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University of Washington

ABSTRACT

Incorporating Structural Information into

Interpretation of Satellite Images of Forests

by Degui Gu

Chairperson of the Supervisory Committee: Professor Alan R. Gillespie

Department of Geological Sciences

Surface structure plays an important role in controlling the bi-directional
distribution function of natural surfaces. Spectral shape, hemispherical reflectance and
anisotropic reflectance function all show some degree of dependence on surface
roughness. As a result, the observed surface reflection data is not one-to-one correlated
to surface composition, and there are generally non-unique interpretations of the
observed data. Background knowledge on surface structures is thus important for
extracting reliable information from satellite images, particularly for highly structured
scenes such as forests.

The key in using spatial information is to understand the various spatial scales
involved in satellite remote sensing. Image characteristics change with sensor
resolution, and so does the nature of image interpretation. Depending on whether the
interesting features are resolved or not, the interpretation of a given image can be
either a subpixel-scale inversion problem or a pattern recognition problem. Therefore,
the way to use structural information also differs for different problems in satellite

image interpretation.



Four models have been developed in this work for a variety of remote-sensing
applications. They have explored from different aspects the possibility of using
structural information to improve the accuracy of computerized satellite image
interpretation. The layered spectral mixture analysis model (LSMA) incorporates the
structural information on mixed scenes to analyze the subpixel-scale abundance of
interesting features. The SCS model corrects topographic effects in Landsat Thematic
Mapper images of forests based on the subpixel-scale sun-canopy-sensor geometry.
With the new contextual topographic correction approach, spatial contextual
information is used to compensate for light loss on terrain slopes. The multi-scale
textural classification (MSTC) algorithm extracts textural features to classify satellite
images into unit maps.

Tests on simulated and Landsat Thematic Mapper images of forests suggest
that these models have made considerable improvements over the models which are
commonly used by the remote-sensing community. It has therefore demonstrated that
spatial information is important in satellite image interpretation and deserves more

attention.
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INTRODUCTION

Remote-sensing data have become an important information source for
scientific studies on a variety of geological and environmental problems. The capacity
of large geographic coverage and repetitive measurement gives remote-sensing
technology great advantages, particularly in regional- and continental-scale studies
related to climate change, biodiversity, natural resource management and
environmental monitoring.

Remote-sensing application is essentially the inversion of geophysical
parameters from the measured images. In contrast to forward problems, inversion
problems are in nature usually underdetermined, and there are usually more than one
set of solutions. This is especially true regarding the interpretation of satellite images.
The interaction of light with the atmosphere and natural surfaces is a complicated
process which can not be modeled in an exact manner based on theories of
electromagnetic wave propagation. Even with simplified atmospheric models that
directly relate the radiance measured at the satellite to the reflectivity of the ground,
the infered surface composition may still be ambiguous. As we collect more ground
information and understand more about this process, however, we can put more
constraints on the inversion problem to get solutions closer to the truth. For this
purpose, the interpretation of satellite data requires not only understanding the
interaction of light with surface structures, but also certain background knowledge
about the scene. The appropriate techniques should incorporate all available
information to constrain the interpretation of satellite images. Because the spatial and
spectral resolutions of satellite images are limited, the choice of interpretation
techniques is critical to the successful extraction of the desired physical information

about the scene. For this reason, we need to investigate which factors make the most
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important contributions to spectral images of various types of natural surfaces, and
develop corresponding image interpretation techniques.

It has been well understood that the spectrum of a surface largely depends on
its biogeochemical composition, because different materials absorb and reflect
electromagnetic energy differently. Absorption and reflection commonly vary with
wavelength, so that different scene components may be characterized by distinct
reflectance spectra. A large amount of information about the spectral properties of
natural materials has been collected through laboratory and field measurements, and
forms the basis for interpreting satellite images.

Besides composition, surface structure is another important factor controlling
scene reflectance. A bulk sample of a particular mineral may look different in color
and brightness simply due to variation in grain size. Both numerical simulations and
field observations have confirmed that structure is the most important factor
controlling the directional variability in reflection of many vegetated surfaces, such as
forest and crop canopies. Even though the significance of surface structures has been
recognized for years, however, such information has not been used effectively used in
many, perhaps most, studies involving applied remote sensing. This may help explain
why quantitative remote-sensing interpretations have been difficult to extend beyond
local training areas, especially in the study of highly structured scenes, such as forest
canopies in rugged terrain.

