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University of Washington

Abstract

SEISMIC TOMOGRAPHY IN WESTERN WASHINGTON

by Jonathan M. Lees

Chairperson of the Supervisory Committee: Professor Robert S. Crosson
Graduate Program in Geophysics

Tomographic inversion techniques have been applied to local earthquake
travel times to delineate lateral crustal velocity variations in Western Washington.
Shallow earthquakes from the early 1970’s to the present, ranging to depths of
40.0 km, are used as sources. Two methods for inverting large sparse matrix sys-
tems are compared: an iterative back-projection method, ART, using relaxation
and smoothing to attain regularization versus a conjugate gradient method, LSQR,
which uses constraints to regularize. These techniques are compared with syn-
thetic examples that simulate the characteristics of real data inversion. The resolu-
tion is approximated by calculating impulse responses at blocks of interest and
estimates of standard errors are calculated by the jackknife. Initial reference
models are one dimensional layered velocity structures derived by least squares

analysis.




In the Puget Sound region the target consists of a 150x250 km area divided
into blocks of 5 km per side. In depth the model extends to 40 km divided into 10
layers. A total of 4387 earthquakes gave rise to 36,865 raypaths which had good
resolving power in the 2-16 km depth range. High correlations with known
features are apparent in the shallow structures and evidence for accretionary
underplating dipping to the east appear at depth beneath the low velocity sedi-
ments of the Puget Sound. Iﬁ the Mt. St. Helens region, a separate inversion was
performed with 17,659 rays using an 80x80 km grid divided into cells 2.0 km per
side. Major structural features such as the Spirit Lake and Spud Mountain plutons
are evident in the shallow layers. The Saint Helens Seismic zone is characterized
by a prominent low velocity feature. A low velocity anomaly beneath the crater at

depths of 4-9 km may indicate the presence of magma accumulations.
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CHAPTER 1
INTRODUCTION and THEORY

1. INTRODUCTION

The objective of this research is to determine a detailed 3-dimensional struc-
ture of the P-wave velocity in the upper 40 kilometers beneath western Washing-
ton. A refined knowledge of the velocity structure has small scale and large scale
implications. On the local scale we can gain insight into the geologic structure and
its relationship to surface features. Also, better knowledge of velocity variations
may improve our ability to locate earthquakes. On the broader scale it is.hoped
that a detailed knowledge of the crustal structure will shed light on the large scale
structure of the Cascadia subduction zone, first by shedding light on the accretion-
ary nature of large geologic features present on the surface and second by allow-
ing the removal of the distorting shallow structure when studying deeper struc-
tures. Finally, by refining the information we have on the geologic structure we
may ultimately be able to improve our estimation of earthquake hazard in this
region.

The origins of tomography date to the early 1960’s when researchers in the
medical fields discovered that high quality 2-dimensional images of internal ana-
tomy can be obtained by applying inverse techniques to x-ray projections. The
application of these techniques to geophysical data did not begin until the late
1970’s, due in part to the large amounts of high quality data required for this kind
of study. With the advent of such data sets and powerful computing facilities,
tomography has become a viable means of studying the earth’s interior. The
extensive shallow seismicity of western Washington and the comparatively dense
seismic network established since the early 1970’s offer an opportunity to develop

and apply the tomographic techniques to velocity inversion on a regional or local



scale.

This dissertation addresses several issues related to the application of tomo-
graphic techniques to local earthquake data. First, an introduction to the theory
and initial analysis of the data is presented. Next, a detailed comparison of the
two major computational techniques commonly used in geophysical tomography is
presented. Special attention is paid to the way each method employs regulariza-
tion. The methods are each tested using a set of synthetic data where the distribu-
tion of rays and noise is known. Additionally, several approaches to estimating
resolution are suggested and a new way to estimate standard errors is proposed.
Finally the techniques are applied to real data in two target areas: the Puget Sound
and Mt. St. Helens. The results indicate a high correlation with known structures

at shallow depth lending credence to inferred structure at greater depth.

2. LINEARIZATION

Under the approximations of ray theory, we assume that the time a seismic
signal takes to travel from point A to point B (Figure 1.1), in a given medium, is
a function of the seismic velocity of the intervening material and the path, called
the ray-path, that the wave traverses. Determining the travel time, given the velo-
city and the ray-path, is called the forward problem, and is written mathematically

as,

T=[——gr (1.2.1)
ray V(X)

where T is the travel time, x is the spatial position vector, and dr is a differential
line element along the path from A to B. The travel time is thus the line integral
of the inverse of the velocity along the ray-path. Since the travel time T does not
depend linearly on the velocity, v(x), it is convenient to introduce the ’slowness’,

§(x), where s(x) = 1/v(x). Then our functional relationship between the travel




time and the model becomes,

T= J' s(X)dr (1.2.2)

ray

Because the ray-path itself depends on the slowness (the velocity) the problem is
still non-linear. We consider the following perturbation approach. Suppose the
model, s(x), that we are seeking can be assumed to be a reference model, s4(x),

plus a small perturbation 8s(x), i.e.
5(x) = sp(x) + Os(x) (1.2.3)
Then,

T= [[50(x)+ 8s(x) ldr (1.2.4)
ray

Fermat’s principle states that, to first order, the travel time is stationary with
respect to small perturbations in the ray-path [Aki et al, 1977]. We can then
integrate over the ray-path in the unperturbed model to determine the right hand
side of Equation (1.2.4). If T} is the travel time for the unperturbed model then,

T= [ so®dr+ [ Sso(x)dr (1.2.5)
rayo raye
or, rearranging,
8T=T-Ty= [ 8s(x)dr (1.2.6)
rayo

where 8T is called the travel time residual. We now have a linear relationship
between the travel time residual, 87, and the slowness perturbation, 8s. Our data
set, or observations, consists of a set of travel time residuals (observed minus
computed arrival times) and we wish to determine the slowness perturbations by
linear inversion. For simplicity in notation we will drop the spatial dependence x
and from our equations and refer to 3s as simply s and 3T as simply ¢, remember-

ing that these are the slowness perturbations and residuals respectively. Using



4

techniques borrowed from medical tomography we parameterize the structure by
partitioning it into small cells within which the slowness perturbation is considered
constant. The real slowness perturbation field STRUE is thus approximated by the
discrete version s, where it is assumed the blocks are chosen small enough such
that s=stgyg, and there is no aliasing of structure. The inverse problem is then
discretized by considering sums instead of integrals in Equation (1.2.6). The travel
time residual will be the sum of the slowness perturbation in each cell times the

length of the ray within that cell. For many such observations we have,
m
h = 20,5 1.2.7)
Kl

where £, is the travel time residual associated with the n-th ray, and a,; is the

length of the n-th ray in the j-th cell. In matrix notation this can be expressed as,
t=As (1.2.8)

where t is an n-row column vector of observations, A is an nxm matrix of
coefficients, called the information matrix, describing the lengths of each ray in
each cell, and s is the slowness perturbation vector of length m. The "inverse

problem" involves finding a solution § which satisfies (1.2.8).

3. LINEAR SYSTEMS

We begin by considering the linear system of equations described in (1.2.8).
This system is generally nxm where n represenis the number of equations in the
system and m is the number of model parameters in s. Typically n>m and the sys-
tem is apparently overdetermined. However, the rank of the matrix ATA is often
less than m and the system will be thus underconstrained. Such a system is often
inconsistent or ill-conditioned, as will be the case when 2 equations in the system
have the same coefficients on the right hand side of (1.2.8) but different travel

times are observed. No exact solution can be found for an inconsistent system,
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while an infinite number of solutions are possible for an underconstrained system
[Menke, 1984].

As a first consideration in solving the system of equations in (1.2.8) we
desire a solution which will predict the data. To insure that this is the case we
will want some measure of the difference between the observed travel times and
the predicted travel times, namely the residuals, to be small. This can be expressed

mathematically as

min{q)(t - As)} (1.3.1)

where ¢ is some suitable distance measure. In classical least squares the function

¢ is the sum of the squares of the residuals:
O(t — As) = (t — As)T(t — As) = It — AsIP (1.3.2)

If we consider the data, t, and the model, s, to be samples of multivariate Gaus-
sian distributions then this choice of ¢ is the maximum likelihood estirhator for
problem (1.2.8). Because the system of equations in (1.2.8) is likely to be under-
constrained, the solution, 8, which satisfies the condition that ¢ be minimized, will
in general be non-unique and unstable [Titterington, 1985]. For this reason we
must impuse an additional constraint on the model that produces a unique solution
which also predicts the data. One such constraint is that the variance of the model
be small, ie. find a model s that predicts the data, such that s’s = lis(i2 is simul-
taneously minimized. Our goal is to then find the maximum likelihood minimum
variance model and this can be expressed as finding the minimum of the following

functional:

it — Asli2 + Allshi2 (1.3.3)

where A is the trade-off parameter that regulates the relative importance we assign

to models that predict the data versus models that have small variance [Herman,
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1980]. It should be noted that other constraints or regularizations are also possi-
ble.

The quality of the data depends on a variety of factors, one of which is the
ability of the analyst to pick the time of arrival on the seismogram. For signals of
high frequency this can be done fairly consistently, but much of the data will have
lower frequency components and the data will have a higher degree of uncertainty.
Since we have more confidence in picks that come from better quality data we
will weight these data more heavily in the inversion process. The analyst who
picks the data estimates a confidence interval that represents the standard error of
the pick about the mean. Using these estimates we multiply each equation in
(1.2.8) by 1/0;, where o; is the estimated uncertainty in the i-th datum. In addition
to simple row weighting we may- anticipate covariances between data points, as
would be the case for several observations obtained from the same earthquake. If

the covariance matrix of the data is C,,,, then we form the weighting matrix
W =Cypy 2
and Equation (1.2.8) is transformed to:
Wt = WAs. (1.3.4)

This is the standard approach taken in weighted least squares [Bevington, 1969]

~it @ similar fashion we may have a priori knowledge of the covariance of the
model parameters. First, if we know in advance what the ray coverage is, we may
weight blocks differently depending on the configuration of rays in the vicinity of
the block. For instance, blocks that have heavy coverage may be weighted in
such a way as to reflect the fact that we have more confidence in them as opposed
to blocks that are lightly sampled [Spakman and Nolet, 1988]. Second, we may
have a priori knowledge of the geological structures in the subsurface, like the

location of faults or the presence of specific buried features which we obtain from
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external sources. In either case we can require that the solution have the desired

covariance C,,,4,; by considering a change of variables,
x=C"12g
Then the systern is replaced by
Wt = WAC%x (1.3.5)

[Van der Vorst and Van der Sluis, 1987).

At this point we return to the question of regularization alluded to earlier.
Regularization is the mathematical term used for damping least squares problems,
referred to as ridge regression in statistics [Lawson and Hanson, 1974] and some-
times called smoothing. Regularization can be accomplished by augmenting the
system of equations in (1.2.8) with an artificial set of equations, one for each

model parameter:

[4]e-13]

As before, A, is a trade-off parameter that regulates the relative importance one
puts in minimization of the prediction error versus minimization of the variance of
the model. If F = I, this expression leads to the minimization of the functional ¢
from Equation (1.3.3) [Lawson and Hanson, 1974; Herman, 1980].

There may be situations, though, where we have a priori information about
the smoothness of the model. In such cases we would require that the solution
have a certain degree of smoothness. To do so we can take two approaches:
either we find a model that maximizes a smoothing constraint or one that minim-
izes a roughening constraint. quothing constraints are the inverses of roughen-
ing constraints: in filter theory a smoothing operator is a low pass filter and a

roughening operator is a high pass filter.




4. THE DATA

The data used in this study are derived from seismograms recorded on the
western Washington seismic network in operation from the early 1970’s. The
short period stations record vertical motion and telemeter the signals over various
communication channels to the data processing center at the University of Wash-
ington. If the signals are found to be from earthquake events, the system is trig-
gered and the data are saved in digital form on magnetic tapes. An example of

one such event is provided in Figure 1.2.

A seismic analyst examines the events and determines the onset of the first
arrivals of the P-waves and the S-waves if these are observable. Portions of
several seismic traces have been presented in Figure 1.2. The actual picks for
these data and the limits of uncertainty have been plotted on each seismogram. In
the first four traces the signal to noise ratio is very high and picks of first arrival
times are made quite accurately. In the last trace the signal to noise ratio is con-
siderably lower and there is a high amount of uncertainty in determination of
event onset. The wide error bars bounding the pick reflect this fact. In general,
when there is a moderate amount of noise in the data and the event is emergent
(i.e. has low frequency components), there is a consistent tendency for the analyst
to pick the first arrival late. This introduces a bias in the data set of observations.
Presently we do not have a way of estimating and removing this bias, but research
is being conducted towards this goal. These picks are then used to independently
locate each event in space and time using Gieger’s method, which is basically a

linearized least squares inversion [Lee and Stewart, 1981].




4.1. 1-D REFERENCE MODEL

To determine a 1-dimensional reference model from which perturbations will
be calculated, a small subset of high quality data are selected and a joint
hypocenter-velocity parameter inversion is performed [Crosson, 1976]. Since the
number of parameters in this inversion is small, classical damped least squares
inversion is used. The resulting velocity model is presented in Tabie (1.1). Since
for the tomographic inversions a finer vertical spacing was desired, new depth
boundaries were calculated by averaging between layers. Figure 1.4 shows the
final dependence of velocity with depth that was used to locate earthquakes as

well as the reference model for the tomographic inversions.

4.2. RAY TRACING

Both for the purposes of earthquake location and tomographic inversion
(solution of Equation 1.2.8) it is necessary to determine the locus of points in the
model that the waves traverse. In the presence of some simple velocity structures
the determination of raypaths can be found quite easily [Cerveny, 1987]. For the
layered models used in this study, for example, refracted rays can be celculated
analytically and direct raypaths can be found using the shooting method [Lee and
Stewart, 1981]. However, a more sophisticated approach to ray traciné, using 3-
dimensional velocity structure, would be required to perform a true non-linear
velocity inversion. The use of the above simplification is primarily due to the
speed of calculation in computing the raypaths. Cerveny [1987] reviews tech-
niques for calculating raypaths in more complicated models, but these were not
used in this research. Future work on this data should include some kind of itera-
tive method that incorporates laterally varying velocity fields, either performing
true 3-D raytracing or applying an approximation more appropriate than the 1-D

horizontal model used here.
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4.3. STATION CORRECTIONS

If we collect all the residuals for a given station in the network and plot a
histogram showing the distribution of the residuals we would expect, under ideal
conditions, the character of the distribution to be gaussian and have approximately
zero mean. An examination of the data shows this not to be the case, and we
therefore modify our model of travel time residuals to include a term for this bias
in the distribution. We assume that the bias is due to local structure in the
immediate vicinity of the station, structure due to the peculiarities of a weathered
layer or instrument variability. The travel time residuals thus have the following
form:

t=1ty,+ ot + ¢, (1.4.1)

where ¢y is the station correction for the k-th station.

The question we must address is how to determine the station correction, ¢;.
One simple approach would be to calculate the arithmetic mean of the residuals
for all residuals at a particular station. However, examination of the distributions
of the residuals for the many of the stations indicates that the mean would be a
poor choice of indicator for distributions that are highly skewed and occasionally
bimodal. On the left of Figure 1.3 histograms of residuals at four stations are
displayed with no station corrections applied in the location procedure. Note the

bimodality and non-normal distributions, especially for station SPW.

The alternative we’ve chosen in this study is to examine the individual histo-
grams of each station and attempt to choose a representative average that charac-
terizes the center of the distribution. The procedure is coupled to the earthquake
locations, as the addition of the station correction term will modify the relative
travel times for a given event. Iterating between station correction determination
and event location is required to converged to a stable choice of station correc-

tions. These are then considered fixed and the travel time observations of
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Equations (1.2.6) and (1.2.8) are modified by adding the appropriate station
correction. The histograms on the right side of Figure 1.3 show the distribution of
residuals after the station corrections have been applied and the earthquakes relo-
cated. Notice the significant improvement of the shape of the distributions for sta-

tions MBW and SPW.

A different approach to calculating the station corrections has been studied
extensively by Pavlis [1982]. This approach, called joint hypocenter-station correc-
tion inversion attempts to determine the location of the multiple events and the
value of the station corrections simultaneously. However, it can be shown [Pavlis,
personal communication] that in the limit of large numbers of events the resulting
station corrections are equivalent to the arithmetic means described earlier with the

same drawbacks. For this reason we chose not to pursue this method.
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Figure 1.1: Hypothetical raypaths in a heterogeneous model. The dotted lines

represent the true ra

ypaths and the solid lines represent the raypath approximation

in a 1-D layered model. Two kinds of rays are present for this approximation: AD
and AC are direct arrivals and AB is a refracted wave,
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Figure 1.2: Selection of four traces showing actual seismic data recorded on the
western Washington seismic network. Vertical marks on the traces indicate first
arrival picks and horizontal bars show estimated uncertainty in pick. Station names
are displayed to the left.
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Figure 1.3: Histograms of station residuals. The horizontal axis is in seconds. On
the left are the residuals for earthquakes located with no station corrections and on
the right are the same residuals with corrections applied (the delay is indicated for
each station). Notice the improvement after delays are incorporated.
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Figure 1.4: 1-D model used for inversion.
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Table 1.1: P-wave velocity model based on least squares model developed by
Crosson [1976]. The velocities and boundaries used in the inversion routine were
interpolated from this model.

