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Abstract

Relationships between climate and geophysical processes:
what climate histories can be inferred from glaciers, lakes, and ice streams?

Kathleen Huybers

Chair of the Supervisory Committee:

Professor Gerard Roe

Earth and Space Sciences

This dissertation aims to characterize the present and future variability of the Earth’s

climate by putting it in the context of past variations in climate. Herein I explore

how the spatial and temporal fluctuations of climate variables such as temperature,

precipitation, evaporation, and sea level are filtered and integrated by the geophysical

systems that they influence. I use relatively simple models to explore the scale over

which a paleoclimate proxy record is relevant, the physics and parameters to which

the system is most sensitive, and how one can distinguish a climate signal from noise.

The three geophysical systems explored in this work are detailed below:

1. Glaciers: Glaciers integrate interannual variations in precipitation and tem-

perature and respond with kilometer-scale, multi-decadal terminus fluctuations

[Oerlemans, 2000, Reichert et al., 2002, Roe and O’Neal, 2009]. My work ex-

tends these studies, and uses reanalysis data and correlation analysis to establish

how patterns in precipitation, temperature, and glacier geometry give rise to

patterns in glacier advance and retreat. Using a linearized glacier model, I

also derive analytic expressions to calculate the expected coherence of regional



glacier advance and retreat, and to assess the sensitivity of these glaciers to tem-

perature and precipitation changes. By focusing on how climatic and geometric

heterogeneity affect patterns of regional glacier length variations, I isolate the

parameters that exert the most influence on the timing and magnitude of glacier

response to temporal variations in the climate.

2. Lakes: Like mountain glaciers, lakes integrate year-to-year climate fluctuations

to produce large, persistent surface fluctuations on timescales of decades or

longer. Using the Great Salt Lake as a case study, I model lake-level variability

in response to perturbations in evaporation and precipitation. Though there

already exists a body of work that has characterized persistence in observed lake-

level variations [Mason et al., 1994, Lall and Mann, 1995, Abarbanel and Lall,

1996, Mohammed and Tarboton, 2011], my research shows that this persistence

not only reflects any autocorrelation in the climate, but is also intrinsic to the

dynamics of the lake system. My work also shows how the geometry of the

lake influences the magnitude and persistence of lake level fluctuations. These

results develop a null hypothesis in expected lake-level variability which can be

compared to the magnitude and frequency of paleo lake-level variations.

3. Ice streams: Previous studies have used flowline models to understand the be-

havior of ice streams on idealized bed geometries [Schoof, 2007, Docquier et al.,

2011]. This work applies the flowline model approach to a realistic basal to-

pography beneath the West Antarctic Ice Sheet (WAIS), and evaluates changes

in grounding line positions and upstream ice profiles in response to changes in

model physics and environmental factors.

These sensitivity studies demonstrate that the present positions of many Wed-



dell Sea-sector grounding lines lie within an asymmetric trench, implying a

strong stability to retreat, but also creating the potential for significant advance

due to either sea-level lowering on the order of tens of meters, or conceivably,

from precipitation increases of less than 10%. My evaluation reaffirms that the

greatest concerns for WAIS retreat or collapse are locations of reverse slopes,

muted basal topography, and limited lateral support.

This dissertation uses models of low complexity, allowing for a complete under-

standing of the system, and providing a deeper and richer understanding of the tem-

poral and spatial patterns of Earth’s limitless complexity.
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Chapter 1

INTRODUCTION

Paleoclimate proxies provide a wealth of information about Earth’s history, far

beyond what is available from the instrumental record. However, proxies are not

equivalent to instruments – the nature of what and how a proxy is deposited must be

understood before any meaningful climate information is extracted. In most instances

the proxy record is not a direct history of climate, but rather of some other geophys-

ical sub-system (i.e., a tree, a lake, a glacier, an ice sheet, or a soil), that itself has a

dynamical response to climate. The size, shape, local climatology, internal dynamics,

and non-climatic external forcings of the system all determine the time that it takes

to respond to a climatic forcing and the magnitude of that response. Further, the

proxy record left by the geophysical system may represent a spatial integration of

climatic effects.

This delayed, smoothed, and integrated response to a climate signal is a hallmark

of many geophysical systems with memory such as the ocean’s mixed layer [Hassel-

mann, 1976, Frankignoul and Hasselmann, 1977], glaciers [e.g. Oerlemans, 2000, Roe,

2011], lakes [e.g. Mason et al., 1994], ice sheets [e.g MacAyeal, 1992, Huybrechts and

de Wolde, 1999], and permafrost soils [e.g. Romanovsky et al., 2007] (see Appendix

A). Both the spatial and temporal integration of the climatic forcings can complicate

the interpretation of a proxy record giving rise to several questions:

1. What climatic variables, represented by the climate proxy, are well preserved



2

by the geophysical system?

2. On what timescale is climatic information well preserved?

3. Over what spatial scale does the proxy represent relevant information?

4. How can one distinguish a climatic signal from noise in the proxy record?

5. What physics and parameters is the system most sensitive to?

This dissertation explores three geophysical systems from which paleoclimate

proxy records are often derived:

• Glaciers, whose length variations are influenced by patterns of accumulation

and ablation.

• Lakes, whose extent and surface elevation vary in response to evaporation and

precipitation.

• Ice streams, whose shape and extent are sensitive to changes in sea level, ac-

cumulation, and ice-shelf buttressing.

These geophysical systems are studied by applying climatic forcings to relatively

simple models that capture the systems’ behavior. Despite the models’ simplicity, they

retain the most essential behaviors of the systems that are being studied. Though the

models do not capture all of the nuances of the systems’ behavior, their simplicity is

also their strength: a thorough understanding of the behavior of the governing equa-

tions leads to physical understanding of the system in nature. To some degree, each

chapter in this dissertation addresses each of the five questions posed above, though
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the emphasis varies for each of the three systems.

1.1 Glaciers

Mountain glaciers are key indicators of regional and global climate change and vari-

ability, responding sensitively to changes in precipitation and temperature. However,

internal dynamics cause glaciers to integrate variations in precipitation and temper-

ature over timescales longer than a year. The timescale and magnitude of a glacier’s

response to climate perturbations are functions of both the geometric and climatic

setting of the glacier. It is therefore difficult to diagnose whether discrepancies in

glacier behavior are due to geometric or climatic heterogeneity.

Glaciers respond to variations in the climate through changes in both the profile

and length of the glacier. Because the length of the glacier is relatively simple to

diagnose, through terminal moraine deposits or aerial photographs, variations in a

glacier’s length offer the most straightforward way to track its response to variations

in the climate. Nye [1960] showed that these terminal variations are driven by not

only the direct effects of snowfall and ice melt, but also to the arrival of ice from the

upper part of the glacier. Nye estimated that the time it takes to transfer snowfall to

the terminus of an alpine glacier is between 3 and 30 years. With this understanding,

much work was done to understand what climatic forcings determine the timing and

magnitude of variations in glacier length [e.g. Nye, 1961, 1963, Jóhannesson et al.,

1989, Oerlemans et al., 1998, Harrison et al., 2001, Weber and Oerlemans, 2003, Roe,

2011, Oerlemans, 2012, Harrison, 2013].

Reichert et al. [2002] and Roe and O’Neal [2009] each recognized that in addition

to responding to climatic change, glacier lengths also vary in response to interannual

climate variations. Their work determined the expected amplitude of glacier varia-
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tion in response to interannual variations in precipitation and temperature. Length

variations that exceed the bounds of this range are indicative of a glacier that is re-

sponding to a true climatic shift, rather than a short-term variation in precipitation

or temperature.

The shape of the underlying bed and the distribution of ice also control the timing

and size of a glacier’s response to changes or variations in the climate. These geo-

metric effects can be large. For example, Kessler et al. [2006] showed that 97% of the

disparity between the lengths of glaciers flanking the east and west side of California’s

Sierra Nevada range during the most recent glacial period is attributed to the topo-

graphic asymmetry of the mountains. Oerlemans et al. [1998] concluded that while

there is no straightforward relationship between glacier size and fractional change in

ice volume, hypsometry plays an important role in determining the variability of a

glacier, and that, in general, smaller glaciers are more likely to lose a higher percent-

age of their mass. However, the tendency of larger glaciers to have lower slopes can

also expose a large fraction of a large glacier to ablation for the same warming (or

same ELA rise). This can be a compensating factor.

Given that both the regional climate and the regional mountain topography are

non-homogeneous, it is therefore expected that regional glacier advance and retreat

should also be non-uniform. Regional correlations in glacier lengths that are apparent

in the historical or proxy record reflect the influence of three factors: spatial correla-

tions in precipitation and melt-season temperature; the climatic setting of the glaciers

(e.g. a maritime or continental climate); and a similarity between the glaciers’ geo-

metric setting and hypsometric distribution. Chapters 2 and 3 explore the influence

the factors on setting the patterns of regional glacier advance and retreat.
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1.2 Lakes

Many of the same issues that affect the interpretation of glacier-length records also

apply to lake-level records. Lakes that do not have efficient drainage outlets integrate

year-to-year climate fluctuations to produce large, persistent fluctuations in lake lev-

els on timescales of decades or longer. A lake integrates climatic information over its

entire catchment area, reflecting regional climate signals with a rise or fall in the lake’s

level. Langbein [1961] noted that closed-basin lakes, which lack drainage outlets (i.e.

endorheic basins), fluctuate more than open lakes, because changes in the inflow or

outflow of the lake can be compensated only by a change in the lake’s surface area.

Therefore, closed lakes are particularly sensitive to climate fluctuations, and have

been the subject of many paleoclimate studies [Street-Perrott and Harrison, 1985].

One such lake that is particularly well-studied is the Great Salt Lake (GSL). It

is tempting to attribute decadal-scale variations in the GSL’s lake level to decadal-

scale climatic forcings. Mann et al. [1995], Lall and Mann [1995], Moon et al. [2008]

and Wang et al. [2010] invoke low-frequency climate phenomena to explain the low-

frequency response of the GSL, and aim to predict future lake levels from the period-

icity of the atmospheric indices.

However, Kite [1989] proposed that the changes and apparent periodicity in the

GSL’s record are within the range of normal fluctuations and cannot be cited as an in-

dication of climatic change. Mohammed and Tarboton [2011] showed that the timing

of increases and decreases in lake level are directly related to the GSL’s bathymetry.

Because the area of the lake controls the outgoing flux, a shallow lake like the GSL

is quickly stabilized and modulated by the available evaporative surface. In related

work, they used a model to calculate the sensitivity of the GSL to changes in the

historical inflow, precipitation, and air temperature, and use these historical records
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to predict possible future lake-level scenarios [Mohammed and Tarboton, 2012].

Mason et al. [1994] derived general solutions to the water-balance equation that

characterized the lake-level response to idealized climate forcings, showing how closed-

basin lakes act as low-pass climate filters. In Chapter 4, I apply a similar model,

putting the historical record of the GSL into context by considering the natural vari-

ability of the lake’s level, which occurs in response to the year-to-year fluctuations

in weather that occur even without any climate change or persistence in the cli-

mate. I derive analytic solutions for the standard deviation of lake-level changes, the

threshold-crossing frequency of a lake, and the sensitivity to variations in precipi-

tation versus temperature. Chapter 4 also demonstrates the important role of lake

bathymetry on integrating natural lake-level variability.

1.3 Ice Streams

Advances in the physical understanding of marine ice sheet stability, coupled with

evidence that the West Antarctic Ice Sheet (WAIS) has collapsed in the past [Hil-

lenbrand et al., 2012], have led to recent concerns about the WAIS’s future stability.

The total potential sea-level contribution from the WAIS is ∼4.3 m [Fretwell et al.,

2013], and recent work suggests that Antarctica could contribute 0.15 to 0.62 m to

global sea-level rise in the next century [Solomon et al., 2007, Pfeffer et al., 2008,

Joughin et al., 2010, Gladstone et al., 2012, Mouginot et al., 2014, Joughin et al.,

2014]. Similarly, the distribution of ice on the Antarctic continent during the last

glacial period, as well as a comprehensive understanding of its retreat to the present

state remains unknown [e.g. Anderson et al., 2002, Clark et al., 2009]. The difficulty

in predicting future change, or resolving past change, stems, in part, from the com-

plexity of ice/ocean dynamics [Joughin and Alley, 2011, Nowicki et al., 2013].
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However, recent advances in remote sensing offer an unprecedented insight into

the present state of the ice sheet, including observations of ice-thickness, basal topog-

raphy, and surface velocity [Fretwell et al., 2013, Rignot et al., 2008, Le Brocq et al.,

2010, Rignot et al., 2011, Fretwell et al., 2013]. These data sources, in combination

with advances in the theoretical understanding of ice-sheet-shelf-ocean interactions

allow us to gain perspective on the stability of the WAIS, using numerical models

[Schoof, 2007, Gagliardini et al., 2010, Drouet et al., 2012].

In an idealized steady state, the flux of ice from the margins of the ice sheet is

balanced by the accumulation integrated over the upstream catchment area. In re-

ality, the mass balance of the ice sheet is continuously being modified by changes in

the activity of fast-flowing outlet glaciers and ice streams. The volume of ice that

is discharged from these outlets is determined by changing conditions at the ground-

ing line, the transitional area between the grounded ice sheet and the floating ice

shelf. The grounding line, in turn, is highly sensitive to changes in sea-level and

the melting/freezing of buttressing ice shelves [Payne et al., 2004, Joughin et al.,

2010, Pritchard et al., 2012, Shepherd et al., 2012]. Schoof [2007] showed that the

grounding-line position is determined by the basal topography and is therefore ex-

tremely sensitive to changes in the bed beneath and extending outward from the

grounded ice.

The position of the grounding line exerts a strong control over the inland ice-

elevation profile. Glacial erratics, which are collected from nunataks and dated with

cosmogenic nuclide techniques, can offer evidence of past ice-thickness changes [e.g.

Balco et al., 2008]. This paleo-evidence, coupled with physical understanding from a

model, can inform us how ice streams respond to changes in the grounding line.

In Chapter 5, I use an idealized flowline model to assess the relative importance
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of environmental variations and physical parameters on ice-stream thickness profiles.

Sub-glacial and sub-marine basal topography, together with the assumed form of the

grounding-line flux, controls the grounding-line sensitivity to change. Results em-

phasize that differences in the basal relief beneath present-day ice streams will cause

the Weddell, Amundsen, and Ross Sea sectors of Antarctica to respond with varying

sensitivity to similar environmental perturbations.

1.4 Conclusion

I return now to the initial five questions that motivate this work, and detail how each

chapter of my dissertation will answer each of these questions:

1. What climatic variables, represented by the proxy, are well preserved by the

geophysical system?

I derive linearized formulas for the ratio of sensitivity of glaciers/lakes to changes

in accumulation (precipitation) and mass loss (melt/evaporation). The ice-

stream chapter uses sensitivity analyses to characterize the potential changes in

ice thickness due to changes in accumulation, sea level, and ice shelf buttressing.

2. On what timescale is climatic information well preserved?

Characteristic response times are derived from the linearized glacier and lake

level models. The sensitivity of the ice-stream model to physical and environ-

mental factors enhances our understanding of how well ice-stream models can

capture the changes observed in exposure-age data.

3. Over what spatial scale does the proxy represent relevant information?

The mountain glacier work expressly answers this question with correlation

analysis. Similar work could be done with the lake model, but is not part of
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this dissertation. For the ice stream, my results imply that the near-grounding-

line elevations will reflect regional ice sheet/shelf condition.

4. How can one distinguish a climatic signal from noise in the proxy record?

Roe and O’Neal [2009] used statistical analysis to estimate the variability of

glaciers due to climate variability alone. I have used a similar approach in my

work with lakes. For ice streams, I compare the ice-profile response to varia-

tions in accumulation, bed slipperiness, and relative sea level. This intra-model

comparison can then be compared to the magnitude of ice-thickness changes

from the Last Glacial Maximum to the present.

5. What physics and parameters is the system most sensitive to?

All three chapters identify the primary sensitivity of the systems that are ad-

dressed. The main advantage to my idealized modeling approach is that the

physics and parameters are easily identified and altered, and that comparisons

between model configurations are straightforward, allowing for clear interpreta-

tions of the modeling results.



10

Chapter 2

SPATIAL PATTERNS OF GLACIERS IN RESPONSE TO
SPATIAL PATTERNS IN REGIONAL CLIMATE

Chapter 2, in full, is a reprint of “Spatial Patterns of Glaciers in Response to

Spatial Patterns in Regional Climate” authored by K. Huybers and G. H. Roe. This

is the author’s version of the work. It is posted here by permission of the American

Meteorological Society (AMS) for personal use, not for redistribution. The definitive

version was published in Journal of Climate 22.17 in 2009, and AMS holds the copy-

right. The dissertation author was the primary investigator and author of this paper.

2.1 Introduction

A major goal in current climate research lies in understanding patterns in climate and

how they translate to climate proxies. Glaciers are among the most closely studied of

these proxies because they respond directly to both snow accumulation and surface

energy balance. These, in turn, reflect the precipitation and melt-season temperature

of the regional climate [Ohmura et al., 1992]. A glacier’s response to this climate is

most often characterized by a change in the position of its terminus. Records of ter-

minus advance and retreat are readily available in both the geological and historical

record through the formation of moraines, lichenometry, aerial photography, cosmo-

genic dating, and satellite imagery. Beyond the period of the instrumental record,

well-dated glacial deposits often serve as the primary descriptor of the climate history

of a region.
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Despite the direct nature of a glacier’s response to climate, both the current near-

global retreat and past glacier variations present complicated pictures. Though there

is strong evidence that glaciers worldwide are presently retreating [e.g. Oerlemans,

2005], individual glaciers vary in the magnitude of response. In a few locations,

glaciers have even advanced during the past decades, as is the case in Norway and

New Zealand [e.g. Nesje, 2005, Chinn et al., 2005]. Moreover, some well-documented

retreats like that on Mount Kilimanjaro have complicated causes that are not easily

explained [e.g. Mölg and Hardy, 2004]. While there is often local coherence among

glacial advances and retreats, it has proven harder to extrapolate these results across

continental-scale regions [e.g. Rupper and Roe, 2008].

The difficulty in interpreting terminus advance and retreat is threefold. First,

glaciers are not indicators of a single atmospheric variable. They reflect the effect of

many atmospheric fields, primarily accumulation and temperature, but also cloudi-

ness, wind, longwave and shortwave radiation balances, the turbulent fluxes of sensible

and latent heat, and humidity, among others. Second, each glacier is subject to a par-

ticular combination of the bed slope, hypsometry, accumulation area, debris cover,

local shading, etc., creating a setting that is unique to each glacier. Finally, glaciers

integrate the interannual variability of the climate over many years or even decades;

the advance or retreat of a glacier cannot be traced to a single years climate.

Hence, in order to understand how spatial patterns in climate variability translate

into spatial patterns of glacial response, we must systematically analyze patterns in

regional climate and model a glacier’s response to the dominant variables. These

patterns of climate variability and glacier response must be understood in order to

establish the natural variability of a glacier (i.e., the variability in the absence of an

external climate forcing). It is only when observed responses exceed this expected

natural variability that glaciers can be said to be recording a true regional, hemi-
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spheric, or global climate change [e.g. Reichert et al., 2002, Roe and O’Neal, 2009,

hereafter RO].