Unlike composition, structural characteristics of a surface are scale-dependent.
Consequently, the structural effects on satellite measurements may largely depend on
the spatial resolution of the observational system. Large-scale structures that can be
resolved on satellite images clearly provide useful information from their shape and
context, in addition to spectral data, for identifying or differentiating various scene
features. Small-scale structures that cannot be resolved, however, are invisible in

measured images. Nevertheless, for image interpretation it is still necessary to consider




the unresolved, or subpixel-scale, surface structures because they have a strong
influence on the observed spectral variation, especially the overall reflectance.
Therefore, scale is an important factor to be considered in satellite image
interpretation.

This research is focused on understanding structural effects on satellite
measurements and developing methods to incorporate such knowledge into image
interpretation. [ have acquired Landsat Thematic Mapper images of forests to examine
these ideas and to test the new methods. The complex canopy structure of forests fits
the research interests well. In addition, forest ecosystems have been an important
subject of remote-sensing studies. Therefore, the principles and algorithms developed
here have significance for remote -sensing applications. Moreover, they are generally
applicable to other structured surfaces with no or slight modifications. The work
presented here includes:

l. understanding surface structure as a key parameter affecting surface

reflection;

2. constructing a photometric function for forest canopies, based on subpixel-

scale canopy structures;

3. understanding and constraining spectral mixture analysis for structured

scenes;

4. using spatial contextual information in geometric normalization of satellite

data; and

5. using spatial textural information in the classification of satellite images.
The goal of these studies is to establish the significance of incorporating structural

information in understanding and interpretation of satellite images.



CHAPTER 1: SURFACE STRUCTURE, IMAGE RESOLUTION AND
INTERPRETATION OF SATELLITE DATA

In this chapter, the structural effects on surface reflection and principles for
interpreting images of structured surfaces will be discussed. Variations in spectral
shape, reflectance, and directionality of forest canopies as functions of canopy
structures will be addressed first, followed by a discussion of image characteristics at
various scales of observation. Finally, the principles used to incorporate structural

information into image interpretation will be examined.

1.1 SIMULATION OF FOREST CANOPIES

Because sufficient field data were not available, the structural effects on
surface reflection were investigated here with computer-simulated data. The simulated
data were generated from computer models of forest canopies which accounted for
variability in tree shape, density, height and reflectance. These parameters were
specified based on field observations.

The mesh surfaces of the simulated canopies were constructed with a ground
resolution of 0.25m. This chosen resolution is arbitrary, even though there are some
practical reasons as discussed later. For each surface element, its normal vector and
area were estimated from the four comners constraining it. The position of the sun
(illumination source) is at infinity and is specified by its elevation angle while its
azimuth is taken to be constant for the purpose of the simulation.

The radiosity model (e.g., Li, 1997; Borel et al., 1991) was then employed to
model the process of light interaction within the canopy, which was assumed to be
Lambertian at the scale of the mesh. The radiosity, or radiant exitance, is defined as

the total energy per unit area that leaves a surface. As a result of the Lambertian



assumption, the radiosity from any element is simply the product of irradiance and its
reflectance, and the radiance is the radiosity divided by m. Because the irradiance on
any one of the elements, say, the ith element, consists of the direct irradiance from the
sun and the indirect irradiance from other elements of the surface (Fig. 1.1), the

radiosity from this element, B,, is
N
B,.=p,.(E,.+2I’F,iB,.) (1.1)
=

where p, is the reflectance of the element, E, is the direct irradiance, the “form factor”

F; measures the relative distance and geometry between elements i and j, and N is the

total number of surface elements. As a first-order approximation,

A, <ner ><in er > e~ - _
if ner,>0,n,er, >0

Fy= ﬂﬁ-r (1.2)

0 otherwise

where A is the area of element j, 7, represents the direction and distance from element

ij
itoelement . and 77, and #i; are the normal of elements  and j respectively.

