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University of Washington

Abstract

The Directional Solidification of Salt Water
by
John S. Wettlaufer

Chairperson of the Supervisory Committee: Professor Norbert Untersteiner
Geophysics Program

A sodium chloride solution is used as a model for the natural solidification of seawater.
A linear perturbation theory is used to show that the one-dimensional steady state describing
the unidirectional solidification of a dilute HO-NaCl solution is morphologically unstable.
This instability breaks the translational symmetry of the steady state, resulting in the transi-
tion from a planar to a cellular solid-liquid interface. The cellular interface represents a state
with a different translational symmetry; parallel arrays of ice platelets. Consistent with other
studies, for fixed far-field solute concentration C.., it is found that there is a range of
solidification velocity V. < V < V, for which the system is linearly unstable to a range pertur-
bations. Naturally occuring sea ice grows at rates between theses limits, so it will always
have a cellular solid-liquid interface. The system exhibits weak wavelength selection near
critical, that is, the wavelength of the instability is only weakly dependent on V near V,, At
low values of the segregation coefficient &, the predicted value of V, is so small that it invali-

dates a continuum theory. At higher values of k the theory predicts realistic values of V.

A weakly non-linear Landau analysis reveals that, during natural solidification, the tran-
sition to a cellular interface occurs via a subcritical bifurcation. That is, there is a ’jump’
transition to cells for V close to V,. A physical explanation is offered to explain the suppres-
sion of subcritical bifurcations that occurs when the temperature gradient in the solid

increases for a fixed mean velocity.

For restricted ranges of the control parameters, we investigate the asymptotic behavior

of the solidification equations. In three cases we derive scaling laws that relate the



wavelength to the mean growth velocity of the interface: In the long wavelength limit (a) for
V close to V. (b) for V close to V,, and in the short wavelength limit for velocities between

V., and V,.

The linear theory provides a characteristic equation relating the disturbance growth rate
to wavelength, mean growth velocity and other control variables. An equivalence transforma-
tion of the characteristic equation reveals several new aspects of the linear theory: (a) The
characteristic equation can be viewed as a one-parameter unfolding f of a cuspoid normal
form N =x™ where m = 3. (b) The bifurcation problem for f defines a trajectory on a cusp
surface which is defined by the bifurcation problem of a two-parameter unfolding f, of N.
(c) The values V, and V, parametrize degenerate singular points. (d) Relative to the standard
neutral curves, wavelength selection is ;anhanced in the neutral curves of the system, and
there is a particular curve for which this behavior is most pronounced. (e) The bifurcation
set, or locus of singular points, of f, = 0, demarcates stability regions solely in terms of
observables. (f) A neutral curve will be open or closed depending on how the solution tra-
jectory determined from f = O crosses the bifurcation set. (g) It is observed that the origin
of weak wavelength selection is related to a high order degeneracy in the vicinity of the

bifurcation point associated with V.

For parameters relevant to natural solidification, the fluid layer adjacent to the solid-
liquid interface is found to be hydrodynamically unstable for mean growth velocities between

V,and V =10* cm s,

The main results point to the need for careful experiments on this system. It is recom-
mended that the critical point of instability be investigated for temperature gradients one or
two orders of magnitude greater than, and solute concentrations one or two orders of magni-
tude less than, the geophysical values. Interferometry can be used to detail the solute field

adjacent to the interface and to assess the role of convection.
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CHAPTER 1
INTRODUCTION

1.1 Cellular Substructure and the Natural Ice Cover

Naturally occurring sea ice has a lamellar/cellular solid - liquid interface (Weeks, 1958).
Mature Arctic sea ice has a substructure consisting of horizontal c-axes, with pure ice pla-
telets extending into the water, separated by regions of highly concentrated seawater (Figure
1.1). As the ice sheet grows downward, the substructure is embedded in the material. There-
fore, at every level sea ice is a mixture of pure ice and concentrated seawater (Figure 1.1).
We are interested in the physics responsible for the appearance of this substructure. In partic-
ular, we wish to determine the range of conditions that determine the existence of substruc-

ture.

A review of the growth and structure of naturally occurring sea ice can be found in
Weeks and Ackley (1986), but a brief review is also in order here. During winter cracks in
the perrenial sea ice cover expose the ocean (T = 271.16 K) to a relatively cold (T = 243 K)
atmosphere. A surface skim of the ocean is slightly undercooled so that the abundance of ice
crystals (supplied by the local snowcover) that enter the layer grow by dissipation of latent
heat into the surrounding fluid. The crystals are initially small spheres that quickly form
discs with the crystallographic c-axis and perpendicular to the ocean surface (Figure 1.2).
The crystals grow more rapidly in the direction perpendicular to the c-axis; parallel to the
ocean surface. Therefore, since the crystals float at various angles from vertical, some will

grow into the fluid more rapidly than others. In the absence of mechanical agitation, a



transition from vertical to horizontal c-axis orientation is observed within the top few centim-
eters of the ice cover (Figure 1.1b). Ice growth then proceeds by molecular attachment to the
existing ice. The underside of perrenial sea ice is always characterized by horizontal c-axes.
Initially, a small region the size of an individual grain has a macroscopically smooth inter-
face, but a cellular interface forms as freezing progresses. This type of interface morphology

is the focus of the present study.

During the directional solidification of seawater, salt and other impurities are rejected by
the solid and build up in front of the advancing interface. This results in the coexistence of
solute C, and thermal T, diffusion fields in the melt; C decays and T, increases with dis-
tance from the interface. The dynamics of a macroscopically planar interface depends on
these fields, the thermal field in the solid (Tg), microscopic effects at the interface, and under
certain conditions the momentum field in the melt. We do not treat the momentum field expli-
citly, but it’s qualitative effects are discussed later. The diffusion fields are sketched in Fig-
ure 1.3, a schematic of the system under study. A planar ice - saltwater interface described
solely in terms of these diffusion fields is subject to shape instabilities giving rise to a regular
spatial pattern along the phase boundary (Figure 1.1c). The structure of the interface is deter-
mined by surface tension and thermal gradients which tend to flatten out solid protuberences.
The solute field, which by depressing the freezing point, creates a local undercooling in the
liquid, is responsible for enhancing the growth of solid protuberences (Mullins and Sekerka
1963, Langer 1980, Coriell et al., 1985, Langer 1987). The shape instabilities resulting from
these competing effects are generally referred to as morphological instabilities. The bulk of
this work focuses on explaining the presence of cellular substructure resulting from the

interaction of surface tension with the diffusion fields (C,T;,Ts).



In laboratory experiments a variety of platelet orientations have been observed (Harrison
and Tiller, 1963). Experiments reveal (Weeks and Lofgren, 1967; Lofgren and Weeks, 1969)
that, as the growth rate increases, the cel! spacing decreases, thereby increasing the solute per
unit volume. The two phase structure observed in the growing solid influences the bulk
mechanical (Weeks, 1962) and thermophysical (Schwerdtfeger, 1963) properties of sea ice in
much the same way as in binary alloys. This influence depends on the amount of solute per
unit volume as well as its distribution within the ice lattice. Malmgren (1927) was the first to
consider the effects of seawater on the thermophysical properties of sea ice. As the ice
grows, the planar interface breaks down, and cellular substructure appears. As a result, small
cells of seawater are trapped within the lattice at the ice-water interface and act to retard
changes in the temperature of the material. For example, when the temperature decreases, the
fractional salt content of the seawater within the cells increases, since the fresh water in the
cells must solidify to maintain phase equilibrium (see Fig. 1.4). When the fresh water in the
cell freezes, the release of latent heat warms the ice surrounding the it. Thus, compared to
fresh ice, in the bulk, it takes more energy to cool and warm sea ice. Because of this pro-
cess, the thermal conductivity and heat capacity of sea ice depend sensitively on the solute
concentration and temperature. For temperatures close to the bulk freezing point of seawater,
the heat capacity can increase two orders of magnitude when the solute concentration

increases one order of magnitude (Schwerdtfeger, 1963).

In studies of the dependence of the platelet spacing on growth parameters, the only
approach has been to assume that the stable interfacial growth form is cellular (Weeks and
Lofgren, 1967 and Lofgren and Weeks, 1969). Qualitatively, this approach is useful-in the

study of the transition from cells to dendrites, (Karma and Pelce, 1990) or for long time



simulations of bulk properties in growth from an impure melt (Huppert, 1990), but will not
be helpful in uncovering the essential mechanisms responsible for the initial appearance of

substructure,

1.2 Crystal Growth Regimes

The formation of cellular substructure is one of the pattern formation problems in cry-
stal growth, The spontaneous formation of patterns from a disordered environment is an
example of self-organization. It is observed in a variety of physical and biological systems
and yet is still not well upderstood (Langer 1987, Nicolis and Prigogine 1977,1989). The
process of crystal growth is an inherently non-equilibrium phenomenon, since a gradient in
one of the thermodynamic variables (e.g., chemical potential) is necessary to drive molecules
toward the solid - liquid or solid - vapor interface. The stable phase will grow at the expense
of the metastable phase at a rate that 'depends on the magnitude of the gradient(s). For the
case where a crystal starts with its equilibrium shape, and then a growth drive is imposed,
Elbaum and Wettlaufer (1991) define three growth regimes: 1) ‘‘thermodynamically slow’’, in
which the equilibrium shape would be maintained, 2) “‘reversibly slow’’, where details of the
shape may change, but the system will still relax to the equilibrium shape on an experimen-
tally observable time scale if the growth drive is removed, and 3) a ‘‘kinetically dominated”’
regime, such as dendritic growth, where the shape no longer relates to the minimization of
the total surface free energy. It is the third regime that is treated here. In this regime the
advance of the phase boundary is limited by the diffusion of nutrient molecules and the
efficiency with which the latent heat of fusion and/or chemical impurities are removed. The

molecular scale forces have an influence on the interfacial dynamics which is parameterized



through anisotropic surface tension and growth kinetics. A conclusion of the study of Elbaum
and Wettlaufer (1991) is that the hexagonal symmetry of a snowflake has a microscopic ori-
gin in the lattice of the seed crystal that emerges from the reversibly slow regime. In the case
of crystal growth in the kinetically dominated regime, the interplay between microscopic
interfacial kinetics and extemnally imposed macroscopic forces determines the growth shape.
The relationship between micro-and macroscopic processes which underlies this class of
problems is not clear. Progress has been made in understanding the microscopic behavior of
equilibrium transitions (see e.g., Haymet 1987a,b and Oxtoby 1990) and macroscopic pattern
formation in non-equilibrium transitions (see e.g., Langer 1980 and Ben-Jacob and Garik
1990). The work presented here draws from this latter pool of knowledge, but to elucidate

the nature of the scale interaction mentioned above, their results are discussed briefly below.

1.2.1 Thermodynamically Slow

Equilibrium crystallization and spontaneous magnetization are characterized by the
breaking of a spatial symmetry (Landau and Lifshitz, 1969). When a volume of liquid
freezes, the isotropic distribution of molecules or atoms is replaced by the anisotropic struc-
ture of a crystal in which not all positions in space are equally accessible to a particle. Inter-
facial *dynamics’ are dominated by atomic and molecular interactions, and close to the transi-
tion point they coordinate over a long range to modify the liquid structure. This has been
shown theoretically, experimentally, and with molecular dynamics simulations (Oxtoby 1990).
Equilibrium or near-equilibrium crystallization is a first-order transition, that is, the thermo-
dynamic variables (e.g., chemical potential, volume) undergo a discontinuous change at the

transition point. Equilibrium crystallization is viewed as a ’non-universal’ phenomenon



(Oxtoby 1990) since all diagnostics; the freezing temperature, changes in the state variables
and the symmetry properties of the stable lattice depend on the nature of the intermolecular
forces. This is the most acute difficulty in the microscopic investigations since, in some
instances (e.g., atomic metals), there are several crystal structures (face- and body-centered
cubic, and hexagonal close-packed) with similar free energies. Therefore, predictions of the
stable crystalline structure depend sensitively on the interaction potential chosen. The essen-
tial mechanisms of crystal growth and the structure of equilibrium crystal surfaces were

described by Burton et al., (1950), and their work serves as the paradigm in this field.

1.2.2 Kinetically Dominated

Progress in the study of systems driven far from equilibrium has come from variety of
fields. The focus has been on the formulation of theories, and the performance of experi-
ments that investigate the stability of the crystallization front in a non-equilibrium situation.
Most of the progress (theoretical and experimental) in this problem has come from materials
scientists investigating phase boundary processes in binary alloys (Mullins and Sekerka
1963,1964 and Coriell et al., 1985). The ideas that have evolved are of use to surface physi-
cists growing thin films of material from the vapor phase as well as to those investigators
interested in understanding natural solidification phenomena (Huppert, 1990 and references
within). The coupling of large and small scales is accomplished by assuming that both
phases are a continuum, and by parameterizing the microscopic interactions through the boun-
dary conditions at the interface. In order to keep track of a free, moving phase-boundary one
must solve thermal and chemical (for binary melts) diffusion equations. There is a similarity

between the type of stability analysis that is necessary here and that which is used in the free



boundary problems of hydrodynamics. The key difference is that non-linearities enter the
formalism through the boundary conditions rather than through the equations of motion them-

selves.

In recent years effort has gone into uncovering the physics responsible for the growth
selection mechanism that nature employs in the creation of snowflakes. In the kinetically
dominated regime, the mechanism of pattern formation is that of a morphological instability
wherein the surface tension competes with the diffusion field to determine the shape. The
deterministic approach (e.g., Langer 1980,1986) has been successful in producing pattemns
which qualitatively mimic real snowflakes (six crystal aims with symmetric sidebranching).
While the overall features have been captured, the observed aperiodicity of the snowflake
sidebranches (Dougherty et al.,, 1987) is not reproduced by the deterministic models even
when anisotropy is included (Langer, 1986 and Sawadg, 1986). In order to account for side-
branch aperiodicity, an approach based on the physics of random systems has been adapted
for the snowflake class of problems (Nittmann and Stanley, 1986,1987ab). Here, I speak of a
class of problems because some of the patterns observed in crystal growth resemble the those
observed in viscous fingering experiments (Couder et al., 1986). The work of Nittmann and
Stanley (see in particular Nittmann and Stanley 1987b) is strikingly successful at qualitatively
and quantitatively reproducing features of real snowflakes, yet the mechanisms relating ran-
dom molecular attachments to the growth selection process have not been clarified. In their
diffusion-limited-aggregation models, there exists mass ’screening’ of interfacial minima by
maxima so that the minima eventually become the liquid or vapor ’fjords’ in the crystalline
structure. Similar work (Saito and Ueta 1989) simulates growth shapes with a lattice gas

model that reproduces diffusive instabilities. Recently, it has been claimed that energy or



entropy calculations of crystal forms will not indicate the morphology assumed by a growing
crystal. Rather, the form selected for a particular thermodynamic gradient is the one which
will, during formation, release entropy at the highest rate, not that which is energetically the

most stable (Hill 1990).

1.3 Constitutional Undercooling

Rutter and Chalmers (1953) first discussed constitutional undercooling in relation to
phase boundary instability in unidirectional solidification of dilute tin alloys. They observed
substructure at the solid-liquid interface (these had also been observed by Buerger [1934])
and offered an explanation in terms of the impurities in the system. They proposed that the
impurities which could not incorporate themselves into the lattice as the solid grew, would
build up ahead of the advancing interface. Since the eguilibrium freezing temperature in the
liquid depends on the impurity or solute concentration, the possibility exists that the freezing
temperature ahead of the interface will be above the actual temperature. They postulated that
if the impurities induced this local undercooling, any perturbation of the interface would tend
to grow spontaneously. This was the first attempt at explaining the observations of interfacial

substructure.,

A more quantitative explanation of constitutional undercooling was offered by Tiller, et
al., (1953). They argued that in order for constitutional undercooling to exist, the actual tem-
perature gradient in the liquid just ahead of the interface G, must be less than the gradient of
the equilibrium temperature, giving the first criterion for instability of such an interface.
Generally, the equilibrium freezing point of a binary liquid is a linear function of its impurity

content (Figure 1.5). The freezing point, T, of a binary solution with solute concentration C



(in parts per thousand (ppt)) can be approximated as

T;=mC, (1.1)
where m is the the slope of the solid-liquid coexistence line and has units K ppt™! (see Fig-
ure 1.4). In the case where the solution is seawater, m = - 0.0548 K ppt~! (Fujino et al.,
1974). Note that equation (1.1) is only relevant for a flat boundary between the solid and the
liquid. If we define the solute gradient in the liquid adjacent to the interface as G, then equa-

tion (1.1) gives

—m € _ 9
mG.=m i
Therefore, according to Tiller et al., (1953), in order for constitutional undercooling to exist

(1.2)

the condition

G
m G,

must be satisfied. This is shown schematically in Figuré 1.5.

<1 (1.3)

Rutier and Chalmers (1953) discovered that they could suppress the substructure by
reducing the growth velocity and increasing the temperature gradient. The layer of high

solute concentration adjacent to the interface falls off exponentially as

C o exp[—g ’] (14)
where V is the growth velocity, and D is the impurity diffusion coefficient in the liquid. This
allows one to write the constitutional undercooling criterion (Eq. 1.3) as a function of growth
velocity (Tiller and Rutter, 1956)

G<OVv, (1.5)
where ® = © (D,C thermophysical parameters). Therefore, for small growth velocities the

condition for constitutional undercooling is relaxed, that is, close to the interface, the gradient
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of the freezing point approaches the actual temperature gradient G. This is consistent with

their observation that the substructure is depressed at small V.

For a given ratio of G/V the impurity concentration determines whether there will be
constitutional undercooling. Tiller and Rutter (1956) rapidly separated the solid from the
liquid during solidification and inspected the interface for substructure. They did this for a
variety of materials, and by varying the parameters in Eq. (1.5) they separated substructure
regimes graphically. This technique provides a plot of the ratio G/V versus the solute concen-
tration in the melt which demarcates the conditions for planar and nonplanar interfaces. Pre-
cise determination of interface instability was well beyond the capacity of these experiments.
The thermophysical parameters were not well known and the visual method of determining

the presence of substructure was hardly precise.

The constitutional undercooling criterion has proved to be an excellent way to investi-
gate a variety of systems. However, since it does not include the effect of surface tension, it
gives little information as to exactly under what conditions a planar interface becomes
unstable, and what the pattern and scale of the substructure will be. The criterion tells one the
thermodynamic conditions of the liquid which may result in an unstable phase boundary; it
tells one nothing about the heat transfer in the solid, or the effects of latent heat release and
interfacial attachment kinetics. In short, constitutional undercooling is a necessary condition
for interfacial instability, but it is not a sufficient one. We will see how this condition arises
out of the formalism in the next chapter. An interface stability criterion based on the dynam-
ics of the entire system and not simply the conditions of the liquid phase is necessary to
extract this information. Theories with some of these ingredients appear to have been

developed independently by four researchers; Wagner (1956) who was interested in the oxi-
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dation of alloys of noble metals, and Mullins and Sekerka (1963) and Voronkov (1965), who

were interested in the growth of crystals.

1.4 Directional Solidification and the Planar Interface

The directional solidification system (Wollkind and Segal, 1970) is used in a variety of
approximate forms to examine the unidirectional solidification of dilute binary ailoys. We
adopt the same basic approach to investigate the solidfication of a sodium-chloride solution.
The alloy is pulled with a constant speed V through an imposed thermal field and a mean
position is established at which the planar solid - liquid interface is located. A planar phase
boundary will be stable if the influence of the thermal fields and surface tension overcome
the destabilizing effect of solute rejection at the interface (Langer, 1980 and Mullins and Sek-
erka, 1964). The thermal fields act to melt back the solid bulges (which encounter higher
temperatures) and freeze back the depressions (which encounter lower temperatures, see Fig-
ure 1.3). The surface tension, acts to melt back a solid bulge by a local depression of the
melting point. The solute field is compressed in the vicinity of a bulge, providing a steeper
gradient there (Fig. 1.3). The interface can advance more easily behind a steeper solute gra-
dient, which enhances the constitutional undercooling (Figure 1.5). Therefore, the solute field
drives the instability. These mechanisms result in shape instabilities that break the transla-
tional symmetry of a planar ice - saltwater interface giving rise to a regular spatial pattern
along the phase boundary (Figure 1.1c).

