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Abstract

EFFECTS OF ISOSTASY ON LARGE-SCALE GEOID SIGNAL

By Abraham Hofstetter

Chairperson of the Supervisory Committee: Prof., Clive R. B. Lister

Geophysics Program

The geoid anomaly due to the cooling lithosphere is a second-order
quantity which is sensitive to the definition of isostasy. We use a
combination of Pratt's and Airy's isostatic model which consists of
continental or oceanic lithospheres underlain by asthenosphere. On a
test planet for the method, there are two ocean ridges along 0° and
180° longitudes and two trenches along 90° and 270° longitudes. The
oceanic plates are moving away from the ridge with a velocity of
5cm/yr at the equator. Pressure is assumed constant at the
compensation depth, which is itself an equipotential surface. We use
the method of rings, in which a set of 18 rings about an arbitrary
pole (observation point) cover the whole earth. This method allows the
anomaly source depth to be taken into account. Changes in the gecidal
surface neight both above and below any one ring induce mass changes

due to infilling with seawater and mantle material, respectively.




These mass changes cause further changes in the geoidal heignt over
and below all the other rings, and the interaction can be solved by
linear simultaneous equations. The final geoid 1s a product of seven
second-order effects. The direct dipole effect due to density
differences in the cooling lithosphere (Lister, 1982) produces a
geoidal elevation of up to 11m and -11m over the ridge and the trench,
respectively. The direct mass effect (Vening Meinesz, 1946), due to
the fact that a column on a sphere is pie-shaped, produces a geoidal
elevation of up to 12m and -11m over the ridge and the trench,
respectively. The final geoidal elevation, due to the direct and
indirect effects, is up to 26m and -26m over the ridge and the trench,
respectively, because the dipole and the mass effects tend to cancel
each other at the reference surface.

The earth's surface is divided into 36x18 spherical trapezoids
(10°x10°), and age or topographic height is assigned to each trapezoid
containing oceanic lithosphere or continent, respectively. Over most
of the earth, the direct dipole effect is dominant relative to the

direct mass effect. The lithospheric geoid is poorly correlated with

the observed geoid due to large and deep mantle mass anomalies.
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CHAPTER ONE - INTRODUCTION

'. OVERVIEW OF PLATE TECTONICS

A major breakthrough in understanding of global geophysical and
geological processes of the earth occurred during the 1960's when the
"Plate Tectonics" theory became generally accepted. Plate tectonics is
a model in which the outermost shell of the earth is divided into a
number of thin, rigid plates, each moving as a distinet unit. The
plates are in motion with respect to one another, with relative
velocities of the order of a few tens of millimeters per year. Most
volcanic eruptions, earthquakes, and mountain building events occur
near plate boundaries. Many studies have established this new idea,
and here we mention just a few classic early papers: Benioff (1954),
Dietz (1961), Vine and Matthews (1963), Bullard (1964), Bullard et al.
(1965), Wilson (1965), Sykes (1966), Oliver and Isacks (1967), Sykes
(1967), Heirtzler et al. (1968), LePichon (1968), Oxburgh and Turcotte
(1968), Isacks et al. (1968), Vine (1968), Cox (1969), Dewey and Bird
(1970), and Kaula (1970).

The surface of the earth is composed of ocean basins and

continents. Some parts of the continents are older than 10° years; the

Oldest part is about 3.8x10° years. The continent is gravitationally




stable because it is slightly lighter than the mantle beneath it, with
a thickness of up to about 70 km. At present continental basement
cratons are not being added to, which means that our knowledge of the
creation process is very limited.

The oldest part of the ocean is about 200 my old. Oceanic plates
are comprised of relatively cool rocks with an average elastic
thickness of about 100 km. This thin shell or skin is called the
oceanic lithosphere, and it is underlain by a hotter asthenosphere.
Both the oceanic and the continental lithospheres are considered rigid
because they are cool; as a result the interiors of the plates do not
deform significantly as they move about the surface of the earth. On
the other hand, the asthenosphere is considered to be hot enough to be
able to deform freely; therefore the lithosphere "rides" over the
asthenosphere with little resistance.

Plates are continually created and consumed. The spreading
lithosphere is formed at an oceanic ridge, a divergent plate boundary,
where hot material from underneath ascends to fill the gap created as
two or more plates move apart. As the molten rock cools, it becomes
rigid and adds new area to an existing plate. This whole process is
known as seafloor spreading. Conversely, a complementary process of
plate consumption must exist, since the surface area of the earth
remains essentially constant. This process, called subduction, occurs
at ocean trenches, where two adjacent plates converge, and one plate
bends and descends beneath the other into the interior of the earth.

Pressure increases with depth and the subducting plate goes through

phase transformations at depths similar to those of the surrounding




rocks, whose transition zones are at 420 and 670 km. The phase
transformations cause rearrangement of the minerals in more condensed
form which results in density change. Between the trench and the ridge
there must be a return flow within the mantle, driven by a pressure
difference. It is the effect of this mantle flow on the geoid that we
hoped to detect.

Away from the ridge axis the rocks of the lithosphere are older
and cooler than those close to the ridge. Thermal contraction
increases rock density, which causes the cooling lithosphere to
subside to deeper levels as it moves away from the ridge axis.
Eventually, the lithosphere, gravitationally unstable with respect to
the hot asthenosphere beneath, bends and sinks into the asthenosphere
because of negative buoyancy.

This general description of plate tectonics is now widely accepted
in the scientific community, but there are two main models which
attempt to calculate various parameters in the lithosphere, such as
seafloor topography and thermal conditions. The first is the "simple
plate”" model, in which the temperature is assumed to be fixed at a
depth on the order of 100 km (Langseth et al., 1966; McKenzie, 1967;
Sclater and Francheteau, 1970; Sclater et al., 1975). The new
lithosphere is created at the ridge at the same temperature as the
bottom boundary. The thickness of the lithosphere is constant and only
at some fixed age do the heat flow and depth decrease asymptotically
to some constant value. No obvious mechanism is suggested that would

maintain the constant temperature at the bottom of the lithosphere,

which makes this model somewhat unrealistic. The "simple boundary




layer"™ is an alternative model, in which the upper mantle cools by
conduction and the thickness of the lithosphere increases as the
square root of the age (Parker and Oldenburg, 1973). Davis and Lister
(1974) used a similar model to show that the seafloor topography
increases as the square root of the age. The agreement between this
model and observations of depth versus age 1is remarkably good, up to
an age of 100 my.

Both models predict similar behavior of heat flow and geoid height
for young lithosphere; they differ, however, for ages of more than 100
my, i.e. when cooling has penetrated through all or most of the
lithosphere. At pfesent. the controversial issue is whether the
deviation of seafloor topography from those values predicted by the
boundary layer model, using the square root of age, is caused by the
appearance of a bottom temperature boundary or by reheating within the
lithospheric plate. Parsons and Sclater (1977) extended the empirical
age-depth relation for ages of O my to 80 my (Sclater et al., 1971,
1975) to ages of 0 my to 160 my. They showed that seafloor topography
exponentially approaches a depth of 6400 m, rather than following a
linear relationship between depth and square root of age as was
observed for young (<80 my) lithosphere (Davis and Lister, 1974).
Their conclusion is that the thermal evolution of the lithosphere is
best described by the simple plate concept. For the north Pacific the
curve of depth versus age predicted by the plate model, except for
ages of 110 my to 130 my and greater than 160 my, lies closer to the
observed values than that of the boundary layer model (Renkin and

Sclater, 1986). Subtraction of the predicted plate model depths from




the observed depths creates a small ramp in the residual depths. In
the north Pacific, the ocean floor is generally deeper than predicted
values for the young eastern side of the Pacific and shallower for the
western side of the Pacific, respectively. On the other hand, other
models attempt to explain the flattening of the seafloor by proposing
a reheating of the lithosphere: one claims that heat is supplied by
radicactive decay of elements in the lithosphere (Forsyth, 1977);
others suggest that heat is supplied to the bottom of the lithosphere
from shear heating in the asthenosphere (Schubert et al., 1976), or by
small scale convection (Richter and Parsons, 1975; Parsons and
McKenzie, 1978); still another is that frictional heat is generated,
by shallow return flow in the asthenosphere (Schubert et al., 1978).
Good candidates for causing seafloor flattening by internal reheating
are the volcanic hot spots (Crough, 1978; Heestand and Crough, 1981),
which cause anomalously shallow swells, such as in the Hawaiian
islands, Bermuda, and Cape Verde.

Thermally-driven convection in the mantle is considered to be the
prime cause of plate motions (Langseth et al., 1966; Vine, 1966;
Isacks et al., 1968; McKenzie, 1969; Dewey and Bird, 1970; Forsyth,
1977; and many others). However, the geometry and mechanism of the
thermal convection is controversial. One can define two main schools
of thought. Whole mantle convection has been advocated by Davies
(1977, 1984), Elsasser et al. (1979), and Kenyon and Turcotte (1983)
who argue that the rise of viscosity with depth is too small to
confine convection to shallow depths, and that the entire mantle is

roughly uniform since the mean atomic weight is almost constant. In




addition, recent observations of very deep earthquakes of at least
900-1000 km (only at Kuril trench; Jordan, 1977; Creager and Jordan,
1984) suggest that the subducting plate penetrates the 670 km
discontinuity of seismic velocity that is generally considered to
indicate the boundary between the upper and lower mantle.

The second school of thought Sseparates the mantle into two
convection systems, the upper mantle cell and the lower mantle cell
(Richter, 1973, 1978; Richter and Parsons, 1975; Busse, 1981, 1983;
Peltier, 1985). In this model the plates are driven by upper mantle
convection, and the 670 km discontinuity delineates a barrier to
deeper penetration by subducting plates; therefore it is a constraint
on the scale of mantle convection. Common supports of this model are:
chemical stratification and geochemical budget models, the existence
of dominant mass heterogeneities in the mantle, which have been
attributed to the transition zone from 420 to 670 km depth, and the
lack of seismicity below 670 km (Anderson, 1979; Jacobsen and
Wasserburg, 1980; Richter and McKenzie, 1981; Masters et al., 1982;
Woodhouse and Dziewonski, 1984; Jarvis and Peltier, 1986).

So far, we have given a general description of plate tectonics. At
present, we cannot directly measure different parameters within the
lithosphere or the asthenosphere, such as temperature and density, and
we have to use indirect methods in order to gain better understanding.
One important approach is the interpretation of gravity and geoid
data, as for years many studies attempted to find a correlation

between observed geoid and mantle flow, or with seafloor and

continental topography. In the next sections, we focus our attention




on the geoid, beginning with a short historical background, and then

building a model that describes the geoid over the earth.

2. GRAVITY, GEOID AND THE SHAPE OF THE EARTH

It is a well known fact that a body released close to the earth's
surface falls vertically down with an increasing velocity. In the
early seventeenth century in a pioneering study, Galileo showed that
this rate of change, or the acceleration of gravity, is the same for
all bodies at a given point on earth. Newton later formulated the
phenomenon of mutual attraction of all masses, using deductions from
Kepler's laws on the planets'’ motions; gravitational acceleration can
be viewed as a special case of the universal attraction.

In the case of the earth, the force of attraction is dependent on
the earth's mass, the mass of the body, and the distance between their
centers. If the earth were a uniform, ideal sphere, a homogeneous and
non-rotating planet, then the gravitational acceleration would be the
Same everywhere at a given distance. In fact, the opposite is true:
the acceleration of gravity varies from one place to another, which
indicates the presence of anomalous conditions within the earth, It is
the aim of geophysics to measure and interpret these variations.
Analysis of these gravity anomalies, using physical methods, is a

powerful tool for gaining a better insight into the earth's interior.




