanical models (e.g. Van der Veen, 1999, pg. 231; Hooke 2005, pg. 303).
At each timestep t; in the numerical model for ice-surface evolution, an ice-

temperature field T (x,2,t) is estimated, and the ice-surface topography
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SP(x,t) and the ice-flow field u(x,2,t) are calculated. Then, an ice-
temperature field T/ (x,2,t) is calculated using this ice-surface topography
SP(x,t) and this ice-flow field u(x,2,t). Unless the temperature
distribution is well-known at the first iteration, the difference between
T (x,2,t) and T} (x, 2,t) will be significant, so that when T} (x, 2, t) is used to
recalculate the ice-surface topography S}(x,2,t) and the ice-flow field
uil (x,2,t), these fields will be different from their values in the first
iteration. The ice-temperature field, the ice-surface topography, and the ice-
flow field are iteratively updated until the difference in the temperature
field (Tij (x,2,t) — Tij _1(x, 2,t)) between iteration j and iteration j-1 becomes
small; we choose a temperature difference threshold of 106 °C. See Figure
K1 for a flowchart depiction of this iterative process.

Our model of thermomechanically-coupled flow uses a finite-volume
thermal calculation from Price and others (2007). If thermomechanical
coupling is not utilized, the ice temperature can be isothermal at a
prescribed ice temperature, or temperature variations with depth can be
calculated using Fourier’s Law describing the linear relationship between a
prescribed surface temperature and a prescribed geothermal flux (e.g. Van
der Veen 1999, pg. 178). If the ice-temperature field is not isothermal, an
effective isothermal ice-softness parameter A(7(x,t)) is calculated (see

Section A5.1) for use in the ice-flow calculations.

5.2.5. Internal-layer calculation

To generate internal layers, we track particles through time by
integrating the velocity field. Each particle starts at the surface S(xi) at
time t=to, and the position of each particle i can be given by the material

derivative
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Kux0.20), S =wx0.20) s
where u is the horizontal velocity and w is the vertical velocity, and (x,z) are
the particle position and particle depth at any time ¢. The coupled
differential equations given by Equation 5.15 are integrated numerically. A

layer of any given age is constructed by joining the endpoints of particle

paths at the time equal to the age of the layer.

Table 5.1. Possible set of incorporated data values

Data value Size Symbol
Internal-layer shapes Nigyers X Nn | ha(x,2)
Modern ice-surface topography Ns S(x,t0)
Modern accumulation rate Ny b(X,tO)
Modern surface velocity Nu u(x,to)

Table 5.2. Possible set of unknown model parameters

Model parameter Size Symbol
Accumulation-rate history Nt X Nx b(x,t)
External-flux history Ni X [ Ni! Nyend ] Qexi(x,1)
Ice flux entering the domain at initial 1 in
timestep 0
Ice thickness at first spatial node in

T 1 Sy
at initial timestep
Temperature-independent ice-softness 1 A
parameter 0
Average geothermal flux 1 Qgeo
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5.3. Inverse Algorithm

The inverse algorithm used here is a gradient (steepest-descent)
solver that uses Tikhonov regularization to stabilize the algorithm and to
find a physically meaningful solution. This inverse algorithm follows
Waddington and others (2007), where they solved a steady-state version of
this inverse problem, to infer a steady-state accumulation pattern from an
internal layer. A gradient solver is well-suited for our transient problem
because it i1s computationally fast and it is designed to converge upon a
single, though robust, solution (e.g. Parker, 1994; Aster and others, 2005).
This algorithm performs a local search for the most-likely solution by
finding the minimum of I, in the model space that is most accessible from
the initial guess of the parameter set. While this steepest-descent approach
locates only one solution, and that solution may be only a local minimum,
we can start from multiple initial guesses of the parameter set to search
other parts of the model space. The steady-state results from Waddington
and others (2007) using a gradient inverse algorithm were corroborated by
Steen-Larsen and others (In Press) using a Monte Carlo inverse algorithm
that performed a complete search of the model space; the results of these
previous studies give us confidence that this inverse algorithm is

appropriate to solve this problem.

5.3.1. Regularization

Regularization is a way to stabilize ill-posed inverse problems, where
a relatively insignificant change in the measurement can lead to a
significant change in the solution (e.g. Aster and others 2005, pg. 73;

Hansen 1987). In an inverse problem, the observable quantities (e.g.
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internal layers) may not contain enough information to discriminate against
solutions (e.g. the spatial and temporal history of accumulation rate) that
are physically unreasonable on other grounds. In addition, because the
observations contain errors, we do not want to fit these data exactly; a
solution found by minimizing only the mismatch between the data and the
forward-algorithm prediction could overfit the data (e.g. Parker, 1994).

The solution to an inverse problem is a “model”, i.e. a vector of the
model parameters (e.g. mass-balance rate at discrete points) that we seek.
The model parameter set is size N, number of parameters, and all spatial
and temporal parameters are defined at discrete points. It is desirable to
find a solution (set of model parameters) that minimizes a combination of
prediction error and length of the solution vector. Generally speaking, this

can be described by minimizing a performance index I, given by
= [l + vfdl” (5.16)
where ||p||2 1s the squared model norm (see Section 5.3.4), and ||d||2 1s the

squared data norm (see Section 5.3.5). The factor v is a positive trade-off
parameter, where the best value of v gives an appropriate balance between
fitting the data (minimizing the prediction error), and finding a smooth
model (minimizing the solution length). In this case, the underdetermined
part of the problem has been damped, and the solution to this problem is
called a damped least squares solution; this approach is also referred to as
Tikhonov regularization (e.g. Aster and others, 2005).

As discussed in Section 5.3.1, to minimize the solution error we chose

a model norm ||p|| that minimizes the roughness of model parameters that

occur in a spatial sequence (i.e. the accumulation-rate pattern at any time),
and/or in a temporal sequence (i.e. the accumulation-rate history at any
point), and that minimizes the variation in model parameters from

estimations of their given characteristic values within a given tolerance.
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However, the data have uncertainties, and we do not want to strictly
minimize the prediction error. Obtaining a smooth model that fits the data
at an expected tolerance can be achieved by minimizing a performance

index Ip given by
o =l + vl -7%) (5.17)

where T i1s a defined tolerance, which is commonly assumed to be based on

the statistical uncertainties N of the number of data (Parker, 1994, pg. 124),

Ly 1 oiomg
AN, 32N

T ~N§?1-
(5.18)
We want to find the vector of model parameters p and the value of the
trade-off parameter v that minimize the performance index in Equation
5.17. The Np+1 number of equations,
oA, o O,

=0 =0 (5.19)
om, av

can be solved simultaneously, where p; represents each model parameter in
the set. In this case, the trade-off parameter v is a Lagrange multiplier (e.g.

Menke, 1989, pg. 56; Aster and others, 2005, pg. 276). The solution will

minimize the model norm ||p , and satisfy the data-mismatch criterion,

[d|* -T2 =0 (5.20)
where the appropriate value of v sets the most appropriate trade-off
between smoothness and fit. A smaller value of v puts more emphasis on a
smooth model, whereas a larger value of v puts more emphasis on closely fit

data (Parker, 1994). We follow the solution procedure used by Waddington
and others (2007); details are given in Section A5.3.
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5.3.2. Linearized problem

In a nonlinear inverse problem, the forward algorithm predictions of
the observable quantities are nonlinear functions of the model parameters.
Our problem is nonlinear because estimates of internal layers are nonlinear
functions of the accumulation-rate history and our other parameter values;
this can be seen more explicitly in the analytical expressions given in
Appendix N. A nonlinear problem is not as straightforward to solve as a
linear problem, but we address this problem by assuming that values of the
unknown parameters can be approximated by a linear expansion in the
vicinity of their trial values; this is how we linearize the problem. Instead of
solving for the unknown parameter values p directly (as in Equation 5.1),

corrections Ap =p-p™to trial values of the unknown parameters pet are
found (e.g. Menke 1989, pg. 152). In a linear problem,

G(p)=G(p=)+G(p-p*=) (5.21)
Using this form of G(p) in Equation 5.1, gives

G(8p,..) =d=G(p™) (5.22)

In a linearized problem, matrix G is a Jacobian matrix, expressing how
changes in each model parameter p; affect the value of each modeled
observable 0",
Gij =1
apj —nest
Pi=Pi (5.23)
In Equation 5.22, d-G(p®™) are the residuals between the actual data

values d and the model estimates of the data values calculated using the

estimate of the model parameters pe’. Each parameter value p] is guessed

at the first iteration n, and then is iteratively adjusted by finding Apl,, that
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further minimizes the performance index (Equation 5.17). The updated

parameter set is given by

Pra = Pa +AP), (5.24)
For any given value of the trade-off parameter v, this iterative procedure is
stopped (i.e. a solution is found) when adjustments to the model parameters

Ap,,, from one iteration to the next iteration insignificantly change the

value of the performance index (i.e. do not further reduce the value to zero).
This cutoff criterion is preferable to simply stopping the iterative procedure
when the parameter changes become small (e.g. Gubbins 2004, pg. 131).
Once we have a converged solution for one value of v, we repeat the solution
procedure for different values of v, and find the solution corresponding to
the value of v that satisfies the data-mismatch criterion (Equation 5.20).

In a linearized ill-posed problem, instability in the solution procedure
means that the solution will not converge; changes in the performance index
between iterations for a given value of v do not stably approach the cutoff
criterion. Stabilization techniques for linearized ill-posed inverse problems
are the same as the techniques for linear ill-posed problems (e.g. Tikhonov
regularization). However, regularization of a linear problem damps the
underdeterminancy of the problem by directly minimizing the prediction
error and the solution error, whereas regularization of a nonlinear problem

damps the iteratively calculated parameter-value updates Apl,, by

minimizing the prediction error and solution error (e.g. Gubbins 2004, pg.
131). If Tikhonov regularization alone does not stabilize the problem, the
singular values can also be truncated if there is a natural break in
distribution between larger and smaller values (e.g. Eisen 2008).

Due to the nonlinearity of this problem, both in the forward algorithm
and in the inverse algorithm, several iteration loops must be performed in

order to calculate the final set of model parameters, which is the solution to
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the inverse problem. The outermost loop of the inverse problem is to find the
value of the trade-off parameter v; a full solution must be found for each
sampled value of the trade-off parameter, and we seek the trade-off
parameter that satisfies the data-mismatch criterion in Equation 5.20.
Since the nonlinear inverse problem has been linearized to solve for changes

in the parameter values Ap/,, rather than the parameter values directly,

the next loop iterates until further changes in the parameter values
insignificantly change the value of the performance index. In the forward
algorithm, an iteration is required on the nonlinearity in the implicit
solution for the ice-surface evolution S(x,t). If the forward algorithm is
thermomechanically coupled, there is an additional iteration to find a
consistent thermal and mechanical solution in the forward algorithm. See
Appendix K for flowcharts of all calculations in the forward and inverse

algorithms.

5.3.3. Model parameters

In an inverse problem, the unknown model parameters are the set of
unknown values that are required in the forward algorithm. For example,
unknown initial conditions or boundary conditions are part of the parameter
set. Generally speaking for this problem, the model parameter set could
include the ice flux entering the domain at the initial timestep Qin(t0), the
ice flux across the limited domain due to forcing from outside of the domain
Qext(1), the piecewise bilinear spatial and temporal pattern of accumulation

rate b(x,t), the spatial and temporal pattern of basal melt rate m(x,t), the

ice-surface elevation at one location at the initial timestep Sin(f0), the
temperature-independent ice-softness parameter Ao, and the spatial and

temporal variation in geothermal flux Qgeo(x,t). The values that must be

157



Chapters: Inferring transients from internal layers

included in the model parameter set will depend on which values are
unknown at each site where this inverse problem is being solved. Any of
these parameters can be excluded from the set of model parameters if they
are known and can be prescribed, or if they are not necessary in the forward

calculation.

5.3.4. Model norm
In this inverse problem to infer histories of accumulation, ice

thickness, and ice flow from internal layers (introducted in Section 5.1), we

expect the accumulation-rate solution b(x,t) to be spatially smooth, so we
chose the model norm || p|| to be the curvature of the accumulation-rate

solution integrated along the flow band (@i.e. the roughness of the
accumulation-rate solution). Other model norms could be used in this

problem, and we discuss possibilities in Section 5.6.4.
The accumulation history b(x,t) is piecewise bilinear, and the second

derivative is zero everywhere except the (xj, #) nodes, where it can be
infinite. For this reason, following Waddington and others (2007), we
estimate roughness by attributing a uniform curvature to each x-interval
that joins the midpoints of the two linear segments upstream (xj+z, ;) and
downstream (xj.1, ¢j) from the position (xj, tj). We calculate curvature based
on these values in the vicinity of each point (xj, #) using a centered-
difference approximation for the derivative,

_ dm()’zj 1t) _ 2{ mj+1(t) - mj—l(t)J

dx; Xy = X

(5.25)

c; =c(X,1)
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where X, is the normalized position, and X; =x;/L,, where L is a

characteristic length scale. The upstream surface slope is given by a
backward difference,

M) = = (M) (5.26)

b X, = X4

where L. is the characteristic length scale, and b is the characteristic

accumulation rate that are used to normalize the slope. The downstream
surface slope is given by a forward difference,

L, (bm(t) ~b, (t)J

b Xj+l - Xj

(4

mj+1(t) =
(5.27)

Equations 5.25, 5.26, and 5.27 give the non-dimensional curvature in the ji*
spatial interval as

2 b b, b,
c,.=2i{ 7Y Y (5.28)
bc ij ij+1 ij—1 (ij+1 +ij—1)

At the spatial edges of the domain, where Equation 5.28 is undefined, we
minimize the difference between the slope at each edge of the domain and
the slope of the adjacent value within the domain.

The model norm should include contributions from all model
parameters pj.  So, for model parameters that do not fall in a spatial
sequence, we Incorporate deviations of the estimates of these parameters
from a given characteristic value, within a given tolerance. For any

parameter p; that is not accumulation rate,

P — P,
c, :? (5.29)
]

where p{ is an estimate of the characteristic value of the parameter, and

| is the characteristic acceptable deviation in this estimate. The model

norm used in Equation 5.17 is then given by,
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Np
ERs Z;,(W?)Zciz (5.30)
<

where (WJ?)2 are positive non-dimensional weights corresponding to each

type of model parameter. If the model parameter is a value of accumulation

rate, the weight wj 1s the length over which each segment is integrated Ax,

divided by the average segment distance DX.

5.3.5. Data norm

The squared data norm ||d||2 1s the sum of squared mismatches
between the observations o', and the forward-algorithm predictions of the
same observable quantities 0™ , normalized by the standard deviations o of

the data. The data norm used in Equation 5.17 is then given by,

o =32 631

i=1 g.

i
The data norm includes residuals between all existing data and their
corresponding predictions from the forward algorithm, where Ng i1s the
number of data values. In this problem, the primary data are the shapes of
internal layers imaged with ice-penetrating radar. Additional data may
include the modern ice-surface topography, the modern ice-surface velocity,
or the modern accumulation-rate (see Table 5.1). These modern data
provide rate control, and it is important that these data are available.
While internal-layer shapes at all depths directly provide valuable spatial
information, these layers must be dated by an intersecting ice core to
provide accurate temporal information. Accurate dating is especially
important when inferring information from deeper layers, where present-

day rate control is a less-effective constraint on the problem. The amount
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and types of data included in the problem depend on site-specific data

availability.

5.4. Results with synthetic data

To assess the capability of our new algorithm to infer histories of
accumulation rate and ice flow, we first solve the inverse problem using
synthetic data. We generate synthetic data by prescribing parameter
values, we perturb the data with red noise, and then we try to infer the
original parameter values using this synthetic data set. While this is a
simple test, especially because the forward algorithm used to estimate the
data is the same algorithm that we used to generate the data. However, the
procedure allows us to explore the sensitivity of our algorithm. Comparing
the inferred parameter values to the known parameter values shows how
well we can recover each parameter value for a given test.

In the three tests performed here (see Sections 5.4.2-5.4.4), we
assume that the layer ages are known (e.g. from an ice core). Figure 5.1a
1llustrates the site conditions used in our synthetic tests. The ice thickness,
bed topography, and magnitude of accumulation are similar to values near
the West Antarctic Ice Sheet (WAIS) Western Divide (e.g. Neumann and
others, 2008; Conway and Rasmussen, 2009). We assume that the ice
temperature does not change in time (i.e. there is no thermomechanical
coupling), but that temperature variations with depth are prescribed as the
present-day values calculated by Neumann and others (2008) for WAIS
Divide, with a geothermal flux of 70 mW m-2 (Figure 5.1b).
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Figure 5.1. a) Synthetic geometry of a site analogous to the West Antarctic Ice Sheet
(WAIS) Divide. b) Temperature with depth profile for this synthetic site; these values are
comparable to modeled values for present-day WAIS Divide from Neumann and others
(2008).

We represent the accumulation rate in space and time as a piecewise
bilinear function. Our spatial and temporal parameter grid is lower
resolution than our spatial and temporal calculation grid. For example,
Figure 5.2a shows the parameter grid at Ax=1500 m and At=2000 years, and
Figure 5.2b shows the calculation grid at Ax=900 m and A{=200 years. The
accumulation-rate solution on the parameter grid is interpolated onto the
higher-resolution grid for ice-surface, ice-temperature, and ice-velocity

calculations.
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Figure 5.2. Accumulation rate as a piecewise bilinear function of space and time on a) the
parameter grid with Az= 2000 yr and Ax=1500 m, and b) the calculation grid with A= 200
yr and Ax=900 m. The accumulation-rate history is inferred on a coarser grid, and
interpolated to a finer grid for calculations with the forward algorithm.

5.4.1. Imprint of ice-sheet transients on internal layers

The primary data for our inverse problem are the shapes and
locations of internal layers. If we are to recover realistic histories of
accumulation rate and of ice flow, these histories must have left a distinct
imprint on the internal-layer architecture. We perform synthetic tests with
two different accumulation-rate histories. One history has only a change in
the accumulation rate, and one history has only a change in external-flux
forcing, but they both drive a similar history of divide migration. Figure 5.3
shows internal layers generated with these two different histories. Layers
shown with a solid line were generated by an accumulation history that
varies linearly in time across the ice divide. Layers shown with a dashed
line were generated by an accumulation history that is uniform over all
time, but has prescribed external-flux changes that force the same history of
divide migration exhibited by the linearly varying accumulation history.