Velocity Model
Depth | P-velocity | P-slowness
0.0 54 0.185
4.0 6.38 0.157
9.0 6.59 0.152
16.0 6.73 0.149
20.0 6.8 ! 0.146
25.0 6.95 0.144
32.0 6.90 0.145
41.0 7.80 0.128




CHAPTER 2
INVERSION TECHNIQUES

1. LEAST SQUARES

Least squares analysis has been used to solve the problem of Equation (1.2.8)
for nearly two hundred years [Placketr, 1972]. The approach is quite simple and
extensive discussions can be found in standard textbooks [Strang, 1980; Draper
and Smith, 1966; Lawson and Hanson, 1974]. The method is motivated in the fol-

lowing manner. Consider the problem described in Equation (1.2.8):
Ax=b 2.1.1D)
We wish to find an x such that
¢ = llAx — bll = (Ax ~ b)(Ax - b) (2.1.2) |

is minimized. To do so we consider ¢ as a function of x, differentiate ¢ with
respect to x and set the derivative to zero to determine the extrema of ¢. Doing

this we arrive at the so called normal equations:

ATAx = ATp. (2.1.3)

2. Singular Value Decomposition

At this point we introduce the ideas behind the singular value decomposition,
a method of solving the least squares problem that illustrates several important
features common to all methods of solution and gives insight into the nature of
regularization [Golub and Van Loan, 1983; Lawson and Hanson, 1974). The
singular value decomposition is based on the fact that any matrix A € R™™ can

be decomposed according to:

A =UxvT (2.2.1)
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where U e R™ and V € R™™ are orthogonal matrices spanning the data and
model spaces respectively. X = diag(€;.,, . . . ,£,) where the €; are known as the

singular values of the matrix A.

One can see the immediate usefulness of this decomposition to the under-

standing of the least squares problem. Substituting (2.2.1) into (2.1.1) gives
UzVix = b (2.2.2)
or by premultiplying by U7 and substituting y = Vx we get
Ty = UTh. (2.2.3)

Since Z is a diagonal matrix, calculating it’s inverse is trivial,

[

1 .
T 0
1
| ow
1= . 2.2.4)
]
i 0 S |

This naturally leads to a solution of the least squares problem. Since
y = = 1uTp
and y = V'x, substitution and premultiplication by V gives,
& = VZlyTh,

The inverse relationship between the singular values of A and £, the estimated
solution, indicates that small singular values project into large estimates of the
model parameters. Since small singular values may arise from errors (either from
measurement or numerical) these would then translate into large and unstable solu-

tions [Crosson, 1976]. Regularization techniques are implemented precisely to

dampen the effects of small singular values.
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The singular values of the normal equations (2.1.3) are the values &2 where &;
are the singular values of A. Subsequently the difficulty encountered with small
singular values is compounded, and the normal equations are singular (or nearly
singular). This is one of the major reasons the method of normal equations is not
used directly for near singular problems. On the other hand if a singular value
decomposition is calculated one could examine the singular values and eliminate
components that lie below a specified threshold. This will have a regularization
effect, effectively smoothing the model.

Alternatively, one could use the Levenberg-Marquandt approach [Crosson,
1976] and augment the system by the mxm matrix AI as in (1.3.6). If we form

the normal equations for this system, we get
(ATA +2%Dx = A™p.

By substituting the singular value decomposition of A = UZVT and noting that
AT = VEUT, UTU = 1, VIV =1 and that

VEVT + 0% = V(2 + ApVT
we get a solution,
x = V(22 + A2 zUTp.
The important point is to note is that the eigenvalues of this system are

2
gea?

The regularization parameter, A, can thus be adjusted to insure that the effect of

very small &; does not have a large effect on the solution x.
The main difficulty in using both the normal equations approach or the singu-

lar value decomposition is a practical one. In the case of the normal equations

one is required to form the matrix ATA and then find its inverse (ATA)‘I. For
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very large, sparse matrices the demands on computer memory and time using this
approach are prohibitive. Similarly, computer limitations make the singular value
decomposition calculation and storage of the orthogonal transformations U and V

generally inefficient.

We are thus lead to methods of solving the least squares that avoid the com-
putation and storage of whole matrices such as ATA or even A and their inverses.
The methods used in this study have the property that they require only a small
fraction of the storage required to solve the normal equations explicitly. They
operate on each row of A sequentially and they exploit the sparsity of A. Pro-
cedures of this type are called row action techniques. The row action methods
most commonly used in geophysical tomography fall into into two categories:
ART (Algebraic Reconstruction Techniques), with its various implementations,
and CG (Conjugate Gradient) methods. In the next sections I discuss and imple-

ment versions of these techniques.

3. ART - ITERATIVE RECONSTRUCTION

The difficulties that arise in solving the least squares problems can be
avoided if a strategy can be developed that avoids the explicit formation and solu-
tion of the normal equations. Two approaches will be discussed in this study: the
first is an iterative approach that is called in the literature ART, for Algebraic
Reconstruction Techniques. The second method is referred to as a CG technique
and will be described in the next section.

The ART method originated with Kaczmarz [1937], who proposed the fol-
lowing scheme for solving the LS problem. Letting a; represent the i~th row of
the A matrix, and given an initial solution sy choose an § such that it satisfies the
equation als = #; exactly, with the condition that the k-norm of the change Isy—8l;

be small. Using the L, norm leads us to the solution whose change (sy)-3) is
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minimal in euclidian length (minimum energy) [Van der Vorst and Van der Sluis,
1987]. The result is to locate the orthogonal projection of a given vector sy onto
the subspace spanned by a; and to use this as a new solution § which satisfies the
i—th equation.

In terms of the tomographic problem we can think of this process in a
slightly different way. Now we consider a raypath traversing the intervening
medium. Since the total travel time is the sum of the travel times in each section
(block) the ray passes (1.2.7), wéighted by the length the ray in each block it is
natural to take the residual for each ray and distribute it back as a slowness
correction into the model, weighted by the proportion of the ray spent in that each

block. This can be summarized in the following algorithm:

Algorithm 1 : Kaczmarz Method (ART)

s@=0

(t; — als® a;

sk = ()
lla,12

(2.3.1)

Here the p; is a scaler multiplicative factor called the relaxation factor. Each
equation of the system is used sequentially to update the present model and the
update version the of the model is used to calculate the residual at each step.
After all the equations have been used we say that one iteration is complete and
iterations are repeated until convergence is achieved. If the system is consistent,

and
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OSka?.,

then this algorithm will converge to the minimum norm solution [Herman, 1980].

Trummer [1982] has further shown that if p, satisfies the following criteria:
(@ pe20,

® 3 p2<oo
=0

((;) i Pi = o0
k=0

then the sequence of vectors s® will converge to the minimum norm solution of
(2.1.1), provided the rows of A are normalized, llal = 1. This scaling of the rows

is discussed in more detail below.

ART-Example

To illustrate how ART operates we consider an example in 2 dimensions fol-
lowing Herman [1980]. The problem is to find the solution of 2 equations in 2
unknowns in the 2D plane. The exact solution is the point of intersection of the
two lines which can be found analytically by solving the system of linear equa-
tions. The example demonstrates the basic ideas behind ART and shows the

benefit of using relaxation.
Consider the system of equations:

[4x+y=24]

2x + 5y = 25)' 23.2)

To begin we pick an arbitrary starting paint, say, (8.0,9.0). We iterate through
each equation in turn and find an updated solution by applying the ART algorithm
outlined above. To arrive at the first point we apply ART to the first equation

4x +y =24

and calculate the perpendicular projection onto the line,
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X 8.0 24.0 — (4.0x8.0 + 1.0x9.0) | [ 4.0 4.0

[y] - [9.0] + [ 402 + 1.0 ] [1.0] = [8.0]
From (4.0,8.0) the next point is (2.41,4.03) and consecutive points are calculated
similarly. When all the equations have been used we call that one iteration and
continue by starting at equation 1 for the next iteration. Each successive applica-
tion of ART is equivalent to dropping a perpendicular down to the subspace
spanned by that equation and moving the solution point to that position. This is
illustrated quite well in Figure 2.1a where the consecutive points are represented
by triangle symbols connected by lines to show the path of convergence. As is
evident in the Figure the intersection of the two equations is found in relatively
few steps as each updated solution gets closer to the correct solution calculated

analytically. In this case it took less than 10 steps to reach the solution.

Next consider what happens when the effect of relaxation is incorporated, as
illustrated in Figure 2.1b. Here we note first that the exact solution has not been
attained after the given number of steps are passed. The path, though, seems more
direct in its approach towards the solution. While the unrelaxed path bounced from
equation to equation as it proceeded to the solution, the relaxed version takes a
shorter route and never quite arrives at the exact answer. In this synthetic problem
where we have a simple exact solution it is clear that the unrelaxed "correct” solu-
tion is desirable. But in a situation involving real data with errors we are more
likely to have an overdetermined set linear equations to which there may not be a

unique solution.

Consider the example in Figures 2.2a and b. Here we’ve added an equation

to the system so that now we are attempting to solve 3 equations and 2 unknowns:

4x+y=24
2x + S5y = 25].
x+ 5y =50

Now compare the solution paths for the unrelaxed ART in Figure 2.2a and for the
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relaxed ART in Figure 2.2b. The unrelaxed solution will oscillate between the
various lines without ever "converging". The relaxed version chooses a point
enclosed by the three lines and converges accordingly. In situations where there
are many parallel lines it would be highly undesirable for the solutions to oscillate
wildly from one line to the next. In this sense the relaxation helps stabilize the
solution for the overdetermined least squares inversion in the presence of noise.
The ideas illustrated here in two dimensions can be extended to multidimensional
vector spaces. Then each row of the matrix system represents a subspace embed-
ded in the vector space spanned by all possible models. The unrelaxed solutions

will oscillate between these subspaces.

Bayesian ART

When the system is underconstrained the solutions to the least squares prob-
lem will be non-unique and an additional criteria is needed to choose among those
solutions that satisfy the data. We now describe such an algorithm suggested by
Herman et al [1979] and Herman [1980). In this case we consider the system of

equations
As=t+r (2.3.3)
which is a consistent system since for any solution 3 we may set r = As — t.

Therefore a solution to the system will involve m unknowns for the model s and n

unknowns for the residuals, r. We consider then a new unknown vector quantity,

[;] (2.3.4)
and the matrix
[M A ] . (2.3.5)

We then form the following consistent system of equations,
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[MA][;]=t. - (23.6)

Since this is a consistent set of equations by definition we may apply Kaczmarz’s
ART algorithm to find its least squares solution. It can be shown [Herman, 1980]

that the solution to this system minimizes
o = llAs — tI? + A2lIsI? (2.3.7)

which is the same as the ¢ discussed in the damped least squares case above. The

iterative step for this system of equations becomes:
NV PG 280
[ s | T [ o + Y afd (2.3.8)
where

t; = Mr) - (als)
AZ + llajii2

Ye = Pk (2.3.9)

and py is the relaxation parameter as above. This leads to the following algorithm

which is a modification of Kaczmarz’s Algorithm:
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Algorithm 2 : Bayesian ART

t; = Mr) ~ (als®)

Ye = Pi

A2 + lla,Ii2
) = (B Y\&; (2.3.10)
sk+D) = s® 4+ Yia; (2.3.11)

Compared to Algorithm 1, Algorithm 2 requires the storage of an additional Nx1
vector r of residuals and a few extra multiplications. Otherwise the time and

storage efficiencies of Algorithm 1 apply here as well.

Row Weighting

As mentioned in the first chapter the relative importance one places on a par-
ticular observation can be controlled by weighting the rows of the system by the
weighting matrix W. For the time being we will assume that W is a diagonal
matrix, implying zero pair-wise covariance in the data. As a first estimate of the
relative importance of the data Wc assume that travel time picks that are more pre-
cise should be weighted more heavily than those that have large uncertainties.
Since an estimate for the standard error of each pick is supplied by the analyst this
can be done easily by weighting each observation inversely according to the
uncertainty in the pick. If the noise in the data has an independent, gaussian dis-
tribution applying this weighting scheme leads to the maximum likelihood esti-
mate [Bevington, 1969]. Of course, real data are known not to be distributed with

such convenient properties, and this model serves as an approximation at best.
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We know, for example, that due to possible errors in station corrections there will
be correlated noise added to all data recorded at a particular site. Similarly, all
data from a particular event will have a common error introduced due to earth-

quake mislocation.

An important difference between simple ART, represented by Kaczmarz’
method, and the Bayesian ART method arises when considering row waiting.
Suppose the rows of the system (1.2.8) are scaled according to (1.3.4). The back-
projected residual (right hand term) of (2.3.1) becomes,

(k);
wit; — wals™) wa;

P llw,ai2

and the w; are seen to cancel. An important advantage of the Bayesian approach
is that the incorporation of the regularization parameter A allows for retention of
the proper row waiting since the w; will not cancel in (2.3.9). The implicit row
scaling in simple ART is a serious drawback and is discussed at length by Van
der Vorst and Van der Sluis [1987]. The implementation of the Bayesian algo-

rithm avoids this problem altogether and allows for explicit waiting.

In order to alleviate some of the error introduced by correlated error along
heavily traversed portions of the model we introduce the following weighting pro-
cedure. Consider a block in the model that has a large number of earthquakes
located within it, like an earthquake swarm. It is quite likely that most of the
earthquakes in the swarm will be recorded at the same stations, thus traveling
along identical (or nearly identical) raypaths. If the rays that travel along such a
bundle have a correlated component of noise that is unaccounted for in the uncer-
tainty estimates for the individual data, an anomalous structure along the blocks
penetrated by the bundle will result in the reconstructed image. To compensate
for this we propose to ’debundle’ the data by weighting all thc. rows of a bundle

according to 1/n, where n represents the total number of rays in the bundle. In
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this study raypaths having the same source and receiver blocks were considered
members of a bundle. This is a rather conservative bundle definition and more
inclusive (broader) definitions may also be appropriate. Debundling has the effect
* of evening out the spatial distribution of the rays, giving an equal weight for all
raypaths.

Least squares inversions are particularly sensitive to data points that are
outliers (large residuals). One solution to this problem is to not use least squares
but use some other norm to determine misfit, like, for instance the absolute value
(the Ly norm). Alternatively, if we could dampen out the effect of large outliers
we could develop a robust least squares procedure. One way to accomplish this is
to weight the equations according to the size of the residual that is being back-
projected. The following scheme can be used to determine the additional scaling

(w(r)) for each equation:

1 i< rl
wir)=qr /i Ih2r 2.3.12)
0 i > r

where r is the residual for that equation. In the synthetic example given below
robust weighting was introduced in every iteration, however this scheme could be
introduced in a programmed manner, perhaps depending on iteration number.
This would insure that the large outliers do not bias the solution without physi-

cally removing data from the problem.

Smoothing

The result of applying the Bayesian ART technique is equivalent to a damped
least squares solution. However, we may wish to incorporate additional a priori
information into the solution if we have knowledge that such constraints are

appropriate. An example of this would be the constraint that the model be smooth




29

over a certain distance measures. This kind of constraint is particularly appropri-
ate for the geological situation explored in this study where we assume that the
slowness of adjacent blocks be close to one another on the average. This kind of
constraint is easily implemented in the iterative method: after each iteration the
resultant model is smoothed with a simple low pass filter. In our case the low
pass filter is a 9-point filter for 2-D or a 27-point filter for 3-D where example
coefficients are illustrated in Figure 2.3.

There may be situations where we wish to have the level of smoothing be
dependent on the iteration number or on the model itself. This can be done sim-
ply by forming a linear combination of the smoothed and unsmoothed versions of

(k—th) model to form the (k+1~th) iterate. This can be denoted mathematically as,
U othea = MS® + (1-M)F (s®) (2.3.13)

where F(s®) is the filtered version of s and 0<nsl regulates the amount of
smoothing to be applied. Note that 1 can be a function of &, the iteration number
or anything else, e.g. the \'/ariance of s. In this study we allowed 1 to vary only
as a function of k, where typically we reduced the smoothing as the solution
approached the final value.