We define the potential field, at a given point, as the work
needed to bring a unit mass from infinity to that point. It is often
convenient to describe the gravitational field using the potential, as
it is a scalar quantity, in contrast to the attraction force, which is
a vector. Thus, the gravitational field can be easily described by
surfaces over which the potential is constant, known as equipotential
surfaces, and the force vector is everywhere normal to these surfaces.
The actual (observed) sea level is an approximate equipotential
surface, known as the geoid, on which the gravitational potential is
everywhere constant, since the water surface follows an equipotential,
except for minor oceanographic effects (e.g. tides, currents, and
water masses of varying density). The geoid is a closed and complete
surface which corresponds closely to mean sea level over the oceans,
and with extension of the same equipotential beneath the continents.

If we allow only radial variations of density in the earth and
remove all local irregularities, the residuum is a spheroid, a
mathematical figure that represents an ideal equipotential surface., In
such a model of the planet, the sea-level varies smoothly from the
poles to the equator. Lateral density nonhomogeneities make the real
situation much more complicated, because each mass excess (or
deficiency) causes warping of the equipotential surface, or geoid,
from the spheroid shape (see Figure 1).

Stokes (1849) showed that if there is no mass external to the
geoid and g is everywhere known on the geoid, then for a single mass

anomaly in a uniform field the warping of the geoid (AB in Figure 1)







Figure 1. Geoid undulations caused by a mass anomaly.
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is given by gYy=AU, where Y is the geoid anomaly, g is the mean value

of gravity between A and B, and AU is the additional potential. Stokes

(1849) also obtained a formula for the geoid when there is an extended
region of anomalous mass.

Gravity measurements everywhere are reduced to the geoid and not
to the spheroid, so that we need a correction to transfer to the
latter. This correction is known as the "indirect effect" (Lambert,
1930; Lambert and Darling, 1936; Chapman and Bodine, 1979). As this is
a distortion of the spheroid, a more appropriate name for the gravity

observations is the "free geoid anomaly" (Lister, 1982).

3. ISOSTASY

Stability and buoyancy of mountains were discussed as early as the
seventeenth century, when it was suggested that mountains "float" or
stand up because of the presence of lighter material below. Major
conceptual breakthroughs were achieved by Pratt (1855), who calculated
the vertical deflection of gravitational acceleration, g, in the
vicinity of the Himalayas, and by Airy (1855), who interpreted these
computations as a proof of compensation of mountain masses. Airy
postulated the existence of a root beneath an elevated area, so the
total mass per unit area down to a depth defined as the "compensation"
surface is everywhere the same (see Figure 2). Airy "divided" the

mountain into two uniform blocks which were, relative to the ambient
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Figure 2. Airy's (A) and Pratt's (B) isostatic model.
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material, denser above and less dense below, Airy also proposed the
dipole effect, that close to mountains or elevated areas one gets a
positive gravitational attraction, and that below the horizon of the
dipole equator there is a diminution of attraction, or negative
attraction (this concept was later rigorously developed by Lister in
1982). The difference in the attraction is proportional to the
difference of the inverse cube of the distance of the observation
point from the center of the two masses. Pratt (1859a, b) agreed with
the idea of compensation and that the mass in each column is the same,
but disagreed with the mechanism, proposing a different model in which
the compensation level occurs at a uniform depth, and the density
varies inversely as the topography height (see Figure 2).

It was Dutton (1889) who introduced the term "isostasy" for the
first time to describe the compensation condition and a state of
hydrostatic stress at some depth in the earth. Airy's and Pratt's
models were tested later in order to find the best parameters that
minimize the gravity anomaly, such as the density and compensation
depth (Hayford and Bowie, 1912; Lambert, 1930; Heiskanen, 1938;
Helskanen and Vening Meinesz, 1958).

It is convenient to think of continents as blocks floating on a
"sea of reference rock". As the lithosphere is unable to resist a
large vertical shear stress (i.e., to support a substantial
accumulation of mass), these blocks may rise or sink in the
asthenosphere. The principle of isostasy states that there is a
surface in the asthenosphere, that is called the compensation depth

surface, on which any vertical column of mass between the surface and
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the compensation depth produces the same pressure. The earth is
asymmetric and nonhomogeneous, and in order to maintain isostatic
equilibrium, on geological times scale, some blocks rise and some

sink. This causes a distortion of the earth's surface,

4. RECENT STUDIES OF THE GEOID

A variety of different models of geoid elevation over the earth
have been proposed (Haxby and Turcotte, 1978; Sandwell and Schubert,
1980; Chase and McNutt, 1982; Dahlen, 1982; Lister, 1982; Hager, 1983;
Haxby, 1983; Hager, 1984; Richards and Hager, 1984; Hager et al.,
1985). The geoid anomaly is a second-order quantity caused by
variations from the ideal (i.e., equilibrium) state of the earth. One
large scale geoid signal results from the cooling of the oceanic
lithosphere because of density contrasts within it. Ockendon and
Turcotte (1977) and Haxby and Turcotte (1978) showed that the geoid
anomaly, Y, is direétly related to the dipole moment of the density-

depth distribution in isostatically compensated regions

2nG |

Y = = J zp dz
g

which {s sometimes called the HOT equation, where G is the
gravitational constant, g is the acceleration of gravity, p is the

density change, and z is the depth. Haxby and Turcotte (1978) showed
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that the geoid anomaly, based on the boundary layer model (Davis and
Lister, 197T4), is characterized by a linear age-geoid height
relationship for the North Atlantic lithosphere o2f =0.16 m/my.
Sandwell and Schubert (1980) showed that for ages less than 80 my the
geoid height decreases almost linearily with age of seafloor, for most
of the ocean basins; again in agreement with the boundary layer model.
The fact that the seafloor topography flattens for ages greater than
80 my indicates a reduction in the rate of boundary layer thickening.
A major step towards understanding the definition of isostasy was
achieved by Dahlen (1982), who pointed out that the geoid anomaly is
extremely sensitive to the definition of isostasy that is applied. If
we adopt the definition that the pressure is everywhere the same at
the compensation level (Heiskanen and Vening Meinesz, p. 133, 1958)

then the geoid anomaly is Y-ZYHOT. If we use the assumption that mass

in every conic column is the same, then the geoid anomaly is (Turcotte

and McAdoo, 1979)

n+ 1/2 HOT

where n is the spherical harmonic degree. The geoid anomaly, Y, is

smaller than YHOT for n=2 by 20% and gets asymptotically closer for

larger values of n. Dahlen (1982) proposed another approach to utilize
an interpretation of the overall pattern of intraplate earthquake

mechanisms: that the deviatoric stress is everywhere minimum (Dahlen,
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1981). In this case, the geoid anomaly is about 60% larger than YHOT

for n=2 and decreases asymptotically for larger values of n. The two
main disadvantages of Dahlen's approach are that topography on the
outer surface must be represented by a Dirac delta function, which
rules out the self-deformation effect we will consider, and that the
acceleration of gravity must be taken constant everywhere. Both of
these effects will be discussed in detail in the next chapter.
Another possible cause of geoid anomalies is the convective flow
in the mantle resulting from thermal density contrasts. Numerous
models attempting to calculate the effect have been proposed, and they
are divided between two main categories: whole-mantle convection and
layered mantle convection (i.e. Parsons and Daly, 1983; Hager, 1984;
Ricard et al., 1984; Richards and Hager, 1984; Jarvis and Peltier,
1986). Pekeris (1935) showed that surface deformation and the
gravitational effect of buried density differences causing the mantle
flow are opposite in sign. McKenzie et al. (1974) showed that for a
convecting fluid with a uniform viscosity, the net gravity anomaly
will be positive over an upwelling region, in splite of the higher
temperature and lower density there. Correlation of the gravity
anomaly and the surface deformation is sensitive to the viscosity
Structure and depth of convecting layer (McKenzie, 1977). Surface
deformation and gravity anomalies may be negative over a rising region
if the viscosity is temperature dependent. McKenzie (1977) concluded
that a model of static compensation cannot explain the correlation

between geoid anomaly and bathymetry; instead one needs some form of
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dynamical compensation to Support the geoid anomaly and bathymetry.
Dziewonski et al. (1977) observed a negative correlation between the
long wavelength gravity anomalies observed at the surface and those
computed from seismic velocity anomalies at depths greater than 1100
km.

There is common agreement that boundary deformations, especially
the upper boundary (earth's surface), have appreciable influence upon
the observed geoid or gravity field caused by density contrasts at
depth (Runcorn, 1964, 1967; Morgan, 1965a, b; McKenzie, 1977; Parsons
and Daly, 1983; Hager, 1984; Ricard et al., 1984; Richards and Hager,
1984; Jarvis and Peltier, 1986). Hager (1984), Richards and Hager
(1984), and Hager et al. (1985) showed that boundary deformations due
to density contrasts reach equilibrium on the time scale of 10% years
or less, like the time scale of postglacial rebound (Haskell, 1935;
Heiskanen and Vening Meinesz, 1958; Cathles, 1971). As a significant
change in the mantle flow pattern occurs in a much longer time scale
(107 years or more), the former process can be considered as occurring
instantaneously. In addition, Hager (1984) and Richards and Hager
(1984) showed that variations of viscosity with depth or temperature
cause significant magnitude and sign changes of the geoid anomalies.
For a given mass density, the geoid anomalies observed due to a whole-
mantle convective system are larger than those associated with the
layered model.

Recently three-dimensional models of the mantle density using P
and surface wave tomography were obtained (Masters et al., 1982;

Nakanishi and Anderson, 1983, 1984; Dziewonski, 1984; Nataf et al.,
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1984; Woodhouse and Dziewonski, 1984). Attempting to correlate mantle
mass heterogeneity with the geoid anomaly has proven to be
problematic., Woodhouse and Dziewonski (1984) found a 0.7 correlation
between upper mantle structures and the geoid for spherical harmonic
degrees 2 and 3. However, including the crustal correction (1.e.,
correction due to the influence of the density distribution in the
crust) results in a smaller correlation of about O.4. Similar
correlations of about 0.4 are observed for degrees 4 to 7, but with a
negative sign. Another critical point, also found by Masters et al.
(1982), is that the calculated geoid is about five times larger than
is observed.

Continents, oceanic ridges and ocean basins are characterized by
both geoid highs and lows. Crough (1978), Chase (1979), and Crough and
Jurdy (1980) showed that there is a remarkable positive correlation
between residual geoid highs and hot spots. Over hotspots we observe
broad geoid highs. However, no obvious correlation is seen between
continental or seafloor topography and the observed geoid or the
residual geoid (i.e., after removing the effect of the cooling oceanic
lithosphere and the continents).

So far we have described the recent studies of the geoid. Various
models attempt to calculate the lithospheric effect on the geoid and
the effect of flow in the mantle. In addition, correlation of the
geoid with surface topography or with deep structures has usually
appeared doubtful. No model has provided sufficient and conclusive

explanation and results that fully describe the geoid over the earth.
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A better understanding of the observed geold anomaly can be
achieved only if we carefully take inﬁo consideration all the effects
that influence the geoid, something that has never been fully
executed. The first step is to focus our attention on the calculation
of the lithospheric effect on the geoid. This is done in the next
sections, using a complete model of the oceanic and continental
lithosphere, following Davis and Lister (1974) and Lister (1982). Next
is the interpretation of the residual geoid, after the removal of the
lithospheric effect. Here we seek to provide an estimate of the

importance of mantle flow.




CHAPTER TWO - DEFINITION OF ISOSTASY

Our first step is to give a qualitative definition of isostasy.
This provides physical insight into the problem, and also serves as an

introduction to the mathematical development that follows.

