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Payunia region of Argentina near 36.5S

Aurora Iris Burd

Chair of the Supervisory Committee:

Professor John R. Booker

Earth & Space Sciences Department

I present a three-dimensional (3D) interpretation of long period magnetotelluric

sites: 117 from 31 – 35 S and 37 from 35 – 38 S in western Argentina. The first field

area covers the most horizontal part of the Pampean shallow angle subduction of the

Nazca slab and extends south into the more steeply dipping region. The second field

area covers the < 2 Ma Payunia Basaltic Province (PBP). Data from each area were

used in 3D Non-Linear Conjugate Gradient inversions.

Three electrically conductive plumes occur at different locations in the crust and

upper mantle:

• A plume east of the horizontal Nazca slab rises from near the top of the mantle

transition zone at 410 km, through the extrapolated location of the Nazca slab,

and extends to the probable base of the lithosphere at 100 km depth.

• A westward dipping plume beneath the PBP rises from roughly 130 km depth to

within 7 km of the surface, with two “tendrils” approaching the surface beneath

the Caldera Payún Matrú & the Volcán Trómen. These regions have volcanism





younger than 0.1 Ma with some volcanism possibly within the last 7000 years.

This plume remains above the subducted Nazca slab.

• An eastward dipping plume rises from at least 410 km depth to within 5 km of

the surface while remaining above the subducted Nazca slab, with its shallowest

portion beneath the southern region of the PBP, which has no volcanism younger

than ∼ 0.8 Ma.

Model assessment via both forward modeling and additional inversion tested the

veracity of these features.

I interpret the plume near the horizontal Nazca slab as an indication of a slab

“window” in the Nazca slab – stress within the slab and seismic tomography support

the likelihood of a slab window in this location. I propose that the two plumes beneath

the Payunia Basaltic Province were previously a single structure, but the resurgence

of mantle shear flow following steepening of a middle to late Miocene shallow slab

caused the original plume to be pulled north-westward and eventually “decapitated”

to form the two present-day plumes. The west-ward dipping plume likely represents

the source of much of the recent Payunia Basaltic Province volcanism.
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angles, Caldera Payún Matrú as a magenta circle, and contours of
subducted slab (after Burd et al. [2013]) in black, with uncertain slab
locations indicated with dashed black lines. (b) Payunia region, show-
ing MT sites as green diamonds, active Andean Southern Volcanic Zone
volcanoes as black triangles, Caldera Payún Matrú as a magenta cir-
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Chapter 1

INTRODUCTION

This dissertation is formed from two papers, “Electrical conductivity of the Pam-

pean Shallow Subduction Region of Argentina near 33 S: evidence for a slab window”

(Geochemistry, Geophysics, Geosystems, in press) and “Three-dimensional electrical

conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean

back-arc of Argentina near 36.5 S” (Geophysical Journal International, in prepara-

tion). The “Pampean Shallow Subduction” paper forms the second chapter of my

dissertation, while the “Payún Matrú” paper forms the third chapter.

Each paper uses a very large set of magnetotelluric (MT) data. I developed several

techniques to facilitate assessment of data misfit, model dimensionality, and model

veracity for these extremely large data sets. These techniques included:

• Creation of “polka dot plots” displaying a given data component for each site at

each period used in the inversion. Polka dot plots eased the difficulties associated

with displaying irregularly-spaced data at multiple periods.

Polka dot plots of “normalized phase tensor skew angle” ψ indicate data

dimensionality (Fig. 2.2).

Polka dot plots of nRMS allowed assessment of data misfit (Fig. 2.5).

• Testing the veracity of a 3D structure through two different techniques: (1)

by removing the structure from the model and generating new predicted data

(the “forward” test) and (2) by removing the structure from the model and

allowing the inversion to iterate to convergence (the “inverse” test) – but with
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the removed structure forbidden to return. The results of the forward and

inverse tests were assessed using:

Polka dot plots of nRMS/nRMS0, which examine the ability of the model

to fit the data when a particular 3D feature is removed from the original model

(Fig. 2.6).

Polka dot plots of “absolute change in normalized phase tensor skew angle

relative to its estimated error” |ψ−ψ0|/σ, which show the change in dimension-

ality of the model when a particular 3D feature is removed from the original

model (Fig. 2.7).

The first paper presents a three-dimensional (3D) interpretation of 117 long period

(20 to 4096 s) MT sites between 31 S and 35 S in western Argentina. The MT sites

cover the most horizontal part of the Pampean shallow angle subduction of the Nazca

Plate and extend south into the more steeply dipping region. Sixty-two 3D inversions

using various smoothing parameters and data misfits were done with a Non-Linear

Conjugate Gradient (NLCG) algorithm. A dominant feature of the mantle structure

east of the horizontal slab is a conductive plume rising from near the top of the mantle

transition zone at 410 km to the probable base of the lithosphere at 100 km depth.

The subducted slab is known to descend to 190 km just west of the plume, but the

Wadati-Benioff zone cannot be traced deeper. If the slab is extrapolated down-dip

it slices through the plume at 250 km depth. Removal of portions of the plume

or blocking vertical current flow at 250 km depth significantly change the predicted

responses. This argues that the plume is not an artifact and that it is continuous.

The simplest explanation is that there is a “wedge”-shaped slab window that has

torn laterally and opens down to the east with its apex at the plume location. Stress

within the slab and seismic tomography support this shape. Its northern edge likely

explains why there is no deep seismicity south of 29 S.

The second paper presents a 3D interpretation of 37 long period (20 to 5120 s)
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MT sites between 35 S and 38 S beneath the < 2 Ma Payunia Basaltic Province,

which covers ∼39,500 km2 with primarily basaltic intraplate volcanism. This back-arc

igneous province is the result of extension due to trench roll-back following steepening

of a flat slab that existed in the middle to late Miocene. These data, which require

significantly 3D structure, were used in a 3D non-linear conjugate gradient inversion. I

identify two significant electrically conductive structures. One approaches the surface

beneath the Caldera Payún Matrú & the Volcán Trómen and dips westward toward the

subducted Nazca slab. The second approaches the surface ∼100 km to the southeast

and dips steeply east to 400 km depth while remaining above the subducted Nazca

slab. I used a variety of model assessment techniques including both forward modeling

and additional inversion to test the veracity of these features. I interpret the first

structure as the source of the < 2 Ma intraplate volcanism. My inversion model

assessment suggests that the shallow structure does not need to connect to the Nazca

slab. This is compatible with the lack of recent arc signature magmatism near Payún

Matrú. The two structures are electrically connected only in the shallow crust, which

is likely due to the Neuquén sedimentary basin and not a magmatic process. I propose

that the two structures may have been more robustly connected in the past, but that

the deeper structure was decapitated to form the shallower structure when shallow

north-westward mantle flow resumed during steepening of the slab. The ∼2 Ma

basaltic volcanism results from the shallow structure’s magma that had ponded below

the crust until extension allowed eruption. The westward dipping portion of the

shallow structure is interpreted as mantle shear in the renewed mantle corner flow –

this explains why the shallow structure can appear connected to the Nazca slab near

130 km depth, yet there is no recent arc-signature magma in this region.
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Chapter 2

ELECTRICAL CONDUCTIVITY OF THE
PAMPEAN SHALLOW SUBDUCTION REGION

OF ARGENTINA NEAR 33 S:
EVIDENCE FOR A SLAB WINDOW

2.1 Authors

• Aurora I. Burd and John R. Booker, Department of Earth & Space Sciences,

University of Washington, Seattle, Washington, USA.

• Randall L. Mackie, Land General Geophysics, CGG, Milan, Italy.

• M. Cristina Pomposiello and Alicia Favetto, Instituto de Geocronoloǵıa y Ge-

oloǵıa Isotoṕıca, Universidad de Buenos Aires, CONICET, Buenos Aires, Ar-

gentina.

2.2 Publication Information & Note

The text in this chapter has been accepted to Geochemistry, Geophysics, Geosystems

pending minor revisions. The manuscript number is 2013GC004732.

The Appendix of this paper is included in this chapter because it is an integral

part of the paper, however it is primarily the work of John R. Booker.

2.3 Abstract

We present a three-dimensional (3D) interpretation of 117 long period (20 to 4096 s)

magnetotelluric (MT) sites between 31o S and 35o S in western Argentina. They

cover the most horizontal part of the Pampean shallow angle subduction of the Nazca
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Plate and extend south into the more steeply dipping region. Sixty-two 3D inversions

using various smoothing parameters and data misfits were done with a Non-Linear

Conjugate Gradient (NLCG) algorithm. A dominant feature of the mantle structure

east of the horizontal slab is a conductive plume rising from near the top of the mantle

transition zone at 410 km to the probable base of the lithosphere at 100 km depth.

The subducted slab is known to descend to 190 km just west of the plume, but the

Wadati-Benioff zone cannot be traced deeper. If the slab is extrapolated down-dip

it slices through the plume at 250 km depth. Removal of portions of the plume

or blocking vertical current flow at 250 km depth significantly change the predicted

responses. This argues that the plume is not an artifact and that it is continuous.

The simplest explanation is that there is a “wedge”-shaped slab window that has

torn laterally and opens down to the east with its apex at the plume location. Stress

within the slab and seismic tomography support this shape. Its northern edge likely

explains why there is no deep seismicity south of 29o S.

2.4 Introduction

The subducted Nazca slab beneath Chile and western Argentina, near 31.5o S, levels

out at about 100 km depth and then dips more steeply into the mantle several hundred

km to the east [Anderson et al., 2007; Cahill and Isacks , 1992; Linkimer Abarca, 2011].

While deep earthquakes north of 29o S locate the slab to a depth exceeding 600 km, the

Pampean shallow subduction region does not appear to have any Wadati-Benioff zone

earthquakes deeper than 195 km [International Seismological Centre, EHB Bulletin,

2010]. The flat slab prevents formation of an asthenospheric wedge under the Andes

and consequently there are no active volcanoes. South of 33.3o S in the Andean

Southern Volcanic Zone (SVZ), the slab steepens to 36o [Pesicek et al., 2012], an

asthenospheric wedge forms and there are active volcanoes. The prevailing view is

that the Nazca slab is warped continuously between its flat and dipping segments.

For a concise review of Pampean Shallow Subduction, see Ramos [2009].
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The resistive crust of the Pampean region permits long period magnetotelluric data

to image conductivity at depths of 300 km or more [Booker et al., 2004], and suggests

the slab dips steeply at the same longitude as the deep earthquakes north of 29o S.

However, the robust result of Booker et al. [2004] is that there is vertical current flow

at this location and hence a vertical conductor. Identification of this conductor with

the slab location rests on its coincidence with southward extrapolation of the very

deep earthquakes and the suggestion that the vertical current path is a consequence

of penetration of the slab into the transition zone. Thus the location (or even the

existence) of the flat Nazca slab after it descends below 200 km is uncertain.

2.5 Methods

The magnetotelluric (MT) method uses passively recorded electric and magnetic field

data at Earth’s surface to probe electrical conductivity below Earth’s surface. Elec-

trical conductivity (with units of Siemens per meter) is strongly sensitive to changes

in phase (which depends on temperature and pressure), water content, and melt frac-

tion, but between roughly 100 and 400 km depth, elevated conductivity of upper

mantle minerals are more likely the result of partial melt or other interconnected

fluids than hydrous minerals [Yoshino et al., 2009]. Because conductivity at upper

mantle conditions is << 1, it is usual to use its reciprocal, resistivity (with units of

Ohm-m).

From 2000 to 2009, we collected more than 200 MT sites across Argentina, of

which 117 between latitudes 29o S and 35o S were used for this study (see Figure 2.1).

Analysis of 36 additional sites south of 35o S is in Burd (manuscript in preparation,

2013). Each site consists of 5 to 15 days of horizontal electric field (E, in units of

mV/km) and 3-component magnetic field (H, in units of nT) time-series sampled at

0.25 s with Narod Intelligent Magnetotelluric Systems (NIMS) or at 5 s with Long-

period Intelligent Magnetotelluric Systems (LIMS). The electric field dipoles used

Pb-PbCl2 electrodes [Petiau, 2000].
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Time-series data were processed using the robust multi-station algorithm of Egbert

[1997] to determine the MT impedence tensor Z and the vertical to horizontal mag-

netic field transfer function W, which is also known as the induction vector. These

complex frequency-domain transfer functions between the components of the electric

and magnetic fields can be written:

 Ex

Ey

 =

 Zxx Zxy

Zyx Zyy


 Hx

Hy

 (2.1)

[
Hz

]
=
[
Wx Wy

]  Hx

Hy

 (2.2)

Each of the elements of Z and W in Equations (2.1) and (2.2) has a real and imaginary

part, or equivalently, a phase and magnitude. For the impedance tensor, the phases

of the impedence elements are defined as

φij = tan−1

(
Im(Zij)

Re(Zij)

)
(2.3)

and the magnitudes are commonly converted to apparent resistivities

ρa,ij = 0.2T |Zij|2 (2.4)

where T is the period in seconds. The units of ρa are Ohm-m when the units of

Zij are (mV/km)/nT . All data were processed identically so that they are directly

comparable. These data are available through the IRIS Data Management System,

Seattle, Washington.