The deepest layer shown in Figure 5.3 is 10 kyr.
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Figure 5.3. Internal-layer shapes for two different accumulation-rate and ice-flow
histories. The solid lines are layers generated with a mass-balance history that varies
linearly in time, with no external-flux forcing. The dashed lines are layers generated with
a mass-balance history that is uniform in space and time, but divide-migration is driven by
variations in external-flux forcing. The layers span 10 kyr and are separated by 1 kyr in
age.

5.4.2. Spatial and temporal variation in accumulation

In the first test, we generate synthetic internal-layer data, ice-surface
velocity data, and accumulation-rate data using an accumulation history
that varies linearly over time, with no variation in external-flux forcing;
there i1s no change in Qex(f), but there are changes in the flux on the left side
of the limited domain @L(f) and on the right side of the domain Qr(t) due to

local accumulation-rate changes. These synthetic data are used to solve the
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inverse problem for these known histories of accumulation and ice flow, and

Figure 5.4 shows the results of this test.
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Figure 5.4. Solid lines represent the target solution, dashed lines represent the solution
inferred by solving the inverse problem, and dotted lines represent the initial guess. a) The
accumulation rate at three times (-9 kyr, -6 kyr, -4 kyr). b) The change in ice-divide
position associated with this accumulation forcing.

The inferred history of accumulation well approximates the target history,
and this provides a history of divide migration that also well approximates
the target history. We initially guessed that there were no variations in
external flux, and we imposed a constraint to seek a solution with minimum

external-flux variability. Since the data could be fit and the constraints
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could be satisfied without external-flux variations, we found a solution that

properly attributed divide migration to accumulation-rate variations.

5.4.3. Temporal variation in external-flux forcing

While variations in the spatial pattern of accumulation can drive
divide migration, we expect that externally forced changes in ice flux will be
the primary control on longer-term variations in ice-divide position. For
example, Conway and Rasmussen (2009) found that the present-day WAIS
Western Divide is undergoing dynamically forced migration toward the Ross
Sea. Ice sheets can experience significant changes in ice flux at their
margins, especially if the ice-sheet margins are marine based. This has
occurred most notably at glacial-interglacial transitions, and in particular
from the last glacial maximum to the present, when sea-level was more
than 100 meters lower than it is today (e.g. Lambeck and Chappell, 2001).
Ice-divide position is influenced by changes in margin geometry that can
affect flow at the center of the ice sheet, and also by changes in ice-stream
activity.

In the second test, we generate synthetic internal-layer data, ice-
surface velocity data, and accumulation-rate data using an accumulation
history that does not vary in space or time, but does have variations in
external flux. These synthetic data are used to solve the inverse problem for
these known histories of accumulation and ice flow, and Figure 5.5 shows
the results of this test. We start from an initial guess with no flux
variation, but set a high tolerance on our initial guess so that the external-
flux history can vary if dictated by the data. Figure 5.5 shows that the
imprint of external flux on internal-layer shapes is distinct enough that we

can recover changes in divide position when these layer shapes are used in
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an inverse problem. However, divide migration can be attributed to local
accumulation-rate variations, or to external-flux variations. If the data do
not provide enough information to properly attribute divide migration to the
correct forcing, we must use constraints to find the best history that can
reproduce the data. In the results shown in Figure 5.5, we used a constraint

that the accumulation rate should be spatially smooth.
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Figure 5.5. Solution to the inverse problem with constant accumulation forcing, and
divide migration from external-flux variations. Solid lines represent the target solution,
dashed lines represent the solution inferred by solving the inverse problem, and dotted
lines represent the initial guess. a) The accumulation rate at three times (-9 kyr, -6 kyr, -4
kyr); the target accumulation is constant. b) The change in ice-divide position. ¢) The
change in external flux on the left side of the divide.
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Figure 5.5 shows that some variation in the rate and pattern of
accumulation over time can also fit the data and satisfy the constraints. We
apply an additional constraint to better infer the actual accumulation and

external-flux histories.
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Figure 5.6. Solution to the inverse problem with a constant accumulation history, but
divide migration forced by external-flux variations. Black lines represent the target
solution, dashed lines represent the solution inferred by solving the inverse problem, and
dotted lines represent the initial guess. a) The accumulation rate at three times (-9 kyr, -6
kyr, -4 kyr); the target accumulation is constant. b) The change in ice-divide position. c)
The change in external flux on the left side of the divide.
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Figure 5.6 shows the results of a test where we use a constraint that
the accumulation rate should be spatially smooth and also should be
temporally smooth. By penalizing solutions that exhibit accumulation-rate
variations in both space and time, we can infer the correct histories of

external-flux forcing and of accumulation forcing.

5.4.4. Variations in accumulation and external-flux forcing

In the third test, we generate synthetic internal-layer data, ice-
surface velocity data, and accumulation-rate data using an accumulation
history that varies in space and time, and with external-flux forcing that
varies in time. These synthetic data are used to solve the inverse problem
for these known histories of accumulation and ice flow, and Figure 5.7
shows the results of this test. In this test, we constrained accumulation rate
to be spatially smooth.

As part of the accumulation-rate history in Figure 5.7a, the spatial
pattern of accumulation may vary linearly through time, but also may vary
as a sine function. We used the constraint that the accumulation rate
should be spatially smooth, but Figure 5.7b shows that there must be some
spatial variation in accumulation in order to fit the data. A smoothed
version of the actual accumulation history can still fit the data. This
accumulation history, and the well-reproduced history of external-flux
forcing, give a history of divide position that well approximates the actual

history (Figure 5.7c).
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Figure 5.7. Solution to the inverse problem where accumulation-rate varies in space and
time, and external flux varies in time. a) Actual accumulation-rate history. b) Inferred

accumulation-rate history.

c¢) Change in divide position associated with changes in

accumulation and changes in external flux.

5.5. Results with data from Taylor Mouth, Antarctica

5.5.1. Steady-state results

Waddington and others (2007) solved the inverse problem to infer a

steady-state pattern of accumulation using an internal layer, a modern

accumulation-rate measurement, and modern ice-velocity measurements

from Taylor Mouth, a flank site off Taylor Dome, Antarctica. The internal

layer used by Waddington and others (2007) was undated. In addition to
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solving for the spatial pattern of accumulation, the layer age and the ice flux
entering the flowband were treated as unknown parameters in their inverse
problem. There were four ice-velocity measurements and one accumulation-
rate measurement available. The internal layer that they used had an
inferred age of ~1660 years, and was ~100-200 m below the surface (the
shallowest layer shown in Figure 5.8). Waddington and others (2007)
reported that the accumulation rate in this area has been roughly in steady-
state over the past 6,000 years. Therefore, we expect that an accumulation-
rate pattern inferred using other internal layers with ages less than ~6,000
years should be similar to the stready-state pattern inferred by Waddington
and others (2007) from the ~1660 year-old layer.
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Figure 5.8. Internal layers and ice-sheet geometry at Taylor Mouth, Antarctica. Gray
dots mark the location of surface-velocity measurements. An accumulation-rate estimate is
available at the ice-core site. The shallowest layer (bold) was used in the steady-state
problem solved by Waddington and others (2007).

First, we solve the inverse problem three additional times using the steady-

state forward algorithm from Waddington and others (2007) with three

171



Chapters: Inferring transients from internal layers

additional internal layers that span ~3000 years. Figure 5.8 shows these
additional internal layers and the surface and bed topography of this profile
from Taylor Mouth. Figure 5.9a shows the inferred steady-state pattern of
accumulation from each layer, found by solving the inverse problem using
one internal layer at a time and using the same surface-velocity
measurements and the one accumulation-rate measurement at this site, as

given by Waddington and others (2007).

5.5.2. Transient results

Next we solve an inverse problem using a transient forward
algorithm and all four internal layers from Taylor Mouth (Figure 5.8)
together to find an accumulation history that is consistent with all four
layers. We use the layer ages inferred by solving the steady-state inverse
problem using each layer individually.

Figure 5.9b shows the accumulation-rate history found by solving an
inverse problem using a transient ice-flow model and all four internal
layers. In this test, we constrained the accumulation rate to be spatially
smooth. This solution shows spatial and temporal variability in
accumulation that is not exhibited in the accumulation patterns inferred by
solving four separate steady-state inverse problems. This occurs because
few data are available and minimal constraints were applied to constrain
this transient problem. For example, no layers are available from 1660
years to the present, and there are no reliable modern accumulation-rate
measurements. The few data available can be fit with an accumulation
history that varies through time, and without additional constraints an
accumulation history that changes in time is not penalized. In addition, in a

transient problem there can be trade-offs between accumulation variations
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and ice-thickness variations. Those tradeoffs can lead to a solution with

more structure than the solution to the steady-state problem.

Patterps of accumylation rate (pw yr" ) ‘ a
0_1 L R .

0.06;
0.02

0.1
0.06
0.02 | | ‘ ‘ e — 3
2 4 6 8 — s
History of accumulation rate (m ') _
0.1~ — :
0.06 aans )
0.02 — -
10 12
d
0.1 7
0.06 7
0.02- | | | ‘ ‘ _'
2 ! > g 10 12

Distance along flowband (km)

Figure 5.9. Results from solving inverse problems using data from Taylor Mouth. a) Four
patterns of accumulation, found by solving four separate steady-state inverse problems
(following Waddington and others 2007). b) History of accumulation rate found by solving a
transient inverse problem with all layers. ‘SS’ is the steady-state solution for layer 1 from
panel a, and ‘modern’ is the present-day pattern. ¢) Transient solutions constrained to
produce a temporally smooth accumulation history. d) Transient solutions using a known
initial ice thickness, and constrained to produce a temporally smooth accumulation history.

Figure 5.9c shows the accumulation-rate history found by solving a
transient inverse problem using all four internal layers, and constraining

the accumulation rate to be temporally smooth. This additional constraint
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1s warranted in this case because we expect that these few data come from
an ice sheet in steady state, and because we seek the minimum variation in
accumulation that is required to fit the data. By imposing an additional
constraint, a solution with less temporal variability is found. However, the
ice-sheet thickness still changes in time. This leads to a spatial pattern that
differs from the steady-state solutions.

Figure 5.9d shows the accumulation history found by solving a
transient inverse problem using all four internal layers, constraining the
accumulation rate to be temporally smooth, and assuming that the ice

thickness initial condition (S]") is known. Compared to Figure 5.9b and

Figure 5.9c¢, a different accumulation rate is found. This demonstrates that
available data and imposed constraints influence the solution. Especially in
the case where few data are available to constrain a transient problem, the

a priori information imposed on the problem is very important.

5.6. Discussion

5.6.1. Initial estimate of parameter values

To solve the inverse problem, all parameter values must be estimated
at the first iteration; the iteration loop on the nonlinearity in this problem is
discussed in Section 5.3.2, and illustrated in a flowchart in Appendix K.
The initial ice flux entering the domain Qi» at the first node, the initial ice-
surface elevation at the first node S}, the ice-flux forcing external to the
limited domain Qex(x,f), the temperature-independent ice-softness
parameter Ao, and the geothermal flux Qg are all estimated using any
knowledge of these parameters at each specific site. This may come from

present-day measurements, or from ice-core measurements. The internal
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layers are assumed to be well-dated, and we these values for their initial
estimates. If the layer ages were unknown, we could solve for them as part
of the inverse problem, but additional data or additional constraints may be
necessary to find a unique solution. The accumulation rate at each time
node and at each spatial node is initially estimated from a 1-D vertical
strain approximation (called the Local Layer Approximation, Waddington
and others 2007) using the depth and age of the internal layer.

Unlike a Monte-Carlo algorithm, our gradient algorithm does not
search the entire model space to find the best parameter set. There may be
multiple minima (i.e. multiple solutions); a gradient method can find only
one solution, and a Monte-Carlo method can find multiple solutions. The
gradient algorithm has the advantage of being computationally efficient, but
it has the disadvantage of possibly being dependent on the initial estimate
of the parameter values. For the steady-state version of this problem
(Waddington et al., 2007), Steen-Larsen and others (In Press) showed that a
gradient algorithm and a Monte-Carlo algorithm gave similar results.
While we assume that the gradient algorithm yields a robust result, we can
start from different initial estimates of the parameter values in order to
express the range in the inferred parameter set due to the dependence of the
solution on this initial estimate. This may also identify multiple solutions
to the problem, and is a compromise between using only a gradient
algorithm and using a Monte-Carlo algorithm; a Monte-Carlo solution to
this transient problem is too computationally intensive to perform now with

this transient ice-flow model.
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5.6.2. Solution sensitivity to unknown parameters

Formal inverse theory allows us to investigate our ability to infer
unknown parameters; this ability is known as the resolving power. The
preferred solution from our regularized algorithm is a model that minimizes
the performance index Ip in Equation 5.17, and fits the data at an expected
tolerance, satisfying Equation 5.20. However, we still do not know whether
we have found the best parameter values and the most realistic spatial
variability of the parameters. It is important to assess the ability to resolve
those parameters before making physical inferences from the preferred
solution. In a linear problem, model resolution can be straightforward to
assess (e.g. Aster and others 2005, pg. 63). However, Parker (1994, pg. 200-
213) showed that when using a regularized algorithm, the inferred structure
is a version of the true structure that has been smoothed by a set of
narrowly peaked model-resolving functions. The half-width of the resolving
function at each spatial position gives the physical scale over which
meaningful structure can be resolved. Features with shorter spatial extent
than this cannot be resolved with confidence from these data and this
forward algorithm. The resolving power will depend on the specific
problem, but in general we expect that the spatial resolving power will
decrease with distance from the divide (Waddington and others 2007), and

that the resolving power will decrease back in time.

5.6.3. Additional data

We are solving an inherently ill-posed problem, and utilizing all
available data will give the best ability to stably find a unique solution. In
particular, additional data that constrain the history of accumulation rate

will be the most valuable to this problem. As reported by Spencer and
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others (2006), a promising prospect for estimates of past accumulation rates
could come from the number-density of bubbles in an ice core. Past
accumulation rates may also be available from beryllium-10 measurements
(e.g. Raisbeck and others, 1981). However, uncertainties in these estimates
may be high. We can establish the precision required for these data to
provide useful constraints to this inverse problem.

While we are target deep layers because they contain information
from further in the past, shallow layers are important because they describe
the modern accumulation-rate pattern. As shown in Figure 5.9b, if there is
a significant temporal gap between the youngest layer and the present day,
the accumulation history during this time may be poorly constrained. In
addition, the resolving power of our algorithm decreases with distance from
the divide because particle-path lengths increase with distance from the
divide (Waddington et al., 2007). Modern accumulation-rate, ice-thickness,
or ice-velocity data that exist away from the divide are stronger constraints

on the solution.

5.6.4. Additional regularization
While penalizing large values of || p”2 given by Equation 5.30 does

help to prevent the solution from exhibiting roughness that is not required
by the data, in a transient problem we may need an additional constraint.
In our transient problem, information about the accumulation history and
the ice-thickness history comes primarily from dated internal layers. The
internal layers alone may not be able to properly attribute temporal changes
that may be required to fit the data; temporal changes in accumulation and
temporal changes ice thickness can have a similar affect on internal-layer

structure and depth. In addition to penalizing spatial or temporal
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roughness of the accumulation-rate solution, we could penalize deviations
from an average value, or strictly require that global parameter values (e.g.
input flux Qin, ice-thickness value Sin, temperature-independent ice-softness
parameter Ao) cannot deviate from their characteristic values within a given
tolerance.

Since the imposed constraints influence the solution, it is important
to apply spatial and/or temporal constraints at locations or at times that
they are expected to apply. For example, a temporally smooth accumulation
history may be expected in the past few thousand years of the Holocene, but
not during the last glacial-interglacial transition. If a priori information is
limited, we advocate imposing as many constraints necessary to find a
physically meaningful solution. Seeking the minimum structure that is
required to fit the data will help to avoid overfitting the data.

The solution reflects a balance between fitting the data and finding a
smooth model, and that balance is weighted by the trade-off parameter
(Equation 5.17). We expect a trade-off parameter that is order one.
Therefore, the value of the trade-off parameter indicates whether the
constraints are oversmoothing (or undersmoothing) information that is
actually reflected in the data. For example, if a trade-off parameter must be
much larger (or smaller) than unity to find a solution that fits the data,
solutions using different constraints should be investigated.

Regularization by solving a damped least-squares problem (Tikhonov
regularization) may not be enough to stabilize the problem and find a
unique solution. This is discussed generally in Section A5.3, and Parker
(1994, pg.160) discusses how to use SVD to assess the reliability of the
solution to a given problem. Regularization should sufficiently reduce the
influence of nonphysical parameter values, either by damping or removing

their contribution to the solution. It is insightful to use the singular vectors
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associated with the model space (V in Equation A5.3.6, known as the right

singular vectors) to analyze effect of regularization.
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Figure 5.9. a) Singular-value spectrum for a regularized solution. b) Two singular vectors
associated with small singular values (parameter index 170 and 175). The black line shows
noise that contributes nonphysical information about the solution, and the dashed line
shows useful information about the solution.

In our problem that has been regularized by Tikhonov regularization,
the singular vectors associated with the largest singular values are
projections of our smoothness constraint (the model norm). The singular
vectors containing the physical structure of our solution is often associated
with the smallest singular values, and therefore truncating the singular
value set in an already regularized problem could discard useful information
about the solution. However, if the problem has not been sufficiently

regularized, the singular vectors associated with the smallest singular
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values could introduce noise to the solution. Figure 5.10 illustrates this
case. The singular-value spectrum is shown in Figure 5.10a, and if no
singular values are truncated, both singular vectors shown in Figure 5.10b
will contribute to the solution. The spike function (solid line) in Figure
5.10b does not contain physical information about the solution, whereas the
singular vector associated with a slightly larger singular value (dashed line)
does contain useful information about the solution. Even though the
singular value associated with the unphysical singular vector is small, it
must be set to zero to remove the influence on the solution.

The magnitude of the singular values is determined by how each
contribution to the Jacobian matrix is scaled in the inverse algorithm (see
Equation A5.3.3). Finding an appropriate weighting scheme is critical to
suitable regularization, and to account for the relative contributions of
different physical parameters. For example, Jacobian elements of the
partial derivatives of modeled observables with respect to input ice flux
Qin(to), to ice-surface elevation at one location at the initial timestep Sin(%o),
to temperature-independent ice-softness parameter Ao, or to geothermal flux
Qg0 may be different orders of magnitude, and these parameters can
influence every modeled observable. In comparison, changes in an

individual spatial and temporal value of accumulation rate b(x;, t;) will have

a limited influence on the set of modeled observables.