1. FLAT EARTH

The Heiskanen definition of isostasy (Heiskanen and Vening
Meinesz, 1958) states that if the earth were flat there would be
columns of variable height which produce a constant pressure at the
reference depth (see Figure 3). Assuming that the acceleration, g, due
to gravity is constant everywhere, we could calculate the height of
the cooling lithosphere for any given density (Davis and Lister, 1974;

Parsons and Sclater, 1977).

Haxby and Turcotte (1978) and Lister (1982) have shown that the

geoid height is dependent on the first moment of the mass. As a simple




Figure 3.

Isostasy on a flat earth.
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example, the geoid height, Y, over an infinite dipole sheet is

. 27Gm

where m is the dipole density and G is the gravitational constant.

Both the mass redistribution and the thickness of the cooling

lithosphere are proportional to /E, where t is the age of the cooling

lithosphere. This means that the geoid height should be proportional

to the age.
2. SPHERICAL EARTH

Since the earth's surface is in reality curved, the situation is
more complicated than that just described. For example, a difficulty
might arise when one calculates the geoid anomaly due to a sheet of
mass dipole (Lister, 1982), as the contribution to the geoid is
positive above the equator of the dipole and negative below the
equator. In other words, at long wavelengths sphericity is important
and the far-field effects, resulting from sphericity and distant
density contrasts, bias measurements of geoid slopes.,

To obtain the geoid anomaly over a sphere one must calculate all
the second-order effects (Dahlen, 1982). Vening Meinesz (1946) pointed
out two second-order effects. The first effect is that columns on a

sphere are pie-shaped rather than straight-sided. This means that the

volume for the density anomaly associated with a positive (upward)
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mass moment (see Figure 4) is greater. The second effect is that the
acceleration of gravity increases slightly with, depth, producing a
similar bias toward mass or volume in the upper layers. Positive
topography, or a positive mass dipole, is therefore associated with
extra mass in the region, even when the pressure on the reference
surface remains constant.

These effects initiate a process which iS called self-deformation
(Hager, 1983; Haxby, 1983; Ricard et al., 1984). To get a better
picture of this process, let us assume that the earth is a perfect
sphere in isostatic equilibrium, covered by ocean and underlain by the
lithosphere (thickness about 100 km) and the asthenosphere. Let us now
introduce a mass dipole to this model,(i.e. an oceanic ridge). The
result is a depression of the reference surface and an uplift of the
geoid height. Because of the pressure gradient, seawater will flow
into the uplift of the geoid along the equipotential surface, to
maintain equilibrium. The gravitational potential of the deformed
earth is a sum of all the contributions from each point on the earth,
but unlike the "old" gravitational potential the "new" potential is
not symmetric and equal everywhere. Potential highs indicate excess
mass, while lows signal a mass deficiency. The gravitational potential
from the added mass will cause a further deformation of the earth;
this deformation, in turn, increases the gravitational potential,
which leads to an increased deformation of the earth. This process
continues until the deformed surface of the earth lies along the

equipotential surface. The net result of this process is a

redistribution of the earth's mass and a distortion of its shape.
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Figure 4, Isostasy on a spherical earth.
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We can point out seven effects that cause the deformation of sea
level (see Figure 5). The direct dipole initiates the deformation,
while the other effects provide positive or negative contributions,
depending on their nature. Pie-column masses tend to add to the total
effect as was noted above. The pie-column reference surface effect,
pie-column reference self-effect, and ocean surface mass effect are
by-products of the first deformation. The increase in the mass will
add a positive gravitational potential or an uplift of the geoid. The
dipole reference surface effect and the dipole reference surface self-
effect produce negative contributions. The surface of constant
pressure in fluid equilibrium follows the local equipotential, or
geoid surface. This is initiated by the dipole effect, which presses
the reference surface downwards., The dipole self-effect produces
another negative contribution. The pie-column mass effect, the pie-
column mass self-effect, and ocean mass effect tend to 1ift both the
reference surface and the outer geoid upwards.,

There are three basic requirements which this process must
satisfy. First, the process should be stable; otherwise, increasing
amounts of mass would constantly be added to some region of the earth
with a corresponding mass subtraction elsewhere, eventually leading to
a significant deformation of the spherical earth-which has not been
observed. The second requirement is that the process should rapidly
converge; slow convergence would mean that any initial deformation

will add a large amount of mass at the second step, relative to the

initial deformation leading to planetary fission. In reality, this
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Figure 5. The self-deformation process. Thick solid lines - initia}

surfaces and dashed lines - final surfaces.
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effect is assumed to be a modest correction to the direct geoid

anomaly, and therefore fast convergence is expected. The mathematical

method, however, goes directly to the equilibrium state by matrix

inversion, Finally, we require conservation of mass; only a

redistribution of mass is permitted.




CHAPTER THREE - THE EQUATION OF GEOID ANOMALY

We now turn to a rigorous definition of the problem. We assume
that the earth is a perfect sphere, and using the conventional
spherical coordinates R, 0, and ¢ to denote the location of any point

Q=Q(x,y,z) on the earth

X =R sin© « cos ¢

Yy = Rsin O + sin ¢

6
where R is the radius of the earth (6.371x10 m), 6 is a latitudinal

angle measured from one pole (0s0sw), and ¢ is the longitude (0s¢s2xw).

The distance between points i1 and j is given by rij

2 2 2.1/2
rij = [(xi- xJ) + (yi- yJ) + (zi- zj) ]

. 2 . . 2
= R[(sin ei-cos oi- sin ej-cos ¢j) + (sin ei sin ¢, sin eJ sin ¢j)

)2]1/2

+ {(cos 0,=- cos ©

i J




Ir ¢1- 0 then

i, ‘ 1/2
r.. =v2R[1 - sin 0, .sin 9. . - . i .
1] L i GJ cos @J cos @, *cos GJ]

a =1 - cos ei-cos ej

d = sin ei-sin ej

X = a - decos 9,
J

These definitions yield a new form of r

N

rij = /2XR . (1)

Equation 1 represents the distance between two points on a
Sphere. We next calculate the distance between a point and a surface
element. The spherical earth is divided into L rings, with a latitude
width of 180/L degrees per ring, starting from the pole. In general,
the rings do not follow the earth's coordinates; this means that the
pole of our ring system is usually not the north pole or the south

pole, but the observation point of interest.
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If we add some mass to the J=th ring, the contribution of the j=th
ring to the gravitational potential or the geoid height in any other

ring i may be calculated. In general, the gravitational potential Pij

is written

Each value of the matrix PiJ is the total contribution that a

point in the middle of ring i will "feel" due to ring j, G is the

gravitational constant ((6.673:0.001)x10-11Nm2/kgz), h is the height
of the material in ring j, and p is the density of the seawater (1030
kg/m?®) or mantle rock (3300 kg/m?®). In order to simplify the
calculation of the integral, we assume that the height of the mass, h,

is very small compared to rij; one can integrate over the j-th ring to

obtain the inter-ring coefficient

[

P = Gph

S
i3

where sJ is the area of the j-th ring. A surface element, dsj, in

Spherical coordinates is
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2
ds. = R™ sin 0. d¢. do.
J J J J

where ej is limited by the ring boundaries, ejsejseg. Thus, each

surface element in the j-th ring contributes to the gravitational

potential observed in the i-th ring. Using Equation 1, we therefore

obtain

2 sin 9. do a0,

J

After some algebra, the gravitational potential matrix, Pij' is found

to be

sin o, d¢.de
J__J 4

VX

PiJ = Y2GRhp (2)

@ ——0
O ~———=3
.

[ S

The calculated geoid height matrix, rij’ that is observed in ring i

due to 1 meter of seawater in ring J is
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where g i3 the gravitational acceleration (9.8 m/sec?) and the geoid

height is in meters.




CHAPTER FOUR - ESTIMATION OF THE GEOID HEIGHT

The integral in Equations 2 or 3 above cannot be analytically

solved for all cases; we must therefore approximate it using numerical

means. The overall problem was divided into the following cases:

a) Influence of a

b)
c)
d)
e)

£)

a

a

a

a

a

cap on
cap on
ring j
cap on
ring j

ring j

itself.

the other cap.

on a cap yJ=1
aring j RER
on a ring i sJ=»1

on itself yJ=1

and ja=L.
and j=L.
and j,i=1,L.

and j=L.

In these calculations, we assume that h is the height of the

Seawater, R is the radius of earth, G is the gravitational constant, p

is normalized to the density of seawater, and g is the acceleration of

gravity. First, we discuss case (a), which is the influence of a cap

on itself (see Figure 6). We assume a spherical cap of angle ec. The

distance between the pole and incremental ring 4o is

2R sin (e/2) ,
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Figure 6. The influence of a cap on itself.
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and the mass of this ring is

ZHRth sin © de .

Thus, the contribution to the potential is

dP1,1= dpL,L = 2nGRph cos (8/2) de

The geoid anomalies at the poles, FL L or r‘1 10 are
1] ’

%

_ _2mGRph [ YwGRph

] cos (6/2) do =
g g

sin (60/2)
Case (b), which is the influence of a cap on the other cap (see
Figure 7), is similar to case (a). We define ©=n~9,, and the range of

0 is w-GCSSSx. Thus, the geoid height observed at the pole due to the

other cap is

0
M[]-cos(

g

n
J cos (0/2) do =
-0

c

Case (c), which is the influence of a ring on a cap, is similar to

cases (a) and (b) (see Figure 8). The range of @ is now 6356593, for a
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Figure 7. The influence of a cap on the other cap.
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Figure 8. The influence of a ring on a cap.
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given ring j. The geoid height observed at the pole due to ring j is

e"

J
2tGRph |
r1'J PL.L-3+1 J cos (0/2) deo

g
el
J

o o'
[sin (—) - sin (—)7 ,j=2,3...L-1 .
g 2 2

- 4xGRph

This exhausts the cases of circular symmetry that can be solved
analytically. We now use Romberg's method, described in Appendix A, to
evaluate Equation 2. Cases (d) and (e) do not involve any singular
points. We calculate the geoid height in the middle of a ring i, due

to the mass in a cap or another ring j. The range of 0 is osesec, or

n-ecSGSw for the caps, and @356563 for ring j. The geoid anomaly for

these cases is expressed in Equation 3.

Case (f), which is the influence of a ring on itself (excluding
the caps), involves a singular point. This singularity occurs when the
distance between two points inside the ring becomes zero, and the
integrand in Equation 3 becomes infinite. In order to avoid this
problem, we define a small square of 0.1°x0.1° around the singular
point; then we can define four separate zones (see Figure 9). The
integration was done for each of the zones A, B and C to obtain their
contribution to the geoid height. In order to simplify the calculation
of the contribution of the square (zone D), a circle with the same

area was used. The contribution to the geoid height is 2ngbph/g, where
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Figure 9. The influence of a ring on itself,
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b is the radius of the circle. The total geoid height in this case is

the sum of all the four contributions.




CHAPTER FIVE - EXTRACTION OF THE GEOID HEIGHT

Models are considered for 18, 36 and 90 latitudinal rings; the
rings are 10, 5 and 2 degrees wide. The relative error of each
integration, which gives an estimate of accuracy of the integration,
1s obtained through division of the error of integration by the value

of the integral. For these models, the largest relative errors of the

-y -y -
integration are 2x10 '%, 9x10 % and 2x10 3%, respectively. Normally,

the errors are at least an order of magnitude smaller than those just

mentioned.