A major step forward in MT interpretation was the realization that Z can be dis-

torted by un-resolvable small scale structure. When this distortion is due to electric

charge that is in-phase with the larger scale “regional” electric field, it is termed static

or Galvanic and is a common problem. When the distortion is frequency indepen-

dent and the regional structure is two-dimensional (2D) it is possible to extract an
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estimate of the undistorted regional impedance using techniques that have come to

be called “impedance tensor decomposition” [Bahr , 1988; Groom and Bailey , 1989;

Jones , 2012]. However, when the regional structure is not strictly 2D, tensor decom-

position becomes an invalid statistical model because it cannot fit noise-free measured

data [Caldwell et al., 2004; Booker , 2013].

To avoid this fundamental issue, Caldwell et al. [2004] introduced the impedance

“phase tensor”

Φ = (Re(Z))−1 Im(Z) =

 Φxx Φxy

Φyx Φyy

 (2.5)

=R−1(θ)

 Φa 0

0 Φb

R(ψ)R(θ) (2.6)

which is un-affected by static distortion and makes no assumptions about the di-

mensionality of the regional structure. The parameterization (2.6) is related to the

geometry of the “phase tensor ellipse” that results when Φ multiplies the unit circle

[Caldwell et al., 2004; Booker , 2013]. R is the unitary matrix that rotates Cartesian

coordinates through an angle, θ is the direction of one of the axes of the ellipse, |Φa|

and |Φb| are the lengths of the ellipse semi-axes and

ψ = tan−1

(
Φxy − Φyx

Φxx + Φyy

)
(2.7)

is the “normalized phase tensor skew angle”. ψ is rotationally invariant and can be

computed in any coordinate system. (Note that ψ is twice the skew angle β defined

by Caldwell et al. [2004]).

If the regional structure is 2D, ψ must be zero and the principle phases φa =

tan−1(Φa) and φb = tan−1(Φb) equal the phases of the off-diagonal elements of Z in

the coordinate system aligned with the ellipse axes (i.e. the strike). In that coordinate

system the diagonal elements of the 2D regional Z are 0. If ψ is not zero, the regional

structure must be 3D. If |ψ| = 6o, the diagonal elements of regional Z in ellipse-aligned
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coordinates are 10% of the off-diagonal elements [Booker , 2013]. Thus |ψ| > 6o is a

good working criterion for concluding that the data must be 3D. |ψ| < 6o can be

considered “quasi-2D”, but may still be 3D.

Booker et al. [2004] analyzed a subset of eighteen of our sites shown as magenta

squares in Figure 2.1. They used a 2D non-linear conjugate gradient (NLCG) mini-

mum structure inversion [Rodi and Mackie, 2001]. However, Figure 2.2 also shows ψ

at all periods at our 117 sites. Data that meet the quasi-2D criterion of |ψ| < 6o are

colored green. It is quite obvious that the data are significantly 3D at most sites and

all periods and that deviation from 2D behavior is quite large along the western half

of the profile used by Booker et al. [2004].

Z and W have six complex elements. Their real and imaginary parts constitute

twelve responses, which are sensitive to different aspects of resistivity structure. We

directly invert the real and imaginary parts of Zxx, Zyy, Wx and Wy. However, instead

of directly inverting the real and imaginary parts of the off-diagonal elements Zxy and

Zyx, we use their phases and the natural logs of their magnitudes. All twelve inverted

responses are in the coordinate system with x = true north and y = true east.

We invert the data using a 3D NLCG minimum structure algorithm (based on

Mackie et al. [2001]) which seeks a model that minimizes an objective function,

S = χ2 + τR(m) (2.8)

where τ is a trade-off parameter, R(m) is a measure of model “roughness” and

χ2 =
N∑
i=1

r2i
σ2
i

(2.9)

is a measure of data misfit. The r2i are the square of the data residuals (e.g. predicted

values – observed values), σ2
i are the variances, and N is the number of data. The

trade-off parameter τ was adjusted between inversion runs in order to minimize S

while keeping χ2 and τR(m) of similar order of magnitude so that neither is overly
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important. This results in the model that is smoothest (i.e. has least complicated

structure) for a given misfit. More complicated models may fit the data equally well

but their additional features are not required.

Our algorithm uses weighted least squares. Data with error estimates σi smaller

than a threshold called the “error floor” are weighted equally while data with larger

error estimates are down-weighted. This weighting scheme is implemented by increas-

ing estimated uncertainties below the error floor up to the floor. Henceforth, σ refers

to estimated data error after the error floors have been applied.

Instead of χ2 it is common to give the “normalized RMS”,

nRMS =

√
χ2

N
(2.10)

as the misfit measure because it would be 1.0 if each datum had a misfit equal to its

estimated error.

Roughness R(m) can be defined as the square of the Laplacian of the model,

averaged over the model. However, because spatial resolution decreases with depth

due to the diffusive physics of MT, we modify this definition so that the structure

penalty in all spatial directions increases with depth. Making x, y, and z increase

logarithmically rather than linearly with depth, a three-dimensional version of the

argument of Smith and Booker [1991] shows that

R(m) =
∫
model

[
fx
∂2m

∂x2
+ fy

∂2m

∂y2
+
∂2m

∂z2

]2
(z + z0) dxdydz (2.11)

The small scale z0 prevents the structure penalty from becoming zero at Earth’s

surface. The weighting functions

fx = MAX
(

1.0,
∆xi
∆zk

)
(2.12)

fy = MAX
(

1.0,
∆yi
∆zk

)
(2.13)
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compensate for variable horizontal block widths near the surface, where ∆xi and ∆yi

are horizontal block widths in the model and ∆zk is the thickness of each block.

∆xi/∆zk and ∆yi/∆zk are the block aspect ratios. The weighting functions also

account for the large aspect ratios of near-surface blocks that lead to high horizontal

roughness.

All models terminate in a 3 Ohm-m half-space deeper than 660 km. A deep

resistivity of this order is widely accepted based on mantle conditions and minerals

[Xu et al., 2000]. In some of our inversions, a “tear” is added at 410 km depth, at

which the smoothing is not enforced. This discontinuity allows assessment of the

degree to which this bottom half-space has been smoothed upwards into the rest of

the model, as well as whether the data are sensitive to structure below the depth of

the tear.

Furthermore, Xu et al. [1998] find the phase change from olivine to ringwoodite

and wadsleyite (which occurs at roughly 410 km depth) corresponds to a two order

of magnitude decrease in resistivity. Yoshino [2010] also documents a decrease in

resistivity of at least an order of magnitude at 410 km. Thus there is a geophysical

reason to permit a resistivity jump at 410 km.

The inversions include electrically conductive oceans. The importance of the Pa-

cific Ocean in 2D inversions of our data was shown by Booker et al. [2005] and the im-

portance of both Pacific and Atlantic Oceans in 3D is discussed by Burd (manuscript

in preparation, 2013). In order to keep the mesh size relatively small while accurately

modeling the effect of ocean bathymetry, we used an ocean of constant depth but

varying electrical conductance. (Conductance [Siemens] = layer thickness [m] ÷ elec-

trical resistivity [Ohm-m].) This layer has high resistivity when the water is shallow,

and low resistivity when the water is deep. The ocean layers and the discontinuity

between land and water are excluded from the R(m) computation.
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Figure 2.1: MT Site locations on a topographic map of South America, with slab con-
tours from Appendix A. The green diamonds are MT sites, magenta squares are MT
sites used in both this paper and Booker et al. [2004], black triangles are geologically
young Southern and Central Volcanic Zone volcanoes, and the dashed gray line is the
subducted Juan Fernandez Ridge (JFzR).
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Figure 2.2: Plots of normalized phase tensor skew angle, ψ, for most sites, at each
period used in the inversion (some of the Eastern-most sites have been cropped from
these images). |ψ| < 6o is compatible with 2D interpretation (shown in green in this
figure), so most sites are clearly significantly 3D. Small boxes labelled 2004 are sites
used in Booker et al. [2004].
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2.6 Results

Sixty-two inversions were done using a range of periods, misfit goals, error thresholds,

and structure penalty parameters. In order to compare models computed in different

ways against each other, forward calculations were made for all models using the

same R(m), the same six periods from 20 s to 4096 s, and the same error thresholds:

2% for |Zxy| and |Zyx| (equivalent to 1.2o for φxy and φyx and 4% for the apparent

resistivities). The error thresholds for the real and imaginary parts of Zxx are equal

to the absolute error threshold of |Zxy|, similarly for Zyy and |Zyx|.

nRMS and roughness values computed in this way are compared for three inver-

sions in Table 2.1. Each of these inversions was iterated until the objective function

(2.8) could no longer be reduced and is considered fully converged. Based on its

nRMS, “a53” has the best fit to the observed data but is rougher, while “a58” is not

as tightly fit and is smoother. Model “a62” has a “tear” at 410 km (as mentioned

above in the “Methods” section). Its roughness can not be directly compared to a53

and a58, due to the tear.

Model a53 is considered the best because its nRMS is smallest and all its major

features are present in the less tightly fitting and smoother models a58 and a62. While

the global nRMS shown in Table 2.1 is useful for comparing different inversions,

Figure 2.5 shows the nRMS at each site and period used in a53. Ideally we would

like an nRMS ∼ 1.0 at every site and period, so values of nRMS between 0.75 and

1.25 are shown in green. Since most sites are green at periods longer than 56 s, the

global nRMS of 1.91 is largely due to larger misfits at the shortest periods. This is

likely the result of trying to fit the responses of shallow structure that have spatial

scales smaller than the site spacing and means that the shallow structure is less reliable

than deeper structure.

Figure 2.3(a) shows east-west oriented vertical slices through a53. The feature we

are concentrating on in this paper is the prominent southwesterly-dipping conductive
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plume-like structure between 100 and 410 km depth in the east half of slice C. Note

that it is deeper and more westerly in slice B and shallower and more easterly in

slice D. The plume’s core is over two orders of magnitude more conductive than

the surrounding mantle. This feature is evident in much smoother models that have

higher nRMS values and is essentially unchanged in models that have tears at 410 km

(including a62, which is shown in Figure 2.4).

Appendix A discusses estimation of the subducted slab surface. Figure 2.3(a)

shows that the extrapolation of the slab intersects the conductive core of the plume

at about 250 km depth. Figure 2.3(b) shows the map view of the slab contours from

Figure 2.1 with 10 Ohm-m contours of the model added at 200 km, 250 km, and

350 km depths: the slab and plume intersect at 250 km. Figure 2.3(c) shows the 10

Ohm-m isosurface of the model in red with the subducting slab in shades of green

indicating depth, where it is obvious that slab and plume intersect.

It is common at this point in seismological tomographic inversions to use “checker-

board” testing to investigate the resolution of the inversions. However, this is not very

useful in MT inversions because current must flow continuously from one region to

another, so the data collected at a site do not depend only on the local structure.

This also implies that the data are sensitive to structure outside of the array.

We thus performed hypothesis tests to answer several questions:

1. Is the inversion’s mid-depth unduly influenced by the bottom boundary condi-

tion of a 3 Ohm-m halfspace at 700 km?

2. Is the conductive plume an artifact of the inversion?

3. Is the conductive plume present above the subducted slab’s predicted intersec-

tion with the plume location near 250 km depth?

4. Is the conductive plume present below the subducted slab’s predicted intersec-

tion with the plume?
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5. Is the conductive plume continuous through the predicted intersection with the

slab at 250 km?

6. Is the conductive plume continuous through 350 km depth and thus probably

connected to the mantle transition below 410 km?

With the exception of interpretation of the effects of the tear in model a62, we used

the following procedure to conduct these tests: to determine whether a structure in a

particular model is significant, we remove it from the model and see if the responses

change by substantially more than the data error. Removing a structure from a

converged minimum-structure model is a definitive test of whether the structure is

required for the given inversion parameters. In this context we use the data errors

after the error floors have been applied because this presents a more challenging test

for significance.