5.7. Conclusions

Internal layers are the most accessible archive of the history of
accumulation rate, ice thickness, ice-divide migration, and external flux
forcing. Using a new inverse approach, we can infer these histories from

internal-layer shapes. We present this new method, and demonstrate that
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prescribed histories can be inferred from synthetic data. Using data from
Taylor Mouth, Antarctica, we highlight the sensitivity of the solution to the
data available and to the imposed constraints. To stably find a unique and
physically meaningful solution, it is necessary to use a priori information to
constrain the solution. The constraints should be chosen carefully. If
limited a priori information is available, we advocate finding a solution with
the minimum variation that is required to fit the data and satisfy the
constraints.

The solution to this inverse problem is better defined if the internal
layers are dated by an intersecting ice core. This approach is well-suited to
data in the vicinity of ice divides, and can provide information that is

essential to ice-core interpretation and ice-volume reconstructions.
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A5.1. Ice-velocity shape functions

We can calculate the average horizontal velocity U(x,t) using the

Shallow Ice Approximation (SIA; e.g. Hutter, 1983, pg. 256-332; Paterson,
1994, pg. 262); the SIA is a simplifying assumption that can be applied in
cases where the ice thickness A(x,f) is much smaller than the horizontal
span of the ice sheet. Therefore, derivatives of velocities and stresses with
respect to x are generally much smaller than derivatives with respect to z.

The constitutive relationship for ice flow (Glen, 1955) using the SIA is,

&, = AT(x zt)r,, (A5.1.1)
where &, 1s the simple-shear strain-rate along a horizontal plane,
A(T(x,z,t)) is the temperature-dependent ice-softness parameter, 7,is the

shear-stress tensor along a horizontal plane, and we choose the flow law

exponent n=3 (e.g. Paterson, 1994, pg. 85). The temperature-dependent ice-

softness parameter A(7T(x,zt)) follows an Arrhenius relationship (e.g.
Paterson 1994), given by Equation 5.13.

The components of the strain-rate tensor along a horizontal plane are

, :%(% + %"XVJ (A5.1.2)

Following the SIA, the derivatives of velocities with respect to x are

negligible, giving 2¢,, =du/0z (e.g. Paterson, 1994, pg. 262). Using the flow

law given by Equation A5.1.1 for the SIA, and assuming that the
temperature is uniform with depth for each position in x (T(x,z,t)=T(x,t)), the
depth-averaged horizontal velocity can be found by integrating du/0dz twice

over depth z,

ds

— o 2A(T(x,1)) n
E e WG

: (—ﬁjh(x)“ﬂ (A5.1.9)
dx
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where p is density, g is gravitational acceleration, S(x,t) is the ice-surface

elevation, and A(x,t) is the ice thickness.

If the ice temperature is not uniform with depth at each location
(T(x,z,t) 1s not equal T(x,t)), we can solve for an effective-isothermal value of
the ice-softness parameter. The effective isothermal-softness parameter

;‘\(x,t) is the isothermal softness parameter required to give the same

depth-averaged velocity and ice flux as using a depth-varying-temperature-
dependent softness parameter A(71(x,zt)). We calculate the effective

isothermal value by using the depth-averaged ice velocity u(xt) with

A(T(x,z,t)),

T(x.t)= 2A0(pg aséi’t)j h(x)“ﬂjjex;{—%]a—5)"d5d2, (A5.1.4)

and equating to the depth-averaged velocity U(x,t) from Equation A5.1.3,

and solving for A(7T(x,t)), given as here as ,Z\(x,t),
12
A(X,t) = (n+ 2)” AT (X, ¢, t))(L-¢)"ddd2. (A5.1.5)
00

The ice-velocity field wu(x,z,t) is calculated from the average velocity
and from a velocity shape function (Equation 5.6), where
¢(x,2,t) =u(x,2,t)/u(x,t). For example, the horizontal velocity shape
function for an isothermal temperature field and using the SIA is given by

A _N+2

% 2 —m(l—(l—i)”*l). (A5.1.6)

However, we target ice-sheet interior sites, and our approach is particularly
well suited for use with ice-sheet data that span an ice divide. Therefore,
depending on the specific problem, we can also employ shape functions that
are appropriate for ice-divide flow. Following Nereson and Waddington

(2002), the horizontal velocity shape function is split into two terms,

183



Chapters: Inferring transients from internal layers

including a contribution from pure ice-divide flow and a contribution from
pure flank (off divide) flow. For our transient problem this is given by

(X, 2,t) =a(X) ¢, (z,t) +[1-a(X)]g, (Z,1) (A5.1.7)
As described by Nereson and Waddington (2002), a(x) is a partitioning
function that assigns the relative contributions of divide flow and of flank
flow across the domain, where a =1 at the divide and decreases to zero
away from the divide. Using a Dansgaard-Johnsen description of the
velocity shape functions (Dansgaard and Johnsen, 1969) results in a
horizontal velocity shape function ¢(z,t)given by

1 z
1_(hf,d /2) hf,d

!
@ 4 (1) = 1=(n, , 12 for z=h, (A5.1.9)

where hf is representative of flank flow and hq is representative of divide

@ q(2t) = for z<h,,

(A5.1.8)

flow such that O<h, <h, <1. The vertical velocity shape function is the

integral of the horizontal-velocity shape function. In this Dansgaard-
Johnsen formulation, following Nereson and Waddington (2002), the

vertical velocity shape function is given by

1 z°
Z,t) = fi <h
VialB) = T 2) o eshe (A5.1.10)
W2 =—rt(z-n, 12) for z>h
f.dd™ 1_‘hf,d /zj f R (A5.1.11)

The appropriate value for hf and hq is a site-specific decision; we chose

h=0.2 and hq=0.6.
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A5.2. Boundary and initial conditions

In our calculation of ice-sheet evolution, the ice-surface profile S(x) is
required as an initial condition. We estimate this ice-surface profile using a
steady-state calculation, which requires the ice thickness at one location in
the domain as a boundary condition. This boundary value, which we define
at the start of our domain and we refer to as S¢", is treated as an unknown
parameter in our inverse problem.

To calculate the ice-temperature field T(x,z,¢) 1n a
thermomechanically-coupled problem we must estimate the temperature
field in order to calculate ice-surface evolution and the ice-velocity field.
The temperature field is iteratively updated with these calculation values
until a consistent ice-temperature field, ice surface, and ice-velocity field are
found. If the temperature field does not change in time, and therefore is not
thermomechanically coupled to the transient ice-flow field, we can still
achieve a realistic temperature field by prescribing the boundary conditions
of surface temperature and of geothermal flux. From these boundary
conditions, the depth variation in ice temperature follows from Fourier’s

Law of heat conduction (e.g. Van der Veen 1999, pg. 178)

T(x2)=T(x,2=1)+ Qlf AZ (A5.2.1)

where 2=1 at the surface and T(x,z=1)is the surface temperature

boundary condition, K is the thermal conductivity (which may be a function
of ice temperature, Paterson 1994 pg. 205), Qgeo 1s the geothermal flux, and
AZ 1s the depth increment. The geothermal flux Qg 1s treated as an
unknown parameter in our inverse problem. This temperature field is used
to calculate the effective-isothermal ice-softness parameter (Equation

A5.1.5) in the flow law.
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A5.3. Damped least-squares solution

A least-squares solution is one where the inferred model parameters
minimize a 2-norm of residuals r =Gm-d, and enables an approximate
solution be found when an exact solution to Equation 5.1 does not exist; the
least-squares solution is considered to be “the next best thing” to an exact
solution (e.g. Menke, 1989, pg. 45). However, the standard least-squares
solution procedure can fail if multiple solutions exist (e.g. Menke, 1989, pg.
45). In this case, not enough information is available to find a unique
solution, and the problem is at least partially underdetermined. The
problem may also be ill-posed, making the least-squares solution procedure
unstable. As discussed in Section 5.3.1, regularization is used to find a
unique solution, and to stabilize the solution procedure. A least-squares
solution that has been regularized with Tikhonov regularization is called a
damped least-squares solution (e.g. Aster and others 2005, pg. 91). The
damped least-squares solution procedure used here is the same procedure
used by Waddington and others (2007).

As discussed in Section 5.3.2, we have linearized our otherwise
nonlinear problem to find updates to the unknown parameter values Ap
such that we minimize the performance index Ip, given by Equation 5.17,
until Equation 5.20 is satisfied. Following Waddington and others (2007), if
the model residuals and data residuals are combined into a single vector e
of size (Na + Mp), their respective weights (given by v2 for the data
residuals) combined into a matrix W of size (Na + Mp) X Mp, and the
Jacobians (see Section A5.4) are combined into a single matrix J of size (N4

+ Mp) X Mp, the reformulated performance index I, is

M ,+Nq , Mo 9 MptNg M, g 2
1, = > W2 —uT?+21 Y —Ap, [+ D WD —Ap, (A5.3.1)
i=1 =1 0Py i=1 =1 0Py
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It follows that the partial deriviative 0l j/dp, is

al M +Nd Mp+Ng 3.0 M,
i R L 06 Zaq Ap, =0 (A5.3.2)
op; = a = 0P, i1 0P,

This set of linear equations can be expressed as normal equations for the
least-squares problem (e.g. Aster and others 2005, pg. 237). From Equation
Ab5.3.2 this is given by

JTWTWAp =J"W T WJe (A5.3.3)
where Ap is the vector of parameter-value updates that we are solving for:

ap =[ITWTWI I TW TWJe (A5.3.4)
If A=WJ, x = Ap, and b=We, Equation A5.3.3 regains the standard normal-
equation form

ATAx=A"b (A5.3.5)
Singular value decomposition (SVD) is an important way to examine and
solve a least-squares problem, in particular one that is rank-deficient and/or
1ll-posed (e.g. Aster and others 2005, pg. 55). In the form of Equation
A5.3.5, the SVD of matrix A yields,

A =UAV' (A5.3.6)
where U are the unit basis vectors that span the data space, V are the basis
vectors that span the model space, and A are the singular values. The
singular values are ordered by size, largest to smallest, and some of the
singular values may be zero; A is rank deficient if it contains any singular
values that are equal to zero, and if there is a sharp transition between
nonzero and zero singular values (e.g. Aster and others 2005, pg. 67). The
SVD can be used to calculate the generalized inverse of A, which is given by

AT =VAUT (A5.3.7)
Unfortunately, even damped, small singular values can still cause

instability in the generalized inverse solution. Fortunately, the SVD allows
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the singular-value spectrum to be analyzed, and the trivial (but nonzero)
singular values can be neglected (i.e. set to zero) to improve stability (e.g.
Aster and others 2005, pg. 64; Eisen 2008). If the set of singular values A
transitions abruptly to zero, it is more obvious where to truncate the
singular-value set, but otherwise this cutoff must be chosen. Truncating the
singular-value set requires finding a balance between stability and solution
accuracy; truncating singular values can eliminate useless information, as
well as useful information. We chose to not cutoff additional singular
values, but to regularize our problem primarily with our smoothness
constraint. Suitable regularization may be sensitive to how the Jacobian
matrix J is weighted using the matrix W; consistent normalization can be
critical if the Jacobian is comprised of different physical quantities. In the
case where Tikhonov regularization alone i1s not sufficient, and since
truncating singular values is a useful regularization tactic, we discuss this
strategy in more detail.

Generally speaking, if A has size N X M, where N represents the
number of data and M represents the number of model parameters. Matix
A can be reduced based on its rank. The rank is the number of non-zero
singular values (e.g. Aster and others 2005, pg. 233). In a numerical
problem, zero may be determined by machine precision, and it is possible
that these very smallest singular values could still introduce noise, and it is
good practice to reduce the matrix A by its rank. As discussed by Eisen

(2008), the SVD of A can also be given by

A =UeAgVe' (A5.3.8)
where A has been reduced by its rank R. SVD, and this reduced-rank form
of A, is highly flexible because it is valid for over-determined (/N > M) and

under-determined (/N < M) problems. This is accomplished by handling both
a possible model null space (if R < M there exists V spanning M X (M-R))
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and a possible data null space (if R < N there exists U spanning N X (N-R)).
If there is a non-trivial data null space, it will not be possible to fit the data
exactly. If there is a non-trivial model null space, the model parameters
cannot be recovered exactly. Suppressing non-trivial null spaces is a central
purpose of regularization, and if this has not been accomplished by
Tikhonov regularization alone, we set values in the null spaces of A to zero.
As discussed by Wunsch (1996, pg. 147), setting null-space values to zero
further removes structure in the solution that the data do not require.
Another way to judge if additional truncation of the singular-value set may
be required is if the condition number of the reduced A remains large; in
particular if there is a significant difference in the order of magnitude of the
largest singular value and all other singular values. For example, the
condition number might be approximately the inverse of the machine
precision, indicating that small, but not exactly zero, singular values may
influence the solution. In this case the system is nearly linearly dependent
and singular values less than a prescribed cutoff value may need to be set to
Zero.

The prescribed cutoff is best chosen in context of the specific problem
onhand, and some suggestions are given by Eisen (2008) and Menke (1989,
pg. 123). For example, if there is a distinct break in the distribution
between large and small singular values, a truncation point may be obvious.
However, in a discrete ill-posed problem, the singular-value spectrum does
not exhibit a distinct break in slope, and the truncation point may not be
obvious. A meaningful way to determine this cutoff point is to analyze the
basis vectors (singular vectors) that span the model space, V from the SVD
of A using Equation A5.3.6. As illuminated in an example by Parker (1995,
pg. 160), assessing if the structure in each singular vector is or is not a

meaningful representation of structure in the expected solution set is very
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insightful. Fortunately, by nullifying the singular values associated with
these unphysical singular vectors, the singular vectors containing
meaningful structure can form the solution; the problem is effectively
regularized.

In addition to regularization, in some cases it was necessary to use
underrelaxation to stabilize the algorithm. Underrelaxation further damps
the magnitude of the inferred parameter changes at each iteration; this is
similar to the form of underrelaxation used for the implicit ice-surface

calculation in Chapter 4. If necessary, we used a relaxation factor of 0.5.

A5.4 Calculation of Jacobian Matrix

To solve our linearized problem, we must calculate a Jacobian that
expresses how changes in each model parameter p; affect the value of each

modeled observable 0™. The Jacobian matrix is of size (Na + Mp) X Mp. The

partial-derivative components of the Jacobian can be calculated by
approximating each derivative numerically, or by formulating analytical
expressions that directly relate model parameters to predictions of data
values. While we use a strictly numerical calculation here, analytical
expressions for some partial derivatives have been derived, and are given in
Appendix N.

A derivative can be approximated numerically using a finite-
difference scheme, and commonly used difference schemes include the
forward difference, backward difference, and centered difference (e.g.
Carnahan and others 1969, pg. 35). The order of the difference scheme

depends on how many terms from the Taylor expansion are retained. In

190



Chapters: Inferring transients from internal layers

general form, a first-order centered-difference derivative of a function F(x) is

given by

dZiX) :%(F(X'Fd() _ F(X_d()) (A541)

where 0x is small.

The numerical Jacobian calculation can be highly sensitive to the
finite-difference scheme used to approximate the derivative, and higher-
order schemes are more computationally expensive. We want to use the
simplest difference approximation possible, but we require stability and
accuracy in the calculation. In our problem, different approximations of the
derivative and different perturbation sizes 6x can hugely influence the
accuracy of the calculation. While a centered-difference approximation
requires twice as many calculations as a forward difference or a backward
difference, we find that it is much more accurate. Therefore, we use a
centered-difference scheme to approximate the derivatives in our Jacobian
matrix. We perturb each parameter in turn by adding a small perturbation
Opj, and in a separate calculation by subtracting a small perturbation &pj,
and we calculate a new set of modeled observables corresponding to these
two different sets of perturbed parameter values; this requires 2M),
calculations of the forward algorithm. We find that the perturbation length
used in the numerical calculation is critical for accuracy. Onur and Eyi
(2005) derive an optimal perturbation that balances truncation error and
computer round-off error. For a nondimensionalized problem where the

parameter values are order one, Onur and Eyi (2005) suggest that the
optimal perturbation length to be 2,/%,, , where Z,, is the machine-working

precision. In our case the perturbation length is the fraction of change in
each parameter value 6p;. Our double-precision calculations are good to

within 2x107, and a suitable perturbation length is 29x10®. While the
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parameter values in our calculation of the Jacobian matrix are not all order
one, we tried a range of perturbation lengths and found that values from

10-6 to 10-8 gave consistent approximations of the partial derivatives in this

problem.
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Chapter 6

Inferring Histories of Accumulation Rate, Ice Thickness,
and Ice Flow for Central West Antarctica

Tom Neumann, Howard Conway, and Kenny Matsuoka provided the data presented in this
chapter.

A deep ice core is currently being drilled in Central West Antarctica. As discussed
in Chapter 5, histories of accumulation and ice dynamics are necessary to
properly interpret ice-core chemistry, and to develop a depth-age scale for
the parts of the core where annual-layer counting is no longer possible.
Solving the 2.5-D transient inverse problem is the appropriate way to infer
histories from internal-layer shapes, because we expect that spatial and
temporal variations in accumulation were significant. Here we describe the
context for inferring histories of accumulation rate and ice dynamics in
Central West Antarctica, and discuss data available to solve this inverse
problem near the WAIS Divide ice-core site.
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6.1. Introduction

A deep ice core is currently being drilled in Central West Antarctica;
this core is referred to as the West Antarctic Ice Sheet (WAIS) Divide ice
core. The high accumulation rates at this site should allow annual-layer
counting back ~40 kyr, which will facilitate detailed comparison with
Northern Hemisphere ice-core records. The high accumulation rate also
means that the age difference between the occluded gas and the
surrounding ice will be small, because this delta-age value at pore close-off
depth depends on the accumulation rate (e.g. Sowers and others 1989).
However, the geothermal flux in this area is poorly known, and the oldest
ice at this site may have been lost to basal melting (e.g. Morse and others,
2002; Neumann and others, 2008). In addition, the divide position may
have migrated, and the ice core is being drilled ~24 km off the present-day
divide to avoid stratigraphic disturbances and complications from divide

migration.