The goal of this paper is to derive and analyze a model of the expected regional-

scale correlations of glacier length variations in response to interannual variability in

precipitation and melt-season temperature. We take a first-order approach to this

problem, using the simplest model framework capable of representing how glaciers

amalgamate different aspects of climate to produce terminus variations. In particular,

we address the following questions:

1. What are the spatial patterns of variability in precipitation and melt-season

temperature?

2. How do these patterns of intrinsic climate variability translate into patterns of

glacier advance and retreat?

3. Over what spatial extent can we expect these intrinsic, natural fluctuations of

glaciers to be correlated?

We use a simple linear glacier model that has been shown to adequately capture

recent glacier variability [RO; Jóhannesson et al., 1989, Oerlemans, 2005]. The pat-

terns we find in our results are consistent with those of other glacier mass balance

studies [Harper, 1993, Bitz and Battisti, 1999]. The advantage of our approach is that

it allows us to explore such patterns on a wider, regional scale and to understand in

detail the relative importance of the different causes.

Our modeled patterns of glacier advance and retreat are not intended to simulate

either the recent or the paleorecord of glacier advance and retreat. First, this is be-

cause we have chosen to explore only the interannual variability of climate and have
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removed any trend from the data. Second, and more fundamentally, accounting for

the processes that build up and deposit moraines on the landscape, and particularly

the time scale of their formation, is beyond the scope of our chosen model [e.g. Putko-

nen and O’Neal, 2006]. We regard our results, therefore, as a means to explore how

climate patterns are combined through the dynamical glacier system and as an aid in

the interpretation of glacial landscape features.

2.2 Setting and data

Our study area is the Pacific Northwest, covering the northwestern United States,

British Columbia, and southern Alaska. This region is ideal because of the large num-

ber of well-documented glaciers, the different climatic environments, and the range of

glacier sizes that exist in the region. The dominant climate patterns in the area are

also well understood. Figure 2.1 maps the locations of all major glaciers in the region.

Our principal climate data set is that of Legates and Willmott [1990a,b, hereafter

LW50] which provides 50 years of worldwide temperature and precipitation station

data interpolated onto a 0.5◦× 0.5◦grid. We extract from this data set two atmo-

spheric variables that reflect the most important climatic forcing for glaciers. The

first variable is the melt-season temperature, which we define as the average surface

temperature between June and September (JJAS). For simplicity, we assume that the

ablation rate is directly proportional to the melt-season temperature, as suggested by

observations [e.g. Paterson, 1994, Ohmura et al., 1992]. The second variable is the

mean annual precipitation, which, again for simplicity, we assume reflects the accu-

mulation of snowfall on a putative glacier within any grid point. Approximately 80%

of precipitation in this region comes in the fall and wintertime [e.g. Hamlet et al.,

2005]. To distinguish in more detail between precipitation and snowfall would require

extrapolation onto high-resolution topographic digital elevations models. The data
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are linearly detrended in order to identify the internal variability in these climate

variables and, so, neglect any recent warming.

These simplifications are appropriate for the first-order approach in this study,

its focus on the regional-scale response, and the relatively coarse 0.5◦-resolution data

that does not reflect detailed small-scale orographic features. We discuss refinements

of the model framework in section 5 and the discussion.

2.2.1 Climate in the Pacific Northwest

Figures 2.2A and B depict the mean annual precipitation and the mean melt-season

temperature over the region. The Cascade, Olympic, Coast, and St. Elias Mountains

are important influences on the regions climate. These mountain ranges partition the

setting into a generally wet region on the upwind flank of the mountains and a dry re-

gion toward the leeward interior. On a smaller scale, not resolved in Fig. 2, there are

distinct patterns in climate over the peaks and valleys in the mountain ranges, giving

rise to rich and intricate local weather patterns [e.g. Minder et al., 2008, Anders et al.,

2007]. We address the important effect of these small-scale patterns in section 2.5.

For mean melt-season temperature, the pattern is characterized by the north-south

gradient, though cooler temperatures at higher elevations can also be seen.

The major feature of the regional atmospheric circulation pattern is the Aleu-

tian low pressure system. The effects of the dominant modes of climate variability

influencing the region [e.g., El Niño [e.g. Wallace et al., 1998], the Pacific decadal os-

cillation [e.g. Mantua et al., 1997], and Pacific-North American pattern [e.g. Wallace

and Gutzler, 1981])] can all be understood in terms of how they shift the position and

intensity of the Aleutian low. These shifts result in a dipole-like pattern, with storms

having a tendency to track either north or south, depending on the phase of the mode,
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and leaving an anomaly of the opposite sign where the storminess is reduced.

The natural year-to-year variation observed in the region’s climate system is well

characterized by the standard deviations in annual temperature and precipitation

from LW50. Figure 2.2C shows a simple relationship: the interannual variability of

precipitation is higher where the mean precipitation is also high. However, for melt-

season temperature, the picture is different. Whereas the mean was dominated by the

north-south gradient, the variability of melt-season temperature (Fig. 2.2D) is higher

inland, reflecting the continentality of the climate.

2.2.2 Glaciers in the Pacific Northwest

The high annual precipitation totals and widespread high-altitude terrain within this

area are conducive to the existence of glaciers. The region’s glaciers have been ex-

tensively mapped, as have their changes over recent geologic history [e.g. Harper,

1993, Hodge et al., 1998, ONeal, 2005, Pelto and Hedlund, 2001, Post, 1971, Porter,

1977, Sapiano et al., 1998, Sidjak, 1999]. The glaciers in the region range from the

massive tidewater glaciers in southern Alaska to small ice patches in steep terrain. In

this study, we focus on the many temperate alpine glaciers in the area because these

are the best suited to reflect a “clean” signature in their response to climate. Even

among these temperate glaciers, there is a wide range in size and shape, giving rise

to individual variations in advance and retreat.

These advances and retreats cannot be interpreted as responses to long-term cli-

mate changes alone. Climate is, by definition, the statistics of weather. In other

words, it is the probability density distribution of the full suite of variables that de-

scribe the state of the atmosphere over some specified period of interest. (The World

Meteorological Organization defines climate as the statistics within any 30-yr period.)
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A stationary climate, therefore, has constant statistics with a given mean, standard

deviation, and higher-order moments. Glaciers are dynamical systems that integrate

this natural year- to-year climate variability. This integrative quality of glaciers means

that, even in a constant climate, the length of glaciers will vary on decadal and cen-

tennial time scales [e.g. RO; Reichert et al., 2002, Roe, 2009].

2.3 A linear glacier model

A schematic of the linear model employed in this study is shown in Fig. 2.3. The

model is from RO, which is based on that of Jóhannesson et al. [1989]. The model

neglects ice dynamics and assumes that any imbalance between snow accumulation

and ice ablation is immediately expressed as a rate of change of the terminus position.

Other aspects of the glacier geometry are specified. The absence of glacier flow dy-

namics means that the linear model is not damped enough on short time scales (e.g.,

RO), but on decadal time scales and longer this model, and similar ones are able to

reproduce realistic glacier variations for realistic climate forcings [RO; Oerlemans,

2001, Harrison et al., 2001].

Climate is specified by an annual accumulation rate of P (m yr-1) and an average

melt-season temperature T . Ablation is assumed to be linearly proportional to T

(◦C), where the constant of proportionality is given by the melt-rate factor µ. Ob-

servations suggest that µ ranges from 0.50 to 0.84 m yr-1 ◦C-1, water equivalent [e.g.

Paterson, 1994]. The lapse rate Γ is taken to be a constant 6.5 ◦C km-1.

Let L̄ be the equilibrium glacier length that would result from constant T and

P , the long-term averages of the melt-season temperature and the precipitation. The

model calculates the time evolution of perturbation in glacier length L′ that arises

from the interannual anomalies in the melt-season temperature, T ′, and annual pre-
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cipitation, P ′. From here on, we drop the prime symbol and use L, T , and P to

represent the anomalies in length, melt-season temperature, and precipitation.

RO show that perturbations in glacier length L away from the equilibrium glacier

length for a given constant climate can be described by the following equation:

Lt+∆t =

(
1− µΓ tanφAabl∆t

wH

)
Lt−

(
µAT>0∆t

wH

)
Tt+

(
Atot∆t

wH

)
Pt ≡ γLt−αTt+βPt.

(2.1)

The model geometry and parameters are defined in Fig. 2.3, t is time in years,

and ∆t is the interval between successive time steps, which we take to be one year.

Most of the correlations presented in this paper are calculated with respect to

Mount Baker in the Cascade Mountains of Washington state (48.7◦N, 121.8◦W).

Mount Baker is a large stratovolcano, flanked by eight glaciers with a broad range of

sizes and shapes. Mount Baker was chosen because the history of its glaciers is well

documented [ONeal, 2005], its climatic setting is well understood, and its glaciers

generally fit well into the simple geometrical constraints of the model (i.e., no sharp

corners). Doing so also complements the analysis in a companion study (RO).

Table 2.1 shows the range in the model parameters and geometry that is rea-

sonable for typical Alpine glaciers in this region, taken from RO. Ablation areas are

calculated from the total area, using the accumulation area ratio (AAR), the ratio

of 1 − Aabl to Atot, which has been shown to vary from 0.6 to 0.8 in this region [e.g.

Porter, 1977]. For simplicity, we group the parameters for the three terms in eq. (2.1)

into the coefficients γ, α, and β, respectively. Here γ ranges between 0.81 and 0.97

(and is unitless), α between 9 and 81 m ◦C-1, and β between 85 and 240 yr, depending

on the choice of parameters and the size of the glacier. Note that α has the largest
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uncertainty owing to the large uncertainties in µ and in the AAR, both of which,

in principle, can be observed and therefore constrained much better for any specific

glacier. Table 2.1 also shows a standard set of typical parameters, which we use for

all calculations from now on, unless otherwise stated.

Equation (2.1) describes a glacier that advances (retreats) if melt-season temper-

atures are anomalously low (high) or if the accumulation is anomalously high (low).

It is the discrete form of a simple first-order ordinary differential equation that has

a characteristic response time. In the absence of any climate anomalies the glacier

asymptotes exponentially back to its equilibrium length with a characteristic e-folding

time scale of:

τ ≡ ∆t
(1−γ)

= wH
µΓ tanφAabl

.

For Mount Baker glaciers, τ ranges from 5 to 30 yr (Table 2.1), consistent with

other estimates for these small mountain glaciers. In the presence of climate forcing,

τ represents the decorrelation time scale, or “memory” of the glacier. RO and Roe

[2009] demonstrate that, because of this memory, a fundamental property of glaciers is

that they will naturally undergo persistent multidecadal and centennial fluctuations,

even in the absence of any persistent climate anomalies.

RO also show that this linear model is able to capture typical magnitudes of

glacier variations in the Cascade Mountains of Washington State and, so, is adequate

to capture the approximate response of glacier length to large-scale patterns of P and

T . Caveats and possible improvements to the model are noted in the discussion.
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2.4 Results

2.4.1 Glacier correlations

The aim of this study is to explore how patterns of glacier-length variations are

driven by patterns of climate. From eq. (2.1) an expression can be derived for

the correlation between the length variations of two glaciers located at two different

locations (denoted A and B) in terms of the correlations between T and P :

LA,t+1 = γALA,t − αATA,t + βAPA,t, (2.2a)

LB,t+1 = γBLB,t − αBTB,t + βBPB,t. (2.2b)

The expected value (denoted by angle brackets) of the correlation between glaciers

A and B is

〈LA,t+1LB,t+1〉 = γAγB〈LA,tLB,t〉+ αAαB〈TA,tTB,t〉

+ βAβB〈PA,tPB,t〉 − γAαB〈LA,tTB,t〉

+ γAβB〈LA,tPB,t〉 − αAγB〈TA,tLB,t〉

+ βAγB〈PA,tLB,t〉. (2.3)

Cross terms in temperature and precipitation (i.e., 〈TA,tPB,t〉) have been neglected

in eq. (2.3) because calculations show that in this region they are not statistically sig-

nificant at a 95% confidence level.

Here 〈LA,tLB,t〉 is the covariance of LA and LB, which is in turn equal to the corre-

lation between LA and LB (≡ rL(A,B)), our desired answer, multiplied by the standard

deviations of LA and LB. The covariances 〈TA,tTB,t〉 and 〈PA,tPB,t〉 can be calculated

from observations. However, the other terms in (3) are in need of additional manipu-

lation. We elaborate below on 〈LA,tTB,t〉. The other terms can be derived in a similar
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fashion.

From the definition of the correlation between TA and TB we can write

〈TB,t〉 = σT,B

(
rT
〈TA,t〉
σT,A

+ (1− r2
T )

1/2νt

)
(2.4)

where rT is the correlation of melt-season temperature between points A and B,

σT,() is the standard deviation of T at point ( ), and we assume that the residual νtt

is a Gaussian-distributed random number of unit variance at time t.

Using the right-hand side of eq. (2.4), the value for 〈LA,tTB,t〉 can be rewritten as

〈LA,tTB,t〉 = rT
σT,B
σT,A
〈LA,tTA,t〉, (2.5)

where we have used the fact that there is no correlation between a random number

and LA,t. That is, 〈LA,tνt〉 = 0.

So, to find 〈LA,tTB,t〉 we need 〈LA,tTA,t〉. First, TA can be written in terms of its

autocorrelation, ρT,A, and the residuals, which we assume are governed by another

Gaussian-distributed white noise process, λt:

TA,t = ρT,ATA,t−1 + (1− ρ2
T,A)

1/2λt (2.6)

Therefore, using eqs. (2.6) and (2.2a) we can write

〈LA,tTA,t〉 = γAρT,A〈LA,t−1TA,t−1〉 − αAρT,A〈T 2
A,t−1〉 (2.7)
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where again we use the fact that 〈LA,tλt〉 = 0.

Since the expected value of a distribution of numbers is independent of the time

step 〈LA,tTA,t〉 = 〈LA,t−1TA,t−1〉, we rewrite eq. (2.7) as

〈LA,tTA,t〉 =
−αAρT,Aσ2

T,A

1− γAρT,A
(2.8)

Therefore, the expected correlation between Lt and Tt is a function of the magni-

tude of T (σT ), the autocorrelation of T (ρT ), and the memory of the glacier (γA).

Finally, inserting the right hand side of eq. (2.8) into eq. 2.5) yields

〈LA,tTB,t〉 =
−αArTρT,AσT,AσT,B

1− γAρT,A
. (2.9)

Derivations directly analogous to the above can be used for the remaining terms

in eq. (2.3) and yield an equation for the correlation of glacier lengths between A and

B:

rL(A,B) =
1

(1− γAγB)σL,AσL,B

[
rTαAαBσT,AσT,B

(
1 +

γAρT,A
1− γAρT,A

+
γBρT,B

1− γBρT,B

)
+ rPβAβBσP,AσP,B

(
1 +

γAρP,A
1− γAρP,A

+
γBρP,B

1− γBρP,B

)]
(2.10)

The terms relating to climate (rT , rP , σT , σP , ρT , ρP ) can all be calculated from

observations.
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Equation (2.10) reveals that the correlations between the lengths of glaciers in

different places are dependent on both the relationships between climate variables

and the geometries of the glaciers in question. The variables and parameters are

the correlation of the climate variables (rT , rP ); the standard deviations of the glacier

length (σL), precipitation (σP ), and melt-season temperature (σT ); the memory of the

glacier (γ) and climate (ρT , ρP ); and finally the size and shape of the glacier (α, β).

We will now discuss each of these factors in turn and how their respective ranges of

uncertainty affect the correlations between glaciers.

2.4.2 The spatial correlation of the climate variables

Spatial correlations between glacier behavior are fundamentally driven by spatial cor-

relations in the climate: eq. (2.10) shows that rL(A,B) is equal to a linear combination

of rT (A,B) and rP (A,B). From LW50 we calculate at each grid point the correlations of

T and P with their values at Mount Baker (Fig. 2.4). As expected, rT and rP are high

in areas surrounding Mount Baker. However, the spatial extent of significant rT is

much greater than that of rP . Variations in T are dependent on the perturbations in

the summertime radiation balance, which appear to be fairly uniform over the region.

A striking feature of rP is the anti-phasing between Washington and southeastern

Alaska. The dipole pattern results from the tendency of storms to be more prevalent

in one of the two regions, leaving the other relatively dry. The smaller area of signif-

icant values of rP reflects the smaller spatial scale of precipitation patterns.

2.4.3 The relative importance of T and P for a glacier

While the correlations in T and P are the main factors in correlations in L, the relative

importance of T or P for glacier length also matters. In what follows, we determine
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the ratio of length variations forced only by T (denoted as σL,T ) to length variations

forced only by P (denoted as σL,P ).

These expressions can be derived from eq. (2.1). Setting P = 0, the expected

value of a glaciers length forced only by T is

〈L2
t+1〉 = γ2〈L2

t 〉+ α2〈T 2
t 〉 − 2γα〈LtTt〉 (2.11)

Using our derivation for 〈LtTt〉, from eq. (2.8), the variance of the expected length

can be written

σ2
L = γ2σ2

L + α2σ2
T +

2γα2ρTσ
2
T

1− γρT
(2.12)

Rearranging eq. (2.12), the standard deviation for a glacier forced only by T is

σL,T = αTσT

√
1

1− γ2

(
1 +

2γρT
1− γρT

)
(2.13)

Similarly, the expression for a glacier forced only by P is

σL,P = βPσP

√
1

1− γ2

(
1 +

2γρP
1− γρP

)
(2.14)

The ratio R between the two is therefore

R =
σL,T
σL,P

=
α

β

σT
σP

√√√√1 + 2γρT
1−γρT

1 + 2γρP
1−γρP

. (2.15)

From eq. (2.1), α/β can be rewritten as µAT>0/Atot, and the ratio of the glacier

length sensitivity to melt-season temperature and precipitation fluctuations can also

be written:

R =
σL,T
σL,P

=
AT>0

Atot

µσT
σP

√√√√1 + 2γρT
1−γρT

1 + 2γρP
1−γρP

. (2.16)



24

The terms 2γρT
1−γρT

and 2γρP
1−γρP

in eqs. (2.15) and (2.16) are similar to one another.

Because γ is always less than one and calculations (not given) show that values for

ρT,P are typically close to 0.2 - 0.3, the ratio of these terms will be close to one.

To convey a clear sense of the regional coherence of glacier patterns, we present

our analyses as if there were a hypothetical glacier at each grid point in the figure. In

other words, we imagine that, within each grid point in the LW50, there is a mountain

high enough to support glaciers. This is simply a device for clarity of presentation–

comparison with real glaciers comes directly from Fig. 2.1.

Figure 2.5A shows R for the standard set of parameters. To convey a sense of the

uncertainty in R, we also combine the highest melt rate with the lowest AAR and the

lowest melt rate with the highest AAR (Figs. 2.5B and C). Overall, the calculations

suggest that over most of the area glaciers are more sensitive to melt-season tem-

perature than to precipitation, except for a narrow coastal band where glaciers are

always more sensitive to P because of the high precipitation variability and muted

melt-season temperature variability (i.e., Fig. 2.2). However, the extent of T depen-

dence varies greatly depending on the choice of parameters. Glaciers with a high melt

factor or a large ablation area are much more likely to be affected by variations in

T . In section 2.5 we explore how small-scale patterns of climate, not resolved at this

scale, can affect this answer.