For all test results excluding a62’s tear, we present two characteristic ratios cal-

culated at each site and period used in the inversion. The first is the ratio of nRMS

of the test model to its unperturbed value nRMS0. For brevity, we write

P =
nRMS

nRMS0

(2.14)

The second is the absolute change in normalized phase tensor skew angle relative to

its estimated error, which we write:

δψσ =
|ψ − ψ0|

σ
=
|∆ψ|
σ

(2.15)

where σ is the estimated error of ψ with error floors applied.

When P = 1 there has been no change in nRMS, when P < 1 the nRMS has

decreased (unlikely, but still a possibility), and when P > 1 the nRMS has increased.

When P > 2, it means that the misfit of every datum has on average doubled, which

represents very significant worsening of the fit. When δψσ < 1 then ∆ψ is insignificant



17

relative to its error, when 1 < δψσ < 2 then ∆ψ is moderately in excess of its error,

and when δψσ > 2 then ∆ψ is at least twice the size of its error. P is useful because

it includes both impedance tensor and vertical field data. If all data had the same

errors, the error would cancel out of P and P would not depend on the error. In

practice, however, data do not all have the same errors, but in our inversion, the

error floors make the data errors similar in size and thus P depends only weakly on

estimated error and choice of error floor. δψσ is useful because it is unaffected by

shallow distortion, combines all elements of the impedance tensor and is sensitive to

changes in structural dimensionality.

Values of both ratios less than one are plotted in green because these values mean

that the structural change is allowed by the data. Then we cannot assign geological

importance to the structure being tested. On the other hand, P > 1 at many sites

or P > 2 at a few sites can be considered large enough that the change in structure

strongly affects the data. In that case, we can be confident that the original structure

is not an artifact. Since δψσ is primarily related to the change in dimensionality of

the model and Tests 2 – 6 only change structure near the plume, we expect δψσ to

be much more localized than P . Thus δψσ > 1 at several sites or δψσ > 2 at a few

sites indicate that the change in dimensionality of the structure is significant.

We removed conductive structures using a “thresholding” scheme, in which all

values with resistivity below 100 Ohm-m were replaced by the largest nearby value.

This allows the structure to cease to exist, while avoiding creation of new contrasting

structure. In a few cases, however, where we wished to suppress all current flow

through a particular structure, we replaced a portion of the conductive structure with

very high resistivity (10000 Ohm-m) instead of the more “neutral” structure created

using the thresholding scheme. We never use a resistive layer across the entire model

because to do so would suppress all vertical current flow, which in particular would

significantly alter the effects of the oceans. In general, these structural changes make

the test models less 3D. Table 2.2 compiles the results of Tests 2 – 6 at 1280 s, including
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the global nRMS found after each test and the number of sites where 1 < P < 2,

P > 2, 1 < δψσ < 2, and δψσ > 2. 1280 s exhibits the strongest effects. We also

present global nRMS using all sites and periods for each test, but we do not compute

a global P , since sites far from the test structure and periods insensitive to the test

structure will typically cause P to always be close to 1.

2.6.1 Test 1: Sensitivity to Structure Below 410 km

Figure 2.4 shows the results of inversion a62, which has a “tear” at 410 km depth. If

the data were not sensitive to structure below the depth of the tear, the region below

the tear would have resistivity values identical to the bottom boundary condition of

3 Ohm-m because that is the smoothest possible structure below the tear. Structure

below 410 km is visible in all slices, so the data are sensitive to structure below the

depth of the tear. In addition, structure above the depth of the tear appears very

similar to structure in a53. We conclude that upwards smoothing of the fixed bottom

boundary has little effect on the model above 410 km.

2.6.2 Test 2: Existence of Overall Plume

Figure 2.6 shows P at all periods when the conductive plume is removed, and Figure

2.7 (Test 2) shows P and δψσ at 1280 s. Responses longer than 400 s have P > 2 at

many sites, indicating that the conductive plume is not an artifact of the inversion.

Sites with δψσ > 1 are primarily located in two regions: box A in Figure 2.7 (Test

2) along the main east-west profile and box B, slightly to the south-west. These

regions correspond to the location of the plume. Table 2.2 shows that all four P

and δψσ criteria for the structure not being an artifact are met. This test confirms

the presence of the conductive feature but does not determine whether it is a single

feature or multiple features smeared together.
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2.6.3 Test 3: Existence of Plume Above Expected Slab Location

Figure 2.7 (Test 3) shows P and δψσ for 1280 s when the upper portion of the plume

is removed. Compared to removing the entire plume in Test 2, the visual impression

of the P map is not quite as strong but there are still many sites with P > 2. Sites

where δψσ > 1 are mainly located in box A. This is exactly what we expect because

this box is above the shallow part of the plume. Table 2.2 shows that all four P and

δψσ criteria are met, indicating that the portion of the plume above 250 km depth is

indeed required by the data.

2.6.4 Test 4: Existence of Plume Below Slab Location

Figure 2.7 (Test 4) shows P and δψσ when the lower portion of the plume is removed.

The visual impression of the P map is more subdued than Test 3 but the perturbation

in P are still clearly significant. The only sites with δψσ > 1 are in box B which Figure

2.3(b) shows is above the part of the slab deeper than 250 km, as expected. Table

2.2 shows that three of the four P and δψσ criteria are met, so we conclude that the

portion of the plume below 250 km depth is also required by the data.

2.6.5 Test 5: Continuity of Plume Through Predicted Slab Intersection

To test whether electric current flows vertically through the extrapolated slab location,

we introduce a horizontal highly resistive 500x500 km thin layer extending across the

plume region at 250 km depth. This suppresses all vertical current flow through 250

km at the plume location, and is similar to a test used by Booker et al. [2004] to

conclude that 2D vertical flow of current from below 200 km is required.

Figure 2.7 (Test 5) shows the P and δψσ at 1280 s. The P test results are similar

in magnitude to Test 4, although somewhat differently arrayed spatially. Like Test 4,

the only sites with δψσ > 1 are in box B but show a larger effect. Table 2.2 shows that

all four of the P and δψσ criteria are met. We therefore conclude that vertical current
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flow is required by the data, and that there is a single plume extending through the

estimated slab location at 250 km depth.

2.6.6 Test 6: Vertical Current Flow Between Plume and Transition Zone

Figure 2.3(a) shows the plume emerging from the top of a widespread deep conduc-

tor that extends across the entire model, which can reasonably be identified with a

conductive mantle transition zone that begins at 410 km, but the deepest layer at

which the plume is readily identifiable as a conductive zone in a resistive environ-

ment is slightly shallower, at 350 km. Thus we introduce a horizontal highly resistive

500x750 km layer at 350 km to block vertical current flow between the plume and the

transition zone.

Figure 2.7 (Test 6) shows that no sites have P > 2 or δψσ > 1 at 1280 s, however

40 sites spread over much of the main array have P > 1. Table 2.2 shows that only

one of the P criteria and none of the δψσ criteria are met. Tables 2.1 and 2.2 also

show that the global nRMS of this test is nearly the same as the global nRMS of a53,

which suggests that most values of P are actually near 1. Based on our criteria, we

can not conclude that vertical current flow through 350 km is required by the data.

However, Test 6 may be inadequate because the model at this depth is in general

more conductive, so it is harder to block the three-dimensional flow of current with

a resistive layer local to the plume. Therefore current may easily flow around the

resistive layer, causing P and δψσ to be near one at most sites, yielding a misleading

conclusion.

2.7 Discussion

Our tests show that the conductive plume is required by the data, and the data

require the plume to be a continuous feature above 350 km which passes through the

estimated slab location. Similar tests were performed on model a62, with identical

outcomes.
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Table 2.1: Selected inversion results. See text for discussion of each quantity.

Inversion Name a53 a58 a62

Global nRMS 1.91 2.08 2.32

Roughness 5.7x106 4.0x106 1.3x106

Number of iterations 252 152 170

Table 2.2: Hypothesis test results at 1280 s. A total of 114 sites were used at this
period for the P -tests and 111 for the δψσ-tests: columns other than Global nRMS
indicate the number of sites in each category. See text for discussion of each test.
Global nRMS represents nRMS at all sites and periods used in the inversion.

Test Global nRMS 1 < P < 2 P > 2 1 < δψσ < 2 δψσ > 2

Test 2 2.39 66 40 13 4

Test 3 2.52 60 40 12 2

Test 4 2.06 71 8 6 0

Test 5 1.99 72 2 7 2

Test 6 1.92 43 0 0 0
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Figure 2.3: (a) East-West slices of resistivity for inversion a53. Slice positions are
shown on Figure 2.3(b). Black triangles are Southern Volcanic Zone volcanoes, black
lines and dashed lines are location of subducted Nazca slab, based on the slab surface
discussed in Appendix A. White points are earthquakes. Scale is stretched North-
South to improve viewing. The origin (0,0) = 67o W, 33o S. (b) Position of slices
in (a) are shown as solid black lines. Green triangles are MT sites, dashed gray line
is the subducted Juan Fernandez Ridge (JFzR), gray line is the subducted Mocha
Fracture Zone (MFZ). Black triangles are volcanoes. See the Appendix for dicussion
of earthquakes and slab contours. 10 Ohm-m contours of the conductive plume are
shown at 200, 250 and 350 km depth. Earthquakes are color-coded by depth. (c) 10
Ohm-m isosurface in red with surface representing subducting slab in shades of green:
upper image shows the view to the South (including the underside of the subducting
slab) while lower image shows the view to the North.
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Figure 2.4: East-West slices of resistivity for inversion a62. Slice positions are shown
on Figure 2.3(b). Black triangles are Southern Volcanic Zone volcanoes, black lines
and dashed lines are location of subducted Nazca slab, based on the slab surface
discussed in the Appendix. White points are earthquakes. Scale is stretched North-
South to improve viewing. The origin (0,0) = 67o W, 33o S.
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Figure 2.5: Maps showing nRMS at each site at each period for a53. Site locations
are indicated by the colored circles, where the color corresponds to the nRMS at
that site. Note that 0.75 < nRMS < 1.25 are green to indicate sites at which the
inversion was able to adequately fit the data. See text for discussion of why the misfit
is not as good at the shorter periods.
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Figure 2.6: Map views showing P = nRMS/nRMS0 at each site in the main part of
the array at each period with the conductive plume removed (Test 2 as discussed in
the text). Green values are considered insignificant change from the original model.
Note that the effect of removing the plume is larger at periods of 465.4 s or longer.
This affects the 465.4 s data because the overlying crust is so resistive.
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Figure 2.7: Maps of ratios P and δψσ at 1280 s period at each site for stuctural
hypothesis tests, displaying only sites in the main array near the conductive plume:
(2) conductive plume removed; (3) conductive plume removed above 250 km depth;
(4) conductive plume removed below 250 km depth; (5) conductive plume replaced
with 10000 Ohm-m layer at 250 km depth; and (6) conductive plume replaced with
10000 Ohm-m layer at 350 km depth. In all images, green dots mean that the model
change is allowed by the data; red implies that the model change is forbidden by the
data. Boxes A and B are discussed in the text.
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There are at least three possible scenarios that allow electric current to flow

through the estimated slab location: (1) the slab is sufficiently deformed so that

the plume is always east of the slab; (2) there is a window in the slab where the

plume and slab intersect; and (3) a deep plume impinges on the slab and generates a

shallow plume that is electrically but not mechanically connected to the deep plume.

The first possibility seems untenable. Figure 2.3(b) shows that the 10 Ohm-m

contour passes under the 170 km slab contour at 31.5o S. This contour is constrained

by hypocenters within a degree to the southwest and northwest and within half a

degree up-dip. Thus a continuous slab that remains west of the plume would need

to fold back on itself and dip steeply westward between 32 and 33o S. However the

tomographic model of Pesicek et al. [2012] images the slab at 35o S with an average

eastward dip of 36o from 200 to 400 km depth while the deep seismicity at 29o S

implies an eastward slab dip of about 65o (see Appendix A). Consequently, a reverse

dip between 32 and 33o S would require an unlikely amount of distortion.

The second alternative is supported by three lines of evidence: observed stress

within the slab, seismic tomography and our electrical conductivity structure. Inter-

mediate depth subduction zone earthquakes are expected to exhibit downdip tension

and normal faulting when the subducted slab is mechanically continuous to deeper

depths, because the denser, deeper slab pulls on the buoyant, shallower slab. Regional

studies of slab stress in the Chile-Argentina subduction zone [Chen et al., 2001; Slan-

cová et al., 2000; Anderson et al., 2007; Pardo et al., 2002] support this concept.

However, Anderson et al. [2007] find focal mechanism tension (T) axes for events

about 120 km deep within the box labelled A in Figure 2.8 to be predominantly along

the depth contours (i.e. perpendicular to their expected direction) and they suggest a

slab window roughly coincident with the aseismic dashed ovoid to the east-southeast

of their box.