As discussed in Chapter 5, histories of accumulation and ice dynamics
are necessary to properly interpret ice-core chemistry, and to develop a
depth-age scale for the parts of the core where annual-layer counting is no
longer possible. In addition, solving the 2.5-D transient inverse problem is
the appropriate way to infer histories from internal-layer shapes, because
we expect that spatial and temporal variations in accumulation were
significant. Here we describe the context for inferring histories of
accumulation rate and ice dynamics in Central West Antarctica, and discuss
data available to solve this inverse problem near the WAIS Divide ice-core

site.
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6.1.1. Previous Work

Site-selection criteria for the WAIS Divide ice core are described by
Morse and others (2002). A long-term, high-resolution record was desired,
and therefore a site with thicker ice, higher accumulation rate, and
hopefully lower heat flux was chosen. Morse and others (2002) found that
there is a strong spatial gradient in accumulation rate, with values
increasing to the North across the divide. Neumann and others (2008)
tracked radar layers between the WAIS Divide site and the Byrd ice-core
site ~185 km away (e.g. Gow and others, 1968), and using layer dated from
the Byrd core they developed a depth-age relationship at WAIS Divide.
Then, following Waddington and others (2005), they found suitable
combinations of the accumulation-rate history, ice-thickness history, and
basal-melting history that could match their derived depth-age relationship
within the measurement uncertainty. Neumann and others (2008) used a 1-
D model with simplified ice dynamics to calculate histories of accumulation
rate and ice dynamics. The deepest layer they used was 8400 years B.P.,
and they found that the accumulation rate was higher from 3000-5000 years
ago and that the divide has been migrating through the Holocene.

Present-day divide migration has been reported by Conway and
Rasmussen (2009). They find that the present-day divide is moving towards
the Ross Sea at 10 m yr!, and thinning at ~0.08 m yrl. Conway and
Rasmussen (2009) find that this magnitude of divide migration is driven by
ice dynamics, rather than by local accumulation-rate variations. The WAIS
Divide is dynamically influenced by ice streams on the Ross-Sea side and
the Amundsen-Sea side. Given the recent speed up of Thwaites and Pine
Island glaciers on the Amundsen-Sea side, and the recent stagnation of
Kamb Ice Stream (e.g. Joughin and Tulaczyk, 2002) on the Ross-Sea side, it

is evident that dynamical changes can be significant.
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Figure 6.1. Map of West Antarctica highlighting the WAIS Divide ice-core site, the Byrd
ice-core site, and the Siple Dome ice-core site. Ross Ice Streams and Thwaites and Pine
Island glaciers are outlined. Map from Morse and others (2002).

Siegert and Payne (2004) used internal layers and a 1-D vertical
strain model to estimate accumulation rates over the past 16,000 years
across Central West Antarctica. However, it is likely that internal-layer
depths have been affected by spatial variations in total vertical strain over
this time. Siegert and Payne (2004) suggest that the accumulation rate
from has been relatively stable over the past 3100 years, but it was lower
6400-16,000 years ago. This result is influenced by the actual ice-thickness
history, but is supported by modeling results from Huybrechts (2002), and is

consistent with Neumann and others (2008).

6.2. Data
6.2.1. Internal layers

Neumann and others (2008) describe ground-based radar data that
were collected during the 2002-03 and 2003-04 field seasons. A 7-MHz
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radar was used to detect layers from 30-1000 m below the surface, and a 1-
MHz radar was used to detect layers from 300 m below the surface to the
bed. The deepest continuous layer is an extremely bright reflection because
it has high-acidity content (Hammer and others, 1997), and this so-called
“Old Faithful” layer is dated to ~17,500 years B.P. (e.g. Jacobel and Welch,
2005b). In these ground-based radar data, no layers can be continuously
traced to the Byrd core between 8400 and 17,400 years. Figure 6.2 shows
eight layers detected with the 1-MHz radar, dated from 3500 — 17,345 years
B.P. (e.g. Neumann and others 2008).
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Figure 6.2. Ground-based radar data across the WAIS Divide from Neumann and others
(2008). Left panel shows travel-time returns from 1-MHz radar, and white lines highlight
continuous internal layers that are traced to the Byrd core. The same internal layers are
shown in the right panel, where travel time has been converted to depth, and the ice-sheet
geometry and ice-core site are shown for context. The internal layers are dated ~3.5 ka,
~4.3 ka, ~4.6 ka, ~4.85 ka, ~5.95 ka, ~7.2 ka, ~7.8 ka, and ~17.3 ka.

Airborne radar data were collected across the WAIS Divide during
the 1999-2000 season. Figure 6.3 shows the locations of the SOAR flight
lines in the vicinity of the WAIS Divide ice-core site. Omne flight line

connects to the Byrd core, and other flight lines follow ice-flow lines. The
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Center for Remote Sensing of Ice Sheets (CReSIS) at the University of
Kansas has collected radar data that target the deepest layers near the
WAIS Divide (e.g. Laird and others, In Press). It may be possible to
interpolate these data to ice-flow lines, and then to use these high-

resolution views of internal layers throughout the depth of the ice sheet.
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Figure 6.3. Locations of SOAR radar flight lines (thick gray lines) in the vicinity of the
WAIS Divide ice-core site (marked with a red dot). Background is surface elevation
contours from BEDMAP, ranging from 1650 to 1900 m. Thin gray lines show measured
flow vectors, ranging from 0.1 to 5.9 m yr!. Figure courtesy of K. Matsuoka.

6.2.2. Accumulation-rate measurements

Modern accumulation rates are available from the International

Trans-Antarctic Scientific Expedition (ITASE). ITASE core 00-1 is near the
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WAIS Divide ice-core site. Neumann and others (2008) used ice-core
chemistry from the 105-meter core, which goes back to 1651 AD (Dixon and
others 2004), in combination with high-frequency radar to infer spatial
variations in the modern accumulation rate. Neumann and others (2008)
found that the accumulation rate over the past ~350 years increased from
~25 cm yr! at the ice-core site to ~35 cm yr! at ~40 km farther North

(towards the Amundsen Sea).

6.2.3. Surface-velocity measurements

Conway and Rasmussen (2009) presented surface-velocity
measurements from a Global Positioning System (GPS) network established
near the WAIS Divide during the 2002-2003 and 2003-2004 field seasons.
The surface-velocity measurements have an uncertainty of 4 cm yrl.
They find that the ice divide is presently migrating toward the Ross Sea at
~10 m yrl.

6.3. Inferring transients from internal layers

Neumann and others (2008) showed that the accumulation rate
across the WAIS Divide has changed over time. They used a time-
dependent ice-flow model to infer an accumulation-rate history, but their
model used simplified ice dynamics in one dimension. Spatial gradients in
accumulation are observed in this area, and the spatial and temporal
influence on internal-layer depth should be taken into account. Ultimately
the goal is to infer histories of accumulation rate and ice dynamics from
internal layers by solving a 2.5-D transient inverse problem. Here we first

infer steady-state accumulation patterns from internal layers by solving a
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2.5-D steady-state inverse problem. We use the algorithm developed by
Waddington and others (2007).
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Figure 6.4. Steady-state accumulation-rate patterns inferred by solving seven steady-
state inverse problems using internal layers spanning 3.5 ka to ~7.8 ka. The seven internal
layers are shown in Figure 6.2.

We use the seven shallowest layers in Figure 6.2 to infer seven
different steady-state accumulation patterns; the layers were dated ~3.5 ka
to ~7.8 ka. Resolving power decreases further from the divide, so we focus
on the internal layers from 15-35 km of a radar line that spans 1-40 km.
The ice divide 1s at ~28.5 km along the flowband. Different steady-state
accumulation patterns are inferred from different internal layers. This
suggests that the accumulation rate has changed over time, and that the
accumulation pattern has remained roughly the same; this is consistent
with Neumann and others (2008). Neumann and others (2008) inferred that

accumulation rates have been roughly stable for the past 3,000 years, and
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that there was an increase in accumulation rate of at least 30% from 5,000
to 3,000 years ago. We inferred ~6% change in the magnitude of steady-
state accumulation from ~3.5 ka to ~7.8 ka. This estimation is not
inconsistent with how accumulation transients inferred by Neumann and

others (2008) could be averaged over time by a steady-state estimation.

In Figure 6.4, the kilometer-scale spatial variations in the
accumulation pattern that we infer by solving seven different steady-state
inverse problems reflect kilometer-scale spatial variations in the shape of
the internal layers. However, solving separate steady-state problems will
give a different history of accumulation than solving a transient problem.
Ice-thickness changes and ice-divide position changes are an important part
of the history of the WAIS Divide. As we expected, it will be necessary to
solve a transient inverse problem to accurately infer transients in

accumulation rate and ice dynamics at this site.

6.4. Conclusions and future work

Solving the inverse problem to infer transients in accumulation rate,
ice thickness, and ice-divide position will provide valuable, and necessary,
constraints on WAIS evolution. Neumann and others (2008) used a 1-D
model to infer histories of accumulation and ice dynamics for Holocene
layers that were dated by the Byrd ice core. We target deeper layers, which
will be dated by annual-layer counting of the WAIS Divide ice core.

Understanding changes in ice volume during the transition from the
last glacial period to the present interglacial is central to our understanding

of ice-sheet evolution; this is a goal of solving the transient inverse problem
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with deep layers from central West Antarctica. This dramatic change in
climate led to significant changes in Northern Hemisphere ice volume, but
also led to major changes in Antarctica, especially in West Antarctica.
While Antarctic ice cores can recover climate histories for many hundreds of
thousands of years (e.g. Petit and others, 1999; EPICA members, 2004), we
focus on the past ~100,000 years of ice-sheet evolution because there are
more data available to constrain this period. We will use our inverse
approach to infer histories of accumulation rate, ice thickness, and ice-
divide position from internal layers over the past tens of thousands of years.
Solutions to an inverse problem to constrain the ice-volume history during
the transition from the last glacial maximum (LGM) to the present can be
compared to estimates from ice-flow models with prescribed forcing (e.g.
Ritz and others, 2001; Huybrechts 2002), and from geologic mapping of
terrestrial glacial features (e.g. Ackert and others, 1999; Stone and others,

2003), and mapping of submarine glacial features (e.g. Anderson and others,

2002).

Spatial and temporal gradients in accumulation rate and ice
dynamics are significant near the WAIS Divide. Older ice originated
further upstream, and as these particle paths traverse significant spatial
and temporal gradients, it is no longer appropriate to approximate the total
vertical strain using a 1-D model. Our inferred histories will be consistent
with the internal structure of the ice sheet, and with present-day
measurements. The history of accumulation rate, ice thickness, and ice-
divide position are necessary to properly interpret the WAIS Divide ice core,

and will provide context for modern changes in ice-sheet flow.
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Synthesis

7.1. Summary

This dissertation presents a method to solve the inverse problem to
infer accumulation rates from internal-layer architecture. As part of this
inverse problem, a steady-state forward algorithm or a transient forward
algorithm could be used. I have demonstrated how a suite of steady-state
problems can be formulated, and how they could be solved using radar data
across the Martian Polar Layered Deposits (PLD). This application with
Martian radar data assumes that past ice flow was important in shaping
the internal layers and the ice-surface topography on Mars, and I
constrained the necessary conditions for Martian ice to flow at a significant
rate. Building from the steady-state inverse problem, I have developed an
efficient transient forward algorithm that is well-suited as part of the
transient inverse problem to infer histories of accumulation rate, ice
thickness, and ice flow. The method I present to solve the transient inverse
problem is a valuable new tool that can be used to understand ice-sheet

history.

In the process of constructing a numerical model to calculate ice-sheet
flow and solve an inverse problem, I have utilized foundational theory in

glaciology (e.g. Paterson 1994; Van der Veen 1999; Hooke 2005) and in



Chapter 7: Synthesis

inverse theory (e.g. Menke 1989, Parker 1994; Aster and others 2005), as
well as foundational theory in numerical methods (e.g. Patankar 1980). The
physical equations and physical assumptions necessary to solve this
problem have been relayed in this dissertation. However, the effort to find
accurate numerical representations and numerical solutions to these

equations are also contributions to the field.

A noteworthy aspect of this work is the wide range of questions and
data sets to which these theoretical and numerical tools can be applied.
While the applications presented here already span Mars to Antarctica, I
think this work has the potential to extend much further. We have focused
on inferring past accumulation rates, but other parameters, for example the
geothermal flux, are also poorly known. In addition to solving this inverse
problem with data from different regions and for different parameter values,
portions of the forward algorithm could be used independently, or the
inverse algorithm could be adapted solve a different inverse problem.
Another possibility is that this entire algorithm could be integrated as part
of a solution to a larger-scale problem. Specific ideas are discussed in

Section 7.4.

7.2. Implications for ice-sheet dynamics

While many 3-D models describe the behavior of large ice sheets to
prescribed forcing, there are relatively sparse data available to validate
these estimates of ice-sheet evolution. Critical information about ice-sheet
history is derived primarily from ice cores, but this information represents
only a single point. Internal layers are a powerful data set for

understanding histories of ice dynamics because they contain both spatial
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and temporal information. Our inverse approach is a new and powerful
method for understanding histories of ice dynamics because it assimilates

and recovers spatial and temporal information.

Histories of ice-sheet thickness and ice-divide position are necessary
to reconstruct ice-volume histories. One of the principal questions facing
the glaciology community is how glaciers and ice sheets will contribute to
sea-level rise in the coming decades to millennia. Ice sheets respond slower
than glaciers and smaller ice caps, but ice-sheet volumes are significantly
larger. To gain insight into future ice-sheet behavior, we must understand
how ice sheets responded to past climate changes. For example, during the
last glacial-interglacial transition, global ice volume was nearly twice the
present-day value (e.g. Clark and Mix, 2002). While there are compelling
explanations for the evolution of ice-sheet geometries through this
transition, specifics are poorly known, and model-based estimates and
observational estimates need to be better combined; an inverse approach
like the one I have presented in this dissertation is a way to bring together
models and observations. In addition, while changing environmental
conditions at ice-sheet margins can lead to large and rapid ice-sheet changes
there, ice-sheet interiors are also influenced by these changes at the
margins. Understanding the evolution of ice-sheet interiors is central to
understanding changes in global ice volume and sea level. As we use
present-day changes in the flow speed of outlet glaciers to gauge potential
ice-sheet behavior, we must take into account the timescales over which this

short-term activity can govern global ice-sheet evolution.

Histories of ice-sheet thickness and ice-divide position are necessary
to interpret ice-core chemistry. The relationship between oxygen isotopes
and surface air temperatures is complicated by changes in ice thickness and

ice-divide position, changes in ice flow, and variations in the distribution
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and sources of precipitation (e.g. Paterson 1994, pg. 383). Reconstructing
the ice-flow history is necessary to develop an accurate depth-age scale for
an ice core. In addition, converting chemical concentrations to fluxes from
the atmosphere requires the accumulation rate at the time and location of
deposition. All of these histories are poorly constrained, but all of these
histories can be self-consistently inferred by solving the transient inverse
problem. Any bounds on the actual ice-sheet history in the vicinity of ice-
core sites could be used directly by the ice-core community. Our inverse
approach is more robust in combination with estimates of the age of radar
layers that intersect the core, and with any estimates of past accumulation
rate that can be made from ice-core analyses (e.g. bubble-number densities
or beryllium-10 measurements). Solving inverse problems is a way to
answer questions pertinent to both the ice-core community and to the ice-

dynamics community.

However, there are challenges to solving any inverse problem. To
ensure stability of the solution algorithm, and uniqueness of the solution,
we must impose constraints based on a priori information. Since there may
be limited data available, and there may be limited a priori information
about the solution, we advocate finding the minimum variation that is
required to fit the data and satisfy constraints. Finding the minimum
variation will help to avoid overfitting the available data. A smoothed
version of the actual history is still valuable to our understanding of ice-

sheet history.
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7.3. Implications for Mars’ polar history

Martian surface topography often evokes terrestrial landscapes, even
though the two planets are very different, and the actual evolution of the
Martian topography can be difficult to discern remotely. However, radar
data across Mars have been revolutionary to our understanding of Martian
surface processes. For the PLD, we now have radar delineations of the bed
topography and preliminary views of the internal structure. If the PLD
have experienced significant ice flow in the past, an inverse approach that
accounts for variations in total vertical strain on particle positions through
the ice must be used to infer past mass-balance patterns from internal-layer
shapes. However, the ice-flow history cannot be determined from internal-
layer shapes alone. If the mass-balance history and the ice-flow history are
both unknown, internal layer shapes cannot be used to determine the mass-
balance history and the ice-flow history. However, as emphasized by
Winebrenner and others (2008), a flowing ice mass has a predictable surface
shape. The ice surface spatially integrates the mass balance, and the most
recent episode of steady-state ice flow can be inferred from present-day ice-
surface topography. Then, assuming that the PLD have experienced
significant ice flow in the past, an inverse approach can be used to infer past
mass balance, as well as past surface topography, from the shapes of
internal layers. Inferring past surface topography is important because the
modern PLD surface topography has undergone significant erosion, which is
concentrated in deeply incising circumpolar troughs. Winebrenner and
others (2008) showed that there are few locations with relict topography
from which to infer an ice-flow history, and reconstructing topography that
is consistent with internal structure would be informative about PLD

evolution.
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Ice flow at a significant rate on Mars implies that the ice was much
warmer than today, and it is likely that significant ice flow also implies that
there were variations in the mechanical properties of ice that enhanced the
flow. Warmer ice implies warmer surface temperatures, and constraining
the ice-flow history is a way to constrain the climate history. The climate
that controlled layer formation and evolution is fundamentally unknown,
and the PLD chronology is also poorly constrained. Predicting the evolution
of the PLD subject to episodes of significant and also insignificant flow, and
subject to constraints from present-day surface topography and internal-

layer shapes, could be a new way to decipher the ice-flow history of the PLD.

7.4. Future research

The methods presented here use a 2.5-D flowband model, and
therefore the data that we need in order to solve this problem must be
oriented along a flowline. While most ice-sheet radar data that have been
collected do not follow flowlines, radar coverage can be dense across polar
ice sheets. On Earth, ice-penetrating radar is critical to identify suitable
ice-core sites, and therefore radar data along flowlines often exist in the
vicinity of deep ice cores. On Mars, satellite-radar paths are not targeted to
follow putative flowlines, but there is a high-density of data at the poles,
and some paths are appropriate. For existing radar data on both planets,
more effort to accurately project gridded data to align along flow paths
would be worthwhile. For future radar-data collection, concerted effort to

follow flow paths would benefit studies of ice dynamics.