The planar state can be maintained for growth velocities V less than a critical velocity

V. or above an absolute velocity V,. For V. < V < V,, a particular system will favor a

phase boundary with nonzero curvature. The physics of this process is generic, in that any
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planar interface separating a solid from its binary liquid during solidification will become
unstable for growth velocities above the threshold, V.., where the solute diffusion process is
too slow to remove local solutal undercooling. At the upper limit, V., the stabilizing effect
of surface tension becomes greater than the destabilizing effect of solutal undercooling. The
analysis of Mullins and Sekerka (1964) identified these limits for the case in which an alloy
is solidifying in a constant temperature gradient. Langer (1980) describes this type of instabil-
ity in terms of the competition between kinetic and surface tension effects: In a typical range
of growth conditions diffusion kinetics are more efficient when the solid phase can increase

its surface area. This configuration favors a more complicated interfacial structure.

1.5 Outline of Theoretical Procedure

The solidification of seawater is approximated as that of a dilute H;0 - NaCl solution.
The stability of the system is examined by perturbing the interface about a basic or stationary
state, with an infinitesimal disturbance of the form exp( o ¢ + i a x), where ¢ is the complex
growth rate, and a is a spatial wavenumber in the direction x, along the planar interface, and
perpendicular to the mean growth direction. A linear stability analysis of the equations of
motion for the fields C,T; and T, represented in Figure 1.3 is performed. The evolution of
the fields is represented by a thermally nonsymmetric (thermal conductivities of both phases
are allowed to differ), infinite one sided (solute diffusion in the solid is negligible) model.
The effect of the latent heat liberated at the interface is accounted for and
advective/convective transport of heat or solute is proscribed. Thermally symmetric, zero
latent heat models (e.g., Langer, 1980 or Sivishinsky, 1983) do not allow the possibility of

disturbances of the interface inducing disturbances in the thermal fields since the temperature
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gradient across the entire solid-liquid system is constant and fixed.

The linear stability analysis results in in an eigenvalue problem for ¢. This yields a
characteristec equation Fa,a,M (V.C.), T (V,C.), thermophysical constants] that is an impli-
cit function of o. The control parameters M and I" (described below) are functions of the
interface velocity V and far-field solute concentration C.. The demarcation between stability
and instability is obtained by setting ¢ = 0, giving a neutral characteristic equation,
g(a,M I ;thermophysical constants) = F( ¢ = 0,-,,-). The analysis of g, leads to two neutral
curves that are of particular interest, V (C.) and V (z). The former curve is useful in labora-
tory studies, but the latter curve is of more interest in the examination of naturaily solidifying

seawater.

A subcritical instability reicrs to the case in which the infinitesimal disturbance under-
goes a jump transition to a finite-amplitude state as V — V™. A supercritical instability
refers to the case in which there will be a slow evolution of infinitesimal disturbances along
the interface as V — V.~ (Wollkind and Segal, 1970, Merchant and Davis 1989a,b). Mer-
chant and Davis (1989a) examined the importance of latent heat in determining the nature
(subcritical or supercritical) of the bifurcations by using the results of the weakly nonlinear
analysis of Alexander et al., (1986). They showed that when latent heat is included in the
nearly thermally symmetric SCN-acetone system (where SCN is succinonitrile), the region of
supercritical bifurcation is extended into experimentally accessible parameter ranges. With
the same approach we find that the entire range of H,O - NaCl system is a region of subcriti-
cal bifurcation, but this range is reduced as the ratio of thermal conductivities of the two

phases approaches unity.
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The absence of horizontal boundary conditions results in normal modes that depend
continuously on wavenumber. Constraining the horizontal dimension will result in a discre-
tized spectrum in which several modes must be considered (Bennett and Brown, 1989). The
system width can be used as an additional control parameter, effectively increasing the
dimensionality of the problem. The width is not a variable in the natural solidification prob-

lem.

1.6 Scalings

The length and time scales are based on the solute diffusion scales D/V and DIV,
respectively, where D is the solute diffusivity in the liquid. The advantage of this scaling is
that standard dimensionless control parameters M, the morphological number, which is a
measure of the degree of constitutional undercooling, and I, the surface energy parameter,
will result when the thermal and solute field scales are correctly chosen. A disadvantage of
this choice of scales is that both control parameters depend on the planar growth velocity V,
and the far field solute concentration C... The former dependence is relevant to the common
observation of weak wavelength selection near the critical point of instability (Bennett and
Brown, 1989). By weak wavelength selection for a system we mean that V., for the onset of
morphological instability depends weakly on the critical wavelength. This is one of the

difficulties in comparing the standard theory (Mullins and Sekerka, 1964) with experiment.

Merchant and Davis (1989b) chose scales that isolate the V and C.. dependence of the
system’s dimensionless numbers. They also predict weak wavelength selection near critical.
Their goal in this choice of scales was to isolate control parameters that more closely reflect
the link to the experimental process. Their control parameters were obtained by choosing

different length and time scales. These scales are velocity independent under the assumption
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that the liquid temperature gradient is linear near the interface. One result of this approach is
that the nondimensional wavenumber a, is independent of planar interfacial growth velocity.
As they have pointed out, this scaling may be invalid at high velocities where the curvature
in the temperature field is not negligible. We show this to be the case for the seawater sys-

tem, rendering this approach invalid close to absolute stability.

1.7 Relation of Linear Theory to Normal Forms

The mathematical features of the instabilities that arise in the planar solidification prob-
lem can be described using the techniques of catastrophe, singularity and bifurcation theories
(e.g., Poston and Stewart, 1978 and Golubitsky and Schaeffer, 1985). With the help of these
techniques the topological structure of the solutions of the problem is examined. The V (a)
neutr2i plane is most relevant to the task at hand. With a simple coordinate transformation
that removes the explicit dependence on thermophysical parameters, g (section 1.5) becomes
a more useful function of control parameters f(x,x,p). We view f as a one-parameter
unfolding of a cuspoid normal form N = x™ (m = 3). The trajectories of f are subsets of the
complete neutral solution surface determined by solving f, = 0, where f, is a two-parameter
unfolding of N. The manner in which a trajectory intersects the bifurcation set of f ,, deter-
mines the structure of a neutral curve. The parameters o and f§ are more sensitive functions
of the planar interfacial growth velocity than are M and I'. This behavior, in combination
with the geometry of the solution sets of f and f,, enhances wavelength selection in the

theoretical framework, extending the utility of this type of a linear analysis.

1.8 Related Phenomenon and Approaches
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Theoretical treatments of the dynamics of interfacial motion have proceeded along two
paths. One is that which is taken in this work, and the other treats the free energy of a
nonuniform system (Cahn and Hilliard (1958)) in a diffusive process. For systems with iso-
tropic surface tension and a nonconserved order parameter, such as density or solute concen-
tration, a standard procedure (reviews are Hohenberg and Halperin 1977, and Gunton et al.,
1983) models interfacial motion with a diffusion type equation (Ginzburg-Landau or
Langevin equation) for the order parameter. The equation treats the dependence of the free
energy on the order parameter in the vicinity of an interface with a specified geometry.
Numerical simulation (Kessler et al., 1990) of this type of an equation has revealed interest-

ing dynamics on isolated surfaces.

The same type of analysis has been brought to bear in the study of hydrodynamic
fluctuations. A classic example is the Rayleigh-Benard system (Chandrasekhar, 1961) in
which a horizontal layer of fluid is heated uniformly from below. At a critical value of the
temperature gradient, cellular convective pattems immerge. Swift and Hohenberg (1977) find
a second-order type of transition using the Ginzburg-Landau approach. The immerging
asymmetric states have correlations that are macroscopic in range. In the body of this paper
we will discuss the similarity between the breaking of the symmetry of spatial translations in
the hydrodynamic Rayleigh-Benard instability and the instability of a planar solidification
front.

Once the interface has broken down a new stable growth form may be maintained for a
wide range of parameters. For some materials the new growth form will be cellular with the
possibility of secondary and tertiary instabilities creating a dendritic structure (see e.g., Karma

and Pelce’ 1990 and Warren and Langer 1991).
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For rapidly solidifying binary solutions a two phase region of cellular/dendritic solid
with concentrated melt in the interstitial region can grow to a substantial thickness and neces-
sitate consideration of fluid flow (Huppert 1990 and references within). The work of Huppert
and his colleagues has been responsible for solving a number of important problems in éeo—
physical and geological crystallization in which fluid flow occurs on many spatial scales.
They have been successful in obtaining similarity solutions to the relevant thermal and con-
centration equations with a moving boundary and a finite two phase or "mushy” zone separat-

ing the bulk solid from the bulk melt.

These approaches as well as those which consider the details of interfacial kinetics for
large and small growth rates can be brought to bear on problems related to HO-NaCl sys-
tems, and the natural solidification of seawater, and are the subjects of future work. In addi-
tion, the local interaction between hydrodynamic and morphological instabilities recently
reviewed by Davis (1990) has particular relevance to these systems growing downward into

their melts.

1.9 Summary of Work

-

In the next chapter the problem is formulated. The neutral curves V (C..) and V (a)
that result when evaluating the neutral dispersion function g, are presented in chapter 3.
These curves demarcate the parameter ranges in which the interface is stable from those in
which it is unstable, when the only parameters varied are V and C.. and V and a respec-
tively. We also present the results of a Landau type weakly non-linear analysis in the third
chapter. Chapter 4 is a brief comparison with the linear analysis based on velocity ind_epen-
dent length and time scales. In chapter 5 we examine the neutral solution surface determined

from f, = 0, and a trajectory of f. The topological origin of weak wavelength selection in
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the linear theory is shown in this chapter. We show the strengthening of wavelength selec-
tion which results from this transformation, and the condition which dictates the closedness
of the neutral curve. The results apply to any binary alloy for which this formulation of the
solidification system is valid. In chapter 6 we discuss hydrodynamic effects during
solidification, and theories for the relation between interfacial attachment kinetics and solute
segregation. Finally, we discuss a method fof studying bulk solute trapping during rapid
solidification of seawater. Chapter 7 is a summary of the work presented here and a discus-

sion of related problems and future work.
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Fig. 1.1a Horizontal thin section of Arctic sea ice exhibiting substructure consisting of
pure ice platelets regularly spaced within single crystal grains. The crystallographic c-axis
(see arrow) is in the plane of the section and oriented perpendicular to the platelet structure
of individual crystals. Bulk seawater is trapped between the platelets. The scale in the upper
right hand comer is in mm. (Adapted from Gow et al., 1987).
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Fig. 1.1b Vertical thin section, showing the transition from vertical to horizontal c-axis
orientation in the upper 2 cm of the ice sheet, and the columnar structure in the remainder of
the section. As the ice sheet thickens, the growth velocity decreases. Note the uniformity of
the structure and the increase in crystal grain size moving down into the ice sheet. The smallest

scale subdivisions are in mm, and the entire section is about 20 cm thick. (Adapted from Gow
et al., 1987).
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Fig. 1.1c Schematic of the cellular substructure (from Weeks and Ackley 1986)
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Fig. 1.2 Schematic of a single ice disc on the surface of the ocean. This is the observed
growth form after nucleation in which the c-axis is vertical. The fast growth direction is per-
pendicular to the c-axis, so those crystals with c-axes oriented with a slight angle from verti-
cal have a growth advantage. In the absence of mechanical agitation, the transition from verti-
cal to horizontal c-axis orientation occurs early in the creation of the ice sheet (see Fig 1.1b).
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Fig. 1.3 Schematic of the solidification system in which the phase boundary is moving down-
ward into the liquid. The steady state temperature T and concentration C fields are
represented and there are no horizontal boundaries.
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Fig.14 A typical equilibrium binary phase diagram for a two component system A and B.
The heavy solid line is the liquidus, the light solid line is the solidus and the dashed line
separates purely solid phases. L is the liquid, and CS denotes crystalline solid. For example,
in regions denoted CSA the crystal is dominated by molecules of A. Molecules of B arc not
favored in the crystal because of steric and energetic considerations. For this study consider
A to be H,O and B to be NaCl. Therefore, the system is operating in the region where the
liquidus and solidus approach each other. (Adapted from Worster, 1986).
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Fig.1.5 A schematic of constitutional undercooling. For V = 0 (top), the solute concentration
in the water C is uniform, plotted on the right. The equilibrium temperature T,(C), being
pinned to the solute concentration, is uniform, plotted on the left. There is no externally
imposed temperature gradient, 7, (z) = 0. For V >0 (bottom), we consider two cases. Since
NaCl has a very low solubility in ice, it is rejected by the ice causing a local increase in the
solute concentration adjacent to the interface. The external temperature gradient represented
by T.°(z) is greater than the gradient of equilibrium temperature, so a solid disturbance will
melt back. The external temperature gradient represented by T, 2(z) is less than the gradient
of equilibrium temperature, so there exists a region of water (hatched) that is undercooled,
and therefore metastable. In this situation, a solid disturbance will grow. (See equation 1.3).



CHAPTER 2
FORMULATION

2.1 The Dimensional Solidification Equations

The approach used here is to specify the thermodynamic situation that gives rise to
solidification, and to describe the conditions under which an imposed perturbation grows or
decays. The system (Mullins and Sekerka 1964, Wollkind and Segal 1970) is a continuum
description of heat and mass transfer, so the basic ingredients are the diffusion fields through

both phases. The momentum field is not considered.

We are considering a disturbance of the planar interface 2’ = &’ (x',t"), where all primed
quantities are dimensional. One might also consider pérturbing one of the diffusion fields.
The reference frame is attached to the mean position of the planar interface at 2’ = k" (x') =
0 moving at a constant speed V into the liquid, at time ¢’ = 0 (Figure 1.3). The thermal (T")

and chemical (C") diffusion fields in the liquid 77, (x',z'¢), C'(x"zt), and the solid Ts(x'2't)

obey the following two-dimensional equations:

Forz' >h (x'1)
kL V2T +V T =Ty, 2.1a)

DViC'+V C,.=C, (2.1b)

forz' <h’ (x'.4)
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ks V2T +V Ts =Ty, 2.1c)

where the subscripts z’,¢" denote partial differentiation. The dimensional temperatures
T,s=T"Ls—T, are measured relative to bulk melting temperature T,, of the pure sub-
stance. Along the interface z'= A" (x't"), we neglect effects of crystalline anisotropy such as
the orientational dependence of the surface tension and anisotropic heat flow. Since the solu-
tion is dilute, the system is operating near the intersection of the liquidus and the solidus, that
is, on a locally linear phase diagram (Figure 1.4). Therefore, we can expand the concentra-
tion dependent equilibrium freezing temperature for the planar interface in a Taylor series

about the value for a pure solvent (C” = 0)

T'C)=T©) + %‘.—’l C'=T,+mC, 22)

keeping the first two terms where m is the liquidus slope (cf., Eq. 1.1 and Fig. 1.4) and T,, is
the melting point of a planar, pure ice water interface. Under these assumptions, the thermo-
dynamic boundary condition at the interface is a form of the Gibbs-Thomson relation,

corrected (as in 2.2) for the solute depression of the bulk melting point;

T =T s=Tp+mC +Tp L& [ 1+® 21" ¥2- CL B, A (2.3)

(4
The subscript x* denotes partial differentiation and y is the solid - liquid interfacial surface
tension averaged over all crystallographic orientations, and we drop the standard subscript s /

in this study. We will come back to the orientational average presently.

The third term of (2.3) represents the Gibbs - Thomson effect which accounts for the

excess interfacial free energy required to accommodate an increase in interfacial area during
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the solidification of a curved surface. To demonstrate this we discuss the common model of

a small spherical crystal in equilibrium with its melt (e.g., Woodruff 1973, or Langer 1987).

The Gibbs free energy of the crystal has a contribution from the particles in the volume,
and from the particles in the surface. In equilibrium, the solidification of dn moles will
change the free energy by an amount (s — jt; ) dn, where pg (u) is the chemical potential of
the solid (liquid). The formation of interfacial area dA in which the bonds are distorted from
those in the bulk solid results in an increase in free energy ydA that must be balanced to
maintain the equilibrium. If the sphere of radius r increases in area by an amount dr, where
dr < r, then we have dA = 8 nr dr and dn = dViv = 4(xmr2dr)lv, where V (v) is the

volume (molar volume). Therefore,

ns - = 202, @4)

implying that solidification will not proceed unless the temperature of the liquid is depressed
below the bulk melting point. The depression is necessary because the presence of the spher-
jcal interface increases the chemical potential of the solid phase relative to the liquid which
implies that the liquid phase is favored for the molecules (or atoms) in the volume 4 x rtdr.
In order for these particles to remain part of the crystal, an undercooling of the liquid by an
amount § T that decreases the free energy of the crystal volume by an amount V L ST)T,,
must offset the free energy increase due to the presence of the curved surface. By balancing
these contributions, » ps ~p;, = (¥ L 8 T)/T,, the equilibrium undercooling obtained is a

form of the Gibbs - Thomson relation for a spherical crystal



27

8T=YT"'K

y K=2r. (2.5)

In this case the interfacial curvature x is that of a sphere but one is free to express this rela-
tion for a more general interfacial configuration. When the interfacial deflection is in two
lateral dimensions the curvature is given by Vi’ - VA’ [1 + (VA)?1~'2, where V denotes the
two dimensional lateral gradient. In one lateral dimension the curvature is as given in Eq.
(2.3). If the effects of crystalline anisotropy are important, the orientational average
represented by the y we consider in this derivation will not correctly determine the depression
8 T because the equilibrium crystal shape will not be a sphere (Herring, 1951). The surface
energy is different from the surface tension because the former depends on the local effects
of the underlying lattice. Thus, the surface energy will depend on the angle 6, between the
normal to the surface and some fixed orientation is space. In order to model crystalline
anisotropy, one ascribes a O-dependence to the surface tension as follows;
Yo =7 [1 — dy cos (m ©)), where d, is the anisotropy strength and m speciﬁ;‘,s the crystalline
symmetry. This is a perturbation to the isotropic surface tension y. Therefore, when neglect-
ing crystalline anisotropy we must interpret y as the surface tension (Herring, 1951). The

inclusion of anisotropy requires a more detailed derivation of (2.5).

The last term of Eq. (2.3) parametrizes the microscopic interfacial kinetics (see e.g.
Ben-Jacob et al., 1984; Langer 1987) where i’ is the nommal velocity at the interface and B,
is a kinetic coefficient. For near equilibrium growth, the mechanisms of attachment on facets
are different than they are on the rounded regions of the crystal (Burton et al., 1950); the
nucleation barrier being much larger on the facets. This is the basis of the oxjentational

preference for growth, and is intimately tied to the anisotropy in v. The extension of this
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concept to diffuse interfaces is embodied in the coefficient . Preferred growth directions can
be mimicked by ascribing an orientational dependence to the surface tension (as above) or the
kinetic a.ttachment process, or to both. As with v, the kinetic coefficient takes the form
B =B, [1 —cos (m 0)]. This enhances diffusive instabilities in the desired orientations, typi-
cally coinciding with the symmetry chosen for the surface tension. The velocity dependence
of the kinetic term is tantamount to the statement that at higher velocities the assumptions of
local equilibrium and diffusion control at the interface may become invalid. The relationship
between these terms and the equilibrium crystal shape is discussed by Elbaum and Wettlaufer
(1991). For a detailed description of orientational and kinetic properties of the crystal-melt

interface, the reader is referred to Burton et al., (1951) and Woodruff (1973).