Figure 2.8 also shows four focal mechanism beachballs for the best double-couple

Centroid Moment Tensors [http://www.globalcmt.org/CMTsearch.html ] deeper than
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150 km and northeast of box A. Their T, P (compression) and nodal axes are shown

on a stereo plot in the inset. Although their P and nodal axes directions are diverse,

their T axes are closely grouped with a mean direction to the northeast and a dip

near 20o. Like the Anderson et al. [2007] events, this direction is not perpendicular

to the subducting slab’s contours, but instead points towards the southern end of the

very deep seismicity at 29o S. This suggests that while the slab may be continuous

between these four events and the deep events, the subducted slab is missing to the

south-east.

Figure 2.9 shows horizontal and vertical slices of the global seismic tomography

model of Li et al. [2008]. These slices show the percentage change of compressional

body wave velocity Vp with respect to the assumed radially symmetric background.

The horizontal block dimensions are 0.7o x 0.7o and the vertical thicknesses are

45.2 km. Although one needs to be cautious about local inferences from global seis-

mic tomography, there is a remarkable coincidence between features of this model and

our conductive plume. The horizontal slice on the left is centered at 249 km depth.

North of 31o S it has high velocity that compares very well with the 250 km estimated

slab contour. South of 31o S this slab signature essentially terminates and appears

to resume again to the southwest. The 10 Ohm-m contour of the conductive plume

at 250 km depth fits neatly into the gap in the slab signature. The vertical slice of

δVp at slice D of Figure 2.3 is shown on the right of Figure 2.9. Again there is high

velocity that can be associated with the Nazca Slab shallower than 200 km and deeper

than 350 km. Between 200 and 350 km the slab signature is missing. The 10 and

30 Ohm-m contours of the conductive plume fit neatly into this gap. These correspon-

dences seem unlikely to be fortuitous and we conclude that the slab is missing where

it would intersect the plume. Deeper than 350 km, the high seismic velocity suggests

that the slab is present again. However, the slab signature arguably dips westward

below this depth and ends up beneath the apparent source of the conductive plume.

This suggests that the deeper slab signature may not be the Nazca Slab, but a relic
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of earlier, westward dipping subduction.

The gray stippled area in Figure 2.8 shows the approximate minimum extent of

the slab window necessary to allow the plume to pass through. The western boundary

is the 200 km slab contour, as the slab is relatively well-located to this depth. The

northern boundary is parallel to the T axes of the four earthquakes discussed earlier

in this section, and its eastward extension passes through the southern termination

of the very deep seismicity. It is shown with a dashed line because its exact position

is uncertain. The eastern boundary is based on the deep slab δVp signature seen in

Figure 2.9. However, it is possible that the slab window continues downward to the

east, as this would explain why there are no very deep earthquakes south of 29o S; this

is also compatible with our results, so the eastern boundary is shown as a serrated

edge. The southern extent of the slab window is also uncertain (and is shown with

a serrated edge), but since Pesicek et al. [2012] image a continuous slab at 35o S to

400 km, the slab window must terminate north of 35o S.

It is intriguing to note that extrapolation of the Mocha Fracture Zone (MFZ)

coincides with the southern edge of our plume, although Tebbens and Cande [1997]

and Folguera and Ramos [2009] imply that the MFZ does not continue far enough

inland to reach our plume. Tebbens and Cande [1997] identify a putative piece of

the MFZ 500 km west of South America. This western segment of a transform fault

appears to end between chron 10 (∼28 Ma) and chron 13 (∼33 Ma), which implies

that the matching segment of the transform fault on the other side of the spreading

center must also end between chron 10 and chron 13. The age of the seafloor currently

subducting where the MFZ meets South America is between chron 10 and chron 13.

Thus correlation of the two pieces of transform with the western and eastern ends of

the MFZ is clearly reasonable and if correct, implies that the MFZ does not extend

very far beneath South America. Folguera and Ramos [2009] argue that subduction

of the eastern end of the MFZ initated deformation in the Andes at roughly 3.6 Ma

and that the MFZ ends beneath the Andes at about (36.5o S, 71o W).
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The third alternative of electrically but not mechanically coupled plumes above

and below the slab is not easy to dismiss. Above the mantle transition zone from 410

to 660 km (MTZ) but deeper than 250 km it is extremely difficult to reduce upper

mantle resistivity below 10 Ohm-m with high temperature and pressure alone [Yoshino

et al., 2012]. Thus low resistivity of the plume below the slab almost certainly requires

either an interconnected fluid fraction with partial melt being the leading candidate

[Yoshino et al., 2009] or a very high concentration of dissolved water (0.1%) [Poe

et al., 2010]. If such a plume meets the slab it need not pass through to lower the

slab resistivity. Instead it may locally elevate the slab temperature enough to release

sufficient water to generate another plume rising above the slab. Such a slab “lesion”

would have low seismic velocity and is very unlikely to be able to support tensile

stress or generate seismicity and could thus explain the observations just as well as a

plume that passes through a window in the slab. Since we cannot yet offer a definitive

test of this alternative we have to leave it as an open possibility, but in the absence

of other evidence pointing to this possibility, we conclude that a slab window is the

most likely explanation for our results.

Our electrically conductive plume is both similar to and different from the main

conductive structure found by Booker et al. [2004]. Similarities include the fact that

both structures are much more conductive than the surrounding mantle, and both

structures appear to extend from near the top of the MTZ at 410 km depth but do not

penetrate the base of the lithosphere at about 100 km. Booker et al. [2004], however,

conclude that their conductor is parallel to and east of a steeply-dipping slab. Our

3D plume is very similar to Booker et al. [2004] down to 200 km but deviates more

than 200 km to the southwest as depth increases and thus cannot remain east of even

a very steeply-dipping slab. Nevertheless, the fundamental conclusion of Booker et al.

[2004] from their 2D study remains: there is a conductive feature extending up from

near the 410 km seismic transition. It is encouraging that a 2D interpretation of a

clearly 3D structure has such a close resemblance to the 3D interpretation.
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We can only speculate about why there is a slab window and an electrically con-

ductive plume at this location. We consider four possibilities. (1) Since the plume con-

ductivity is likely due to the presence of partial melt, it could be a nascent hot spot or

asthenospheric plume such as has been suggested in the Cascadia backarc (G. Egbert,

Three-dimensional Inversion of EarthScope Magnetotelluric Data: crustal and mantle

conductivity beneath the NW USA, IRIS Webinar: http://www.iris.edu/hq/webinar/,

2013). (2) Booker et al. [2004] suggest that residual slab water at the intersection of

the downgoing slab with the MTZ triggers the plume. This argument is no longer

viable, as our plume and the projected Nazca slab enter the MTZ in different places.

(3) Figure 2.9 suggests a relic slab in the MTZ under the origin of our plume: it is

possible that the presence of this relic slab in the MTZ is responsible for the plume.

(4) The plume is a consequence of the slab window’s formation. We do not have an

explanation for why this should be.

The opening through which the plume passes may be caused by the plume itself or

be the result of the geometry of the subduction. In addition to a plume-caused “Hole”,

three variations are shown in Figure 2.10. The “Scissors”-style contour-perpendicular

tear configuration with vertical offset is suggested by Cahill and Isacks [1992]. This

geometry requires the deep plume to jog to the south-east through the gap before

rising further. It is clear from Figure 2.3(c), however, that the plume jogs to the

north-east, which would imply scissoring with the north side down and require the

flat slab to be to the south. As this configuration does not exist, this type of tear

can be ruled out. The “Window” opening would start with contour-parallel normal

faulting, with a piece of slab descending faster. This is essentially a small version of a

subducted oceanic ridge. Trench-parallel faults are known to exist in the slab [Gans

et al., 2011], which at depth could allow denser, deeper slab to easily tear away. This

kind of slab window requires strike-slip faulting. These strike-slip faults could be re-

activated features parallel to the slab motion, such as those associated with the Juan

Fernandez Ridge or perhaps the Mocha Fracture Zone. However, we favor “Wedge”-
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style ripping in which the two pieces of slab are pulled laterally apart. The geometry

of the flat slab produces significant lateral membrane stresses [Creager et al., 1995],

which would be largely relieved upon opening of such a wedge. The plume should

facilitate this process by heating the apex of the wedge. In this case, the wedge

should probably extend downward through the entire slab, which would require that

the deep slab shown on the right side of Figure 2.9 be a westward dipping relic slab,

as discussed earlier. We propose that the termination of the very deep earthquakes

at 29o S likely coincides with the northern boundary of the wedge.

2.8 Conclusion

Results of a 3D minimum-structure inversion yield an image of the electrical con-

ductivity beneath the Pampean Shallow Subduction region in western Argentina.

We have demonstrated the existence of an electrically conductive plume that passes

through the extrapolated slab location at about 250 km. We conclude that a “wedge”-

shaped slab window with its apex at the plume location best explains all the evidence.

2.9 Appendix: Nazca Slab Contours Deeper than 100 km from 23 S to
39 S

To see whether the electrically conductive plume intersects the subducted slab it is

neccessary to predict the slab depth below 200 km. We have constructed a slab that

is consistent with available data and is extrapolated with minimum structure away

from the constraints. Our goal was to produce a surface deeper than 150 km that

is consistent with all available data. The result, valid from 100 to 600 km depth, is

shown in Figure 2.9.

This new slab surface is a minimum curvature fit to a series of constraints that

are also presented in Figure 2.9. These constraints start with a subset of shallow

contours that set the boundary condition on the shallow slab dip. From 33o S to

37o S we use the 140, 150 and 160 km contours of Anderson et al. [2007]. These
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Figure 2.8: Focal mechanism beachballs for four Global Centroid Moment Tensors
[http://www.globalcmt.org/CMTsearch.html ]. Tensional (red), compressional (green),
and nodal (cyan) axes for these events are shown in the inset. JFzR = Juan Fernandez
Ridge, MFZ = Mocha Fracture Zone. 10 Ohm-m plume contours are shown at 200,
250, and 350 km depth. Anderson et al. [2007] identify a region of contour-parallel
tensional axes in purple box labelled “A” and suggest the possibility of a slab gap in
the aseismic region within the purple dashed ovoid. Southern Volcanic Zone volcanoes
= black triangles. Stippled gray area is the minimum size of slab window necessary
to pass the conductive plume. Serration of the east and south edges indicates that
the window may actually extend much further in these directions.
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Figure 2.9: Left: horizontal slice of compressional seismic velocity perturbation (δVp)
centered at 249 km depth [Li et al., 2008]. The 250 km contour of the estimated top
of the Nazca slab and the 10 Ohm-m contours of the conductive plume at 200, 250
and 350 km depth are shown for comparison. The dashed line “D” is the location of
slice D in Figure 2.3. Right: vertical slice of the Li et al. [2008] model centered on
slice D. The estimated top of the Nazca slab and the 10 and 30 Ohm-m contours of
the conductive plume at this slice are shown for comparison.



35

Figure 2.10: Four possible ways to create an opening in the slab through with the
plume could pass: the “hole” caused by the plume itself; the “scissors”-style contour
perpendicular tear as suggested by Cahill and Isacks [1992] with the south side dipping
more steeply than the north side; the “window” opening initiated by contour-parallel
normal faulting; and the “wedge”-style ripping in which the slab is pulled laterally
apart. Cross-hatching indicates missing slab; dashed lines indicate the slab hinge;
dotted lines indicated slab contours; large arrows indicate down-dip direction; small
arrows indicate slab motion or relative motion.
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contours are shown green on Figure 2.9(a) and are based on the CHARGE array

[2000 – 2003] events plotted as small diamonds. North of 33o S we use the 100, 110

and 120 km contours of Linkimer Abarca [2011] shown light blue on Figure 2.9(a).

Linkimer Abarca [2011] uses the SIEMBRA (2007 – 2009) and ESP (2008 – 2010)

arrays and has considerably more events (not shown) north of 31o S. These result

in substantially different contours in the flattest portion of the slab, that are quite

consistent with the EHB events that are plotted.

South of 37o S we use the 110, 150 and 170 km contours colored magenta on Figure

2.9(a). They are contours of a plane fit to EHB events shown as a map in Figure

2.9(b) and in cross-section in Figure 2.9(c). The strike of this plane is determined to

be 10.75o E of N at 39o S. The 110 km contour is seen to be almost exactly along the

volcanic front, a coincidence which strengthens our result. Parallel planes +10 and -

10 km from the best-fitting plane bound the scatter. However 18 events are not enough

to decide whether this scatter represents the actual thickness of the seismogenic zone

or statistical uncertainty. We simply use the best-fitting plane to estimate the slab

surface because we are a long way from the flat slab region of primary interest and a

10 km error is of little consequence to our goal.