Constraints other than linear filtering may also be applied easily with the
ART approach. If we have reason to believe that the model parameters must lie
within certain bounds we can constrain them by forcing outlying values to be
within the limits [Herman, 1980]. For example, it is unphysical for real material
to possess a negative velocity. In this case the model parameters should be con-
strained to be positive and any model parameter that deviated from this constraint
would be set to a minimum value. (Since in this study we are solving for slowness
perturbations, this particular type of constraint does not apply). Likewise, con-
straints such as maximum entropy [Tirterington, 1985] or other non-linear smooth-

ing may be conveniently applied if that is considered appropriate.
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ART versus SIRT

In Algorithm 1 and 2 the model s is updated after each consecutive equation
is used. This is common to iterative methods known as ART. If no relaxation is
used this could lead to images that have a streaked or noisy appearance [Herman,
1980]. Introduction of relaxation helps suppress this. An alternative is to sum the
incremental updates in a separate vector keeping the model fixed during the calcu-
lation of residuals and, after one cycle through the equations, to update the model

with the summed perturbations:
sk*D = 50 1 Aglk+D) (2.3.14)

Methods based on this approach are known as the SIRT, for Simultaneous Itera-
tive Reconstruction Techniques. This method has been applied to seismic data to
invert travel times for borehole tomography by Dines and Lytle [1979], teleseismic
tomography by Humphreys [1984], and local earthquake tomography by Nakanishi
[1986]. Since the model is updated after all the equations are used the ordering of
the equations has no effect on the solution, as opposed to ART methods which
depend on the sequential analysis of the equations. I have found, though, that if
the number of equations is large and the order of the equations has little structure
(i.e. the order is random) the ordering has little, if no effect on the results of the
inversion. Several experiments were conducted with different ordering of the data
and the results were virtually the same. I concluded that in the case of local
earthquake tomography where sources are distributed quasi-randomly in the target
area the application of ART techniques is Justified. For controlled experiments, as
in medical tomography or bore-hole tomography special care must be taken to
avoid artifacts introduced due to ordering. Herman [1980] suggests using data
that differ by widely varying angles (60°) to help reduce this effect. Based on
experiments I conducted, randomization of the input data will have a similar

effect.
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An extensive discussion of SIRT techniques can be found in Van der Sluis
and Van der Vorst [1987] where they compare the SIRT approach to CG tech-
niques which are discussed in the next section. They pointed out the inherent row
scaling discussed above and further showed that SIRT methods also have an
inherent column scaling concluding that the SIRT approach solves the problem of

finding the minimum of
¢’ = lIB(As — t)IZ + A2ICsI2 ' (2.3.16)

where B and C are the inherent row and column scaling built into the SIRT algo-
rithm, as opposed to minimizing ¢ in (2.3.7). This implicit scaling is a major
drawback of the SIRT methods. Note, however, that the scaling problem is absent
from the Bayesian Algorithm 2. In this case the scaling factors do not cancel and
the only scaling introduced is explicit. This is one major factor in choosing Algo-

rithm (2) over the SIRT methods.

The other reason for using ART over SIRT methods is a practical one. It
can be shown that for consistent systems ART methods converge significantly fas-
ter than SIRT methods and require less computer storage [Herman, 1980]. How-
ever, using the Bayesian Algorithm where extra storage and time is required to
calculate the error vector r will in general reduce, to some extent, the efficiency of

ART over SIRT.

4. CG METHODS

In the past few years alternative approaches to the iterative techniques for
solving the least squares problem has emerged as strong contender. These have
been dubbed "projection methods" by Van der Sluis and Van der Vorst [1987].
The algorithm that I have used in this study is derived from tridiagonalization pro-
cedure known generally as the Lanczos Process. In summary this process produces

an orthonormal set of bases vectors which are used to transform the system into
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tridiagonal form. The transformed system can then be solved simply using a
straight forward QR decomposition (see Appendix A). While this procedure is not
specifically a conjugate gradient approach, it can be shown that the solutions
obtained in this manner are identical to the conjugate gradient solutions [Paige

and _Saunders, 1982].

The CG methods generally involve several matrix-vector multiplications
which can be done on a row by row basis as in the row-action ART methods.
These techniques are not strictly iterative, in that they arrive at the desired solution
in a finite number of steps, but because of computer limitations in accuracy con-
vergence is normally not complete in the prescribed number of iterations. Since
the result is an approximation to the final step the method is said to be iterative

[Scales, 1987].

In this study I have implemented the Algorithm LSQR to solve the tomo-
graphic problem of (1.2.8). Regularization has been implemented as described in
Equation (1.3.6) where the roughening matrix, F, is derived from a second order
differential operator applied in 2-dimensions, i.e. the Laplacian defined as follows
[Young, 1971; Menke, 1984]. If u is a continuous function of two variables x,y

defined at discrete lattice points separated by a distance 4 then the Laplacian is,

%u %
Viury) = 2= + Z& 2.4.1
N =52 T o @40
If we make the approximations
%u _ 2
— = [ulx + hy) + ulx = hy) = 2u(xy)l/h
A2 | (2.42)
azu ) B
-a—2 = [u(x,y + h) + u(xy — h) - 2u(ey)1/h
y

and substitute into (2.4.28) we get the difference equation:

dulx,y) — u(x + h,y) — u(x - h,y) - u(x,y + h) — u(x,y — h)
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= ~h?V2y(x,y) (2.4.3)

If, as a constraint on the model parameters, we set the Laplacian to zero we get

constraint equations for each model parameter:
4*(j—th block slowness )-Y (adjacent slowness) =
4 U — (uj+1 +u g + Upp + u,-_,,) =0

Where blocks are ordered consecutively and n is the number of discrete elements
per side of the model. (For a detailed description model numbering and storage
see Scales [1987]) Applying this to each-of the model parameters, and taking care

to avoid edge effects, the L matrix (for 2-D) is formed as:

(4 -1 0 -~ 0 -1 0 -
-1 4 -1 0 -+ 0 -1 0
0 -1 4 -1 0 - 0 -
L= '
-1 0 -1 4 -
-1 0 0 -1 4 -1
i -1 e 0 1 4|

Notice that this roughening matrix shares the sparseness properties of the coverage
matrix A. Indeed, the values of L are easily calculated and need not be stored in
computer memory at all. The constraint of zero Laplacian produces a model

which is smoothed in a fashion similar to a low pass filter.

A better understanding of the smoothing and roughening operations can be

achieved by transforming the regularization matrices into the wavenumber domain.

Representing the filter by h(ny,n,) its 2-dimensional discrete fourier transform
[Dudgeon and Mersereau, 1984] is formed:

H@uo) = 3 3 k) exp(~ied;ny~i,ny) (2.4.4)

Nn=—oo f=~—c0
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Using this we can derive a general formula for a symmetric 9-point filter whose

coefficients defined by are:

a, ny,ny=0

b, n=%1,n=0
h(ny,ny) =4 b, n; =0, ny =+1
c ny =1, ny =+1

0, otherwise

or, written in the form of a filter,

LR T~ 2B
SR O
[>T~

which we will represent simply as [a,b,c]. The wavenumber response is derived

by substituting these filter coefficients into (2.4.4),
H(wy,0,) =a + 2b[cos(w;) + cos(w,)] + 4c[cos(w)cos(w,)] .

From this formula we can generate the frequency response of the smoothing filter
we used in the previous chapter for regularization between ART iterations or any
other 3-point filter. For example a typical smoothing filter (in 2-dimensions) is
[4.0, 1.0, 0.0] whose wavenumber response is displayed in Figure 2.4, where the
low pass nature of the filter is illustrated.

For the situation where we constrain the Laplacian to be zero, let the
roughening filter be [4.0, -1.0, 0.0], which results in a typical high pass filter illus-
trated on the right of Figure 2.4. This filter is the complement of the smoothing
filter [4.0,1.0,0.0] presented above which can be produced in the space domain or
the wavenumber domain: by subtracting a spike (all-pass filter) in the space or the
frequency domain from oilr filter we get the complement filter. The wavenumber

domain illustrations in Figure 2.4 display the complementary nature of the two
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approaches: in one case the smoothness is maximized and in the other the rough-
ness is minimized.

This suggests a general approach one may take to the regularization problem
presented here. One could devise a smoothing (or roughening) filter in the 2 or
3-dimensional spatial frequency domain that encorporates a priori knowledge one
possesses regarding the nature spectral components inherent in the structure that is
being imaged. The filter is then transformed back to the space domain and sam-
pled for application in the inversion routine. Since it is crucial to keep the
number of points in the filter to a manageable number care must be taken in speci-
fying the ideal filter to avoid large sidelobes in the transformed domain. An
example of this procedure is provided by Dudgeon and Mersereau [1984] where
they produce an 11x11 point smoothing filter derived from an ideal, cylindrically
symmetric, low pass filter defined in the frequency domain. The use of window-
ing, e.g. hanning windowing, can be incorporated to reduce the effects of side

lobes and edge effects.

The main power of this approach is realized when we consider incorporation
of a priori information other than simple smoothing criteria used for regulariza-
tion. Consider a situation where we know of lineations, stratifications or other
organized patterns inherent in the geologic structures such as may appéar in sedi-
mentary basins or folded belts. In these cases a description of the periodicity of
the pattern is accomplished intuitively in the (k, &y k;) domain, where filters and
constraints may be devised prior to inversion, transformed to (x,y,z) space, and
used as additional constraints over those parts of the model that share these
features. With this approach the full power of multidimensional signal analysis

comes to bear upon the problem.
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(a)

(b)

Figure 2.1: (a) Solution of 2 equations in 2 unknowns using ART with no relaxa-
tion. This is a consistent set of equations and the exact solution is found after 8
iterations. (b) Same as (a) except a relaxation of 0.2 has been incorporated. The
path towards the solution is much smoother.

B T T
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Figure 2.2: (a) For 3 equations and 2 unknowns the system is inconsistent and the
solution oscilates between the two lines that are nearly parallel. (b) After relaxa-
tion is applied the solution is stabalized and converges to a point near the assumed
intersection of the three equations.
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CHAPTER 3
SYNTHETIC EXAMPLES

SYNTHETIC MODEL

To illustrate the implementation of the inversion techniques in a tomographic
setting that simulates a real situation, we construct a model and a synthetic set of
raypaths distributed over the model. The travel times are calculated by summing
the velocity through the blocks the raypath has sampled. Noise is added to reflect
the uncertainties that are expected in real situations and the data set is used as

input to the inversion programs.

For simplicity, we will use a 2-dimensional synthetic model, commonly
called a phantom, illustrated in Figure 3.1. It consists of a background slowness
with two major perturbation objects: a cross consisting of a positive anomaly
(+4.0%) and a torus with a negative anomaly (-4.0%) whose center is a +1.0%
perturbation from the background. The phantom is parameterized by dividing it
into 1600 equal area blocks, 40 per side, where each block is 2 by 2 km. For syn-
thetic station locations we randomly distribute stations throughout the target and
these remain fixed throughout as in Figure 3.2. To simulate a situation where
earthquakes are distributed in the earth, we likewise randomly generated 236
hypocenter locations (Figure 3.3). A random size for the event was generated and
then a portion of all the stations that fell within a specific radius of the event were
considered triggered stations and a datum for each was generated. This resulted in
3000 hypocenter-station pairs, or raypaths. Since this is a 2-dimensional model
the rays are straight line segments from source to receivers. The total ray cover-
age is illustrated in Figure 3.4. The raycoverage pattern produced in this manner

reflects the characteristics of the real data coverage.
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Each datum consists of the sum of the slowness perturbations along the ray-
path weighted by the distance each ray spent in the sampled blocks. To these

values we introduce noise. Thus the input data become

Ot; = 3 8s(dr) + ;

ray;

where 1 is the noise component. In this synthetic example the noise is a random
gaussian variable with RMS level 80% of the RMS residual. The noise has possi-
bly three components: 1) random, independent reading error due to mispicking of
first arrivals, 2) noise introduced due to mislocation of the event which may be
correlated for each event, and 3) bias introduced from error in determination of the
appropriate station correction. In the following examples we have introduced the
first kind of noise in all the examples and in several cases we have also incor-
porated noise simulating the second and third types. Each component of noise has

a gaussian distribution with varying standard deviations.

Several experiments and comparisons between ART and LSQR were per-
formed. For reference these are listed in Table 3.1. In each example a gray shade
plot showing the percent perturbation from the background model, whose slowness
is set at the arbitrary value of 0.18519 sec/km (slowness of the first layer of the
real model), is presented. Supplementing the gray shade plots, a cross section of
the values of the phantom and the reconstructions along a line marked A-A’
shown explicitly on Figure 3.1 (all subsequent reconstructions show just the points
A-A’) is displayed. This allows for a block by block comparison of inversion

results to the true phantom.
It is sometimes useful to provide an overall quantitative measure of distance
between the phantom and a reconstructed image. Following Herman [1980] we

calculate three measures of distance for each inversion:
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172

M FAYA
205 = 5)
-1
dl = l)W R
26:-%)
=1
M
Z'S" - Ell
=1
b= ——
SIs
=1

dz = max Is; — 5|l

where § is the reconstructed image, s is the phantom and 5is the arithmetic mean
of 5. The measure'd; is the root mean square normalized distance which will be
large for images that have a few blocks that differ by a large amount from the
phantom. On the other hand, d, is the average absolute value difference which
emphasizes the importance of many small errors distributed over the whole model.
Finally d; is a measure of the worst case. The distance summaries for all inver-
sions are reported in Table 3.2. A cautionary note: These quantitative comparis-
ons should be used primarily as a guide: visual pattern recognition may be more
important for determining the quality of one inversion over another. To monitor
the convergence behavior we have plotted the sum of the squared weighted predic-

tion error,
12 = 3wt - Tags)P (3.1)
=1 j

versus iteration number, k.
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Comparison

As a first comparison we show the results of inversion (labeled ART1 and

LSQR1) when no noise is added to the data. In this case we need neither regulari-

* zation nor relaxation. Note in Figure 3.5(a) and (b) that the reconstruction is

nearly perfect for both ART1 and LSQR1, but ART! has outperformed LSQRI
(for a fixed number of iterations) in the lower right corner where the data cover-
age is more sparse. All three distance measures of Table 3.2 also indicate that
ART1 is a better reconstruction than LSQR1. In Figure 3.6(a) and (b) noise is
introduced and damping is applied but no smoothness constraints are implemented
(ART2 and LSQR2). Here, using the same damping, the resulting images are
identical. The characteristic "salt and pepper" degradation appears as noise from
the data is projected into Ehe image but the phantom is still evident beneath the

noise.

Next, smoothing is implemented by constraining the Laplacian in the LSQR3
inversion and by applying a lowpass filter between iterations in ART3 (Figure
3.7(a) and (b)). In the ARTS3 case a relaxation of p(") = 0.02 is used with regular-
ization parameter adjusted to A = 65. Here, even though the solutions predict the
data to the same x2 accuracy, they appear slightly different, due to the different
way the smoothing is performed in each method. Table 3.2 indicates that ARTS3
is over all slightly closer to the phantom than LSQR3, but has a higher worst case
measure (d3). If we apply this same filter but keep p® = 1.0 with A = 400.0 as in
the previous example, the technique does not converge in 30 iterations. After the
first few iterations, the smo‘othing dominates the inversion process, producing suc-
cessively smoother models which converges to a different x2. Figure 3.8(a) shows
ART4 after 30 iterations. Notice in Table 3.2 that the d, measure is smaller for
ART4 than ART3 but d, is larger. In ARTS, the relaxation parameter is allowed

to decrease between iterations with a suitable reduction in smoothing. This results
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in an image (Figure 3.8(b)) very close to that of ARTS3 in Figure 3.7(a) and is
indicated as such in Table 3.2.

In Figure 3.9 present a plot of the %y? reduction versus iteration number for
each of the synthetic inversions is presented. For the case of perfect data, ART1
reduces the %2 faster than LSQR1 until the 8—th iteration where the respective %2
converges to nearly 100% reduction. In the damped case ART2 out performs
LSQR2 until 4 ijterations when the two methods converge. When smoothing is
applied in ART3 and constraining in LSQR3 the situation is reversed. Here
LSQR3 appears to have reduced the 2 faster for the first 3 iterations where the %2
for each merge. The x2 reduction for ART4, however, is better than that of
LSQR3 for the first 3 iterations, after which the smoothing degrades the data
predictive nature of the solution. If the relaxation is allowed to decay with

appropriate decay of smoothing, the %2 of ARTS5 is made to follow that of ARTS3.

Figure 3.10(a) and (b) displays the standard error for the inversions in ART3
and LSQR3 of Figure 3.7 respectively. Since the methods of regularization are
different in each case, the mini-inversions and pseudo values calculated will vary
accordingly giving rise to different distributions of standard errors, Overall,
though, the errors are of the same magnitude. In both cases the estimated €eITors

are generally larger in the lower right corner where coverage is sparse.

Robust Example

To illustrate the effect of incorporating a robust approach in dealing with
outlier residuals, the original data set is extended by adding in a set of 500 equa-
tions whose errors are large compared to the original artificial data such that the
distribution of residuals has heavy tails compared to a normal distribution. The
data set is inverted with residual weighting as described in equation (2.3.12) where

r1 = 1.0 sec and r, = 2 sec. The results are shown in Figure (3.11) where the first
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case is with no residual weighting and the second incorporates the above scheme.
Notice in Figure 3.11(a), where no robustness is used, artifacts from data with
large residuals appears in the upper left comer with a 12.3% anomaly. By imple-
menting a robust inversion we have eliminated these artifacts at the price of not

having a strictly least squares inversion.

Debundling Example

As a last example, the value of debundling is illustrated. Here 500 additional
rays were added to the data set. The epicenters of each were constrained to lie
within a small area of 4x4 km, and all were recorded at a single station, as shown
in the ray diagram in Figure 3.12. A correlated additional component of noise
was added to each of these rays and they were then mixed in randomly with the
original data. Algorithm LSQR is used to invert the data with and without special
weighting applied to remove the effects of large bundles. When no "debundling"
has been applied, we see the inversion has a prominent linear feature along the
path of the large bundle (Figure 3.13(@)). The averaging introduced by debun-
dling has improved the situation by suppressing the effects of the correlated noise
in the bundle (Figure 3.13(0)).