Once the form factors are estimated, the linear system can be solved by
standard methods (Borel et al., 1991). The iterative approach is adopted here to solve
the problem since the multiple bouncing between elements is weak in intensity relative
to the direct illumination. In practice, it is found that convergence is fast and the
solution becomes stable after usually less than 5 iterations.

The total radiance from the structured surface at viewing direction 7,, L(7,),
is the sum of the radiosity at individual elements weighted by their areas and

orientations relative to the sensor,



N — -
L(i,)=) B.A, max{O;: n, 8 A, >)

(1.3)

=t
where <7, ®7i_ > is the inner product of 7, and 7, . The radiance may be normalized
by the mean radiance to get the anisotropic reflectance function, Xs
X(i,)=L#n)/L, (1.4)
where L represents the mean radiance averaged over all directions. The anisotropic
reflectance function is similar to BRDF, bidirectional reflectance distribution function,
and describes the directional distribution of reflected radiance (e.g., Taylor and Stowe,

1984 a, b). If a surface is Lambertian, y=1, independent of illumination and viewing

geometry.

Figure 1.1 Radiance leaving a surface element depends on both direct illumination
and secondary illumination from nearby surface elements.



Another important parameter, the hemispherical reflectance (p), is defined as
the ratio of the integral of the outward radiance in all directions to the total incident

irradiance, i.e.,

p=2L(ﬁr)<ﬁ‘.-z>/ZE,, (1.5)

where Z is the unit vector representing the zenith.

It should be pointed out that individual surface elements have been treated as
infinitesimal elements to estimate the form factors in equation (1.2), although they
actually have finite areas. There are several reasons for making such simplifications
instead of using more complicated approaches. First, it greatly reduces the amount of
computation (Li, 1997). Second, the Lambertian assumption can be badly violated at
small scales. For example, the forest canopy may be treated as Lambertian at scales of
trees or branches, but may not be so at scales of leaves where specular reflection is a
large component of the total reflection. Third, vegetated surfaces are not solid: i.e.,
there are holes and gaps within vegetation canopies, and it is less meaningful to
represent them with smooth surface elements at smaller scales than at larger scales.
The last two reasons have prevented one from dividing the surface into infinitely small
elements and are major concerns in determining the element scale. Finally, computer
simulations can give one some quantitative insights about the reflection of natural
surfaces, but the variation in structure and composition of actual scenes prevents such
results from being predictive for specific cases.

The simulation results, however, do appear to be consistent with the field data
(e.g., Deering et al., 1994; Ranson et al., 1994) in a qualitative sense. They are thus
useful in investigating the general characteristics of the interaction of light with
structurally complicated surfaces. Therefore, the simulated data are used here to
demonstrate the effects of canopy structure on the reflectance spectrum, hemispheric

reflectance and anisotropic reflectance function of forest canopies.



1.2 EFFECTS OF SURFACE STRUCTURE ON ITS REFLECTION

1.2.1 Spectrum

The structure of simulated canopies has an impact on their reflectance spectra.
Six spectral bands in visible, near infrared (NIR) and short wave infrared (SWIR)
range were chosen to simulate the Landsat Thematic Mapper (TM) data. The
reflectance spectra of the tree crown and substrate are taken to mimic those of green
vegetation and soil, respectively. Canopy structures in the model were altered by
varying the ratio of the vertical diameter, @, to the horizontal diameter, b, of the
ellipsoid-shaped tree crowns. The larger ratios correspond to rougher canopies. The
packing density was not changed.

The modeling results (Fig. 1.2) demonstrate that reflectance spectra of the
simulated canopies depend on canopy structures, particularly in NIR (TM 4) and
SWIR (TM-5) bands. As the canopy roughness changes, the illumination geometry on
individual canopy elements changes, too. Since the overall spectrum of the canopy is a
mixture of the spectra of the tree crowns and the substrate, it changes according to the
shadowing and shading pattern within the canopy.

The computer simulations have not taken account the light interaction with
individual tree leaves. Reflection and transmission of light at the scales of tree leaves
lead to volume scattering, which may results significant spectral variations (e.g.,
Roberts et al., 1990).