The conservation of thermal energy and solute at the interface, z' =4’ (x't), are

expressed as
LV +k )=k [T's‘- -k, T’s,] ~k [T'L,' -h, T':.,,'] (2.6)

V+K)C ®=-1=D [Cp-H,C): @7

Here, k, and k; are the thermal conductivities of the solid and liquid respectively. The unit
normal to the interface is fi= (- k., 1) [1 + (4" )" 2, which results in the horizontal flux
terms in Egs. (2.6) and (2.7). In the linear theory, only small amplitude disturbances are con-
sidered, so that when integrating along the interface there may be locations at which the hor-
izontal gradients are larger than the vertical gradients, however, over one period, the flux
must be consistent with a positive mean growth rate. These expressions are exact, and for

small amplitudes the derivative h'x' will not diverge.
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Eq. (2.6) can be interpreted as follows: If heat conduction through the solid, away from
the interface, is greater than that through the liquid, toward the interface, then the solid will
grow at the expense of the liquid at a rate that depends on the latent heat of fusion, L. The
segregation coefficient ¥ = Cg/C,, is the ratio of the solute in the solid Cs, to that in the
liquid C;,. The low solubility of NaCl in the ice lattice results in solute rejection at the inter-
face. The H,0-NaCl solution is dilute, and the discontinuity of solute across the interface is
accounted for by k. Eq. (2.7) represents the mass conservation: the build up of solute at the
interface balances that diffusing away. The segregation coefficient has a more physical

interpretation which we will develop in a later chapter.

We expect that far from the interface the influence of the deflection 4’ (x') on the
diffusion fields will be negligible. Therefore, the steady state planar solutions T";, , C’,, and

T’s, will adequately describe them:

T, >TL, C5C,; zZ-ow 2.8)

T's -> T'S‘,; z' —> —c0, (2.9)
Equations (2.1) along with conditions (2.3) and (2.6) through (2.9) completely describe the

mathematical problem for the unknown functions C',T, 5, and k',

2.2 Scaling and the Basic State

The lengths and times in the problem are scaled on the solute diffusion scales z,x =
(z',x)VID and ¢t = ¢ V4D, where the primed quantities have dimensions, and the unprimed

quantities do not. The temperature and solute scales are similar to those of Merchant and
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Davis (1991). The dimensionless temperatures are

Ts-T,
=S 2.10a
=G ow @10

T, -T,
—L="o 2.10b,
Y (2100

where the subscripts L,S denote the liquid and solid phases, and T', is the temperature
depression at the planar interface due to solute. Recall that the dimensional temperatures
T,s=T"L5—-T, are measured relative to the dimensional bulk melting temperature 7, of

2GL+L Vi

the pure substance. The quantity G™ = 1 +n)

is the average temperature gradient in

the liquid at the interface. The dimensional temperature gradient in the liquid is Gy, the
latent heat per unit volume is L, and the ratio of the thermal conductivity of the solid to that

of the liquid is n = k,/k;. The dimensionless solute concentration in the liquid is

C'k-C.

C=F-pc.’

(2.11)

where C.. is the far-field solute concentration, and k = Cg/Cy, as defined above.

Using the scales (2.10) and (2.11), the equations (2.1) transform to dimensionless field

equations for temperature and solute in the liquid 7;,,C and the solid T:

Forz > h (x,t)

V2T, =0, (2.123)

V2C +C, =Cy; (2.12b)



31

forz <h (x,t)
V2 Ts =0, (2.12¢)

where the subscripts z, ¢ denote partial differentiation. Equations (2.12a,c) represent the
limit as D/ x; and D/ x g approach zero. The approximation is reasonable because the ther-
mal diffusivities are much larger than the solute diffusivity; D/ x , = 107 and D/ x 5 = 107,

Along the interface z = k (x,¢), the conditions (2.3), (2.6), and (2.7) become

To=Ts=M C +M T hy (1+h2)*?, (2.13)
L@t hy=n (T = b Tsg) = [Teo = he T @.14)
A+h)1+C & -D=C, -k C, @.15)

respectively. The equilibrium condition (2.13) for the dimensionless system does not include
the microscopic Kinetics term because there is no nucleation barrier on a molecularly diffuse

interface (e.g., Cahn, 1960, Woodruff 1973), and we assume the interface is diffuse on this

scale. The latent heat parameter, ! = ﬂ—, is commonly set to zero (Wollkind and Segal,

G' Kk
1970; Merchant and Davis, 1989b,1991) in the limit of small velocity, giving symmetry to
Eq. (2.14). We retain this parameter for all values of V. The far field boundary conditions,

(2.8) and (2.9) become

T, - T, C-C,; 2z (2.16)

Ts - Tsoi Z ~)—o00, : (2.17)

The dimensionless system (2.12) through (2.17) defines the mathematical problem that we
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will analyze.

The morphological number M and surface energy parameter I' are the nondimensional

parameters appearing in (2.13);

mG, mC.k-1V

M G  DkG*

. (2.18)

Tw YKV

T=iDPmc.a-1n

(2.19)

in which G, is the steady state solute gradient in the liquid at the interface. The nomencature,
parameters, and values of the thermophysical constants are listed in the Appendix. It is
important to recognize that in this formulation the velocity dependence of M is also implicitly

represented in G*, which is not the case in a model without latent heat.

The steady-state solution for the system (2.12) - (2.17) with a planar interface depends

only on z, and is given by

T, (2)=G z, (2.202)
C,z)=1-¢7%, (2.20b)
for the liquid, and in the solid
To ()= 2D :l) =, (2.200)
h, =0. (2.20d)

The linear stability analysis is performed by perturbing this basic state. For a constant liquid
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temperature gradient and / = 0 this basic state reduces to that of Wollkind and Segal (1970).

2.3 Linear Stability of the Basic State

The basic states, (2.20), which represent the planar interface are perturbed as
exp (6, t +i a x) and we keep track of their temporal behavior. The choice of one horizontal
dimension is dictated by the observation that, in the absence of extemal fluid flow in the
melt, there is random c-axis orientation in the horizontal plane, and there is only orientational

preference in individual grains (Fig. 1.1).

The configuration of the interface is given by A(x ) = A{x) + h,(x,t), where we are per-
turbing about the steady state configuration h(x) and the subscript a emphasizes the
wavenumber dependence of the perturbation. The perturbation we introduce into the plane
has an infinitesimal amplitude at time ¢ = 0. In order to simplify the problem, the steady state
configuration is planar [A(x) = 0], but this is not a necessary condition (Langer 1987). An
interfacial perturbation of arbitrary shape can be Fourier decomposed and the evolution of the
Fourier components or normal modes can be computed (e.g., Chandrasekhar 1961, Sekerka

1967). We assume the perturbation is separable and can be expanded as

ha (x4) =% Jdacier K (an) @21)
with the inverse Fourier spectrum being,
hy (a4)= — J— I dx e~ %* h, (x.1). 2.22)

The stability of the interface will depend on the time dependence of the amplitude of the per-
turbation, so that A( x) is linearly stable if all of the components of 4,( x,t) are such that the

disturbance decays in time and A( x,t) approaches i( x). The linear perturbation procedure



yields an expression for the time dependence of all Fourier components,

d h,ldt
Cg= F" . (2.23)
a
If o, depends only on a equation (2.23) has a solution
Fo (@) =hao (a)e™’. (224)
Therefore, the interface perturbation evolves in time as
1 I w Oat iax
ha (x)= = [ da by, ™ &°%. (2.25)

The Fourier components with o, > 0 will grow exponentially in time and those with 6, <0
will decay in time which we shall see presently. For the remainder of the discussion we drop
the subscript a from the perturbation growth rate . Next, we outline the procedure by

which an expression for ¢ is obtained.

The perturbed solutions to (2.10) are written as X(x.zt) = X,(z) +

Xi(z)exp(ct +i a x);

T, (x.2,t) 7(':10 ((2)) Tg.x((z))
C o (2 z .
Ts((i’; ’f‘)) = |Te.2) + Tsll(z) exp(ct+iax) (2.26)

h(x.t) 0 hy

The system of governing equations (2.12) - (2.17) is then linearized in the perturbed quanti-
ties using a procedure common in thermodynamics (Landau and Lifshitz, 1969) and hydro-

dynamics (Chandrasekhar, 1961 and Drazin and Reid, 1981).

First, the solution (2.26) is substituted into equations (2.12) retaining only the terms of

O ( X,) which results in
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[Y+D-0]1Cy(2)=0, (2.27a)
Y TL 1( r4 ) = 0, (2.27b)
Y Tsi(2)=0. (2.270)

Here, D is the operator d/dz and Y is the operator D2 - a2 We must substitute (2.26) into
(2.13) - (2.15), linearize and then expand about z = h =0, for the linearization about the basic
state. After the initial linearization, each condition is a function F( z) of z only so we Taylor

expand them, F (z) = F(0) + [F (0),] h, and linearize again so that (2.13) - (2.15) become

T 0)-M C O +I[MTa?+G, —M ] h =0, (2.28a)

Tp1(0) - Tsy(0) + [G,, - G‘: '] =0, (2.28b)

D T (0) - n D T5,(0) + [D G.-nD G"n” +ol ] hy =0, (2.29)
D C,0)—(k —1) C,0)+ D - - 1)-61h =0, (2.30)

upon taking (2.13) in two parts.

The equations (2.27) have constant coefficients and will have solutions of the form

[euTuts ] = [10.0] exp - e kool 2. @31)
We substitute (2.31) into (2.27) along with a constant value for &, = g and the requirement

that C,,T.;, and Tg; be nontrivial (Wollkind and Segal, 1970) yields expressions for the

exponential factors;

§C=

N

1 12
+ [Z +[a%+0o ]] (2.32a)

g =xlal (2.32b)
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Es=+lal, (2.320)

We recall that (2.16) and (2.17) require that far from the interface the influence of the interfa-

cial disturbance is negligible so the signs of (2.32) are such that &, & > 0 and & < O giving

172
& =—;—+ [%+[a’+c]] (2.33a)
g, =+lal (2.33b)
ks =—lal. (2.330)
The solutions to (2.27) are
[e1Tuute]@ = D0 exp( - al, -1 al12), @34

with & given by (2.33a).

The interfacial boundary conditions will define an equation for II, @, and Q. We substi-

tute (2.34) into (2.28) - (2.30) which yields the system

-M 1 0 MTa*+G. -M|[g
0 1 -1 GL - (GL + I)Il_l (0]
= 2.35
0 a na -cl ol =0 2.35)
Ec+k-1 O 0 o+k %
of four equations and four unknowns. We can write this compactly as
AX=0, (2.36)

where A is the 4 x 4 matrix of control parameters containing o, and X is the column
vector [I1, ®, Q, x)7. The requirement that the equations allow non-trivial solutions is
equivalent to the secular equation | Al =0. This condition gives the dispersion relation F

(discussed in the last chapter) that is an implicit function of o ;
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_alMR(1+n)-Q2GL +D)R+k)-a?MT R +k) (A +n))
°= TR+ +Mad+n) :

2.37)
in which R =(1/4+a2+c)”-12 is a wavenumber parameter. If Re(c)=0, then
Im(c) =0, since there is an exchange of stabilities for the finite latent heat system (Alex-
ander et al.,, 1986). A general discussion of the principle of the exchange of stabilities is .
given by Chandrasekhar (1961) and Drazin and Reid (1981). In this situation it means that
when Re( ¢ ) > 0 the planar interface loses stability to non-oscillatory perturbations, and when
Re(c) <0 it is stable. By setting o =0, we obtain the condition that must be satisfied by

stationary solutions,

R®Q +R2Q (1+ k) +R [(Q/l‘)(kl"-—l)+20,_+l]+k(2GL+l)=0.

(2.38)

Here, Q=M T (1+n) and R =R(o=0), and is related to the wavenumber a by
R%2+ R =a% Seidensticker (1967) showed that inclusion of an isotropic kinetics term (e.g.,
Eq. 2.3) is not a singular perturbation to the theory. In this case, it is tantamount to adding a
positive term to the denominator of Eq. (2.37), having no effect on the neutral stability
results. Using the identity (2 G +1) (1 +n)" =1, the following cubic polynomial in R

results

R3+R2(1+k)+—?,—[Icr‘-i-xll-—l]-l-ﬁk?:& (2.39)

The neutral function g referred to in the first chapter is defined by Eq. (2.39) and can be

shown to be the same as that obtained by Coriell et al. (1985), who used different thermal
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and concentration scalings. The locus of points (R >0 , M , IN), for a given segregation
coefficient £, demarcates regions of stability from regions of instability, since o =0 at every

point satisfying (2.39).



CHAPTER 3
THE STANDARD NEUTRAL CURVES AND WEAKLY NON-LINEAR RESULTS

3.1 The V (A) Neutral Curve

We can think of Eq. (2.39) as a function of dimensional wavelength A = 2 n/a’, where a’
is the dimensional wavenumber, and other variables; f (A, V, C.., G, , n, k,-,-). To investi-
gate solidification at the underside of sea ice, we fix the values of C.., G.', n, and & to the
observed values and vary V. Therefore, we obtain the locus of points (A, V) that are neutrally
stable, that is, they correspond to solutions that do not grow or decay according to the linear
theory. This is termed the V (A ) neutral curve. We choose to investigate this first because
our main interest is in the relationship between platelet spacing and mean growth velocity.
This also allows a qualitative comparison with the existing data. Fig. 3.1(a) shows the entire
neutral curve, and Fig. 3.1(b) shows the bottom of the neutral curve close to V, for C., =35
ppt, k = 0.3, and G, = 3.57 K m™. Near critical, we see the weak dependence of V on A
noted by other investigators (Bennett and Brown 1989, Merchant and Davis 1989b). There
are low and high A cutoffs which bound the allowable scale of the substructure. The value
A. associated with the critical point of instability is also referred to as the most dangerous
mode, since the system is stable to disturbances of all other wavelengths and it will be the

first mode to become unstable as the velocity is increased beyond V..

Recalling Eq. (2.37) we sece that there are three terms in the numerator, each having a

different physical origin, as first pointed out by Mullins and Sekerka (1964) in a similar
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expression. The denominator is always positive so that the sign of the terms in the numerator
determine the sign of the perturbation growth rate. The first term is positive and proportional
to MR (1 +n) It depends on the solute field, determining the degree of constitutional
undercooling, and always has a destabilizing effect. The second term is negative and propor-
tional to (2 Gy +1) (R +k). It depends on the temperature gradient in the water which
always melts back solid disturbances. The third term is also negative and proportional to

T,y V2

2 = —_—
a’?M TR +k)(1+n). The factor M T LI DG

is a function of surface tension,

always stabilizing the interface through the Gibbs-Thomson effect. Note that this term is
multiplied by the square of the wavenumber so it becomes large at small wavelengths. This
term provides the lower wavelength cutoff for all velocities. All wavelengths less than the
lower cutoff are stabilized by surface tension, and all wavelengths greater than the upper
cutoff are unable to grow because the solute ficld has a finite interaction range, of about D/V.
Lateral solute redistribution takes place by diffusion, and drives the instability. When V is
large, the diffusion time and space scales are small, so lateral gradients in the solute field can
only accompany small wavelength disturbances. However, the small waves are strongly sta-
bilized by surface tension, as discussed above. The low velocity limit, close to the onset of
instability is termed the constitutional undercooling limit, where M = 1; the freezing tempera-
ture gradient balances the imposed temperature gradient. The high velocity upper limit, where
the stabilizing affect of surface tension balances the destabilizing affect of solute rejection, is
termed the absolute stability limit. Here the behavior is ' = k™. These limits were esta-
blished by Mullins and Sekerka (1964). Combined, these effects limit the range of instability

and close the neutral curve.
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The most striking implication of Fig. 3.1 is that the interface will develop a platelet sub-
structure over a large range of growth velocities. Naturally occurring sea ice typically grows
in the range of approximately 107'° - 10° m s~ or 103 - 10> mm day™. This explains the ubi-
quitous observation of the substructure (Weeks and Ackley, 1986). The points plotted in Fig.
3.1 are the platelet spacing as a function of growth velocity. The crosses are from the labora-
tory experiments of Lofgren and Weeks (1969), and the circles are from the fit to field data
by Nakawo and Sinha (1984). These data represent the fully developed substructure, well
beyond critical. The laboratory experiments were not designed to investigate the critical pla-
telet spacing. Thus, the neutral curve shows that the linear theory bounds the observed sub-
structure. The dashed curve is the fastest growing perturbation, that is, the one that
corresponds to the maximum value of o . Above critical, the slope of the curve exhibits the
power law dependence A o V72 that has been experimentally observed (Lofgren and
Weeks, 1969). The laboratory data presented have an average C.. = 37.21 ppt, and the aver-
age number of platelets measured to obtain each data point was 223. These comparisons
should be thought of in terms of V — V., since mature sea ice will slowly develop an
adverse temperature gradient. The lowest laboratory velocities are higher than is typically
found in mature sea ice, and in all cases greater than critical. Naturally occurring sea ice will

never obtaina V >V, =21 cm s\

To compare theory with experiment close to critical, careful experiments with the
correct geometry are needed so that the initial breakdown can be observed. The transparency
of the H,0-NaCl system, like the commonly studied organic SCN-acetone system, makes it
appealing for such applications. The large range of morphological instability, compared with

some binary alloys, makes the system more difficult to study when seawater solute
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concentrations are used. Since the base of the neutral curve is so broad, we expect a strong
interaction of the critical mode with adjacent modes. This is often referred to as mode
softening or a soft instability, and is predicted t0 be the result of the interaction of micros-
copic and macroscopic length scales (e.g., Langer 1987 and Brattkus and Misbah 1990). The
degree to which this occurs here is addressed in section 3.4. Assessing the role of weak
wavelength selection is the primary problem encountered when comparing a linear theory
with experiments near critical. Because, in this case, the geometry of laboratory experiments
(Harrison and Tiller, 1963 and Lofgren and Weeks, 1969) differs, the role of convective tran-

sport of solute cannot be assessed.

3.2 The V (A) Neutral Curve at Large G,

We know that the thermal field has the effect of stabilizing morphological instabilities
in this system because increasing G, decreases the undercooling. It is clear from the previous
section that under conditions which are present during natural solidification, namely small
temperature gradients and large concentrations, the system exhibits a large degree of instabil-
ity. Laboratory experiments allow the freedom to stabilize the interface by either increasing

the liquid temperature gradient or decreasing the solute concentration.

Consider an experiment which has as a goal to desalinate seawater through freezing.
We can vary the salinity a negligible amount depending on where we obtain the seawater, so
we consider it fixed at 35 ppt. We also assume that the laboratory has the capability to fix
the value of C... The low solubility of NaCl in ice is parametrized by the small value of the
equilibrium segregation coefficient. We take advantage of this fact by realizing that the only

mechanism through which a large concentration of impurity can become part of the solid
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phase is via a breakdown of the planar interface, wherein bulk brine is trapped in the solid
phase. We have just shown this to be the case for naturally solidifying seawater. Therefore,
we can stabilize the interface solely by increasing the liquid temperature gradient, and the

solubility gradient will drive the purification.

Neutral curves have been calculated from Eq. (2.39) in which we fix the liquid tempera-
ture gradient at two values several orders of magnitude greater than that used in the natural
solidification study (Fig. 3.1). Figure 3.2 combines the neutral curves for G, = 200 K cm™
and G, = 3570 K cm™. We realize that a gradient of greater than about 100 K c¢m™ for a
substance like water may be a practical impossibility, without some elaborate pressure control
or laser annealing techniques. However, we are interested in examining the sensitivity of the
system to this control parameter. For a substance like copper, in which there is about a 1200
K separation between the freezing and boiling points, these gradients are accessible. The
high temperature gradient has the expected effect of reducing the range of instability but it
does so primarily by delaying (meaning at higher V) the onset of instability; in both cases,
the system restabilize at the same point. For G, = 200 K cm™ we have V, = 1.09 x 10~ cm
s, A, =14x102cm, and V, =209 cm s, A, = 8.5 x 10°cm. For G, = 3570 K cm™
we have V, =201 x 102 cm s, A, =2.0x 102 cm, and V, = 209 cm s, A, = 8.5 x 107
cm. In the natural solidification case shown in Fig. 3.1, G, = 0.0357 K cm™ where V, =.
191 x 108 cm s, A, = 4.5 cm, and V, = 20.9 cm 57, A, = 8.7 x 10" cm. The higher tem-
perature gradient sharpens the wavelength selection somewhat, and the point of absolute sta-
bility is not sensitive to this increase. An increase in the liquid temperature gradient of five

orders of magnitude results in virtually no change in the location of absolute stability.