46

% Slowness 4.0

Figure 3.1: Synthetic phantom model. The model consists of a positive 4.0%

cross anomaly and a negative -4.0% torus anomaly. Cross section A-A’ is pro-
vided to aid in comparing reconstructions.
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Figure 3.2: Synthetic station distribution. 20 sta
the phantom.

tions are located randomly over
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Synthetic Raypath Distribution

Figure 3.4: Synthetic raypath distribution. To simulate earthquake data sources
and stations are connected by choosing only a select number of stations that fall
within a certain radius of the source. 3000 raypaths were generated and used in
inversion experiments.
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Residual Reduction
100
I/."'.'
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o
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0 2 4 6 8 10 12 14 16
Iteration#
Legend
ART1:No-Noise
- LSQR1:No-Noise
.......... ART2:Noise,damping
___________ LSQR2:Noise,damping
e ART3:Noise,smoothed
e LSQR3:Noise,constra
— _ —_. ART4:7a
———— ARTS:7b

Figure 3.9: Reduction of %2 misfit for synthetic inversions. The vertical axis is in
% reduction from the initial %2,
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Figure 3.12: Ray bundle added to data to illustrate the effects of
rays).

debundling (500
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Table 3.1: Summary of tests performed on synthetic inversions.

Model Process

ART1 Perfect data, no relaxation, no smoothing

LSQRI1 Perfect data, no relaxation, no smoothing

ART2 Noisy data, damped least squares

LSQR2 Noisy data, damped least squares

ART3 Noisy data, relaxed and smoothed

LSQR3 Noisy data, Laplacian constrained

ART4 Noisy data, relaxation reduced, smoothing constant
ARTS Noisy data, relaxation reduced with smoothing reduced
Robustl Extra Noisy data, no compensation for this
Robust2 Extra noisy data, robust inversion

Debundl | Bundle of rays introduced, no compensation
Debund2 | Bundle of rays introduced, debundling applied

B 2 TGS AT A BT SRTIT o WA AR T e S e 17051+
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Table 3.2: Distance measures of inversion images to phantom model. Here 4, is
the root mean square normalized distance, d, is the average absolute value
difference, and dj is a measure of worst case.

Distance Measures to Phantom
MOdCl dl d2 d3
ART1 0.816994 0.065758 0.001112
LSQR1 1.938234 0.144696 0.002443
ART2 9.232765 0.691058 0.007067
LSQR2 9.232765 0.691058 0.007067
ART3 8.686169 0.613092 0.006573
LSQR3 8.985689 0.615608 0.006460
ART4 8.234601 0.752227 0.006503
ARTS 8.353343 0.608981 0.006614
Robust1 21.6796 1.50888 2.27742E-02
Robust2 9.04130 0.674702 6.06702E-03
Debundl 18.8831 1.24606 1.86905E-02
Debund2 14.6347 0.841030 7.85360E-03




CHAPTER 4
RESOLUTION

Resolution

The resolution of a method of inversion is a way of quantifying the ability to
distinguish a part of a model from its surrounding. Suppose there exists a slowness
field s* which can be sampled at a discrete set of loci (blocks, for example) to

form a discretized version s. The data are related to the discrete model by
As=t. 4.1.1)

If there exists a generalized inverse A’ of A then an estimate of the model is

given by
3=A"t (4.12)
and substituting from (4.1.1) gives
$=ATAs (4.1.3)

Thus 8 can be thought of as a version of s that has been modified by the operator
ATA. In Backus-Gilbert theory one says that § is the discretized truth s seen
through the window (filter) ATA [Backus and Gilbert, 1968; Jackson, 1972). The
MxM matrix R = ATA, called - the resolution matrix, describes how each element
of the model § is related to the elements of s. If R = I then we say we have per-
fect resolution implying § =s. Since we have a finite amount of data our resolu-
tion will always be less than perfect. The i—th row of R can be thought of as a
weighting function where the coefficient for the J—th column indicates the
influence the j~th block has in determining the i~k parameter. The i~th row of R
is called the resolution kernel for that model parameter and if the parameters have

a natural ordering then plotting of the rows of R conveys information about the

T T I S e TR U T ¢ e I SRUN A L i - e mninra e e
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resolving power of the inversion system. The closer the plots of the resolution
kernels resemble delta functions (spikes) the better the resolution in the vicinity of

the given block. -

In the case where the matrix A is very large computing R directly is virtually
impossible. This is because the matrix A is often too large to store in the com-
puter, and calculation of AT explicitly would require inordinate amounts of time
making making resolution analysis unfeasible. The inversion techniques proposed
in this study are iterative by nature and are useful particularly because they are
space and time efficient. For this reason we are forced to compromise and present
an alternative to a full computation of the resolution matrix. This approach entails
approximating the resolution for a few selected locations where resolution infor-
mation is desired. It is reasonable to assume that if the raycoverage is fairly
homogeneous over a region the resolution kernels for the adjacent blocks in the
region will be nearly similar [Humphreys and Clayton, 1988].

Since the resolution depends heavily on the spatial distribution of the ray
coverage, and we do not have access to the resolution matrix, it is valuable to
display the ray coverage as an aid in determining qualitatively the extent of reso-
lution. Regions that have rays traversing in narrow bands will have poor resolu-
tion along the direction of the rays. Similarly, sparsely sampled regions are likely
to have poor resolution compared to regions of heavy, isotropic coverage. Inspec-
tion of ray coverage diagrams help in determining some of these factors. The ray
coverage diagram for the synthetic data set was presented in Figure 3.3. Notice
that where the coverage is spa}se (as in the lower left corner) it is easy to see
individual rays and note anisotropies, but where the coverage is dense it is impos-

sible to see what the distribution is.

To determine a quantitative measure of the distribution of coverage through

particular cells while allowing us to easily survey a large number of blocks we
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have adopted a method of Kissling et al [1984]. In this approach we calculate the
moment of inertia tensor for all the rays traversing all the blocks of the model

[Mardia, 1972]. For j~th ray, the moment of inertia tensor in the k—th block is

x XX xy xz
u‘jk= Yy x[x,y,z]= Xy yy yz
z 2x zy zz

where (x.y,z) corresponds to the projected length of that portion of the j—th ray
that transects the k—th block onto the each corresponding coordinate axis. The
total moment of inertia tensor for the -tk block is the sum over all the rays in the
data set,
N
Pe= 2 Mk -
1

For each moment tensor the eigenvalues and eigenvectors are calculated, which
determine a moment of inertia ellipsoid. The shape and orientation of the ellip-
soid (Figure 4.2) provides information on the average directionality of rays
traversing a block. Ellipsoids that are nearly spherical imply isotropic coverage in
all directions and conversely, elongated ellipsoids indicate a preferred ray direc-
tion. However, representing the 3-dimensional ellipsoids on flat paper entails loss
of information if our plots are to remain simple enough to be useful. To convey
information about the relative sizes of the three eigenvalues, two orthogonal
ellipses, corresponding to the eigenvectors, are plotted by rotating the axis such
that the ellipses are parallel with the horizontal plane. The direction of the major
axis relative to north and east is conveyed by orienting the largest axis along the
horizontal aiimuth (angle B in Figure 4.2). The dip of the largest eigenvector is
plotted on an adjoining plot wheré the direction of dip (angle vy from Figure 4.2)
for each ellipsoid is represented by a slanting line whose length is proportional to

cos(y). In addition the number of rays penetrating a block is presented as a circle
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whose size is proportional to the logarithm of hit counts for each block. For the
synthetic data set used in Chapter 3 the ellipsoids are presented in Figure 4.3.
(Here all the dip directions in Figure 4.3(b) are zero because the data are 2-

dimensional.)
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Figure 4.2: Sample ray ellipsoid in 3-D. The three arrows represent the eigenvec-
tors for the moment of inertia ellipsoid of all rays passing through a given box. B
is the azimuth of the major axis in the horizontal x-y plane and Y is the angle of
dip with respect to the horizontal. In the ellipsoid figures the major ellips and .
minor ellipse are rotated and plotted flat so their relative sizes can be compared.
The dip angles are presented on separate plots.
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CHAPTER 5
ERROR ANALYSIS

THEORY - THE JACKKNIFE

In the estimated model, errors arise from inaccurate measurements, incom-
plete coverage of rays over the target area, over simplified parameterization and
mislocation of the earthquakes. In classical least squares discussed above, one can
show that an estimate for the error in the model is found in the covariance matrix,
cov(s) = ss’. If the estimated variances of the weighted observations is a constant
value 6% then it can be shown formally that cov(s) = 6%(ATA)! [Menke, 1984).
As before, the matrix (ATA)'1 is generally not available due to limitations in com-
puter storage and space, thus leaving us with no estimate for the uncertainties
inherent in the slowness structures we derive.

The approach used in this research to estimate the uncertainties in the inver-
sion images is derived from techniques developed for statistical applications and is
commonly known as the jackknife, named so for its rough and ready usefulness
[Schucany et al, 1971]. The method is described thus: suppose we are given n
identically independent random variables (X, X,, . . . , X,} and we wish to esti-
mate the value of a parameter, ® = (X 1» X3, .., X,), e.g. a statistic on the data
such as the mean, median or correlation coefficient (@ represents an estimate of
the true value ©). We form a set of intermediate estimates by considering the

values of ©® calculated by leaving out the i—th datum, i.e.
0% = 0Xy, Xy, ..o Xiips Xigs X)) (5.1.1)
A set of ‘pseudo-values’ is created by considering the weighted sum,
09 = n® - (-1)09 (5.1.2)

and the jackknife estimate of the parameter © is the arithmetic mean of the




69

pseudo-values:

1 Ya6m)
Ojuck = " _Z‘;@ (5.1.3)
=

The historical motivation for this formulation stems from an attempt to esti-
mate the bias for many common statistics, particularly quadratic functionals
[Quenouille, 1949; Efron, 1982]. Only later did researchers [Tukey, 1958] realize
the more important use of the jackknife in estimating variability of model parame-
ters. Heuristically, the form of (5.1.2) stems from noting that each pseudo-value
measures the influence a particular datum has on estimating the model parameter
by forming the linear combination of the estimates with and without the particular

datum.

In the tomographic setting the jackknife involves partitioning the set of obser-
vations into subsets, performing inversions on the subsets, and calculating a stan-
dard error from the set of image vectors that result. Instead of leaving out one
datum per inversion, we divide the data into k subsets with each group containing

1
k
from the original data set. Each subset then has a different portion of the full data

n — = data values where the -% values omitted are chosen without replacement

set missing. We then perform an inversion for each of the k subsets and denote
the slowness image derived from such an inversion 8 From these ‘mini-

inversions’ a ‘pseudo-inversion’ is formed following equation (5.1.2):
§j =k ga” - (k—l) 51 . (5.14)

The jackknifed estimate of the slowness is simply the average of the pseudo-

inversions:

§=—

1
ko

M=

5

'\,

which has variance,
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TH- ()

=Y (5.15)

Given the variance, the standard error is E; = Vo . This will be an estimate of the
variability of the model due to the variability and distribution of the data.
Presently there is no clear cut way to determine the optimal choice of %, the
number of mini-inversions to perform. One would guess the larger k is the better,
but very large k implies performing large numbers of inversions, which would be
extremely time consuming and provide little advantage over computing errors in
the classical fashion. A compromise can be struck if we assume that the variabil-
ity in the pseudo-inversions will be represented in far fewer partitions of the data.
In this study I have found & = 30 to be a reasonable for estimation of errors on the
real data. In order to avoid the influence of any special ordering, the partitions are

chosen randomly for each subset.

Jackknife Examples

Let’s consider an example with a miniature model where all the matrices are
small enough to manipulate and display easily. We start with a model of slowness
perturbations generated randomly on a small 6x6 grid. The model is represented as

a matrix:

[ 2855 -1.715 5265 3901 2749 4.661]
1.540 -5.464 ~-4.254 —4.262 4572 3.475
-1.927 2.888 -3.371 -5.175 —4.814 —4.213
2.163 -1.112 2311 5440 -1.181 4.097
-4334 5316 -1.771 -1.350 -2.413 1.773
| 2455 3.179 3.165 2755 2.650 4.850 |

Here each number represents the percentage of slowness perturbation for a block
located in the corresponding x-y position of the model. A ray pattern is devised

to synthetically calculate the travel times through this model and the data are
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generated. A diagram of the ray coverage is presented in Figure 5.1. For this
example error was introduced by adding in 1 % of the mean travel time multiplied
by a random gaussian distribution. These data were then inverted by application of
the normal equations and by the ART algorithm. The classical least squares
inverse (via the normal equations) is:

[ 3742 2.019 4382 6232 259 3.548]
0.060 -5.883 -3.014 —5.071 5214 4.352
-2.630 5907 -3.848 —4.514 —4.549 -3.446
1.308 -1.814 3.002 5.490 -0.396 4.646

-3.148 5.064 -2.237 -0.855 -1.007 1.282
|—2.003 4526 2.654 1.626 1363 3.712]

Note that the solution is very close to the truth, but there are some discrepancies
due to the errors introduced. The least squares estimate of the errors, as discussed

above is given in the following matrix:

[0.662 0.708 0.797 1.018 1.029 0.907]
0.696 0.736 0.708 0.862 0.794 0.741
0.800 0.771 0.531 0.471 0.671 0.678
0.795 0.761 0.529 0.467 0.665 0.674
0.696 0.737 0.713 0.877 0.795 0.744
[ 0.667 0.716 0.814 1.053 1.055 0.930)

Next, the same data set is inverted using the LSQR technique. The program
is allowed to iterate until a 99.5% rms reduction in misfit is reached. The answer

is:

[ 3.635 -2.265 4.066 5915 2350 3.442]
-0.192 -6.094 -3.226 -5.282 5.000 4.105
—2.947 5.694 -3.993 —4.659 —4.759 -3.767
0.992 -2.026 2.857 5.344 -0.606 4.326
-3.398 4.852 -2.452 -1.068 -1.221 1.035
-2.106 4.281 2337 1307 1.115 3.609 _J
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This solution has a jackknife estimate of standard errors:

[0.737 0.809 1.111 1.527 1.663 1.341]
1.017 1.320 1.143 1.326 1.601 1273
1.155 1.385 1.029 0.922 1.380 0.998
1.329 1.668 1.037 1.048 1266 0.908
1.346 1.744 1.451 1.356 1.462 1.086
| 1.189 1.084 1.199 1.371 1.703 1.083,

One can see by comparison of the two error estimates that the jackknife esti-
mates of error are slightly higher and thus more conservative than the least
squares estimate. In this case the difference is very slight. However the example
illustrates that the error estimates derived from the jackknife are reasonable in that
they give results similar to least squares estimates and for this example are conser-
vative estimates. Indeed, Efron and Stein [1981] have shown that jackknife esti-

mates of variance will in general be conservative.

As a second example we offer an estimate of the errors for one of the inver-
sions illustrated in Chaptér 3. Here we are using the LSQR Algorithm with regu-
larization (A = 400) and k = 30 subsets for jackknifing. The error estimates are
displayed in Figure 5.2. First, notice that the errors in general are very small,
implying that overall we should have high confidence in our model. Second,
notice that the errors are largest near the edges of the model where data coverage
is sparse. (Blocks that not sampled are excluded from consideration because we
have no information about them.) Of course, presence of data with varying

amounts of noise will also influence the pattern of the model errors.

Since we have the estimate of the model, the error estimate and the true
phantom it is possible to see if our estimates are reasonable. To do so we must
compare the estimate of the model parameter to the truth as seen through the reso-
lution kernel at that block. The parameter estimate should then fall within the error

bounds. In Figure 5.3, the percent slowness perturbation of block 745 for each of
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the 30 pseudo-inversions has been plotted as a function of jackknife number. On
the right side of the diagram the mean pseudo-value ("Mean"), the value of s(745)
for an inversion using all the rays ("All"), the phantom value ("Truth") and the
phantom convolved with the resolution kernel window at 745 ("Kern") are plotted
to show the variability of the pseudo values and their relationship to the summary
values. The jackknife error estimates are represented as dashed lines plotted about
the mean pseudo-value. Notice that the point marked "Kern" lies within the error
estimates predicted by the jackknife. This illustrates that, at least at this point, the
jackknife estimates of error bounds are reasonable. In Figure 5.4 the cross section
A-A’ is displayed where the jackknife error estimates are plotted about the mean
pseudo-values (s,,) along the cross section. The second dashed line is the LSQR
estimate using all the data (s,). In general, s, and S, are comparable and we can
use the jackknife estimates of error for either. The magnitude of the errors indi-
cates that we should have a high degree of confidence in the structure, not a
surprising result considering we know the inversion has produced a reasonable
image.

A closely related alternative to the jackknife is the so called ‘bootstrap’
approach [Efron, 1982]. Here one chooses a random selection of data from the
pool of rays with replacement and inversions are calculated. As statistics are
accumulated an estimate of the covariance matrix is attained. The advantage of
the bootstrap over the jackknife is that the basic assumptions are less demanding
[Efron, 1982]. However, since the subsampling with the bootstrap method is done
with replacement, one may be required to analyze a large number of subsets of the
data to insure that the variability of all the data is incorporated in the estimate.
An a priori estimate of how many partitions are sufficient to assess variability is
unavailable. On the other hand, the jackknife is guaranteed to use all of the data

in providing estimates. For this reason the jackknife was chosen over the
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bootstrap for determining model variance estimates.