To constrain the deeper parts of the slab, we transformed EHB hypocenters deeper

than 500 km, 21.7o to 29o S and west of 62.5o W to cartesian coordinates that correct

for Earth’s curvature. Figure 2.9(d) and2.9(e) show map and along-strike views of

the plane that best fits the events with magnitude 4.0 or greater. Planes +10 and

-10 km from and parallel to the best-fitting plane in Figure 2.9(e) define a tablet

that again bounds the scatter. The number of events is much larger than in Figure

2.9(c). The distribution appears relatively uniform across the thickness of this tablet

and has abrupt edges. This argues that the spread of hypocenters is not simply

statistical inaccuracy but may be due to a seismogenic zone about 20 km thick.

Figure 2.9(f) shows the cross-section when the magnitude cutoff is increased to 5.5.

The strike direction has changed less than 0.5o and the dip by only slightly more than
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1o. Otherwise the impression remains that the events are fairly uniformly distributed

throughout the thickness of a 20 km thick tablet. We use the plane displaced +10 km

as our best estimate of the slab top. The 500 and 600 km contours from 23o S and

linearly extrapolated from 29o S to 30o S set the deep slab boundary condition. These

contours are highlighted with magenta on Figure 2.9(a).

Finally, slab depths at approximately 10 km intervals along six transects labelled

A, B, C, E, X24 and X35 on Figure 2.9(a) were added. The individual transects in

cross-sections with 1:1 vertical exageration are shown in the box together with the

data used to determine the constraint curves. Unlike typically plotted transects, only

hypocenters within +/-0.1o (about 11 km) are projected onto each transect. This

reduces bias associated with cross-transect slab geometry. Transects A, B, C and

X24 were chosen to maximize the number of events deeper than 150 km. Transects

X35 and E coincide with seismic tomography model slices of Pesicek et al. [2012].

Each constraint transect curve was constructed by fitting a 2nd or 3rd order poly-

nomial above 200 km to the top of the envelope of events from the CHARGE and

EHB catalogs and the intersections with the Anderson et al. [2007] and Linkimer

Abarca [2011] contours. Each curve is extrapolated below 200 km using a cubic spline

that is constrained by the curve above 200 km and several different constraints at

depth. North of 30o S, the estimated 500 and 600 km contours set the slope of the

deep slab. On X24, EHB events between 200 and 300 km are also used. On X35 and

E, the position of the points at 400 km depth are estimated from the tomographic

slices of Pesicek et al. [2012] which coincide with these transects. The 400 km deep

point on E additonally coincides with down-dip extrapolation of the plane shown in

Figure 2.9(b) and 2.9(c). Finally the extrapolation of constraint A below 200 km

agrees with the 400 km point on X35 although the dashed portion of curve A deeper

than 200 km is not used as a constraint.
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Figure 2.11: (a) Contours of the mimimum curvature surface fit to a series of con-
straints on the Nazca slab surface deeper than 100 km. Contours are dashed where
less certain. Circles filled with color indicating depth are earthquakes with magni-
tudes >= 4.0 from the EHB catalog (1960 – 2008). Diamonds are events from the
CHARGE catalog (2000 – 2003). Black triangles are geologically recent volcanoes.
JFzR = Juan Fernandez Ridge; MFZ = Mocha Fracture Zone. Contraints on the
slab surface consist of: (1) light blue contours from Linkimer Abarca [2011]; (2) green
contours from Anderson et al. [2007]; (3) magenta contours south of 37o S estimated
by fitting a plane to EHB events as shown in (b) and (c); (4) magenta 500 and 600 km
contours north of 30o S estimated by fitting a plane to deep EHB events from 21.7o S
to 29o S as shown in (d), (e) and (f); and (5) six magenta transects along which slab
depth has been estimated at about 10 km spacing. Deep earthquakes with magnitude
>= 4.0 color-coded with their depth are plotted in (d). The 500 and 600 km contours
of the best-fitting plane are shown. Their cross-section viewed along strike is shown
in (e). The cross-section (f) repeats the fit using only events with magnitude >= 5.5.
The data used to construct the transects A, B, C, E, X24 and X35 are summarized
in 1:1 cross-sections in the box. Crosses are CHARGE events within +/-0.1o of the
transect; circles are EHB events within the same windows; diamonds are intersec-
tions with constraint contours filled with contour color; open squares on transect B
are Moment Tensor Centroids; the dark blue filled squares at 400 km on A, E and
X35 are estimated from the seismic tomographic slices of Pesicek et al. [2012]; the
open squares on E and X35 are at the intersection of these two transects. The point
labeleled X35 on transect A is also on X35. The dashed portion of curve A is not
used as a constraint. Finally, the termination of the Nazca slab in a “Tear” at about
38o S is from Pesicek et al. [2012].
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Chapter 3

THREE-DIMENSIONAL ELECTRICAL CONDUCTIVITY
IN THE MANTLE BENEATH THE

PAYÚN MATRÚ VOLCANIC FIELD
IN THE ANDEAN BACK-ARC OF ARGENTINA

NEAR 36.5 S
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3.2 Publication Information & Note

The remaining text in this chapter will be submitted to Geophysical Journal Inter-

national.

This paper’s region of study is the Payunia Basaltic Province. There are multiple

names referring to all or part of this region, including “Payunia”, “Payenia”, “Andino-

Cuyana Basaltic Province”, “Mendoza Retroarc Volcanic Province”, “Payún Matrú

Volcanic Field”, and “Complejo Efusivo Neógeno.”
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3.3 Summary

Southern Mendoza and northern Neuquén Provinces, south of the Pampean Shallow

Subduction region in western Argentina, are host to the < 2 Ma Payunia Basaltic

Province, which covers ∼39,500 km2 with primarily basaltic intraplate volcanism.

This back-arc igneous province is the result of extension due to trench roll-back fol-

lowing steepening of a flat slab that existed in the middle to late Miocene. Mag-

netotelluric data collected in 2005 and 2008 at 37 sites from 67 – 70o W and 35 –

38o S are used to probe the source of the Payún Matrú basalts. These data, which

require significantly 3D structure, were used in a 3D non-linear conjugate gradient

inversion. We identify two significant electrically conductive structures. One, called

the SWAP (shallow western asthenospheric plume) approaches the surface beneath

the Caldera Payún Matrú & the Volcán Trómen and dips westward toward the sub-

ducted Nazca slab. The second, called the DEEP (deep eastern plume) approaches

the surface ∼100 km to the southeast and dips steeply east to 400 km depth while

remaining above the subducted Nazca slab. We used a variety of model assessment

techniques including both forward modeling and additional inversion to test the verac-

ity of these features. We interpret the SWAP as the source of the < 2 Ma intraplate

volcanism. Our inversion model assessment suggests that the SWAP does not need

to connect to the Nazca slab. This is compatible with the lack of recent arc signature

magmatism near Payún Matrú. The SWAP and DEEP are electrically connected

only in the shallow crust, which is likely due to the Neuquén sedimentary basin and

not a magmatic process. We propose that the SWAP and DEEP may have been

more robustly connected in the past, but that the DEEP was decapitated to form

the SWAP when shallow north-westward mantle flow resumed during steepening of

the slab. The ∼2 Ma basaltic volcanism results from SWAP magma that had ponded

below the crust until extension allowed eruption. The westward dipping portion of

the SWAP is interpreted as mantle shear in the renewed mantle corner flow – this
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explains why the SWAP and Nazca slab can appear connected, yet there is no recent

arc-signature magma in this region.

3.4 Geologic Background

The Payunia (sometimes called Payenia) Basaltic Province (PBP) in the northern

Neuquén basin of Argentina near (36.5o S, 69.5o W, see Figure 3.1) is a fascinating

but little-studied region. This part of the Andean back-arc is south of the Pampean

Shallow Subduction region near 31.5o S [Cahill and Isacks , 1992; Anderson et al.,

2007; Linkimer Abarca, 2011] and subduction is a more normal 36o [Pesicek et al.,

2012].

The present-day PBP spans ∼39,500 km2 of southern Mendoza and northern

Neuquén provinces and lies in the Andean back-arc approximately 150 km east of

the main Andean Southern Volcanic Zone (SVZ) [Ramos and Folguera, 2011]. The

PBP is usually divided into several sections including the Payún Matrú Volcanic Field

(PMVF) which includes the area shown in browns on Fig. 3.1(b) and the area shown

in gray to its west and south-east, the Llancanelo and Cerro Nevádo Volcanic Fields

in gray to the north of the PMVF, the Auca Mahuida Volcanic Field shown in light

gray just south of the Rio Colorado, and the Tromen Volcanic Field shown in dark

gray south-west of the PMVF.

The volcanics straddle two basement terranes: Cuyania and Chilenia. Cuyania is

a sliver of Laurentia and Chilenia less certainly also from North America which were

accreted to Gondwana in the Ordovician or Devonian [Ramos , 2010]. Payun Matru

sits atop Chilenia; Cerro Nevado (see Fig. 3.1(b)) is on the San Rafael Block along

the southwestern edge of Cuyania. Over the basement lie the Mesozoic rocks of the

Neuquén Basin (outlined in Fig. 3.1(b)) [Howell et al., 2005]. Finally, foreland units

associated with the Andean Orogeny [Ramos , 1999] are up to 2 km deep alongthe Rio

Grande west and northwest of Payun Matru, but mostly much less.

Payunia has a complicated geologic history, but we are interested in only the last
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Figure 3.1: (a) Topography of South America, with study region in white box, active
Andean Southern Volcanic Zone (SVZ) volcanoes as black triangles, Caldera Payún
Matrú as a magenta circle, and contours of subducted slab (after Burd et al. [2013])
in black, with uncertain slab locations indicated with dashed black lines. (b) Payunia
region, showing MT sites as green diamonds, active Andean Southern Volcanic Zone
volcanoes as black triangles, Caldera Payún Matrú as a magenta circle, Volcán Trómen
as a cyan triangle, Cerro Payén as a small white triangle, and Cerro Nevádo as a large
white triangle. There are three small pink triangles representing geologically young
activity: one is the Los Volcanes region and the other two are single monogenetic
centers. Distribution of volcanics and faults is based on Ramos and Folguera [2011].
The Mesozoic Neuquén Basin is outlined in brown dash-dot curves [Howell et al.,
2005] and the basement thrust faults bounding the Proterozoic San Rafael Block
are in blue dashed curves. The ∼1.7 Ma basaltic volcanism of the Payunia region
(including the Llancanelo Volcanic Field that includes Cerro Nevádo) is in gray, with
the 1.8–1.6 Ma Trómen Volcanic Field shown in darker gray and the 2–0.8 Ma Auca
Mahuida Volcanic Field shown in light gray. The PMVF volcanic products younger
than 200 ka are shown in tan. The Cortaderas Lineament aligns with the southern
extent of the < 2 Ma volcanism, but is considered by Kay et al. [2006] to be the
southern limit of a Miocene shallow subduction region. The slab tear deeper than
200 km based on tomography by Pesicek et al. [2012] is a heavy gray dashed line.
Thin gray dashed lines A – E represent transects discussed in the Results section of
this paper. The transects are rotated 20o clockwise to match the inversion grid, so
that “North” within the grid is N20E in geographic coordinates.
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20 Ma. Kay et al. [2006] summarize the data supporting a shallower slab and arc

influenced volcanism from 20 – 5 Ma. They and Folguera et al. [2006] argue that

the back-arc PBP is the result of extension due to trench roll-back and steepening of

this Miocene shallow slab. Ramos and Kay [2006] conclude that the slab’s steepening

throughout the Pliocene and Quaternary heralded the eruption of much of the PBP’s

basaltic lava: during this time, the percentage of mantle melting appears to have

increased and the subduction influence on the geochemistry has declined [Kay et al.,

2006]. However, a recent tomographic study by Pesicek et al. [2012] did not image the

present-day Nazca slab deeper than 200 km south of 38o S. The compiled contours of

the subducted Nazca slab [Burd et al., 2013] are shown in Fig. 3.1.

Volcanism in the PMVF near the Caldera Payún Matrú has been active for roughly

the last 2 Ma [Ramos and Folguera, 2011]. Germa et al. [2010] date the Cerro Payén

stratovolcano to 0.275 Ma. The Payún Matrú shield volcano collapsed to form a

caldera sometime between 0.168 Ma and 0.082 Ma and is henceforth referred to as

Caldera Payún Matrú [Germa et al., 2010]. This volcano lost 25 km3 of its total

240 km3 during its caldera-forming eruption.