However, careful examination of the resuits shows that there is no predictable
correlation between canopy structure and its spectrum. It is largely because other
factors, such as tree species, leaf and tree ages, water content, also have a considerable
influence (Koch et al., 1990). It is clear, however, that the canopy spectrum is to some
degree dependent on canopy structure. This result has important implications for
spectral mixture analysis, widely used as a tool to study subpixel-scale features (e.g.,

Smith et al., 1990; Adams et al., 1989; Sabol et al., 1992).
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Figure 1.2 Surface structure is a factor affecting the shape of reflectance spectrum.

1.2.2 Hemispherical reflectance

There is an obvious correlation between hemispheric reflectance and canopy
roughness (Fig. 1.3). This correlation is related to the change of shading and
shadowing patterns within the canopy. As the shape of tree crowns changes, the local
incidence angles at sunlit canopy elements change also, and so do the amount and
pattern of shadows within the canopy. Consequently, the apparent brightness of the
canopy changes. Specifically for the simulated canopies, the hemispheric reflectance
decreases when the canopy gets rougher (Fig. 1.3). This is generally true for opaque
materials, since a portion of the reflected light is trapped by the rough surfaces
(Stephen Warren, pers. Comm., 1998). The correlation between surface roughness and
reflectance has motivated studies on the estimation of surface roughness information

from satellite images (Weeks et al., 1996, 1997; Shoshany, 1993).
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Figure 1.3 The hemispheric reflectance is largely dependent of surface structure. The
rougher the surface, the darker it appears.

1.2.3 Anisotropic reflectance function

The anisotropic reflectance functions estimated for a simulated canopy surface
are shown in Figure 1.4. The large variation of reflectance with both viewing and
illumination angles indicates that the canopy surface is not Lambertian at all.
Specifically, the reflection is stronger backward than forward, and the lower the sun,
the stronger the directionality. Particularly, the peak reflectances happen around the
sun directions. Since the canopy elements themselves are assumed to be Lambertian,
the structure of the elements to form the canopy is the only factor accounting for the
directional reflection. Indeed, the above results are not surprising but expected, as

explained below, due to subpixel-scale canopy structures.
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Figure 1.4 Surface structure is an important factor controlling the directional
distribution of reflected radiance. The directionality is stronger when the sun is lower
than when it is higher.

When observing from the same side of the sun (viewing angle < 90°), more
illuminated canopy elements will fill the sensor’s instantaneous field of view (IFOV)
and thus the canopy will appear lighter. However, when observing from the other side
(viewing angle > 90°), more shadows are present in the sensor’s [FOV and cause the
canopy to appear darker. The reflectance peaks are consistent with the observed “hot
spots” for forest canopies and are directly related to the tree crown shapes (e.g.,
Deering et al., 1994).

For the same canopy. the sun at a lower elevation angle casts more shadows
within the canopy than at a higher elevation angle. Since a larger amount of shadows

corresponds to a rougher surface (Shoshany, 1993), the canopy appears “rougher” to



the sun at a lower elevation than at a higher elevation angle. Because canopy elements
are assumed Lambertian, the smoother canopy results in more Lambertian reflection.
Therefore, the reflection off the canopy is more uniform when the sun is at the higher

elevation angle.

1.3 SCALE EFFECTS ON IMAGE CHARACTERISTICS

The structures of natural surfaces are usually linked with various spatial scales
(e.g., Milne, 1992; Townshend and Justice, 1992, 1990; Hall et al., 1991). In the
example of a forested surface, distinct spatial scales are related to stands, trees,
branches, leaves, and so on. When the scale of observation (image spatial resolution)
changes, very often we will observe different features even on the same surface (e.g.,
Happanen, 1996; Marceau et al., 1994; Woodcock and Strahler, 1987). Figure 1.5
shows three simulated images of a forested surface consisting of two types of
canopies, one smoother (a/b=0.5) and the other rougher (a/b=2). The resolutions of

these images are 0.25m (Fig. 1.5a), Im (Fig. 1.5b) and 32 m (Figl.5c), respectively.

Figure 1.5 Low- and high-resolution images of a simulated surface covered with a
rough forest canopy and a smooth forest canopy. (a) The ultra-high-resolution image
(0.25m) clearly shows the shapes, distributions, and brightness of individual trees. (b)
The high-resolution image (Im) shows vague but still detailed structures within the
canopies. (c) The low-resolution image (32m) shows strong contrast between the two
types of canopies. In (a) and (b) only a portion of the simulated canopy surface is
shown.