The two components of this inverse approach, the forward algorithm
and the inverse algorithm, require independent assumptions. For example,

the governing equations must be represented numerically in the forward
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algorithm, and physical expectations about the unknown parameters must
be introduced to stabilize the inverse algorithm. These assumptions are
well known and often used, but the implications of these approximations in
varied applications are often unknown. It is necessary to evaluate these
components individually, and also to formally characterize the potential of
this inverse approach to answer specific questions. Stemming from this
dissertation, there are numerous worthwhile directions and questions to

pursue regarding this new method. A few of them are summarized here:

o It is necessary to know what data are required to answer a given
question. For example, how many internal layers are necessary to
recover centennial-millennial climate variability?  The method
presented here can determine how large the climate forcing must be
in order to be recorded in the ice.

 In addition to radar profiles, this work relies on any available
measurements of ice-surface topography, bed topography, modern ice-
surface velocity, or modern accumulation rate. While we target deep
layers, it may be important to have a shallow layer (i.e. a few
hundred years old) available to constrain the recent pattern of
accumulation. Constraints on past accumulation are also helpful
measurements, and we can quantify what uncertainty is required for
these data to be effective in our problem.

* Computing the resolving power and calculating error bars by starting

from different initial guesses of the solution should be done for each
solution.
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* Physical relationships between all the parameter values should be
established in order to formalize the weighting scheme used in this
inverse algorithm. For example, if individual parameter values can
trade off against each other to fit the data, can physical information
about how these values should co-vary be imposed to help distinguish
the individual influence of each parameter? Or, can the resolving
functions be used to weight the influence of each parameter? The
effect of additional constraints and of different model norms should be
explored.

7.4.1. Specific directions

The high accumulation rates at the WAIS Divide ice-core site may
allow layer counting back ~40,000 years. However, deeper layers must be
dated using flow models, or distinct horizons must be identified and dated
by other means. For example, a strong reflection in the vicinity of the WAIS
Divide core site that can be traced for hundreds of kilometers, is dated to
~17,500 years old (e.g. Jacobel and Welch, 2005a), and is a bright reflection
because of high acidity (e.g. Hammer and others, 1997). In addition, radars
can now image the deepest layers in the ice at high resolution (e.g. Laird
and others, In Press); these data may help to constrain the history of the
Ross-Amundsen divide. Conway and Rasmussen (2009) showed that the
divide is migrating today, but modern measurements cannot determine how
long migration towards the Ross Sea has been occurring, or the extent over
which the divide has migrated in the past. There is also considerable effort
to understand how recent thinning and speed up of Pine Island Glacier (e.g.

Shepherd and others, 2001) would affect flow of interior ice.

This inverse approach is well suited to use with data from Greenland

and the Arctic ice caps. In the Arctic, higher accumulation rates there mean
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that internal layers can be more accurately dated (e.g. Rasmussen and
others, 2006). Questions about the pronounced climate variability that
punctuated the glacial climate in the Northern Hemisphere, and rapid
present-day changes in the Arctic, need to be reconciled with past behavior.
There are myriad valuable questions to address with the radar data and ice-
core data available across Greenland. For example, isotopic changes in the
Camp Century ice core in Northwest Greenland point to an ice thickness
change of approximately 800 m since the last glacial period (e.g. Dansgaard
and others, 1982), compared to relatively minor thickness changes
experienced in central Greenland (e.g. Marshall and Cuffey 2000; Reeh and
others, 2002). An independent estimate of ice-thickness changes during this
glacial-interglacial transition, and the role of accumulation gradients on ice-
sheet evolution during this time are important goals to target (e.g. NGRIP
members, 2004). Marshall and Cuffey (2000) showed that divide migration
1s pronounced during glacial-interglacial transitions, and that the divide
may have migrated ~65 km in the past 110 kyr. Using internal layers to
solve the inverse problem, we can compare to divide-migration predictions
from forward models (e.g. Marshall and Cuffy 2000; Anandakrishnan and
others, 1994).

The history of ice volume and ice flow on Mars must be consistent
with the history of Mars’ climate, and therefore the ice can provide past
constraints to help unravel the actual climate history. So far we have
targeted questions about the ice-flow history that can be addressed using a
steady-state ice-flow model. I think that using internal layers and the ice-
surface topography with a transient ice-flow model could constrain plausible
histories of ice flow. For example, since orbital variations are so extreme on
Mars, and the PLD are stagnant today (assuming that the PLD are pure

water ice), it is likely that any history of ice flow included transitions
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between flowing and stagnant states; it would be interesting to explore how

this type of flow history is imprinted on the shapes of internal layers.

Material in this dissertation provides a springboard for future work.
This algorithm could be directly incorporated as part of a larger-scale
problem, or it may be possible and fruitful to solve this problem using a 3-D
forward algorithm. In addition, it could be insightful to compare solutions
to this same problem using other methods. This inverse approach is aligned
with the types of data that are available and that are being collected, with
our physical understanding of ice flow, and with critical questions facing the

glaciology community.
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Appendix A

Appendix A: Constants and symbols

Symbol

OHIDT N

s s
574

ISR ISTnE® o Qg

Parameter Value
acceleration of gravity 9.81 m s2
density of ice 916 kg m-3
flow-law exponent 3
activation energy for creep
below -10 °C 42 - 84 kJ mol!
above -10 °C 139 kdJ mol?
gas constant 8.314 J mol-! K-1

internal-layer age

temperture-independent ice-softness parameter
temperature-dependent ice-softness parameter
surface slope

ablation rate

accumulation rate

accumulation rate (Chapter 3)
ice-flow enhancement factor
strain rate

ice thickness

maximum ice thickness
horizontal velocity shape function

performance index
ice-mass length

slope

basal-melt rate

ice-flux initial condition
geothermal flux

ice-thickness initial condition

ice-surface elevation
temporal coordinate
ice temperature
shear stress
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Symbol

N N 8 2‘S<C c &

Appendix A

Parameter

horizontal velocity

average horizontal velocity
vertical velocity

volume

vertical velocity shape function
flowband width

horizontal coordinate
normalized horizontal coordinate
vertical coordinate

normalized horizontal coordinate
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Appendix B: Maps
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Figure B.1. North Polar Layered Deposits, Mars. Figure from Fishbaugh and others
(2008). Image is shaded-relief topography.
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Figure B.2. South Polar Layered Deposits, Mars. Figure from Fishbaugh and others
(2008). Image is shaded-relief topography.
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Figure B.3. AVHRR (Advanced Very High Resolution Radiometer) map of Antarctica,
including deep ice core sites. Figure from Ice Core Working Group (2003).
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Appendix C

Appendix C: Parameters for Earth and Mars

Earth Mars
Mean radius (m) 6371 3389
Mass (1023 kg) 59.736 6.4185
Density (g cm-3) 5.515 3.933
Sidereal rotation period (h) | 23.93419 24.622962
Equatorial gravity (m s2) 9.78 3.69
Obliquity of axis 23.45° 25.19°

Table C1. Geophysical parameters for Earth and Mars (values from Planetary Sciences,
Imke de Pater and Jack Lissauer 2001, Cambridge Univ. Press).

Definition Earth Mars

Argument of The angle between the ascending node 102.8° 336°

erihelion (1 (going north, the point in the orbit where
p (1) the ecliptic is crossed) and the perihelion
measured counter-clockwise along the
plane of the orbit

Eccentricity (2) Shape of the orbit, eccentricity is zero for 0.0167° 0.093°
a circular orbit

Inclination (3) The angle between the plane of the orbit 0° 1.85°
and the plane of the ecliptic (plane of the
Earth’s orbit around the sun)

Longitude of the The angle between the vernal equinox - 49.6
Ascending node and the ascending node, measured

(4) counter-clockwise

Semimajor axis Th.e longer half of the axes of the orbital 1 AU 1.524 AU
of orbit (5) ellipse

Table C2. Orbital elements for Earth and Mars (values from Fundamental Astronomy,
Karttunen and others 1996, Springer).
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Effect Range of Periodicity
values
Eccentricity of orbit | Strong seasonal effect ~0-0.1 99 Kyr, 2.4
(e.g. dust storms); small Myr
effect on insolation
Inclination of orbit | No direct effect on ~0° -5° 1.2 Myr
insolation but effects
obliquity
Precession of orbit No direct effect on -- 72 Kyr
insolation but can lead
to secular spin-orbit
resonance
Precession Of spln Latitudinal effect on - 51 Kyr
axis seasonal insolation and
can lead to secular spin-
orbit resonance
Obliquity of spin Also altered by changes ~13°-48° 120 Kyr, 95
axis in other parameters, Kvr
strong latitudinal effect Y
on annual insolation
“Precession” of the Not an orbital -- 150 Kyr
Equinoxes parameter, but has a

strong latitudinal effect
on annual insolation

Table C3. Parameter Variations for Mars for the last ~20 Myr (Ward, Mars book 1992;
Laskar and others 2002; Fishbaugh, ISSI presentation 2008).
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Martian Seasons

Martian seasons are measured by the areocentric longitude of the Sun (L),
which is the angle between Mars and the Sun measured with respect to the
Northern hemisphere at the vernal equinox, where Ls=0° (e.g. Kieffer and
others, 1992; Laskar and others 2004). A Martian day (sol) is 88775.245
seconds, and a Martian year is 668.6 sols. A Martian month spans Ls=30°,

and due to the eccentricity of the orbit the length of a month ranges from

46-67 sols.

Month Ls range | Sol range Duration | Events
1 0-30 0-61.2 61.2 NH Vernal equinox,
Ls=0

2 30-60 61.2-126.6 65.4 --

3 60-90 126.6-193.3 66.7 Aphelion at Ls=71

4 90-120 193.3-257.8 64.5 NH Summer solstice,
Ls=90

5 120-150 257.-8-317.5 59.7 --

6 150-180 317.5-371.9 54.4 --

7 180-210 371.9-421.6 49.7 NH Autumnal equinox,
Ls:180

8 210-240 421.6-468.5 46.9 Perihelion at L=251

9 240-270 468.5-514.6 46.1 NH Winter solstice,
Ls=270

10 270-300 514.6-562 47.4

11 300-330 562-612.9 50.9

12 330-360 612.9-668.6 55.7

Table C4. (values from Laskar:
http://www-mars.Ilmd.jussieu.fr/mars/time/solar_longitude.html)
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Appendix D: Insolation variations on Mars

Mars’ orbital parameters are highly chaotic compared to Earth
because of secular spin-orbit resonance between Mars and nearby planetary
objects (e.g. Touma and Wisdom, 1993). Due to this chaotic interaction, the
obliquity, the eccentricity, and the precession can be reliably reconstructed
only over the past 10-20 Myr (e.g. Laskar and others 2004); solutions from
further in the past are nonunique. Presently, Mars has an Earth-like
obliquity of 25.2°, but over the last 10 Myr, Mars’ obliquity reached a
minium value of ~14° and a maximum value of ~48° cycling from higher to
lower values every 104-105 years with an average of ~32° (Touma and
Wisdom, 1993; Laskar and others 2004). From ~4-10 Myr ago, obliquity
fluctuated about 35°, whereas from ~4 Myr ago to the present, obliquity
fluctuated about 25° (Touma and Wisdom, 1993; Laskar and others 2004).
As noted by Pathare and Paige (2005), the obliquity variation is severe, and
Mars’ obliquity remains within 5° of any given value for less than 10,000
years. However, every 2-3 Myr there are periods where obliquity varies only
slightly, which has been the situation from 0.5 Myr ago to the present.

The present-day eccentricity is 0.093 (e.g. Ward, 1992) and Mars
experiences quasiperiodic variations in eccentricity of 0.04 every ~10° years,
in addition to a larger variation of 0.1 every ~2 Myr. In addition, over the
past 10 Myr, Mars’ eccentricity is highest during the few-thousand-year
periods when the obliquity varies only slightly. Mars has an argument of
perihelion of 251° describing the direction of the major axis during orbit
around the sun. This varies from 90 ° -270° with an ~50,000 year period
(Ward, 1992). See Appendix C for a comparison of orbital parameters for
Earth and Mars, and the range and periodicity of orbital-parameter

variation for Mars.
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Figure D.1. Annual-average insolation compared to summer-average insolation at 90 N
over the past 20 Myr (data from Laskar and others 2004).

The effects of orbital variations on Mars’ surface temperature have
been calculated (e.g. Pathare and Paige 2005; Levrard and others 2007;
Schorghofer 2008), and the annual-average surface temperature at 80-90 ° N
1s always below ~180 K. As shown in Figure D.1, calculated using values
from Laskar and others (2004), the summertime insolation at the North
Pole is ~2.5 times greater than the annual-average temperature at the
North Pole. However, the annual-average temperature remains much lower
than the summertime temperature at least in part because the North PLD
are covered with carbon dioxide (COz2) frost during the winter, which has a 7
mbar frost-point temperature of 148 K (Kieffer and others 1976).

Sublimation of water ice at the poles is affected by insolation
variations, but how is accumulation of water ice affected by changes in
insolation? Richardson and Wilson (2002) showed that due to the inter-

hemispheric difference in topography, there is an orbital-independent
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atmospheric-circulation bias that favors water-ice deposition at the North
Pole compared to the South Pole. While the influence of topography is
typically greater than the influence of orbital variations, Montmessin and
others (2007) showed that due to the present-day timing of perihelion,
localized water-ice deposition i1s presently favored at the South Pole.
Levrard and others (2004) showed that the distribution of polar
accumulation is sensitive to obliquity, but the rate of polar accumulation is
comparatively insensitive. For example, at an obliquity of 30° there is no
water ice accumulation in the South polar region, and only limited
accumulation in the North. Whereas, at an obliquity of ~25° there is limited
accumulation in the South and moderate accumulation in the North, and at
~15-20° obliquity the accumulation in the North and South are maximized,
but the accumulation rate is higher in the North (Levrard and others, 2004).
However, for 15-30° obliquity, Levrard and others (2004) found that the
accumulation rate at the poles was always ~0.1-2 mm/yr. In order to
quantify how insolation variations have affected the PLD, it will be
important to incorporate our understanding of global and local patterns of
water-ice sublimation and deposition.

To affect the rate of ice flow, changes in surface temperature must
propagate to the near-basal ice. The propagation of changes in surface
temperature occurs primarily via diffusion, and the characteristic timescale
for diffusion is:

H 2
k(T)

where H is the ice thickness and «(T)is the temperature-dependent

Ty = (D.1)

diffusivity (in m2yr?!), and «(T)=K(T)/pc(T), where K(T) is the
temperature-dependent thermal conductivity (e.g. Paterson 1994, pg. 205),

p 1is the ice density, and c¢(7) is the temperature-dependent specific heat
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capacity (e.g. Paterson 1994, pg. 205). In Figure D.2a we show how
conductivity K, specific heat capacity ¢, and diffusivity « change as a
function of temperature. Conductivity increases by ~1.7 as temperature
increases from 150 to 270 K. Specific heat capacity decreases by ~0.5 as
temperature increases from 150 to 270 K. Diffusivity is calculated with a
density of 917 kg m3, and decreases by ~0.3 as temperature increases from
150 to 270 K. Figure D.2b shows how the diffusion timescale changes as a
function of near-basal ice temperature for a 2 km thick ice mass with a
density of 917 kg m-3, of 1000 kg m-3, and of 1100 kg m3. For a density of
917 kg m-3 and a temperature range of 150-270 K, the diffusion timescale
goes from ~100-30 Kyr because colder ice has a higher diffusivity.
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Figure D.2. a) Specific heat capacity, thermal conductivity, and thermal diffusivity as a
function of ice temperature, all normalized by their values at 150 K. b) Characteristic
timescale for diffusion as a function of near-basal ice temperature for ice density of 917,
1000, and 1100 kg m-3.
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Appendix E: Steady-state surface models

The steady-state continuity equation (e.g. Paterson 1994, pg. 256;
Chapter 2, Equation A2.1.1) can be solved analytically and numerically for a
steady-state ice-surface profile. Simplifying assumptions must be made in
order to solve the equation analytically. The simplest surface-profile
solution 1s found by representing the depth-averaged horizontal ice velocity
U with the ‘Shallow Ice Approximation’ (e.g. Hutter, 1983 pg. 256; Paterson,
1994, pg. 262; Chapter 2, Section A2.1). Then, an analytical solution can be

found to the mass-conservation equation cx=h(x)u, where c is the

accumulation rate, x is the distance along the profile, and A(x) is the ice
thickness along the profile (Paterson, 1994, pg. 243). The solution to this
differential equation can be nondimensionalized by the length of the profile
L and by the ice thickness Ho at the ice divide at the position xo. This is
called the Vialov solution (Vialov, 1958; Paterson, 1994, pg. 243):

hog [ {_X‘Xorm -1 E.1)
H, .

where n is the flow-law exponent. The Vialov solution assumes that the
mass-balance pattern consists of accumulation over the entire domain (and
that ablation occurs at an infinitely small region at the terminus). While
this mass-balance pattern is not always a physically realistic assumption,
this surface profile is a good approximation to actual ice-sheet surfaces.