2.4.4 Standard deviations

From eq. (2.10) it can be seen that the standard deviation of T or P and the standard

deviation of L affect rL(A,B) directly. Because σT and σP also strongly influence the

sensitivity of glacier length changes (section 4c), their magnitudes can greatly increase

or decrease the importance of R and σL.



25

We derive a formula for σL from the root of the sum of the squares of eqs. (2.13)

and (2.14):

σL =

{
1

1− γ2

[
α2σ2

T

(
1 +

2γρT
1− γρT

)
+ β2σ2

P

(
1 +

2γρP
1− γρP

)]}1/2

(2.17)

Figure 2.6 shows σL for standard parameters; values range from 100 to over 300

m. Along the coasts σL is high, and σP is also high. Southeast British Columbia also

has above-average values in σL, corresponding to high values in σT .

2.4.5 Correlations between glaciers with the same geometry

We now apply eq. (2.10) to each grid point in LW50 and correlate a hypothetical

glacier at that point with a glacier that rests on Mount Baker. We begin by imposing

the same γ, α, and β at each point, taking values characteristic for a Mount Baker

glacier (Table 2.1), to eliminate differences in correlation due to geometry and thus

isolate the effect of spatial patterns in climate. The effect of differences in geometry

and choices in parameters will be addressed in the following section.

Figure 2.7 shows the expected correlations between a theoretical glacier at each

point and a glacier resting on Mount Baker. The correlations between glaciers are

strongest where both T and P are well correlated with Mount Baker. On the southeast

coast of Alaska rL is somewhat negative, where P is most strongly anticorrelated with

Mount Baker and the glaciers are most sensitive to P . These results are consistent

with those of Bitz and Battisti [1999]. There are also regions where T dominates. For

example, the strong sensitivity to T northeast of Mount Baker (Fig. 2.5), where rT is

also high (Fig. 2.4B), gives rise to strong glacier correlations. Little to no correlation

can be expected in regions where both the T and P correlations with Mount Baker
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are low and the value of R is ambiguously close to one, such as is the case in northern

British Columbia and the Yukon Territory of Canada.

Inferences of the spatial extent of past climate changes are often made by compar-

ing the reconstructed dates of relict moraines. Given the point made in this study that

regional correlations in glaciers also arise from natural interannual variability alone

(i.e., in a constant climate), there is some chance that concurrent advances would be

misinterpreted. Furthermore, the statistical significance of a hypothesized change in

climate is difficult to establish from the few points that are typically available from

even well-dated moraines. The integrative nature of a glacier gives it a memory of

previous climate states and means that the number of independent observations is

much lower than the number of years in a record. In Appendix B, we show calcu-

lations for deriving the appropriate number of degrees of freedom using our model,

given the autocorrelation of both the glaciers and the T and P values.

2.4.6 Correlations between glaciers with differing geometries

Assuming that all glaciers have the same geometry is clearly a simplification. We

expect the spatial correlation between glaciers to weaken if we compare glaciers of

different geometries. Because we cannot present the full range of glacier geometries

at every point, we focus on locations that are representative of the range of different

climatic correlations with Mount Baker. These locations, shown in Fig. 2.1, were

chosen to encompass as large a range as possible for this region of rP , rT , and R

values and are detailed in Table 2.2.

We consider five combinations of glacier parameters (the five main glaciers of

Mount Baker, given in Table 2.1) and three values for the AAR at each of the five

points. Then we correlated the terminal advance and retreat with that of a typical
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glacier on Mount Baker, with an AAR of 0.7 and µ of 0.67 m yr-1 ◦C-1. The values of

rL calculated with respect to Mount Baker, as well as rT and rP , are shown in Fig. 2.8.

The correlations are strikingly insensitive to this range of parameter variations.

Here rT and rP are the main drivers of the correlation between glaciers. Differences

in the basic geometry are of secondary importance. To the extent that parameters

do matter, the variations in the AAR and µ are of most importance (RO).

2.5 Small-scale patterns

While the LW50 data set has the advantage of a long record, it lacks the small-scale

detail of climate patterns due to individual mountain peaks and valleys that strongly

influence the behavior of individual glaciers. Since 1997 the fifth-generation Penn-

sylvania State UniversityNational Center for Atmospheric Research Mesoscale Model

(MM5) [Grell et al., 1994] has been run (by the Northwest Regional Modeling Consor-

tium at the University of Washington) at 4-km horizontal resolution over the Pacific

Northwest [Mass et al., 2003, Anders et al., 2007, Minder et al., 2008]. Though the

short interval of the model output makes statistical confidence lower, it is instructive

to evaluate the patterns of temperature and precipitation over the region on such a

fine grid and repeat the calculations that we performed using LW50. RO find good

correspondence between the MM5 output and snowpack telemetry (SNOTEL) obser-

vations in the vicinity of Mount Baker. The performance of the MM5 model in this

region, relative to observations, has also been evaluated by Colle et al. [2000].

The patterns in the mean annual precipitation in Washington State (Fig. 2.9A)

are dominated by the Olympic and Cascade Mountains. Localized maxima in precip-

itation near individual volcanic peaks can be identified. The pattern of interannual

variability of annual precipitation, measured by the standard deviation, is similar to
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the pattern of the mean precipitation. Mean melt-season temperatures in the region

(Fig. 2.9B) are dominated by elevation differences, with colder temperatures recorded

in the mountains. Interannual variability in the mean melt-season temperature, in

contrast with precipitation, is fairly uniform over the region (Fig. 2.9D), but the am-

plitude is increased somewhat and exceeds 18◦C yr-1 in places (Fig. 2.9B).

Using eq. (2.15), the spatial pattern in R can be plotted for the standard set of

parameters (Fig. 2.10). Owing to the high interannual variability in annual precipita-

tion, the variability of glaciers in the Cascades and Olympic Mountains is predicted

to be most sensitive to variability in precipitation. This is confined to the high eleva-

tions. Lower elevation points, dominated by temperature variability, are not able to

sustain actual glaciers in the modern climate.

The high levels of precipitation variability in the mountains also drive high values

of the standard deviation in glacier length, exceeding 1400 m in places (Fig. 2.11).

By definition of the standard deviation, the glacier would spend approximately 30%

of its time outside of the ±1σ variations. Thus over the long term, fluctuations of 2 -

3 km in glacier length should be expected, driven solely by the interannual variability

inherent to a constant climate (RO). This result highlights the crucial importance of

knowing small-scale patterns of climate in mountainous regions in determining the

response of glaciers.

On this spatial scale, interannual climate variations from the MM5 model output

are very highly correlated in space. This translates into very high spatial correlations

in glacier response (not shown).
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2.6 Summary and discussion

A simple linear glacier model has been combined with climate data to address how

regional-scale patterns in precipitation and melt-season temperature combine to pro-

duce regional-scale patterns in glacier response. In our model framework, correlations

in the glacier lengths are a linear combination of the spatial correlations in the cli-

mate variability. The climate correlations are modified by the relative importance of

temperature and precipitation to the glacier response, which in turn is a function of

the glacier geometry and mass balance parameters.

In coastal regions high precipitation variability and low melt-season temperature

variability mean that the patterns of glacier response are controlled by the patterns

of precipitation variation. Conversely, in continental climates patterns of glacier re-

sponse are most influenced by the patterns in melt-season temperature. Results are

quite insensitive to variations in glacier geometry – it is the spatial patterns in T and

P that are the key drivers of spatial patterns in glacier variations.

Finally, using seven years of archived output from a high-resolution numerical

weather prediction model shows that the increased total precipitation and precipita-

tion variability characteristic on individual coastal mountain peaks will give rise to

large variations in glacier advance and retreat.

The correlations calculated in this study are derived using a simple model and

a grid size larger than the area of a single glacier and, so, should be regarded as

providing insight and not predictions. In exchange for being able to understand and

analyze the results of the system, we have neglected many of the complications that

exist in true dynamical glacier systems and mountain climates. We feel confident that

our choice in LW50 is adequate, as the North American Regional Reanalysis model
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and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40) grid-spaced data set produced very similar results. However,

climate data with a resolution of 0.5◦cannot capture the full gamut of climatic effects

in mountainous terrain. The unresolved details of small-scale precipitation patterns

will not change the results regarding the overall contrast between maritime and con-

tinental climates or the general northsouth trends due to the inherent spatial scale

of the regional climate patterns. It is likeliest to make a difference in the predicted

sensitivities of, and spatial correlations among, the coastal Pacific Northwest glaciers.

The lesson from the MM5 results about the importance of knowing small-scale oro-

graphic precipitation patterns is one of the key findings of this study.

We also opted to present results in terms of the correlation between glaciers. An

alternative would have been to calculate empirical orthogonal functions (EOFs) to

find the modes that account for the largest proportion of the variance in glacier ad-

vance and retreat. Different treatments for the mass balance are also possible: we

could have chosen to use a positive degree-day model [e.g. Braithwaite and Zhang,

2000] or a full surface energy balance model [e.g. Rupper, 2007] to calculate glacier

mass balance. The assumption that all precipitation is accumulation over the glacier

could be relaxed by including a temperature-dependent threshold for snow. We feel

that this would be unlikely to make any important difference in our main results.

We have also made significant assumptions regarding glacial processes. Chief

among these assumptions is the neglect of glacier dynamics. However, several studies

have shown that the linear model is capable of reproducing reasonable variations in

glacier length [e.g. RO; Jóhannesson et al., 1989, Oerlemans, 2005] and, so, is ade-

quate for the purposes of the present study. Glacier geometry is also highly simplified

in the linear model. Tangborn et al. [1990] concluded that area distribution of each

glacier was the main distinguishing characteristic accounting for difference in mass
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balance on two adjacent glaciers in the North Cascade Range of Washington State

between 1947 and 1961, highlighting the complexities in small-scale geometric and

climatic factors relevant to glaciers.

Finally, we have focused on glaciers for which the connection with temperature

and precipitation is clear and well understood. Our framework cannot be directly

applied to tropical or tidewater glaciers, glaciers with a history of surging, or large ice

caps or ice sheets, where the physics of that connection is more complex. Further work

should be performed, understanding not only spatial patterns in glacial correlation

but temporal patterns as well. The model can also readily be used to evaluate when

and where a climatic trend in glacier length can be detected against the background

interannual climatic variability.
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Boulder Deming Coleman Easton Rainbow “Typical”

Atot (km2) 4.30 5.4 2.1 3.6 2.7 4.0

Aabl (km2) 1.3 1.6 0.64 1.1 0.81 1.2

tanφ 0.47 0.36 0.47 0.34 0.32 0.4

w (m) 550 450 650 550 300 500

H (m) 50 50 39 51 47 50

τ (yr) 10 9 20 17 13 12

γ 0.90 0.89 0.95 0.94 0.92 0.92

α m (◦C-1) 32 48 17 26 39 77

β (yr) 160 240 85 130 190 160

Table 2.1: Values for geometric parameters that are used in eq. (2.1) for five glaciers
on Mount Baker, Washington (RO). For the values shown here an accumulation area
ratio, AAR = 0.7, was assumed. Here Atot is the total glacier area (m2) and Aabl the
area over which there is net ablation (m2); µ is the melt-rate factor (a standard value
of 0.67 and a range of 0.5 to 0.84 m yr m-1 ◦C m-1 was used), Γ the atmospheric lapse
rate (6.5 ◦C km-1), φ the slope of the bed, w the average width of the ablation area,
H the uniform height (or thickness) of the glacier, and t is the e-folding relaxation
time scale (yr); γ (unitless), a (m ◦C-1), and β (yr) are combinations of the above
variables, as prescribed in (1). In the last column values are generally representative of
the Mount Baker glaciers and are used for the standard calculations, unless otherwise
noted in the text.
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Point Lat (◦N) Lon (◦W) Nearest Mountain rP rP R

A 47.3 123.7 Olympus 0.85 0.92 0.39

B 49.8 120.2 Girabaldi 0.75 0.82 2.10

C 53.3 116.8 Columbia Ice Field 0.40 0.26 2.00

D 46.3 119.8 Adams 0.19 0.85 2.40

E 60.3 142.7 Wrangell -0.37 0.22 0.41

Table 2.2: Key points to correlate with Mount Baker over a variety of glacier geome-
tries: the latitude and longitude of each point are listed, as well as the correlations in
precipitation (rP ) and temperature (rT ) and the sensitivity ratio (R). See Fig. 2.8.
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Figure 2.1: Glaciers in the Pacific Northwest, shown in red. Data from the Global
Land Ice Monitoring from Space (GLIMS) project (http://www.glims.org/). The
location of Mount Baker is denoted with a star. Also indicated in the figure are
the locations where glacier model sensitivity is tested. Figure courtesy of Harvey
Greenberg.
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Figure 2.2: Climate mean and variability in the Pacific Northwest from LW50: (a)
mean annual precipitation (m yr-1), (b) mean melt-season (JJAS) temperature (◦C),
and interannual standard deviation of (c) mean annual precipitation (m yr-1), and (d)
melt-season temperature, in ◦C.
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Figure 2.3: Schematic of linear glacier model, based on Jóhannesson et al. [1989].
Precipitation falls over the entire surface of the glacier (Atot). Melt is linearly pro-
portional to the temperature, and a constant lapse rate is assumed. The basal slope
is tanφ. Melt occurs over the lower reaches of the glacier where melt-season temper-
ature exceeds 0 (AT>0), and net mass loss occurs over a smaller area where melting
exceeds precipitation (Aabl). The upper boundary of this latter region is known as
the equilibrium line altitude (ELA). The thickness (H) of the glacier and the width
of the ablation area (w) remain constant by assumption.
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Figure 2.4: Correlation in annual mean precipitation between each grid point and
Mount Baker, from LW50 data set; note the dipole of correlations between Alaska and
Washington. (b) As in (a), but for the correlation of melt-season temperature; note
the widespread correlation of uniform sign over the region. Correlations exceeding
about 0.28 would pass a t-test at greater than 95% confidence.
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Figure 2.5: Ratio of sensitivities to temperature and precipitation for a typical glacier
geometry at each grid point for different choice of model parameters. Warm colors
denote temperature sensitivity, while cool colors denote sensitivity to precipitation.
(a) The standard parameters, (b) the largest ablation area and melt rate factor, and
(c) the smallest values of the ablation area and melt rate factor.
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Figure 2.6: Standard deviations of glacier length at each grid point if a typical glacier
exists at each grid point, calculated from (17). Large standard deviations in length
are driven by large standard deviations in either precipitation or temperature (cf.
with Fig. 2.2).
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Figure 2.8: Sensitivity test of correlations, at selected locations (see Fig. 1), to vary-
ing the glacier geometry and parameters: T and P denote melt-season temperature
and annual precipitation correlations between that location point and Mount Baker.
Colored symbols represent the correlation of glacier length between that location and
Mount Baker, and the range arises from using the five different parameter sets apply-
ing to the different Mount Baker glaciers (given in Table 2.1). Finally the different
colors mean a different AAR was used: green (AAR = 0.6), red (AAR = 0.7), and
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Figure 2.9: Archived output from the MM5 numerical weather prediction for the Pa-
cific Northwest at 4-km scale: (a) mean annual precipitation, (b) mean melt-season
temperature, and standard deviation of (c) precipitation and (d) melt-season tem-
perature. Contours of the model surface elevation are also plotted every 500 m; the
location of Mount Baker is indicated with a star. Note the small-scale patterns of
climate associated with the mountainous terrain, in particular the high rates of oro-
graphic precipitation.
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Figure 2.10: Ratio of sensitivities to temperature and precipitation of a glacier length
with a typical Mount Bakerlike geometry, calculated at every model grid point from
eq. (2.16). Blue indicates a greater sensitivity to precipitation. The mountainous
regions of the Olympics and Cascades, where glaciers in the region actually exist, are
dominated by sensitivity to variation in the precipitation.
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Figure 2.11: The standard deviation of glacier length calculated from eq. (2.17) using
the 4-km resolution MM5 output. This fine-resolution scale shows that, in the moun-
tainous regions where glaciers exist, the standard deviation in glacier length is much
higher than in lower elevations. The high standard deviations are driven by the high
variability in precipitation there.
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Chapter 3

GEOMETRIC INFLUENCES ON GLACIER
VARIABILITY

3.1 Introduction

As discussed in Chapter 2, mountain glaciers are often cited as indicators of climatic

variability and change. They directly integrate changes in snowfall temperature,

which drives ice melt. Glaciers dynamically thicken (thin), or advance (retreat) in

response to climatic variations. Because evidence for glacier change is often derived

from terminal moraine deposition, historical records, or aerial photography, the vari-

ations in length are the most straightforward way to track a glacier’s health. Nye

[1960] described how variations in the lower part of a glacier respond both to the di-

rect effects of snowfall and ice melt, and to the arrival of material from the upper part

of the glacier, which can take between 3 and 30 years. Following on this, much work

was done to understand what drives the timing and magnitude of variations in glacier

length [e.g. Nye, 1961, 1963, Jóhannesson et al., 1989, Oerlemans et al., 1998, Harrison

et al., 2001, Weber and Oerlemans, 2003, Roe, 2011, Oerlemans, 2012, Harrison, 2013].

Reichert et al. [2002] and Roe and O’Neal [2009] specifically studied how glacier

lengths vary in response to interannual climatic forcing. Their work determined the

expected range of glacier variation in response to interannual variations in precip-

itation and temperature. Variations that exceed the bounds of this range indicate

that a glacier is responding to a true climatic shift, rather than a short-term varia-

tion in precipitation or temperature. Further, Huybers and Roe [2009] showed that

a glacier’s latitude and proximity to the ocean correlates with whether these changes
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are more sensitive to variations in temperature or precipitation.

Along with the mean state of the climate, the steepness, shape, and makeup of the

bed, the size of the catchment area, the width of the tongue, and the elevation of the

glacier contribute to determining the mean length and thickness of a glacier. These

geometric effects can be large. For example, Kessler et al. [2006] showed that 97% of

the disparity between the lengths of glaciers flanking the east and west side of Cal-

ifornia’s Sierra Nevada range during the Last Glacial Maximum is attributed to the

topographic asymmetry of the mountains alone. These geometric characteristics will

also determine the amplitude and timing of a glacier’s response to climatic variations.

Oerlemans et al. [1998] concluded that while there is no straightforward relationship

between glacier size and fractional change in ice volume, hypsometry plays an im-

portant role in determining the variability of a glacier, and that, in general, smaller

glaciers fractionally lose more mass. Kuhle [1988] showed that glacier geometry and

mass balance both correlate with deviations in the Equilibrium Line Altitude (ELA).