An alternative method of investigating the effects of noise on model parame-
ters is to create an artificial data set consisting of pure, random, gaussian noise as
travel time residuals along with the same raypath coverage from the observed data.
This pure noise data set is inverted with the identical procedure used for the real
data. In doing this, the level of noise is chosen to have a variance at least as high
as that of the estimated errors of the observed data. If the level of the resulting
reconstruction with the pure noise is well below the size of the anomalies found
with the real data, we can say that the inversion process is relatively insensitive to
noise. In that case we would be relatively confident that the anomalies
represented true structure and not mere artifacts of noise. This was the approach
taken by Humphreys [1985] and Hearn and Clayton [1985]. The advantage of the
data oriented jackknife estimation is that we are using the data themselves to esti-
mate uncertainties without making assumptions regarding the nature of the distri-

buticn of errors in the data.
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Figure 5.1: Synthetic ray distribution for small example used in jackknife exam-

ple. The model is a 6 by 6 matrix consisting of random slowness perturbations
and there are 60 rays covering the image.
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Jackknife Errors

Slowness 57 x10™
Layer 1:\0. - 2.0km .

AI

Figure 5.2: Estimated jackknife errors for the LSQR3 inversion of Chapter 3. 30

partitions were inverted to assess variability. On the bottom and right edges the
errors are higher because of poor ray coverage.
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Jackknife Pseudo Values at Point 745
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Figure 5.3: Plot of the 30 jackknife estimates for point 745. The triangles
represent the mean value (Mean), the inversion using all the data (ALL), the true
slowness anomaly (Truth) and the truth convolved with the resolution kernel at
point 745 (Kern). The dotted lines are the Jackknife estimates of error plotted
from the mean. Notice that (ALL) and (Kern) lie within the error estimates.
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Figure 5.4: Plot of errors along cross section A-A’. Thick dashes are the mean
jackknife estimates (Mean) and thin dashes are the estimates using all the data
(All). The stippled area represents the jackknife errors plotted from the mean.




CHAPTER 6
TOMOGRAPHIC INVERSIONS IN THE PUGET SOUND

Introduction and Geology

The geology of western Washington is dominated by tectonics related to the
convergence of the Farallon plate with the North American plate since the early
Cretaceous. The general nature of the convergence of these plates was first
described by Atwater [1970] and Armstrong [1978] and details of the convergence
related to the Tertiary accretions to the North American plate are outlined in Dun-
can [1982] and Wells et al [1984]. The features relevant to this study can be
divided into four major tectonic units: 1) pre-Tertiary sedimentary and volcanic
rocks overlying Precambrian to Mesozoic basement. 2) Mesozoic marine sedi-
mentary and basaltic rocks known as the Leech River schist in southern Van-
couver Island. 3) Lower Eocene Basalts of the Crescent formation in Washington
and the Metchosin on Vancouver Island. 4) The Core rocks of the Olympic Pen-
insula, comprised primarily of cenozoic marine sediments [Clowes, 1987; Johnson,

1984; Taber, 1983].

A detailed discussion of the evolution of the Cascade volcanic system was
provided by McBirney [1978]. Extensive volcanism began in the second half of
the Mesozoic and has been cohtinuing episodically through to the present. Major
spurts of intense activity are known to have occurred in late Eocene to early
Miocene, mid to late Miocene, Pliocene and in the Quaternary. The present linea-
tion of prominent volcanism began approximately 1 million years ago, and, as evi-
denced by the recent eruptions of Mt. St. Helens, is quite active today. The large
strato-volcanos that dominate the landscape of the high Cascades are predom-
inantly andesitic in composition, however periods of basaltic and rhyolitic volcan-

ism are evident in the geologic record. Basalt flows from fissures are also present
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and large portions of the range show traces of the Columbia River basalts of the
middle to late Miocene. Plutonic bodies are present along the Cascades from
Canada to Oregon [McBirney, 1978] and several are exposed near Mt. Rainier
[Cowan, 1984] and Mt St. Helens [Evarts, 1987]. The tertiary volcanic sediments
are believed to be overlying Pre-Cambrain to mesozoic basement which outcrops

in northern Washington and Canada [Clowes et al, 1987].

On the west flank of the Cascades there are several exposed sedimentary
basins, particularly the Chuckanut Formation to the north and the Puget Group to
the southeast of Puget Sound. These are predominantly nonmarine Eocene sedi-

ments [Johnson, 1984].

The Puget Sound lowlands are covered by a thick layer of Quaternary glacial
sediments. Below this extensive region of unconsolidated sediments it is believed
there is a thick (down to 20 km) accretionary package of sedimentary rocks of
marine origin. These may correlate with the Leach River schist exposed on the
southern end of Vancouver Island [Clowes et al, 1987]. Because of the thickness

of the Quaternary sediments little is known about the geology at depth.
The east flank of the Olympic Mountains is dominated by a large unit of

Eocene Basalts known as the Crescent formation in Washington and correlated
with the Metchosin formation of southern Vancouver Island [Clowes et al, 1987].
This formation appears to be a continuous linear feature along the northwest
Pacific coast from Canada down to central Oregon and has been the subject of
several recent investigations [Taber, 1983; Duncan, 1982; Wells et al; 1985] in
which it is interpreted as a series of seamounts originating in a marine setting and
subsequently accreted against the North American plate [Duncan, 1982]. Johnson
[1984] has suggested that a major transcurrent fault system exists along the Cres-
cent formation in southern Vancouver Island and trends southward, perhaps under

the Puget Sound.
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West of the Crescent formation in the Olympic Peninsula is a large unit of
sedimentary rocks comprising the so called "Olympic Core rocks" [Tabor and
Cady, 1978a; Taber, 1984]. This accretionary complex extends out below the
continental margins off of Vancouver and Washington [Clowes et al, 1987]. The
eastern Core rocks that are adjacent to the Crescent formation exhibit a high
degree of deformation in contrast to those lying to the west [Taber, 1983], indicat-

ing extensive compression as the accretion progressed.

Related Geophysical Research

A complete Bouguer gravity anomaly map of Washington was published by
Bonini et al [1974]. The gravity anomalies in the Puget Sound region have
extremely large variations, and in places include gradients that are steeper than
anywhere in North America [Gower et al, 1985]. The Olympic Mountains are
characterized by a gravity high which terminates at the eastern edge of the Cres-
cent formation. In the Puget Sound lowlands three major gravity lows are present:
southeast of Olympia, over lake Washington in Seattle and in the Everett region.
These are separated by gravity highs. A steep gravity gradient trends south on the
western border of the Puget Sound and takes a sharp bend to the southeast north
of Olympia. Gower et al [1985] have interpreted these large gravity gradients as

being evidence for faults below the unconsolidated sediments.

The seismicity beneath the Puget Sound region can generally be divided into
two major depth zones. The great majority of earthquakes occur in the shallow
depths down to 40 km. These are generally small in magnitude (< 2) and are spa-
tially dispersed through out the region west of the Cascades and east of the Olym-
pics. While some lineations of seismicity are apparent, there are no known surface
faults that coincide with specific trends in the spatial distribution of these shallow

earthquakes. The deeper events appear to be associated with the subducting
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oceanic crust and are interpreted as intraplate earthquakes. A discussion of the

separation of seismicity can be found in Crosson and Owens [1987].

Reflection and refraction studies have been used on southern Vancouver
Island to help define the accretionary geometry of the underthrusting terranes
[Clowes et al, 1987]. The high impedance contrast across such boundaries as the
Crescent basalts and adjacent marine sedimentary wedges allowed the authors to
make a detailed interpretation of the features in the subsurface. In the Olympics,
Taber [1983] made a detailed study of two refraction lines that crossed the Olym-
pics, one in a northwest to southeast direction and one east to west. While the
main emphasis of this work was to determine the dip and geometry of the oceanic
subducting slab Taber’s velocity model indicates low velocity for the Olympic
Core (4.7-5.5 km/s) and high velocity for the Crescent Basalt formation (5.5-6.2
km/s). The model for the regions outside of the Olympic Peninsula do not differ
significantly from the flat one dimensional model used in this study as the refer-

ence model.

A large conductivity anomaly has been observed by Stanley et al [1987] in
the region roughly bounded by Mt. Rainier, Mt. St. Helens and Mt. Adams. They
interpret this low conductivity feature to be evidence for marine forearc basin sed-
iments accreted onto North America during the Eocene. The conductivity ano-
maly is flanked on the east, west and south by low aeromagnetic anomalies which

appear as lineations.

Several aeromagnetic surveys have been performed over parts of western
Washington [Manson, 1984). These are generally available individually in map
form and have not been compiled and published for the state as a whole, or for
the broad areas discussed in this research, and are thus difficult to use. Some
work, though, has been done to analyze the aeromagnetic data in a more detailed

fashion [Stanley et al, 1987; Finn and Williams, 1987]. Broad high aeromagnetic
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anomalies are present in the south end of the Puget Sound and southwest of Mt.
St. Helens [Stanley et al,1987]. Several lineations of low aeromagnetic anomalies,
as mentioned above, exist in the southern Washington Cascade region. A detailed
report on the analysis of aeromagnetic anomalies in the Mt. St. Helens area was

provided by Finn and Williams [1987] and is discussed further below.

Puget Sound Inversion

The target for the Puget Sound inversion is displayed in Figure 6.1 along
with the western Washington seismic network stations represented as triangles on
the map. Major strato-volcanos are designated on the map by stars. The lateral
dimensions of the target are 150 km in the east-west direction and 250 km north-
south ranging from 46.4° to 48.65° latitude north and 121.47° to 123.42° longitude
west. This target was chosen primarily for the available concentration of seismi-
city. The target area was divided laterally into blocks 5 by 5 km square and in
depth according to the reference model described in Table 1.1.

Earthquakes were chosen from the western Washington seismic network
data-base including data from 1972 to the present. The selection parameters were
fairly liberal: earthquakes with a azimuthal gap < 180° number of stations = 5,
minimum distance < 50 km, RMS residual < .5 sec and magnitude 2 0.0 were
selected. Of these earthquakes, only those rays (station-hypocenter pairs) that
remained entirely within the target were used for inversion. There were 4387
earthquakes that passed the above criteria resulting in 36,865 raypaths used for the
inversion. The epicenters are plotted on a map view of the target area in Figure
6.2. There is i'elatively good distribution except for an apparent seismic gap in the

southern Puget Sound basin.

Prior to inversion, station corrections are determined and the earthquakes are

located according the methods outlined in Chapter 1. A table of the station




84

locations, elevations and correction delays used in this study is provided in Table
6.1. The station corrections are determined using the full data-set from the whole
network, not just the data selected within the target area. Histograms of the resi-
duals for each station are provided in Figure 6.3 using only the data selected for
inversion. On the left are the histograms using the 1-dimensional model and in
- the right hand column are the residuals with the 3-dimensional perturbations added }
in. Notice that there is an overall tightening of the station residual distributions,

as is expected.

For the Puget Sound inversion the LSQR technique of Section 2.4 was used
with a damping parameter A = 1000 and regularization is achieved by constraining
the 2-D horizontal Laplacian to be zero as described previously. After 30 itera-
tions a 40% reduction in residual mean square error was achieved. A plot of the
reduction in residual travel time is shown in Figure 6.4. It is clear that the major-

ity of residual reduction is accomplished within the first 10 iterations.

To display the results, greyshade plots are provided for each layer individu-
ally. Since the perturbations are from a reference model that is changing with
depth, the level of perturbation may be different between layers. For this reason a
different grey scale is calculaied for each level. The scales are chosen so that the
maximum and minimum grey-shades are 2 standard deviations from the mean for
that layer. The absolute maximum and minimum percent perturbations for each
layer are noted under the scales indicating the extreme range of values for that
layer. Percent perturbations of high slowness' (low velocity) are represented by
dark shades and low slowness (high velocity) by lighter shades. The actual
greyshade values range from light to dark smoothly following a shifted cosine
curve. Important geographic outlines are included on each plot along with stations

plotted as triangles for reference between layers.
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It is important to emphasize that the greyshade plots represent percent pertur-

bation

from the reference model and care should be taken when comparing

anomalies across layers. The actual velocity structures can be obtained from these

plots by adding the slowness perturbation to the background slowness in each

layer and taking the reciprocal. Plots such as these were found to have nearly all

the essential features that are evident in the percent perturbation plots, and are not

presented here.

Discussion

Results of the Puget Sound velocity inversion are displayed in Figure 6.5(a-

i). A layer by layer description of these results follow:

Layer 1, 0 - 2 km: The shallowest layer of the inversion does not have very good

Layer

lateral resolution because rays are clustered directly below the stations as
they emerge from below. Nevertheless a pattern of slower velocity ranging
over the Puget Sound area with higher velocity towards the western flanks
of the Cascéde Range seems apparent. Since the structures here are concen-
trated around the stations one can interpret these anomalies as being adjust-

ments to be made to station corrections.

2,2 - 4 km: At this level the anomalies begin to exhibit some of the gen-
eral characteristics expected from the geological data: The east flank of the
Olympic Peninsula appears as a high velocity anomaly correlating with the
Crescent Formation of Eocene Basalts. The southern Puget Sound exhibits
a large low velocity. There is a high velocity anomaly slightly south of the
Seward Park (SPW) station in Seattle.
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Layer

Layer
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3, 4-6 km: At this level a large low velocity anomaly in the southern part
of the Puget Sound is evident. This low velocity structure appears to
extend to the southeast in a linear trend following a correlated low gravity
apparent in this region [Bonini et al, 1974; Gower et al, 1985]. Under
Seattle (SEA) and to the north are two additional low velocity anomalies
which also correlate with gravity lows. Note the high anomaly at SPW in
contrast to the low at SEA. This reflects the large gravity gradient beneath
this area interpreted as a fault by Gower et al [1985]. To illustrate this
point a reproduction of the gravity anomalies with interpreted faults is sup-
plied in Figure 6.6. For comparison a close up view of Layer 3 is plotted
in Figure 6.7 at the same scale as Figure 6.6. Note the strong correlation

between the low velocity structures and the low gravity anomalies.

4, 6-9 km: Here the Crescent Basalts appear quite prominently as a high
velocity anomaly and the Puget Sound low velocity anomaly appears to
wrap around in the characteristic crescent shape. The large low velocities
of the southern Puget Sound are greatly diminished in magnitude and

extent.

S, 9-12 km: The Crescent basalts again appear here butted against the
north-south low velocity trend which appears to be dipping eastward. On
the western edge of the Crescent Formation a low velocity anomaly

appears, representing the underplated rocks of the Olympic Core.

6, 12-16 km: The trend described for layer 5 continues here. Several
prominent anomalies appear in the north east sector of the target area that
have not been stressed so far. These are due to the complicated juxtaposi-

tion of allocthanous terranes, sedimentary basins and volcanics that
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characterizes the northern portion of the target. These complications make

interpretations difficult.

Layers 7 through 9, 16-32 km: The basic trend of low velocity anomaly step-

ping eastward under the high velocity basalts continues.

To aid the interpretation of these velocity anomalies several cross sections
through the model have been prepared. The map location of the cross sections are
presented in Figure 6.8. The cross sections are created by stacking the results of
all the layers and taking a vertical slice through the 3-D block. For each layer the
same greyshade scale that was used in the horizontal plots above is used for the
cross sectional plots. These plots (Figure 6.9a-d) are presented primarily to help
delineate the broad spatial patterns with respect to depth.

Cross Section XA”: This section runs east-west through the northern part of the
Puget Sound. It shows the dipping nature of the Crescent basalt formation
(high velocity) as it is underthrust beneath the oceanic sedimentary units
deposited in a backarc basin. Below the Crescent basalts are the Olympic

Core rocks appearing as a low velocity marine sedimentary terrane.

Cross Section XB”: This section runs from the Olympic Peninsula through Mount
Rainier in the southeast. The Crescent formation is again seen to be dip-
ping to the east above the Core rocks. At Mount Rainier a low velocity
anomaly is present between 9 and 12 km depth. Immediately to the
southeast of Mt. Rainier is a small region of high velocity material. The
Puget Sound lowland is characterized by a low velocity zone down to 6

km.
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Cross Section XC”: The trend of the dipping basalts is most marked here. An
apparent dip of 20-28° is measured from this cross section. Again, the
same pattern of low velocity Core rocks underlying the Crescent is evident

as is the low velocity unconsolidated sediments of the Puget Sound.

Cross Section DD’: This section corresponds to Cowan’s [1984] transect B-3.
The same structures discussed above appear here. In the vicinity of Mt.
Rainier two high velocity anomalies appear to flank the volcano. These are
interpreted as evidence for pre-tertiary plutons which have surface expres-

sion in various localities north and south of Mount Rainier.