Fig. 1.5a reveals detailed structures of canopies. It may immediately be
interpreted by viewers as two type of canopies, composed of different type of trees
with distinct shapes and reflectances.

For the low-resolution image (Fig.1.5c), it is clear that there are two distinctive
features in the image, one lighter (corresponding to the smoother canopy) and the other
darker (corresponding to the rougher canopy). Other than that, the image does not
explicitly reveal any information on the structure within each canopy. In this situation,
we have to invert the observed spectra to find such information. This inversion may or
may not work, depending on how much knowledge we have and how many constraints
we can put on the possible solutions to the problem.

[n contrast, the high-resolution image (Fig. 1.5b) reveals much more variability
of the scene. The dominant feature in this image is no longer the distinct difference in
brightness between the two canopy types. Instead, the image reveals some information
on the size, reflectance, and shape of individual trees within each canopy. The highest
contrast is now related to variations in illumination geometry, which cause highlights
and shadows on individual trees and the substrate, rather than to variations in canopy
type. Apparently, the brightness variations in this image are not directly useful for the
purpose of mapping canopy types.

Figure 1.6 quantitatively describes the dramatic change in image characteristics
with image resolution for this simulated scene. In this figure, the within-class
variability is defined as the variance of brightness for each canopy type, while the
inter-class variability is the variance of average brightness of individual canopies.
Similarly, the total variability of the image is defined as the total variance of the
brightness over the whole image. The within-class and inter-class variabilities are
calculated for each image and then their ratios to the total variability of the
corresponding images are plotted as a function of image resolution. Consistent with
the above qualitative discussion, as the resolution increases, the within-class

variability becomes dominant but the inter-class variability rapidly decreases. Since
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the inter-class variability is an indicator of scene separability, its decrease with
increasing resolution simply means that the two canopies are getting more and more
difficult to differentiate. In particular, the canopies are spectrally almost unseparable at
very high resolution (<4m). In low-resolution images (=8m), on the other hand, the
inter-class variance dominates and two spectral classes are clearly defined,

corresponding to the rough and smooth canopies.
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Figure 1.6 Image characteristics vary with image resolution. Brightness variation in
low-resolution images is largely related to the difference in canopy types. In high
resolution images, brightness variation is dominated by the differences in illumination
geometry and reflectance between individual canopy elements within each canopy

type.

1.4 SCALE EFFECTS ON IMAGE INTERPRETATION
Due to the resolution dependency of image characteristics discussed in the

previous section, which itself is associated to the inherent surface structures, the



interpretation of satellite images needs to be rooted on the knowledge about surface
structure and its effects on satellite measurements. Depending on the image resolution,
surface structures may or may not be resolved in satellite measurements. Nevertheless,
these structures at different scales, resolved or not, will affect satellite measurements.
Therefore, it is expected that the knowledge about surface structures will improve the
reliability of extracted information about ground features.

For example, the resolved surface structures provide important information, in
addition to the spectral variability, to characterize different types of surfaces. The
textures, or spatial patterns of brightness/color variation, associated to these structures
can be extracted from the images and used to improve the accuracy of image
classification (e.g., Nel et al., 1994; Lee and Philpot, 1991; Stromberg and Farr, 1986;
Irons and Petersen, 1981). Even in case without obvious patterns, the spatial continuity
of large scale structures also provides powerful constraints on image interpretation.
Contextual image classification algorithms, which usually use statistical models to
simulate the local spatial correlation within individual scene components, have proven
helpful in many remote-sensing applications, including forest mapping, cloud
mapping, and land-cover and land-use classification (e.g., Moffet and Besag, 1996;
Kittler and Pairman, 1985; Zenzo et al., 1987).

The importance of using the structural information in this way is illustrated in
Figure 1.6. Although the high-resolution canopy images contain more information than
the low-resolution images, the canopies are not spectrally differentiable. Instead, their
differences are revealed in other forms, in this case the high within-class variability
due to resolved canopy structures at the tree scale. Careful examination of Figure 1.5b
shows that shadows and highlights within the smooth canopy are very different in both
distribution and amount from those within the rough canopy. Such differences are
directly related to the characteristics of the canopy structures. For these high-resolution

images, the spatial information is not only useful, but critical in both characterization



and differentiation of the canopies. Of course, we need to have appropriate algorithms
to extract and use such textural information.