4

The insensitivity of the absolute stability limit to changes in G, can be seen by re-
examining Eq. (2.39) in light of the limits discussed in section 3.1. We focus on the
coefficient of the term that is linear in the wavenumber parameter R since it controls the root
structure. AtV <V,, M <1and I' « 1, so that until M = 1 there are only negative real roots
of Eq. (2.39). This is the constitutional undercooling limit, and the effect of delaying the
onset of instability by increasing G, is obvious when examining Eq. (2.18), the expression
for the morphological number; M = (m C.. (k — 1) VYD k G*. An increase in G, results in
an increase in G°, requiring a higher value of V for the M = 1 limit to be reached. In other
words, the increase in the liquid temperature gradient reduces constitutional undercooling (see
e.g., section 1.3). In section 3.3 we will see that as k£ — 0, the limit M — 1 results. For
V <V,, M =70 and T < £ and the coefficient of the linear term in Eq. (2.39) is negative.
Absolute stability is reached as I' — k™! and the the linear coefficient becomes positive. This
limit does not vary as the value of G, increases, as can be seen by examining Eq. (2.19) the
expression for the surface energy parameter I Therefore, we can only restabilize the system
at a lower velocity by decreasing the far field solute concentration C., or increasing &, and k
is not a laboratory control parameter in the strict sense of the word. (One may view k as a
control parameter that is slaved to the interfacial velocity when growth is rapid. This is the
point of the study by Merchant and Davis, 1991] but it assumes a particular theory for the
velocity dependence of k that may actually depend on the details of the interaction potentials.
We will return to this topic later.) The effect of increasing the liquid temperature gradient is
to decrease the range of instability of the system by delaying the onset of instability to higher
growth velocities. Some systems operate close to these stability limits and it has been the

focus of the asymptotic work discussed in the next section to exploit this behavior.
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From the point of view of the desalination experiment one desires a neutral curve with
the minimum extent along the vertical axis, and the largest stable growth rate. If one operates
at a velocity just below critical in the case where G, = 3570 K cm™ then it would be possi-

ble to produce about 90 cm of ice per day.

In some areas of the Arctic Ocean values of G, an order of magnitude greater than that
used in section 3.1 for the natural solidification study have been observed (Wettlaufer et al.,
1990 and Wettlaufer, 1991), suggesting the possibility of a geophysical thermal stabilization

of the substructure.

3.3 Asymptotic Behavior

There have been several investigations that have focused on long-wave instabilities in
the frozen-field approximation to the solidification system, Egs. (2.12) - (2.17), the most
recent being Riley and Davis (1990). The frozen-field approximation assumes that the ther-
mal conductivities, densities and specific heats of both phases are equal and that the effect of
latent heat release at the interface is negligible. Therefore, this eliminates the possibility of
disturbances of the interface inducing disturbances in the thermal fields since the temperature
gradient across the entire solid-liquid system is constant and fixed. Long-wave phenomena
are of interest because they are accompanied by long time scales, or slow modes of evolu-
tion. The long-wave limit has been examined in the absolute stability (Brattkus and Davis,
1988) and constitutional undercooling, small k¢ (Sivashinsky, 1983) regions of parameter
space. Riley and Davis (1990) review the former two analyses and examine the longwave
behavior for small &, and large I" and for small ¥ near absolute stability, to exhaust the possi-

bilites for the frozen-field system in which solute is rejected (k < 1).
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If it is known that near a critical point, a system operates at a characteristic scale that is
much larger than another intrinsic scale of the system, it may be possible to separate space
variables, thereby lowering the dimensionality of the problem. The approach used in this
problem is to examine the dispersion relation that results from a linear stability analysis of
the frozen-field system, [a simplified version of Eq. (2.37)], and extract the scales suggested
by the long-wave limit and other constraints of interest. For example, in a long-wave
approximation, a disturbance may take longer to evolve than otherwise, this suggests an
adjustment to the time scale used. Once the adjustments dictated by the approximation are
assessed, one rescales the original system and obtains a new characteristic equation from a
linear stability analysis, and derives a non-linear evolution equation for interface deflections.
Theories that result from this approach are termed local since they are only valid for a res-
tricted range of physical parameters. This type of asymptotic analysis is useful in extracting
the essential qualitative features of a system in particular regions of a neutral curve. One
such feature is the relationship between the interfacial growth velocity and the neutral
wavelength. We identify this relationship and attempt to shed some light on the utility of

deriving exponents that characterize long and shortwave behavior.

3.3.1 Behavior Near Critical Instability

The local theory of Sivashinsky (1983) predicts that as k > 0 and M — 1; A, — e, We
shall see that this is qualitatively consistent with the behavior of the H,0-NaCl system. He
investigated the dispersion relation that results from a linear stability analysis of the frozen-

field system, namely
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o=(1-M1-a’T)R +k)—k, 3.1

where we recall thatR = (14 +a’+ ¢ )2 - 1/2 is a wavenumber parameter. This equation is
analogous to Eq. (2.37), the relation obtained from the analysis of the full solidification sys-
tem. The frozen-field system was described above, and it is important to note that the func-
tional dependence of M on V is simplified in this case since G* is no longer a function of V
(see discussion following Eq. (2.10)). The long-wave behavior in the limit ¥ « a® <« 1, near

critical, dictates a small parameter € = 1 — M, and leads to new scales as follows:

a=¢"g , 6=8 , k =€*k, 3.2)

where it is assumed that the barred quantities and I are O(1) as €¢ — 0*. When rescaling the
frozen-field solidification equations using Eq. (3.2), and performing a linear stability analysis,

the following dispersion relation results,

g=a’-ra*-rk (3.3)

reL- L 1M _ & (34)

We seck the A — V behavior in the vicinity of the global minimum A., , V., of the surface
defined by Eq. (3.4). The standard approach does not give consistent results in the case
where the only real underlying control variable is V. That is, treating either I' or M~! as a
bifurcation parameter and seeking minima in the a - ', a — M~ planes leads to ambiguous

results when interpreted in the dimensional variables. The values ar such that aI7da® = 0,



and a,, such that oM~ '/9a2 = 0 are

ar=V2k (1-M"Y) 2 (3.52)
and
k 14
ay = [F] ; (3.5b)

In the dimensional A — V plane these become

Ar=frV)v-}, (3.6a)
and

Ay =Cy V-, (3.6b)

where fr(V) = Cr(1-A V)2 Cr=21DN2k, and A=D k G'/m C.. (k - 1)=VIM.
In addition, Cyy =2xD (B k)" and B =T, Yk/D L m C.. (k — 1) = I'V. Within the vali-
dity of the approximation, the qualitative behavior of Ar is correct since it is an increasing

function of V for a small range of V. Letting V =1 A in Eq. (3.6a) leads to

OAr 3-21
Jofial Gk N , 37
T war2uVa-o) 3D

oA,
so that for 1 <1< 3/2 we will have 'aVr > 0. However, when V takes on a minimum value

of A (1=1), then Ar vanishes. We see from Eq. (3.6b) that A, exhibits a power law decay
which we would not expect for V > A. The discrepent behavior is due to the fact that M and
I are both functions of V and as such cannot be independently varied for fixed C.., ¥ and
G®. We see this by determining the point at which ar = ay. Wl-len substituting Eq. (3.5) into

Eq. (3.4) we get



49
M-c-l =1-2 (k l".,,)m, (3.8)

showing that the wavelength is not a uniquely determined function of V. Kurtze (1988)
discusses wavelength selection in terms of (3.5b) but does not mention the ambiguity

between Eq. (3.5a) and Eq. (3.5b) since he does not derive the former.

The problem is less opaque when considering the dimensional version of Eq. (3.4);

MVI-NVe, +A%24 ¢ +¢2=0, (.9

where ¢c;=@n D) k™! and c,= (2 D)* B k™! are both positive. If we rewrite Eq. (3.9) in

terms of the variable & = A2, the resulting equation has solutions,

¢, (V-A4) + Ne ! (V-AY¥—4c,V°

A= +
2v3 2v3

, (3.10a)

that are real and distinct when the quantity under the radical sign is positive. When the
quantity under the radical sign vanishes, the roots are real and equal. This occurs at the point

A, Voo, where dV/dA = 0. Therefore,

C1 (V‘c _A)

y R
€ 2V

, (3.10b)

which is equivalent to the result obtained from implicit differentiation of Eq. (3.9) and to
what obtains when evaluating Eq. (3.6a) at V = V... However, the essential V dependence of
the wavelength near the critical point is not determined from the leading term in Eq. (3.10a).
The point at which dV/dA =0, occurs when the quantity under the radical sign vanishes.

This is the condition
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L P 11
-z'c—;( -A), (3.11)

and is equivalent to Eq. (3.8) when transformed into dimensional variables. The minimum
2

velocity sought is determined from the intersection of the functions V2 and :—lc W -A%
2

The quadratic vanishes at V = A and the cubic intersects the quadratic once for V <A and
twice, or never, for V > A. From the previous discussion, we know that V < A is physically
uninteresting, so the minimum V that we seek corresponds to the first intersection for V > A.
We nondimensionalize Eq. (3.11) and linearize the cubic in the neighborhood of A so that
V3A-3=1+3 (V/A - 1), which approaches unity as V approaches A. This gives the critical

velocity in the long-wave small & limit as

Ve. = A (1 +¢4!?), (3.12)

4c,A
where ¢, = 022 =4k B A =0 (10"%), and the approximation improves with decreasing
€1

q1- Ask -0, q; - 0sothat V., o A.

Now we can investigate the wavelength behavior in the vicinity of V.. by letting
V =V.. +8 and A=A, + 8§, in Eq. (3.10a), where &, « V.., and 8, « A... When lineariz-

ing in 8, using Eq. (3.10b), and noticing that 5'2 » § we obtain

A-A)=C. (V- V‘c)uzv (3.13)

- 12
where C, = [(16 Aeo2 Ve S W2 €42 (Vo — A) = 12 ¢ Vi 2 ]] . Therefore, the increase in

wavelength with velocity on this branch has a simple power law dependence. This depen-

dence does not derive from the V - dependence that appears in the leading term of Eq.
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(3.10a), which has a negligible contribution. Therefore, expansion of Eq. (3.6a) about the

point A+, Ve, will not yield the same V-dependence.

Sivashinsky (1983) predicted that as k — 0, A.. — o. Because ¢, and ¢, depend on k,
letting £ — 0 in Eq. (3.10a) when V =V.. results in A.. — o, We can also observe the
effect of small k£ behavior by letting k¥ become small in the exact relation, Eq. (2.37), for the
full solidification system. The V (A ) neutral curve for k = 3.0 x 107, where A, = L.1m, is
shown in Fig. 3.3. As k is decreased, the neutral curve flatiens further and begins to take on
a winged cusp shape close to V, on this scale. This curve is also closed, and as V — V,~ the
cusp curves to the left. However, in this limit, the prediction that V, = 107° cm s is not a
physically realizable under the assumptions of a continuum diffusion theory. Such a value of
V. corresponds to the "diffusion” of 1072 molecular layers of nutrient molecules toward the
interface per second. In the full system, the M = 1, small £ limit predicts unphysical veloci-
ties, which may also be the case in other systems suggesting a cautious application of local

theories of this type.

Sivashinsky (1983) rescaled the frozen-field system using the new scales, Eq. (3.2), and
derived a weakly non-linear evolution equation for the interface deflection. He predicted that
the bifurcation to two-dimensional cells would be subcritical (see section 1.5 and 3.4). The
arguments that led to Eq. (3.13) show that the range of subcritical bifurcation is restricted to
a small velocity interval. Kurize (1988) showed that the steady state solutions to
Sivashinsky’s evolution equation are themselves linearly unstable for velocities only slightly

greater than the threshold V,.

3.3.2 Behavior Near Absolute Stability



52

Brattkus and Davis (1988) investigated long-wave behavior near absolute stability. The
appropriate small parameter in this situation is €= k™ —T, when a? <« 1, from which the

analysis of (3.1) suggested the scales

a=¢"a ,0=¢3 , M'=2M", (3.14)

where it is assumed that the barred quantities and & are O(1) as € — 0*. The asymptotic
dispersion relation they obtain, after rescaling the solidification equations using Eq. (3.14),

and performing a linear stability analysis is

F+a’TQR+kN+ kM -k @B+ QA+ =0. (3.15)

At neutral stability Eq. (3.15) leads to

- -1
pi=z2-gt & k*‘, (3.16)

M—1=a2(k—l_r')_a4 (k_l+1)-
k

As in the case of the long-wave limit close to critical instability, we seck the A — V behavior
in the vicinity of the point of absolute stability A., , V., an extreme point of the surface
defined by Eq. (3.16). The same ambiguity that resulted in the previous case when treating
either ' or M~! as bifurcation parameters, and examining the a - I', @ — M~ planes occurs
in this limit when the results are interpreted in terms of the dimensional variables. The

values ay such that 9I79a2 = 0, and a, such that 9M~/0a% = 0 are

k 174
= M- 1/4'
ar [k_l " 1] (3.173)
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and

172
ay = | —F5—| @& '-D= (3.17b)
&'+ 1) '

In the dimensional A — V plane these become

Ar=Cr V%, (3.18a)
and
M =fu V)V, (3.18b)
where fy (V) = CulkBY'-VvI'%, Cy=2xDV2(kBY'Q+k"), and
kA -1/4
Cr=2=rD [k" N l] . As before,B =T,, Yk/D L m C,, (k — 1). For brevity we use the

same subscript convention as in Egs. (3.5) and (3.6) but do not wish to equate Eqgs. (3.17)

and (3.18) with these expressions.

Here again, it appears that we cannot determine the operating behavior for wavelength
selection but as we shall see presently it will be useful to know the velocity range in which
this approximation is valid. For V* <V <V.,, Ay increases with V with a decay factor as in

the other limit for Ar (Eq. (3.6a)). For V < Vv, , this curve is invalid in the chosen small
parameter. To determine V*, we set dAy/dV =0, giving V* = % (k BY!. Here, it is Ar that

exhibits the power law decay with the same exponent as did Ay in the previous long-wave

limit, Eq. (3.6b). The point at which ar = ay occurs when

M, = [z—({_—,%-*_—l)] (k! =Te, )2 (3.19
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Consistent with the interpretation of Eq. (3.8), the wavelength selection is not a uniquely

determined function of V.

We extract the essential qualitative behavior by analyzing Eq. (3.16) in the same

manner as we did Eq. (3.4) and write the dimensional version;

MVI-A2V34,B +NVidy+d;=0, (3.20)

where d;=(2n DA™Y, dy=d k! and d3=(2nD)* (A k) ! (k= + 1) are positive. If we

rewrite Eq. (3.20) in terms of the variable A = A2, the resulting equation has solutions,

Lo V2@y-diBV) NV (d;-diB VY -4d; v

37 e (3.21a)

As before, the point A.,, V.,, Where dV/dA =0 occurs when the quantity under the radical

sign vanishes and is given by

_ Va2 (d2—dy B Vi)
2V, 2 )

Aeg? (3.21b)

This result is equivalent to that obtained from implicit differentiation of Eq. (3.9), and to that
obtained by evaluating Eq. (3.18b) at V = V.,. The condition that dV/dA = 0 occurs when the
quantity under the radical sign vanishes and is given by

4.d,

= =@ BY IV -k BT, (3.22)

and is equivalent to Eq. (3.19) transformed into dimensional variables. Since we are examin-

ing the absolute stability region we seek the largest velocity determined from the intersection
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4d
of the functions —‘73— and (d, B* [V - (k B)"']2. The quadratic vanishes at V = (¢ B)"! and

the linear function intersects it twice in the vicinity of this point and once as it asymptotes to
large values at small V. Therefore, the largest V occurs at the intersection to the right of the
minimum of the quadratic. When V = (k B)~! we have 4/V = 10 so we let the left hand side
of Eq. (3.22) be 10 d; and nondimensionalize the expression. The largest solution to the

resulting quadratic equation gives the velocity at which the long-wave system restabilizes as

Vag = (k BY ! (1 +¢2'?), (3.23)

where g,=4210d3d;"2=10A (1 +k)=0 (10"%. This approximation improves with
decreasing ¢, which can happen by decreasing & or G* or by increasing C.. Therefore, as

g, — 0 we have V., — (k¢ B)"!. We note the similarity of Eq. (3.23) to Eq. (3.12).

The wavelength behavior in the vicinity of V., is investigated in the same manner as
before. We let V = V., + 8y and A = A, + &, in Eq. (3.21a), where &y « V.,, and &, <« A,.

When linearizing in 8, using Eq. (3.21b), and noticing that 52 » § we obtain

A= Aeg) = C, (V = Vi)', (3.24)

-122
where C, = [(16 Aeg? Vg2 Y6 (dy BY? Veo,? = 10d, dy B Ve 2 +4 dy? Ve, — 12 d, ]] , and

C,2 < 0. Therefore, the wavelength-velocity behavior near absolute stability has the same
simple power law dependence as that near critical instability, Eq. (3.13), in the long-wave
limit.

By rescaling the frozen-field system using Eq. (3.14) Brattkus and Davis (1988) derive

a strongly non-linear evolution equation for the interface deflection which predicts supercriti-
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cal bifurcation (sections 1.5 and 3.4) to cells near absolute stability. From the above analysis
we have shown that the range of supercritical bifurcation is 2/3<V /(k B) ' <1 or
2/3 <k I'< 1. It is interesting to note that their evolution equation contains derivatives that

are second order time which arise because Eq. (3.15) is quadratic in 3.

The discrepency between the results obtained with the diffemm sets of variables arises
from the fact that when the only dimensional control variable is V, a three-dimensional sur-
face in the nondimensional variables is a curve in the dimensional variables. Therefore, cal-
culation of the extreme points of the nondimensional curves is tantamount to looking for
maxima and minima with side conditions. The long-wave behavior near the critical and

absolute stability points can be characterized by a relationship like

A-A)=C (V-V.)", (3.25)
where 7 = 1/2, and the wavelength selection will in general be defined for a narrow range of

the system control parameters.

3.3.3 Behavior in the Experimental Regime

In the NaCi-H,O system, in terms of V, the experimental data lie *between’ the consti-
tutional undercooling and absolute stability limits, in the short-wave region of the neutral
curve (Fig. 3.1). AConsider the dispersion relation for the full solidification system, Eq.

(2.37), at neutral stability as follows;

0=MRQA+n)IR+k)-QG, +1)-a?M T (1+n). (3.26)

Fora?=» 1, (1 +4a?)"?=2 a giving
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0=a2@+k)T+@+k)M '—a. (3.27)

Of the two short-wave limits; a>> 1>k and a?> k > 1, only the former is of physical
interest for a system in which the magnitude of the solidus is greater than that of the liquidus,

that is, when k£ < 1. The former limit results in

a?=T"1(1-M™), (3.28)

In the experimental velocity range where the neutral curve (Fig. 3.1a) is straight we have M
= 0(1072), so that a2 = I"'"), This results in a velocity dependence of the dimensional neutral

wavelength of

A=S,v-12 (329

where S;=2nD B¥2= O(10~% for k = 0.3. The power law dependence, A o V17, is
consistent with the experimental dependence (Weeks and Lofgren, 1969). We note that
application of the long-wave limit k¥ « a2 « 1 to Eq. (2.37) gives the same scaling as that in
Eq. (3.29) when M~! = 0(107%). Thus, on a qualitative level Eq. (3.29) is consistent with the

parallel nature of the long and short-wave branches above critical.

3.3.4 Related Wavelength Behavior

For dilute systems above critical, pure systems and eutectics, the experimentally
observed wavelength scales as V-2 (Hunt and Chilton 1963, Langer 1987 and Kessler and
Levine 1989, Kassner and Misbah 1991). Langer (1987) has shown that the symmetric
model of directional solidification yields a characteristic stability length A, = 2 &t (d, Ip)'? that

is the geometric mean of the capillary length d, = yc¢ T,, /L% where ¢ is the specific heat,
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and a diffusion length I, =2 D/V. This results in the A « V-2, scaling. This mixing of two

disparate length scales is thought to be at the root of the soft instability near critical.