For this work, I use a dynamic flowband model, which incorporates width varia-

tions, to compare length variations between glaciers with unique geometric character-

istics, as they respond to identical climate forcings. The geometric setting is based on

Mount Baker, a glaciated volcanic peak in the Cascade Range of Washington State,

USA (Fig. 3.1). The glacier models are forced with randomly generated perturbations

in precipitation and temperature, based on the local present-day means and standard

deviations. The model is run repeatedly, altering the slope, shape, width, bed rough-

ness, and area for each experiment. The correlation coefficients are calculated for

pairs of the resulting glacier-length time series. The main purpose of this work is to

determine the geometric parameters that most affect the magnitude of glacier vari-

ability and the temporal coherence between pairs of glaciers.
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3.2 Mount Baker glaciers

Continuing the work of Roe and O’Neal [2009], Huybers and Roe [2009], and Roe

[2011], I have chosen Mount Baker as my study area. Mount Baker is a large stra-

tovolcano, located in the Cascade Mountains of Washington state, U.S.A. (48.7◦N,

121.8◦W). It is flanked by eight glaciers with a broad range of shapes and sizes, whose

history and geometry have been well-documented and studied. The glaciers on Mount

Baker have undergone large variations during the Holocene [e.g. Thomas et al., 2000],

and a large body of research has been done to understand the general pattern of re-

treat since the local Little Ice Age [Harper, 1992, 1993, Pelto and Riedel, 2001, Pelto

and Hedlund, 2001, ONeal, 2005], and the individual glacier dynamics [e.g. Harrison,

1970].

Harper [1993] discussed the historical variations on Mount Baker. All of the

glaciers exhibit a general retreat prior to 1940, an advance after 1940, and a subse-

quent retreat, though the timing and magnitude of these advance and retreats vary.

He observed that Easton and Rainbow Glaciers’ responses lag behind the Coleman,

and that the total magnitude of Coleman Glacier’s response is larger than Easton,

and larger than Rainbow with the exception of the initial retreat.

3.2.1 Climate

The present-day climate of the Pacific Northwest is strongly affected by the peaks and

valleys of several mountain ranges, giving rise to rich and distinct weather patterns

[e.g. Bitz and Battisti, 1999, Minder et al., 2008]. Despite important mountain-scale

precipitation patterns, Pelto and Riedel [2001] show that the glacier mass balance

throughout the major North Cascadian glaciers is highly correlated, indicating that

large-scale climate conditions can explain much of the regional glaciers’ mass-balance

profiles.
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As noted in the previous chapter, the major feature of the region’s atmospheric

circulation pattern is the Aleutian Low pressure system, which responds to the dom-

inant modes of climate variability in the region (e.g. ENSO [Zhang et al., 1997], the

PDO [Mantua and Hare, 2002], and the PNA [Renwick and Wallace, 1996]). Though

these modes of variability lend some memory to the climate system, the year-to-year

variation in the region is well characterized by the standard deviations from the mean

in annual temperature and precipitation. Annual mean precipitation at Diablo Dam

near Mount baker is equal to µP = 1.89 m yr-1, with a standard deviation of σP = 0.36

m yr-1. The values for temperature are µT = 16.8 ◦C and σT = 0.78 ◦C. I assume

a steady atmospheric lapse rate of -6.5 ◦C km-1, and relate the annual melt rate to

temperature through an empirical melt factor, µ, which is equal to 0.65 m yr−1 ◦C−1.

3.2.2 Geometry

I model three of Mount Baker’s glaciers, chosen for their distinct size, shape, and bed

slope (see Fig. 3.1 and Table 3.1, from Harper [1992], Roe and O’Neal [2009]). Easton

Glacier is mid-sized, with an accumulation area that is only slightly wider than its ab-

lation area, which has a characteristic width1 of 420 m. It rests on a bed with a slope

of ∼18◦, with a modern length of ∼4.2 km, and area of 3.3 km2. Though its bedslope

is similar to that of Easton Glacier, Rainbow Glacier is smaller, its area covering ∼

2.1 km2 over a length of 3.2 km. Rainbow Glacier’s area widens near the middle of

its present-day length, and tapers in the ablation zone, where its characteristic width

is 315 m. Coleman-Roosevelt Glacier (heretofore referred to as Coleman Glacier)

has a similar length to Easton (4.9 km), but has a much wider catchment zone, and

therefore a much larger area (10.6 km2). It rests on a slope of ∼25◦, which is steeper

1i.e. average width of the ablation area
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than either Rainbow or Easton Glacier, and its characteristic ablation width is 630 m.

This work does not aim to capture the true behavior of a specific set of glaciers,

but rather to gain insight into the nature of a general glacier’s response. I therefore

approximate each glacier’s footprint as symmetric around a flowline, and assume a

linearly sloping bed. When the modeled glaciers grow beyond their present-day po-

sition, the ice is directed down a rectangular channel that is a continuation of the

present-day glacier tongue.

3.2.3 Altering the glacier geometry

To isolate the geometric factors that have the strongest influence on decorrelating

neighboring glaciers, I use the model described in the following section to capture the

behavior of Easton, Coleman, and Rainbow Glaciers. I then alter a single geometric

parameter for each of these glaciers, and run the new glacier to steady state. The

length of the domain, and therefore the baseline T̄ at the end of the domain is also

changed, so that the altered glacier has the same steady-state length as its original

counterpart. The glacier configurations are as follows:

• Original Glaciers : Easton (Eorig), Rainbow (Rorig), and Coleman (Corig), Glaciers

are the baseline glacier models, which capture the thickness, and length profile

of the present-day glaciers on Mount Baker (Fig. 3.5A, E, and I), using their

width distribution. I assume a planar bed, both because bed geometry is not

readily available, and for comparative simplicity. The map view of each of these

glaciers, from Fig. 3.1 is also shown in Fig. 3.5D, F, and J, for Easton, Rainbow,

and Coleman glaciers, respectively.

• Width: Each of the glacier’s width variations are removed, so the glacier is

described by a flowline of uniform width. These experiments are referred to as
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Ew, Rw, and Cw, to denote an Easton, Rainbow, and Coleman Glacier with an

unchanging width. The bed geometry remains as shown in Fig. 3.5A, E, and I

(glacier profiles not shown).

• Slope: Easton and Rainbow Glaciers are set to a 25◦ slope, which is Coleman’s

original slope (E25 and R25, respectively). Coleman glacier, likewise, is set to

Rainbow and Easton’s 18◦ slope (C18). The width profile remains as in Fig.

3.5D, F, and J (glacier profiles not shown).

• Easton Area: The aspect ratio of Easton Glacier is preserved, but the length is

increased or decreased by 50% (Elarge and Esmall). See Fig. 3.5, panels G, H, K,

and L.

• Bed Shape: The cross-sectional shape of Easton Glacier’s bed slope is altered to

reflect a parabolic divot into the longitudinal valley profile, similar to those seen

in nature [Anderson et al., 2006] (Ecurve, Fig. 3.5B). Bed roughness is added, by

imposing a sine wave with an amplitude of 5 m on a linear bed (E 5sin(x) (not

shown)) and another with an amplitude of 10, and a wider spacing (E 10sin(5x),

Fig. 3.5C). These profiles have the same width distribution with the original

Easton Glacier profile (Fig. 3.5D).

3.3 Glacier model

Glaciers are deformable bodies that can be described by the physical laws of conser-

vation and thermodynamics. Glacier models span many levels of complexity, from

analytical steady-state profiles to full 3D Navier-Stokes simulations. For this work, I

use a flow-band finite-volume model, which responds to perturbations in melt-season

temperature and annual mean precipitation. Leysinger-Vieli and Gudmundsson [2004]

compared a two-dimensional numerical model which solve to full equations for velocity

and stress fields to a shallow-ice model, and show that there is no significant difference
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in advance or retreat rates between the two. Further, they found only a slight change

in steady-state lengths. I therefore proceed with using a shallow-ice approximation

(SIA) model [Hutter et al., 1981, Hutter, 1983].

The glacier is assumed to have an accumulation area with a fixed size and shape.

Any loss or gain of mass is realized either in the thickness profile of the glacier or at

the glacier’s tongue, advancing down slope through a rectangular channel. The length

variations are departures from an equilibrium steady-state value, and the length and

profile thickness anomalies are direct responses to anomalies in melt and precipitation

alone–the effects of wind, redistribution and refreezing of meltwater, and sublimation

are not taken into account.

The model solves the continuity equation using finite-volume methods [Patankar,

1980]. Assuming constant ice density, the glacier’s thickness evolution is described

using a standard differential equation for conservation of mass:

∂H

∂t
= −∂q

∂x
+ ḃ. (3.1)

H(x, t) is the thickness of the ice, where t is time, x is the longitudinal distance

from the head of the glacier, and ḃ(x, t) is the accumulation/ablation rate, written

in terms of precipitation (P ) and melt, which is a function of temperature (T ). The

flux of ice (q(x, t)) through each control volume in the glacier model is defined by the

depth-averaged velocity, ū(x, t), that the ice flows through a cross-sectional area of

the glacier’s width times height (w(x)×H(x, t)).

q(x, t) = w(x)ū(x, t)H(x, t). (3.2)

The total velocity is the sum of the velocity due to the internal deformation of

the ice (ud), and the sliding velocity (us). To determine ud, the SIA assumes that

longitudinal stresses can be ignored, and that all stress is due to basal shearing stress.
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The SIA relates the vertical gradient in velocity in the bed-parallel vertical profile to

the to the driving shear stress (τd) raised to some power n, an empirical value, chosen

to be 3, as per convention. The driving stress is a function of both the ice’s thickness

and the surface slope of the ice profile: τd = −ρgH dh
dx

, where ρ is the density of ice,

g is the acceleration due to gravity, and h(x, t) is the ice-elevation (H(x, t) plus bed

elevation, zb). The depth-averaged horizontal velocity in the ice is then:

ū = us + ud = us +
2

n+ 2
AH|τd|n−1τd, (3.3)

where A is a function of ice temperature, and describes the ice’s softness. For this

work A is assumed to be constant.

The sliding speed is derived from a Weertman-style law, where the basal water

pressure is assumed to be a function of the ice load above. Following Oerlemans

[2001]:

us =
fsτ

m
d

H
, (3.4)

where fs is a constant, chosen to approximate observed present-day glacier thick-

nesses. The exponent m, like its deformational counterpart n, is chosen to be 3 [after

Oerlemans, 2001].

When Eq. (3.1) is rewritten as a diffusion equation, it can be solved for using

finite-volume methods:
dH

dt
= − ∂

∂x

(
Γ
∂h

∂x

)
+ ḃ, (3.5)

where Γ = q(x, t)(∂h
∂x

)−1.

Γ is not a constant, but is itself a function of the ice thickness. Therefore, this

model solves for the ice surface elevation implicitly, and the length of the glacier is

tracked at each time step.
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3.4 Model application and results

Because this work aims to characterize the correlation between glaciers as they ex-

perience interannual climate variability, rather than the true history of the glaciers,

no trends are applied to the climate forcings. Instead, the glaciers are forced with

1000-year stochastic time series of precipitation and temperature, with standard de-

viations reflecting those from the historical climate records described above. The

variations in the precipitation and temperature time series are shown in Fig. 3.3A &

B. The precipitation is assumed to be uniform over the length of the glacier, and all

precipitation falls as snow. This is a reasonable approximation, since, as discussed in

Chapter 2, about 80% of the Pacific Northwest’s regional precipitation occurs during

the months of October-March, when high-elevation temperature is below freezing.

The temperature profile itself decreases linearly with height, and so varies along the

glacier’s length and between glaciers.

These forcings are applied to each of the model configurations described in Sec-

tion 3.2.3, and the modeled length variations are recorded over time. The standard

deviation of each glacier terminus position (σL), and the correlation coefficient (r)

between pairs of glaciers are computed (see Table 3.2).

3.4.1 Original Glaciers

The time series for Corig, Eorig and Rorig are shown in Fig. 3.3C. Though the glaciers

are responding to the same climate forcing, the Coleman Glacier varies with a higher

amplitude and with higher frequency than the Easton or Rainbow glaciers (σL,C = 269

m; σL,E = 188 m; σL,R = 230 m). The r-value of the time series of Corig and Eorig is

0.79, while Eorig and Rorig are correlated at 0.87. The time series of Corig and Rorig

have a correlation coefficient of 0.54.
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3.4.2 Width

When the width variations of the glaciers are removed, the correlation coefficients

increase: the correlation between Cw and Ew is 0.82, Ew and Rw is 0.97, and Cw and

Rw is 0.72. The correlation between each of these uniform-flowband model runs with

their corresponding original glacier model runs is above r = 0.9, (see the grey lines

in Fig. 3.5A, B, and C) although the pair of Rainbow Glacier models has the lowest

r, indicating that its irregular hypsometry can strongly effect its pattern of advance

and retreat. Without width variations, less snow is fluxed through the system, and

so each glacier’s standard deviations are all substantially smaller than the standard

deviations of the original models (σL,C = 103 m σL,E = 111 m, σL,R = 107 m).

3.4.3 Slope

When Coleman Glacier is set to 18◦ (C18), the same angle as Eorig, the correlation

between the two is nearly perfect: r = 0.99. The correlation between C18 and Rorig

is also improved, with r = 0.85. Likewise, the correlation between Corig and the

higher-sloped E25 and R25 is also very high: r = 0.99. Conversely, the correlation

between the original glaciers and their new-slope counterparts is relatively low: for

Coleman Glacier, r18,orig = 0.78; Easton Glacier, r25,orig = 0.83; and Rainbow Glacier,

r25,orig = 0.82 (see the green lines in Fig. 3.5A, B, & C). This indicates that bedslope

has a very strong effect on the timing of the glacier advance and retreat. The smallest

r, for the Rainbow Glacier pair, is still high compared to the correlation between Corig

and Rorig. The variations of C18 are larger than the original model, and the variations

of E25 and R25 are smaller than the original models. (σL,C = 310 m σL,E = 167 m,

σL,R = 203 m).
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3.4.4 Easton Area

The time series of Eorig, Esmaller, and Elarger are shown in Fig. 3.5D. It is apparent

that the amplitude of the variation for all three models is comparable (σL,larger = 206

m, σL,smaller = 160 m). This may not be intuitive, given that the length of Elarger is

twice as long and that and ∼ 6 times larger in area than Eorig, and that Esmaller is half

the length and ∼ 2.5 times smaller in area than Eorig. The correlations between the

similarly shaped glaciers are comparable to those of the correlations between Easton

Glacier and Rainbow or Coleman Glaciers. Eorig and Esmall have a correlation of

r = 0.86, and Eorig and Elarge have a correlation of r = 0.87. The correlation between

Esmall and Elarge is 0.65. The larger glacier, which accumulates more snow, also loses ice

more readily; the converse is true for the smaller glacier. Therefore hypsometrically

similar glacier distributions may yield a similar amplitude of variability, but will

respond with a different time scale of variability. Further, the fractional variations in

length are much larger for the smaller glacier.

3.4.5 Bed Roughness

Introducing Easton Glacier to a parabolic bed (Ecurve), or a sinusoidally roughened

bed (E5sin(x), E10sin(5x)) does little to changes the amplitude of the variations (σL,curve =

179m, σL,5sin(x) = 188 m, σL,10sin(5x) = 186 m). The correlation between each of these

glaciers and Eorig is r = 0.99

3.5 Discussion and summary

The experiments described above explore the sensitivity of glacier response to each

of these factors. Bed slope, hypsometry, and the overall size of the glacier all affect

the timing of glacier advance and retreat. My model experiments are consistent with

the observations of Harper [1993], showing a lagged response of Easton and Rainbow

Glaciers behind Coleman Glacier, and a larger magnitude of variability from Coleman
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in comparison to the other two glaciers.

For each experiment, larger glaciers respond on shorter timescales than smaller

glaciers. The linear formula for τ from Roe and O’Neal [2009], shows that the

timescale of response is inversely proportional to the ablation area of the glacier.

The Coleman Glacier, and its altered counterparts, indeed have larger ablation areas

than the Easton or Rainbow glaciers, allowing warmer temperatures to melt more

ice away, and more snowfall to be caught when the precipitation increases. This rea-

soning also explains why removing width variations increases the glacier correlations

– for the non-varying width experiments, only variations in ablation-area length af-

fect the net accumulation or melt, whereas in the original experiments, differences in

width alter the amount of ice collected or removed from the glacier. Similarly, the

largest glaciers, Elarge and the suite of Coleman-like glaciers, all have high correlation

coefficients, even when their values for σL differ from one another.

Glaciers with the same bed slope tend to have high correlation coefficients. This

is unsurprising, because again, Roe and O’Neal [2009] showed that the timescale is

inversely proportional to the tangent of the bed slope. A notable exception to this

general rule is the correlation between Elarge and Rorig, which both lie on 18◦slopes,

but are have an r-value of 0.65. This relatively low correlation shows how the overall

size and hypsometry of the glaciers also affect the timescale of response.

There are some r-values that are surprisingly high, because the glaciers being

compared appear to have very few common characteristics. For example, R25 and

C18 have a near-perfect correlation. The slope and ablation area appear to balance

one another, in this case. Similarly, R25 has high correlations with the Cw and Ew,

which reinforces the idea that the hypsometry of the Rainbow glacier strongly affects

its timescale of response.
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To look for evidence of shorter timescale variability, researchers should look to

records of glaciers on steeper slopes, or glaciers with large ablation areas. It is im-

portant to note that comparable magnitudes of variability is not predictive of the

correlation of advance and retreat of the glaciers.