There are more than 800 volcanic vents and small cinder cones in the PBP, which

have essentially no arc signature and are primarily alkalic [Bermúdez et al., 1993;

Inbar and Risso, 2001b]. Recent work by Germa et al. [2010] indicates that the

group of vents and cinder cones known as Los Volcanes to the west of the Caldera

Payún Matrú range in age from ∼28 ka to younger than 7 ka and identify these

lavas as basaltic to trachybasaltic. Measurements of the degradation of the shapes of

these cinder cones suggests that the most recent eruption may have been about 1,000

years ago [Inbar and Risso, 2001b]. Based on the oral traditions of the indigenous

inhabitants, Inbar and Risso [2001a] suggest that the most recent eruption could have

been between 1000 and 200 years ago. Inside the Caldera Payún Matrú, Germa et al.

[2010] identify trachytic lavas ranging in age from 37 ka to 7 ka. Thus, although

the magma production rate is presently low, production of both basaltic and more
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evolved magmas almost certainly continues today. For a more comprehensive overview

of Payunia, see Ramos and Folguera [2011].

The PBP volcanism is geochemically similar to intraplate basalts erupted from

mantle sources undepleted of lithophile elements. These melts are often considered

to arise from below the bottom of the mantle transition zone (MTZ) which spans 410

– 660 km. Bercovici and Karato [2003], however, argue that this type of volcanism

need only come from the top of the MTZ. They suggest that the initial melting that

strips out incompatible elements is the result of the phase change of hydrous minerals

such as wadsleyite to olivine as mantle material moves upwards through the 410 km

discontinuity.

Evidence that the PBP magmas have passed quickly through the crust comes

from near-surface geology. Extensional features in the PBP include reactivated nor-

mal faults [Kay et al., 2006] and the relatively shallow Moho identified by Gilbert

et al. [2006]. Hernando et al. [2012] state that the PBP flows have 87Sr/86Sr values

“suggesting little contamination with radiogenic crust.” In addition, Folguera et al.

[2009] also argue against a near-surface basaltic reservoir, stating that the wide distri-

bution of monogenetic cones means that each eruption has created its own path to the

surface. It is thus reasonable to conclude that the Payún Matrú source is relatively

deep and interacts very little with the crust while approaching the surface.

3.5 Methods

The magnetotelluric method uses passively recorded electric and magnetic field data

at Earth’s surface to probe electrical conductivity below Earth’s surface. Electrical

conductivity (with units of Siemens per meter) is strongly sensitive to changes in

phase (which depends on temperature and pressure), water content, and melt fraction,

but between roughly 100 and 400 km depth, elevated conductivity of upper mantle

minerals are more likely the result of partial melt or other interconnected fluids than

hydrous minerals [Yoshino et al., 2009]. Because conductivity at dry upper mantle
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conditions is << 1 S/m, it is usual to use its reciprocal, resistivity (with units of

Ohm-m).

Figure 3.1(b) shows the location of 37 MT sites collected in two field campaigns.

The east-west profile was collected in 2005, while the broader array was filled out

in 2008. Each site recorded 5 to 15 days of 3-component magnetic field (H) and

horizontal components of electric field (E) sampled at 0.25 s with Narod Intelligent

Magnetotelluric Systems (NIMS). The electric field dipoles used Pb-PbCl2 electrodes

[Petiau, 2000].

In the frequency domain E and H are related by

E =

 Ex

Ey

 = ZH =

 Zxx Zxy

Zyx Zyy


 Hx

Hy

 (3.1)

where the impedance tensor Z is a function only of the sub-surface electric conductiv-

ity structure. The time-stationarity of Z allows one to estimate it using non-stationary

time series of E and H. The frequency domain relation between the vertical and hor-

izontal components of the magnetic field

Hz = W·Hhoriz =
[
Wx Wy

]  Hx

Hy

 (3.2)

defines the “induction vector” W. If the polarization of the source H is sufficently

random, W also depends only on the sub-surface structure. Z and W have been

estimated at periods from 3 to 104 s using the robust multi-station algorithm of

Egbert [1997]. All sites are processed identically so that they are directly comparable.

Z and W are complex and together provide 12 data at each period and site. Only 9

periods from 20 to 5120 s are used in this study.

For the purposes of this paper, the basement rocks of the Chilenia and Cuyania

Terranes are important only in that they are quite resistive ( > 100 Ohm-m). The

skin depth (km) for penetration of electromagnetic energy is given by δ = 0.5
√
ρT
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where ρ is resistivity and T is period (s). Energy with 103 s period penetrates 150 km

through 100 Ohm-m material. The sedimentary units of the Neuquén Basin and

Rio Grande foreland basin are more conductive (of order 10 Ohm-m), but the skin

depth of 10 Ohm-m material at 20 s period is 7 km and substantially exceeds the

maximum combined sedimentary cover. The top of the mantle is expected to have

resistivity approaching 103 Ohm-m, decreasing to about 100 Ohm-m just above the

MTZ [Yoshino et al., 2012]. Basaltic melt is much more conductive (1 Ohm-m or

less) and mantle containing a few percent of interconnected partial melt is at least an

order of magnitude less resistive than the surrounding mantle [Schilling et al., 1997].

In summary, with 20 to 5120 s data we can expect to image low resistivity materials

such as partial melt in the mantle to depths of 300 km or more [Booker et al., 2004].

The magnitudes of the elements of Z can be significantly affected by small scale,

unresolvable structure that distorts interpretation of regional structure. The most

common form of this distortion is the result of electric charges that accumulate where

current flows along shallow conductivity gradients. When these charges are in-phase

with the regional electric field, the distortion is called “static” or “Galvanic”. Caldwell

et al. [2004] introduced a function of the impedance

Φ = (Re(Z))−1 Im(Z) =

 Φxx Φxy

Φyx Φyy

 (3.3)

that is unaffacted by static distortion. Φ is called the “impedance phase tensor” or

simply the phase tensor. Its four elements are real and it has a preferred coordinate

system in which these four data can be transformed to the direction of an ellipse axis,

lengths of the ellipse semi-axes and an angle

ψ = tan−1

(
Φxy − Φyx

Φxx + Φyy

)
(3.4)

called the “normalized phase tensor skew” [Booker , 2013]. ψ is rotationally invariant

and can be computed from Z in any coordinate system. (Note that ψ is twice the
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skew angle β defined by Caldwell et al. [2004]).

If the regional structure is 2D, ψ = 0, the phase tensor ellipse is aligned with

the strike and the ellipse semi-axes are the tangents of the phases of the off-diagonal

elements of the regional (i.e.undistorted) impedance. If ψ is not zero, the regional

structure must be 3D. |ψ| > 6o is a good working criterion for concluding that the

data must be 3D [Booker , 2013]. |ψ| < 6o can be considered “quasi-2D”, but may

still be 3D. Fig. 3.2 shows maps (to be referred to as “polka-dot plots”) of ψ at our

37 sites. Data that meet the quasi-2D criterion of |ψ| < 6o are coloured green. The

error bars for ψ are typically much less than 6o (see Booker [2013] for examples). It

is quite clear that a preponderance of sites cannot be considered quasi-2D and thus

require 3D interpretation.

Ideally, we would have incorporated the phase tensor into our inversion. However,

because 3D inversion of the phase tensor is not yet sufficiently developed, we invert Z

and W directly for shallow 3D structure that fits features in the data that can be the

result of static distortion. However, because our site spacing is often larger than the

structures causing the distortion, the details of this shallow structure are expected to

be less reliable than deeper structure.

We invert the real and imaginary parts of all elements of Z and W using a 3D

Non-Linear Conjugate Gradient (NLCG) algorithm ([Mackie et al., 2001; Mackie and

Watts , 2012; Rodi and Mackie, 2012]). This seeks a model that minimizes the objec-

tive function,

S = χ2 + τR(m) (3.5)

where τ is the trade-off parameter, R(m) measures the “roughness” of the model m

(also called the “structure penalty”), and

χ2 =
N∑
i=1

r2i
σ2
i

(3.6)

is a measure of the data misfit. r2i are the squares of the data residuals (i.e. predicted
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values – observed values), σ2
i are the variances, and N is the number of data.

Roughness R(m) can be defined as the square of the Laplacian of the model,

averaged over the model. However, because spatial resolution decreases with depth

due to the diffusive physics of MT, we modify this definition so that the structure

penalty in all spatial directions increases with depth. For additional discussion of

R(m) see Burd et al. [2013].

All models terminate in a 3 Ohm-m half-space deeper than 660 km. A deep

resistivity of this order is widely accepted based on mantle conditions and minerals

[Xu et al., 2000]. Furthermore, Xu et al. [1998] find the phase change from olivine

to wadsleyite (which occurs at roughly 410 km depth) corresponds to a two order

of magnitude decrease in resistivity. Yoshino [2010] also documents a decrease in

resistivity of at least an order of magnitude at 410 km. Thus there is a geophysical

reason to permit a resistivity jump at 410 km. Therefore in addition to an R(m)

computed for the entire model, we have also performed inversions in which R(m)

has a tear at 410 km at which the vertical gradient of the model across this tear is

excluded from computation of the roughness.

The inversions include electrically conductive oceans. They are in a coordinate

system that has been rotated 20o east from geographic north to align the grid more

closely to the strike of the Pacific Coast and subducted slab (see Fig. 3.1(a)). The

importance of the Pacific Ocean in 2D inversions of our data was shown by Booker

et al. [2005] and the importance of including both Pacific and Atlantic Oceans in 3D

is discussed by Burd et al. (manuscript in preparation, 2013). In order to keep the

mesh size relatively small while accurately modeling the effect of ocean bathymetry,

we used an ocean of constant depth but varying electrical conductance. (Conductance

[Siemens] = layer thickness [m] ÷ electrical resistivity [Ohm-m].) This layer has high

resistivity when the water is shallow, and low resistivity when the water is deep. The

ocean layers and the discontinuity between land and water are excluded from the

R(m) computation.
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Instead of χ2 it is common to report the “normalized RMS”,

nRMS =

√
χ2

N
(3.7)

where the nRMS would be 1.0 if each datum had a misfit equal to its estimated error.

Our algorithm uses weighted least squares. Data with error estimates σi smaller

than a threshold called the “error floor” are weighted equally while data with larger

error estimates are down-weighted. This weighting scheme is implemented by increas-

ing estimated uncertainties below the error floor up to the floor. Henceforth, σi refers

to estimated data error after the error floors have been applied.

Since we are inverting the real and imaginary parts of the impedance elements,

error floors are applied to these 8 data equal to 2% of the magnitudes of the off-

diagonal elements |Zxy| and |Zyx|. The error floors for the diagonal elements are set

equal to that of the off-diagonal element in the same row. This is reasonable if the

noise is primarily in the electric field. An absolute error floor of 0.01 is used for the

4 real and imaginary parts of the induction vector W.

These error floors are lower than commonly used for 2D inversion. 2D inversions

invert apparent resistivity (related to |Z|) and phase of off-diagonal elements. Our

floors are equivalent to 4% for the apparent resistivities and 1.2o for the impedance

phase. However, our inversion can still achieve nRMS values close to 1.0, a rare

occurence in 2D inversions even with larger error floors. This is because 3D effects

in data treated as 2D can be thought of as noise. Larger misfits must be tolerated

in 2D inversions to prevent a minimum structure algorithm from generating spurious

structure due to fitting this “3D noise”.

3.6 Results

Figure 3.3 is a “trade off” diagram of nRMS versus R(m) for a series of 3D inversions

done with decreasing values of τ in the objective function (Eq. 3.5). Each model is

started from a smoother model with larger τ . This strategy guards against introducing
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Figure 3.2: Plots of normalized phase tensor skew angle, ψ for observed data for all
sites, at each period used in the inversion. |ψ| < 6o is compatible with 2D interpreta-
tion (shown in green in this figure), so most sites are clearly significantly 3D. North
arrow is indicated because inversion grid (and all subsequent analyses) is rotated 20o

west of N.

unneccessarily rough structure in early iterations because NLCG algorithms typically

require a large number of iterations to remove such structure at later iterations. Also,

in our experience a path through model space to an ultimately smooth model by way

of much rougher models has a higher probability of being caught in local minima of

the obective function.

The trade-off curve is initially steep but levels out as nRMS decreases. It is below

1.0 for the roughest model p208 (τ = 0.003). This model has small scale structure

that we judge geologically unlikely and we have not attempted to lower the misfit

futher. Models p205 to p207 share all major features. We have chosen to interpret

model p207 as the best compromise between increasing the resolution while guarding

against structural artifacts due to fitting noise. Polka dot plots of the nRMS by

site and period are shown for p207 in Figure 3.4. We see that the misfits are fairly

“white” (distributed uniformly with space and period) except at the shortest period.
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It is not surprising that the misfit is larger at the shortest period because we do not

have enough site density to accurately model the very shallow structure.