Kassner and Misbah (1991) study eutectic growth and on the basis of scaling arguments

they find

A=f (Upllr) V7N, (3.30)

where =12 and Iy =m AC/G,’ is a thermal length in which AC is. the miscibility gap,
which is the concentration difference between the two phases at the interface. As in the rela-
tions derived above (Egs. 3.6 and 3.18) the actual behavior of the selected wavelength cannot
be determined until the V dependence of f is determined. Kassner and Misbah (1991) were
able to compute f as a function of V and found that it increases with V, and saturates at
large V. Therefore, at large values of V, A ~ const V-2 which is consistent with experi-
ments. At smaller V they found a steep value of df /0V giving significant deviation from the
A ~ const V™12 behavior. They represent this as A ~ V-V, where n(V) < 1/2. In their case,

this is the easiest approach since f must be determined numerically.

It has been noted (Kessler and Levine 1989, and Brattkus and Misbah 1990) that on the
long wavelength branch of the Eckhaus band, at sufficiently high velocities, the symmetric
model scales as A~ V™12, consistent with experiments and similar to the behavior of the
hydrodynamic Taylor-Couette system. This is in the same regime as that for which Eq.

(3.29) was derived.

If one desires a power law relation between V and A in order to extract a more simple
physical interpretation of wavelength selection, then one may be ’artificially’ imposed on the

theory. For curves like (3.6) and (3.18), where the functional form of A is known, one may
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determine the cofactor say ¢, and the exponent say 7., such that é//0c = 0 and dI/dn, = 0

where

L£}

I= J av (h-c V) (3.31)
1

In case of Egs. (3.6a)‘ and (3.18b) the indefinite integral is nontrivial. In the case of (3.30)
the integral cannot be performed since the functional form of f is not known, which is, of
course, why Kassner and Misbah (1991) had to compute it numerically. Even in the case
where the analytic form of f is known (as in Egs. 3.6a and 3.18b) and the indefinite integral
is tractable it must still be calculated for velocity ranges over which df /oV is large. Thus, it
seems that theoretical situation is not much improved over that of Kassner and Misbah (1991)

in that numerical tabulation is necessary in both cases.

It is worth noting at this juncture that an asymptotic theory that gives rise to a reduction
of the dimensionality of the dispersion relation (as in the small k, M = 1 limit giving Eq. 3.3)
will result in significant differences in the topological structure of the neutral solutions as
compared to the exact theory. It is possible that a reduction in dimensionality can mediate
mode softening so that the frozen-field system will present a different degree of ’softness’

than the full system. This is the subject of chapter 5.

3.4 The V (C..) Neutral Plane and Weakly Nonlinear Results

Once the planar interface breaks down, cellular structure of finite amplitude will eventu-
ally appear. Therefore, it is possible that the cells observed will bear little resemblance to the

infinitesimal disturbance that the linear theory predicts as being the most unstable. In order
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to understand what happens to the interface after the onset of instability, it is necessary to
perform a non-linear analysis. The approach used here is standard in hydrodynamics (e.g.,
Eckhaus 1965, Drazin and Reid 1981). It was first modified for the non-symmetric zero
latent heat model (Wollkind and Segal, 1970), and has been used in other approximations to
the directional solidification system (reviewed by Langer 1980, 1987). The inclusion of
latent heat in the non-linear analysis of the non-symmetric system has important conse-
quences which have been pointed out by Alexander et al., (1986) and Merchant and Davis

(1989a). I outline the procedure here, and apply the central result to the H,O0-NaCl system.

We consider what happens to a disturbance that has the same spatial dependence as
those of the linear theory, but an unknown amplitude, A(¢). This is done by positing solu-

tions to equations (2.12)-(2.17) of the form

X(x,z,0)=X,(z) + i Xn(x,2 ), (3.32)

m=]

=X, @)+ 3 € A() Xn(x2)

m=1

where X(x,z,0)= [C(x,z,0), To(x.2.t), Ts(x.2,1), € A(x,0)], and the X(z) are the base states,
[C@), To(2), Ts(z), 01 (see Eq. (2.20)), of the linear analysis. The small parameter is
€= (max | h(x,0)!) V/ID, and the complex disturbance amplitudes are A™(¢t). For m 2 1, Alex-

ander et al., (1986) write the X,,(x.2,¢) as

Xi(x,z ) =A() Xiolz) exp G a x) + A" (1) Xo1(z) exp (- i a x), (3.333)

Xy(x.z,0) = A%(t) Xoo(z) exp (28 a x) + 2 A1) X(2) + (3.33b)
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A" (1) Xpp(z) exp (= 2 a x),

X3(,z,0) =A%) Xaz)exp Bia x)+A@) 1AW Xu(z) exp G a x) + (3.33¢c)

AT() AP Xpa(z) exp (i a x)+ A° 3(t) Xpa(z) exp — 3 i a x),

\

where X,, =X’ ,,. The first harmonic is represented by Eq. (3.33a), and describes the pri-
mary wave of the instability. The terms A*(t) X, oz)exp(niax) and
A* ") Xo () exp (- n i a x), for n 22, are the second, third, etc., harmonics. The mean
state response is given by the term 2 IA(¢)I? X;,(z) and bears this name because it contains no

dependence on the horizontal space variable, as is the case with the mean state.

Upon substitution of (3.32) into (2.12), for parameter values very close to critical, one

sees that the amplitudes A, A® obey Landau type equations of the form

=e cA-bAlAR+OE), (3.34a)
=g 0 A" -b" A" A2+ 0. (3.34b)

Here, c=o0, +i o; is the growth rate from the linear theory, and b=b, +i b; is a
coefficient. When multiplying Eq. (3.34a) by ¢ A* and Eq. (3.34b) by ¢ A and adding the

results the following equation obtains;

2
%—-Fd‘-IAP:ezc,IAI’—e“b,IAI“+0(£‘). (3.35)

This equation describes the weakly non-linear evolution of the primary wave with itself. In
addition, expanding the interfacial boundary conditions (2.13)-(2.15) in a Taylor series about

z =€ h(x,t) up to O(% gives a set of differential equations and boundary conditions at each
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order in €. Solving the systems up to O(g?) allows one to detemﬁne the coefficient b, (Alex-
ander et al., 1986). The terms of order €2 in Eq. (3.35) are the same order of magnitude as
those of ordér %, as can be seen from a change to the fast time scale T = €2 ¢. This results in
a standard form of the Landau equation (cf., Eckhaus 1965, Drazin and Reid 1981),

d

£ 1AP=20,14P-a, AL, (3.36)

a truncation of Eq. (3.35) after O (¢%). Here, the real part of the linear growth rate is o,, and
a,=2b, is the Landau coefficient. Equation (3.36) will reveal that the non-linear self-
interaction of the most unstable mode may generate harmonics, and an altered mean state that
can moderate slow exponential growth of that mode. For an initial amplitude of 4,, the solu-

tion of Eq. (3.36) is

-1
2_42| % 2 _ 4 2| —26,
AP =4, [20’ A, +[l 2o, A, ]e ] . (3.37)

When a, is zero, Eq. (3.36) is the evolution equation of the linear theory, so it is the
second term on the right hand side that arises from the non-linearity, and the relative signs of
o, and a, determine the manner in which an infinitesimal disturbance evolves. The analysis
and derivation of Egs. (3.36) and (3.37) has an interesting and Qaried history that is described
by Drazin and Reid (1981) and originates from work by Landau in 1944. We detail the

relevant behavior for the solidification problem.

If a; >0 and o, >0, then for small times 7, and small initial amplitudes A,, the
exponential term in Eq. (3.37) is very large and we have | Al ~A, e®%, as in the linear

theory. As T — o, the exponential term becomes very small and we have | A2 - 2 6,/a,,
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independent of the size of the initial amplitude. Therefore, the system is linearly unstable to
disturbances of amplitude A,, but eventually obtains a cellular structure characterized by the
amplitude A, = (2 6,/a;)"?, generally referred to as the equilibrium cell amplitude. So, the
equilibrium cell amplitude, A, , will evolve slowly as V - V., if a; > 0, when o, > 0. In this
case the bifurcation to cells is termed supercritical. The basic state is linearly unstable for
V >V,, but the interface eventually obtains the equilibrium cell structure, so that the non-

linear terms stop the exponential growth of the disturbance.

If a, >0 and o, <0, then as t — oo for small initial disturbances 4,, Eq. (3.37) predicts
that the perturbation will decay in accord with the linear theory, that is, as | Al ~ 4, e™ .

This is because the non-linear term in Eq. (3.36) remains small for all time if it is initially

small.

If a, <0 and o, >0, then both terms on the right hand side of Eq. (3.37) are positive
and | A | blows up, becoming infinite at time t = (1/2 ,) In [1 - 2 6,/a; A,2]. Therefore, finite
amplitude solutions do not exist in this case, calling attention to the need for higher order

terms on the right hand side of the Landau equation.

If a, <0 and o, <0, then two things can happen, depending on the relative size of the
terms on the right hand side of the Landau equation. If A, <A, then | Al < 4, A, e” ", van-
ishing as © — o, If 4, > A, then | Al > = as 1= 1. = (- 12 5,) In [4,%(4,2 ~ A,?)], so that
the solution breaks down after finite time. The instability can occur with a finite amplitude
greater than 4,, for 0 <t < 1., even though all infinitesimal disturbances are stable. So, the
cells will appear abruptly, as the disturbance jumps to a finite amplitude through a what is

termed a subcritical bifurcation. The breaking of translational symmetry in this system, as
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described above, is mathematically analogous to that which occurs in the Rayleigh - Benard

system (Drazin and Reid, 1981).

Alexaﬂder et al. (1986) compute a; from a non-linear analysis of the non-symmetric
system with finite latent heat. They found that the non-linear behavior of the disturbance is
strongly affected by the inclusion of latent heat as n — 1. Merchant and Davis (1989a) used
these results to show that the latent heat effect for SCN-acetone is to extend the region of
supercritical bifurcation into experimentally accessible parameter ranges. For V =V,, Mer-

chant and Davis (1989a) show that the Landau coefficient can be written in terms of I' as

1-n+Q+n)lI
TA+n)Q+I

ay ~

+olarry, (3.38)

where

I = A+n)kmC. (k-1

LD (3.39)

The seawater from which natural sea ice forms varies by only a few parts per thousand,
so C.. is only a control parameter in laboratory experiments. There are two points of interest
on the V (C.) neutral curve: the limit point and the transition point. The limit point
(V" ,C.), is the minimum neutral C.,, and the associated V at which the two branches of
the curve meet. The transition point separates regions of subcritical and supercritical instabil-
ity (Merchant and Davis, 1989a). The V (C..) neutral curves for k = 0.3 and k¥ = 3.0 x 1073
are shown in Fig. 3.4. The k = 0.3 curve is a cross section of Fig. 3.1 at A =1, , and both

curves follow from Eq. (2.39) as
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x| 1
C.=T |k+R R +k+1)]+7(l+k/R), (3.40)

where I'=C,T" and M = M/C.. There are two branches to this curve; the high velocity
upper branch, above which surface energy stabilizes the effects of solute rejection,
corresponding to the absolute stability limit, and the lower branch, below which the thermal
fields stabilize the effects of solute rejection, corresponding to the constitutional undercooling
limit. Between the upper and lower branches of the curve defined by Eq. (3.40) the planar

interface is unstable.

Merchant and Davis (1989a) define the transition point between subcritical and super-
critical bifurcation as the point on the neutral curve where a; =0. We present the neutral
curve in Fig. 3.4 as they did for the SCN-acetone system. The solid curve denotes the region
of supercritical bifurcation, and the dashed curve denotes the region of subcritical bifurcation.
The value of C.. = 35 ppt, for which the V (A ) neutral curve is drawn, is the vertical dotted
line. The H,0-NaCl system has n = 3.572, the neutral curves in Fig. 3.4 do not change
when n changes from 3.572 to 1.286. The insensitivity of linear stability results to changes in
n has been noted for metal and transparent organic systems (Merchant and Davis, 1989a and
Alexander et al., 1986). In contrast, the non-linear results are very sensitive to this change in
the value of » for the Hy0-NaCl system. For n = 3.572, the entire curve for both values of &
is a region of subcritical bifurcation, implying that in naturally occurring sea ice the break-
down of the interface will always evolve as a jump transition. Figure 3.4 shows the results
when n = 1.286, for which the region of supercritical bifurcation extends well into the lower
branch of the neutral curve. For k£ = 0.3, the transition point is located at C..= 8.28 ppt, V =

8.52 x 107%cm s™. For k = 3.0 x 1073, it is C.. = 5.81 x 107 ppt, V = 8.51 x 107%cm s7%.
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This is consistent with the observation that the range of stable, small amplitude cells is
enhanced at small concentrations as n — 1 in the Al-Cu system (Alexander et al., 1986). For
n = 1.1, the entire V (C.) neutral curve is a region of supercritical bifurcation, where

smooth transitions to cells will occur through the slow evolution of infinitesimal disturbances.

It is curious fact that there is a length scale dependence to the stabilizing effect of let-
ting n — 1* for the finite latent heat system. The effect of this is to increase the thermal gra-
dient in the solid relative to L =0 and » > 1, which is seen when Eq. (2.6) is written in the

following form,

’

LV
k

=n Gs B )- G, k'), (3.41)

V'=(V+h'), and G5 (x'h'4), and G, (x",h't"), are the solid and liquid temperature gradients
at the interface. For a fixed liquid temperature gradient, the inclusion of latent heat and the
decrease in n steepens the thermal gradient in the solid. According to the Landau type of
weakly non-linear analysis, this stabilizing effect only acts on the finite amplitude distur-
bances to suppress jump transitions, but infinitesimal disturbances are not damped (Alexander
et al., 1986). This clearly suggests a scale dependence of the stabilizing effect of increasing
Gs' at the interface. In examining the n — 17, L # 0 case which has the same effect of
steepening Gs', Alexander et al. (1986) also find that small amplitude cells close to critical
are favored. When n —» 1* for fixed G.’, the increase in Gs’ relative to its value at larger n

has a stabilizing effect which tends to remove the disturbance minima by freezing.

In this case, the question Alexander et al. (1986) posed about the relation between ther-

mal symmetry (» = 1 being the most symmetric) and weakly non-linear stability may be
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stated as: Why is the steepening of the thermal gradient in the solid when n — 1%, in the
finite latent heat system, only effective in suppressing subcritical bifurcations? The answer is
based on the physical interpretation of the evolution of subcritical versus supercritical bifurca-
tions. If we view subcritical bifurcations as true jump transitions from the planar state to a
state of finite amplitude (A,) cells, and supercritical bifurcations as a slow continuous evolu-
tion to this state from an infinitesimal disturbance, then we can qualitatively distinguish the
two types of bifurcations based primarily on amplitude near V = V,. The scale dependence is
the result of the relative undercooling that is felt by various disturbances. At critical, the

base state increase in G associated with a decrease in n from n, to n, can be written as

,(Lv,
AGS=[ p +GL][—1--—1—]. (3.42)

n n

If n, = 3.572 and n, = 1.286, and if we fix G," = 3.57 x 102 K cm ~! when & = 0.3, then V,
= 1907 x 10 cm s and A Gs" = 0.018 K cm ~. Therefore, a perturbation of amplitude A,
= 0.1 cm will experience a decrease in temperature of approximately 87", = 0.002 K at its
minima, compared with the case when n = n,. The total temperature depression from the
planar state at the minima of A, is 8T, = 2.83 x 107 K. A slowly evolving disturbance of
amplitude A, = 0.001 cm will experience a decrease in temperature of only about 8T, =
0.00002 K at its minima. The total temperature depression at the minima of 4, is 8T, = 2.83

x 10° K.

If we view these tecmperature depressions as effective undercoolings from the planar
n = n, state then we can construct a more intuitive interpretation of this scale dependent sta-

bilization. We approximate the liquid region between the perturbation minima and z =0 as a
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sphere of fluid undercooled by the 8T,, computed above. Now we can compare the stabili-
zation of different perturbation minima by examining the relative thermodynamic potential for
freezing of this spherical region. The critical radius of nucleation for the region enclosed by
the large amplitude perturbation is R*, = A,/2 and that for the small amplitude perturbation is
R®, =A,/2. We ask how the undercooling 8T,, due to the steepening of the temperature
gradient of the solid compares to that needed to freeze a sphere of radius R*,,. The critical
values are 8T° ,(R*,)= 1.18 x 10 K « 8T, and 8T",(R*,) = 1.18 x 102K > 8T, so that
the driving force to freeze back the large (small) amplitude minima is sufficient (insufficient).
There is a crossover at which R* =R*, =0(10%) c¢m and 8T = 8T’ so that if 8T » &T",
(8T < 8T"_), the planar interface will be stable (unstable) to penurbat‘ions with amplitude
A >R, (A «R",). This is one explanation of why the steepening of the thermal gradient

in the solid has a negligible effect on the results of the linear theory.

The n-dependent stabilization suggests that in some systems there will be a crystallo-
graphically preferred stable growth direction. It is well known, for example, that ice has
about a five percent greater thermal conductivity parallel to the c-axis which translates to a
five percent decrease in n ‘normal to the c-axis. Differences of a factor of about two would
be necessary to result in a crystallographic/orientational supression or enhancement of subcrit-

ical bifurcations.
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Fig. 3.1 The V(A ) neutral stability curve, with C.. = 35 ppt and G," = 3.57 K m™ for
k = 0.3. The planar interface is unstable inside the curve. 3(a) has the full instability range

of the system. The data points are the platelet spacing from Lofgren and Weeks (1969) and ’

Nakawo and Sinha (1984) (see p. 41 for discussion). The dashed line is the low velocity

approximation to the most unstable wavelength. A robust upper and lower bound on observ-

able sea ice growth rates is 10 cm s™ = 10? cm day™, and 107 cm s™ = 102 cm day™.
3(b) is the neutral curve near critical V.( A .).
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Fig. 3.2 Neutral stability curve in the V(A ) plane for G," = 200 K cm™ (solid line) and
G, = 3570 K cm™ (dotted line). C.. = 35 ppt and k = 0.3. Note the increase in the critical
velocity with increasing G,” and the insensitivity of absolute stability to increasing G.". (See
p. 42 - 45 for discussion).
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Fig. 3.3 Neutral stability curve in the V(A ) plane for C.. = 35 ppt, G," = 3.57 Km™ and &
= 3.0 x 1073, The increase of A . with the decrease in k is qualitatively consistent with the
local theory in this limit (Sivashinsky 1983), but for this system predicts an unphysical value
of V.. (See p. 51 for discussion)
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Fig. 3.4 Neutral stability curves in the V(C..) plane. The curve for k£ = 0.3 is a cross section
of Fig. 3.1 at A = A and is combined with the curve for k¢ = 0.3 x 103, The dotted verti-
cal line is C.. = 35 ppt and n = 1.286. The transition point (TP) divides regions of subcriti-
cal bifurcation (dashed line) from regions of supercritical bifurcation (solid line). (See pp. 59
- 68 for discussion).