Long records of such detailed temporal or spatial information about glacier length

variations are rare. However, this work complements Chapter 2, allowing us to freely

explore the effect of geometric differences in glacier length agreement, informing the

observations of regional glacier advance and retreat that do exist. When comparing

the advance or retreat of glaciers, one must take into account these best-case length

correlations before interpreting a regional climatic signal. The temperature or pre-

cipitation time series will be uniquely integrated by glaciers with their own array

of geometric parameters. Detecting a coherent regional climatic signal requires this

preliminary understanding of how the glacier dynamics filter the climate.
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Coleman Easton Rainbow units

Atotal 10.6 3.3 2.1 km2

Aabl 4.0 1.4 1.1 km2

L 4.89 4.35 3.0 km

θ 25 18.5 18.5 ◦C

Wchar 630 420 315 m

Hchar 43 49 39 m

τ char 3.5 10 8 yr

Table 3.1: Default geometric inputs to glacier models. Length and area are based on
values for the 1990’s [Harper, 1992]. The estimates for τ come from the linear formula
in Roe and O’Neal [2009].
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Corig Eorig Rorig C18 E25 R25 Cw Ew Rw Elarge Esmall

Corig 1.0 – – – – – – – – – –

Eorig 0.79 1.0 – – – – – – – – –

Rorig 0.54 0.87 1.0 – – – – – – – –

C18 0.78 0.99 0.85 1.0 – – – – – – –

E25 0.99 0.83 0.58 0.82 1.0 – – – – – –

R25 0.99 0.77 0.82 0.99 0.87 1.0 – – – – –

Cw 0.97 0.73 0.52 0.71 0.96 0.77 1.0 – – – –

Ew 0.88 0.98 0.81 0.98 0.91 0.99 0.82 1.0 – – –

Rw 0.77 0.99 0.91 0.99 0.81 0.98 0.72 0.97 1.0 – –

Elarge 0.98 0.87 0.65 0.86 0.99 0.89 0.93 0.85 – 1.0 –

Esmall 0.55 0.86 0.99 0.84 0.59 0.81 0.53 0.81 0.90 0.65 1.0

σL (m) 269 188 230 310 167 203 103 111 107 206 160

Table 3.2: Correlations between glacier lengths. All runs are done with the same
random 1000 year precipitation and temperature time series. C = Coleman Glacier;
E = Easton Glacier; R = Rainbow Glacier; orig = original model configuration; w
= no width variations; 18 and 25 refer to the altered bed slope; large and small
refer to glaciers that have the same shape as Easton Glacier, but are double and half
the length, respectively. σL is the standard deviation in glacier length.
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Figure 3.1: Major glaciers of Mount Baker, Washington State, U.S.A. Figure is mod-
ified from Roe and O’Neal [2009]. The outlines represent the width variation used in
the glacier modelling. Advances beyond the present-day length of the glacier follow a
rectangular channel that is equal to the width at the end of the ablation area (referred
to in the text as the characteristic width).
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Figure 3.2: Glacier and bed profiles, as well as map view widths for several of the
model experiments. A: Original Easton Glacier. B: Easton Glacier with a linear
bedslope that has been modified with a sine wave, with amplitude = 10 and phase
=5x. C: Parabolic bed with Easton Glacier. D. Map view of Easton glacier (as in
Fig. 3.1, and applied to glaciers in panels A-C. E: Original Rainbow Glacier. F: Map
view of Rainbow glacier (as in Fig. 3.1, and applied to the glacier in panel E. G
Smaller version of Easton glacier, with half the length, and a proportionally smaller
width. H Map view of glacier in panel G. I Original Coleman Glacier J Map view
of Coleman glacier (as in Fig. 3.1, and applied to the glacier in panel J. K Larger
version of Easton glacier, with half the length, and a proportionally larger width. L
Map view of glacier in panel K.
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Figure 3.3: The top two panels show 1000 years of random precipitation and tem-
perature variations, applied to the glacier models. σP = 0.36m, σT = 0.78 ◦C, in
agreement with historical records from the nearby Diablo Dam weather station. The
bottom panel shows the glaciers’ length variations in response to the precipitation
and temperature forcings. Note that the frequency of glacier response is much lower
than that of the climate forcings.
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Figure 3.4: A, B, C: The original, altered slope, and uniform-flowband time series of
glacier length variability for the Coleman, Easton, and Rainbow Glaciers, respectively.
D: The glacier length response for the original Easton Glacier, as well as the smaller
and larger versions of the glacier.
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Chapter 4

LAKE LEVEL CHANGES IN RESPONSE TO
INTERANNUAL CLIMATE VARIABILITY

Chapter 4, in full, is currently being prepared for publication as “Lake Level

Changes in Response to Interannual Climate Variability” authored by K. Huybers,

S. Rupper, and G. H. Roe. The dissertation author was the primary investigator and

author of this paper.

4.1 Introduction

Lakes are important archives of climate history, responding sensitively to variations in

evaporation and precipitation. A lake integrates climatic information over its entire

catchment area, reflecting regional climate signals with a simple volumetric response.

Langbein [1961] noted that closed-basin lakes, which are found in semi-arid regions

and lack drainage outlets, fluctuate more than open lakes, because variations in the

inflow can only be compensated by a change in the lake’s surface area. Therefore,

closed lakes are particularly sensitive to climate fluctuations, and have been the sub-

ject of many paleoclimate studies [Street-Perrott and Harrison, 1985].

The integrative nature of lakes also complicates the interpretation of a region’s

climatic history. A lake proxy record does not distinguish between an increase in

precipitation and a decrease in evaporation. Moreover, lakes act as low-pass tem-

poral filters on the climate. For example, if a lake that is initially in steady state

experiences a spike in precipitation, its level rises and spatial extent increases. With

a larger surface area, the net evaporation also increases, and the lake gradually low-
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ers and returns to its original size. The size and shape of the lake, and the mean

climatic state determine the time it takes to return to equilibrium. This delayed and

smoothed response to a climate signal is a hallmark of other geophysical systems with

memory such as the ocean’s mixed layer [Hasselmann, 1976, Frankignoul and Hassel-

mann, 1977] and glaciers [Oerlemans, 2000, Roe, 2011]. In terms of lakes, both the

spatial and temporal integration of evaporation and precipitation can complicate the

attribution of a lake-level change to a single climatic event.

In this study we develop a lake-level model to characterize the nature of a lake’s

response to climate variations, aiming to improve interpretations of lake-level changes

in relation to climate, and quantify the integrative nature of lakes. We choose to focus

on the closed-basin Great Salt Lake (GSL), because of its long historical lake-level

and climate records and detailed bathymetry, though this work can be applied to any

other closed-basin lake system. The model is validated against historical measure-

ments. In order to estimate the lake-level response to interannual variability alone,

we drive the lake model with a synthetic record of year-to-year fluctuations based on

modern instrumental observations of precipitation and evaporation that occur even

without a climate change.

Using a mass-conservation model, we calculate the principal metrics of lake vari-

ability: the standard deviation and autocorrelation of the lake-level record, and the

expected frequency with which a lake exceeds or falls below a given level. We also

create a linearized version of the lake-level model, for which analytic expressions for

the above metrics can be derived, and which capture much of the behavior of the

full model. The differences between the two models highlight the non-linear aspects

of the lake’s response. We find that the magnitude of the GSL’s historical lake-level

fluctuations is consistent with a system driven purely by interannual variability.
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Finally we emphasize the importance of lake geometry on the integration of cli-

mate by contrasting lake-level response to interannual climate variability for three

distinctly-shaped closed-basin lakes. Their divergent responses highlight the impor-

tance of understanding how a lake’s unique geometry and mean climatic state inte-

grates the regional climate history.

4.2 The Great Salt Lake

The GSL is located to the northwest of Salt Lake City, Utah, USA. It is bounded by

the West Desert to the west, the Wasatch Range to the east, and is one of the largest

terminal lakes in the world, with a surface area averaging 4300 km2 (including evapo-

ration ponds for mineral recovery) over the past 166 years (see Fig. 4.6A). The GSL is

filled predominantly by inflow from surrounding rivers (66%) and direct precipitation

(31%), with groundwater accounting for the small balance of the input [Arnow, 1985].

Water is lost primarily through evaporation. Despite its vast area, the lake is quite

shallow, with a maximum depth of ∼10 meters [e.g. Arnow and Stephens, 1990]. This

aspect ratio is summarized in the lake’s hypsometry (Fig. 4.6B, taken from Loving

et al. [2000]). These dimensions mean that even a small imbalance between inflow

and outflow can drive large changes in lake area.

The GSL has a long historical record of lake level (Fig. 4.6A). From 1847-1874, lake

levels were estimated by observing the water depth over sandbars in the lake [Arnow

and Stephens, 1990]. Since 1875, the United States Geological Survey (USGS) has

been collecting water-surface elevation data directly. After linearly detrending the

time series of interannual lake level, the standard deviation is 1.14 m. We will char-

acterize lake level by the elevation of the lake surface above sea level (a.s.l.). Over

the historical record, the average lake level has been 1280.4 m a.s.l. The record low,

in 1963, was 1277.5 m a.s.l., corresponding to a maximum depth of 8 m and a surface
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area of ∼ 2500 km2. In contrast, the lake’s historical high in 1987 of 1283.8 m a.s.l.

corresponds to a depth of 14 m, and a surface area of ∼6200 km2. This high stand

required an expensive pumping project to relocate the excess water [Loving et al.,

2000]. Thus, lake area has varied by a factor of approximately 2.5 over the historical

record.

4.2.1 Climate

Precipitation

The catchment basin of the GSL is large (5.5×104 km2) and topographically varied, so

a single rain gauge does not reflect the entire basin’s precipitation. Given sparse, and

sometimes noncontinuous records, there will be some uncertainty in the precipitation

history. For this work, we choose to use the University of Delaware’s monthly gridded

precipitation product, which provides a continuous record from 1900–2010, based on

an interpolation onto a 0.5◦ by 0.5◦ latitude/longitude grid [Matsuura and Willmott,

2012]. We sum the monthly totals into an annual record based on the water year,

from October to September [Arnow, 1985, Arnow and Stephens, 1990] (Fig. 4.6B).

Based on this data set, the mean (µP ) and standard deviation (σP ) in precipitation

for the GSL are 0.37 m yr-1 and 0.08 m yr-1, respectively.

Evaporation

Because it is difficult to directly measure, evaporation data is sparse and unreliable.

Overlake evaporation is a function of temperature, wind, relative humidity, and salin-

ity [e.g. Morton, 1986]. Among these variables, only temperature has a long and

reliable record. The average yearly summer (JJA) temperature record is shown in

Fig. 4.6C (from Willmott et al. [2012]; µT = 21.3 ◦C, σT = 0.91 ◦C). Evaporation
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records of the GSL have been derived through mass-balance modeling and a modified

Penman-Montieth equation, though each of these has drawbacks [Mohammed and

Tarboton, 2012]. The mass balance approach assumes that all other quantities are

perfectly known, while the modified Penman equation may not properly apportion the

system’s available energy, and is more appropriate for timescales on the order of a day.

We follow Waddell and Barton [1980], Arnow [1985], and Arnow and Stephens

[1990] in estimating overlake evaporation on the basis of nearby pan-evaporation

data. We piece together the temporal variations in evaporation using pan-evaporation

records from two sites near the GSL: Saltair (1957-1990) and Logan Farm (1971-2000)

[data from Western Regional Climate Center, www.wrcc.dri.edu]. We align these

records, setting the mean to µE=1 m yr-1, and the standard deviation to σE = 0.1

m yr-1, in agreement with the water-balance model of Mohammed and Tarboton

[2012] (Fig. 4.6D). Pan-evaporation records are subject to significant uncertainty, but

are reasonable, if imperfect estimates of overlake evaporation, capturing the relative

changes over time. We will later show that evaporation is of secondary importance

to precipitation in driving the GSL’s lake-level changes, and so our analysis is not

critically dependent on the evaporation record.

4.2.2 Persistence in the lake and the climate time series

It is clear even visually from Fig. 4.6 that the time series of precipitation, temperature,

and evaporation have much less persistence than that of the lake itself. Persistence

can be explicitly quantified by calculating the autocorrelation function of a time-series

(Fig. 4.3). One simple test of whether there is any significant persistence in a time

series is whether the lag-1 autocorrelation exceeds 2√
N

, where N is the number of

points in the time series [e.g. Von Storch and Zwiers, 2001]. These threshold levels

are shown for their respective time series in Fig. 4.3. Based on this test, we conclude
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that no significant persistence exists for temperature and evaporation. Some slight

interannual persistence may be indicated for the precipitation record, though its sig-

nificance is marginal.

Fig. 4.3 demonstrates that the lake-level fluctuations themselves do exhibit signif-

icant persistence, and further, that this persistence is characterized by an exponential

fit with a characteristic e-folding timescale, or memory, of approximately 8 years.

The exponential fit underestimates the autocorrelation at lags less than five years,

a discrepancy which we explore later in this chapter. Because there is little to no

persistence in the climate variables, the lake’s memory must arise from the dynamics

of lake adjustment rather than being intrinsic to the climate. The main point of the

present study is that the lake exhibits memory that is not present in the climate.

Analysis of the lake models that we develop below explain much of this behavior.

4.2.3 Previous research

Prior research has characterized the GSL as a low-order dynamical system, and sug-

gests that the lake’s volume anomalies slightly lag the regional precipitation and

temperature anomalies [Abarbanel and Lall, 1996, Abarbanel et al., 1996, Sangoyomi

et al., 1996, Lall et al., 1996]. Related research invokes low-frequency climate phe-

nomena to explain the low-frequency response of the GSL [Mann et al., 1995, Lall and

Mann, 1995, Moon et al., 2008, Wang et al., 2010]. These studies aim to use some

combination of atmospheric indices to predict the GSL lake levels. In this study we

aim to put these explanations into context by considering the natural variability of

lake level that occurs in response to white noise – the stochastic year-to-year fluctu-

ations in weather that occur even without any climate change or persistence in the

climate.
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Other studies have considered the inherent lake dynamics of GSL. Kite [1989]

proposed that the changes and apparent periodicity in the GSL’s record are within

the range of normal fluctuations and are not ascribed to climatic change. Mohammed

and Tarboton [2011] refer to the lake’s bathymetry to explain the large and long ex-

cursions of the lake record. They note that the area of the lake controls the outgoing

flux, and therefore a shallow lake like the GSL is quickly stabilized and modulated

by the available evaporative surface. In subsequent work, Mohammed and Tarboton

[2012] use a simple lake model to calculate the sensitivity of the GSL to changes in

inflow, precipitation, and air temperature, and use variations of historical climate

input to predict possible future lake-level scenarios.

Our work is similar in spirit to that of Mohammed and Tarboton [2011, 2012], but

rather than being predictive, our goal is to understand the natural lake variability

in order to put past and anticipated future fluctuations in context. We also extend

this work by considering the role of lake alternate bathymetries on natural lake-level

variability.

4.3 Model

In the following section, the full and linearized models are described. The full model

is similar to that of Mason et al. [1994], who derive general and comprehensive time-

dependent solutions to a lake’s water balance. They explore the response of lake level

and area to step changes, single brief excursions, and sinusoidal variations in the cli-

mate. In contrast, our focus here is on the lake’s response to the continuous random

perturbations in forcing that occur even in a constant climate.
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4.3.1 Full model

The rate of volumetric change for a closed-basin lake such as the GSL is determined

by the balance of inflow into and evaporation out from the lake, illustrated in Fig.

4.4. The mass budget can be described by a straightforward differential equation:

dV

dt
= PAL + I − EAL, (4.1)

where VL(t) is the lake’s volume, AL(t) is the lake’s surface area, P (t) is the annual

regional precipitation rate, I(t) is the total annual river inflow from the surrounding

basin, and E(t) is the annual evaporation rate over the lake, all functions of time, t.

Eq. (4.1) can be rewritten in terms of lake-level variations. The volume of water

is a unique function of lake level: V = V (h), which can also be written as V (h) =∫ h
0
AL(z)dz. Hence

dV

dt
=
dV

dh

dh

dt
= AL(h, t)

dh

dt
. (4.2)

Substituting eq. (4.2) into eq. (4.1) yields:

dh

dt
=

1

AL
(PAL + I − EAL) . (4.3)

We assume that the long-term mean of the inflow, Ī, is proportional to the product

of the long-term mean of the annual regional precipitation rate, P̄ , and the area over

which runoff is collected (i.e., the area of the catchment basin, excluding the direct

precipitation over the lake):

Ī = αP̄ (AB − ĀL), (4.4)

where AB is the entire catchment area of the lake. The parameter α reflects the

fact that much of the precipitation that falls into the basin is lost to evapotranspi-

ration or groundwater percolation. Some of the uncertainty in regional precipitation



74

may also be subsumed into α. We set α so that the lake level matches its long-term

mean. For the GSL an α of 0.13 yields an Ī of 2.5 km3 yr-1, which is close to the

values estimated from stream gauges by Arnow and Stephens [1990] (2.3 km3 yr-1)

and Mohammed and Tarboton [2012] (2.8 km3 yr-1).

The fluctuations in inflow, I ′ are parametrized as

I ′ = γP ′(AB − AL), (4.5)

where P ′ denotes the variations away from P̄ . We have introduced a tunable pa-

rameter, γ, which ensures that the interannual fluctuations in inflow are the same

as observed. We find we need γ = 0.40 in order to emulate the observed standard

deviation of inflow which is ∼1.5 km3 yr-1 [Mohammed and Tarboton, 2012]. That we

require different values for α and γ suggests that there is some slow-timescale process

in the region’s groundwater that is neglected in our model. For the purposes of our

study here, our goal is to drive the lake model with interannual variability in inflow

whose magnitude is consistent with observations. Our use of γ allows us to do that.

We use the time series of P and E shown in Fig. 4.6B & D to force eq. (4.3), using

the parameter values shown in Table 4.1, starting in 1901 with the initial condition of

h = 1280 m a.s.l., consistent with the observations. This initial lake level corresponds

to a volume of 18.4 km3 and an initial area of 4100 km2. From 1901-1956, there

is no evaporation data, and so for this interval we force the lake with variations in

precipitation only, keeping the evaporation rate at its long-term mean of 1 m yr-1.

The simulated lake-level history is shown in Fig. 4.6A. Despite its crude treatment of

inflow and incomplete evaporation record, the detrended interannual standard devia-

tion of model lake level (1.19 m), agrees well with that of observations (1.14 m). The

model time series correlates with observations at r = 0.85. The fact the model does a

good job in the early part of the record, despite the absence of evaporation variations
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suggests that the precipitation is of primary importance in driving lake-level fluctua-

tions, a result we confirm in the next section.

4.3.2 Linear model

In the following section, we develop a linear version of the lake-level model. From

it, we derive analytical solutions for the lake’s relaxation timescale, the relative im-

portance of P and E, and the variance of the lake level in response to stochastic

climate forcing. The analytic expressions allow us to characterize the behavior of the

lake without a complete knowledge of lake bathymetry and to clearly understand the

parameters that drive the lake-level responses to climate variations.

Eq. (4.3) is linearized by rewriting all time-varying fields using overbars to denote

long-term means, and primes to denote anomalies from that mean: P (t) ≡ P̄ +P ′(t),

E(t) ≡ Ē + E ′(t), I(t) ≡ Ī + I ′(t), AL(t) ≡ Āl + A′L(t), and h(t) ≡ h̄+ h′(t).

Using eq. (4.4) and eq. (4.5) for Ī and I ′, eq. (4.3) becomes:

d(h̄+ h′)

dt
=

1

(ĀL + A′L)
[ (P̄ + P ′)(ĀL + A′L) + (αP̄ + γP ′)(AB − (ĀL + A′L)).

− (Ē + E ′)(ĀL + A′L) ]

(4.6)

Because AL is a function of h, we rewrite it using a first-order Taylor Series

expansion:

AL(h) = AL(h̄+ h′) = AL(h̄) +
dAL(h̄)

dh
h′ ≡ ĀL +

dĀL
dh

h′. (4.7)
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Substituting dĀl
dh
h′ for A′l, and considering only first-order terms, eq. (4.6) becomes:

dh′

dt
+
h′

τ
=

[
1− γ +

γAB
ĀL

]
P ′ − E ′, (4.8)

where

τ =
ĀL

dĀL
dh

(Ē − P̄ (1− α))
. (4.9)

The value for τ represents the characteristic, e-folding timescale on which pertur-

bations in lake level will relax towards the mean. A large ĀL implies that τ will also be

large, because, all else being equal, for a given h′, there is a large anomalous volume,

ĀLh
′, that must be either filled or evaporated to return to equilibrium. A large value

of dĀ/dh is associated with smaller τ , because it means that an increase in h′ leads to

a large increase in evaporating area, enabling the excess volume of water to be more

rapidly removed. Likewise, a decrease in h′ significantly decreases the evaporating

area, reducing the total evaporation, and allowing the lake to return more rapidly to

equilibrium. Finally, a large difference between Ē and P̄ (1 − α) indicates that the

lake is in an arid region, and that the restoring tendency of E is relatively efficient.

Aridity, therefore, also tends to shorten the response time of a lake. However as we

discuss below, in a given setting these three factors influencing τ cannot be considered

independent of each other.