The unresolved structures also provide important information for
understanding and interpreting satellite images. As mentioned above, the interpretation
of satellite images is fundamentally an inversion problem and prone to unstability and
non-uniqueness. The background knowledge about the possible structures in the scene
helps to constrain the solutions. For example, surface structures cause mutual
shadowing within the surface and cause it appear to be darker (Fig. 1.3). Topography
causes shading and also makes the surface darker. However, the effect of structural
shadowing is different from that of topographic shading in that the former is dependent
of viewing direction (Fig. 1.4) but the latter is not. Therefore, the topographic effects.
as the combined results of structural shadowing and topographic shading, should be
corrected based on the knowledge about surface structures (e.g., Gu and Gillespie,
1998; Hugli and Feri, 1983).

One of the key issues regarding to the interpretation of satellite images of
structured surfaces is the relation between the scale of measurement and the scale of
features of interest (e.g., Pax-Lenney and Woodcock, 1997; Happanen, 1996; Marceau
et al., 1994; Woodcock and Strahler, 1987; Markham and Townshend, 1981). The
former determines what will, and what will not, be resolved, and thus affects the
characteristics of the spectral images. The latter, on the other hand, determines the
information we need to extract from the measurements. These two scales basically
have determined the nature of the interpretation of a specific image: either to identify
large, resolved features (image classification), or to discover the abundance of small,
unresolved features (sub-pixel scale analysis). In either case, we need information on
surface structure in order to achieve a better understanding and interpretation.
Specifically, the knowledge on subpixel-scale structures is useful in interpreting the
observed reflectance spectra, and the knowledge on large-scale structures provides

extra constraints in inverting the measurements into geophysical parameters.
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1.5 SUMMARY

We have seen that surface structure plays an important role in the satellite
measurements of surface reflectance. Interpretation of satellite images should therefore
be based on generalized background knowledge about surface structures on the
ground.

Scale-dependency of surface structures and image characteristics adds
difficulties in incorporating such knowledge into image interpretation. There are at
least four scales involved in satellite image observation and interpretation:

1. scale of the scene, which characterizes structures of a surface;

2. scale of the interaction, at which light interacts with a surface:

3. scale of the interest, which determines the scale of extracted information:;

4. scale of the image, which determines image characteristics.

The first two scales are independent of observation and interpretation, but provide the
fundamental background knowledge required to interpret satellite images. The last two
scales are particularly important in implementing image interpretation algorithms. If
the scale of interest is smaller than image resolution, the spectral images need to be
inverted to identify the unseeable subpixel-scale features on the ground (unmixing).
On the other hand, if the scale of interest is larger than image resolution, the task is to
study the pattern of spatial correlation in the image in order to identify the resolved
features on the ground (feature extraction).

In the following chapters, I will examine several practical remote-sensing
applications in which we may test the image interpretation principles rooted in spatial
scales. I will study the impacts of subpixel-scale canopy structures on understanding
and thus interpreting forest images. Spatial continuity in high-resolution images is also
used as a constraint to improve image processing accuracy. Specifically, a multi-layer
spectral mixture model (Chapter 2) is developed to incorporate canopy structural

information for the extraction of subpixel compositional information and for the



inversion of canopy closure parameters. Based on the characteristic structure of forest
canopies, a photometric function is constructed for correction of topographic effects in
forest images (Chapter 3). In Chapter 4, I present a contextual topographic correction
approach based on spatial continuity in high-resolution images. In Chapter 5 is a multi-
scale textual classification algorithm suitable for classifying high-resolution satellite
images. These case studies are chosen to increase our understanding of the problems
related to spatial scales in image analysis, thereby increasing the applicability of

remote-sensing data to solve practical problems.



CHAPTER 2: SUBPIXEL-SCALE STRUCTURES AND SPECTRAL
MIXTURE ANALYSIS

2.1 INTRODUCTION

Spectral mixture analysis (SMA) models have been widely applied to analyze
the subpixel-scale composition, target identification and image classification. For
example, Smith et al. (1990) applied SMA to Landsat TM images to study vegetation
abundance in semiarid Owens Valley, California. Gillespie (1992) applied SMA to
thermal infrared images for geological mapping of Death Valley. Adams et al. (1995)
used SMA to classify forest communities in Amazon Basin.