CHAPTER 4

COMPARISON WITH DIFFERENT SCALES

In order to isolate the control parameters V and C., Merchant and Davis (1989b)
defined different length and time scales. These scales are &;,=( ¥y T, /L G, )" and
8,= v T, /L G, D, where all quantities are defined as previously, and the subscripts I, ¢
denote length and time. When scaling the solidification system with these length and time

scales the contro! parameters become

vT, V?
de2= L GL,DZ ’ (4.1a)
m2k -172L C.
C 2= [ : ] .
md K2G, YT, (4.1b)
and
L?D?
lpg? = ——r— , .
TG T 4.10)

which represent the mean velocity of the interface, the concentration of solute and the latent
heat respectively. These parameters are the cursive V, C and ! in Merchant and Davis
(1989b). Their motivation in deriving these parameters was to construct a theory which more
closely mirrors the underlying experimental situation. The dimensionless parameters M and
I', measure the degree of constitutional undercooling and the importance of surface tension
respectively. However, M and T" contain both of the experimental control parameters V and

C.., which does not allow an intuitive connection with experiment. The linear analysis of
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Merchant and Davis (1989b) yields a characteristic equation (Eq. (2.4a) in Merchant and
Davis (1989b)) which is an implicit function of the growth rate o, and plays the same role
as Eq. (2.37). At neutral stability, we derive the following expression similar to Eq. (2.39),

which is a function of the parameters in Eq. (4.1),

I Vpa

3 2 PO
N°+ NV Q+k)+ 1M a+n)

+ Vo * VM—C):I

k Voa @+1 de) _
a+m =0. “4.2)

Here 2+ n V,4 =a?is a wavenumber parameter, and a is the spatial wavenumber of the

perturbation. The entire V,,; (1 ) neutral plane, and the region close to critical for the H,O-
NaCl system are shown in Fig. 4.1 and Fig. 4.2(2). The critical region of the M (R) neutral
plane is shown in Fig. 4.2(b) for comparison with the V,4 (7 ) results. The full plane in Fig.
4.1 is qualitatively similar to the dimensional results shown in Fig. 3.1(a), with a mirror
reflection since n is proportional to wavenumber. A comparison of Figs. 4.2(a) and 4.2(b)
shows that in both systems there is weak wavelength selection near critical, but it is more
pronounced in the V,, (1) plane. This is clearly a result of the sensitivity of these parame-
ters to the mean interfacial velocity V. The parameter V,, is less sensitive to changes in V
than the parameter M, primarily because V appears in the numerator of M and in the denomi-
nator as G*. The difference in sensitivity can be seen explicitly by examining the behavior of

m

these parameters near V = V,. The first order term in the expansion of W

about V=V, is

M mC.k-1DQ+n)2G
v DkQG, +LV, k)

= 0(10%, (4.3a)

and
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v, T, |
L [L (";L,"‘Dz] =0(10%). (4.3b)
Th oM _ 4 Ve ca .
erefore, Ty = 10¢ v which is evident when one compares the horizontal axes of Fig.

4.2(a) and Fig. 4.2(b) close to critical. Of course, this is a theoretical sensitivity and ulti-
mately only aids one in the choice of which theory to use when attempting to identify a criti-
cal wavelength. The experimenter must still measure V. For the case of k = 0.3, (Fig. 3.1) a
change in velocity V, near critical of only 1 part in 107! cm s™ results in a change in neutral
wavelength of greater than an order of magnitude. Here, the sensitivity corresponds to

growth rates of order pu m year™', making these effects experimentally inaccessible.

The problem of weak wavelength selection may of course be a more phenomenological
one based on the inherent assumption, in a linear theory of this type, that there exists a
unique, discrete, most unstable mode which manifests itself as A .. Since the normal modes
are continuously dependent on a, the single mode picked by the linear theory is only
infinitesimally more unstable than its neighbors. Thus, the flatness of the neutral curve may
be a mask of critical behavior in which there is a wavepacket of most unstable modes rather
than a single most unstable mode. This is common in the linear analyses of unbounded
hydrodynamic stability problems (Drazin and Reid, 1981). Secondary bifurcations for V very
close to V., which manifest themselves in terms of a flat neutral curve, can either be caused
by mode interactions which arise when constraining the system in the horizontal or via non-
linear interactions between two adjacent linearly unstable wavelengths (Bennett and Brown,

1989).
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Close to absolute stability, the linear theory which results from both scalings of the
directional solidification system may be suspect. In both cases, the use of an equilibrium con-
dition at the interface during rapid solidification may be invalid. The solute depression of the
freezing point at high velocities may not be adequately accounted for by a locally linear
phase diagram. A velocity dependence of the interfacial solute concentration may be needed
to account for departures from equilibrium. By including a velocity dependent segregation
coefficient in their linear stability analysis, with zero latent heat, Merchant and Davis (1991)
showed that oscillatory instabilities can occur. The velocity independence of the scales
8,=(YT,/LG,S ) and 8,=7v T, /L G, D, during rapid solidification may, for cer-
tain systems, also be suspect, as Merchant and Davis (1989b) point out. In order for both
5, and §,, and therefore (4.1bc) to be independent of V, G," must be independent of V.
This assumption is equivalent to the assumption that there is no curvature in the liquid tem-
perature field of close to the interface. In the case of a laboratory experiment, one has the
freedom to remove the local curvature by decreasing the vertical dimension of the experimen-
tal box L, so that it is within the linear region of the thermal field, i.e., L « x/V. For very
high velocities, this may be an impossible experimental configuration. In the case of natural
solidification one does not have the ability to vary L, so the assumption must be satisfied by
some other constraint. If there is to be no curvature in the thermal field close to the inter-
face, then thermal gradients must diffuse away in a time scale which is smaller than that
associated with the advance of the interface itself, t 4 « 1 ;. The subscripts d, { denote the
diffusion field and the interface. The diffusion field decays a distance €4 = x./V, in 14,
and the interface advances a distance &°‘ = 1V, at the same velocity V. Therefore, the con-

straint which must be satisfied for the capillary scales to be velocity independent is
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¢i <« £9. We examine this condition at critical (¢), and absolute (a) stability for the H,O-
NaCl system. At critical &°, = 0(10™® £ 9,), but at absolute stability &‘, =0(10° & 9,),
so that the quantitative predictions of Eq. (4.2) are of little use for this system operating near
absolute stability. The violation of the curvature constraint at absolute stability is not this
severe for the SCN-acctone system that Merchant and Davis' studied, in which
Ei, =0( £9,). However, in an Al-Cu alloy in which x, = 5.0x 10° cm? s, and V, =
1142 cm s, we have &¢, =0 (10° & 4,). Therefore, scaling a system with the capillary
scales has the advantage of more closely mirroring the underlying experiment, but for some

systems predictions close to absolute stability are not reliable.
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Fig. 4.1 The V,4(7n ) neutral curve constructed from the linear theory of Merchant and Davis
(1989b), in which the length and time scales are assumed to be velocity independent. Here
C..=35ppt and G, = 3.57 K m™! for k = 0.3. The qualitative comparison is good with the
exception of the region near absolute stability (see pp. 73 - 77 for discussion).
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Fig. 4.2 The M(R) (a) and V,s(n ) (b) neutral curves near critical. The former curve is
sharper near critical due to the stronger dependence on the underlying control V' (see discus-

sion pp. 73 - 77).



CHAPTER 5

SURFACE OF NEUTRAL STABILITY

8.1 The Bifurcation Problem and Unfoldings

We have shown that the linear stability analyses based on two types of length and time
scales exhibit weak wavelength selection in the nondimensional neutral curves. As discussed
in the previous section, this effect can be thought of as either a diagnostic of the non-linear
behavior of the system near critical, or as a different type of linear instability. For particular
systems, (Bennett and Brown, 1989; Merchant and Davis, 1989a) the former argument has
been made to point out the more limited utility of a linear analysis in making predictions near
critical. In some systems, the predictions of linear theory may be enhanced if n is close to
unity, so that the range of subcritical bifurcation is suppressed. Although wavelength selec-
tion is not strengthened in the limit n — 1%, the validity of linear results is extended. We
will show (a) the origin of the wavelength selection problem within this type linear theory
and (b) that even in systems in which weak wavelength selection is a prominent feature of
the linear analysis, the predictive utility of the analysis can be extended by a transformation
into a different neutral surface. The rudiments of the theory within which we view this prob-

lem are outlined briefly below.

The study of equations with multiple solutions is generally called bifurcation theory.
(Golubitsky and Schaeffer 1985). A bifurcation occurs when the number of solutions

changes as a parameter varies, as is the case when V passes through the values V, or V,. In
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the third chapter we analyzed bifurcations in terms of a Landau equation, here we follow a
different method; the singularity theory approach of Golubitsky and Schaeffer (1985). Using
this approach, problems concerning multiple solutions can be reduced to an investigation of a

single scalar equation of the form

g(x,0) =0, (5.0a)

The investigation focuses on how the solutions x change as one varies the parameter . The
unknown x is the state variable and a. is the bifurcation parameter. The set of (x,q) satisfy-
ing Eq. (5.0a) is called the bifurcation diagram or solution set of g. Of course, in many
cases it is a non-trivial task to reduce the set of equations that describe a particular problem
into the form of Eq. (5.0a). The technique employed is called Liapunov-Schmidt reduction.
The Liapunov-Schmidt reduction shows that locally, the solutions to a system of » equations
(n can be infinite) can be put in one-to-one correspondence with the solutions of a k-
parameter family of bifurcation problems, g(x.£) =0, where &= (&, ...,E) is a vector of
parameters. Generally, we think of &, as a bifurcation parameter o, and &,, .. . ,& as auxili-
ary parameters. Each of these equations has the form of Eq. (5.0a). In many systems this
technique is required in order to make progress, fortunately it is not called for in our applica-
tion. Singularity theory focuses on the qualitative properties of equations like (5.0a), defining
precisely the conditions in which two such equations and their bifurcation diagrams are quali-

tatively similar.

The primary concept of singularity theory that we utilize is that of an unfolding of g.

We generalize Eq. (5.0a) to a k-parameter family of equations of the form
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G(x.0B)=0, (5.0b)

where B = (Bo. . - . ,Bi) are auxiliary parameters. If for P=0

G(x,0,0) = g (x,0), (5.0c)

then G is defined as an unfolding of g. We may think of G(x,oB) as a perturbation of
g(x,0) since G(x,0.B) = g(x,0) + [ G(x,0.B) - G(x,0,0) ). A universal unfolding of g is a k-
parameter family of functions, G (x,0.B), that satisfies Eq. (5.0c) and the following constraint;
for any small perturbation p, there exists a value of B such that g +p is equivalent to
G (x,0,B). This is like saying that G contains all small perturbations of g. The codimension
of g is defined as the number of parameters required in a universal unfolding of g. Here, we
show how the neutral solutions to the solidification equations are equivalent to the bifurcation

diagram of an equation of the form of Eq. (5.0a).

8.2 The Neutral Solution Surface

We can rewrite equation (2.39) as

g=R}*+pR%+qR+r=0, G.1)
where
p=1+k) (5.1a)
g=—ler+L 1 (5.1b)
T M :

and
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r=YUT (5.1c)

This cubic polynomial has a finite positive intercept for all values of the coefficients. For
R > 0, it is a monotonically increasing function of R for all £k ,M ,I" when g > 0. The qua-
dratic term can be removed from the polynomial by letting R = x — p/3, which gives the

bifurcation problem that defines the neutral trajectory mentioned in the first section,

f=x*+ax+ B =0, (5.2)

where o= —;— Bg-pHand B= % 2 p?-9p q +27r) depend on the underlying control

parameter V. The qualitative features of the bifurcation problems for f and g do not change
under this equivalence transformation. The function f is a universal unfolding of the cuspoid
normal form N = x™ (m = 3), and has been studied in the context of catastrophe (Poston and
Stewart 1978; Thorndike et al. 1978), singularity and bifurcation (Golubitsky and Schaeffer,

1985) theories.

In this context, we must consider two unfoldings of N; f as in Eq. (5.2) and

fa2(x,A ,B ), amore general two-parameter unfolding,

fa=x*+Ax+B =0, (5.3)

in which A and B are not slaved to one control parameter, and A is not to be confused with
the complex amplitude of Eq. (3.36). The solution set of Eq. (5.3) forms the surface shown
in of Fig. 5.1(a). We define F; = {(x, A, B) s.t. f, = 0} as the neutral solution surface since
everywhere on the surface the base states, Egs. (2.20), are neutrally stable. One might also

refer to it as the perturbed neutral solution surface.
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The various sheets of the surface illustrate the root structure of Eq. (5.3). In Fig. 5.1(b)

the points of F, are projected onto the plane of control parameters T(A4, B),

r:F, b Te((x,A,B) b (A,B)

The points that satisfy f, = d,f; = 0 are given by the equation

D=4A3+2732=0._ (54)

which is a semicubical parabola and defines the bifurcation set S of Eq. (5.3), where the
tangent plane to the neutral solution surface is perpendicular to the control plane (Poston and
Stewart 1978; Golubitsky and Schaeffer 1985). So, the projections of the folds in F, into T
are the folds in T, defined by S. As (4, B) pass through §, iﬁto the interior of the cusp
region (Fig. 5.1b), the root structure of Eq. (5.3) changes from one real and two complex
conjugate roots, to three real roots. Two real roots meet along S and three real roots meet at
the cusp point A = B = 0. Looking up in the x-direction, from a point (4’,B") in T one
might see three layers of the surface F,, or just one, corresponding to the number of points
on F, which have the value (4°, B"). Each point defined by D = 0 is a degenerate singular
point, since f, = 9,f, = O at these points (Poston and Stewart 1978; Golubitsky and

Schaeffer 1985).

The problem that describes the solidification system proper, Eq. 5.2, results from the
interpretation of f as a one-parameter unfolding of N; f(x,a,B) in which we have
(a,B)=[A (V),B (V)] € (A, B ) as parameters that depend on the same underlying con-
trol. We define F = {(x,c, B) s.t. f = 0} as the neutral solution trajectory since everywhere

along this path the base states are ncutrally stable. F is a closed set, determined by the range
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of growth velocity that is physically accessible to a particular system, so there are only a
finite number of points in § where f =d,f =0. Simply put, F, is a surface; A and B vary
independently, and F is a section of the surface that can be formed by the curve (a.p) in A,B
space. We will see that the closedness of a neutral curve defined by F n F, depends on this
number. Since F < F,, then F nF,=F, so in practice, we arc primarily interested in
determining F. Here we are using V as the underlying bifurcation parameter, and fixing C...
By varying C.., we can obtain a family of trajectories F, which will form paths on F,. The
universal unfolding theorem and the recognition problem for the cuspoid normal form are
presented in detail by Golubitsky and Schaeffer (1985), with a plethora of examples. They
prove that the universal unfoldings of all bifurcation problems G(x,A, B) that satisfy

G (x,0,0) = x3, may be written as parametrized families of paths through the cusp.

There is only one trajectory, for fixed C.. and thepnophysical parameters, that is physi-
cally accessible to a particular system. This is obtained by determining F. For example, The
velocity V constrains o and B to particular values and we can only allow x > p/3 since, in
this formulation, the concept of a negative wavenumber is of no physical use. So, the sur-
face in Fig. 5.1(a) can be thought of in terms of mathematically and physically allowable
points; the entire surface is mathematically allowable given by the solution set F,, and there

are points which are physically accessible defined by the solution set F.

This approach can be used to investigate the qualitative behavior of the solidification
equations themselves. The physical controls are the values of « and B that are obtained when
varying V through the same range as in the previous examples. One may think of two
observers, a mathematical observer that can walk anywhere in T and a physical observer that

must remain on a specified path ( o, p ). In Fig. 5.2, we show the neutral solution trajectory
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of the H,0-NaCl system fromV <V, & (a > a,.,p> B ) 0V>V, = (a > a,,
B < B.), both in the surface F, (Fig. 5.2a) and in the control plane T (Fig. 5.2b). We can
think of the bifurcation diagram (in this case a neutral curve) as F n F, or as what is
recovered by lifling the trajectory in T to the cusp surface F,. The trajectory begins at (o0 >
o.,B> PB.) on the right hand sheet where x <0, so the solutions are unphysical here. At
critical (o, B ) = (o, P ), the trajectory jumps up to the fold intersecting the surface where
the tangent plane is perpendicular to the control plane. Therefore, (x., & ., B ) is the first
bifurcation point in this evolution of the trajectory. As the trajectory moves into the pleated
region only the upper fold is of physical interest. Here x > p/3 so for each (a,B) there are two
x values. In this system it never occurs that B < 0 in the pleated region, which would result
in a break of the neutral curve since x < p/3 is not allowed. Finally as ¢ -» a, and .
B — P . the roots coalesce at x = x, closing the neutral surface (and curve). The trajec-
tory exits the pleated region through the right hand nappe S, of the bifurcation set § through
which it entered. Then, the system stabilizes since x < p/3 in the regign outside of §. Thus,
if a solution trajectory enters the cusp region by crossing through the right hand nappe of the
bifurcation set §,, the neutral curve will be closed if it exits through S;, and it will be open if
it exits through §,. We can see this by taking a slice of F, at constant A and moving B
through B = 0 and finally through S, as shown in Fig. 5.3(2). Even if x < p/3 were allowed
for a small range of A and B, the trajectory will run off on the upper left hand sheet leaving
only one branch to the neutral curve. Two other trajectories and their bifurcation diagrams
are shown in Fig. 5.3. If the system were formulated in such a way that only negative
wavenumbers were allowed, then a neutral curve would be closed if the trajectory entered

and exited through the left hand nappe as shown in Fig 5.3(c).
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Near critical, the combination of the standard dimensionless control parameters in a and

B results in the a-x neutral curve being sharper than the B-x neutral curve. One interpretation
of this behavior is that it is due to the velocity dependences of o« and B;
oy lal > 9y B> 9y M. Figure 5.4 shows the lal-x and B-x neutral curves superposed. Since
both o and B are changing as one moves along the trajectory, each interval in one plane
corresponds to an interval in the other, and the intervals are gradually approaching the cusp
point of F, as the absolute stability limit is approached. Both curves are closed since the tra-
jectory leaves the folded region by passing through §;. Close to critical, the | « l-x curve
exhibits relatively strong wavelength selection, and folds back over itself on this scale. The
B-x curve exhibits relatively weak wavelength selection at critical, and doesn’t have the
*fishlike’ structure of the | o I-x plane. The curves are qualitatively similar for values of
lal,B < 10°. The | o I-x plane is more revealing close to critical because o is changing very
rapidly but B undergoes very little change for x ranging over more than two orders of magni-
tude. Since | a | reaches a maximum after its critical value and then tumns around to approach
o, (cf., Fig. 5.2(b)), the cﬁtical wavenumber is flanked by bands of unstable modes, which

are themselves flanked by the upper and lower cutoffs. The upper and lower cutoffs are the
surface energy and finite solute interaction range stability limits, but the intermediate bands

are an artifact of the turn around of o.

Combined, the following propertics result in the the flatness observed in the standard
neutral curves. First, the critical bifurcation point occurs on a part of the upper fold that has
very little curvature. Second, although not apparent from Fig. 5.2(b) which is scaled for
illustrative purposes, in the region very close to the critical bifu-rcation point, the trajectory is

approximately tangent to the fold, or the right hand.nappe §, of the bifurcation set. The
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latter behavior points to weak wavelength selection as being due to a higher order degeneracy
near critical. The question of whether this selection mechanism has a real physical origin, or
is an artifact of the theory, may be addressed by unfolding the singularity at critical. This is
the subject of future work. One suspects that it is the theory that is weak, not nature. After

all, nature has no difficulty choosing a scale, and nature obeys the laws of physics.