The GSL is a large, shallow lake in an arid environment and so there are trade-offs

between the factors that determine τ . For the values shown in Table 4.1, eq. (4.9)

predicts that τ = 10 yrs. Our τ falls within the range of 4–17 years cited by Mason

et al. [1994], who estimate several equilibrium e-folding response times for different

historical levels of the GSL. Further, our value for τ compares quite well with the

e-folding time suggested from observations (8 yrs, Fig. 4.3).
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From eq. (4.9), we see that τ is a function of the mean lake level (since ĀL and

dĀL
dh

are functions of h), and the mean climatic setting. τ is therefore a function of

a particular mean state of the lake. The black line in Fig. 4.5 shows how τ varies

with h̄ for the GSL, keeping Ē, P̄ , and α fixed. Over the historical range of GSL lake

levels (1277.5 to 1283.8 m a.sl.), τ ranges from as low as 5 years at 1280 m a.s.l., to

as long as 26 years at the historical high. The 5-year response time is due to a large

value of dĀL/dh, indicating that the basin area is changing rapidly at these elevations

(evident in Fig 4.6B). The 26-year response time corresponds to a large value for ĀL,

as well as a relatively small value for dAL/dh. The timescale plummets for elevations

above 1284 m a.sl., because dAL/dh increases, allowing the lake to quickly adjust to

anomalies in the water balance.

However, it is not consistent to vary h̄ independently, since a long-term lake-level

change also requires an accompanying change in P̄ or Ē to maintain the new mean

lake level. For example, an increase in ĀL only happens if also accompanied by a de-

crease in Ē or an increase in P̄ . These both work in the same direction as an increase

in ĀL, acting to increase τ . Thus, it is more realistic to constrain τ through consistent

combinations of h̄, P̄ , and Ē that ensure the lake is in equilibrium (i.e. dV
dt

= 0 for a

given h̄). Fig. 4.5 shows two examples. For the first (blue line), we vary P̄ keeping

Ē fixed, so that dV
dt

= 0 in eq. 4.3. For the second (red line) we vary Ē, keeping P̄ fixed.

When the parameters covary like this, the basic pattern of the variation of re-

sponse time with lake level is the same as varying h̄ on its own. However, confirming

the reasoning given above, the variations in τ are amplified. τ reaches 40 yrs for

h̄ = 1284 m a.sl., when h̄ and Ē covary (Fig. 4.5).

Despite the large changes in τ as a function of h̄, the linear model (eq. 4.8) does
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a remarkably good job of emulating the historical lake level record when it is driven

by the historical variations in P ′ and E ′ (Fig. 4.6A). The correlation with the obser-

vations is 0.83, only slightly smaller than that for the full model. The results lend

confidence that we can use the linear model to derive analytical expressions for some

useful metrics of the lake response.

Response to step changes in P and E

Let ∆E be a step-change in evaporation rate. From eq. (4.8), and assuming P ′ = 0,

the resulting equilibrium change in lake level (i.e., when dh/dt = 0) is

∆hE = −τ∆E. (4.10)

Similarly, for a step-change in the precipitation rate, ∆P , the resulting change is

∆hP =

[
1− γ +

γAB
ĀL

]
τ∆P. (4.11)

A simple measure of the relative importance of P and E for the lake level is the ratio

of ∆hE and ∆hP :

R∆h =

∣∣∣∣∆hE∆hP

∣∣∣∣ =

∣∣∣∣∣∣ −∆E(
1− γ + γAB

ĀL

)
∆P

∣∣∣∣∣∣ . (4.12)

In other words, R∆h is proportional to the ratio of the two climate changes, modified

by the lake geometry and evapotranspiration in the catchment basin.

Standard deviation in lake level

As was argued in the introduction, and as was supported by an analysis of the instru-

mental climate record, a sensible null hypothesis is that interannual climate variability
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can be characterized by stochastic, normally-distributed white noise, with standard

deviations in P ′ and E ′ of σP and σE respectively.

Analytical solutions for the standard deviation in lake response, σL, can be derived

for the lake-level response to the stochastic variability from eq. (4.8), and are presented

in the Appendix C. For lake-level variability driven by E ′(t) alone, we find

σhE = σE

√
∆tτ

2
. (4.13)

Lake-level variability driven by P ′(t) alone is

σhP = σP

[
1− γ +

γAB
ĀL

]√
∆tτ

2
. (4.14)

Combining eqs. (4.13) and (4.14), we get:

σ2
h = σ2

hE + σ2
hP . (4.15)

For the GSL, σhP = 1.04 m, σhE = 0.24 m, and σh = 1.07 m, meaning that P ′

contributes 95% of the variance in fluctuations in h′. This confirms our earlier re-

sult (Fig. 4.6A), that lake level fluctuations in the GSL are predominantly driven by

precipitation variability. A more comprehensive study of lake geometry and climatic

conditions would be needed to establish whether this is generally true, or whether un-

der some conditions evaporation variability dominates. The predominant importance

of precipitation and inflow for the GSL is also noted by Mohammed and Tarboton

[2012].

4.4 Lake-level statistics

To this point, we have demonstrated that both the full and linear models can capture

the general behavior of the GSL’s historical lake-level variations. We now turn to
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characterizing the lake’s behavior beyond the historical record: its variance; power

spectrum; lake-level threshold-crossing probabilities; and evaluating the analytical

expressions derived from the linear model, when forced with stochastic climate vari-

ations. The differences between the models highlight the capacity of the analytic

solutions to describe the behavior of the lake, and the degree to which changes in the

geometry of the lake basin and bathymetry are important.

We force the full and linear models with long (106 yr) realizations of P ′(t) and

E ′(t) generated from normally distributed, white-noise processes that have the same

mean and variance as the observations (detailed in Table 4.1). A 300-year snapshot

of the resulting lake-level time series is shown in Fig. 4.6A, with the full model in

grey, and the linear model in blue. The full time series correlate highly with one an-

other (r =0.89), but there are also notable differences. For example, because the full

model resolves changes in dĀL
dh

, which decreases below the present lake level, the full

model’s response time is longer at lake levels just slightly lower than the mean lake

level. Therefore, the full model’s lake level is consistently lower than that of the linear.

4.4.1 Standard deviations

For the full model, we find σh = 1.1 m, in close agreement with the linear model

(also σh = 1.1 m). The probability density functions (PDFs) are shown in Fig. 4.6A.

The PDF of the lake levels for the linear model is normal by construction, but the

actual hypsometry of the GSL introduces a significant degree of skewness in the full

model (skewness = -0.4; kurtosis = 3.9). Therefore, the full model is not consistent

with a normal distribution (at p = 0.05, based on a Kolmogorov-Smirnov test [e.g.

Von Storch and Zwiers, 2001]).

Relative to the mean, the full model’s lake-area extremes are skewed towards neg-
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ative excursions (Fig. 4.6B). The area that is associated with +3σh is 6000 km2, and

covers about 2.5 times the area associated with −3σh, 2300 km2 (Fig. 4.6C and D).

This range is comparable to the difference between the highest and lowest areas in the

historical record, and describe the expected extremes seen in a thousand-year period,

if there was no climatic change.

4.4.2 Power spectral density

The power spectra of lake level for the models and the historical record are shown in

Fig. 4.6B. The spectrum for the linear model is calculated using a standard formula

for eq. (4.8) [e.g. Box et al., 2013], which applies to frequencies 0 ≤ f ≤ 1
2∆t

:

P(f) =
P0(∆t

τ
)2

1− 2(1− ∆t
τ

) cos(2πf∆t) + (1− ∆t
τ

)2
, (4.16)

where P(f) is the power spectral density, P0 = 4τσ2
h, and σh is taken from the lin-

earized model (i.e., eq. 4.15).

The area beneath the power spectrum is the variance of the time series, and so the

similarity of the power spectra of the full and linear models is consistent with their

values for σh also being similar. There are however some noteworthy differences be-

tween the models and the observations. While the spectral power at low frequencies is

quite similar, the observations are more damped than the models at high frequencies.

The power spectrum is the Fourier transform of the autocorrelation function [e.g.

Box et al., 2013]. Therefore the extra damping at high frequencies in observations

above that predicted by eq. (4.16) is consistent with the observed autocorrelations at

short lags being higher than predicted by a simple exponential function (Fig. 4.3).

Similar behavior was found recently for the glaciers by Roe and Baker [2014].
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For the GSL, these results suggests that neither eq. (4.3) nor eq. (4.8) are com-

plete descriptions of the lake response. In particular, groundwater dynamics likely

impacts lake-level variability at higher frequencies. Further development of the model

might better emulate the observed autocorrelation/power spectrum structure. These

differences notwithstanding, the results confirm the basic principle embodied in the

models. For the historical record, persistence in lake level fluctuations is associated

with the dynamic memory of the lake system, rather than persistence in climate.

4.4.3 Threshold crossing statistics

Often it is the extrema of lake level (i.e. a flood or extreme lowering) that have the

highest impacts on water resources and are most evident in proxy records. A metric

of particular importance then, is the likelihood that a given lake level is reached in a

given period of time. Given interannual climate variability, the question is inherently

a statistical one. For the full model, the statistics can be estimated from the long

idealized simulations of lake level. For the linear model, the statistics can be derived

analytically from the statistics of a Poisson distribution [e.g. Von Storch and Zwiers,

2001, Roe, 2011]. The probability of the lake level exceeding a given threshold, h0,

above or below the long-term average at least once in a given interval of time, tf − ti,

is given by:

p(N(tf − ti) ≥ 1) = 1− exp

[
−tf − ti

2π

(
2

τ∆t

) 1
2

e
− 1

2

(
h0
σh

)2
]
. (4.17)

Eq. (4.17) shows that the longer the time interval (tf − ti), the higher the probability

of exceeding a given threshold. This probability depends on τ , but is especially sen-

sitive to the ratio of h0 and σh.

Fig. 4.6A shows results for time intervals of of 100, 500, and 1000 years. For the
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full model we randomly sample these intervals 105 times from the long model integra-

tion, and collate the statistics of how often a give lake level is crossed. As an example,

for the full model, in any 1000 yr period it is extremely likely (98%) to find the lake

level exceeding 2m, and extremely unlikely (1%) to find the lake level exceeding 4m.

The threshold-crossing probability curves show that the full and linear models

diverge at the extremes. For the linear model, the maxima and minima curves are

symmetric about the mean lake level, as expected from the probability distribution

function of the lake levels (Fig. 4.6A). However, for the full model, a large lake-level

minimum is more likely than a lake-level maximum of the same magnitude. This is

also apparent in Fig. 4.6A, where the full model’s lake levels are consistently lower

than those of the linear model, and in (Fig. 4.6B), which shows differences between

the spectra of each model. Though the standard deviations of the models are quite

close, the linear model overestimates the frequency of a lake-level maximum and un-

derestimates the frequency of a lake-level minimum, relative to the full model.

Fig. 4.6B shows the full model’s frequency-crossing distribution for the total ex-

cursion of a given time slice (i.e. the (maximum - minimum) values within (tf − ti)).

This illustrates total expected spread in the the lake level on the order of 100, 500,

or 1000 years. The GSL has a higher than 50% probability of varying more than 4

meters within a century; more than 6 meters every 500 years; and more than 7 meters

every millennium. Interestingly, Karl and Young [1986] inspected the return times for

precipitation records alone, and found that there was greater than 50% probability

of having a wet spell as extreme as the 1986 floods in any hundred year period, with

a return time of 120 years. The similarity between the high precipitation probability

and flood probability is unsurprising, given how sensitive the lake is to changes in

precipitation.
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4.5 Alternative lake hypsometries

We have focused on the GSL because of its long lake-level history, relatively short

response time, and detailed hypsometric information. However, the framework devel-

oped above can be used to characterize any closed-basin lake’s response to variations

in the climate. This response will be dependent on the lake’s unique hypsometry and

regional climate.

To understand the extent of geometric influence on the timescale and magnitude

of lake-level variability, we create simple hypsometric profiles that are approximations

to the bathymetry of three closed-basin lakes: the extensive and shallow GSL; the

extensive and deep Lake Titicaca, on the border of Bolivia and Peru; and the areally

small and deep Lake Bosumtwi in Ghana (Fig. 4.6A, B, and C). In the following cal-

culations we do not try to simulate historical or projected future variations of these

lakes, but aim to isolate the impact of different lake geometries on lake-level response.

The simple functions used to describe the bathymetry allow dĀL/dh to vary smoothly,

in turn, smoothing the lake-level response.

The GSL and Lake Titicaca’s hypsometric curves are concave down, and can be

idealized as an inverted rectangular pyramidal frustum:

AL(h) = LW

(
h+ z0

z0 + z1

)2

, (4.18)

where, again, AL is the lake area and h is the lake level. L and W are the length and

width of the basin at some known elevation, z1, above the bottom of the frustum, and

z0 is the vertical distance from the bottom of the frustum to the point that would

complete a full pyramid.

Lake Bosumtwi’s hypsometric curve is concave up, and is idealized as a tri-axial
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half-ellipsoid:

AL(h) = πLW

(
1− (z0 − h)2

z2
0

)
, (4.19)

where L, W and z0 are the lengths of the semi-principal x, y, and z axes, and h = 0

at z = z0. The values for each lake’s parameters are given in Table 4.2, and are

compared with the known hypsometric profiles in Fig. 4.6.

Estimates for Ē and P̄ for lakes Titicaca and Bosumtwi are available from the

literature (Table 4.2, Turner et al. [1996], Richerson et al. [1977]). For each idealized

lake geometry, we set α so as to match the modern lake levels. By analogy with the

GSL, we set γ = 3α.

In order to focus solely on the impact of the different basin geometries on lake-level

variability, we apply the same E ′(t) and P ′(t) to all three idealized lake geometries

as were applied to the GSL (see section 4.4). We integrate the full lake model (eq.

4.3) with each of the idealized lake geometries, and use the linear model solutions to

calculate τ , σh, and P(f) for each lake. All parameters are provided in Table 4.2.

A 2000-year slice of each lake’s time series is shown in Fig. 4.6D. It is clear that

the lakes respond to the same perturbations at different timescales and with different

amplitudes. The analytic solutions to the linear model allow us to link the differences

in lake response to each lake’s parameter values.

4.5.1 Response time

The response time for each lake is calculated using eq. (4.9). The idealized GSL has

the fastest response time, with a τ = 10 years, because of its large dĀL/dh. The shape of

Lake Bosumtwi is very different, with a relatively small area of 48 km2, but a modern
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depth of 79 m. Its geometry means that if Lake Bosumtwi experiences a brief increase

in P , the lake level will increase, but the lake’s surface area only increases slightly.

Hence, it takes many years for a steady Ē to remove the excess water and return

the lake to its original level. Therefore, though the surface area of Lake Bosumtwi is

much smaller than that of Lake Titicaca or the GSL, its small dĀL/dh gives the lake

a long memory, with an e-folding time of 209 years. Lake Titicaca is much larger

(ĀL = 6700 km2) and deeper (h̄ = 280) than the GSL or Lake Bosumtwi. However,

Lake Titicaca’s ratio of ĀL : dĀL/dh, and therefore its τ (= 201 yrs), is similar to that

of Lake Bosumtwi.

The mean climatic differences (P̄ , Ē) also affect τ , as does the ratio of ĀL and AB,

through the α needed to maintain the modern lake level. These effects are, however,

of secondary importance to the basin hypsometry. The hypsometry of the lake, then,

is the main control over the response time of the lake, which, in turn, determines the

integration of the climatic history in the lake-level record.

4.5.2 Standard deviations

For the idealized GSL geometry, σh= 1.2 m (1.1 m) for the full (linear) model, which

is very similar to the values for the original model runs. Lake Bosumtwi’s σh is com-

parable, with σh = 1.7 m for both models. The reason that σh is similar for Lake

Bosumtwi and the GSL is because τ and basin geometry compensate one another (eq.

4.15): while τ is much larger for Bosumtwi than the GSL, the ratio of AB/ĀL is much

smaller. Lake Titicaca, with a large values for both τ and AB/ĀL, exhibits the largest

values for σh – 4.0 m (4.1 m) for the full (linear) model.
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4.5.3 Power spectrum

Fig. 4.6E shows the lake-level power spectra for each of the three lakes. The P(f)s

from eq. (4.16) are also shown. The GSL has more power at high frequencies than

Lake Bosumtwi or Lake Titicaca, with their long response times. Lake Bosumtwi and

Lake Titicaca, which have similar values for τ , have similar spectral shapes, though

Titicaca has more power at all frequencies, simply because its variance is greater. The

smaller τ and lower overall variance for GSL means that it asymptotes more rapidly

and to a lower value of P(f) at low frequencies.

Mason et al. [1994] show that the high-frequency component of lake-level vari-

ability is proportional to Ē − P̄ and the ratio of ĀL to AB, while the low-frequency

component is proportional to τ , Ē − P̄ , and the ratio of ĀL to AB. Our findings

corroborate this, since Titicaca and Bosumtwi, with their similar values for τ have

spectra that diverge from the GSL’s at low frequencies. Similarly, the spectra of the

GSL and Titicaca are more similar at high frequencies, because their Ē − P̄ , and the

ratio of ĀL to AB are more comparable.

4.6 Discussion and summary

Lakes are sensitive recorders of climate, responding to both climate change and in-

terannual climate variability that occurs even in a constant climate. Our particular

focus in this study has been characterizing lake response to the latter.

Lakes have an intrinsic dynamical time scale, which is a function of their geome-

try, hydrology, and climatic setting. A physical interpretation is that this is a filling

or evaporating timescale–the length of time it takes to replenish (or evaporate) an

anomalous volume of water. It is, in an e-folding sense, the timescale over which the
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lake integrates previous climate fluctuations to produce persistent lake fluctuations

(e.g., eq. 4.8). The lake response also reflects a spatial integration of the climate,

because the rivers that flow to the lake are fed by basin-wide precipitation. This

understanding of the spatial and temporal integration of a lake can help to identify

climate changes in paleo-records, or qualify an expected the frequency of floods and

droughts in a record, even in the absence of climate change.

For the case of GSL, we showed there was negligible persistence in the climate

variability over the historical record, and therefore that the observed persistent lake-

level fluctuations are due to the lake’s response time. A simple volumetric model

was developed that provided a good simulation of the historical GSL lake level. A

linearization of the model performed comparably well and provides some analytic

expressions for lake-level sensitivity, variance, power spectrum, and statistics of lake-

level threshold crossings. The linear model’s lake-level distribution is normal, and

so does not capture the negative skewness of the full model’s lake-level PDF. The

distributions in area for both models are non-normal.

While the lake models accurately capture the low-frequency power of the historical

record of the GSL, they both underestimate the high-frequencies, suggesting that not

everything in the lake dynamics is captured. A more detailed analysis of the auto-

correlation structure using auto-regressive moving-average (ARMA) modeling might

reveal higher-order terms in the lake dynamics. This approach was recently used by

Roe and Baker [2014] to analyze glacier response.

The analytic expressions derived from the linear model can provide useful first-

order approximations of the expected responses of the lake, and can help characterize

the baseline level of detail that can be extracted from that lake’s record. We have

shown that the linear model can also be used to characterize the lake-level response of
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lakes with different characteristic bathymetries. While the magnitude of the historical

lake-level variance is captured by the models, some details are not, in particular the

high-frequency response of both models. We attribute this discrepancy to an imper-

fect inflow parametrization, and the lack of a parametrized groundwater forcing. The

linear model fails to capture the extreme large low-stands in lake level that the full

model exhibits, but emulates the full model’s power spectrum and standard deviation.