Any deformation of the spherical earth implies the presence of
regions of excess mass (geoid highs), and others with mass deficiency
(geoid lows). The net change of mass must be zero. The corrected

geoid, rji’ observed in ring j due to 1 meter of seawater in ring i,

after the redistribution of earth's mass, 1is

where ST is the area of the earth and Si is the area of the i-th ring.
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Figure 10. The cap of 18 ring model is covered with 1 meter of

seawater. Spheres A (dashed line) and B (solid line) are

the earth before and after the perturbation, respectively.
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Figure 11. The final shape of the earth for the three models of 18, 36

and 90 latitudinal rings, due to the mass of 1 meter of

seawater over the pole (solid heavy line). Spheres A and B
are as in the previous figure. 18 ring model - solid line,
36 ring model - long dashed line and 90 ring model - short

dashed line,
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To illustrate the method, a cap equal in size to one ring of the
coarsest model was covered by a mass sheet equivalent to 1 meter of
seawater (see Figure 10). The redistribution of the mass, due to the
addition of seawater in any given ring and subtraction of the same
amount from other regions, should not change the total mass of the

earth (conservation of mass). This constraint is expressed by the

equation

So far we have calculated the geoid height matrix T'', the geoid
height observed in ring i due to 1 meter of seawater in ring j. To

avoid any confusion, we will refer to the matrix ' in subsequent

) 33 L . . .
sections as rji' This initial perturbation of mass over a given ring

will cause subsequent perturbations in all other rings as well (see
Figure 11). As explained above, the earth goes through a self-
deformation process until equipotentials and lines of constant
pressure coincide. Let Y be the final geoid height matrix that is

obtained by using the equation

(Y + Y )T =

this yields




Y = Y,rt(1 - )77, (5)

where Y, is the initial topography on the geoid. The deformation is
not large for such a small area of initial perturbation, and the low

density of seawater; nevertheless, the correction to geoid height at

the pole is significant,

Another error inherent in these computations is due to the number
of rings in the model; it is clear that the number of rings affects
the accuracy of the results. We might expect that the error due to the
use of coarse models would converge to some value as the number of
rings increases. The initial perturbation at the cap of 10° is over
one ring for an 18-ring model, but over two rings for the 36-ring
model and over five for the 90-ring model. Using the 36-ring model
instead of the 18-ring model changes the results by at most 2.2%; the
90-ring model results in a 3.7% change. It means that the coarse 18-
ring model can serve as a reasonable approximation to the earth. If we
follow the above procedure and using each time another ring, instead
of the cap, we find that the maximum final geoid anomalies are 0.06m,
0.03m, and 0.02m, which are self-effect results of 1 meter of seawater
observed at the center of rings 3, 5 and 10 for 18, 36 and 90-ring
models, respectively.

Figure 12 illustrates the case of increasing cap size. The
abscissa gives the size of the initial perturbation of 1 meter of
Seawater, a spherical cap centered on the point of observation. Since

the added water must come from the rest of the earth, the initial
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perturbation vector relative to the spherical earth is of the form

~

YO = (1‘0.,1‘(1,...,1“&,'(!,‘(1, ...,'(!)

where Si is the area of the i-th ring, r is the number of rings in
the perturbed cap, and ST is the area of the earth.

Increasing the cap size increases the geoid anomaly until the cap
angle reaches 60°; significantly, this is the size of the Pacific
Ocean. Figure 12 shows the excellent agreement between the 18, 36 and

90-ring models.




CHAPTER SIX - DESCRIPTION OF THE TEST MODEL

We assume a simple model of a test planet, that is very similar to

the real earth, which is based on the boundary layer model (Davis &

Lister, 1974). The planet is composed of an ocean which is underilain
by the lithosphere and asthenosphere (see Figure 13). There are no
continents in this model. The 1lithosphere is created at a vertical
plane boundary that is fixed at initial temperature T,. As the
lithosphere moves away from the ridge, it cools to unlimited depth.
The upper boundary of the lithosphere is kept at temperature T=0,
Davis and Lister (1974) showed that the temperature, T, is (using
Carslaw & Jaeger, 1959, p. 59, and ignoring lateral heat flow near the

origin)

T =T, erf(—2

2Vt

where z i3 depth, « is diffusivity, and t is age. Davis and Lister

(1974) showed that the seafloor topography, h, is a linear function of
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Figure 13. A model of the cooling lithosphere using the boundary layer

model {(Davis & Lister, 1974).
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square root of age

where a is thermal expansion coefficient, p, is initial density, and
CH is seawater density. Away from the ridge, the surface of the

cooling lithosphere is colder and denser than the lower part of the
lithosphere, therefore the density difference causes a mass dipole.
This construction of dipole sheets is illustrated in Figure 14, In
order to estimate the geoid effect by means of mass dipoles we need to
convert the density differences in the cooling lithosphere. Suppose
there is a region of dipole layers with the same dipole density, m
(see Figure 14A). Inside this region the positive and the negative
parts of the dipole layers cancel each other except at the boundaries,
which remain positive or negative., The dipole density, m, is constant
through this region (see Figure 14B) and the density difference, Ap,
has 2 discontinuities at the boundaries (see Figure 14C). This means

that we can express the density change, Ap, using the dipole density,

m, as

where z is depth. In general, we are not interested in the absolute
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Figure 14, (A) A region of dipole layers. (B) The dipole density, m,
as a function of depth, z, for the distribution of dipole

layers in (A). (C) The density change, Ap, as a function of

depth, z.
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value of the density or the dipole, but in their change relative to
some reference which we take to be the oceanic ridge. The density

change, Ap, is a function of the temperature, T

Ap = poa(T,= T) = p,aT,[1 - erf (———E——

2/xt

)] = p,aT, erfe (p) (6)

where p=z/2v/kt.

The dipole density, m, is

Ap dz = 2/EEuT,p° j erfc(p) dp = 2/;Eap,T, ierfe(p) (7
P

(Lister, 1982) where z is the depth of the bottom of the ocean, and
ierfc(p) is the integral error function (Carslaw & Jaeger, 1959, p.
483).

In addition, seawater is displacing the shrinking lithosphere.
This causes another set of dipoles because of the density change
between the seawater and the lithosphere (see Figure 15). The left
side shows the reference density, Po» Which is the density of the hot
material (see Figure 15A). The model is illustrated in Figure 15B. In
the upper part of the model, where seawater is displacing the

shrinking lithosphere, the density difference is Ap-po-pw, which is
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independent of the temperature, T. The dipole density, m, is a

function of the depth only

h
m= { Ap dz = h (p,- pw) (8)
0

where h is the seafloor topography (see Figure 15C).

We can simplify the calculations significantly, because the

thermal dipole everywhere is proportional to ierfc[z/2v/xt], by

defining a new dimensionless depth, y (see Figure 15C)

(z - h)

2/xt

The dipole density, m, relative to the ridge crest is, for the upper

part where seawater displaced the shrinking lithosphere,

h 0
m = fbp dz = 2/xt { Ap dy = ~=h (p,- pw) , P,Sys0,
0 D,

where p,--h/ZJEE. For the lower part, we find that the thermal dipole,

m, relative to the ridge crest, is

m = -2/ktap,T, ierfe(y) 0sys(d-h)/2vkt,
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where d is the reference surface depth. Figure 15D illustrates the
density difference as a function of a dimensionless depth, y. In the

upper part of the model the density difference is AD’Do'Ow» which is

independent of the temperature, T. The lower part of the model is
defined in Equation 6.

As a simple model, assume there are two ridges along 0° longitude
and along 180° longitude. There are two trenches along 90° longitude
and along 270° longitude (see Figure 16). The four plates are moving
away from the ridge, each with a velocity of 0.05 m/yr at the equator.
The motion of the plates is bounded between latitudes 87°N and 87°S;
in other words, there is no motion close to the north and south poles,
SO that their contributions to the dipole density is assumed to be
zero. The longitude, ¢, of any point is expressed as a function of the
cooling lithosphere age, t, ¢=wt, where w is the angular velocity; the
age along a given longitude is the same. In this model we use «, a,

> °C-1, 3300 kg/m?, and

Pos, and T, which are 65x10-8m’/sec, 3.1x10

1400°C, respectively (Lister, 1982).
We use the ring method to calculate the dipole effect. For each
observation point a set of 18 rings is defined and the observed geoid

anomaly, Yij’ 18 defined as the value at the observation point, i, due

to the dipole density at ring j (see Figure 17). Assuming symmetry, we
need to calculate the dipole effect only at observation points that
are on "one side" of the planet, because we receive the same results

for the other side. The coordinates of the observation points are
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Figure 16. Geometry of the test model. The ridges are along 0° and

180° longitudes and the trenches are along 90° and 270°

longitudes. The age along a given longitude is the same,

The dots inside each spherical triangle or trapezoid are

the observation points.
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Figure 17. A set of 18 rings which covers the whole test planet is

defined for each observation point, O.




expressed by the equations

? k=1’2,3....18,

1 n-1)2|3000-18,

where 0 is a latitudinal angle measured from the north pole (0g0sw),
and ¢ 1s the longitude (0S¢sw). Each ring is divided into 36 small
spherical triangles or trapezoids (see Figure 18). The dipole density
value at each centroid of a given spherical triangle or trapezoid
represents the dipole density for the whole triangle or trapezoid.
Figure 19 illustrates a cross section of the test planet. For each
ring we define 36 columns, with a spherical triangle or a spherical
trapezoid base, starting at a depth of 0 km continuing to a depth of
200 km. Each column is divided into 20 bins with a thickness of 10 km
each, except for the first and the second bins; the thickness of the
first bin is h (km), and the thickness of the second is 10-h (km).
Figure 20 illustrates plots of the dipole density, m, with the bins.
In a similar way we can plot the density difference, Ap, with the

bins.

In the geoid calculation we use the average dipole density, i, for
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Figure 18. Each ring is divided into 36 spherical triangles or

trapezoids. O - Observation Point,
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Figure 19, A cross section of the planet that illustrates the ring

method and the division into bins. O - Observation Point, C

- Center of the planet.
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Figure 20. Plots of the bins with the dipole density, m, as function

of depth, z, for a given age.
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a given bin defined (using Equation 7) as

m = - f m(z)dz = —EKEEEEQZL— i2erfe(p) (9)
X

X

where x is the thickness of the bin, and i2erfc(p) is defined as in

Carslaw and Jaeger (1959, p. 484). The dipole density of a given ring

is the averaged sum of all the dipole density values of the columns in

that ring. Using Equation 6 similarly with Equation 9, we find that

the average density change, AB, for a given bin is

Ap = 1 f Ap(z) dz = —opoT, ierfe(p)

X X

where ierfc(p) is the integral error function (Carslaw and Jaeger,

1959, p.U483). In order to calculate the density change or the dipole

density we need to know the age at the centroid; the method of the age

calculation is described in Appendix B.




CHAPTER SEVEN - THE SOURCES OF THE SELF-DEFORMATION EFFECT

Having described the self-deformation precess, our next goal is to
focus on the causes of this process that creates a large scale geoid
anomaly over the test planet. So far, we have assumed that the sources

of the geoid anomaly were known. We can identify three effects that

create the initial signal over the geoid: the dipole effect (Lister,
1982), the pie-shaped column effect (Vening Meinesz, 1946) and the
dependence of the gravitational acceleration on depth (Vening Meinesz,
1946). Although we define three Separate components, they all share a
common source: the mass dipole due to density differences in the
cooling lithosphere (Lister, 1982). The initial geoid anomaly is the

sum of these three effects.

7.1 THE DIPOLE EFFECT

The geoid anomaly observed at the planet's surface due to mass

dipole at the j-th ring is
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Gml(R - z)? sin © do dé dz
2 + 12)3/2

g(q

where R is the radius of the test planet, z is the depth, d is the

reference surface depth, q is q=R sin ® , 1 is 1=R(1-cos ©)-z, and m
is the average dipole density, as was defined above (Lister, 1982; see

Figure 21A). The range of 6 is ejseseg and the range of ¢ is 0s¢s2w.