A second analytical solution assumes that the mass-balance pattern
consists of uniform accumulation ¢ in the upper zone of the ice sheet, and
uniform ablation a in the lower zone of the ice sheet, and the two zones are

separated at the equilibrium line R; this is the Paterson solution (Paterson,
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1972; Paterson, 1994, pg. 245). The Paterson solution satisfies the steady-

state criterion:

cR-a(L-R)=0 (E.2)

The Paterson-surface profile is given by (e.g. Paterson, 1994, pg. 245):

" +[1+EH1} g (E.3)
| a L
T 7 a ey X
_ SRR (54

A surface profile generated using a Vialov model and a surface profile

generated using a Paterson model can be compared to a numerical solution

of the continuity equation. Figure E.la compares these three profiles for the

case where the maximum ice thickness, the accumulation rate, and the

profile length are the same for all profiles. For a mass-balance pattern of

uniform accumulation over the entire domain, the numerical solution is

equivalent to the Vialov model. However, the Paterson model includes an

ablation zone, and with a ratio of accumulation rate to ablation rate

c¢/a=0.1, the Paterson profile is thinner compared to a Vialov profile of the

same length. Figure E.1b compares the difference in length that is required

for a Paterson profile with ¢/a=0.1 to match a Vialov profile over most of the

domain.
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Figure E.1. a) Steady-state-ice-sheet surface profiles with the same full-span length,
calculated using a Vialov model, a Paterson model with a mass-balance distribution of
¢/a=0.1, and solved numerically (see Chapter 2). b) A Paterson profile with a surface shape
that is matched to the Vialov profile and to the numerical solution over most of the domain.
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Appendix F: Kinematic-wave theory and response timescales

Mass-balance changes, ice-flux changes, or local ice-thickness
changes drive ice-sheet thickness changes and the development of kinematic
waves (Weertman, 1958; Nye, 1960, 1963; Hooke, 2005, pg. 365). Kinematic
waves act to restore stability so that ice masses conserve mass. These waves
may not be physically recognizable, compared to waves in an ocean, for
example; they are waves of constant ice flux moving through the ice mass at
a speed which is different from the average speed of the ice. The kinematic-
wave equation describes this response as a perturbation from a datum state,
in terms of ice flux or ice thickness (e.g. Hooke, 2005, pg. 373). The datum
state is the initial condition. For any known accumulation-rate perturbation
b1, the ice flux in the perturbed state q: can be found from the ice thickness
in the perturbed state h: using the kinematic-wave equation. To derive this
relationship, we assume that the flux g, at any position x, is a function of ice
thickness h and surface slope dS/dx (=a), q = q(x,h,a ), and continuity in
the perturbed state is

9, , oh _
5 + " b, (F.1)

For small perturbations from the datum state, ¢; at any position x can be

given by a series expansion (e.g. Nye, 1960),

0q oq
=| = +— | a F.2
=[5, 3 ) -
The coefficients of ice thickness and surface slope are
oq %o
c,(X)=|—| =(n+2)— F.3
=[5 =02 F.3)
Do(x):[%J =n (F.4)
da ), a,
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where n is the exponent in the flow law. The quantity co is the kinematic-
wave velocity per unit width, in units (m yr!). The quantity Do is the
kinematic-wave diffusivity per unit width, in units (m2 yr!). The surface
slope can be represented in terms of ice thickness a =-0dh/ox. While the
1dealizations of kinematic-wave theory break down near the ice-sheet
terminus, where surface slopes become large, replacing the terminus with a
wedge shape addresses this problem (see also Chapter 4). This was
suggested by Nye (e.g. 1960, 1963), since co should remain non-zero while Dy
goes to zero at the terminus (Nye, 1963).

Using Equation F.1 in Equation F.2, gives the linearized kinematic-

wave equation, derived by Nye (1960):
2
oh _ 6cohl_(co_6DOj6hl+D 0°h, (F.5)

ot ox ax )ox  Cox?

This shows how the response of ice masses to small perturbations can be
determined using linearized kinematic wave theory. Each term describes
how ice thickness will change over time due to a perturbation in
accumulation, and how the kinematic wave will propagate and diffuse over
the ice-mass length. From this solution for a spatially uniform step-change
in mass balance, from bo (x) to bo (x) + b1, Johannesson and others (1989)
showed that the response time to approach the new total ice volume (the
volume response time) is

Ve
bl

where V; i1s the volume perturbation, 61 1s the average accumulation

I, (F.6)

perturbation, and lo is the length in the datum state. Jéhannesson and

others (1989) also formulated a propagation timescale, 7,:

o

7. =

c

(F.7)

O
o
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and a diffusion timescale, 7,:
2
lo

D,

Hooke (2005, pg. 377) noted that the 77 term in Equation F.8 arises from

(F.8)

Iy =

the Fourier solution of the diffusion equation. The volume response time is
significantly longer than the propagation or diffusion timescales because ice
flow can redistribute mass along the surface more quickly than the
additional mass in the perturbed state can accumulate or ablate (e.g. Hooke,
2005, pg. 377). All of these response timescales are e-folding timescales; the
amount of time calculated is the time it takes to reach approximately two-
thirds of the way to the new steady state.

Johannesson and others (1989) showed that the volume response time
can be simplified by approximating the volume perturbation V: as equal to
the maximum thickness of the glacier in the datum state Homax multipled by
the change in length AL. Then, the annual gain in mass from the

perturbation must equal the mass lost at the terminus:

b,L, = |b(L,)|AL (F.9)
where |b(L0)| is the absolute value of the ablation rate at the terminus in

the datum state (e.g. Johannesson and others1989; Hooke 2005, pg. 378).

Therefore, the volume perturbation is

V,=ALh, . = Homabibo (F.10)
Ib(Ly))

and the volume response time is

HO
r, = —amax (F.11)
Y by (L))

This representation of the volume response can be calculated simply in

terms of the maximum ice thickness H and the ablation rate at the

Omax
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, which are relatively straightforward to calculate or

terminus |bO (Ly)

estimate.

A relaxation time for an ice mass can also be derived from a zero-
dimensional ice-flow model (Oerlemans, 1981; van der Veen and Oerlemans,
1984; Van der Veen, 1999, pg. 261); the description of the response time
associated with this model is given in Van der Veen (1999, pg. 265), and is
summarized here. The zeroth-order model is

OH _  2A ,  H™

o ne P

+b (F.12)

Representing the time variation in these values in terms of a perturbation

from steady state, i.e. ice thickness H=H,+H' and b=Db,+b', then

expanding this equation as a Taylor series, and subtracting the steady-state
continuity equation (Equation F.12) from this perturbation equation, gives

an equation for the rate of change of perturbations in ice thickness,

H__H.p (F.13)
ot Ty

where the relaxation time 7 is given by

Ln+l(n + 2)
Ho™" (2n+ 2)2A(09)"

Iy =

(F.14)

250



Appendix G

Appendix G: Finite Volume Method

The Finite Volume Method (FVM), where the governing equations are
solved in the integral form, stands in comparison to the Finite-Difference
Method (FDM), where the governing equations are solved in the differential
form. The finite-difference approximation of the derivative is a truncated
Taylor series expansion (discussed further in Appendix H). In the FDM, the
governing equation 1s satisfied only over the entire domain, and
discretization must be performed on a uniform grid, or there must be a
coordinate transformation to relate the non-uniform grid to a uniform grid.
The FDM is easy to implement, but the quality of the approximation
between grid points can be highly dependent on how the derivative is
defined and on the order of the approximation (e.g. first-order forward
differences compared to second-order centered differences), as well as on the
discretization grid size (e.g. van den Berg and others, 2006). The Finite-
Element Method (FEM) is another method that, similar to the FVM, solves
the governing equations in the integral form. The FEM is designed to
facilitate complicated domain geometries.

While all three methods have been used to solve the equations for ice
flow (e.g. Van der Veen, 1999, pg. 215; Hooke, 2005, pg. 288; Price and
others, 2007), an inevitable aspect of numerical analysis is to find the
appropriate balance between accuracy and numerical cost. We chose the
FVM because satisfying conservation across each finite volume allows for
flexible grid spacing, and the FVM is an efficient low-order discretization
scheme that has been thoroughly described and rigorously tested by
Patankar (1980) and by Versteeg and Malalasekera (1995).
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Finite Volume
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Figure G.1. Sketch illustrating the notation adopted for the finite-volume method
(following Patankar, 1980). Centerpoints are denoted by capitals (P for center volume, W
for western volume, and E for eastern volume), and edges are denoted by lowercase (w for
western edge, and e for eastern edge). Distances between volume centerpoints, and the
finite-volume length is given by the corresponding Ax.

We follow the notation given by Patankar (1980, pg. 32). A given
center point is denoted by P, the western (upstream) edge point is denoted
by w, and the eastern (downstream) edge point is denoted by e. The
adjacent western finite-volume center point is denoted by W and the
adjacent eastern finite-volume center point is denoted by E. There is a
discrete distance from each center point to each edge point, and from each
center point to each center point. The distance from center point W to center

point Pis AX,, the distance from center point P to center point E is AX,, and
the distance from edge point w to edge point e is AX,. These finite volume

relationships are illustrated in Figure G.1.
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Figure G.2. Sketch of how edge thicknesses and slopes are defined in a finite-volume
representation, following Equations G.1 and G.2. Western and eastern values that lie
outside the domain must be extrapolated.

Ice thicknesses at the western edges and at the eastern edges are
given by the known ice thickness at the neighboring upstream and

downstream center points:

h, = he +hy h, = he +he (G.1)
2 2

Surface slopes at the western edges and at the eastern edges are similarly
interpolated from the known ice thicknesses at the neighboring center

points:

S _S. -Sy as _S.-S; G.2)
dXw  Xp — Xy dXe X —Xp
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However, the western-most and the eastern-most edge values of ice
thickness and surface slope must be extrapolated. Figure G.2 illustrates the
piecewise-linear relationship between the known ice thickness at the finite-
volume center points and the interpolated ice thickness at the finite-volume

edge points, expressed by Equations G.1 and G.2.
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Appendix H: Explicit, Implicit, and Crank-Nicolson Numerical
Schemes

Solving a differential equation by numerical integration involves time
marching over discrete time steps, which is different than an analytical
integration over a continuous function of time. The analytical and
numerical evaluations both require a known initial condition, and the
numerical evaluation should yield a similar solution to the same problem
solved analytically. Accuracy and stability are essential in numerical
analysis, and the numerical scheme is often chosen based on these
considerations.

Most numerical integration methods for differential equations can be
derived from a Taylor’s series expansion, where the time-derivative term is
evaluated to find an unknown value at a future time step t +At in terms of a
known value at the current time step ¢. For example, the ice-thickness

profile h(x), at a discrete time t +At, can be expressed as

+0O(At)° (H.1)

h(x,t +At) = h(x,t) + dhgt@t) p+ 4POD (Azt.)z

dx

It is common to truncate the series and use a first-order approximation; this
1s known as the Euler method, or the explicit method, because it is based on
explicit time stepping in terms of known values. Therefore, an explicit
scheme assumes that the solution at time t +Atdepends on known values at
time ¢, in other words, the known values at time ¢ apply over nearly the
entire time stepAt. In comparison, an implicit scheme assumes that the
solution at time t+At depends on values at time t+At, in other words, the

(possibly unknown) values at time t+At apply over nearly the entire
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timestep At. An alternative is the Crank-Nicolson scheme, which assumes
that the solution at time t+Atdepends on an equally-weighted linear
combination of values at time ¢ and values at time t+At (Patankar, 1980);
other semi-implicit schemes with different weighting factors could also be
used, but 8 must be between 0 and 1. After Patankar (1980, pg. 56), Figure
H.1 sketches the difference between a fully-implicit, a fully-explicit, and a
semi-implicit scheme. Choosing the proper numerical scheme depends on
the physical response of the modelled system, as well as on the required grid

resolution and on computation-time constraints.

hU Fully explicit
]
o
c
~
2
=
L
]
a2
1
h
Fully implicit
t t+ 2t
Time

Figure H.1. Sketch showing the relationship between a fully implicit, a fully explicit, and a
Crank-Nicolson solution scheme (after Patankar, 1980, pg. 56).

We can represent the mass-conservation equation in the form of a
diffusion equation, and directly employ the numerical solution method from

Patankar (1980, pg. 55). To do this, we represent dq/dx as Doh/0x, where

D acts like a diffusion coefficient, and i1s discussed in Appendix I. It is
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assumed that the value of D is known at each timestep, and Appendix I also
addresses how to iteratively update the estimate of D, because it is a
nonlinear function of the ice thickness and surface slope values that we are
trying to find.

Following Patankar (1980), the mass-conservation equation 1is
integrated over each finite volume from the western edge xw to the eastern

edge xe, and over each timestep from ¢ to ¢+ At :

” ah()(, ) 4 j j(%(o%f{”j +bB(x, r)Jdde (H.2)

Xy
This equation is evaluated across each discrete finite volume in the domain,
and from this set of equations a linear matrix system can be setup to solve
for ice thickness at finite-volume center points at the unknown future
timestep h(x,,t+At),

Ah'"® =Bh' +S (H.3)

with the solution for ice thickness given by,

h* = A(Bh' +9) (H.4)

In this case, A is a matrix of implicit coefficients, B is a matrix of explicit
coefficients, and S is a vector of constant boundary values and source terms.
Following Patankar (1980, pg. 55), A is a tridiagonal matrix with
coefficients for a western volume aw, a center volume ar, and an eastern

volume ar, and B is a matrix of center-point values ar’, giving

a,h,”" =a, (6h,”™™ + (@1-60)h,"') + (Ba.h."™™ + (1-0)h.')+S (H.5)
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with,
a,’ = AAXIP (H.6)
= : (H.7)
a. = AD;e (H.8)
a, =a,’ +6a. +6a, (H.9)

The subscripts w and e represent values at finite-volume edges, and 6 is the
scaling factor for explicit and implicit contributions (€=1 for a fully implicit
scheme, 6=0.5 for a Crank-Nicolson scheme, and 6=0 for a fully explicit
scheme). The vector of boundary values and source terms depends on the

specific problem, and for our mass-flow problem it is given by,

1

- (@-6)(Q.' —Q,)) + ({1~ O)b(xp, 1) + d(Xp, t + At)) (H.10)
W(Xp)

Equations H.6- H.10 are modified at the boundaries, where the first aw
value and the last arg value do not exist in the domain because it has a
discrete start value and a discrete end value. Therefore, the boundary value
of ice thickness, or the boundary ice flux must be known or must be treated
as a separate calculation (e.g. using the method described in Chapter 4).

The explicit scheme is the most straightforward scheme because the
solution 1s found explicitly from known values (the values at time ¢), and for
the nonlinear ice-flow problem this is an advantage because the equation for
ice thickness can be evaluated directly (see Appendix I). However, the
explicit scheme can become numerically unstable, giving a physically

unrealistic solution if the timesteps At exceed a threshold value (Patankar,
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1980, pg. 57). Problems that require extremely small step sizes to remain
numerically stable are referred to as stiff, and this method can be severely
restricting when solving the stiff problem for ice-thickness evolution (e.g.
Hindmarsh and Payne, 1996). In addition to temporal-grid constraints for
accuracy and stability, there may also be spatial-grid constraints required to
find an accurate and stable solution for the ice-flow problem (e.g. Van den
Berg and others, 2006).

Patanakar (1980, pg. 57) and Patankar and Baliga (1978) argue that
a fully implicit scheme is more desirable than a Crank-Nicolson scheme.
The Crank-Nicolson scheme is often considered to be unconditionally stable,
but this does not mean that the solution is unconditionally realistic.
Patankar and Baliga (1978) show that as the timestep increases, a scheme
split between implicit and explicit values can develop numerical oscillations.
In terms of the matrix equations, in particular in Equation H.10, Patankar

(1980, pg. 57) shows that these oscillations can occur when @#1, because
the coefficient of Ap!, given by apO -@-6)(a: +a,), can become negative

unless €=1. Therefore, the Crank-Nicolson scheme is mathematically
stable, as the oscillations will eventually die out, but the oscillations can
still develop, and they are physically unrealistic. This is the primary reason
Patankar and Baliga (1978) argue that a fully-implicit scheme better
represents reality, particularly for the heat-flow problem; unless the
timestep 1s acceptably small, the assumption that the values will change
linearly is not valid where the values change exponentially over the
timestep. In the highly non-linear ice-flow problem, we encounter this exact
problem. In the semi-implicit scheme, which includes the Crank-Nicolson
equal-weighting scheme, whenever the timestep is not small enough, we

also find that physical instabilities can develop (as described by Patankar,
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1980, pg. 57). However, these oscillations do not form using the fully-
implicit scheme.

Since the explicit scheme is more straightforward to implement, and
a correctly implemented fully-explicit scheme and a correctly implemented
fully-implicit scheme should yield a similar solution, we verify that our
fully-implicit solution matches an appropriately time-stepped fully-explicit
solution. The timestep size required for the explicit scheme, in combination
with our own computational constraints, limit this test to a runtime of a few
hundred years. Figure H.2 compares these two solutions for 150 years of ice
sheet evolution in response to a step change in accumulation. The explicit
scheme uses 0.05 year timesteps, and the implicit scheme uses one year
timesteps (two and five year timesteps give nearly the same solution). The
fully implicit solution value for ice flux (or ice thickness) at the limited-
domain boundary is within a fraction of a percent of the fully explicit
solution value for this 150-year calculation of ice-thickness response to an
impulse in accumulation. The computation time required for a stable
solution with an explicit scheme is approximately two orders of magnitude
longer than solving the equivalent problem with an implicit scheme (i.e. an
explicit calculation that requires ~1000 seconds could be performed with an
implicit calculation in ~10 seconds). We want to minimize the computation
time, and we want to avoid unstable and unphysical behavior, so we use a

fully-implicit scheme.
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Figure H.2. Comparison of the solution for ice-thickness evolution using an explicit
calculation (0.05 year timestep), and using an implicit calculation (2 year timestep). The
run is for 150 years in response to an impulsive perturbation in accumulation.
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Appendix I: Nonlinearity

In the continuity equation for ice flow, the value of ice flux is a
nonlinear function of ice thickness, which means that this governing
nonlinear equation cannot be solved directly for the evolution of ice
thickness. To linearize our problem, we group the nonlinear terms in the
dynamic flux into a coefficient, consisting of the ice thickness and the
surface slope, and assume that this coefficient has a known value.
Following this step, the mass-continuity equation can be represented in a
generic differential-equation form that consists of an unsteady term, a

diffusion term, an advection term, and a source term:

0S(x,t) _ 0B(x,1) _
ot ot

Wt ){( —a)—(D( OW(X )as(gz t)j+aﬁ(x,t)W(x)h(x,t)}+b(x,t)

@.1)

where a 1s a weighting factor to split contributions from the diffusion and

the advection terms, u(x,t)is the depth-averaged horizontal velocity, and

D(x,t) acts like a diffusion coefficient given by
~ n-1
D(x,t) = M(pg)n h(x,t)mz(M) (1.2)
n+2 dx

We considered the case a #0, where the discretization equation is solved
using an advection term. However, unless this term is necessary to include,
Patankar (1980, pg. 41) typically excludes the advection term to facilitate a
simpler solution. While it is possible, and often necessary, to include the
advection term in the heat-flow problem (e.g. Patankar, 1980, chapter 5), we
think including an advection term in the mass-flow problem adds
unnecessary complexity, especially because there is no physical requirement

to include this term. The schemes described in Patankar (1980, pg. 79-95)
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for the heat-flow problem rely on mass continuity to justify that the

strength of the advection, given byF = pu, is equal across eastern and

western finite-volume edges Fe=Fu; this means that Fe-Fu=0. When solving
a mass-flow problem, there is no global constraint that can be utililized to
justify Fe=Fu, and therefore justify Fe-Fiw=0 in the discretization equation.
Since the value of Fe=F, for the mass-flow problem is a function of the
unknown value of the ice thickness, this adds additional complexity.
Therefore, we feel that it is unnecessary to include an advection term. We
favor a linearization that groups the nonlinearity into a single coefficient
D(x,t), giving an equation with a diffusion form (Equation 1.1 with a =0;
this is the linearization form used by e.g. Waddington, 1982, pg. 239; Van
der Veen, 1999, pg. 226).