The main advantage of the linear model is that it provides analytic expressions

for the basic metrics, in which the dependencies on geometry and climatic setting

are transparent. For many purposes the linear model may be the best approach:

uncertainties in climatic forcing and evapotranspiration are likely to be larger source

of error in modeling lake response than the model itself. Thus, a more complicated

model may not be justified for characterizing the response to interannual variations

in climate.

To explore how the geometry of the lake and surrounding basin control the ampli-

tude and timescale of the lake-level response, we repeated our modeling exercises on

idealized bathymetries of the GSL, Lake Titicaca, and Lake Bosumtwi, isolating the

effect of geometry. A remarkable range of time scales are implicated from ten years for

the GSL to ∼ 200 years for Titicaca and Bosumtwi. The differences can be attributed

to the specific parameters that set τ and σh. The timescale is proportional to the

lake’s area, and is inversely proportional to its aridity and dAL/dh. The amplitude of

variations is a function of τ , but it is also modified by the ratio of the basin area to

the lake area. Idealized geometries, such as the frustum and half-ellipsoid, and linear

models are an efficient way of characterizing uncertainty analyses when working with

lakes whose bathymetry is not well characterized, when analyzing many lakes, or for

preliminary field-work plans.
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We have demonstrated that large and persistent fluctuations in lake level and lake

extent can be driven by the random year-to-year fluctuations in weather, that occur

even in a constant climate. Estimates of this natural variability are important to

make in order to establish the statistical significance of modern and paleo-lake fluc-

tuations. The models developed here reveal the dependencies on lake geometry and

climatic setting, are flexible enough to be applied generally, and can help inform the

interpretation of the climate history reflected in lake records. These models and sta-

tistical tests allows for this work to be applied to many different lake settings. Their

strength lies in their relative simplicity, and, therefore, in our ability to understand

and characterize the specific relationships between parameters that drive lake level

variability.
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Variable Historical GSL Value

VL lake volume 20 km3

Ab catchment basin area 5.5× 104 km2

Āl mean lake area 4300 km2

σAl s.d. lake area 840 km2

z̄ mean lake depth 10 m

h̄ mean lake level 1280.4 m a.s.l.

σh s.d. lake level 1.14 m

P̄ mean precipitation rate 0.37 m yr-1

σP s.d. precipitation rate 0.08 m yr-1

Ē mean evaporation rate 1.00 m yr-1

σE s.d. evaporation rate 0.10 m yr-1

α % of basin’s precip. flowing to lake (mean) 0.13

γ % of basin’s precip. flowing to lake (variance) 0.40

τ e-folding time scale 8 yr

Table 4.1: Parameters, historical values, and model outputs describing the GSL’s
lake-level and climatic history. See text for sources.
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GSL Bosumtwi Titicaca

z 14 192 400 m

L 150 5 150 km

W 50 4.7 80 km

Ab 55,000 72 58,000 km2

Āl 4600 48 6700 km2

dĀl/dh 665 0.45 38 km2 m-1

h̄ 9 79 280 m

σh 1.1 1.7 4.0 m

P̄ 0.37 1.38 0.80 m yr-1

σP 0.08 0.08 0.08 m yr-1

Ē 1.0 1.55 1.58 m yr-1

σE 0.1 0.1 0.1 m yr-1

α 0.16 0.25 0.13 –

γ 0.47 0.75 0.38 –

τ 10 209 201 yr

Table 4.2: Parameters, and model outputs for the simplified geometry experiments.
Lake Bosumtwi’s climate variables are from Turner et al. [1996], and Lake Titicaca’s
are from Richerson et al. [1977]. σP and σE for all three lakes are, by experimental
design, equal to the GSL’s: these numbers are inaccurate, and should not be used in
other studies.
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Figure 4.1: Great Salt Lake’s setting and geometry. A: Map view of the GSL. Data
from Baskin [2005, 2006]. Lake levels are contoured every meter. For visual clarity,
the surrounding topography is contoured every 20 m from 1280 to 1300 m a.s.l., every
100 m from 1300 to 1500 m a.s.l., and every 300 m from 1500 to 3000 m a.s.l. B:
GSL’s hypsometric curve from Loving et al. [2000]. The present-day lake level is 1279
m a.s.l. which corresponds to a surface are of ∼3500 km2, and is slightly below the
historical mean lake level of 1280.4 m a.s.l.
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Figure 4.2: GSL’s lake level and climatological history. A: The historical record of
the GSL, from USGS Water Resources, is shown in black. The grey and blue lines
show the full and linear output from the modeled history, respectively. The models
incorporate the precipitation and evaporation data from B and D. B: Annual regional
precipitation record, from Matsuura and Willmott [2012]. Precipitation is summed
over the water-year, from October to September. C: Mean regional summer (JJA)
temperatures from Willmott et al. [2012]. D: Compilation of evaporation records from
local pan measurements, from Western Regional Climate Center. The inset shows the
approximate annual volume of water pumped from the lake in 1986-1988, divided by
the lake’s area, so that this rate of removal is comparable to the evaporation rate.



96

A

B

C

D

1278

1280

1282

1284

Elevation (m)

 

 
Historical Record
Full Model
Linear Model

0.2
0.3
0.4
0.5
0.6

Precip. (m/yr)

20

22

24
JJA Temp. (oC)

1850 1900 1950 2000

0.8

1

1.2

Year

Evap. (m/yr)

1986 1988
0.4
0.5

Pumped



97

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag (years)

Au
to

co
rre

la
tio

n

 

 
Lake Level
Precipitation
Temperature
Evaporation
Exponential Fit

Figure 4.3: Autocorrelation function of the GSL’s historical lake-level [USGS Water
Resources], regional annual precipitation rate [Matsuura and Willmott, 2012], regional
JJA temperature [Willmott et al., 2012], and evaporation rate [Western Regional
Climate Center]. The arrows on the right side of the graph indicate the 2σ confidence
level of a significant autocorrelation, which is a function of the length of the records.
The lake has significant memory up to 13 years, with an e-folding timescale of 8
years. With the exception of precipitation, which exhibits a small autocorrelation of
up to a year, the climate variables have no significant autocorrelation, indicating that
they can be described as white noise processes. The dashed black line displays an
exponential function with an e-folding decay time of 8 years.
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Figure 4.5: The e-folding timescale of the GSL, τ , calculated from Eq. 4.9, for different
lake-level elevations. Each h̄ corresponds to a specific ĀL and dĀL

dh
. The black curve

holds Ē and P̄ constant, varying only h̄ and its associated ĀL and dĀL
dh

to vary.
However, from eq. (4.9), a change in the mean precipitation or evaporation affects τ
directly, as a parameter in the equation, and indirectly, by modifying the mean area
of the lake. The blue curve holds Ē constant, and associates an increase (decrease) in
P̄ with an increase (decrease) in lake level and lake area, providing a more physically
consistent range of values for τ . Similarly, the red curve holds P̄ constant, and
associates an increase (decrease) in Ē with a decrease (increase) in lake level and lake
area.
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Figure 4.6: Long-term climate statistics. A: A 300-yr time slice of the full (grey) and
linear (blue) lake-level model output, forced by stochastic variations in precipitation
and evaporation. The two models are highly correlated (r = 0.89). B: The power
spectra of the models and historical data (in black). The linear curve is calculated
following Box et al. [2013]. The full model’s spectrum was computed with a Hanning
Window length of ten-thousand, with no overlap between the windows. The historical
data’s error bar is shown in the top right corner, with the horizontal line marking the
intersection with the curve. Because full model was run for a million time steps, its
error is negligible. The models capture variability well on timescales of decades or
longer, but overestimate the variability at higher frequencies.
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Figure 4.7: The distribution of lake level (A) and lake area (B) for the long-term forc-
ing experiments. The linear model is outlined in black, and full model is represented
with the bars that are filled in. Only the linear lake-level model output is normally
distributed. C and D: The areas associated with ±3σh for the full model run.
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Figure 4.8: The maximum and minimum lake-level excursions from the mean for
random 1000, 500, and 100 year time-slices within the long-term model runs. The
solid lines show the probability of a given excursion for the full model, while the
dashed lines show the analytic solutions to the linear model. The dashed lines are
symmetric about zero, while the solid lines’ asymmetry reflects the effect of the lake’s
varying hypsometry. B: The total excursion probability in a given 1000, 500, and 100
year time-slices of the full model.
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Figure 4.9: Alternative geometry experiments. The simplified geometries (shown in
color) for the Great Salt Lake (A) Lake Titicaca (B), and Lake Bosumtwi (C), over
their hypsometric curves (shown in black). The hypsometric curves are interpolated
from Turner et al. [1996] (Bosumtwi) and Richerson et al. [1977] (Titicaca). The
crosses mark the present-day lake levels for each of the lakes. Schematics of the
frustum and half-ellipsoid shapes are shown to the left of each curve. D: A 2000-
yr time slice from the long-term alternative lake model runs, showing the diverging
behavior of the three lakes. E: The power spectra of the lakes. The full models are
noisier, while the analytic solutions to the linear model are overlain above.
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Chapter 5

BASAL TOPOGRAPHIC CONTROLS ON THE
LONG-TERM STABILITY OF THE WEST ANTARCTIC

ICE SHEET

Chapter 5, in full, is currently being prepared for publication as “Basal topographic

controls on the long-term stability of the West Antarctic Ice Sheet” authored by

K. Huybers, G. H. Roe, and H. Conway. The dissertation author was the primary

investigator and author of this paper.

5.1 Introduction

The total potential global sea-level contribution from the West Antarctic Ice Sheet

(WAIS) is ∼4.3 m [Fretwell et al., 2013], and recent work suggests that Antarctica

could contribute 0.15 to 0.62 m of sea-level rise in the next century [Solomon et al.,

2007, Pfeffer et al., 2008, Joughin et al., 2010, Gladstone et al., 2012, Mouginot et al.,

2014, Joughin et al., 2014]. However projections of the stability of the WAIS are

hampered by the complexity of ice/ocean dynamics and uncertainty in the current

and projected environmental changes [Joughin and Alley, 2011, Nowicki et al., 2013].

Here, we combine new observations of ice-thickness, basal topography, and surface

velocity [Rignot et al., 2008, 2011, Fretwell et al., 2013] with advances in theoretical

understanding of ice-sheet-shelf-ocean interactions [Schoof, 2007, Gagliardini et al.,

2010, Drouet et al., 2012] to gain perspective on the stability of the WAIS, using

a simple numerical model. Results show that differences in the basal relief beneath

present-day ice streams will cause the Weddell, Amundsen, and Ross Sea sectors of

Antarctica to respond with varying sensitivity to similar environmental perturbations.
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In steady state, the flux of ice from the margins of the ice sheet is balanced by the

accumulation rate integrated over the upstream catchment area. In reality, because

the ice sheet is never truly in steady state, the mass balance of the ice sheet is mainly

controlled by changes in the activity of fast-flowing outlet glaciers and ice streams.

These outlet glaciers respond to changing conditions at the grounding line, the transi-

tion between the grounded ice sheet and the floating ice shelf. The grounding line, in

turn, is highly sensitive to changes in sea-level and the melting/freezing of buttressing

ice shelves [Payne et al., 2004, Joughin et al., 2010, Pritchard et al., 2012, Shepherd

et al., 2012].

5.2 Model

Schoof [2007] provided an elegant theory for calculating the flux of ice across grounding

lines. With several simplifying assumptions, the flux per unit width across a grounding

line, q(xg), can be approximated by:

q(xg) =

[
Ā(ρig)n+1(1− ρi

ρw
)n

4nC

] 1
m+1

θ
n

m+1H
m+n+3
m+1

g (5.1)

where x is the distance along a flowline, ρi,w are the densities of ice and sea water,

respectively, g is the acceleration due to gravity, Ā is the depth-averaged temperature-

dependent rheological parameter in Glen’s flow law, and n is the corresponding expo-

nent on the shear stress. C and m are parameters used to relate the basal shear stress

and sliding speed: τb = C|ub|m−1ub. Hg is the ice-thickness at the grounding line.

Values of θ, which parametrizes the effects of ice-shelf buttressing on the longitudinal

stress gradients, vary between 0 (fully buttressed) and 1 (no buttressing). In reality,

changes in buttressing depend on the evolution of the geometry of the surrounding

ice shelf; caution is needed when applying the correction factor θ to parametrize the
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evolution of buttressing.

Model parameters representing ice flow and sliding models are not well con-

strained, but values of n = 3, and Ā = 10−25 s-1 Pa-3 (appropriate for depth-averaged

temperatures of -20◦C) are reasonable for ice streams [Cuffey and Paterson, 2010]. Re-

ported values for C vary by more than an order of magnitude, ranging from ∼ 6×105

Pa s1/3 m-1/3 for the fast-flowing Siple Coast ice streams to 107 Pa s1/3 m-1/3 (where

m = 1/3) for basally resisted ice streams [Cuffey and Paterson, 2010]. Values for the

sliding parameter, m, range from 1/3 for ice that is resisted laterally to 4 for basally-

resisted ice. For this range of m, the exponent on Hg varies from 2 to 4.75. Thus,

in terms of fractional changes, q(xg) is much more sensitive to Hg than to either

buttressing (θ, exponent of 0.6 to 2.25) or flow and sliding parameters (A and C,

exponent of 0.2 to 0.75).

For simplicity, hereafter we adopt a value of m = 1/3 for the entire model do-

main; higher values of m increase the importance of Hg relative to other variables,

making 1/3 a conservative choice for sensitivity tests. Eq. (5.1) has been used for

several modeling experiments [Pollard and DeConto, 2009, Docquier et al., 2011], and

is broadly supported by comparisons to numerical models with idealized geometries

[Pattyn et al., 2012]. The power-law dependence on Hg in Eq. (5.1) has a similar

exponent to earlier theoretical work [Lingle, 1984].

Assuming hydrostatic equilibrium at the grounding line, the dominant term Hg

is:

Hg = −zb
ρw
ρi

(5.2)
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where zb is the bed elevation above sea level. Thus Eqs. (5.1) and (5.2) suggest

that q(xg) ∼ z 2 to 5
b The acute sensitivity of the flux to changes of zb emphasizes the

importance of basal topography in the vicinity of the grounding line as a first order

control on discharge from the ice sheet. Although the importance of basal topog-

raphy (in particular for marine ice-sheets where the bed deepens inland) has been

widely recognized [e.g. Weertman, 1974, Lingle, 1984, Schoof, 2007, Cofaigh et al.,

2008, Pollard and DeConto, 2009] here for the first time we characterize the oro-

graphic sensitivity of the major outlet glaciers and ice streams in the Weddell, Ross

and Amundsen Sea sectors to changes of accumulation rate, sea level, and buttressing.

Ice flow upstream from the grounding line is described using a dynamic 1.5-D

flowband model (Eq. D.1 in Appendix D); the grounding line position adjusts to per-

turbations so that q(xg) matches the integrated upstream flux. We first consider the

sensitivity of Foundation Ice Stream (FIS) in the Weddell Sea sector to changes in

accumulation rate, sea level, and buttressing at the grounding line then generalize the

results to other outlet glaciers and ice streams.

The upper catchment of FIS is located in East Antarctica, but the ice stream

flows through West Antarctica and discharges into the Filchner-Ronne Ice Shelf (Fig.

5.5). Like many of the ice streams in the Weddell Sea sector, the grounding line of

the FIS lies in a deep (up to 1900 m below sea level) trench, which extends around

the embayment and shoals gently out to the edge of the continental shelf [Ross et al.,

2012, Fretwell et al., 2013]. Basal relief just inland of the FIS grounding line rises

1400 m over 150 km (Fig. 5.2). Values for the sliding law C (8 × 106 Pa s1/3 m−1/3)

and θ = 0.2 were chosen to match the modern surface elevation profile and grounding

line position, respectively. Tuning θ in this way assumes that the ice stream is now in

equilibrium, which is consistent with our recent results from cosmogenic exposure-age

dating that indicate the ice stream has not thinned over the past 4,000 yr (Balco, G.,
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pers. communication). Figure 5.2 shows that the mismatch between the modeled

and observed present-day profile and the grounding-line position is small. Discrepan-

cies are most likely due to spatial variations in bed conditions and ice-flow parameters.

5.3 Results: Foundation Ice Stream

In all experiments, Ā , C, and m were kept constant. Results are for steady-state

conditions; we do not show transient states. Elevations throughout the text are refer-

enced to the modern sea level, and are not corrected for isostatic adjustments or local

gravitational effects [Gomez et al., 2010]. We caution that the calculations are not

intended as projections, and it should be recognized that parametrizations of defor-

mation and sliding are uncertain and full thermo-mechanical details are not included.

Rather, our results are a quantitative demonstration of the physical principles em-

bodied in Eqs. (5.1), (5.2), (D.1), and (D.2).

The location of the FIS grounding line within an asymmetrical trough is key to its

current stability with respect to retreat: relatively small changes in the grounding-line

position can accommodate large changes in ice flux. While the modern FIS geometry

suggests it is stable to retreat, we note that the long reverse slope seaward of the

present-day grounding line cannot sustain a stable grounding-line position, implying

that the FIS is relatively unstable to advances, and that during glacial periods the

grounding line could readily push well beyond its present location, advancing to the

edge of the continental shelf. This is corroborated by marine-geological evidence [Hil-

lenbrand et al., 2012], and other modeling efforts [Whitehouse et al., 2012, Stolldorf

et al., 2012], and by glacial geologic data from the Williams Hills 50 km upstream

from the grounding line, which show the a local ice stream thickening of was 500 m

during the Last Glacial Maximum (LGM) (Balco, G., pers. communication).
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5.3.1 Retreats

First, we consider forcings that would cause the grounding line of the FIS to retreat.

A sea-level increase of 100 m, which approximates the difference in sea-level from

the present to the LGM, though presently unrealistically large, requires only a 5 km

grounding line retreat to restore balance (Fig. 5.2, dashed red line). The steep basal

topography inland of the grounding line can accommodate this change over relatively

short horizontal scales, and is accompanied by very little change in ice thickness.

Halving the upstream accumulation rate is balanced by a grounding-line retreat

of only ∼ 18 km (Fig. 5.2, yellow line). In contrast to sea-level rise, the reduced accu-

mulation causes considerable interior thinning that averages 180 m over the domain

of the grounded ice.

The complete removal of buttressing by setting θ = 1 in Eq. (5.1) causes the

largest change of all parameters considered. The grounding line retreats ∼300 km

before re-stabilizing near the edge of the trench, and the interior thins, reducing the

volume of ice by 28% (Fig. 5.2, dark grey line). Smaller changes in buttressing have

less of an effect – setting θ = 0.5 causes the grounding line to retreat by only 75 km,

with an ice-volume loss of approximately 5% (Fig. 5.2, dashed grey line).