Resolution and Error

As discussed in Chapter 4, the resolution for an inversion of this size is
difficult to calculate. To approximate the resolution, several plots are supplied
indicating an estimate of the resolving power of the data based on the distribution
of ray coverage over the model. Two impulse responses are illustrated in Figures
6.10-12. The first one (Figure 6.10a-c) was placed in the center of the model
(depth of 9-12 km), an area where the resolution is presumed to be ‘very good.
The impulse response displays show that indeed the lateral resolution in layer 5
(9-12 km depth) is approximately 15 km in width. In depth the resolution appears
to be about the same, the drop in amplitude in layers 4 and 6 is about one third of
the amplitude in the block under investigation. An east-west cross section is sup-
plied in Figure 6.11 to show the vertical resolution. While the amplitude of
dispersed energy is significantly diminished a pattern dipping to the east is
observed. This implies that some of the structure alluded to above is due to the

effect of smearing and raypath effects.
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The second impulse response is located in the vicinity of Mt. Rainier at a
depth of 6-9 km (Figure 6.12a-c). While the resolution here is not quite as good
as in the example above it is still in the range of 15-20 km (3-4 blocks). Again
there is smearing in the layers above and below this position as indicated by the

side lobes of the resolution kernel in layers 3 and 5.

To get an overall picture of the resolving power throughout the ellipsoids
describing the ray distribution are presented in Figure 6.13. Adjacent to the ellip-
soid plots are plots of the dip of the major axis and hit counts represented on a
logarithmic scale by circles of varying radii. These two illustrations thus iﬁdicate
the density of distribution in a particular area and the relative spread of the data in
three mutually orthogonal directions. The plots generally show that in the center
of the model along the Puget Sound lowlands the ray distribution is dense and
fairly isotropic. On the edges the the distribution degrades and the resolution is
likewise degraded. In the center of the model, from depths 6-16 km the rays
appear to be primarily oriented horizontally with an occasional block having dom-
inant vertical ray orientation. Of course at the surface and on the edges there is
more smearing in the vertical direction due to rays leaving and arriving at the end

points of raypaths.

The standard errors, as estimated using the jackknife with 30 partitions, is
presented in Figure 6.14. Overall the errors are relatively small, less than 2.7%
over the whole model. In layer 3 (4-6 km) there is a high estimated standard error
(2.7%) near the center of the target. The dominant anomaly in this region is
approximately 8.2% so the +2.7% is not large enough to wipe the anomaly out,
i.e. the sign of the anomaly is well constrained. This is true for all the blocks that
have high ray coverage density over them. This indicates that errors inherent in
the data, due to mispicking or mislocation, are not introducing spurious anomalies

into the model.
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Summary

In summary both gross features of the surface geology and several details
surmised from geophysical studies are apparent as anomalous velocity structures
imaged by the tomographic technique. The Crescent Basalts on the eastern flanks
of the Olympics appear as a high velocity anomaly as opposed to the sedimentary
deposits in the Puget Sound lowlands which are predominantly low velocity.
Three large low velocity anomalies appear in the central to southern Puget Sound
region which correlate well with large gravity anomalies in this area [Bonini et al,
1977]. In the vicinity of Mt. Rainier small shallow high velocity structures appear
to correlate with plutons observed at the surface and inferred at depth [Cowan,
1984]. A large lov;r velocity anomaly is evident below Mt. Rainier which may
correspond to the large gradients in conductivity observed by Stanley [1987]
which was interpreted as a an accretionary prism of sedimentary deposits. On a
broad scale there appears to be evidence for large scale underthrusting of the Cres-
cent formation and the Olympic Core formation beneath the Puget Sound. The
geometry and apparent dip of the boundaries of these accretionary units
corresponds well with independent measurements made north of the Puget Sound
on Vancouver Island [Clowes et al, 1987]. These correlations indicate that the
velocity structures derived using the tomographic method indeed reflect important

geologic structures in the subsurface.
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Figure 6.1: Map of target areas and station distribution of the western Washington
seismic network. Triangles are station locations and stars are major strato-
volcanos in the region. The hashed target is the Mt. St. Helens target area dis-
cussed in Chapter 7. Stations SEA and SPW are labelled for reference.
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Table 6.1. Station corrections determined by inspection of histograms of residuals
for each station using all the data. The S-wave corrections are calculated from the

P-wave corrections.

Station Corrections
Station Latitude Longitude Elevation | P-delay | S-delay
APW | 46N39.1000 | 122W38.8500 0.457 -0.2500 | -0.4280
AUG | 45N44.1667 | 121W40.8333 0.865 0.1500 | 0.2570
BFW | 46N29.2000 | 123W12.8900 0.902 -0.3500 | -0.5990
BHW [ 47N50.2100 | 122W 1.9300 0.198 -0.0500 | -0.0860
BLN | 48N 0.4417 | 122W58.3107 0.585 -04500 | -0.7700
BOW | 46N28.5000 | 123W13.6833 0.870 -0.3500 | -0.5990
BRV | 46N29.1200 | 119W59.4900 0.925 0.5000 | 0.8550
CBW | 47N48.4250 | 120W 1.9600 1.160 0.6000 1.0260
CDF | 46N 69700 | 122W 2.8500 0.780 0.0040 { 0.0070
CMM | 46N26.1167 | 122W30.3500 0.62 -0.1480 | -0.2530
COW | 46N29.4600 | 122W 0.7267 0.305 -0.0980 | -0.1680
CPW | 46N58.4300 | 123W 8.1800 0.792 -0.2480 | -0.4240
CRF | 46N49.5100 | 119W23.3000 0.260 0.8000 1.3680
DY2 | 47N59.1152 | 119W46.2172 0.884 0.8000 1.3680
DYH | 47N57.6300 | 119W46.1600 0.820 0.8000 1.3680
EDM | 46N11.8400 | 122W 9.0000 1.609 0.2000 | 0.3420
ELK | 46N18.3333 | 122W20.4500 1.270 -0.1960 | -0.3350
ELL | 46N54.5833 | 120W34.1000 0.805 0.8500 1.4540
EPH | 47N21.2133 | 119W35.7700 0.628 0.7000 1.1970
EST | 47N14.2800 | 121W12.3633 0.756 0.0540 | 0.0920
ETT | 47N39.3000 | 120W17.6000 0.439 04500 { 0.7700
FL2 46N11.7833 | 122W21.0167 1.378 -0.1500 | -0.2570
FLT | 46N11.3550 | 122W21.3750 1.387 -0.0460 | -0.0790
FMW | 46N56.5167 | 121W40.1900 1.890 -0.1500 | -0.2570
FOR | 45N58.2333 | 121W45.5000 1.152 0.1000 | 0.1710
FPW | 47N58.1500 | 120W12.7750 0.352 0.5000 | 0.8550
GBL | 46N35.8600 | 119W27.5900 0.330 0.8500 1.4540
GHW | 47N 2.5000 | 122W16.3500 0.268 -0.3000 { -0.5130
GLD | 45N50.2167 | 120W48.7667 0.610 0.6500 1.1120
GLK | 46N33.8367 | 121W36.5117 1.320 0.0500 | 0.0860
GMW | 47N32.8750 | 122W47.1800 0.506 -0.5000 | -0.8550
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Table 6.1: (continued)

Station Latitude Longitude Elevation | P-delay | S-delay
GSM | 47N12.1900 | 121W47.6700 1.305 -0.0500 | -0.0860
HDW | 47N38.9100 | 123W 3.2533 1.006 -0.3980 | -0.6810
HNB | 49N16.4698 | 122W34.7517 0.183 -0.0500 | -0.0860
HTW | 47N48.2083 | 121W46.1442 0.829 -0.1500 | -0.2570
JCW | 48N11.7117 | 121W55.5178 0.792 -0.1480 | -0.2530
JUN | 46N 8.8000 | 122W 9.1800 1.049 0.0040 | 0.0070
KOS | 46N27.6800 | 122W11.4300 0.828 -0.1500 | -0.2570
LMW | 46N40.0800 | 122W17.4800 1.195 -0.0960 | -0.1640
LON | 46N45.0000 | 121W48.6000 0.853 -0.1980 | -0.3390
LVP | 46N 4.1000 | 122W24.5000 1.170 -0.0460 | -0.0790
MAS | 46N 8.6833 | 121W35.5117 1.370 0.1000 | 0.1710
MBW | 48N47.0400 | 121W53.9800 1.676 0.3500 { 0.5990
MCW | 48N40.7800 | 122W49.9400 0.693 -0.1460 | -0.2500
MDW | 46N36.8000 | 119W45.6500 0.330 0.5000 | 0.8550
MOW | 47N50.7817 | 122W 2.8817 0.180 -0.0460 | -0.0790
MOX | 46N34.6333 | 120W17.5833 0.540 0.6000 1.0260
MTM | 46N 1.5300 | 122W12.7000 1.121 0.0540 | 0.0920
NAB | 49N13.3500 | 124W 0.2157 0.256 -0.1000 | -0.1710
NAC | 46N44.0633 | 120W49.5533 0.738 0.5500 | 0.9410
NEL | 48N04.6967 | 120W20.2950 1.490 0.3000 | 0.5130
NLO | 46N 5.3000 | 123W27.0000 0.900 0.1500 | 0.2570
OBH | 47N19.5750 | 123W51.9500 0.383 -0.1000 | -0.1710
OHW | 48N19.4000 | 122W31.9100 0.054 -0.3500 | -0.5990
OMK | 48N28.8200 | 119W33.6500 0.421 0.8000 1.3680
ONR | 46N52.6250 | 123W46.2750 0.257 0.1000 | 0.1710
OSD | 47N49.2500 | 123W42.1000 2.010 0.1000 | 0.1710
OTH | 46N44.3400 | 119W12.9900 0.260 0.3000 | 0.5130
PAT | 45N52.8350 | 119W45.6683 0.300 0.5000 | 0.8550
PEN | 45N36.7200 | 118W45.7750 0.430 -0.6000 | -1.0260
PFB | 48N34.4998 | 124W26.6638 0.465 -0.3000 | -0.5130
PGC | 48N38.9998 | 123W27.0295 0.005 -0.2500 | -0.4280
PGO | 45N28.0000 | 122W27.1667 0.237 0.3500 | 0.5990
PHO | 45N37.1300 | 122W49.8367 0.299 0.0500 | 0.0860
PLN | 47N47.0800 | 120W37.9803 0.700 0.3500 | 0.5990
PRO | 46N12.7600 | 119W41.1500 0.552 0.5000 | 0.8550
RAN | 46N24.5000 | 121W51.8167 1.620 0.0540 | 0.0920
RED | 45N56.2200 | 121W49.1800 1.510 0.1500 | 0.2570
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Table 6.1: (continued)

Station Latitude Longitude Elevation | P-delay | S-delay
RMW | 47N27.5825 | 121W48.3200 1.024 0.0040 | 0.0070
RPW | 48N26.9000 | 121W30.8167 0.850 0.1000 | 0.1710
RSW | 46N23.4700 | 119W35.3200 1.037 0.6000 1.0260
RVC | 46N56.5750 | 121W58.2883 1.000 -0.0960 | -0.1640
RVW | 46N 8.9700 | 122W44.6200 0.460 -0.3500 | -0.5990
SAW | 47N42.1000 | 119W24.0600 0.690 0.5000 | 0.8550
SBL | 46N20.4200 | 122W 2.3300 1.665 -0.0960 | -0.1640
SHW | 46N11.8433 | 122W14.1400 1.399 0.1000 | 0.1710
SMW | 47N19.1700 | 123W20.5000 0.840 -0.1460 | -0.2500
SNB | 48N46.5598 | 123W10.2718 0.408 02000 | 0.3420
SOSs 46N14.6417 | 122W 8.2000 1.270 -0.0960 | -0.1640
SPW | 47N33.2217 | 122W14.7517 0.008 0.5500 | 0.9410
STD | 46N14.2667 | 122W13.3650 1.268 -0.0980 | -0.1680
STW | 48N 9.0483 | 123W40.2183 0.308 -0.1460 | -0.2500
SUG | 46N12.8700 | 122wW10.4900 1.859 0.2500 | 0.4280
SYR | 46N51.7800 | 119W37.0700 0.267 0.7500 1.2830
TBM | 47N10.1690 | 120W35.9000 1.064 0.7500 1.2830
TDH | 45N17.3900 | 121W47.4200 1.541 0.1500 | 0.2570
TDL | 46N21.0500 | 122W12.9500 1.400 -0.1980 | -0.3390
VBE | 45N 3.6200 | 121W35.2100 1.544 04000 | 0.6840
VGZ | 48N24.8338 | 123W19.4637 0.067 -0.4000 | -0.6840
VLL | 45N27.8000 | 121W40.7500 1.195 04500 | 0.7700
VLM | 45N32.3100 | 122W 2.3500 1.150 0.1500 | 0.2570
VTG | 46N57.4800 | 119W59.2400 0.208 0.8000 1.3680
VTH | 45N10.8700 | 120W33.6800 0.773 -0.2000 | -0.3420
WA2 | 46N45.4033 | 119W33.7583 0.230 0.7500 1.2830
WAT | 47N41.9167 | 119W57.2500 0.900 0.6500 1.1120
WEN | 47N31.7700 | 120W11.6500 1.061 04000 | 0.6840
WNS | 46N42.6167 | 120W34.5000 1.000 0.7500 1.2830
WPW | 46N41.8900 | 121W32.8000 1.250 0.0040 | 0.0070
WRD | 46N58.1900 | 119W 8.6000 0.378 0.2500 | 0.4280
YAK | 46N31.2633 | 120W31.7533 0.619 0.5500 | 0.9410
YEL | 46N12.5833 | 122W11.2667 1.750 0. 0.
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Figure 6.3: Plots of station residual histograms. The left plot for each station
represents the station residuals with the 1-D reference model and the right plot is
the histogram of station residuals using the 3-D model derived in this study. Only
stations with large numbers of total counts are plotted. The first pair of histo-
grams include the residuals for the whole dataset. The horizontal axes are in units
of seconds and the vertical axes are counts.
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Figure 6.3 (continued)
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Figure 6.3 (continued)
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Figure 6.3 (continued)
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Percent Reduction in Misfit
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Figure 6.4: Percent reduction of %? versus iteration number. The inversion was
done on Puget Sound data using the LSQR algorithm with regularization imple-
mented by constraining the Laplacian to be zero in horizontal layers.
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Figure 6.7: Close up of Layer 3 from Figure 6.5. To compare velocity structure
to Bouguer gravity structures this is plotted at same scale as Figure 6.6.
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Figure 6.8: Map of cross sections through model.
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Depthem) Vertical Cross Section XA’
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Figure 6.9: Vertical cross sections through the Puget Sound model. The 3-D
model has been sliced along line illustrated in Figure 6.8 and the layers are
displayed with the greyshade scale adjusted within each layer according to Figure
6.5. The structure of the Crescent formation can be seen dipping to the southeast
in section XB. Cross section DD corresponds to transect B3 [Cowan, 1984]



Figure 6.9: (continued)
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Figure 6.11: East-west slice through the resolution kernel in Figure 6.10. Vertical
smearing is evident here but the amplitude drops off significantly. For ease in
comparison the greyshades are plotted with the same scale for all levels.
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Figure 6.13: (continued)
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Figure 6.13: (continued)
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Figure 6.13: (continued)
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Figure 6.13: (continued)
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Figure 6.13: (continued)
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Figure 6.13: (continued)
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Figure 6. 13: (continued)
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Figure 6.13: (continued)
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CHAPTER 7
TOMOGRAPHIC INVERSIONS AT MOUNT ST HELENS

. Introduction and Geology

Since the explosive eruptions of May, 1980, the Mount St. Helens region
(Figure 7.1) has generated intense interest and speculation regarding the nature of
volcanic activity in relationship to subduction in the Pacific Northwest. It is
imperative to know the location of magmatic sources, the conduits and transport
systems that supply the volcanos, and their relation to adjacent geologic structure
if we attempt to determine constraints on the placement of volcanic activity in the
Cascade range. While surface geological studies [e.g., Evarts et al., 1987; Mul-
lineaux and Crandell, 1981; Phillips, 1987; Swanson and Clayton, 1983; Ham-
mond, 1980] are useful in determining some of the features present, extensive ero-
sion, lava coverage and forestation impedes a clear understanding of the complex
structures in this region. Subtle variations in rock properties are measurable by
various geophysical means and they remain important avenues for exploring this

problem.

The geology of the Mount St. Helens region is summarized in reports by
Evarts et al. [1987], Finn and Williams [1987], Williams et al. [1987], and Stanley
et al. [1987]. The region is dominated by a succession of tectonic, igneous and
erosional events that determined the present complex of basalts, andesites and
quartz-diorites that are exposed at the surface. Forearc basins were present begin-
ning in the late Jurassic to early Cretaceous and frontal arcs have been compressed
against the continental margin since the early Miocene [Dickinson, 1976]. During
the Eocene, volcanism was intermittent, but in the Oligocene and early Miocene
there was a continuous span of volcanic activity [Evarts et al., 1987] resulting by

mid-Miocene in a well defined line of composite volcanos. The modern range of
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Cascade volcanos dates to approximately 1 Ma and Mount St. Helens itself began
producing dacitic lavas about 40,000 years ago [Mullineaux and Crandell, 1981].
In the mid Miocene there were periods of extensive plutonism when the Spirit
Lake and Spud Mountain plutons of quartz-diorite were intruded north of Mount
St. Helens [McBirney, 1978]. To the southwest of St. Helens there appears to be
a series of dacite plug domes that predate the modern volcano [Mullineaux and
Crandell, 1981]. Ten kilometers to the SSE lies the extinct Marble Mountain vol-
cano, one of several late Pleistocene volcanos that have erupted in close vicinity to

Mount St. Helens [Williams et al., 1987].