The numerical solution to Equation 1.1 is found by integrating over
each finite volume from the west edge xw to the east edge xe, and from the
current timestep ¢ to the future timestep t+At. Ice thickness h(x,t) and ice-
surface elevation S(x,t) are related by S(x,t) = h(x,t) + B(xp). Ice-surface

elevation is calculated at finite-volume centers S(xp, t + At ):

DX,
(SOxe t+ At) = S(xp, 1) = = =
{D(xe,t+At)M_D(XW,HM)M} L3
0x X

+b(X,,t + At)AX,

where D(xw, t+At) and D(x., t+At) are the values of the diffusion coefficient
evaluated at western and eastern finite-volume edges, respectively. The
coefficients at finite-volume edges require the values of ice thickness and
surface slope there, we linearly extrapolate the ice thickness and we

quadratically extrapolate the surface slope from the calculated values at
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finite-volume centers. The flux coming in across the edge of one volume is
equal to the ice flux going out through the adjacent upstream volume edge.
The ice flux at one boundary must be prescribed as a boundary condition,
and the ice flux at the other boundary in the domain must be calculated as
part of the solution for ice-thickness evolution.

The value of the coefficient D(x, t +At) is a function of A(x, t+At) and
dS/dx (x, t+At), and at time t+At these values are of course unknown,
since we are solving the problem for A(x, t+At); this is the nonlinearity in
our problem. To address this quandary, we follow an iterative approach (e.g.
Patankar, 1980, pg. 47). The iterative sequence starts by estimating the
coefficient values as function of the known values at time ¢, so that at the
first iteration, D(x, t+At) = D(x, t). However, in a transient problem it is
unlikely that a solution with this initial estimate will satisfy continuity, so
we must iteratively adjust this estimate of the diffusion coefficient so that
the solution for S(x, t+At) calculated with D(x, t+At) will satisfy the
continuity equation. We iteratively update the estimate of D(x, t +At) using
the new estimate of S(x, t+At), until continuity is satisfied. There are two
ways to check that mass conservation holds: (1) directly calculate the
residual of the continuity equation and iterate until this residual is small, or
(2) calculate the difference in the ice-thickness solution from iteration i-1 to
iteration i and iterate until this difference is small. We find that both of
these approaches yield the same ice-thickness solution, but the second
approach requires less computation time.

The degree to which the continuity equation is satisfied at each

iteration i, which we call the residual of the continuity equation, is given by
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= ((S(Xp,t + At) = (X, 1)) AX,

0S(X,,t +At)
0X

-D(x,,,t +At)'W(x,) (I1.4)

+(D(xe,t +At)'W(x,) WJ

—B(Xp,t + At)AX At

We seek a value of D(xt+At)" that, when calculated using an appropriate
S(x,t +At), will satisfy ri=0. Following Waddington (1981, pg. 241), the
Taylor expansion of ri about zero is a set of equations that can be solved for
changes in the ice thickness ¢h' at each iteration that will result in a
smaller residual of the continuity equation:
r'= ;%ﬁ (I.5)

where % 1s an index over each spatial value of ice thickness. This can be
represented in matrix form as

r' = AXS', B =AY (1.6)
The calculated changes &' are subtracted from the current estimate of ice
thickness,

S(x,t +At)' = S(x,t +At)' ™ - B 1.7)
and the new S(x,t+At)'is used to estimate an updated diffusion coefficient

D(x,t +At)™, and then a new solution for ice thickness S(x,t+At)"™.

Iterations continue until the residual ri is small, and we require r < 10-6 (see
Appendix J)

While we required that our solution satisfy continuity, a simpler
approach can be followed that yields the same solution. The second
approach is to iterate until changes in ice thickness from iteration i-1 to

iteration i are small. In this case the residual ri is given by
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r' = S(x,t +At)' - S(x,t +At)™ 1.8)
The new estimate of S(x,t+At)' is used to calculate an updated diffusion
coefficient D(x,t+At)™, and then a new solution for ice thickness

S(x,t +At)"™. Tterations with this approach continue until the residual ri is

small, and we also require ri < 10-6. This approach requires more iterations
to find a solution, but it is faster because it avoids calculating the Jacobian
matrix given by Equation 1.5. While linearization with this approach
facilitates a simpler and faster numerical solution, the mass-flow problem is
highly nonlinear and for the numerical scheme to be stable, we must invoke
underrelaxation. As described by Patankar (1980, pg. 67), underrelaxation
is a way to slow down convergence of the solution by using a weighted
contribution of values from previous iterations. For example, we estimate
D(x,t +At)™ using contributions of ice thickness and surface slope from the
current i, and from iteration i-1, using a weighting factor £, giving the

weighted value of S(x,t +At)'w :

S(x, t+At)w =B S(x, t +At)i + (1- B) S(x, t+ At )i-! (1.9)

if f=1, only the estimate from the current iteration is used. We found that

£ <0.1 stabilized this iterative solution procedure.
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Appendix J: Convergence criteria

As discussed in Appendix I, our implicit numerical scheme iteratively
solves the nonlinear continuity equation with the flow-law equation for ice-
sheet evolution. Iterations for this solution stop when the residual of the
continuity equation is small, or when subsequent changes to the ice-
thickness profile are negligible. Waddington (1981, pg. 350-353) discussed
the appropriate cutoff value to use for a similar iterative procedure, so that
the residual error in the solution is acceptable. Following Waddington
(1981, pg. 350-353) for flow of a laminar slab with unit width, where slope
and flux vary slowly with distance along the flowline, the residual error r is

related to the error from solution convergence en by,

r|=107e,|. J.1)

As pointed out by Waddington (1981, pg. 353), for the ice-thickness solution
to be accurate to 106, given ice-thickness changes over each timestep of

~10-1, the residual convergence criterion,

r|<10™. J.2)

A convergence criterion is required to calculate the impulse-response
functions, where we solve for ice-sheet evolution in response to a small
perturbation in one timestep. A convergence criterion is also required to
calculate ice-sheet evolution, where we calculate the ice-thickness history in
response to centimeter-scale variations in accumulation that occur over each
timestep. To reduce computation time while remaining accurate, we use

|r| <10® in the surface calculation for the impulse-response functions, and

we use |r| <10 in the calculation of ice-sheet evolution.
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Appendix K: Algorithm Flowcharts

MAIN_transient_flow.m

Setup: global variables
values on nodes and mesh
bed, width, slip functions

Load data: internal-layer shapes
modern ice-surface elevation
modern accumulation rates
modern ice-surface velocities

Estimate parameters: accumulation-rate history
initial and external ice flux
layer ages
initial ice thickness
temperature-independent ice-softness parameter
geothermal heat flux

‘ Trade-off parameter loop ‘ nu range

—‘ Parameter-changes loop ‘ while dp > stop_test
thermo-

mechanical? 1

( Thermomechanical )
N N

Estimate temperature Assume temperature
field, T, (x,zt) field, Ty (x,t)
Surface main Surface main

while dT >

Thermal main

Particle main

Figure K.1. Main program.
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surface_main.m

Impulse-response functions (IRF)

| calculate? |

( Use existing values )
b b

Embed in full model Ice-flux response

Implicit solver: hold steady state

Implicit solver: impulse perturbation

Ice-flux response

—| Implicit-solver loop | while max_res > stop_test

Boundary flux: volume change from accumulation perturbation
volume change from ice-divide migration
convolve volume changes with IRF

Ice thickness

Figure K.2. Surface-evolution calculation.
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velocity_main.m

Velocity fields: u(x,z t) w(x,z1)

| divide |

flow? — '
Flank flow only o
Use Shallow Ice Approximation (SIA). Use Dansgaard-Johnsen model.
Update shape functions Assign kink height h
Update effective isothermal Update shape functions
softness parameter Aeff

Update effective isothermal
softness parameter Aeif

Output fields of horizontal and vertical velocity, horizontal-velocity and
vertical-velocity shape functions, and effective isothermal softness parameter.

Figure K.3. Velocity-field calculation.
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particle_main.m

Track particles by integrating the velocity field.

Find particle starting positions

Integrate surface velocity field so that particles cover as much of domain as possible
without crossing the downstream boundary.

Find layer: efficient particle tracking

Parameterize the 3-D velocity field.

Find the gridbox of the particle. ‘

L | Evaluate for particle position over time. ‘

Map out an internal layer of a given age by connecting end points of particle paths.

Figure K.4. Particle-tracking module.
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inverse_main.m

MODEL PARAMETERS: DATA VALUES:
ice flux entering the domain internal-layer shapes
externally forced changes in ice flux modern ice-surface elevation
spatial and temporal accumulation rate modern accumulation rate
ice-surface elevation at one location at first timestep modern ice-surface velocity

temperature-independent ice-softness parameter
geothermal heat flux

Data residuals: difference between data and model estimates of the data

Model size: curvature of the accumulation rate;
difference between model parameters and their expected values

Jacobians: partial derivatives of modeled observables
with respect to model parameters

| numerical? |

All Jacobians can be Derivatives with respect

to input ice flux, accumulation
rate,and layer age can be

Can use a forward or a calculated analytically.
centered difference.

calculated numerically.

Assume ice-surface and ice-
temperature histories known.

Solve the inverse problem: updates to values of
unknown parameters that
minimize performance index

| SVD |

Truncate
singular values
=

Ap=(UAVTY A

Form normal equations:

T
A AAp=Ab Use all
singular values

Performance index: model norm, data norm, tolerance, trade-off parameter

Figure K.5. Inverse algorithm.
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Appendix L: Linear interpolating functions

Between any pair of spatial nodes xi" and x%+: separated by

n
i+1

Ax, = x,, —x", we define a local non-dimensional position variable Xi, which

varies between 0 and 1 in interval i,

X = X=% _ X=X

L X A L.1)
We define two linear interpolating functions on a generic interval,
Bo(X)=1-X,  0sX <1
Vo(X;)=0 otherwist (L.2)
(X)) =X, 0<X, <1
Vo(X;) =0 otherwist

These functions are defined to be zero everywhere outside their interval i.
Then, any piecewise-linear function f(x,z) with values fi(t) at nodes i can be
express as

Ft) = 316 01 (X) + Fa (X))
& (L.3)

= 3 100X+ K06

with N functions fi(tf) at the spatial nodes. We must ensure that

¥o(Xy,) =0(X,) =0, because the interpolating functions are not defined
there.

We can also explicitly express the time-dependence through
piecewise-linear functions expressed in terms of nodal values. Between any
pair of temporal nodes #" and ¢+ separated by At, :t?ﬂ —t?, we define a

local non-dimensional time variable 7; analogous to Xi, which varies
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between 0 and 1 in time-interval j. The same interpolating functions as
Equation L.3 can be used to express time-dependent variables at

intermediate times

f(xt)= Z_[fijyoﬁj)+ fi(j+1)y1(Tj )]
j=1 (L.4)

N, -1

= Z fij [yO (Ti ) + yl(Tj—l)]

Again, we must ensure that y,(Ty ) = y,(T,) =0.

Next, we define integrals of products of the interpolating functions,

Moo (X) = [ VOOV (1Y

(L.5)
where m and n can take the values 0 or 1, giving
1-1-X)®
[y (X) _1-@=-X)"
3
xZ x3
M, (X)=—-——
Ol( ) 2
x3
M,(X)=—
3 (L.6)
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Appendix M: Bilinear and trilinear interpolation

Any 2-dimensional grid, with coordinate values x and y, can be
parameterized as a 2-dimensional field, and if the coordinate system is
chosen such that the four grid points where a function F is known are at
(0,0), (0,1), (1,0), (1,1), the function F can be parameterized by the
interpolation equation

F(x,y) = F(0,00(1 —x)(1 —y) + F(1,0)x(1 — y)
+F(0,1)(1 —x)y + F(1,1)xy (M.1)

This can also be represented as

F(x,y) =Ax+By+Cxy+D M.2)
where the coefficients A, B, C, and D are given by A= F (0,0), B= F (1,0)- F
(0,0), C=F (0,1)- F (0,0), and D= F (0,0)- F (1,0)- F (0,1)+F(1,1).

Any 3-dimensional grid, with coordinate values x, y, and z, can be
parameterized as a 3-dimensional field, and if the coordinate system is
chosen such that the nine grid points where the function F is known start at
(0,0,0) and span (1,1,1), the function F can be parameterized by the
interpolation equation

F(x,y,z) =F(0,000(1 —x)(1—-y)(1—-2)

+F(1,0,0)x(1 —y)(1 —2) + F(0,1,0)(1 —x)y(1 — z)
+F(0,01)(1 —x)(1 —y)z+ F(1,0,1)x(1 —y)z

+F(0,1,1)(1 — x)yz + F(1,1,0)xy(1 — z)
+F(1,1,1)xyz (M.3)
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This can also be represented as
F(x,y,z) =Ax+By+Cz+Dxy+Exz+Fyz+Gxyz+H (M.4)
These equations hold if the grid is rectangular, therefore we track particles

in a normalized vertical coordinate system Z, given by

z-B(x)

Z=— "
S(x,t) — B(X)

(M.5)

These parameterizations are used in our particle-tracking routine for
mapping out an internal layer. In comparison to standard interpolation
from known grid values, it is computationally faster to retrieve particle

positions from any arbitrary location in the grid by evaluating a

parameterized function.
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Appendix N: Analytical Jacobians

To solve this nonlinear inverse problem discussed in Chapter 5, we
must calculate the Jacobian matrix, which in our case consists of the partial
derivatives of each modeled observable (/N values) with respect to each
model parameter (M values), producing a matrix of size M XN ; see Chapter
5, Section A5.3). The modeled observables are estimates of the data values,
and this may include the internal-layer shape, the present-day ice velocity,
measurements of the accumulation rate, or the ice-surface elevation. The
model parameters are the unknown values that we solve for in the inverse
problem, and may include the initial condition for the ice flux entering the
domain, the changes in ice flux that are from external forcing, the spatial
and temporal pattern of accumulation rate, the layer ages, the initial
condition for the ice-surface elevation, the temperature-independent ice-
softness parameter, or the geothermal flux. One column of the Jacobian
matrix describes how each modeled observable changes with respect to one
model parameter; the full matrix describes how changes in all the model
parameters will result in a better estimate of all the modeled observables.

The Jacobian matrix is expensive to compute numerically. So, if it is
possible, we want to calculate components of the Jacobian matrix
analytically. To calculate the Jacobians analytically we must represent the
modeled observables (e.g. the internal layer) in terms of the model-
parameter values (e.g. the accumulation rate), and then derive an analytical
expression for the partial derivative of the modeled observable with respect
to each parameter value. Analytically evaluating components of the
Jacobian matrix can substantially reduce the required computation time.
While we can derive expressions for the layer depth, the ice velocity, and the

accumulation rate in terms of the model parameters of the accumulation
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rate, the ice flux entering the domain, and the layer age, it is not
straightforward to represent all components of the Jacobian matrix
analytically. In particular, to take these analytical partial derivatives we
must hold the ice-thickness history A(x,t) constant; this same assumption
cannot be made for the numerical calculations. Therefore, some numerical
calculations are always required, and we decided that computational
consistency of the dJacobian elements was more important than
computational efficiency. In addition, the analytical advantage in this case
was not as great because our analytical calculations also required a
reasonable computational load.

However, in the event that a numerical calculation is unfeasible, or if
1t 1s desirable to solve a different version of this inverse problem, we present
analytical expressions for the layer depth, ice flux, ice velocity, and
accumulation rate in terms of the model parameters of accumulation rate,
ice flux, and layer age. The scheme presented here follows an original
derivation by E.D. Waddington (unpublished), and builds on steady-state
relationships derived by Waddington and others (2007).

N.1. Layer depth

To represent the depth of an internal layer in terms of the model
parameters (e.g. accumulation rate), we must consider transient effects on
particle-path position. In steady state, Reeh (1989) noted that at any
position x along the ith modeled particle path, which originates on the
surface at x = x5, the ice flux transported below the depth Am(x, tp) of the
modeled internal layer at the present time tp, is equal to the flux g(x:s, tp) at
x:#, and the ice flux above Am(x, tr) 1s equal to the difference between the

total flux q(x:”, tp) and the flux at the surface g(x:, tp),
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gn(xi®, tp) = q(xih, tp) — q(xis, tp). (N.1)

\ ice surface
r\_\;:—\-

q(xt,)

internal layer

q (x;,t.)

L]L ) X

Figure N.1. Sketch of particle-path and ice-sheet geometry.

This is a consequence of mass conservation, and the fact that no flux can
cross a streamline in steady state. If xi# is the location at which the ith
particle path xiP(f) intersects the layer at depth Am(x, tp), the partial flux
gn(xih, tp) that is transported above the depth An(xi, tp) at x = x#, at time tp,

can also be written in terms of the velocity and geometry at xi", as

On (X tp) = @ (XUt W), (6 ) (N.2)
where @(x) is the average value of the horizontal-velocity shape function
@A 2,t,) between the surface and the path at depth Am(xi?, tr). Since the
shape functions @(x,zt,) and ¢(x 2t,)are related by vertical integration

(see Chapter 5, Section A5.1), and the measured depth of the layer ha(xi, tp)

is known, @(x") can be expressed as
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A = [ O gyl =) (N.9)
where
5h = S, tp) = hy (X", tp) = B(X) —1- hy (X", tp) (N.4)

! S(x",t,) - B(x") H(x",t,)

If we can solve for gn(xi*, tp) in Equation N.2 in terms of accumulation rate,
this is a way to express the layer depth Am(xi, tp) in terms of the model
parameters. In steady state, this can be evaluated simply, where the
modeled layer depth is given by

W HOM (. q0)
h (x")=—"7""~|1- ! N.5
m(5') qo(x:‘)( q(xﬁ)) ™.5)

However, this must be considered more generally in a transient problem.

If a curve Fi(x) starts on or below the current surface S(x,tp) at x = x5,
and ending at depth Am(xi*, tp) at x = xi*, Fi(x) can be represented
parametrically as a position vector xif(s), where s measures the distance
along the curve, or as x;f(t), where t describes the time at which a particle
moving along the curve passes xiI. If xif(f) is not a streamline, then
continuity still specifies that no net flux can cross the closed surface of a
prism bounded by vertical surfaces defined by the flowband width W(x) on
the sides, and by the curve x;#(f) on its upper surface, by vertical faces
joining x;f(¢) to the bed at its upstream and downstream ends x = x;* and x =
xi", and by the bed B(x) between x = xi# and x = xi®. No flux can cross the
sides of W(x), which are defined by streamlines, and we assume that there is
no loss or gain of ice along the bed.