5.3.2 Advances

Because the FIS’s grounding line presently lies in the deepest part of its domain, an

increase in the flux cannot be accommodated by an advance in the grounding line to

shallowing topography. Lowering the sea level by only 23 m (well above the LGM

sea-level) or increasing the accumulation uniformly by 6% results in the modeled

grounding line advancing to the edge of the continental shelf. Although not in any
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way a projection – the interactions are far too uncertain – these calculations highlight

how complex grounding-line dynamics might produce counter-intuitive consequences

to warming. They serve as a quantitative demonstration of the physical principle

embodied in Eq. (5.1): that a large change in forcing is necessary to induce a retreat

from the trench in which the present-day grounding line resides, but a relatively small

forcing is needed to advance the grounding line on a long, reverse-slope bed.

5.4 Discussion

Many of the other ice streams that flow into the Ronne-Filchner Ice Shelf are also

grounded within the deep asymmetrical trench that rings the Weddell embayment.

The Support-Force, Evans, Recovery, and Rutford ice streams all have beds that rise

steeply inland immediately behind the present-day position of the grounding line (Fig.

5.5 and 5.3B, F, H, I), implying that they are also are strongly stable to plausible

future sea-level rise or decreases in shelf buttressing. Moreover, with the exception

of the Recovery Ice Stream, the bed generally shoals toward the continental shelf,

indicating the potential for expansion of the ice sheet when sea level lowered during

glacial climates.

The grounding lines of Bailey, Institute, Slessor, and Möller Ice Streams (Fig. 5.5

and 5.3 C, D, E, and J) lie just beyond the regions main trench. For these ice streams,

a relatively small external forcing may cause an initial grounding retreat on the order

of ∼100 km, but stability would be re-acquired in the deep trenches. Note that the

Slessor ice stream is currently grounded on a reverse slope; this potentially unstable

position implies a more complex role for buttressing than is represented by Eq. (5.1).

One possibility is lateral communication between adjacent ice streams through thick-

ness changes on lightly grounded ice plains inferred by Hulbe and Fahnestock [2007].
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In contrast, basal topography beneath the ice streams in the Ross Sea sector

is muted (Fig. 5.5 and 5.4 A–E). Over regional scales (a few hundred kilometers),

the ice streams are grounded on gentle reverse slopes that extend in both directions

from the current grounding line. The large-scale basal topography suggests that both

advances and retreats would be determined by the complex interplay of basal topog-

raphy, external forcing factors, and influence from adjacent ice streams, mediated by

ice-shelf buttressing and competition for upstream catchment area. Further, thermo-

mechanical feedbacks that control basal sliding of the Ross ice streams [Raymond,

1996] may lead to stagnation and reactivation of flow over century scales [Hulbe and

Fahnestock, 2007] and even switches of flow direction [Conway et al., 2002], adding

complexity to projections of future behaviors. In addition, even small-scale sea mounts

and lateral buttressing from inter-stream ridges along the Siple Coast will influence

grounding-line advance and retreat [Gagliardini et al., 2010, Drouet et al., 2012].

The Amundsen Sea sector is currently well out of balance (-64 Gt yr-1, Rignot et al.

[2008]). Further, the current grounding lines of Thwaites and Pine Island Glaciers are

positioned at the edge of an over-deepening that extends below sea level more than

400km inland (Fig. 5.5 and 5.4F, G). If the current rates of melting and disintegration

of surrounding ice shelves continues [Pritchard et al., 2012], the glaciers could retreat

episodically past bedrock bumps more than 300 km inland.

5.5 Conclusions

Making quantitative projections of the future of the WAIS or understanding in detail

the cause of its past changes is an enormously difficult challenge, depending as it does

on modeling numerous subtle and complex interactions. It is yet to be established

that such projections are a tractable goal, even in principle. However, recent theory

and data sets imply that differences in large-scale basal topography will cause the
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Weddell, Amundsen, and Ross Sea sectors of Antarctica to respond differently to the

same environmental forcing. The acute functional sensitivity of grounding-line flux

to basal topography (q(xg) ∼ z 2 to 5
b ), implies that even small topographic ridges can

provide a local anchor for the grounding line, even if the larger-scale topography is a

reverse slope Schoof [2007]. Our evaluation reaffirms that the greatest concerns for

WAIS retreat are locations of reverse slopes, muted basal topography, and limited

lateral support. While predictive skill from numerical models is yet to be ascertained,

the physical principles embodied in Eq. (5.1) and the geometrical constraints available

from modern data sets form a basis for selecting and prioritizing the locations of the

intensive campaigns to observe modern trends and reconstruct past history that offer

the surest path to progress.
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Figure 5.1: Major West Antarctic ice stream catchment areas, outlined in black (data
from Joughin, I., pers. communication). A characteristic flowline for each catchment
area [from Byrd Polar Research Center] is overlain on Antarctica’s bed elevation
[Fretwell et al., 2013]. The flowline routing beyond the present-day ice shelf extent
is drawn as a continuation of the flowline. Brown colors indicate elevations above
the present-day sea-level, and blue colors indicate elevations below sea-level. The
transition from a solid to pixelated area marks the edge of the continental shelf.
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Figure 5.2: Foundation Ice Stream profile and modelling results. The FIS flowline
from Fig. 5.5 is interpolated onto the BEDMAP2 surface elevation, bed elevation,
and thickness data [Fretwell et al., 2013], with the profile shown in solid colors. The
bed topography has been smoothed for visual clarity, but was kept at a 1-km grid-
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profile (C = 8 × 106 Pa s1/3 m-1/3, θ = 0.2). The other curves show the FIS’s new
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Chapter 6

CONCLUSIONS

I have shown that appropriately formulated simple models can capture the es-

sential climate-response characteristics of geophysical systems, and as a result, are

powerful tools for understanding how these systems record the climate that they

experience. Though more comprehensive models may more skillfully recreate the

paleo-record, and, presumably, predict future geophysical behavior more accurately,

my approach allows for a transparent and complete understanding of the behaviors

of the modeled systems. My work explores how glaciers, lakes, and ice streams re-

spond to climatic and environmental variations and changes, and was defined by the

following five questions:

1. What climatic variables, represented by the climate proxy, are well preserved by

the geophysical system?

Glaciers record variations in both accumulation, in the form of snowfall, and

temperature, through ice melt. Lakes can record variations in both precipitation

and evaporation. Analytic expressions were derived for both glaciers and lakes,

to estimate the relative sensitivity to each of the climate variables that drive

their variations. Ice-stream profiles are sensitive to sea level, accumulation, and

buttressing provided by ice shelves. The topography of the underlying bedrock

determines the how these environmental states are expressed in the ice-stream

profile.
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2. On what timescale is climatic information well preserved?

The timescale of glacier-length and lake-level variations ranges from years to

centuries. Roe and O’Neal [2009] derived a characteristic memory for glaciers,

and Chapter 4 shows a similar derivation for the memory of a closed-basin lake.

The transient ice-stream responses to environmental forcings were not consid-

ered in this work. However, it is clear that the memory of each system is at

least partly determined by the orography or bathymetry that the glacier, lake,

or ice stream rests upon.

3. Over what spatial scale does the proxy represent relevant information?

The correlation in regional glacier advance and retreat is a function of correla-

tion in regional precipitation and temperature – this was expressly addressed in

Chapters 2 and 3. Similar work could be done for regional lake-level variability.

My work in Chapter 5 shows how changes in the mean environment can give

rise to dramatically different characteristic profiles for ice streams.

4. How can one distinguish a climatic signal from noise in the proxy record?

For glaciers, my work showing idealized expected regional glacier-length cor-

relations can be used to set a baseline expected for regional coherence in the

proxy signal. A regional glacier signal that is more coherent than these baseline

expectations would indicate a true regional change in either precipitation, tem-

perature, or both. For lakes, I used statistical analysis to estimate the variability

of lake levels in response to climate variability alone. I characterize Foundation



123

Ice Stream’s mean response to different environmental states, providing limits

to expected large-scale profile changes. Similar studies can be done with any

ice stream or outlet glacier.

5. What physics and parameters is the system most sensitive to?

The primary sensitivity of each system is addressed in its respective chapter.

Again, my idealized modeling approach allows for many experimental designs,

making it relatively simple to examine the response to changes in the physics

and parameters of the system, in comparison to the responses to environmental

or climate forcings.

By capturing the general behavior of the system’s response to climate change, these

models provide context and insight into the interpretation of specific proxy records.

Further, these models can be adapted to other lake, glacier, or ice-stream systems,

affording a simple first-order insight into their response to climatic or environmental

change. I pose the questions above in the service of framing the interpretation of

paleo-climate records, as well as gaining a better understanding of the present and

projected future behaviors of glaciers, lakes, and ice sheets.
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Appendix A

INTERPRETING TEMPORAL VARIABILITY

This appendix describes how climate forcing expressed in proxy records. It will

contextualize why the proxy-climate relationship is difficult to interpret.

The relationship between a proxy record and the climate history is complicated

by the dynamical response of the proxy itself. If the proxy has inertia, it is influenced

not only by the climate at a given time but also by its memory of previous climate

states. The characteristic memory of the system implies that a proxy records some

information about the climate before deposition as well as the climate at the time of

deposition. If the memory of the system is long, the previous climate will strongly

affect the proxy signal.

The simplest general representation of a dynamical system with memory is a linear

first-order differential equation of the form:

dy

dt
+
y

τ
= f(t), (A.1)

where y is the proxy variable, τ is the characteristic timescale (or memory), and

f(t) is the climatic forcing. Eq. (A.1) can also represent the linearization of a more

complicated nonlinear dynamical system, if the proxy fluctuations are small. Beyond

the domain of strict linearity, Eq. (A.1) provides important insights into a proxy’s

response to climate.

There are two complementary and entirely equivalent interpretations of the solu-

tion of Eq. (A.1) :
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• the proxy record integrates the time series of the climate forcing or

• the proxy record filters the power spectrum of the climate forcing.

Each interpretation of the solution to Eq. (A.1) is described below.

Geophysical systems integrate the climate time series

If τ is constant and the forcing is not dependant on the state of the system1 the

general solution to Eq. (A.1) is:

y(t) = y0e
−t/τ +

∫ t

0

e
(t′−t)/τf(t′)dt′, (A.2)

where y0 is y(t = 0) and t′ is a dummy variable. The response variable, y(t), is

a function of the integral of the forcing function, f(t) along a time line from 0 to

t. As time progresses, the most recent forcings are weighted exponentially more. If

τ is large compared to t, e(t
′−t)/τ is relatively large, and the system remembers past

forcings for a longer time. Conversely, if τ is small, e(t
′−t)/τ is a smaller value, and the

past forcings have a lesser effect on the present time step.

Geophysical systems filter the climate spectrum

Eq. (A.1) can be written in terms of the Fourier transforms of y(t) and f(t):

• y(t) =⇒
∫∞
−∞ Ỹ (ω)e−iωtdω and

• f(t) =⇒
∫∞
−∞ F̃ (ω)e−iωtdω

1though the equation can be solved numerically, even if τ or f(t) are dependant on y(t)
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Substituting these into Eq. (A.1), yields the following equation:∫ ∞
−∞

(−iω +
1

τ
)Ỹ (ω)e−iωtdω =

∫ ∞
−∞

F̃ (ω)e−iωtdω, (A.3)

The integrands on both sides of Eq. (A.3) must be equal. Therefore,

Ỹ (ω) =
1

−iω + 1/τ
F̃ (ω). (A.4)

The (−iω+ 1
τ
) term is referred to as the transfer function, and maps the forcing func-

tion, F̃ (ω), to the response function, Ỹ (ω). For ωτ >> 1 the response is in quadrature

with the forcing and is damped in proportion to the frequency of the forcing. Higher

frequencies will be under-represented in the response function. For ωτ << 1, the

response is in near equilibrium with the forcing, and for a given size of F (ω) a larger

τ implies a larger response. The larger τ is, the weaker the restoring tendency (i.e.

the second term on the left-hand side of Eq. (A.1)), and so the larger the equilibrium

response. All frequencies will be well represented by the response function.

The spectral power is given by multiplying both sides of Eq. (A.3) by their complex

conjugates, and taking the resulting square of the real component of the Fourier

transformation:

Ỹ (ω)Ỹ ∗(ω) = (−iω +
1

τ
)(iω +

1

τ
)F̃ (ω)F̃ ∗(ω), (A.5)

where a ∗ denotes the complex conjugate. The factor in parentheses on the right-hand

side of Eq. (A.5) is a spectral filter that is independent of frequency for ωτ << 1, but

falls off as 1/ω2 for ωτ >> 1.
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Appendix B

AUTOCORRELATION: DETERMINING THE DEGREES
OF FREEDOM

The autocorrelation of a glacier significantly constrains the number of degrees of

freedom (d.o.f) available to qualify the significance of an observed rL. The greater the

time scale, the more a glacier is influenced by its previous states, so fewer statistically

independent observations are obtainable in a given interval of time. This glacier mem-

ory increases the likelihood that, simply by chance, high correlations will be observed

between glaciers. To determine the proper confidence intervals, the correct number

of d.o.f. for a given length of time must be calculated. To do so we must also derive

an equation for ρL.

The autocorrelation of the length is described by finding the covariance between

the lengths from one time step to the next:

〈Lt+1LT 〉 = γ2〈LtLt−1〉+α2〈TtTt−1〉+β2〈PTPt−1〉+γα〈LtTt−1+〈Lt−1Tt〉+γβ〈LTPt−1+Lt−1Pt〉

(B.1)

Multiplying eq. (2.1) by Tt−1 and again neglecting the cross terms between T and

P ,

〈LtTt−1〉 = γ〈Lt−1Tt−1〉+ α〈T 2
t−1〉. (B.2)
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Utilizing eq. (2.8) yet again, to replace 〈Lt−1Tt−1〉, the length at any given time is

related to T at that point at the previous time step:

〈LtTt−1〉 =
γαρTσ

2
T

1− γρT
+ ασ2

T (B.3)

Because T at time t can be related to temperature at time t − 1 via its autocor-

relation ρ2
T at that point, plus a random component, we write

〈Lt−1Tt〉 =
αρ2

Tσ
2
T

1− γρT
(B.4)

Using this same derivation for 〈LtPt−1 + Lt−1PT 〉, we enter eqs. (B.3) and (B.4)

into eq. (B.2). Our equation describing the autocorrelation of the length of the glacier

is written as

ρL =
1

σ2
L(1− γ2)

[
α2ρTσ

2
T

(
1 +

γ2

1− γρT
γ

ρT

γρT
1− γρT

)
+ β2ρPσ

2
P

(
1 +

γ2

1− γρP
γ

ρP

γρP
1− γρP

)]
.

(B.5)

If the autocorrelations in the climate ρT,P are zero, (A5) will simplify dramatically.

This autocorrelation allows us to determine the input into the Bretherton et al.

[1999] formula for determining the correct number of d.o.f. in a time series, given

some level of autocorrelation. The autocorrelation of the glacial system requires a

much longer record in order to determine a significant correlation than its forcings,
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which have a much shorter memory.

Therefore, we increase the numbers of d.o.f. by assuming that the 1950 - 1990

detrended values for temperature and precipitation are representative of the range of

variation over longer periods of time. This is a reasonable assumption as the brevity

of the detrended T and P data yields a conservative estimate of the climate variations.
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Appendix C

STANDARD DEVIATIONS IN LAKE LEVEL

Discretizing eq. (4.8) in to time increments, ∆t, and setting P ′ = 0, gives

h′t = h′t−∆t

(
1− ∆t

τ

)
E ′t. (C.1)

We set E ′t = σEνt, where νt is a normally distributed, stochastic white noise

process. The variance of h′t is the expected value of h′2t , and is given by

〈h′2t 〉 =

(
1− ∆t

τ

)2

〈h′2t−1〉+ 2

(
1− ∆t

τ

)
σE∆t〈h′t−1νt〉+ σ2

E∆t2〈ν2
t 〉. (C.2)

The following relationships hold: 〈νth′t〉 = 0, 〈h′2t 〉 = 〈h′2t−1〉, and 〈ν2
t 〉 = 1. Upon

substitution, and taking the limit of ∆t << τ we obtain:

〈h′2t 〉 =
σ2
E∆t2

2∆t/τ
, (C.3)

Therefore,

σhE = σE

(
∆tτ

2

)
. (C.4)
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Similarly for lake-level variability due to P ′(t) alone:

σhP =

[
1− γ +

γAB
ĀL

]
σP

(
∆tτ

2

)
. (C.5)

Provided that P ′ and E ′ are not correlated the variances can be combined as:

σh =
√
σ2
hE + σ2

hP (C.6)
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Appendix D

ICE STREAM MODEL METHODS

We construct a 1.5-dimension, finite-differences numerical flowline model using

standard shallow-ice equations [Oerlemans, 2001], accounting for deformation and

sliding within a width-varying ice stream. The continuity equation, which ensures

that ice volume is conserved, can be written as a diffusion equation:

∂H

∂t
=
−1

w

∂

∂x

(
Γ
∂h

∂x

)
+ ḃ(x, t), (D.1)

where H(x, t) is the ice thickness, w is the width of the catchment at each distance

down the flowline, h is the surface elevation (H + zb) and ḃ(x, t)is the accumulation

rate profile along the flowline. The diffusivity parameter, Γ is defined by:

Γ(x) = w

[
− 2Ā

n+ 2

(
dh

dx

)2

H5(ρg)3 − C−1/m(ρg)
1/m

(
dh

dx

)(1−m)/m

H
(1 +m)/m

]
, (D.2)

The shallow-ice equations are appropriate to represent deformation of ice in the

interior, which is the purpose here. At the divide (x = 0), the flux is zero. Equi-

librium is attained when the ice-flux equals q(xg) (i.e., Eq. 5.1), at a point that also

satisfies the grounding line condition (Eq. 5.2). For variable zb there may be multiple

equilibria [Schoof, 2007]. The profile of the floating ice shelf is not modeled. Our

work expands upon that of Docquier et al. [2011], Schoof [2007], Pattyn et al. [2012]

by replacing an idealized basal geometry with a realistic bed topography.
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This shallow-ice flowline model cannot represent the ices complete stress and strain

fields, and, as such, it is not as comprehensive as three-dimensional ice-flow models.

However, the spatial heterogeneity of physical factors such as softness and basal slid-

ing, as well as an incomplete understanding of ice dynamics and ice-ocean interactions

make it difficult to gauge the predictive power of more comprehensive models. Nu-

merical modeling of a single flowline within an ice stream is more computationally

tractable and has been effectively used in previous research to build understanding

of the relative importance of the various factors that control marine-based ice sheet

stability.

The flowline model integrates the observed present-day accumulation [Le Brocq

et al., 2010] over an ice streams catchment area, determined from the surface topogra-

phy [Joughin and Bamber, 2005]. One characteristic flowline from the RADARSAT-1

Antarctic Mapping Project data set [Byrd Polar Research Center] is chosen for each

ice-stream catchment area. The flowlines are linearly interpolated at 1km resolution

onto the Bedmap2 [Fretwell et al., 2013] basal and surface topography. Model re-

sults are presented at this resolution, though results were qualitatively unchanged for

coarser grids (up to 20km was checked). The model responses are also similar for

alternative FIS flowline paths. The grounding line positions are modified from the

Bedmap2 estimate to incorporate Rignot et al. [2011] estimations alone. Description

of data errors can be found in the original papers.
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