Several geophysical studies have recently been published focusing on the
Mount St. Helens region [Finn and Williams, 1987; Williams et al., 1987; Stanley
et al., 1987, Weaver and Smith, 1983]. in attempts to clarify the tectonics and to
delineate subsurface geologic features. Analysis of aeromagnetic data [Finn and
Williams, 1987] and gravity data [Williams et al., 1987] indicates the presence of
an anomalous, intrusive unjt beneath the present volcano. Using conductivity data,
Stanley et al. [1987] concluded that this anomalous unit overlies a unit of sedi-
mentary rocks described by Dickinson [1976). Stanley [1987] further describes a
large conductivity anomaly that trends north of St. Helens paralleling the so called
St. Helens seismic zone (SHZ) as defined by Weaver and Smith [1983].

In this study, the target area for the Mount St. Helens inversion was an 80 by
80 km square between 45.9°-46.62° north latitudes and 121.62°-122.67° west long-
itudes. The criteria for selecting data was the same‘as for the Puget Sound inver-
sion. The areal distribution of sources is displayed in Figure 7.2(q) and the projec-
tion of the hypocenters on an east-west vertical cross section is illustrated in Fig-
ure 7.2(b). All rays not entirely within the target model were excluded as were
those considered to be erroneous outliers (residuals greater than 2 seconds). A

large number of aftershocks of the May, 1980 eruption were excluded as were
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some stations that had only a small number of rays (<30). The remaining data set
included 2,023 hypcenters recorded at 21 stations giving rise to 17,659 rays. The
heaviest coverage was in the range of 2 - 10 km depths and the deepest event
used was located at nearly 40 km depth. The earthquake coverage was not homo-
geneous due to the preponderance of events located in the SHZ. This was par-
tially compensated for by weighting as described in chapter 1. The model was
partitioned into blocks 2 by 2 km square with depth divisions determined by the
initial reference model (Table 1).

Results of Inversion

In Figures 7.3 (a-h) we show the results of the tomographic inversion using
LSQR for 40 iterations and A = 1600 for a 23% reduction in misfit. For com-
parison results using ART with A =260 for 30 iterations is presented in Figure
7.4(a-h). For each case regularization was implemented by either smoothing after
iterations as in ART or constraining the Laplacian in LSQR. Each figure
represents the slowness perturbation in a horizontal layer of the model. Note that
the layers are of slightly different thickness, although each block is 2 km x 2 km
horizontally. The grey shading represents levels of percent perturbation from the
reference slowness of the layer. Since velocity is thé reciprocal of slowness, dark
areas (high slowness) represent low velocity and light areas are relatively high
velocity. Regions or blocks which are unshaded have not been sampled by any
rays, indicating the extent of ray coverage. The outline of the preeruption tree
line around Mount St. Helens as well as the stations have been plotted for geo-

graphical reference.
Anomalies present in the top layer (Figure 7.3a) have larger amplitude and

shorter wavelength than we expect are resolvable. This is due to the fact that all

the rays must terminate at one of the stations at the surface and large structures
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result in the immediate vicinity of the stations. We take these to represent local
structure beneath the station that has not been accounted for in the station correc-
tion described in the previous section. For this reason the discussion below

emphasizes the structure below the surface layer.

Discussion and Conclusions

The prominent anomalies apparent in the 3-D model show a remarkable
correlation with the surface geology and geophysical measurements. Evarts
[1987] has mapped out surface expressions of such features as the Spirit Lake plu-
ton trending NNE from the crater of St. Helens and the Spud Mountain pluton
which trends NNW. A lineation of plug domes and extinct vents run in an east-
southeast direction from the crater and take a slight bend to the northwest north of
St. Helens. These features are apparent on the aeromagnetic map of Finn and
Williams (reproduced here as Figure 7.5) where high magnetic anomalies are
recorded at Spirit Lake and Spud Mountain and a low trough is evident in
between, at the location of the St. Helens Seismic Zone (SHZ) [Weaver and Smith,
1983]. The seismic anomalies in the first 3 layers (0-6 km, Figures 7.3a-c) of the
3-D model presented here reflect the same structures. A high velocity zone maps
directly into the two plutons located north of St. Helens with a prominent low
velocity zone at the SHZ separating them. The Goat Mountain complex is evident
as a low velocity region. An énlarged version of Figure 7.3b is provided in Fig-
ure 7.6, showing these features superimposed on the slowness anomalies for clar-
ity. At the crater of St. Helens we see a low amplitude high velocity region with
a low velocity directly to the north where the SHZ, meets the crater. This anomaly
appears to have reversed by a depth of 6-9 km (Figure 7.3d) where a strong, slow
anomaly is evident under the mountain, slightly displaced to the south. In the
deeper layers (9-16 km depth) there is a strong low velocity anomaly beneath the
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crater which may be indicative of modern magma accumulations.

The low velocity anomaly that runs along the SHZ is apparent at virtually all
depths. In the deeper layers it is the major outstanding feature in the model. This
slower zone coincides with high seismicity and is presumed to be the lineation of
a crustal zone of weakness characterized by strike-slip faulting extending north-
northwest from Mount St. Helens [Weaver et al., 1987]. Weaver et al. (19871 sug-
gest that Mount St. Helens is situated at the corner of a bend in the SHZ where it
trends to the southeast towards Marble Mountain. The velocity anomalies in our
model below the first layer show little sign of such a trend.

There is strong evidence that the boundaries delineated by the seismic velo-
city inversions represent important subsurface interfaces separating rocks of
significantly varying properties. These structures are evident in the surface expo-
sure and in other geophysical studies, such as the aeromagnetic and gravity sur-
veys. If we assume that zones of low velocity reflect the presence of fracturing,
magmatic intrusion, fluids, or high heat source, then the SHZ north of Mount St.
Helens may be the major tectonic feature of this region. We speculate that this
zone is a weak boundary, separating distinct geologic terrains, that is reactivated
under regional tectonic stress. This would explain the affinity of both earthquakes
and volcanic conduits (e.g. Mt. St. Helens) for this zone. The vents and plug
domes of the Goat Mountain complex also appear to exhibit low velocities, how-
ever, the Marble Mountain region exhibits low velocity structure only in the shal-
lowest zones (0-2 km). At depth (6-12 km) the low velocity anomaly appears due
south of the crater and shows little evidence of bending to the southeast. The high
velocity plutons at Spirit Lake and Spud Mountain represent consolidated, brittle
material that is significantly more impervious to fluid injection. These plutons are
separated by the strike-slip faulting of the SHZ. Because the presence of the
quartz-dioritic plutons appears to be consistent in the deeper layers they may
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constrain the zone of weakness in the crust that produces the SHZ. In other local-
ities, this technique of using local earthquakes for tomographic imaging may prove
to be useful in locating areas of crustal weakness and thus potential seismic
- hazards. Such information should also prove of great value in studying the

processes and structure of volcanic systems.

The comparison of the ART and LSQR inversion shows that with real data
the two techniques produce, at least for the broad structures, the same results. The
ART inversion appears to have slightly higher frequency content due to the
difference in regularization, although both inversions explain the data to approxi-
mately the same percent reduction of misfit (24%). For the following discussion

the ART methods were used in the analysis of resolution and error.

Resolution and Errors

An impulse response kernel for a block located in layer three directly north
of St. Helens is displayed in Figure 7.7. A spike of value 1 was put into the
block that is outlined in white (Figure 7.7b) and artificial data were generated
using the rays of the real data. The output was then inverted in the same fashion
as the actual data. While it is quite evident that the lateral resolution in this layer
(Figure 7.7b) is excellent (3 blocks) near the center of the model. Because there
are relatively few layers, resolution in the vertical dimension is more difficult to
achieve. The anomaly is spread into the layers above and below in a north by
north easterly direction. This is due to the high seismicity located in the SHZ
where blurring has occurred. Note, however, that the amplitude of the anomaly in
the layers above and below the spike are attenuated by about a third of the height -
of the center block. This resolution is typical of the central portion of the model
in layers 2-5. On the edges the resolution is degraded. This can be seen in the
plots of ray ellipsoids for the Mt. St. Helens data set (Figure 7.8a-h) The
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concentration of seismicity in the SHZ is indicated by the plots of ray density
(Figure 7.8a-h) indicates that there is likely to be blurring of the images along ray-
paths emanating from this zone. Indeed, the plots of the vertical dip angle of ray
ellipsoids (Figure 7.8a-k) shows that the major axes of the ellipsoids in this region
have high dips. Assertions regarding the vertical structure in this region should be
qualified by the lack of vertical resolution there.

In general, the errors in this model (Figure 7.9a-h) are not large enough to
change the sign of the gross anomalies apparent in the inversion. For example,
the anomaly at the Spirit Lake Pluton (46°30’N-122°W) is about -6.0%. But the
predicted standard error here is very small, about .5%. If the errors are assumed
to be uncorrelated, this would indicate that at least the sign of the velocity struc-
ture is well constrained by the 3-D inversion. Since the errors are correlated in
our case (through, for example, earthquake mislocations) we expect the model

errors to be slightly higher.
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Figure 7.1: Map view of target area showing station distribution. The inset shows
the location of target area in Washington. Triangles are station locations and
labeled bullets identify major topographic highs in the area. The pre-1980 eruption
treeline around Mount St. Helens is plotted for reference.
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Figure 7.5: Regional acromagnetic map reduced to pole [Finn and Williams,
1987]. Units are nT. The anomalies here correlate with the velocity anomalies at
-4 km depth (Figure 7.3b).
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Figure 7.6: A close up of Figure 7.3b to match the scale of the aeromagnetic

anomalies in Figure 7.5. Important features discussed in the text are labeled for
clarity.
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Vertical Projections: Max Count= 991

Figure 7.8: (continued)

b. Layer 2: 2.0-4.0 km Ray Ellipsoids
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Figure 7.8: (continued)
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Figure 7.8: (continued)

Max Count= 1254

Vertical Projections:

d. Layer 4: 6.0-9.0 km Ray Ellipsoids
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Figure 7.8: (continued)

Max Count= 2378

Vertical Projections:

e. Layer 5: 9.0-12.0 km Ray Ellipsoids
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Figure 7.8: (continued)

Vertical Projections:

Max Count= 866
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Figure 7.8: (continued)
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Vertical Projections:
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Figure 7.8: (continued)

Vertical Projections: Max Count= 98
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CHAPTER 8
SUMMARY and CONCLUSIONS

The development and implementation of tomographic techniques for P-wave
travel time inversion of local earthquake data has resulted in several improvements
in both our understanding of the techniques and our knowledge of the structures
beneath western Washington. We have seen that by careful use of regularization a
Bayesian version of Kaczmarz’ technique for solving large sparse matrix systems
is comparable to the conjugate gradient techniques represented by LSQR. These
techniques produced quite similar results when applied to synthetic data sets with
known errors introduced. Furthermore, a new procedure for estimating the model
errors using the Jackknife method was introduced. To estimate resolution a more
qualitative approach has been adopted by combining several graphical representa-
tions of ray statistics providing a better grasp the distribution of rays in the data
set. When applied to real data sets in western Washington the resultant images
were found to correlate well with known geologic features as well as delineate

structures that were previously only inferred.

In the Puget Sound region the Crescent Basﬁlt formation is seen as a prom-
inent, high velocity anomaly on the eastern flanks of the Olympics. This high
velocity feature appears to dip beneath Puget Sound towards the east, forming the
basement beneath the glacial and marine sediments which have characteristic low
velocities. Beneath the accretionary Crescent formation a low velocity anomaly is
seen at depth. These are interpreted as contiguous with the low velocity sedimen-
tary rocks of the Olympic Core that have underthrust and accreted adjacent to the
Crescent formation. In the Seattle area, several low velocity anomalies correlate
well with gravity data and represent distinct, thick sedimentary packages. Near Mt.
Rainier small, high velocity anomalies are present near the surface, which corre-

late with surface expression of pre-tertiary plutonism in this region. At depth a
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larger low velocity anomaly is evident, perhaps providing a source for the large

gradients in electrical conductivity that are observed here [Stanley, 1987)].

The Mt. St. Helens inversion correlates as well with known surface geologic
information. The Spirit Lake and Spud Mt. plutons appear as high velocity
anomalies flanking the low velocity SHZ (St. Helens seismic Zone) which is
presumed to be a major fault in this area. Below the crater from 6 km depth a
-diffuse low velocity anomaly is observed perhaps indicating the presence of
unconsolidated, fractured material in the vicinity of the magma accumulations. A
more detailed study of the immediate area surrounding the crater could perhaps

reveal details of the magma system which supplies the volcano.

Future Work

This research represents a first step in the ongoing effort to determine a
detailed 3-dimensional structural image of western Washington. I would like to
take this opportunity to suggest several avenues of future work that may contribute
to a better understanding of this problem. As mentioned above, a detailed velocity
inversion of the Mt. St. Helens area using all the aftershock data from the May,
1980 eruptions may help delineate the magma bodies that feed the crater. This
could be augmented with a tomographic inversion for attenuation properties,
although practical considerations like the lack of good station calibrations may
make this effort difficult. Inversions for S-wave velocity anomalies should be
investigated. A 3-D S-wave velocity structure used in conjunction with the P-wave
structures developed here would provide us with important specific details of the
physical properties of the rocks in the subsurface.

The 3-D tomographic velocity models produced by these methods can be

used to improve earthquake locations in this region and help define fault zones

from seismicity. In the deep structure, inversion of teleseismic arrivals can be
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used to determine the structure of the subducting oceanic crust. Removal of the
effects of the surface layers is essential for determining a velocity model at depth.
The 3-D model in the top 40 km presented here provides such a model.

On a more theoretical level, with respect to the tomographic method itself,
several directions for future work are apparent. The use of the jackknife method
for determining errors suggests that statistical methods such as cross validation
may be useful to obtain optimum model parameterization. While the use of Cross
validation appears not to yield useful results for determining regularization, this
subject is not fully understood and further work needs to be done to help define a
more quantitative method for optimizing regularization. The graphical presenta-
tions used in this study to estimate resolution depend heavily on the use of several
plots describing ray coverage. In the future, some way of summarizing the infor-
mation into one or two quantities would help simplify this problem. Finally, a
method of non-linear inversion involving the updating of earthquake locations
between iterations using efficient 3-D raytracing techniques should be explored
and developed.




BIBLIOGRAPHY

Aki, K., A. Christoffersson, and E.S. Husebye, Determination of the three-
dimensional seismic structure of the lithosphere, J. Geophys. Res., 82,
277-296, 19717.

Aki, K. and P.G. Richards, Quantitative seismology, W .H. Freeman and Co., San
Francisco, 1980.

Armstrong, R.L., Cenozoic igneous history of the U.S. Cordillera from latitude 42
to 49° north, in Cenozoic tectonics and regional geophysics of the
western Cordillera, pp. 265-282, Geol. Soc. AM., 1978.

Artzy, E., T. Elfing, and G.T. Herman, Quadratic optimization for image recon-
struction, II, Comp. Graph. and Im. Proc., 11, 242-261, 1983.

Atwater, T., Implications of plate tectonics for the Cenozoic tectonic evolution of
western North America, Geol. Soc. Am. Bull., 81, 35 13-3536, 1970.

Backus, G.E. and J.F. Gilbert, Numerical application of a formalism for geophysi-
cal inverse problems, Geophys. J. R. astr. Soc., 13, 247-276, 1967.

Baumeister, J., Stable solution of inverse problems, Friedr. Vieweg & Sohn,
Braunschweig, 1987.

Ben-Israel, A. and T.N.E. Greville, Generalized inverses: theory and applications,
John Wiley & Sons, New York, 1974,

Bevington, P.R., Data reduction and error analysis for the physical sciences,
McGraw-Hill, New York, 1969,

Bonini, W.E., D.W. Hughes, and Z.F. Danes, Complete Bouguer gravity anomaly
map of Washinton, Washington Division of Geology and Earth
Resources, 1974. scale approximately 1:500,000

Carrion, P., Inverse problems and tomography in acoustics and seismology, Penn
Publishing Co., Atlanta, 1987.



161

Cerveny, V., Ray tracing algorithms in three-dimensional laterally varying layered
structures, in Seismic Tomography, D. Reidel Publishing Co., 1987.

Clowes, R.M., M.T. Brandon, A.G. Green, CJ. Yorath, A.S. Sutherland, E.R.
Kanesewich, and C. Spencer, LITHOPROBE - southern Vancouver
Island: Cenozoic subduction complex imaged by deep seismic
reflections, Can. J. Earth Sci., 24, 31-51, 1987.

Constable, A.C., R.L. Parker, and C.G. Constable, Occam’s inversion: A practical
algorithm for generating smooth models from electromagnetic sounding
data, Geophysics, 52(3), 289-300, 1987.