Substitution of 1 and q in Equation 10 yields

Gm(z - 2R sin2(8/2))(R - z)? sin 6 do d¢ d

J 3/2
o gz[2? - URz sin?(0/2) + 4R? sin?(e/2) ]

Observation points above the equator of the dipole "see" a3
positive contribution to the geoid anomaly, while those below receive
a negative contribution (Lister, 1982). Away from the observation
point we find that once we pass the equator, the negative contribution
tends to reduce the local effect. This means that the local effect is

important. Setting z=0 gives an estimate of the far field effects
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Figure 21. Dipole effect - (A) Geometry for the geoid anomaly observed

at the planet's surface due to a spherical shell of mass
dipole. O - observation point. (B) The same as (A) but the

observation point, 0, is at the reference surface.
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which 18 a negative summation

J | -G oY oy .
Y = j j ~SB_ cos (0/2) do do = —29BT [4in (—dy - gin (—H] .
2g g e 2
J

The geoid anomaly observed at the reference surface due to a ring

of mass dipole is (see Figure 21B)

2w 63 _

[ Gmi(R - z)2 sin @ do d¢ dz
J

0

2y3/2

éj g(1%+ q

where d is the reference surface depth, q is

q=1(R -4d) sin o ,

l=(R=-2)=-(R-4d)coso.
Substitution of 1 and q in Equation 12 yields

T e"
fj Gm[(R - z) = (R - d) cos 0J(R - 2)2 sin @ do d¢ dz . (13)

3/2

2
(
J
0

d
*‘Jr J
0 ej gl(R - 2)%+ (R - d)?~ 2(R - z)(R - d) cos 0]
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In this case we are always below the dipole equator, therefore the

contribution is always negative.

7.2 THE PIE-SHAPED COLUMN EFFECT (THE ISOSTATIC MASS EFFECT)

Once a mass dipole is introduced, an effect due to the pie shape
of each column also contributes to the geoid anomaly. If topography is

elevated, and the mass dipole is positive upward, the volume of

positive density change is greater than that of negative change. The
extra mass that this implies causes a further uplift of the outer
geoid, but also an uplift of the reference surface that is opposed to

the dipole effect. Figure 15D illustrates the density change, Ap, as a

function of depth. The geoid anomaly observed at the planet's surface

is

d 2v o
y - O [ [ [? ap(R - 2)? sin & do de dz
g J ) :
00 o
J
d 2n o"
G | Jf JfJ Ap(R?- 2zR + z?2) sin 0 do dé dz
ST
€ 00 o n

where d is the reference surface depth,
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n = (132%+ q2)1/2,

1=R=-(R-2)cos o,

q=(R -2)sino,

as shown in Figure 22A. Substitution of 1 and q in the above equation

of Y yields

GAp(R? - 2zR + R?) sin 0 do d¢ dz
2172

glR? - 2R(R - z) cos 0 + (R - z)

The first term in the integrand is

GApR? 8in 0

g[R%+ (R - 2)2- 2R(R - z) cos ©

172
]

which is a weak function of z. Close to the observation point where
(z,0)=0 the integrand vanishes. Actually, this term is approximated by

RfAp dz which is negligible. Since 2zR>>z2? the integral is almost
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Figure 22. As Fig. 21 but for the mass sheets induced by the pie-shape

of the columns.
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d 27 o"

[ [ [? 2GapRz sin o do d¢ dz
Y =

é é é3 g&n

The term 2z/R is the change in the cross section because of

sphericity, and the mass gain is

mass gain = { —EE— Wp dz
R

The near field effect is of a minor nature, while the far field

effect is important. Similarly, we obtain the geoid observed at the

reference surface

2A0pCRz sin® do d¢ dz

gn

where d is the reference surface depth,

n o= (1%+ q2) /2,

l1=(R=-2)coso-(R -4d),
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and

q = (R = 2z)sine,

as shown in Figure 22B, Substitution of 1 and qQ in Equation 16 gives

2GApRz sin 0 do d¢ dz

» (17)

<
¥

O ——n

O N

O —

' g[(R - d)%- 2(R - d)(R - 2z) cos @ + (R - 2)2]'/?

and again, the far field is important.

7.3 THE DEPENDENCE OF THE GRAVITATIONAL ACCELERATION ON DEPTH

The acceleration of gravity, g, is

GM

where M is the mass of the test planet. The gradient of the

gravitational acceleration is
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or the relative change of the gradient is

1 3g _ ' M _ 2 _ UmpGR 1 _ 2 -0.2

g 9R M @R R g R R R

where p is the density, 3300 kg/m3®. In other words, g increases with
depth at a rate of 0.2/R. This causes the amplitude of compensating

deep density changes to be smaller. The mass gain (for positive dipole

anomaly) is

The increase of g with depth (gravity effect), using "units of

pie-shaped column effect", adds 10% to the latter. Throughout this

study the gravity effect (g=g(z)) is included in the pie-shaped column

effect.

7.4 THE INDIRECT EFFECTS OF ATTRACTED MASS

The above three sections describe all the effects that appear due
to the initial dipole and the sphericity of the test planet. The
dipole and the mass effects cause further deformation, that can be

considered a by-product of the initial mass separation in the
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lithosphere. The final geoid or reference surfaces are calculated
using, simultaneously, all the direct and indirect effects. Before
presenting the final equations, the different types of indirect effect
should be discussed.

There are three categories. The first category includes effects
which appear because the initially deformed geoid (direct dipole and
mass effects) goes through a self-deformation process. The second
category includes similar self-deformation, but for the reference
surface. Gravitational attraction from mass at the deformed reference
surface causes changes in the geoid. Similarly, changes in the geoid
deform the reference surface. These deformations, that occur
simultaneously, are included in the third category.

Our initial step is to calculate the first category effects., We
use the same observation points described in the test model section.
The value of the geoid or the reference surface, the sum of the dipole
and the mass effects at the centroid of a given spherical trapezoid or
triangle, is assumed to be representative for the whole trapezoid or
triangle. For each observation point we can draw a set of 18 rings
that cover the whole test planet. Averaging the centroid values in a
given ring yields the geoid height assigned to the ring. We can
Justify this averaging using the following arguments. The geoid at the
observation point, due to mass at a given ring, is linearily
proportional to the amount of mass involved; it is independent of the
distance because the distance from the observation point to the ring
is the same everywhere. As the geoid is a scalar quantity we should

not worry about the distribution of mass, whether it is equal
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everywhere along the ring or concentrated at a few sites. A crucial
test for this method is to calculate the geoid at several adjacent
observation points. Dramatic changes of the calculated geoid from one
observation point to another mean instability, and are strongly
dependent on the way we choose the observation point. This test was
applied to all the different calculations to be described in this
Section. All of them, without exception, show that the geoid is
independent of the observation point site., Following the method of
geoid calculation described in the section on extraction of the geoid
height, we can obtain the geoid height after the self-deformation
process. Figures 23-25 illustrate the geoid and the reference surface
due to the first and second category effects,

Each change of the geoid level causes an observed change at the
reference surface that also applies in the opposite direction. We need

to calculate these changes simultaneously because they cannot be
rs
isolated or separated from one other. The geoid anomaly, rij’ observed

in ring i on the geoid, due to a unit of mass at the j-th ring in the

reference surface, is given by

™ @"
r’i""? . _2Gp, J( J(J (R - d)?sin o do d¢ (18)
J
€ 0 g "ij

where p, Is the initial density (3300 kg/m?®), d is the reference

surface depth, g is the gravitational acceleration at the geoid (9.8




Figure 23. Elevation of geoid and reference surface (meters) due to
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Figure 24, Elevation of geoid and reference surface (meters) due to

the dipole effect on the same test planet as Fig. 23 - (A)

Initial geoid. (B) Initial reference surface. (C) Final

reference surface. (D) Final geoid.
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Figure 25. As Fig.
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m/sec?), and rij is the distance between the i-th ring on the geoid to
the j-th ring on the reference surface, given by Equation 1. In a
similar way, one calculates the anomaly, F?g' observed at the i-th

ring of the reference surface, due to a unit of mass at the J-th ring

at the geoid, as

2
J{ R?sin © do d¢ (19)
0

r.

where rij is the distance between the observation point at the i-th

ring on the reference surface and the j-th ring on the geoid, as given

in Equation 1, gr 1s the acceleration of gravity at the reference

surface,

and pw‘is the seawater density (1030 kg/m?).




7.5 THE FINAL SHAPE OF THE GEOID AND THE REFERENCE SURFACE

The final equations that give the anomalies over the geoid and the

reference surface due the initial and self-deformation effects are

(s + s')r%% (r + r')rrs- s’

for the geoid, and

(s + s« (r + pYIT T a (21)

for the reference surface. The initial anomalies on the geoid and on
» the reference surface are s and r, respectively. In a similar fashion

we define the change in the initial anomalies, due to the self-

deformation effect, as s', and r'. The matrix rss was presented in

Equation 4, and is the geoid anomaly observed at the i-th ring on the

geoid, due to mass at the j-th ring on the geoid, using seawater
rr
density. Likewise, we can calculate a similar matrix T , using the
rs
initial density, 3300 kg/m?, for the reference surface; matrices T

and rsr were defined in Equations 18 and 19, respectively. The
superscripts ss, rr, rs and sr refer to the influence of the first
surface (s or r on the left side) on the second surface (s or r on the

right side). Appendix C describes the solution of these equations.
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The signals due to the mass effect over the geoid or over the
reference surface are very similar in the shape and the magnitude,
therefore only one is shown (see Fig. 23A). At the reference surface
there is a high of up to 12m under the ridge, and a low of up to -12m
under the trench; slightly smaller values are obtained for the geoid,
At the geoidal surface there is a small change of the initial signal
of up to 1m, due to the self-deformation effect where seawater density
is 1030 kg/m®*. On the other hand, the same process causes a large
change of up to 5m at the reference surface, because the density is
3300 kg/m® (see Fig. 23B and Fig. 23C). The final geoid signal due to
the mass effect is illustrated in Fig, 23D; at the reference surface
we observe a very similar pattern with slightly higher values. It is
Obvious that the multiple influences (geoid on the reference surface
and Back) yield final value along the ridge or the trench which is
significantly different from the initial signal by up to 9m, but the
pattern remains.

The geoid topography due to the dipole effect is opposite to that
of the reference surface signal. Along the ridge there is a geoidal
elevation of up to 12m, but at the the reference surface a low of up
to -16m. Over the trench this effect produces a geoidal low of up to -
1im, while a high of up to 16m at the reference surface (see Fig. 24A
and Fig. 24B). Consequently, both the final geoid and the final
reference surface are lowered down by up to 7m and lifted by up to 8m
along the ridge and the trench, respectively (see Figs. 24C and 24D).

The source of the combined dipole and mass effects over the geoid

and the reference surface is illustrated in Figs. 25A and 25B. Because
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the dipole effect is larger than the mass effect at the reference

surface we observe a depression under the ridge and an uplift under

the trench. The final geoid surface is up to 6m higher and lower than

the initial surface along the ridge and the trench, respectively. At
the reference surface there are smail changes of up to 2m relative to

the initial surface and in the opposite direction to the final geoid.

7.6 CONCLUSION OF THE TEST MODEL

The test model was calculated for two reasons. The first one and
the most important is to test the ring method, namely, to check if we
get reasonable results, and to examine their validity. This is
relatively easy in the test planet's case because it is highly
symmetric unlike the real earth., The second reason is that the test
model prepares us for the real earth's case. We need to have some

modifications of the algorithm for the real earth's case.