If the experimenter could measure o directly rather than V, the wavelength selection
problem near critical would be eliminated. Since a simple transformation does not remove
the physical sensitivities no such victory can be claimed. Rather, this approach gives a quali-
tative method for investigating the behavior of different systems and extends the utility of the
linear theory for predicting cellular structure close to critical. Once the results of a linear
theory are cast in the form of Eq. (5.3), an entire rostrum of rich mathematical tools is made
available (e.g., Poston and Stewart 1978; Golubitsky and Schaeffer 1985). The structure of
the bifurcation points (a.,B.) and (., B ,) is worthy of investigation using the tech-
niques of singularity theory. This may provide a method to investigate new types of local
asymptotic theories. The zero latent heat system results in trajectories with the same struc-
ture as F since excluding L does not change the codimension of the unfolding. In some
approximations to the directional solidification system, the dimensionality of the system of
equations changes, so the unfolding will be of a different normal form and the behavior of
F ~ F, shown here cannot be reproduced. For example in some limits, the symmetric model
of directional solidification does not admit a closed neutral curve since it contains no mechan-
ism to stabilize long-wave perturbations (Langer 1980). The techniques of singularity theory
yield the exact number of control parameters required to describe the most general perturba-

tion of a bifurcation problem.
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Fig. 5.1 (a) The neutral solution surface F,; a two-parameter unfolding of the cuspoid nor-
mal form x™, m = 3. (b) The projection = of the surface onto the control plane T(4,B)
where the cusp forms the bifurcation set S (with right and left hand nappes §, and §,) along
which the number and nature of the critical points of F, changes. Inside the cusp there are
three real solutions to f, = 0, and outside there is one. (See pp. 80 - 88 for discussion).
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(2)

(b)

Fig. 5.2 (a) The neutral solution trajectory F on the surface F,, (b) and in the control plane
T(A,B). The trajectory ’begins’ on the lower right-hand sheet of F, where the solutions are
unphysical (negative real wavelengths). The trajectory 'jumps’ up to the right hand fold (see
[a]) or crosses the right hand nappe of the bifurcation set S, (see [b]) when (A,B) =
(a.,B.) labelled by c. The system stabilizes after exiting the cusp region (see [b]) at
(AB)=(0,,PB ) labelled by a. The shaded area is the region of instability. The trajectory
is parametrized by the underlying control V and C.. = 35 ppt. A neutral curve is closed if
the trajectory F enters and leaves S§ by crossing §;. (See pp. 80 - 88 for discussion).
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Fig. 5.3 Three trajectories a,b,c, (top) through the bifurcation set S in in the plane T (A, B)
of observables. The bifurcation diagrams associated with these trajectories are drawn below
and labelled a,b,c (here a and ¢ are not associated with the absolute and critical bifurcation
points). The horizontal coordinate is the underlying control parameter V, and the dashed
lines refer to x < p/3. The direction of trajectory (a) is discussed in the text. The neutral
curve is open in cases (a) and (c) and case (b) is similar to the trajectory F. If x > p/3 were
not allowed, the neutral curve would be open in cases (a) and (b). (See pp. 80 - 88 for dis-
cussion).
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Fig. 5.4 The | a (x)| (dotted line) and B (x) (solid line) neutral curves from critical instabil-
ity, (A.B) = (o ., B .) to absolute stability, (A,B) = (o ,,B,). There is relatively strong
wavelength selection in the o (x) plane due to the dependence on the underlying control V.
Both planes exhibit strong wavelength selection compared with the standard neutral planes
Figs. 3.1,4.1, and 4.2 but the B (x) curve is topologically similar to the standard curves at
critical. (See pp. 80 - 88 for discussion).



CHAPTER 6
SOLUTE SEGREGATION AND CONVECTION

6.1 Solute Segregation

The stability analysis formulated in the second chapter accounted for the discontinuity of
solute concentration across the solid-liquid interface by specifying a constant segregation
coefficient k. This is the ratio of the solute concentration in the solid to that in the liquid. We
recall from chapter three that some of the results were very sensitive to the value of k. In par-
ticular, for very small values of k, the theory gives unphysical predictions for V.. During the
formulation, the only physical motivation of ¥ was that it accounted for the low solubility of
NaCl in ice. In what follows we give a more physically based motivation for k, and distin-

guish two types of solute trapping that are relevant to this problem.

When solidification proceeds at sufficiently low rates, the interfacial undercooling is small
and the advance of the interface is limited by the diffusion of heat and solute. In this case, the
solid and the liquid adjacent to the interface are considered to be in local equilibrium. This is
the situation represented by Eq. (2.13). Previously we mentioned that this local equilibrium
assumption may, for some materials, be invalid at rapid solidification rates. When there is a
substantial departure from equilibrium at the interface, we say that solidification is kinetically
or interface controlled. That is, the advance may depend on the kinetic processes associated
with the attachment of solvent (cf., Eq. 2.3) or solvent molecules. During rapid solidification

of a planar phase boundary, larger than equilibrium solute concentrations in the solid can occur
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(Aziz 1982). Thus, even though the total free energy of the system is reduced, as required
during crystallization, the chemical potential of the solute is increased. This provides a
mechanism of increasing the solute concentration of the solid that is different from the break-

down of the planar interface.

Solute segregation can be viewed as a competition of two exchange processes: one
exchanges solute atoms/molecules from the solid to the liquid, and the other does the opposite.
The farther away the system is from equilibrium, that is, the larger the growth velocity, the less
efficient the former exchange process. Solute molecules must diffuse away from the advancing
interface in order to avoid being trapped. During solidification that involves only the short-
range atomic/molecular redistribution, solute particles can escape being engulfed if their
diffusive speed is greater than the solidification rate. Aziz (1982) has developed a theory for
solute redistribution in this situation. Solute particles will be overtaken if growth exceeds the
diffusive speed D/ry, where ry is a nearest neighbor spacing. For ice ry = 0(10™ 1% m, so that
D/ry = 1 m s, Therefore, this type of trapping will not occur during natural solidification,
but may be achievable with laser annealing techniques. The structure of the interface itself is
an important factor in determining exactly how the trapping process will take place. The struc-
ture of the interface, diffuse or flat on a microscopic scale, depends on which crystal growth
regime (section 1.2) is in operation. The theory presented by Aziz (1982) considers both
cases, but does not consider how the trapping process affects the transition from one to the
other, nor how the transition depends on driving force. For the case in which the interface is
singular, and the growth proceeds by the propagation of steps, a trapping model is outlined

below.
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In equilibrium, each particle in both phases interacts with its nearest neighbors, vibrating
about some mean position. Figure 6.1 is a schematic of the solute redistribution proposed by
Aziz (1982). The solid is depicted as the ordered material on the left, consisting entirely of
solvent particles. The monolayer of liquid, adjacent to the interface, is depicted by the num-
bered particles. The monolayer particle numbered 4 is the single solute particle B. The segre-
gation coefficient k, used in our stability analysis, represents the ratio of B particles in the
solid to those in the liquid. A small value of & has the physical interpretation that the lowest
energy arrangement of bonds occurs with an A-B-A bond angle of say 60°. The B particle is
more likely to attain this configuration in the liquid. We view the passage of a step of height
ry in terms of the motion indicated by the arrows on particles 1,2,3, and 5. This motion has
the effect of distorting the nearest neighbor minimum energy state of B, and dragging it toward
the interface. If there is a nearby configuration, in the liquid, which allows B to attain a 60°
A-B-A bond angle, then it will reduce its energy and "roll" back into the liquid. Otherwise, it
will be dragged into a higher energy state in the solid. If we view this rearrangement as instan-
taneous compared to the time it takes for the passage of a step, then the criterion for trapping
is that B does not diffuse back into the liquid before another step passes. The continuous
dynamics of this situation is extremely difficult since one must account for the fact that while

B particles are being dragged toward the interface, they are trying to diffuse away.

A result of the Aziz model that is relevant to the morphological stability problem is a

velocity dependent segregation coefficient for the growth of a diffuse interface,

k +B,v

k@)= 1+B,v’

6.1)
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where v is the local interfacial velocity, & is the equilibrium segregation coefficient, and B, is
the ratio of interatomic distance to diffusion coefficient, and has a value of about 1/2 s m™.
Merchant and Davis (1991) use this result in their zero latent heat, thermally symmetric linear
stability analysis at rapid solidification rates. We know from chapter three, that the effect of a
lower k is to increase the constitutional undercooling and increase the range of conditions
under which the interface will break down. Thus, by encorporating Eq. (6.1) into the stability
analysis of a planar interface, the actual undercooling at the interface can be explicitly
accounted for at high V. At high velocity, when K(v) = 1, The lack of latent heat in the Mer-
chant and Davis (1991) study results in oscillatory instabilities, with infinite wavelength, repro-
ducing commonly observed solute bands. Our analysis, with constant k, had a small
wavelength cutoff because when V is large, the diffusion time is small, so lateral segregation
can only accompany small wavelength disturbances. However, the small waves are strongly
stabilized by surface tension. When k is allowed to vary with V, longer wavelength distur-
bances are allowed. By examining the case where o, =0 and o; # 0, they explain the oscilla-
tory instability as follows. The maxima of a given disturbance have a larger local growth rate
v, and hence K, than do the minima. Since the increase in local K results in less local solute
rejection, v decreases. As v decreases, the concurrent decrease in K increases the local solute
gradient thereby enhanciﬁg the local growth rate again. This cycle will repeat itself. This
approach presents a mechanism whereby solute trapping by both Kinetic and interface break-

down processes may occur.

For planar interfaces, The segregation coefficient in Eq. (6.1) has a physical basis as just
described. If one is interested in regimes where the planar interface does break down, then a

different method of treating segregation exists. An empirical approach, which ignores the
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physics of the microscopic trapping process, is that of defining an effective segregation
coefficient k,;,. By measuring the concentration profile of a material solidified from a solution
of known concentration, values of k., can be computed. For the case of sea ice, Cox and
Weeks (1988) reanalyzed previous data, from radioactive tracer experiments, and obtained &,/

for a range of velocity V. These are

ks = 0.8925 + 0.0568 V; 20x 10°<V < 36x 107, (6.2a)

k.sr =0.26 [0.26 + 0.74 exp (- 7243 V)I” i V>36x 1075, (6.2b)

where V is in cm 57!, They assume a constant value of k,;; = 0.12 for V <2.0 x 1075, since
there were no data available for velocities less than this. For velocities greater than about 1073
cm s, k,c; becomes unity. Of course, Egs. (6.1) and (6.2) are not ammenable to comparison
because the former is treating the microscopic trapping and the latter measures the effect of
bulk solute trapping. From the experiments we know this is the case for Eq. (6.2). In addition,
the linear stability analysis with constant £ tells us that the range of velocity for which Eq.
(6.2) is valid is V, <V <V,. Once sodification begins, whatever the solute redistribution
mechanism, a concentration profile like that pictured in Fig. 1.3, will be established. Such a
profile leads one naturally to think of the possibility of convection, which is the focus of the

section below.

6.2 Convection

Morphological instabilities of the solid-liquid interface can be affected by hydrodynamic

interactions between the fluid and the molecular diffusion at interface. The flows that are of
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interest are volume-change convection, due to the phase change expansion/contraction,
buoyancy-driven convection, and externally forced flows. An excellent review of these cases is
given by Davis (1990). A concem in the H,0-NaCl system is whether or not the fluid adjacent

to the interface transports heat and solute by diffusion only.

In a typical experiment, the distance between the cold contact and the bottom of the fluid
container is fixed. At the interface, liquid of density p, becomes solid of density ps. If these
densities are not equal, then the expansion or contraction of the material at the interface will
drive a flow. In the case of seawater, ps/p, = 0.9, the expansion at the interface drives a
weak flow away from the interface. This flow will stretch the solute concentration boundary
layer thickness D/V, thereby decreasing the local concentration gradient G.. From previous
discussion, we know that this will suppress morphological instability. Therefore, expansion
upon solidification is stabilizing and, by parity of reasoning, contraction is destabilizing. In the
case of natural solidification, the ice sheet can rise in response to the expansion at the interface,

eliminating the flow away from the interface.

As solidification progresses, the build up of solute adjacent to the interface creates a
configuration in which highly concentrated colder melt lies above wammer, less concentrated
melt (Fig. 1.3). Thus, the configuration is thermally and solutally unstable. This situation
admits the possibility of a convective instability in the fluid phase. By way of illustration, con-
sider a parcel of fluid near the interface; it is cold and concentrated. If a disturbance displaces
the parcel downward, it encounters warmer, less concentrated fluid. The parcel will increase in
temperature, but since the thermal diffusivity is much greater than the solute diffusivity, it
maintains essentially the same solute concentration, during a sm'all time increment. In this new

location, it has nearly the same temperature as the environment but a greater solute
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concentration. Since it is more dense than the surrounding fluid it will continue to descend if
viscous forces are overcome. Therefore, the solute field drives the hydrodynamic instability.
The formal approach to this stability problem is to couple the solidification system to the
Navier-Stokes equations, thereby capturing the interplay between morphological and hydro-
dynamic instabilities.

For the case in which there is no volume change convection, Coriell et al. (1980) perform
a linear stability analysis of the solidification equations, augmented by the Navier-Stokes equa-
tions. This analysis differs from standard double-diffusive convection because (a) the upper
boundary is moving and has an unconstrained shape. (b) the solute gradient is not constant; it
falls off exponentially. The perturbation equations obtained are equivalent to eight first order
differential equations for a set of functions X;(z), i = 1,2,...,8, with far-field and interface boun-
dary conditions. These must be solved numerically, and it is found that there are two neutral
curves; one corresponding to convective modes, and one corresponding to morphological
modes. In the systems studied to date, it is found that these modes are spatially uncoupled at
critical so that A . = A . ™), where the superscripts C and M denote convective and mor-
phological modes respectively. For a lead-tin system Coriell et al. (1980, see their table 2)
found that A ,©)=10? A %) for low V. Thus, there is a small-scale morphological instability
imbedded in a larger scale convective flow, and the morphological modes are unaffected by
convective flow. The prominent role of non-linear interactions in the H,O-NaCl system
(chapter 3), and the fact that the data exists in a velocity range much greater than V., and for
wavelengths much less than A., preclude the coupled convective/morphological treatment as

one amenable to comparison with data.
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To study fluid flow adjacent to the solidifying interface, we can adapt the analytic solu-
tions of the double-diffusive convection problem solved by Tumer (1973). He solves (p. 255)
the linearized two-dimensional Oberbeck-Boussinesq equations coupled to diffusion equations
for temperature and concentration in a layer of thickness d. The layer is exposed to tempera-
ture and solute concentration differences of AT and AC respectively. The following neutral
stability curve for non-oscillatory disturbances (o; = 0, where 6 =0, +i o; is the disturbance

growth rate) results,

Rs x 4
_____L+.2_7__1.t_

Ra = D e 6.3

where Ra = g o AT d¥x, v is the Rayleigh number, and Rs = g B AC @%x, v is the solute
Rayleigh number. Here g is the acceleration due to gravity, %, is the thermal diffusivity of the
fluid, and v is the kinematic viscosity. The thermal and solute ’expansion coefficients’ are

defined for some mean values T, C°, and p* of temperature, solute and pressure as

@=-F [_g%]c'p' Ll [_:CE:]T'P"
where p is the density of the fluid. For seawater, o = 2.54 x 10~ K™ and § = 7.92 x 10* K"},
so that the fluid density is more sensitive to changes in solute concentration than temperature.
The characteristic length scale over which the destabilizing solute gradient exists is D/V.
Therefore, we choose this as the scale d in Eq. (6.3). For a constant &, C., and G, each
growth velocity V is associated with a fluid layer of thickness D/V, and we evaluate its stabil-

ity using Eq. (6.3). Therefore, we can examine the hydrodynamic stability of the diffusive

layer at all states V of the solidification system assuming a planar solid-liquid interface.
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In Fig. 6.2 we present the neutral curve (solid line) in the Ra-Rs plane, and the Rayleigh
and solute Rayleigh numbers (crosses) for a range of V, increasing from left to right. To the
left of the neutral curve the fluid layer is unstable and to the right it is stable. The cross-over
velocity, at which the layer is neutrally stable, is V¢ = 4.3 x 10 cm s™. The Rayleigh
number is proportional to G (D/V) and the solute Rayleigh number is proportional to
AC (D/VY. For constant G, at small growth velocities, Ra and Rs are large. Here, the sta-
bility of the layer is determined by the competition between the destabilizing solute field and
the stabilizing effect of viscosity. At growth velocities close to V. for morphological instabil-
ity, the magnitude of the solute Rayleigh number is large and instability prevails. At large
growth velocities Ra and Rs become smaller, Rs being the larger of the two. Here again, the
stability is determined by the competition between the stabilizing viscous forces and the desta-

bilizing solute field; the latter losing for V > V°.

Since both the solute and temperature fields have a destabilizing effect on the fiunid layer,
the behavior is more like that of a one component system. This is because the fluid density is
more sensitive to changes in the solute concentration than to changes in the temperature. Since
¥, > D, the solute field is the rate limiting factor in the hydrodynamic stability problem. In
the vicinity of V¢, Ra = 0(10°%), so the approximation Ra =0 is quite accurate (see Fig. 6.2).
Thus, Eq. (6.3) can be rewritten as Rs =~ 27 n* D/4 x;, = Rs®. This is a useful result since it
yields a cross-over point that depends only on the thermophysical parameters of the system.
For the salt water system, Rs¢ = - 2.66. This approximation allows a simple estimate of V° =
4.7 x 10™* cm s™!, which is within about nine percent of the previous result. The H,0-NaCl
system will be hydrodynamically stable for growth velocities V greater than about 5.0 x 107

cm s
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It is interesting to note that V¢ = 4.3 x 10~ cm s™ falls in the middle of the experimental
velocity range. It is possible that convection played some role in the formation of the sub-
structure in both the laboratory and field experiments, but there is no evidence of strong cou-
pling in the vicinity of V° (Fig. 3.1). If convection occurred at the lower velocities it should
have manifested itself as a larger scale interfacial morphology, such as the two-dimensional
rolls, rolls and polygons or hexagons observed in many systems (Davis 1990). However, the
authors report no such observations. Weakly coupled and time-periodic instabilities have been
predicted under some limited parameter ranges, but for most common materials studied it is
found that A, » A ™) (Davis 1990). Presently we mention two other situations of partic-

ular relevance to geophysical solidification.

Understanding the hydrodynamic interactions in solidification has obvious technological
benefits. If one can control the solute boundary layer, crystals with well defined properties can
be refined. This has been the impetus for studying the interaction of forced flows with a soli-
difying crystal (Davis 1990). It tums out that there is a geophysical phenomenon that lends
itself to similar analysis. If there is a persistent directional current under growing sea ice, the
substructure aligns perpendicular to the current direction (i.e., the c-axis is parallel to the
current direction). Weeks and Ackley (1986) review the present hypotheses of c-axis/current
alignment, from both field and laboratory studies. However, the answer must expose itself
when coupling the solidification equations with a forced flow and perturbing the system in two
horizontal dimensions. The suspicion is that the flow may mediate the directional selection of a
preferred mode, and that the morphological stability criterion of some modes will be unaffected

by the flow. This is the subject of future work.
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There is a larger scale phenomenon that is also relevant. At very high growth rates
some systems breakdown to form very deep grooves that undergo secondary and tertiary
instabilities. Eventually, a bed of deep dendrites, separated by distances of order their width,
will form. The interstices are filled with highly concentrated solution. This region of mixed
phase, sometimes called a *mushy zone’ has been studied in a variety of geophysical situa-
tions (reviewed by Huppert 1990). The mushy zone is characterized by a relatively low solid

fraction ¢, the volume of pure solid in a unit volume of mush.

Because the entire region is a mixture, it will solidify at a rate that is different from that
of a pure melt. Modeling the heat transfer through this layer as that through a material with
constant thermal conductivity and heat capacity may result in a poor estimate of the growth
rate (Huppert 1990). The approach is to treat the heat and mass transfer through the mixed
phase, and the small region of liquid adjacent to the mixed phase as a continuum. Therefore,
the basic ingredients are the diffusion fields through both phases averaged over a length scale

larger than the typical cell/dendrite spacing.

The diffusion fields in the liquid 7T,,C and the mixed phase T, of constant solid fraction
¢ are modeled with one-dimensional equations (Huppert 1990). The major modification is
that the thermophysical constants in the mixed phase vary as a function of ¢. As a first

approximation one writes

m =0 ks + (1 —9) Kz, 64)
and

(P C)m=¢(PC)s +(1_¢) (pc)La (605)

where k,, and (p ¢). are the thermal conductivity and specific heat of the the mixed phase.
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In the simplest model it is assumed that the solute concentration in the crystalline interstices
remains on the liquidus and that the density change upon solidification does not give rise to
convection in the interstices or the melt (Huppert 1990). Another important feature, particu-
larly relevant to sea ice work, is that the conservation of thermal energy and solute at the

mush-liquid interface, z = H (¢) are expressed as

L ¢ H, =kn Tz —kr Tps,s (6-6)

Hl (l_¢)c =-D st (6'7)
where the subscripts z, ¢ denote partial differentiation (cf., Egs. (2.6) and (2.7) with h = 0) .