Cowan, D.S. and C.J. Potter, Continent-ocean transect B3: Juan De Fuca spread-
ing ridge to Montana thrust belt, Geol. Soc. Am,, 1986.

Crosson, R.S., Crustal structure modeling of earthquake data 1. Simultaneous
least squares estimation of hypocenter and velocity parameters, J. Geo-
phys. Res., 81(17), 3036-3046, 1976.

Crosson, R.S., Crustal structure modeling of earthquake data 2. Velocity structure
of the Puget Sound region, Washington, J. Geophys. Res., 81(17), 3047-
3054, 1976.

Crosson, R.S. and T.J. Owens, Slab geometry of the Cascadia subduction zone
beneath Washington from earthquake hypocenters and teleseismic con-
verted waves, Geophys. Res. Letts., 14, 824-827, 1987.

Dahlquist, G. and A. Bjork, Numerical Methods, Prentice-Hall, Inc., New Jersey,
1974.

Deans, S.R., The radon transform and some of its applications, John Wiley &
Sons, New York, 1983,

Dickinson, W.R., Sedimentary basins developed during evolution of Mesozoic-
Cenozoic arc-trench system in western North America, Can. J. Earth
Sci., 13, 1268-1283, 1976.



162

Dines, K.A. and R.J. Lytle, C(;mputerized geophysical tomography, Proc. IEEE,
67, 1065-1073, 1979.

Draper, N.R. and H. Smith, Applied regression analysis, New York, 1966.

Dudgeon, D.E. and R.M. Mersereau, Multidimensional digital signal processing,
Prentice-Hall, Inc, New Jersey, 1984.

Duncan, R.A,, A captured island chain in the Coast Range of Oregon and Wash-
ington , J. Geophys. Res., 87(B13), 10827-10837, 1982.

Dziewonski, A.M. and D.L. Anderson, Seismic Tomography of the earth’s interior,
Am. Scientist, 72, 483-494, 1984.

Efron, B. and C. Stein, The Jackknife estimate of variance, The Annals of Statis-
tics, 9(3), 586-596, 1981.

Efron, B., The Jackknife, the Bootstrap and other Resampling Plans, Soc. for Ind.
and Appl. Math., Philadelphia, 1982.

Evarts, R.C., R.P. Ashley, and J.G. Smith, Geology of the Mount St. Helens area:
Record of discontinuous volcanic and plutonic activity in the Cascade
arc of southem Washington, J. Geophys. Res., 92, 10155-10169, 1987.

Fehler, M., Locations and spectral properties of earthquakes accompanying an
eruption of Mount St. Helens, J. Geoph. Res., 90(B14), 12729-12740,
1985.

Finn, C. and D.L. Williams, An aeromagnetic study of Mount St. Helens, J. Geo-
Phys. Res., 92, 10194-10206, 1987.

Golub, G.H. and W. Kahan, Calculating the singular values and pseudoinverse of
a matrix, SIAM J. Numer. Anal., 2, 205-224, 1965.

Golub, G.H. and C.F. Van Loan, Matrix computations, The John Hopkins Univer-
sity Press, Baltimore, 1983.

Gower, H.D., J.C. Yount, and R.S. Crosson, Seismotectonic map of the Puger
Sound region, Washington, U.S. Geol. Surv., 1985,




163

Hall, J.B. and K.L. Othberg, Thickness of unconsolidated sediments, Puget Low-
land, Washington, Washington Division of Geology and Earth
Resources, 1974. scale approximately 1:316,800

Hammond, P.E., Reconnaissance geologic map and cross sections of southern
Washington Cascade Range, latitude 45°30’-47°15'N longitude 120°45’-
122°22.5'W, scale 1:125,000, Dep. of Earth Sci., Portland State
Univ.,Oreg, 1980.

Hearn, T.M. and R.W. Clayton, Lateral velocity variations in southern California.
1. results for the upper crust from Pg waves, Bull. Seis. Soc. Am., 76,
495-509, 1986.

Herman, G.T., H. Hurwitz, A. Lent, and H.P. Lung, On the Bayesian approach to
image reéonstruction, Inf. and Conrrol, 42, 60-71, 1979.

Herman, G.T., Image Reconstructions Jrom Projections, Academic Press, New
York, 1980.

Hofmann, B., Regularization for applied inverse and ill-posed problems, Teubner-
Texte, Leipzig, 1986.

Humphreys, E. and R.W. Clayton, Adaptation of back projection tomography to
seismic travel time problems, J. Geoph. Res., 93, 1073-1085, 1988.

Humphreys, E.D., R.W. Clayton, and B.H. Hager, A tomographic image of mantle
structure beneath southern California, Geophys. Res. Lenss., 11, 625-627,
1984,

Ivansson, S., Remark on an earlier proposed iterative tomographic algorithm, Geo-
phys. J. R. Astr. Soc, 75, 855-860, 1983.

Jackson, D.D., Interpretation of inaccurate, insufficient and inconsistent data, J
Geophys. J. R. Astr. Soc., 28, 97-109, 1972.

Johnson, S.Y., Evidence for a margin-truncating transcurrent fault (pre-late
Eocene) in western Washington, Geology, 12, 538-541, 1984.



164

Kissling, E., W.L. Ellsworth, and R.S. Cockerham, Three-dimensional structure of
the Long Valley Caldera, California, region by geotomography, Proc. of
Workshop XIX, Active tectonic and Magmatic Processes beneath Long
Valley Caldera, Eastern California, 1, 188-220, 1984.

Lawson, C.L. and R.J. Hanson, Solving least squares problems, Prentice-Hall,
Englewood Cliffs, N.J., 1974.

Lees, J.M. and R.S. Crosson, Tomographic inversion for 3-D velocity structure at
Mount St. Helens using earthquake data, J. Geophys. Res., (submitted,
6/23/88), 1988.

Lees, J.M. and R.S. Crosson, Bayesian ART Versus Conjugate Gradient Methods
in Tomographic Seismic Imaging: An Application at Mount St. Helens,
Washington, in Spatial Statistics and Imaging: Proceedings of the 1988
AMS-IMS-SIAM Summer Research Conference, 1988. submitted (9-30-
88)

Manson, C.J., Index to geologic and geophysical mapping of Washington, 1899-
1983, Washington Division of Geology and Earth Resources, 1984.

Mardia, K.V., Statistics of direction data, Academic press, New York, 1972.

McBirney, A.R., Volcanic evolution -of the Cascade Range, Annu. Rev. Earth
Planer. Sci., 6, 437-456, 1978.

Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press,
Inc., Orlando, 1984.

Mosteller, F. and J.W. Tukey, Data Analysis and Regression, Addison-Wesley,
Mass., 1977.

Mullineaux, D.R. and D.R. Crandell, The eruptive history of Mount St. Helens,
U.S. Geol. Surv. Prof. Pap., 1250, 3-16, 1981.

Nakanishi, I., Three-dimensional s&ucture beneath the Hokkaido-Tohoku region as
derived from a tomographic inversion of P-arrival times, J. Phys. Earth,
33, 241-256, 1985.




165

Natterer, F., The mathematics of computerized tomography, John Wiley & Sons,
Teubner, Stuttgart, 1986 .

Neumann-Denzau, G. and J. Behrens, Inversion of seismic data using tomographi-
~ cal reconstruction techniques for investigations of laterally inhomogene-
ous media, Geophys. J. R. Astr. Soc., 79, 305-315, 1984.

O’Sullivan, F., A statistical perspective on ill-posed inverse problems, Statistical
Science, 1(4), 502-527, 1986.

Olson, AH., A Chebyshev condition for accelerating convergence of iterative
tomographic methods- solving large least squares problems, Phys. Earth
Plan. Int., 47, 333-345, 1987.

Paige, C.C. and M.A. Saunders, LSQR: An algorithm for sparse linear equations
and sparse least squares, ACM Trans. Math. Software, 8, 43-71, 1982,

Phillips, W.M., Compilation geologic map of the Mt. St. Helens 1:100,000 qua-
drangle, Wash. Div. Geol. Earth Resour. Open File Rep., in press, 1987.

Plackett, R.L., Studies in the history of probability and statistics. XXIX. The
discovery of the method of least squares, Biometrika, 59, 239-251, 1972.

Pujol, J., Comments on the joint determination of hypocenters and station correc-
tions, BSSA, (in preparation), 1988.

Rowland, S.W. and P. Gilbert, Iterative methods for the three-dimensional recon-
struction of an object from projections, J. theo. Biol., 36, 105-117,,
Springer-Verlag 1972.

Scales, J.A., Tomographic inversion via the conjugate gradient method, Geophy-
sics, 52, 179-185, 1987.



166

Schucany, W.R., H.L. Gray, and D.B. Owen, On bias reduction in estimation, J
Amer Stat Assc, 66(33 ), 524-533, 1971.

Spakman, W. and G. Nolet, Imaging algorithms, accuracy and resolution in delay
time tomography, in Mathematical Geophysics, pp. 155-187, D. Reidel
Publishing Co., 1988.

Stanley, W.D., C. Finn, and J.L. Plesha, Tectonics and conductivity structures in
the southern Washington Cascades, J. Geophys. Res., 92, 10179-10193,
1987.

Strang, G., Linear algebra and its applications, Harcourt Brace Jovanovich, Inc.,
San Diego, 1980.

Swanson, D.A. and G.A. Clayton, Generalized geologic map of the Goat Rocks
wilderness and roadless areas (6036, Parts A,C, and D), Lewis and Yak-
ima counties, Washington, scale 1:48,000, U.S. Geol. Surv. Open File
Map,(83-357) 1983.

Taber, J.J., Crustal structure and seismicity of the Washington continental margin,
University of Washington, 1983. Ph.D. Thesis

Tabor, R.W. and W.M. Cady, Geologic map of the Olympic Peninsula, scale
1:125,000, Misc. Invest. Map 1-994, US. Geol. Surv., Reston, Va.,
1978.

Thompson, A.M., IL.W. Kay, and D.M. Titterington, A cautionary note about
crossvalidatory choice, in preparation, 1988.

Trummer, M.R., Reconstructing pictures from projections: on the convergence of
the ART algorithm with relaxation, Computing, 26, 189-195, 1981.

Trummer, M.R., A note on the ART of relaxation, Computing, 33, 349-352, 1984.

USGS, Aeromagnetic maps for part of southwestern Washington, scale 1:62,500 ,
U.S. Geol. Surv. Open File Rep. 82-659, 1975.

USGS, Aeromagnetic map of the Mount St. Helens area, Washington, scale
1:62,500 , U.S. Geol. Surv. Open File Rep. 81-659, 1981,

T A T LT e AL S T WY T



167

VanderSluis, A. and H.A. VanderVorst, Numerical solution of large, sparse linear
algebraic systems arising from tomographic problems, in Seismic Tomog-
raphy, D. Reidel Publishing Co., 1987.

Weaver, C.S. and S.W. Smith, Regional tectonic and earthquake hazard implica-
tions of a crustal fault zone in southwestern Washington, J. Geophys.
Res., 88(B12), 10,371-10,383, 1983.

Weaver, C.S., W.C. Grant, and J.E. Shemeta, Local crustal extension at Mount St.
Helens, Washington, J. Geophys. Res., 92, 10170-10178, 1987.

Wells, R.E., D.C. Engebretson, P.D. Snavely, and R.S. Coe, Cenozoic plate
motions and the volcano-tectonic evolution of westem Oregon and
Washington, Tectonics, 3, 275-294, 1984,

Williams, D.L., G. Abrams, C. Finn, D. Dzurisin, D.J. Johnson, and R. Denlinger,
Evidence from gravity data for an intrusive complex beneath Mount St.
Helens, J. Geophys. Res., 92, 10207-10222, 1987.

Willmott, C.J., S.G. Ackieson, R.E. Davis, J.J. Feddema, K.M. Klink, D.R.
Legates, J. O’Donnell, and C.M. Rowe, Statistics for the evaluation and
comparison of models, J. Geophys. Res., 9, 8995-9005, 1985.

Young, D.M., Iterative solution of large linear systems, Academic Press, New
York, 1971.



APPENDIX A
LANCZOS PROCESS: LSQR

Here I state and describe the Lanczos process for tridiagonalization of a sym-
metric matrix, B, and arbitrary vector b. This material is a condensation of Paige
and Saunders [1982), Golub and Van Loan [1983] and Van der Sluis and Van der
Vorst [1987]. Choose B, = Iibll such that

D = -BEI- (A1)

To get the next vector, V@, we let
wd) = By — g,y (A2)

where we choose @; such that w® and v are mutually orthogonal, i.e.

<wDy> = 0. This implies that oy = vYTBy®), and we set

(1)
@ W’
Y HwADj| a3

Since the v we are constructing will be an orthonormal basis, we proceed by

requiring v® to be orthogonal to both v® and 1) in the following manner:

w® = By@ — g,y@ _ By (A4)
)
(&) I (4
y3) = A5
@i (A3)

This procedure, the repeated orthogonalization and normalization, will result in the
desired set of vectors v, We summarize the previous discussion by explicitly

stating the algorithm in the following form:

T B e BT LT ¥ T T et B e AR s 1k b e epa
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Algorithm (3): Lanczos Process (Tridiagonalization)

For symmetric matrix B and starting vector b let v = 0 and B; 2 0 be chosen
such that V@l = 1;

B =b (A.6)

o; = VT, > fori=12,.., (A.7)
B = w® — gy ®

The algorithm can be expressed in matrix form by:
BV® = vOT® 4 g y(keDg T (A.8)

Where V® is a matrix consisting of the v as columns and T® is a tridiagonal

matrix of the form:
(Oﬂl B,

By o B, O

B .
T® = ’ L (A.9)

B
0 Be oy _

This can be seen by rearranging the terms in the Lanczos Algorithm such that

BV ™D = w® — gp® | (A.10)
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= Bv® — Byl _ @ (A.11)

which can be regrouped to produce,

By = Bi+lv(i+1) + Biv(i-l) + oc,-v(‘) (A.12)
or,
. 1B
Bv® = [v(l+l) yi=1) () ] B; (A.13)
o;

The importance of the above decomposition into tridiagonal form becomes
evident when we make the following observation. First, consider the expansion of
the k~h approximate solution to the system of equations, x® = V®)®), Substitut-

ing into the least squares problem

Bx = b = By (A.14)
By ®y® = g () (A.15)
VET®Y® = By  ykg, kT, (A.16)

By premultiplying the last equation by V**D T and remembering the orthogonality

of the columns of V, we get
T®y® = g a,. (A.17)

This tridiagonal system can then be quite easily solved with standard techniques
(QR decomposition) and a solution is found by multiplying by the matrix V. In
the case we are dealing with B = ATA and b = ATt and the solution x is an
approximate solution to the least squares problem, Ax =t. The advantage of this
technique over the diagonalization of the normal equations is that the calculation
of the eigenvectors of the normal equations may require unmanageable amounts of
computer memory and time to accomplish. On the other hand, tridiagonalization

is simple and efficient.
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When applied to the least squares problem,

[AIT g] [;]= [3] (A.18)

the Lanczos process produces a bidiagonalization rather than a tridiagonalization
as discussed above. In this case, successive application of Algorithm (2) results in -

a sequence of alternating vectors,

()
[ uf ] and [ h ] (A.19)
Collecting these in appropriate order in matrices U® and V® the matrix
ykn g
0 v (A.20)
will form the basis for (A.18). By setting
N UsD 0 | [
=] o0 v ] w (A.21)
the Lanczos process leads to the bidiagonal system:
I H® |
HOT o w® | =108 S (A22)
where the H matrix is lower bidiagonal:
F 2]
2o O
B
Ht = SR (A.23)
0
e %%
Vi1 |

By comparing (A.18) with (A.22) we see that w'® is the least squares solution of
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HOW® = ye (A24)
and which can be used to get x® from (A.21), since
x® = y®),,0 (A.25)

The system in (A.24) can be solved using a QR decomposition as mentioned
before. The QR decomposition theorem states that any matrix H that has linearly
independent columns can decomposed according to H = QR where Q is orthonor-

mal and R is upper triangular and invertible [Strang, 1980]. This implies that
Q'H® =R (A.26)
and premultiplying (A.24) by QT and substituting from (A.26) we get
Rw® = QTy,e. (A.27)

Since R is upper triangular (in this case upper bidiagonal) a solution can readily
be found by back-substitution. (Back-substitution is accomplished by determining
the solution of an upper triangular matrix by solving the consecutive equations
starting from the last and working upward to the first.) This idea, the bidiagonali-
zation of A and subsequent QR decomposition, is the underlying basis for Algo-
rithm LSQR, developed by Paige and Saunders [1982];
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Algorithm (4): LSQR [Paige and Saunders, 1982]

To solve the system Ax = b let
[31u1 =b, oy = ATlll

wi=vy, X=0, &; =P, Py =0y

Fori=1,2,3,..

Bty = Av; — o Bidiasonalizat
— aT.. . idiagon zation
O Viel = Al — Bigv;

pi = (P + A2
Ci = Pilpi

8i = Bia/p;

0.1 = ;06,4 * Orthogonal Transformation
Pir1 = =€ty
o = cid;

dip1 = si9;

o

X; = X1 + O/p)w;
Wil = Vi1 — O /p)w;

} Update Model
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