CHAPTER EIGHT - APPLICATION OF THE REAL EARTH MODEL

8.1 MODEL CONSIDERATION

So far, we have checked and tested our algorithm on a test planet
model. In this chapter we focus our attention on building a model that
describes the geoid produced by lithospheric mass distributions over
the earth. The case of the real earth is more complicated than the
test planet for two major reasons. The first reason is the presence of
continents; this means that there is a vast mass dipole covering about
39% (including continental shelves) of the surface of earth, and that
varies in size as the height changes from continental shelves to
mountain ranges. The second reason is the lack of symmetry. Unlike the
previous model, there are more than four plates in the real earth, and
the distribution of the continents and oceanic plates is irregular. In
fact, the continental area to oceanic surface ratio in the northern
hemisphere is higher than that of the southern hemisphere.

The final geoid and the deformation of the reference surface in
the earth are caused primarily by two lithospheric components: the
cooling oceanic lithosphere and the continents. Let us discuss first
the contribution of the cooling lithosphere. The source of the age

data is the bedrock geology map of the world (Larson et al., 1985).




82

This map illustrates the outcrop age in the ocean basins (see Figure
26). The ocean béttom is divided into 10°x10° spherical trapezoids
between the longitudes 0°, 10°, ..., 180° (E and W) and latitudes
90°N, 80°N, ..., 0°, ..., 90°S. To each centroid of a spherical
trapezoid or triangle we assign an age. An additional layer of basalt
(thickness of 5 km and density of 3000 kg/m®; see Figure 27) overlays
the oceanic lithosphere. The layer is assumed to be faulted enough
(high permeability) to be cooled completely by hydrothermal
circulation, with a negligible temperature drop compared to the
conductive cooling of the oceanic lithosphere below (see Figure 27).
Topography agrees remarkably well with the boundary-layer cooling
model to an age of about 100 my (Davis and Lister, 1974), and seems to
flatten thereafter over vast areas (see Figure 28). One of several
possible explanations of the flattening of seafloor is contamination
by hotspots (Crough, 1978; Heestand and Crough, 1981). We model the
flattening by assigning an age of 100 my for all those areas which
contain older rocks, so the maximum seafloor topography is less than
3.4 km below the oceanic ridge.

As in the test planet case, we are interested in the dipole
density change, Am, relative to the oceanic ridge, caused by the
density change, Ap. The density difference between the seawater

displacing shrinking lithosphere away from the oceanic ridge, p and

wl

the oceanic crust at the ridge (the basaltic layer), Pge is Ap,=pB-pw.

The density difference between the oceanic crust away from the ridge
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Figure 27. A density model of the real earth for isostatic geoid
anomalies calculations, based on the boundary layer model

(Davis and Lister, 1974), where Peo is the continental

density 2800 kg/m?, d is the continental thickness,

(dt/dz)c is the continental thermal gradient, p, 1is

reference surface density under the continental

g is 202.5x10%* m, T! 1is the

lithosphere, 3300 kg/m?,

. zc km
reference surface temperature, y is the continental

elevation above the mean sea level, is the seawater

P

density, 1030 kg/m?®, d, is the seawater layer thickness,

2500 m, h is seafloor topography relative to the oceanic

ridge, dB i{s the basaltic layer thickness, 5000 m, B is

the basaltic layer density, 3000 kg/m?®, p, 1s the reference

surface density under the oceanic lithosphere, 3320 kg/m?,

and z increases downwards .

T, P=Const. £, T,
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and the mantle material at the ridge, p,, is Ap2=p.,-pB (see Figure

29). The overlapping part of the oceanic crust at the ridge and away
from the ridge does not contribute because the density change is zero.
The dipole density change due to the shrinking lithosphere and the

lowered oceanic crust is

as in Equation 8, and the origin is set at the ridge crest. The dipole
density for the rest of the column is obtained by using Equation 9.
The second component is the contribution of the continents. In
this case instead of age, as for the ocean basin, we use the
topographic height, which is assigned to each spherical trapezoid or

triangle (Fig. 30; Smith et al.,1966). The density of the continent is

assumed to be 2800 kg/m® everywhere (see Figure 27). The temperature

at the reference surface is 1400 °c, and the thermal gradient in the
crust is 20 °c/km, which are close to the values of Ringwood (1975).
As partial melting starts at about 900 %, the thermal gradient at the
upper mantle from a depth of 45 km downwards is adjusted to be
substantially lower, to reach 1400 °c at the reference surface., If the

thickness of the continent is less than 45 km then the thermal
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gradient is adjusted for the upper mantle only, with values of about
=5 %c/km, which are close to values of Clark and Ringwood (1964), and
Sclater et al., (1980). Knowing the thermal gradient, we can calculate
the upper mantle density at any point along the mass column,

We use a combination of Pratt's and Alry's isostatic model to
obtain the thickness of the continental crust, as this is a first-
order calculation; second-order terms are fully accounted for by the
methods detailed previously. Using the oceanic ridge as a reference,

we need to solve the isostatic equation

pd + I, =C (22)

where I, is the contribution of the mantle under the continent, and C

is a constant

C = Pwdx" Pde* Pods (23)

where pc is continental density, 2800 kg/m?®, d is continental

thickness, d, is ridge-crest seawater thickness, 2500 m; d, is

thickness of the basaltic layer, 5x10°® m; and d, is the distance from

the base of the basaltic layer to the reference surface, 195x10° m,.

The reference surface density under the continents is 3300 kg/m?® and

under the oceanic lithosphere (or at the ridge) it is 3320 kg/m?. The

reason for this difference is discussed in the next chapter which

deals with the extraction of the other sources. Once we know the
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continental thickness and the temperature along any given mass column
we are able to estimate the dipole and the mass effects.

Before we proceed with the calculations of the above mentioned

effects we also need to consider more complicated cases than just an

oceanic column or a continental column. There are some spherical
trapezoids or triangles that contain an ocean and a continent, a
continent which is covered by ice (i.e. Antarctica or Greenland), a
continent which is covered by a shallow sea (i.e. Hudson Bay or the
Baltic Sea), or any combination of these. Appendix D describes the
solution of Equation 22 for all the different cases. There are 10
different "mixtures" or cases which are considered by the algorithm.
Each component in the "mixture" is assigned a normalized welght based
on the percentage of its own area in the spherical trapezoid or
triangle. Therefore, the total dipole or mass effect produced by any
given spherical trapezoid is a weighted average of all the components.

The density change, Ap, between a given mass column in the

continent and the reference column of the ridge is obtained by the

subtraction of the densities assigned for the appropriate sections of
the columns (see Figures 31-33). Again, we are interested in the
change of the dipole density, Am, relative to the oceanic ridge, that

1s expressed using the density change. The dipole density change of
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shallow sea and the other parameters are as in Fig. 31.

Figure 33. Shallow sea over the continent, where y is the depth of the




the first bin is

= o,y = d) +p.d, + ppdz * polb = d, - d;)

where b=10 km, y is the topography, and the origin is at the oceanic
ridge. In the case of a shallow sea over the continent, or a continent
with ice cover, we need only to substitute the appropriate density for
that part of the continent. The dipole density change is obtained
similarly for the rest of the continental crust, using only the last

term because the density difference is PoPge The density change, Ap,

at a given bin in the mantle under the continent is

Ap = p,aAT = pla[Tx - Tm(z)]

where T, and p, are the reference surface temperature and density

under the continental lithosphere, respectively. Tm(z) is the

temperature in the mantle under the continent, as expressed in

Appendix D for the different cases. In general, Tm(z) is a linear

function of the depth, z
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which implies that p is also a linear function of the depth

where e, 1, q, and w are constants. Thus, the dipole density change

for the mantle below the crust, m, is

(

m=JApdz=a+bz+vz’

where a, b, and v are constants, and m has a parabolic shape. We can

define E), as in Equation 9, for a given bin in the mantle under the
continent. As in the test planet case the dipole density change, Am,
and the density difference, Ap, are very small as z approaches the
reference depth.

Once we have estimated the dipole density change, Am, and the
density difference, Ap, we can calculate the dipole and mass effects
as we did for the test planet (Equations 11, 13, 15, and 17). The
final geoid and reference surface are obtained by using Equations 20

and 21.




8.2 RESULTS OF THE REAL EARTH MODEL

The signals due to the mass effect over the geoid or over the
reference surface are similar in shape and magnitude (see Figs. 34 and
35). The reason for is that the separation distance between the geoid

and the reference surface of 200 km is small relative to masses which

are several thousands of kilometers away. Continents are characterized

by a positive geoid anomaly, while over ocean basins the geoid

anomalies are mainly negative. This is caused by an excess mass in the

elevated topography of the continent relative to ocean basin, which is

a positive mass dipole. The final mass effect signal due to the self-

deformation process has a larger absolute magnitude of each anomaly,

but retains the main feature as before (see Figs. 36 and 37), with a

geold high of up to 25 m over north Asia and Europe and a geoid low of

up to -25 m west of South America. The mid~Atlantic ridge is vaguely

visible in the source or the final geoid, and east Pacific rise not

visible at all.

The geoid topography due to the dipole effect appears to be a

reflection of the reference surface, except to higher amplitudes at

the latter (see Figs. 38 and 39). Each continent can be represented as

a positive mass dipole, therefore the geoid over most of the

continents is positive; on the other hand, over ocean basins we
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observe a geoid low, because of conservation of mass.

The final signals of the geoid and the reference surface due to
the self-deformation effect are illustrated in Figs. 40 and 41; over
the refercnce surface we observe larger absolute amplitudes for each
anomaly. Over the geoid the situation is more complicated, for two
reasons. The first is that the anomalies of the initial reference
surface have usually larger absolute amplitudes than those of the
initial geoid. The second reason has to do with the fact that the
reference surface density is about 3.3 times larger than the seawater
density. This fact increases dramatically the influence of the self-
deformation effect. The reference surface's anomalies are large enough
to cause a significant change in the geoid. The region over the west
Pacific is characterized by a small geoid low due to the high anomaly
below at the reference surface. Surprisingly enough, the final geoid
over Africa and most of Euroasia and North America turns out to be
either negative or barely positive, unlike the initial geoid. As in
the mass effect case, the mid-Atlantic ridge can be faintly observed
in the source and the final geoid, and the East Pacific rise is
invisible.

The source influence of the combined dipole and mass effects over

the geoid and the reference surface is illustrated in Figs. 42 and 43.

The dipole effect is in general larger than the mass effect;
therefore, the shape and the magnitude of the anomalies follow closely
those of the dipole effect in most of the regions. The final reference

surface (see Fig. 45) due to the self-deformation process retains the
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same shape but has larger amplitudes. Again, the surface under the
continents is mainly characterized by geoid lows and the regions under
the ocean basins usually have a positive geoid anomaly, with a
significant high anomaly in the west Pacific region of up to 45 m. The
anomalies over the geoid (see Fig. 44) are largely dominated by those
of the reference surface, for the same reasons mentioned before,
Continents are mainly characterized by a geoid high, while over ocean
basins we observe a wide geoid low.

The source influence of the dipole effect, the mass effect, or the
combined effect is not simply the sum of the dipole moment or mass
anomaly, integrated vertically. The reason is that the values observed
at each spherical trapezoid are due to all the rings that cover the
whole earth, as was previously discussed. In the case of the dipole
effect the geoid anomaly is a function of the dipole density,
distance, and the "geometrical factor" (below or above the dipole
equatorial plane). Let us focus our attention on the distribution of
the dipole over the earth, which means that the observation point is
located in the middle of a given spherical trapezoid and we take into
account only the effects of the bins below in that column (see Figure

46). It can be shown (Appendix E) that the geoid anomaly due to the

dipole effect is
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where u is the distance between the observation point, O, and the
measuring point, N; a' is the smallest angle between u (a vector) and
the dipole equatorial plane; z' and z", ¢' and ¢", and ©' and Q" are
the boundaries of the depth, z, the longitude, ¢, and the latitude, 0o,
for a given bin, respectively.