“Fence” plots with nominally east-west slices of model p207 are shown together

with two resistivity isosurfaces in Figure 3.6(a – c) (note that Fig. 3.1(b) shows slices

A – E, which are rotated 20o clockwise from east-west to match the inversion grid,

so that “North” within the grid is N20E in geographic coordinates). We focus on

two major features: (1) a conductive structure visible in slices B, C, and D that dips

steeply eastward just above the Nazca slab to near the top of the transition zone at

400 km, which we call the DEEP (DEep Eastern Plume); and (2) a conductor visible

in slices C and D that dips westward to meet the subducted slab at about 150 km. We

call this structure the SWAP (Shallow Western Asthenospheric Plume). The DEEP

and SWAP are separated by a resistive zone roughly 100 km wide at most depths.

The details of the SWAP are best seen in the smaller scale resistivity isosurface

(Fig. 3.6(c)). It appears to have a foot on the slab and then rises to a conductive

body with significant north-south extent near the top of the mantle. This north-

south structure has two obvious protrusions from its top. One rises directly up into

the shallow crust under Caldera Payún Matrú (shown as a magenta circle in Fig. 3.6(b

– c)). The second rises up close to the geologically young Volcán Trómen (shown as

a black triangle in Fig. 3.6(b – c)).

3.6.1 Model Assessment

Fig. 3.6(d) shows the results of inversion p402, which has a “tear” at 410 km depth.

p402 is fully converged and shown as a green triangle on Fig. 3.3: the global nRMS

value is comparable to p207, but R(m) can not be directly compared to the other

inversions shown in the figure because R(m) for p402 does not include values at the

tear’s location. If the data were not sensitive to structure below the depth of the

tear, the region below the tear would have resistivity values identical to the bottom

boundary condition of 3 Ohm-m because that is the smoothest possible structure
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Figure 3.3: nRMS versus roughness for Payunia inversions with different values of τ
(the tradeoff parameter). Blue circles indicate the main inversion sequence, red dia-
monds are inversions using τ = 0.1, which were used for hypothesis testing (discussed
in Model Assessment section), and the green triangle is an inversion using τ = 0.1
with a “tear” at 410 km depth (also discussed in Model Assessment section).
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Figure 3.4: Maps showing nRMS at each site at each period for p207. Site locations
are indicated by the coloured circles, where the colour corresponds to the nRMS at
that site. Note that 0.75 < nRMS < 1.25 are green to indicate sites at which the
inversion was able to adequately fit the data. Note that the fit is spatially white: fit
is equally good at all sites with no particular region being especially poorly fit. Fit
is also approximately white by period with the exception of the larger nRMS values
at the shortest period. See text for discussion of why the misfit is not as good at the
shorter periods.
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below the tear. Structure below 410 km is visible in all slices, so the data are sensitive

to structure below the depth of the tear. In addition, structure above the depth of the

tear appears very similar to structure in p207. We conclude that upwards smoothing

of the fixed bottom boundary has little effect on the model above 410 km.

Seismologists commonly investigate resolution of their 3D inversions using “checker-

board” tests. Data are generated for a model consisting of an array of blocks alter-

nating about the large scale average structure. These are inverted to see how well

the blocks can be recovered. This is not as useful in our case because MT data re-

spond most strongly to model features which constrain current to flow along extended

continuous paths. An important by-product of this fact is that MT data can sense

stucture outside of an array.

In a sense, our inversions are already a resolution test because we find models that

have the least complexity for given levels of data misfit. Thus the smallest spatial

scales seen in the model tell you the resolution. An important caveat, however, is

that this is only meaningful if you are not fitting data noise.

However, questions that need addressing include whether a given model feature is

an artifact of the structure penalty used to define minimum structure and whether

alternate models exist that have different structure but have the same value of the

objective function (Eq. 3.5). Such models are often called “equifeasible”.

A model artifact that is constrained solely by the structure penalty will not alter

the predicted data (within the measurement uncertainties) if the structure is removed.

This is tested by removing structures and recomputing the predicted data. We can,

however, go a step further and restart the inversion from the altered model constrain-

ing the region of removed structure to remain fixed. If the inversion cannot find a

model with an objective function value as low as the original model, we have confi-

dence that the structure is required. Our confidence will be even higher if this new

inversion converges to a model that re-establishes current paths clearly similar to

the original model given that it cannot use the region where the removed structure
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Figure 3.5: (a) Nominally East-West slices of resistivity for inversion p207. Slice
positions are shown on Fig. 3.1(b). Black triangles are Southern Volcanic Zone
volcanoes active in the Holocene, magenta circle is location of Caldera Payún Matrú,
black lines and dashed black lines are location of subducted Nazca slab, based on
the slab surface discussed in Burd et al. [2013]. White points are earthquakes. Scale
is stretched North-South to improve viewing. The origin (0,0) = 69.5o W, 36.5o S.
X-axis and Y-axis are measured in km from this origin, and Z-axis is depth in km. (b)
35 Ohm-m isosurface of resistivity, showing DEEP to left and SWAP to right (in red),
with subducted slab in green – blue. Volcán Trómen is the black triangle and Caldera
Payún Matrú is the magenta circle. Isosurface is looking directly south and shows
model deeper than 32 km (i.e. is mantle only). (c) shows only SWAP’s 35 Ohm-m
isosurface, but has same legend as (b), except image looks directly west and model
is not shown shallower than 8 km. (d) Nominally East-West slices of resistivity for
inversion p402, which has a “tear” at 410 km depth (discussed in text). Same caption
as Fig. 3.6(a).
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existed. If this new inversion finds a model with an equal objective function, we

have found an equifeasible model. If the the objective function is actually smaller for

the new model, we can conclude that the original inversion was caught in a “local

minimum” of the objective function.

We have identified two major structures that will be tested: the DEEP and the

SWAP. For each we have performed three tests:

(1). Remove the entire structure and re-converge the inversion while preventing the

original structure from reforming.

(2). Remove depth segments to find out which have significant influence on the data.

(3). Block vertical current flow at specific depths to find out whether the structure

must be electrically continuous.

Because the mantle background is approximately 100 Ohm-m, structure is removed

by a thresholding scheme in which values below 100 Ohm-m are replaced by 100 Ohm-

m. This allows the structure to cease to exist without creating new contrasting

structure and reduces the model roughness.

Vertical current flow is blocked with thin horizontal 10000 Ohm-m tablets at the

desired depths. These extend beyond the plume region that can be clearly identified

as being less resistive than the background but not so far as to intefere with regional

vertical currents associated with features like the oceans.

We are inverting 3996 data (12 responses at 9 periods at 37 sites). Judging the

misfit changes for such a large number of data requires defining measures that are

diagnostic and can be compactly presented. We use two characteristic ratios. The

first is the ratio of nRMS of the test model to its unperturbed value nRMS0. For

brevity, we write

P =
nRMS

nRMS0

(3.8)
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The second is the absolute change in normalized phase tensor skew angle relative to

its estimated error, which we write:

δψσ =
|ψ − ψ0|

σ
=
|∆ψ|
σ

(3.9)

where σ is the estimated error of ψ with error floors applied. These are viewed as a

function of period and site using the polka dot plots introduced in Fig. 3.2. Their

more global values can be presented in tables (such as Table 3.6.1).

P is sensitive to data misfit in a way that would not depend on data error if all

uncertainties were equal. δψσ is sensitive to changes in model dimensionality that

affect the responses (as opposed to affecting only the roughness). When P = 1 there

has been no change in nRMS, when P < 1 the nRMS has decreased (unlikely, but

still a possibility), and when P > 1 the nRMS has increased. More importantly,

when P > 2, it means that the misfit of every datum has on average doubled, which

represents very significant worsening of the fit. When δψσ < 1 then ∆ψ is insignificant

relative to its error, when 1 < δψσ < 2 then ∆ψ is moderately in excess of its error,

and when δψσ > 2 then ∆ψ is at least twice the size of its error. P is useful because

it includes both impedance tensor and vertical field data. If all data had the same

errors, the error would cancel out of P and P would not depend on the error. In

practice, however, data do not all have the same errors, but in our inversions, the

error floors make the data errors similar in size and thus P depends only weakly on

estimated error and choice of error floor. δψσ is useful because it is unaffected by

shallow distortion, combines all elements of the impedance tensor and is sensitive to

changes in structural dimensionality.

In polka dot plots, values of both ratios less than one are green because these

values mean that the structural change is allowed by the data and thus we cannot

assign geological importance to the structure being tested. We use the following P -

test criteria to identify tests for which a change in structure has strongly affected

the data: if P > 1 at many sites or P > 2 at a few sites, then we can be confident
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that the original structure is not an artifact. Since δψσ is primarily related to the

change in dimensionality of the model and the tests only change the structure near

the DEEP or SWAP, we expect δψσ to be much more localized than P . Thus the

following δψσ-test criteria identify tests for which the change in dimensionality of the

structure is considered significant: δψσ > 1 at many sites or δψσ > 2 at a few sites.

Tests 1 (a & b): Existence of the Plumes

Figure 3.6 shows polka dot plots of P at all periods when the DEEP and SWAP are

removed from model p207. P is greater than 2 across most of the spectrum with

the changes peaking over each plume and at longer periods for the DEEP. 1280 s is

strongly affected for both structures and to simplify discussion we present only this

period for other tests. Table 3.6.1 further charcterizes the distribution of misfit at

1280 s. Based on Table 3.6.1, there is only one site with P < 2 for removal of the

DEEP and only 10 sites with P < 2 for the SWAP.

Figure 3.7 shows δψσ at 1280 s. The region of δψσ > 2 is more spatially concen-

trated than P , but is still large at a significant number of sites.

Figure 3.8 plots convergence of the objective function S after re-starting inversions

from p207 with each plume removed and the original plume location “frozen” so

that the plume is forbidden to return to its original location. The final nRMS and

roughness R(m) for each case are plotted as points p301 and p302 on the trade-off

diagram (Fig 3.3). P and δψσ test results at 1280 s are shown in Table 3.6.1: all four

test criteria for significant change are met for each test. Removal of the DEEP moves

the trade-off point further from p207 than removal of the SWAP, but in both cases

nRMS and R(m) are substantially larger than for model p207. Thus the objective

function is considerably larger. We conclude that both plumes are not artifacts and

are required by our field data.

Slices and mapviews of models p301 and p302 (with p207 for comparison) are

shown in Figure 3.9 and are quite interesting. We have dubbed the features around
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the former DEEP and SWAP “halo-plumes” because in each case the inversion has

constructed conductive paths around the excluded volume. Thus there is little doubt

that the DEEP and SWAP exist. A remarkable coupling exists between the two halo-

plumes. Removing the DEEP makes the SWAP more conductive and removing the

SWAP makes the DEEP more conductive. We interpret this to mean that the model

requires a specific amount of vertical current flow to fit the data: if the current can’t

flow through one plume, it tries to increase current flow through the other plume to

compensate.

Tests 2 (a – g) – Introduction of Gaps in the Plumes

The point of these tests is to systematically test the depth extent of the two plumes

by examining the sensitivity of the data to the removal of segments of each plume.

For the DEEP we remove segments: (a) from 100 to 347 km; (b) from 5 to 100 km;

(c) from 5 to 32 km; (d) from 13 to 32 km; (e) from 5 to 13 km. For the SWAP we

remove: (f) below 32 km and (g) from 7 to 32 km. The 1280 s period results are

presented in Table 3.6.1. All four of the P and δσψ criteria for significant change are

met for each test. Together these tests support the full depth extent of each feature.

Tests 3 (a – f): Vertical Current Blocking

When structure is 1D, MT source fields induce only horizontal current flow. Con-

ductive plumes channel horizontally induced current into the vertical direction. To

investigate how deep the current source must be, we can block the flow at successively

deeper depths. Additionally we can investigate how far the plumes extend into the

crust by blocking vertical current flow within the crust. Vertical current blocks were

placed in the DEEP at (a) 347 km; (b) 199 km; (c) 100 km; (d) 32 km; and (e) 13 km.

The only current block in the SWAP was placed at (f) 32 km. The results of these

tests at 1280 s are summarized in Table 3.6.1. All four of the P and δσψ criteria for

significant change are met for Tests 3b – 3f, but not for Test 3a. Test 3a may be



62

flawed because the surrounding mantle is conductive enough at this depth that the

vertical current flow was not fully blocked by the resistive tablet. Together these tests

support vertical current flow through the full depth extent of the DEEP and vertical

current flow through the crust-mantle boundary of the SWAP.