It has been shown (Huppert, 1990) that a more sophisticated model which takes into
account that ¢ is not constant in the mixture phase (Worster, 1986) does not significantly
improve results. In addition, Worster (1986) showed that for systems in which x ¢ =10 x,
a model with constant solid fraction may yield better predictions. The ice - seawater system
system satisfies ¥ g =10 k. The mushy zone approach would be particularly useful in the
study of young sea ice that forms in an agitated environment, and contains a small solid frac-

tion.
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Fig. 6.1 A schematic of microscopic solute segregation. The solvent particles are labelled A
and the solute particle is B. The ordered solid is on the left and the particles 1,2,3,4,5
represent the monolayer adjacent to the solid-liquid interface. The nearest neighbor spacing is
ry = 1071° m, and the diffusive speed is D/ry =1 m s™\. For a cubic lattice, solute rejection
is interpreted in terms of the low energy arrangement of A-B-A bonds being say 60°. This
configuration is achieved more readily in the liquid. See section 6.1 for discussion. (adapted
from Aziz 1982).
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Fig. 6.2 The neutral curve (solid line) in the Ra-Rs plane, and the Rayleigh and solute
Rayleigh numbers (crosses) for a range of V, increasing from left to right. To the left of the
neutral curve the fluid layer is hydrodynamically unstable and to the right it is stable. The
cross-over velocity, at which the layer is neutrally stable, is V¢ = 4.3 x 10 cm s™. The
thermal and solute fields create an unstable density stratification in the fluid. At small growth
velocities, close to V, for morphological instability, the magnitude of the solute Rayleigh
number is large, and an instability, driven by the solute field, prevails over the stabilizing
effect of viscosity. At large growth velocities Ra and Rs become smaller, Rs being the larger
of the two. Here, the stability is determined by the competition between the stabilizing
viscous forces and the destabilizing solute field; the latter losing for V > V°.




CHAPTER 7

DISCUSSION

We have studied the system of equations governing the directional solidification of an
H,0-NaCl system. Linear and weakly non-linear perturbation theory reveals that, over a
wide range of growth conditions, the H,0-NaCl system is morphologically unstable. The
predictions of the theory are in good qualitative agreement with laboratory experiments on
this system and field experiments on naturally solidifying seawater. In section 3.1 we
focused on control parameters that are geophysically relevant, and consistent with conditions
typically found at the underside of growing sea ice in the Arctic Ocean. Under these condi-
tions there are approximately nine orders of magnitude between the critical point of instability
V., and absolute stability V,, for a fixed far-field solute concentration. This is shown in Fig.
3.1. Owing to the small value of the liquid temperature gradient used in this part of the
study, the range between V. and V, is many orders of magnitude larger than that found in
binary alloys. The implications are that for solidification of seawater in situations in which
the solidification system is applicable, a planar phase boundary will not be the stable growth
form. This explains the ubiquitous observations of platelet substructure in naturally occurring

sea ice.

Consistent with other investigators (Bennett and Brown 1989, and Merchant and Davis
1989b), we observe weak wavelength selection close to critical on the V(A ) neutral curve

(Fig. 3.1). This weak wavelength selection manifests itself as an extreme sensitivity of neu-
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tral wavelengths, near critical, to small changes in the interfacial velocity. This is a diagnostic
for the non-linear behavior of this system, and a result of the continuous dependence of the
nomal modes on wavenumber. This is due to the absence of horizontal boundary conditions.
The continuous dependence may be ‘artificially’ removed with the addition of a bifurcation
parameter such as the experimental cell width (see e.g., Haug 1987). This discretizes the
spectrum, leaving one with an arbitrary choice of interacting modes. The utility of a linear
theory may be improved if one can formulate the problem in a way that will predict a most
unstable wavepacket, rather than a single mode, as has been done in some hydrodynamic free

boundary problems (Drazin and Reid 1981).

It is important to bear in mind that the data plotted in Fig. 3.1 are from experiments that
measured the relationship between platelet spacing and mean growth velocity for a fully
developed cellular interface. The goal of these experiments was not to determine the critical
point of instability of a solidifying H,0-NaCl solution. In addition, in neither case is the
liquid temperature gradient known to any great degree of accuracy, and the role of convection
was not assessed. These data appear in the figure primarily to show that the theory, in this
regime, predicts the A « V12 scaling observed experimentally. This was discussed in section
3.3.3 where we derived this relation (Eq. 3.29). Therefore, we should not interpret these
experiments as validating or invalidating the theory for this system. Rather, the behavior of
the theory should motivate careful experiments on H,O-NaCl. For geophysical parameters, a
careful laboratory experiment could assess the extent to which the system undergoes a sub-
critical bifurcation at critical, and shed light on the wavelength selection mechanism. Con-
vection in the melt can be studied using interferometry. In terms of a model system, experi-

ments with liquid temperature gradients from 10 to 100 K cm™, and solute concentrations
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from 30 to 0.03 ppt will result in an interface that is unstable over about 3 to 4 orders of
magnitude in velocity. This smaller range would allow direct observation, greater scrutiny of
the stability boundaries, and detailed study of the role of kinetics and the orientational depen-
dence of surface tension. For growth of ice cylinders, parallel to the c-axis, into very low
concentration salt solution, some experiments have been performed (e.g., Hardy and Coriell,

1973), but none to investigate the situation that has been the focus here.

The range of instability is decreased as the liquid temperature gradient increases. How-
ever, this is not a control parameter in natural solidification (Wettlaufer et al., 1990,
Wettlaufer 1991). We examined this sensitivity in section 3.2. It was found that if we use a
liquid temperature gradient of 200 K cm™ (common for metal alloys, Coriell et al. 1985), V.
increases to about 10~ cm s™ and V, is unchanged. Since the absolute stability criterion
does not depend on the liquid temperature gradient, we find that increasing this gradient
decreases the range of instability by delaying its onset to higher velocities (see Fig. 3.2).
When increasing the temperature gradient, the predicted range of substructure from A . to
A 4, decreases by about four orders of magnitude. Desalination through freezing may be
practically impossible unless the interface can be stablilized by utilizing the
convective/advective transport of solute, or by increasing the liquid temperature gradient to
what appears to be inaccessibly large values. Laser annealing techniques may be helpful in
this regard. The stabilization will eliminate the trapping of highly concentrated fluid in the
ice matrix. If large temperature gradients can be maintained uniformly over a large area,

growth rates of about 0.1 to 10 cm day™ may allow the formation of relatively fresh ice.



110

In section 3.3 we investigated long-wave behavior close to the critical point of instabil-
ity and at absolute stability. By transforming the neutral curves of Sivishinsky (1983) and
Brattkus and Davis (1988) into dimensional variables, we found the following velocity-
wavelength scaling relationship (Eq. 3.25): A = A) =C (V = Vo), where n = 1/2, (A.,Vs) is
an extreme pdint, and C is a constant. In a short-wave approximation, for velocity values in
the range of the experiments, we found the relationship (Eq. 3.29): A=S; V-'2, where §, is a
constant. This is consistent with the data for this system and qualitatively the same as that

found in other systems (section 3.3.4).

Consistent with the predictions of the local theory of Sivashinsky (1983), when we
decrease the value of k, the value of A . increases. The neutral cﬁrve is parabolic very close
to critical, but exhibits a winged cusp shape for a larger range of velocity (Fig. 3.3). The
value of V, for this k is not consistent with the use of a continuum theory since it predicts
‘velocities® of fractions of a molecular layer per second. Thus, caution must be exercised

when one interprets the results of a local, asymptotic theory of this type.

In section 3.4 we investigated the V(C..) neutral curve by applying a Landau type of
weakly non-linear analysis to the solidification equations. This showed that the transition to
cells will occur through a subcritical bifurcation, so finite amplitude substructure will appear
suddenly as V — V,~. These results are shown in Figure 34. In agreement with alloy and
transparent organic systems (Merchant and Davis 1989a, and Alexander et al, 1986), we find
that as n — 1*, the range of subcritical bifurcation is suppressed. This limit corresponds to
the steepening of the thermal gradient in the solid and does not affect the results of the linear

theory. This has been pointed out p'reviously, (Alexander et al., 1986) but no physical expla-
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nation was provided. By ascribing large amplitude interface deflections to the case of sub-
critical bifurcation, close to critical, we posited an explanation for why the steepening gra-
dient has a stabilizing effect that is length scale dependent. The relative effect increases with
the size difference between small (infinitesimal) and large (finite amplitude) perturbations. A
somewhat heuristic physical argument ascribed the underlying scale difference to a difference
between the undercooling 8T, felt by a disturbance as a result of the gradient steepening, and
the critical undercooling 8T°- necessary to freeze the region of liquid created by the distur-
bance. There is a crossover at which 8T = 8T°, so that if 8T » 86T°, (8T <« 8T" ), the planar
interface will be stable (unstable) to perturbations with amplitude A > R*. (A «R®.), where
the R* aré the critical radii of nucleation. Finite amplitude disturbances have A > R",. This
is offered as an explanation for the suppression of subcritical (finite amplitude) bifurcations

while the linear results remain unaffected in this limit.

The non-linear extension of this approach is a spatially resonant theory which allows
several modes to interact that are not restricted in the horizontal. The Landau approach, as
presented here, only permits the investigation of the non-linear interaction of the most
unstable mode with itself. The subject of future work is to investigate the non-linear interac-
tion of a triad of incommensurate modes. This may allow us to identify the non-linear
interactions responsible for the subcritical bifurcation identified near critical. The method will

be that derived by Mourad (1987).

In the fourth chapter we compared the linear theory based on solute diffusion scales
with that based on velocity independent scales derived by Merchant and Davis (1989b). Fig-

ure 4.1 shows that the qualitative behavior is similar over the whole range of instability. Both
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theories exhibit weak wavelength selection, but it is more pronounced in the dimensionless
neutral plane of the latter theory V,u (1 ). The dependence of the dimensionless velocity
V.. on the underlying physical velocity V results in a neutral curve that is flatter than that in

the M (R) plane. This is shown in Figure 4.2.

To obtain velocity independent length and time scales, the assumption of negligible cur-
vature in the liquid thermal field close to the interface must be valid. The violation of this
condition is not severe in the SCN-acetone system to which the theory was first applied
(Merchant and Davis 1989b), but we showed that this was not the case for the H,0-NaCl and
Al-Cu systems. Due to the presence of thermal curvature, predictions at rapid solidification
rates are not valid for the two latter systems. However, there are other effects, such as none-
quilibrium thermodynamics and attachment kinetics, which will also obscure the predictions

near absolute stability, regardless of the scalings chosen.

Some mathematical observations were presented in the fifth chapter. We performed an
equivalence transformation of the bifurcation problem for g (Eq. 5.1) to one that is a univer-
sal unfolding of a cuspoid normal form N = x™, where m = 3. When viewed as a two-
parameter unfolding f,, of N, the neutral solution surface F, is the folded cusp surface
which arises in the study of a variety of physical systems (Poston and Stewart 1978,
Thomdike et al. 1978, Golubitsky and Schaeffer 1985). This is shown in Fig 5.1. This
differs from what Haug (1987) has found, since he used the cell width as a bifurcation
parameter, discretizing the normal modes of the frozen-field solidification equations. The
solution of the solidification problem investigated here is equivalent to the solution of the

bifurcation problem for the one-parameter unfolding of N, Eq. (5.2). This results in a neutral
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solution trajectory F in the neutral solution surface F,. There is an infinite set of degenerate
points of the unfolding f,, which form the bifurcation set S defined by the semicubical para-
bola (Eq. 5.4). Along § the nature and number of the real solutions to Eq. (5.3) change (Fig.
5.1). A neutral stability plane is drawn in terms of control parameters or observables by pro-
jecting the surface F, and F n F, onto the plane T(4,B) (Fig. 5.2). We showed that if the
neutral solution trajectory enters and exits the right-hand nappe §, of the bifurcation set §,
then the neutral curve will be closed. Examples of two different open curves and a closed

curve that result from three paths through § are given in Fig. 5.3.

We showed that the weak wavelength selection problem for theoretical predictions near
critical can be bypassed by studying the structure of F N F,. This is due to the underlying
velocity dependence of the controls o and B . The neutral curve in the o - x plane is rela-
tively sharper close to critical. These neutral curves are shown in Fig. 5.4. However, this is
merely a surgical bypass of the underlying problem of a linear theory of this type, and we

suggested possible solutions in previous chapters.

Combined, the following properties account for the wavelength selection predicted in
the standard neutral curves. First, the critical bifurcation point occurs on a part of the upper
fold that has very little curvature. Second, in the region very close to the critical bifurcation
point, the trajectory is approximately tangent to the fold, or the right hand nappe §, of the
bifurcation set. The latter behavior points to weak wavelength selection as being due to the
presence of higher order degeneracy near critical. The extent to which this selection mechan-
ism has a real physical origin, or is an artifact of the theory, may be addressed by unfolding

the singularity at critical. We plan to pursue this in the future. The fact that nature has no
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difficulty choosing a scale, points to a theoretical flaw, suggesting that the same conceptual

problems haunting transitions in fields from turbulence to magnetism, are here too.

In the sixth chapter, we examined the physical basis for solute segregation for planar
and nonplanar interface geometries. This revealed two mechanisms of solute trapping;
microscopic and macroscopic, both of which can act simultaneously. This subject led to the

consideration of the hydrodynamic stability of the fluid layer adjacent to the interface. We

discussed volume-change convection, buoyancy-driven convection, forced flows, and the for-

mation of mixed phases.

Treatments that couple the solidification equations to a momentum equation find
bouyancy driven convection in the fluid layer of thickness D/V, adjacent to the interface
(Davis 1990). It is found that, for most materials studied, the convective (C) instabilities are
essentially uncoupled from the morphological (M) instabilities, so that at critical A, >
A.*). We chose a less complicated approach to this problem. In section 6.2, we adapted
the neutral curve (Eq. 6.3), from Tumer’s (1973) analytic solution to the problem of double-
diffusive convection, to the solidification problem. We based the length scale of Rayleigh Ra,
and solute Rayleigh Rs, numbers on the solute boundary layer thickness D/V. It was found
that the solute field drove an instability for V <V,, where V¢ = 43 x 10 cm s™. At
V >V,, viscous forces retard the solute driven instability and the fluid layer is stable. These
results were presented in Fig. 6.2. The cross-over velocity V¢, at which the layer is hydro-
dynamically neutrally stable, lies in the middle of the experimental velocity range (cf., Fig.
3.1). We find no experimental evidence of strong coupling between morphological and con-

vective modes. Increasing the liquid temperature gradient has a stabilizing affect on both
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morphological and double-diffusive instabilities. It is interesting to note that when we chose
a liquid temperature gradient of 200 K cm™, the value of V, was of order 10 cm s™, and
Ve =V, for a temperature gradient two orders of magnitude smaller. We suspect that the
cross-over V¢ would be much lower at this high temperature gradient. Thus, the system can

be stabilized with respect to both mechanisms of instability.

In section 6.2 we briefly discussed the coupling of forced flows with the solidification
system as a paradigm for the c-axis/current alignment problem observed in field and labora-
tory studies. We also outlined the theory for heat and mass transfer in a mixed phase and its

potential for application to sea ice problems.

In terms of other applications, it should be noted that acoustical scattering from the
interface is sensitive to the presence of cellular substructure (Stanton et al., 1986). Because it
appears that ihe cell depth and spacing are critical factors in the determination of the scatter-
ing properties of the material, the results presented here will be of use to researchers in this

field of acoustics.

It is natural to think that the interface might move in a manner that optimizes some
quantity, say growth rate, or entropy production. Langer (1987) has pointed out that no such
variational formulation exists for the symmetric solidification problem. Efforts to find some
free-energy-like functional that is minimized have not been successful, and he does not think
that onec exists. Real physical systems operate in such a narrow range of wavelength that it is
hard to believe that such an explanation does not exist. Other possible approaches to this
problem are the Cahn-Hilliard formulation (outlined in Elbaum and Wettlaufer 1991), numeri-

cal simulations of the solidification equation themselves, Monte Carlo methods and diffusion
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limited aggregation.

The long standing problems with linear stability theories and their weakly non-linear
counterparts are in full evidence here. The lack of good experimental data for the H,O-NaCl
system, close to critical, precludes a thorough judgement of the linear theory results. The
analysis presented here shows that the range of instability may be controlled in a laboratory
setting, and the degree to which the bifurcation to cells is subcritical can be accurately
assessed. The entire growth range of naturally occurring sea ice is unstable to a broad band
of wavelengths. Thus, under normal conditions, we will always find substructure at the
underside of growing sea ice. The presence of substructure, on scales of centimeters or less,
is due to morpological instabilities. Since transparency has been the impetus to study sys-
tems such as SCN-acetone, it is hoped that the transparency of the H,O-NaCl system would
stimulate experiments with this material. Understanding the behavior of aqueous solutions,
near phase transitions, has an aesthetic appeal, and biological, chemical, technological, physi-

cal, geophysical, and astrophysical implications.
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APPENDIX

NOMENCLATURE, PARAMETERS,
AND VALUES OF THE THERMOPHYSICAL CONSTANTS

Here we record for convenience, the main parameters and values of the thermophysical
constants relevant to the H,0O-NaCl system.

14 constant velocity of the planar interface in m s™

6=0,+i ¢; the dimensionless complex perturbation growth rate.

a the dimensionless perturbation wavenumber.

R a dimensionless wavenumber parameter; (1/4 +a®+c)"2-1/2, where
R =R(c=0)

A the dimensionless wavelength of the perturbation.

A the dimensional wavelength of the perturbation.

T, the bulk melting temperature of the pure ice, 273.16 K.

T, (T5) dimensional temperature in the liquid (solid) in K.

T, (T's) dimensional temperature in the liquid (solid) measured relative to T, €.8.,
TL=T"L ~T,.
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KL (Ks)

DIV,DIV?
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dimensionless temperature in the liquid (solid).
dimensional solute concentration in the liquid in parts per thousand; ppt.

dimensionless solute concentration in the liquid.

k.
the ratio of the thermal conductivity of the solid s to the liquid /, k—' =
1
3.572. (see e.g., Jamieson and Tudhope, 1970)

thermal diffusion coefficient in the liquid (solid) with a value of 1.37 x 1077
m2s™ (1.09 x 10 m2s™)

heat capacity of ice at constant pressure; 2.05 x 10° J kg K.
heat capacity of water at constant pressure; 4.22 x 10° J kg™ K™,
the latent heat of fusion per unit volume, 3.063 x 10® J m™3.

the diffusion coefficient of solute in water, 5.546 x 107° m? s,
the length and time scales used for nondimensionalization.

the solid-liquid interfacial surface tension, 33.0 x 1073 J m™2,

the segregation coefficient which is the ratio of the solute in the solid to that
in the liquid. The range is from 0.003 to 0.30, the lowest value is the equili-
brium value measured at very low solute concentration by Gross et al.
(1987).
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8,

Crma®
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the slope of the liquidus line on the phase diagram (see Fig. 14). m = -
0.0548 K ppt ~* (Fujino et al., 1974).

dimensional temperature gradient in the liquid, ranging from 3.57 to 3.57 x
10° K m™,

2GL +L Vik

average temperature gradient at the interface; a+m

Cuk-1V
steady state dimensional solute gradient at the interface; n D( T ) pPpt

m™.

G,
the morphological number, a dimensionless control variable; mG_‘ The
typical range is from 1 to 100.

the surface energy parameter, a dimensionless control variable;
T.YkV

LDmCo(k-1)"

The typical range is from about 107! to 3.

the length scale used by Merchant and Davis (1989b); ( ¥ T,, / L G, )2

the time scale used by Merchant and Davis (1989b); v T,, /L G, D.

the dimg,nsionless control velocity used by Merchant and Davis (1989b);
YTn V

L G, D*

the dimensionless solute parameter used by Merchant and Davis (1989b);
m? (k- 1)L C..

k*GL YT
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the dirgengionless latent heat parameter used by Merchant énd Davis (1989b);
L°D
kl 2 GL' Tm Y

the chemical potential per mole of the liquid (solid) in J mole™.
crystal volume in m.
molar volume of crystal in m® mole™.

the average curvature of an interface in m™.
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