The HOT equation of Haxby and Turcotte (1978) is

z p(x,z) dz
g

d
. -27G (
J
0

where d=d(x) is the depth, p(x,z) is the density change and x is the
horizontal axis. The HOT equation is simpler because it does not take
into consideration the fact that columns are pie-shaped on a spherical
earth. Equation 24 {s actually a modified version of the HOT equation,
suited for the spherical earth case. Figure 47 illustrates the results
of the HOT equation. As the continents are positive mass dipole they
are dominated by a geoid high with a sharp jump along the coastlines,
while the ocean basins are mostly characterized by a wide geoid low.
The oceanic ridge serves as a reference point which means that the
geoid should be almost zero there. Both the east Pacific rise and the

mid-Atlantic ridge can be observed by a geold ridge at about -1 m and
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~4 m. The reason for drop below zero is that regardless of the fact
that the observation point is exactly located over the ridge or not,
there is some influence of the ridge sides within the bin, especially
for younger ages as the slopes there fall off faster than those of
older ages. We would need a much finer model to minimize the effect of
the ridge sides. The final geoid due to the combined effect is
obviously different in its shape and magnitude from that of the HOT

formula. This means that the contribution of the self-deformation

effect is significant to the calculated geoid.
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CHAPTER NINE - DISCUSSION

The global geoid over the earth (see Fig. 48), as derived from
Geos-3 (Rapp, 1979a, b), is composed of two main components. The first
source, known as the calculated geoid (see Fig. 45), is due to density
changes in the continental and the cooling oceanic lithospheres; it is
considered a shallow source, The second component, also called the
residual geoid, is due to large mass anomalies in the deep mantle, and
is obtained by subtraction of the calculated geoid from the global
geoid (see Fig. u49).

The calculated geoid is dependent on the reference surface
density, and this dependence, in turn, causes the residual geoid to be
dependent on that reference surface density. This dependence was
carefully checked by assigning two different values for the reference
surface densities under the ocean and under the continents, and
varying the densities in small steps. For each set of reference
surface densities we get a value of the calculated geoid for each of
the 36x18 spherical trapezoids. The calculated geoid variance is then
computed and compared with those of the global geoid and the residual
geoid. The residual geoid variance is minimized for reference surface

densities of 3380 kg/m® and 3360 kg/m® under the oceanic and under the

continental lithospheres, respectively (see Figure 50). There is an

obvious trend of the results which indicates that a density difference
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Figure 49, Residual geoid (meters) over the earth.
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of about 20 kg/m® minimizes the residual geoid variance. The detected
minimum of the residual geoid variance is not a distinct one, which
means that the results are not constrained along the axis of the
"valley", unlike the the sides of the valley. This interesting result
suggests that the density difference is probably real, although it is
statistically insignificant; the reason is that the variance of the
observed geoid is much larger than the variance of the calculated
geoid. Therefore, the variance of the residual geoid is slightly
reduced, but not enough to be statistically significant. Despite this
discouraging result of only slightly reduced residual geoid variance,
we would like to mention here an interesting observation.

Recently, diamonds and diamond-bearing rocks found in South Africa
Kimberlite pipes were studied. Kimberlite pipes are pipes that
penetrate deep into the mantle and deliver debris and volcanic
material from down below. The formation of the diamonds occurs at
depths between 150 to 200 km. The formation temperature has a wide
range of 900 °c to 1400 °c (Boyd and Finnerty, 1980), and the age is
about 3.2 to 3.3 billion years ago (Richardson et al., 1984). This
temperature at the base of the craton is surprisingly low compared to
calculated values, although the Archean heat flow is considered to be
twice today's heat flow value (Jordan, 1979; Boyd and Gurney, 1986).
This means that somehow a cold root has been formed beneath the
craton. If the root is denser than the ambient material it should sink
down, while if it is made of lighter material than the surroundings,
then it floats and the effect of the temperature is to make it even

lighter (Jordan, 1979). Richardson et al. (1984) and Boyd and Gurney
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(1986) pointed out that rocks at the base of the craton are slightly
lighter than those of the oceanic lithosphere, as they contain more
magnesium than iron. A possible explanation is that during the Archean
age, large volumes of basaltic magma were extracted from the mantle to
form the new crust, leaving a magnesium-rich mantle. OQur results show
a very good agreement with these observations.

There are regions where the calculated geoid (see Fig. 45) follows
closely the global geoid (see Fig. 48), such as south of India, the
western Pacific ocean, and east of Puerto Rico. On the other hand,
there are also regions where there is a negative correlation between
the observed and calculated geoids, such as over the Andes, Iceland,
west of Mexico, southeast of Africa, and the Hudson Bay region. These
structures are presumably caused by flow in the mantle or by some mass
anomalies in the deep mantle, and have nothing to do with the
lithospheric geoid. Usually they have more power than the calculated
geoid; correlation between the the observed and calculated geoid is
poor .

The goals of this study were twofold: to show the importance of
the self-deformation effect, and to compute the lithospheric geoid
over the earth, using the static model. The next step, which is beyond
the scope of this study, is to solve the dynamic model, which is more
complicated as it involves mantle flow. However, one may obtain some
insight, even before solving the dynamic problem just by carefully

examining the residual geoid (see Fig. 49). In the next section we

briefly discuss the residual geoid close to oceanic trenches and
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ridges, as the mantle flow close to them might produce a significant
geoidal contribution.

Mass accumulation is sometimes associated with an oceanic trerch,
such as the regions of the Bonin and Mariana trenches, where there is
a good correlation with the residual geoid high. However, it is absent
close to the Kuril, Aleutians, Costa Rica, and Puerto Rico trenches,
where the residual geoid is relatively small. Although there is no
mass accumulation close to the west coast of South America, we observe
a residual geoid high mainly over the Andes and over some of the Chile
trench, The residual geoid high can be attributed to both the Andes
(mass excess) above and the subducting slab below that is colder and
denser than the ambient material. The causes of the phenomenal vast
mass accumulation in the west Pacific are not clear. It can be argued
that, unlike in other regions, there is probably more resistance of
the mantle to the sinking slab in this region, which significantly
slows down the subduction process, or yields little return flow (Hager
and 0'Connell, 1979). In addition, it seems that mass accumulation is
not a fundamental result of subducting plates, and the regions close
tb trenches, such as the areas near the Kuril and Aleutians trenches,
are not characterized by an elevated seafloor topography. If this is
the case, then the subducting plate does not contribute a significant
portion to the global geoid, although it is colder and denser than the
ambient mantle.

The effect of the oceanic ridges was accounted for in the previous
chapter. Over the Icelandic region there is a residual geoid high

which decreases to about 20 m to 30 m in the south Atlantic ocean.
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Over the east Pacific rise we observe both negative and positive
residual geoid. All these anomalies seem to be influenced by the
"near-by" anomalies, such as over the Andes, Iceland swell, and south
east of Africa. The width of these anomalies suggests that they are
probably located in the deep mantle, and have nothing to do with ridge
processes. Over the Indian Ocean we observe mostly negative residual
geold, i.e. over Carlsberg ridge, mid-Indian ridge, and Ninety East
rise, which are heavily influenced by the global low in south of
India. This huge geoid low cannot be related to any special topography
structure, and it can be only explained by a huge mass deficiency
created as the sub-continent slid north towards Asia (LePichon, 1968).

The qualitative arguments which were brought here lead to an
important conclusion: the contribution of "plate tectonic" related
processes is of a minor nature, and major mass anomalies in the deep
mantle or even in the core-mantle boundary are what actually shape the
global geoid. If this is indeed so, an attempt should be made in the
future to account for these sources. While a small number of questions
have been studied and solved (mostly the basic features of
lithospheric geoid), there are still many important open questions,
i.e., the deep mantle sources and their causes. Further studies of
deep mantle geoid are therefore warranted, as they would give a better

understanding of the mantle processes.
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APPENDIX A - ROMBERG'S METHOD

We briefly review here a method proposed by Romberg (Bauer et al.,

1963) to evaluate definite integrals. We define Ty j as the estimate
’

for the integral

f(x)dx

D O

computed by using the trapezoidal rule

n-=1

1 1
TO,j = u‘j { 2f(a) + 2f(b)+1§1 f(a + iuj) ]

where n-ZJ, uJ = (b-a)/n and the full interval is divided into

j=1,2,4,8,... equal parts. Then we can write
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where the C0 op are unknown coeficients which do not depend on j.
1

2
Thus, there is a truncation error of the order uj.

G e

Romberg arranged successive approximations Ti . in a triangular
?

array

e

(A1)

0,J 1,J-1 "2,j-2

where every entry TN j (N=0) is computed using the general

extrapolation equation
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T - T
N-1,3+1 " 'N-1,j
™y ™ Teer,ge o : (4.2)
- 2N -

The value TN j is calculated using the values in the following
?

positions relative to it

N=1,]+1 N, J

z ZU ar u ar

- u2 = 0 and setting

. 2 2
Noting that 2 uJ+1 j

and T] b becomes

1
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. : 4
This gives a truncation error of the order Uspqe Since TO

. L j+2 i3 also
known, T1 i1 and T2 j can be generated using Equation A.2. The value
T2,j is

1,341 T,
T = T . .
24] 1,J+1 "
2 -1
Thus
: 2r
T, .=y + )} C eus
2,J =3 2,2r "j+2
with
i by 2r
C - L]
2,2r y (2 27) C1,2r
2 -1

with a truncation error of the order u6 The order of the truncation

Jj+2°
error increases by 2 at each new extrapolation step, so that we can
continue the process and minimize the associated error until it is
smaller than any given value.

The values in each line of Table A.1, i.e.

T, .» T T

0, ] T T

1,3-1" "2,5=2" " Yi-1,10 05,0
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are obtained from the same subdivision of the full interval, which is

equal to ZJ parts. Romberg showed that the sequence TN j (j=1,2,3...)
. ’

converges to the true integral for increasing N. In addition, the

sequence TO j converges to the true integral for increasing J. The

calculation of the values, T

N,j° is continued until the difference

|

between two successive values is less than a given tolerance; the

absolute value of this difference is an upper bound on the er.or.

S e e e
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APPENDIX B - THE AGE AT THE CENTROID OF A TRAPEZOID

A spherical trapezoid may be approximated by a planar trapezoid

(see Figure B.1). The area A of the trapezoid OPQS is

. _(a+ b

A
2
where
mR sin[—ﬂii:ll—]
18
a =
18
|
|
R sin[ ) |
b = 18
18
|
:\g
h = mR
18

and j is the ring number, j=1,2,3...18., Due to symmetry it is obvious
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e e

Figure B.1 Geometry of a spherical trapezoid.
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that the x axis of the center of mass is ;=O. The width opposite a

point, y, is

1(y)=(b-a)-_b_“iy+a=b__£;_a_y

if y=0 then 1(0)=b, whereas if y=h then 1(h)=a. The y axis of the

center of mass, y, is

b~ a y) dy = h(2a + b)

h 3(a + b)

h
y - - J yl(y) dy = —— ! y(b -
AL A

O+—--—

If a=0 then ; = h/3; this is the case for a spherical triangle (rings

1 and 18). Close to the equator one gets (a,b)=—>h, so that A=h? and

y=h/2.

The distance, u, from the observation point to the centroid of a

given trapezoid on a ring, j, is

u~—Jd -7 , 15359

18
for the northern hemisphere, and

LB EE , 105js18
18
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for the southern hemisphere.

Figure B.2 illustrates a spherical triangle where N is the north
pole of the test planet, P is the observation point, and Q is the
centroid of a given trapezoid. The sides of the triangle a, b and u,
and the different angles are expressed using angular units. The
coordinates of point P are known. We start increasing the angle a,
moving clockwise from the point closest to the north pole on the
meridian of the observation point. The angle increment is 10° each
time. The side of the triangle a is obtained by using the law of

cosines

CosS a = cos b cos u + s8in b sin u cos a .