3.7 Discussion

3.7.1 Comparison of SWAP & DEEP to regional geology

Figures 3.6(b – c) and 3.10 show that the SWAP has two conductive tendrils that

approach the surface. One tendril is directly under the Caldera Payún Matrú. The

other tendril is 100 km southwest of the Caldera Payún Matrú, directly under the

Trómen Volcanic Field (TVF), which comprises the south-west portion of the PBP.

The TVF is similar to the rest of the PBP in age and composition. In particular,

the TVF’s most recent volcanism has no arc signature and is interpreted to be from

an intraplate source [Ramos and Folguera, 2011]. As no information about local

volcanism was used in our inversions, the positioning of the SWAP tendrils is unlikely

to be fortuitous.

The SWAP is east of both the expected mantle wedge location (visible in slice

C of Figure 3.6(a)) and the main Andean volcanic arc. The SWAP remains above

the subducted Nazca slab, with the most conductive part of the SWAP at ∼50 km

depth. Figs. 3.6(a) and 3.10 show that the SWAP dips west, apparently intersecting

the subducted Nazca slab’s location at ∼130 km depth. If the SWAP were connected

to the slab, the recent volcanic products at the PBP could be expected to show an

arc signature. However, since recent volcanism shows no arc signature, it is plausible

that the SWAP does not connect to the subducted Nazca slab. In fact, while deeper

portions of the DEEP were re-created in inversion p301 (section 3.6.1) and shown in

Fig. 3.9 (p301), the deeper portion of the SWAP seems to have disappeared from

inversion p302 (Fig. 3.9 (p302)). The SWAP is thus not required to extend to the
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subducted Nazca slab’s location at 130 km depth.

Fig. 3.11 shows that the SWAP coincides with the large subcrustal negative ar-

rival identified by Gilbert et al. [2006] and Wagner et al. [2005] using receiver function

analysis. Gilbert et al. [2006] suggest that this subcrustal negative is related to the

back-arc volcanism. The SWAP’s superposition with this negative arrival lends cre-

dence to our assertion that the SWAP is related to the root of the PBP volcanism.

Unlike the SWAP, Figures 3.6(a) and 3.10 show that the DEEP dips to the east,

entering the top of the Mantle Transition Zone (MTZ) at roughly 400 km while

remaining above the subducted Nazca slab. The DEEP can not be positively identified

below 400 km, so it is not clear whether the DEEP rises from near the top of the

MTZ or from a deeper source.

While the DEEP does not appear to “connect” to the Earth’s surface directly un-

der the Caldera Payún Matrú, it does approach the surface beneath the portion of the

PBP known as the Auca Mahuida Volcanic Field (AMVF) 100 km southeast of the

Caldera Payún Matrú (Fig. 3.10). The AMVF is geochemically and geochronologi-

cally similar to the rest of PBP, but with no volcanism younger than 0.8 Ma [Ramos

and Folguera, 2011].

While the Payunia area shows obvious evidence of extension, a topographic profile

along slice C (see Fig. 3.10) in Fig. 3.12 shows evidence of uplift and a significant

change in topographic slope at the marked scarp. The footprint of the shallow portion

of the DEEP correlates with this region of uplift and suggests that the DEEP has

directly influenced this uplift.

While a fairly strong resistor (>1000 Ohm-m) separates the DEEP and SWAP

by at least 100 km at most depths (see Fig. 3.6(a)), it is possible that the DEEP

and SWAP are connected shallowly above ∼7 km. In fact, slice a of Fig. 3.9 (p207),

taken at ∼5 km, shows conductivity beneath the PBP that spans the location of

DEEP and SWAP. Shallower than ∼5 km (DEEP) and ∼7 km (SWAP), the model

was generally more conductive, and it was not possible to positively identify either
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Figure 3.6: Map views showing P = nRMS/nRMS0 at each site at each period with
the DEEP removed (Test 1(a) as discussed in the text) and SWAP removed (Test
1(b)). Green values are considered insignificant change from the original model. Note
that the effect of removing either plume is larger at longer periods.
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Figure 3.7: Map views showing δψσ at each site at 1280 s with the DEEP removed
(Test 1(a) as discussed in the text) and SWAP removed (Test 1(b)). Green values are
considered insignificant change from the original model.
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DEEP or SWAP for additional model assessment. This electrically conductive shallow

connection almost certainly stems from increased water within the Neuquén basin

sedimentary rock that underlies much of the PBP. There is a single young mono-

genetic volcanic center between the TVF and Auca Mahuida Volcanic Field (see

Fig. 3.10), but no other evidence of < 2 Ma volcanism between the TVF and the

Auca Mahuida Volcanic Field. Given additional evidence against a PBP near-surface

basaltic reservoir [Hernando et al., 2012; Folguera et al., 2009], the shallow electrical

connection between DEEP and SWAP is unlikely to represent partial melt.

3.7.2 Comparison to other electrical conductivity models

A structure closely resembling the DEEP was previously identified by Burd et al.

[2008] as a result of a 2D MT inversion using a subset of the 37 sites included in

this paper’s work. This result (shown in Ramos and Folguera [2011]) was interpreted

to indicate current flow between MTZ and the shallow crust. It appeared to surface

under the PMVF, which suggested a deep source for the PMVF volcanism. However,

Figure 3.10 shows that the DEEP surfaces over 100 km to the south-east, at the Auca

Mahuida Volcanic Field. This earlier 2D work was likely negatively affected by the

attempt to fit 3D data with a 2D model.

The DEEP has strong similarities to, but significant differences from, a deep con-

ductive plume studied by Burd et al. [2013]. This deep “flatslab” plume is 600 km

north of the DEEP and just east of the region of Pampean Shallow Subduction. The

flatslab plume is capped at 100 km depth where Burd et al. [2013] suggest it cannot

penetrate compressive lithosphere, while the DEEP appears to rise into the crust.

An additional important difference is that the flatslab plume penetrates the down-

dip extrapolation of the flatslab while the DEEP remains parallel to the projected

subducted Nazca slab as depth increases. Burd et al. [2013] invoke a slab window

to explain the flatslab plume’s interaction with the slab. However, while there is no

need for a slab window above 400 km at the DEEP location, the slab and the DEEP
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would intersect in the MTZ. There are two possible scenarios. First, the slab does

not extend below 400 km (and there is no evidence that it does) and does not exist

south of the tear suggested by Pesicek et al. [2012] (shown in Fig. 3.10). In this case,

the DEEP could continue through the MTZ into the DEEP mantle. In the second

scenario, the slab below 400 km is responsible for generating the DEEP, perhaps by

local introduction of water into the MTZ.

Newberry Volcano in Oregon, USA, in the back-arc of the Cascades appears to

be arguably similar to the PMVF and PBP. Egbert et al. [2012] identify an arguably

500 km deep electrically conductive plume similar to our DEEP rising vertically be-

neath Newberry. Newberry and the Cascadia Subduction Zone have been studied

extensively, with Long et al. [2012] proposing that the Miocene shallow slab steepen-

ing and trench roll-back drive westward mantle corner flow, subsequent upper plate

extension and back-arc volcanic upwelling.

3.7.3 DEEP & SWAP: indicators of mantle flow

Our SWAP and DEEP are compatible with an interpretation related to Long et al.

[2012]’s Cascadia discussion applied to the Andean back-arc. As the subducted slab

steepens, the mantle must flow into the region between the slab and the lithosphere.

The largely intraplate signature of the < 2 Ma PBP volcanism is compatible with this

mantle flow [Germa et al., 2010; Kay et al., 2006]. Gilbert et al. [2006] also propose

that mantle corner flow may play a role in the back-arc volcanism of this region. If

there is also a slab tear south of 38o S as suggested by Pesicek et al. [2012], this flow

would be towards the north-west rather than due west, as material wells up around

the southern edge of the Nazca slab.

We propose that this northwesterly flow has decapitated the DEEP to form the

SWAP. During the Miocene shallow subduction regime, the SWAP was a part of the

DEEP (Fig. 3.7.3(a)). However, as trench roll-back and slab deepening began to

occur at the beginning of the Pliocene, the SWAP was sheared off and pulled to the
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north-west (away from the DEEP) as mantle flowed into the area formerly occupied

by the Nazca slab (Fig. 3.7.3(b)). The contours and slab location in Fig. 3.7.3(c)

are not a cartoon – they are from slice C of Fig. 3.6(a) as shown on Fig 3.12. In

this interpretation, the depth of greatest horizontal displacement of the SWAP from

the DEEP represents the depth of greatest upper mantle flow velocity. Thus the

SWAP tilts downward to the north-west and the DEEP tilts upward to the north-

west, indicating greatest flow velocity near 130 km depth. Given additional time,

as trench rollback & slab deepening continue and the DEEP continues to rise to the

surface, the DEEP will continue to be caught in the mantle shear to the north-west

and may undergo additional decapitation. If this process continues, we might expect

renewed volcanism at Auca Mahuida.

The mantle flow velocity under South America since the Pliocene has the same

order of magnitude as South America’s velocity relative to the deep mantle. South

America is moving 45 km/Ma in a hot-spot reference frame, so over 5 Ma (since the

beginning of the Pliocene) the SWAP has likely moved ∼225 km. SWAP and DEEP

are separated by ∼200 km at 130 km depth, which is compatible with our estimation

of SWAP movement.

In our mantle-flow interpretation, the PBP should have been more active in the

past when extension associated with the trench roll-back and slab deepening first

allowed eruption of the pond of SWAP magma that had formed at the base of the

compressional crust during the Miocene shallow subduction regime. Some volcanism

associated with the SWAP continues to occur, but the magma flux is much less than

it was 1.7 Ma ago [Germa et al., 2010; Ramos and Folguera, 2011].

3.8 Conclusion

3D minimum-structure inversions of magnetotelluric data yield an image of the elec-

trical conductivity beneath the Payún Matrú Volcanic Field in western Argentina.

We have demonstrated the existence of an electrically conductive plume (the DEEP)
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Figure 3.10: Figure is identical to Fig. 3.1(a), with addition of contours corresponding
to 35 Ohm-m isosurface of DEEP and SWAP at 33, 52, 129, and 200 km. Transect
G shows position of seismic receiver function work of Gilbert et al. [2006] discussed in
connection with Fig. 3.11.
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Figure 3.11: 60, 30, and 15 Ohm-m contours for SWAP and DEEP from slice C of
Figs. 3.1(b) and 3.6(a), superimposed on a receiver function-derived diagram from
Gilbert et al. [2006] that corresponds to transect G on Fig. 3.10.

that extends from 5 km below Payunia (and possibly shallower) to at least 347 km

depth, dipping to the east and remaining above the subducted Nazca slab. We have

also demonstrated the existence of an electrically conductive plume (the SWAP) that

extends from 7 km (and possibly shallower) below the Caldera Payún Matrú and

the Trómen Volcanic Field to roughly 130 km depth, dipping to the west and re-

maining above the subducted Nazca slab. While the DEEP has relatively constant

conductivity at all depths, the SWAP is most conductive near 50 km depth.

The DEEP and SWAP conductivity and the PBP volcanism are best explained by

a partially melted mantle plume. This plume has been sheared by the north-westward

shallow mantle corner flow to form the previously connected SWAP and DEEP.
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Figure 3.12: Topographic transect along slice C of Figs. 3.6(a) and 3.10 shows depth
of both Pacific and Atlantic Oceans. Inset shows SWAP, DEEP, and subducted Nazca
slab, also from slice C: shallowest portion of DEEP corresponds to marked scarp, while
SWAP corresponds to Payún Matrú.
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Figure 3.13: Three cartoons depicting evolution of present-day PBP, SWAP, and
DEEP. 60, 30, & 15 Ohm-m contours of SWAP & DEEP in green, red, & magenta;
subducted Nazca slab location in solid or dashed blue line; Nazca slab motion vec-
tors in blue; mantle flow vectors in brown; PBP in tan; active SVZ at dark blue
triangle. (a) shows situation during the end of the Miocene shallow subduction
regime, when DEEP and SWAP were one structure just beginning to be sheared
north-westward; (b) slab steepening continues through Pliocene, causing increase in
mantle flow which shears SWAP and DEEP to north-west, eventually decapitating
DEEP to form SWAP; (c) present-day situation based on slice C of Fig. 3.6 – SWAP,
DEEP, Nazca slab are to scale, with South America, SVZ, and PBP at correct loca-
tions but with exaggerated height.
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3.9 Data Availability

The MT data used in this paper are available through the IRIS Data Management
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