We assume that a flux ¢(x°,2°,t,)q(x’,t,) enters at the upstream

end. The factor ¢/(x°,2°,t,) accounts for the case that zi* may lie below the
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present-day surface S(tp). The flux transported below the curve xif(¢) at the
downstream end xi" of the prism is then given by the sum of this input flux
and any “leakage” of flux into the prism across the curve x;#(¢). This output
flux is also equal to the difference between the total flux q(xi?, tr) and the
partial flux gn(xi?, tp) that is transported above the depth Am(xi, tp) at x =

xi, at time tp:

q(xih tp) =0y (Xih’tp) =Y (%, Z,t:)a(%,tp) (N.6)
= [W(s)u(x{ (s).tp) Mi(s)ds

Fi (%)

where u(x/ (s),t,) is the velocity vector along Fi(x) = xif(s) at time tp, A(S) is

the outward (i.e. upward) unit normal vector to the curve, and s measures
the distance along the curve, in the direction of increasing x. The inner

product in the integrand can also be written as
u(x’ (s).tp) () =[U(x{ (9),tp) xE(S)] (&, (N.7)
where t(s) is the unit tangent vector to Fi(x), and e, is the horizontal unit

vector in the y direction, transverse to the flowband. When the curve x:(¢)

1s a particle path xiP(t) = [xi(¢),ziP(t)], its unit tangent vector is:

U(X:j(t)’t) = [u(xiP (t)’ ZiP (t)’t)! W(Xip (t)! ZiP (t)’t)] (NS)
U@, 0] TuCx (0,27 (0,07 + wx (1), 27 (1),

t(x7 (1) =

The surface elevation can change over time due to ice-sheet transients. This
means that the position where the path started x:P(¢5) = [xiS(¢),S(xiS,t:5)]
might not fall exactly on the present-day surface S(x,tp), and the integral
along the curve Fi(x) must account for this possibility. If xiF(¢:5) falls below

S(x,tp), then we just close the surface across which the flux integrates to
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zero at that interior point x:F of the ice sheet. If x:F(¢5) falls above S(x,tp),
then we close the surface across which the flux integrates to zero at the
point where the path crosses the present-day surface.

Equation N.2 for the partial flux at the depth of the internal layer can

now be expressed as

On (61 tp) = A0 10) — 9 (%7, 27, t:)a06" 1) + JEW(XiP O)UX? (), t:) xu(x? (1), 1)] ,dt

= (X" te) — (6, 27,1)006 tp ) +

WO ) O, WO (), = U(xE @, DWOXE (), )]l (N.9)

where u(x”(s),t,) is defined by Equation N.7. If the transient particle path
xiP(t) is also a streamline at ¢=tp, the integrand vanishes because u(x’(t),t,)
and u(x’(t),t) are always parallel; steady state is a special case of this
situation. However, if the paths are unaltered, but the speed of particles
along a path scales with the contemporary accumulation rate, then the
integral also vanishes.

Combining Equation N.2 and Equation N.9 leads to and expression
for the depth Am(xi) of the path at the point xi® at which it reaches the
correct age of the layer:

h H(X-h,tp) Y%, Z7,tp)d(Xtp) 10
My (X tp) =~ 1P 4 - . = [G(t,,tyt N.10
T { W m Y j 10

where

Gt 1) =W(x" U 1), t (! (1),8) ~u(x" ), WX (@),t,)]  (N.11)

To calculate the depth of the kth layer, each particle is tracked from

the starting point on the surface [xi5, S(x:#, t:)] at time t;# = tp — Ager, to its
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position [xi, S(xi", tp) - hm(xi")] at t=tp. In order to find each partial
derivative with respect to one parameter, with the other parameters held
constant, we must be sure to stay at the same Ager and at the same x=xi", as
the parameters are perturbed. Conceptually, this means that we must move
to different paths as the upstream accumulation rates or ice flux entering
the domain are perturbed. To allow this, we must consider the starting
position xi# to also be an implicit function of the parameter values.
Following this requirement, differentiating Equation N.10 with respect to
each parameter p;j (e.g. the accumulation rate, the incoming ice flux, and the

layer age), gives

oh, () ___ h(x"\t)
o0, AOAK )
o2, 2006) L 2806.6) 06 a(x,t,) 09X t) |
A op; 0x’ ap; Q(Xih't ) 0p;
1 aq(x".t,) 5 0G(tp, 1)
- | G(t,,t)dt - G(t,,t°
q(Xih,t) apj J. (1) ( ) P; J‘t' api

(N.12)

The average horizontal-velocity shape function @(x 2t) and the ice

thickness h(x,t) are evaluated at xi* at time f{p, and the vertical-velocity

shape function ¢(x,2,t) is evaluated at xi®. The ice flux g(x,t) is calculated

using Equation N.2, and is evaluated at the particle-path starting positions
x:# and the particle-path ending positions x». In Equation N.12, there are
five additional derivatives that must be evaluated.

First, the partial derivatives of ice flux with respect to the parameters

dq(x,t)/dp; are given by Equation N.43 — Equation N.44.
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Second,

9A0¢ ) i ¢ W)
. (N.13)

Third, starting with the known particle path [xiP(t), zi¥ (t)] between xis

and xi", where x:* is defined by

Xt =X = [T uO (1), 2° (). e

i (N.14)
Differentiating with respect to parameters pj, gives
ox __ ot WOC (), 27 (.8°) _tjiau(xip(t), z"(t),1) "
op;  op, & 9p;
_‘f{au(xf’(t), 2 (1)) 0" du(x’ (1), 2 (t),1) 0z° J M
= ox” op, 0z" op, (N.15)

where the first term in Equation N.15 gives the rate at which the path from
x;* lengthens as we seek an older layer. To see this, note that ¢;5 = tp — Ager.
When pj=Ager, where Ager is the age of the layer reached by path i, this
term 1s just the negative value of the horizontal velocity u(xis(¢:), t:5) at the
starting point x;5(¢%) for the path. This term is identically zero if parameter
pj 1s not Ager.

The second term in Equation N.15 expresses how the velocity along
the reference path changes as the parameters change. The integrand in this
term can be written as

au(x,z,t): ¢(x,2,t) oq(x,t)
ap; h(x,t)W(x) dp;

(N.16)
which can be integrated numerically because the ith path [xP(t), z:i¥ (t)] is
known. The last term in Equation N.15 expresses how the velocity changes
as we move through the velocity gradient to an adjacent path, in order to
always be on a path that reaches Ager at position xi* as the parameters p;

are perturbed. Equation N.15 contains 0x"/ op;, which comprises all
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intermediate values of 0x’/dp; along the path. It also contains oz" / p;,

which expresses the rate at which we have to move vertically to stay on a
path that reaches Ager at position x=xi* as the parameters p; are perturbed.

This means that we need solve simultaneously for both x"/ op; and

0z" /op ;- The corresponding equation for rates of vertical path-hopping is

aziS _ oy & Ow(x" (t),zI (1), t)

» "o WX (1), 27 (1).67) - j J

_T ow(x? (t), z" (t),t) ax” +aw(xi (t),z"(t),t) 0z° dt
= ox° op, 0z" op;

(N.17)
The first term in Equation N.17 describes the rate at which depth must be
increased to find a new path that reaches the correct Ager at position x=x"
as the parameters are perturbed (or alternatively, it represents the height
above or below the surface from which the path must start at x5 in order to
reach the “correct” depth Am(xi") at x=xi"). The second term shows how
changes in vertical velocity along the reference path contribute to the rate of
change of the path with depth with changing parameters. Differentiating
the vertical-velocity field (e.g. Chapter 5, Equation 5.9), the first integrand

in Equation N.17 can be expressed as

ow(x,z,t) _ ab(xt) w(x 5t

ap, op, )
+6q(x,t){ A, 2,1) (2§+(1_2)@J 1 Iago(x(t)dZ
op; | h(x,t)w(x) dx) W(x)y  0X

(N.18)

where x=x"(t) and Z=2"(t) are known functions of time ¢. The final term

in Equation N.17 expresses how the vertical velocity changes as we move
through the gradients of vertical velocity w(x,z) to find a new path. The
velocity gradients du/odx, du/dz, ow/0x, ow/0z can be found numerically or

analytically. The analytical expressions can be complex, especially when
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the shape functions are complicated, for example when they vary in both x
and z (i.e. due to a strong or variable temperature gradient). The numerical
calculation i1s not overly computationally expensive, so the numerical
evaluation is used here. The velocity gradients are found by differencing
velocities at nearby points. The coupled Equations N.15 and N.17 are found

by integrating from t =t° to t =t,, and starting from the initial conditions:

oxs ot®
= ——'U(Xip (tis)y ZiP (tls))
op; op;
aZlS ats S S
= LW (1),27(0)
, p, (N.19)

Fourth, in Equation N.12, for paths that lead to the layer of age Ager,

and ¢ = tp — Ager, and Ager. s, for example, parameter m, then

ot°  0Age, _
a,  op, o™
Pi P (N.20)
where O 1s the kronecker delta function. We treat time ¢, which can
depend on some parameters, as the variable that determines the location x
(rather than the other way around).
Fifth, in Equation N.12, G(tpt) is a function of the velocity
components along the particle paths using Equation N.11, and the

derivative with respect to parameters is given by,

96Uet) -y (1) Eﬁu(x!’(t),tp)w + W(xf(t),t)mj
apj 0 j apj
+ u(xf(t),t)m + W(xf(t),tp)w
P P, (N.21)

This representation of changes in layer depth with respect to changes

in parameter values holds for flank flow, and for ice sheets that experience
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minimal divide migration. However, if there has been significant divide
migration, there is a chance that particle paths will change direction and
cross in the vicinity of the divide; this scenario is sketched in Figure N.2.
Therefore, we also provide a generalized formulation of the partial
derivative of layer depth with respect to parameter values, following an

original derivation by E.D. Waddington (unpublished).

N
ice divide

ice surface

particle
path

internal layer

Figure N.2. Sketch of the scenario of particle-path crossing, which may occur in the
vicinity of ice divides where there has been significant divide migration.

Instead of representing the particle path parametrically with time as

x" (t) = x>(t°) + ju(xf’ .z, r)dr
e (N.22)

t
zF(t) =z (t°) + Iw(xip,zip,r)dr
5 (N.23)
we could describe the path in differential equation form rather than integral

form:
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di = u(XiP (t), ZiP (t))
" (N.24)

dz”

o w(x’ (1), Z (1))

(N.25)
Then, instead of taking the partial derivative of N.22 and N.23 with respect
to parameters pj, as done in Equation N.15 and N.17, we could differentiate

Equations N.24 and N.25. For horizontal velocity,

0 [CIXIP] — + l:i:l + l:_P:l

at dp] ap] ") aX (xPt) éloj EZ (xP.t) él:i (NZ(;)
and for vertical vel()(:ity,

0 [dZiP } ow ow |:aZiP :| ow |:6Xip :l

at dpJ apj x" 1) dz (xP.t) c"p] fX (x".t) I i (NZ l)

These two coupled equations can be solved numerically, for example with a

Runge-Kutta method. For example,

0
a fl = gl(t) + kl(t) fl + ml(t) f2
(N.28)
0
a f,=0,(t) +k,(t) f, +m, () f,
(N.29)
where
¢ _{axf’} ¢ _{azf’}
17| 3~ 2 7| AL
op; | op, (N.30)
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and

g, ="

"0, i

g, ="

i

) (N.31)
and Equations N.30 and N.31 are given by N.16 and N.18, respectively.
Then,

ou ow|
k(t)=— K, (t) v
X" Xlx? 1) (N.32)
and
ou ow|
ml(t):a— mz(t):a—
ZlxPy | Zlx (N.33)

These derivatives can be calculated using finite differences along each path

i. To solve for [fi(t), fo(t)], the initial conditions are

h
f.(t ):ai:o
1I\*P a
P; (N.34)
o _ 0Z° 0S(x°,t°) _aS ox®  0S ot’
D S e ¥ S
P Pi Xloc i) OPj - Ol OP; (N.35)

To solve these coupled equations, the boundary condition at the end of each

path must be estimated, and iteratively updated. For example, guess that
0x’/0op; =0, and iteratively update this value until Equation N.34 is
satisfied. This formulation numerically calculates the velocity gradients
along the path, and the path displacement rates along the paths with
changes in parameters pj.

Internal-layer depth is given by the difference between the present

surface at x" and the present elevation of the particle on path i:
ha (X" = S(x",t,) — 27 (X" (t,)) (N.36)
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To find the changes in layer depth with respect to changes in parameters,
take the partial derivative of Equation N.36 with respect to p; with the
surface history and layer depth fixed, using Equation N.23 and Equation
N.36. Compared to Equation N.12, this is given by

oh, _aS(xt,) 9
apT s(;l.ojt) Z(t) _ 0{jw(x (r),zl(r))}

(N.37)

The first term is equal to zero because the surface is not adjusted with
respect to parameters, and the second term is found by solving the coupled

Equations N.28 and N.29. The last term in Equation N.37 is given by

a%{IV"(XP(T),ZiF’(T))d } W(X tF),z7 (t7) ) W(X (t5), Z°(t° ))
I {W(x ). e))  dr

j S(><,t),><,-h (N38)

The first term in Equation N.38 is equal to zero because the present time
along the path is held constant. The second term is non-zero only when the
parameter pj is the layer age. To integrate along the path and solve for the

third term in Equation N.38, we need to express

0z"
X Z| tap]

aw
ax

ow
ap,

_ow ow
ap,

Xzt apj

ow
+
0z

S(xt),x Caran) X,z L S(x.t) X7 6S(xt) (N39)

where the first term represents the change in speed along path i when pj is
changed, the second term represents the change in speed due to shifts in the

path position x at time ¢, and the last term represents the change in speed
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due to shifts in the path position z at time ¢. The first term is given by N.18,
and the velocity gradients along the path have been evaluated numerically
from the velocity solutions as the particle moves along the path i (Equations

N.32 and N.33).

N.2. Ice flux

Ice flux, when expressed kinematically (e.g. Chapter 5, Equation 5.4),
is a function of the model parameters. To analytically evaluate the integral
in this kinematic expression, we use linear interpolating functions (see
Appendix L). The ice flux q(x,t) can be expressed in terms of the parameters
by

X

a(x,) =Q, (1) - [hOrHW(x)dx + | [ " (6,96 (%, 00) + By O (X, (x)))}

Xn %ol 151

X xZ_(\NJ VO(XJ (X)) +Wj+1yl(xj (/\/)))i|d/\/

(N.40)
when the integrals are evaluated with the appropriate products of the linear

interpolating functions, this gives

) B OWIR(X)
A(x,t) = Q, (1) = [ROLOWON DY + DA% | + (B, (OWy +B OW)g,(X7)
T B OWLIL (X

(N.41)

where Xi¢ is the endpoint of integration within the integral i. When x"i+: < x,
the integration covers the entire interval [x7i, xi+1] and Xi=1 (see Appendix
L). Only the single summation had to be retained because the interpolating

functions are defined to be zero outside their respective intervals.
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Ice thickness h(x,t) is calculated on a different set of spatial and
temporal nodes than the accumulation-rate parameter values, and so this

integral is complicated to represent in terms of the nodal values of its

piecewise-linear integrand components W(x) and h(x,t). Fortunately, the
integral Ih( X)W (x)dy does not need to be calculated in our evaluation of

ice flux in terms of model parameters. While the ice-thickness change over
time 1s physically a function of the accumulation-rate history, we assume

that the ice-thickness history is known at each iteration of the inverse

problem (i.e. from a previous iteration); the integral Ih( X,Y)W(x)dx 1s not

considered a function of the model parameters. By replacing the dummy
index i by i-1 in the bi+:(t) terms, q(x,t) can be expressed as a function of bi(t)
only, rather than bi(t) and bi+i(t),

900 = 3 Qu (M) + (T, )] 2{2 b, Ly (T)) + yl(Tj-l)lJ

% (AXi h/\/, Mool xie) WMoy ( xie)J +AX —1hNi—1r01( xie—l) + W ( xie—l)J) (N.42)

Equation N.42 can be differentiated to find the partial derivatives of

ice flux with respect to the model parameters dq(xt)/dp;, where
x"<x) <x",, and t" <t? <t",, so that the point (x,¢) is in the grid box (%,1),
giving

%:(1_1-')5’" +T 004 » T =

tﬂl _t|n (N.43)

in

% = [(1—T|)5n| +T, 5n(l+1)]x

mn

[A)(,n(\Nmroo(X:;) W Moa (X)) + 8% (W, 1Mo (X5) +er11(xr?1—1))] (N.44)
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where Xj¢, which is the nondimensional endpoint for integration in the
interval j (Appendix L) contains information about the spatial position k.
N.3. Ice velocity

The horizontal velocity at the surface at any location xj* where the

velocity has been measured at time ¢, is described by

us (X}, 1) =u(x), S(x},1),t) =u(x], )@ x] Lt)

Ax: Lt)

" h(x HW(x) a0/ 1)

(N.45)

where 2 =1 at the surface S(x,t), and the ice flux q(xj%t) is given by Equation
N.42. By differentiating Equation N.45, the partial derivatives at the

location xi® of the ith measured surface velocity are

oun (X' 1) _ (%' 1) aq(x’,t)
op; h(x", )W(x')  op; (N.46)

where the derivatives of ice flux with respect to the model parameters

aq(x',t)/dp; are given by Equation N.43 and Equation N.44.

N.4. Accumulation rate

When the accumulation rate b, (x7,t) is measured at xx* within the
interval [x™, x%+1] at time t, the corresponding modeled value bm(xlt(’,t) 1s
interpolated from bi(t) and bi+i(2), i.e.

b (X¢,1) =B, (A~ XP) +b, () X? (N.47)

293



Appendix N

where

Xb = X =X
Xiq = X (N.48)
If ¢ is not a time node, then bi(t) and bi+:(f) must be expressed in terms of the
earlier and later nodal values, as in Appendix L.

The partial derivative of the kth measurement of accumulation is zero
for all parameters except the accumulation rates at the spatial nodes
upstream and downstream from xx, and at the time nodes that bracket tzb.
When x" < x. <X/, and t" <t <t/,, differentiating Equation N.47 gives

B0 15) _

. 0, L= XP)+ 0 X
(?bj (tE) ij ( i ) (i+2)j i

(N.49)

and the derivatives with respect to all other parameters are equal to zero.
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