The relationship between two angles and three sides is

sin u cos a = cos a sin b - cos b sin a cos ¢ ,

and ¢ is

=17 cos a sin b - sin u cos a
I = COS { } .

cos b sin a
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Figure B.2 Geometry of a spherical triangle. N - North pole, P =
Observation Point, Q - Centroid of a given spherical

triangle or trapezoid, O - Center of the planet, r - radius

vector.

.
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We find that the longitude angle at point Q,

¢Q' is
@Qz QP- z » OSasw
or
¢Q= ¢P+ z , TSas2w .

The age, t, is

where w is the angular velocity of the sea-floor spreading on this

hypothetical test planet.




APPENDIX C - THE SOLUTION OF THE FINAL EQUATIONS OF THE MODEL

The final equations that give the anomalies over the geoid and the

reference surface, due to the initial and self-deformation effects,

are

(s + s')r3 (r + r)r 2= g (c.m

for the geoid, and

(s + S,)rsr+ (r + r')rrr= r' (C.2)

for the reference surface (see Equations 20 and 21).

We extract s' from Equation C.1

ss 38 rs
ST+ s'T +(r + ") "= s

leads to

Ss

sr%%1 - %) (p o+ P8y - 88T .

H
[ 6]

or
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s' = sQ+ (r + r")P (C.3)

S

where Q=I‘ss’(1-l‘ss)-1 and P=T" (1—Fss)-1. Substitution of the above

equation in Equation C.2 yields

r' = srsr+ SA + (r + Pr'")(B + Frr)

where A=QI‘Sr and szrsr . Extracting r' from the right side of the

above equation gives

r‘t' = sb+rC+ r'C

whence

rto=sD(1 -C) e rc(l - )

where C=B+Frr and DsA+rsr and r' is given by

r' = sg + rF (C.4)

1

- -1
where E=D(1-C) and F=C(1-C) . The computer program calculates r'

using Equation C.4 and then it substitutes r' into Equation C.3 to

calculate s'.



APPENDIX D - SOLUTION OF THE ISOSTATIC EQUATION

The isostatic equation, using a combination of Airy's and Pratt's
model and the oceanic ridge as a reference, as defined above is (see

Figure 27 and Equation 22)

pd * Io= C (D.1)

where C is a constant, I, is the contribution of the mantle under the

continent, d is continental thickness and Pe is continental density.

The thermal gradient in the continent is 20 °c/km until we reach a
temperature of 900 °c at depth of U5 km, and hereafter the thermal
gradient is adjusted so we get 1400 °c at the reference surface. If
the continental thickness is less than 45 km we adjust the thermal
gradient for the upper mantle only. Besides the above mentioned cases
of crustal thickness less or larger then 45 km, two more will be

discussed below which are 1) ice over the continent, i.e. Antarctica,

and 2) shallow sea over the continent, i.e. Hudson bay or Baltic sea,
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D.1 - Thickness of the continent is less than 45 km

Figure 31 i{llustrates the model. The temperature in the mantle

under the continent (measuring from the mean sea level) is

Tm(Z) =dA + (z - d+ y)B =d(A - B) + Bz +By

where A is the thermal gradient in the continent, B is the thermal

gradient in the mantle under the continent

B = T, - Ad (D.2)

B +y-d
where 8 is the distance from mean sea level to the reference surface,
202.5 km, y is the continental height, and T, is the temperature at
the reference surface,

The density at any point in the mantle is

p o= pi(1 + adT) = p, + pyafT, - T (2)]

= p, + p,aT, = p,a(A - B)d - p,aBz - p,ayB

= D - E(A - B)d - EBz - EyB
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here p, is the reference surface density under the continent, E=p,a,
and D=p,+p,aT,.

The contribution of the mantle under the continent is

[D - E(A - B)d - EBz - EyBldz

—
o
1]
as——mw
©
e}
N
]
Q———w

where d,=d-y. The above integral is a simple one and after some

algebra we find that I, is

I, = F - dG + BdH + EAd? - deE + BJ
2

where
F = D8 + Dy ’
G = D + EAR + EAy ’
H=E(8 +y) )
and
J -E(B + y)? .

2
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Substitution of I, in the isostatic equation (Equation D.1) yields

2
c=pcd+F—dG+BdH+EAd2——————EBd + BJ .

2

Substitution of B (Equation D.2) in the above equation yields

3
N+dP+Qd2--———-—Md =0 (D.3)

2

where

N = K(B +y) + JT, ,
P=[L(B+y)- K=+ HT,- JA] ,
Q=M +y)-L - HA - —Li

2

where KsF=C, L-pc-G, and M=EA. We get three solutions of which two are

complex and only one is real. The real solution is later used for the

computations of the dipole and mass effects.
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D.2 = Thickness of the continent is larger than 45 km

Figure 31 illustrates the model. The temperature in the mantle

under the continent is (measuring from mean sea level)

Tm(z)=TC+B(z+y+u)=D+Bz

where u=45x10° m, TC=9OO °c, y is topographic height, B is the

distance from the mean sea level to reference surface, 202.5x10° m,

and B is the thermal gradient in the mantle under the continent

1400 - TC 500

B+y-u B+y-u
and

D = Tc+ B(y - u)f

The density at any point in the mantle under the continent is
p = p, (1 + aaT)

= p, * pxa[T\ - Tm(Z)]
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=E-FD - FBz = G - Hz

where p is the reference surface density under the continent, F=p,q,

-

E = 01(1 +aT1) ’

and H=FB.

The contribution of the mantle under the continent is

and after some algebra we get

= J + Kd + Ld?

where

J=G(g+y) s Ayt > 8o ,

2
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and L=H/2,

Substitution of I, in the isostatic equation (Equation D.1) yields

0=Jd=-C+ (K + pc)d + Ld? ,

and wWwe choose the positive solution as our solution.

D.3 - Ice over the continent

Two regions belong to this category which are Antarctica and
Greenland with uniform ice cover of 2.5 km and 1.3 km, respectively.
This case is similar to case I because the density of ice is 900 kg/m?
and the maximum topographic height is less than 3500 m, which implies
that the thickness of the continent is less than 45 km. Figure 32

illustrates the model. The Equation of Isostasy is

Py *pd+ I, =C (D.4)

where Py is ice density 900 kg/m?, y is thickness of ice layer, o is

crustal density 2800 kg/m?, and d is crustal thickness. The

temperature in the mantle under the continent is

T (z) = Ad + lz-(d+y-Ff)]B=~ad+ Bz -Bd +B(f - y) (D.5)
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where z is measured from mean sea level, A is the geothermal gradient
in the continental crust 20 °c/km, and B is the geothermal gradient in

the mantle under the continent

where B8 1s the distance from mean sea level to reference surface, f is
topographic height, and u=8+f-y. The density in the mantle under the

continent is

p = p, (1 + aadT) = p, + p,aT, - OxaTm(Z)

=D - Fd + EB(d - z) - GB

where p, 1is the reference surface density under the continent,

D=p,+p,aT,, E=p,a, F=EA, and G=E(f-y).

The contribution of the mantle under the continent is

(D - Fd - EBz + EBd - GB)dz

v2_82
2

= [D - Fd + EBd - GB](8 - v) + EB[
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where v=d+y-f. Substitution of Equation D.8 in the Isostatic Equation

(D.4) yields

C=rp;y +pd+ I

2 . g2
=py+pd+[D-Fd-GBJ(g - v) + EB[—lL———Ji——] ,
1 [¢]
2
or
2
0 = H+ dJ + Fd? + BK + BdL - —2% (D.9)
2
where
H = py=-C+D8-D(y-=-f) ,
J = P~ D -FB + F(y - f) ,
- 2. 2
K==y =0 8% oy - p g .
2
and

L = E8 +G .
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Substitution of Equation D.6 in Equation D.9 gives
0 =M+ Nd + Pd? + Q4? (D.10)
where
M = Hu + KT, s
N=Ju=H-=-KA+ LT, ’
P=Fu-J ~LA - BT, ,
2
and
Q- -2A _fp
2

We get three solutions from Equation D.10 of which two are complex,

and we choose the third which is real for later computations.

D.4 - Continent with shallow sea above

Several regions belong to this category, i.e. Hudscn bay or Baltic

sea. This case is similar to case I because we replace the part of the

continental crust which is below mean sea level by seawater and the
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topographic height is O m, so the thickness of the continent is less

than 45 km. Figure 33 illustrates the model. The Equation of Isostasy
is

Py *pd*I,=C (D.11)

where P is seawater density 1030 kg/m?®, y is depth of seawater {(less
than 2500 m), Po is density of the crust 2800 kg/m?® and 4 is thickness

of the continent. The temperature in the mantle under the continent is

Tm(z) = Ad + B(z - d -~ y) , (D.12)

where A is the geothermal gradient in the continent 20 °c/km, 2z is

measured from the mean sea level, and B is

B = _T, - Ad (D.13)

B -y~-d

where 8 is the distance from mean sea level to reference surface. The

density of the mantle under the continent is

p = p,(1 + aaT) = p,[1 + adT, - abT _(2)]

= p, + E-DB(z - y) - Dd(A - B) (D.14)
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where p 1s the reference surface density under the continent, D=p,a,
and E=DT,. The contribution of the mantle under the continent is,

using Equation D.14

8
I, = j [p, + E - DB(z - y) - DA(A - B) Jdz

d+y

2

= F + dG + BH + d?J + dBK - —229—— (D.15)
2

where J=DA, K=D(B - y),

F=E(B-y)+ pol(B -1y) )

G=-E -DA(B - y) = p, ,

2 2
H=Dy(g -y) +p—L—28 |

2

Substitution of Equation D.15 in Equation D.11 (Equation of

Isostasy) yields

(@]
1]

Py ow¢ + I,

DBd ?

2

py * 0,8 + F+ dG+ BH + d?J + dBK - —— ,
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and using Equation D.13

0 =N+ Pd + Qd?+ Rd? (D.16)

where

N = L(B - y) + HT, ’

P=M(B-y)+ KT,- HA - L ,

Q= J(8-y) - M- Ka - =0
2

R,__D.A_-J ,

L=F+py-C '

and M-G+pc. We get three solutions of which two are complex and only

one 18 real. The real solution is later used for the computations of

the dipole and mass effects,




APPENDIX E - THE DISTRIBUTION OF THE DIPOLE OVER THE EARTH

Figure 46 illustrates the geometry. The distance u is

u = [ (xy = %)% + (y, = yo)? + (2, = 24)2 ]1/2

where the coordinates of the observation and measuring points are

X; = R sin 9, cos ¢,

Y, R sin 0, sin ¢,

N
™
L}

R cos R,

Xo = (R = z) sin 0, cos 9,

Yo (R = z) sin @, sin ¢,

N
o
[}

(R = z) cos Q,

respectively. A surface element, dA, is
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dA = (R - 2)? sin © do d¢

and the observed geoid due to this element is

4y = Gmh dA _ Gmh(R - z)? sin 0 do d¢

u? u’

where h is the height of the observation point above the dipole
equatorial plane.
Using the cosine theorem we obtain the angle a', which is the

smallest angle between u and the dipole equatorial plane

R2 = (R - z)2 + u?2 - 2(R - z)u cos a ==>

{(R-z)2+u2-R’}
2(R - z)u

a = arccos

so a' = a - 90° and h=sin a’.

The observed geoid anomaly is

z" e" °"
y - G J J J mh(R - z)2 sin © do d¢ dz
8 .1 g o u’?
ZH e" ¢"

¢ [ [ [ m@R - 2)? sin o' sin 0 do do dz
T

8 Z' @' ®'

u2
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