Although it has been successful in general, SMA has some drawbacks which
has limited its applications. One of them is related to the interpretation of SMA
results, i.e., the endmember fractions, particularly the “shade” endmember (Smith et
al., 1990). Although topographic shading and structural shadowing occurs at all scales
within a pixel, shade itself is NOT a compositional member in the scene; that is, shade
is not an intrinsic property of the scene, but depends on and varies with extrinsic
factors such as the illumination and viewing directions. When the interest is on scene
composition, such as in soil, rock or green vegetation mapping, the shade endmember
fraction needs to be partitioned among other compositional endmembers in order to
estimate their actual abundance in the scene (e.g., Smith et al., 1990). There are
difficulties in doing this because the distribution of shade evidently depends on scene
structure, illumination conditions and image resolution.

Another often-encountered problem with SMA is that observed spectra
sometimes deviate significantly from linear mixtures of endmember spectra (e.g.,
Sabol et al., 1992; Mustard and Pieters, 1987; Johnson et al., 1983; Hapke, 1981). Due
to the difficulties in solving non-linear mixing problems, non-linear models are rarely

used in SMA. To employ linear SMA, either by “linearization” (e.g., Johnson et al.,



1983) or simply neglecting the non-linearity, will cause large root-mean-squared
(RMS) errors, which may also be a result of the incompleteness of endmember spectra
(Robets et al., 1990; Gillespie et al., 1990). Therefore, the non-linearity of spectral
mixing causes ambiguity in interpretation of residual images.

What has been overlooked sometimes in spectral mixture analysis is the
structure of natural surfaces, which has proved to have a strong influence on surface
reflectance. Therefore, this chapter will focus on the impacts of surface structure on
spectral mixing, and develop a model to incorporate structural information into
spectral mixture analysis to estimate the abundance and distribution of subpixel-scale

scene components.

2.2 SPECTRUM, COMPOSITIONAND STRUCTURE OF NATURAL SURFACE

The basic assumption in SMA is that a small number of materials or
components, of different reflectance spectra, mix in different proportions to cause the
majority of the spectral variation in multispectral images of natural scenes (e.g.,
Adams et al., 1986; Smith et al. 1990). These components or materials are called
endmembers. Whether the spectral mixing model is appropriate to describe the actual
mixing in the scene is usually evaluated by examining the model’s fit to the observed
spectra (e.g., Adams et al., 1989; Gillespie et al., 1990).

Fundamentally, there are two types of mixing: spectral and compositional. In
spectral mixing, the spectra of the endmembers are mixed to produce the observed
spectra, whereas in compositional mixing, the actual scene is a mixture of different
materials. With SMA, one expects to extract quantitative information on the
composition of the scene through unmixing the observed spectra. Such a scenario does
not always work, or work equally well in different circumstances, however, because
the observed spectra are not always highly correlated with the composition of the
scene. As an example, an open-canopy forest may appear to be significantly different

in brightness when the sun is at different elevations even after photometric shading is
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corrected (Fig. 1.3). As discussed in Chapter 1, this results from the changes of the
shadowing pattern within the canopy with the sun position, rather than from any
changes in the canopy composition itself. Besides composition, scene structure also
has a strong, even dominant, effect on reflectance. This conclusion is supported by
laboratory and field measurements (e.g., Gong et al., 1997; Roberts et al., 1990).
Consequently, compositionally identical mixtures may produce different spectra, and
compositionally different mixtures may produce exactly the same spectrum, simply
due to structural variations. Therefore, we need to know the surface structure in order
to relate the spectral mixing to the compositional mixing, which is the interest of most
SMA applications.

Even the endmembers themselves are not uniquely definable. Since natural
surfaces are mixed continuously from micro- to macro-scale, they can be viewed as
mixtures of a certain set of endmembers at one scale, yet another set of endmembers at
another scale (Adams et al., 1993). Therefore. the observed spectra can be modeled
equally well as the spectral mixtures of a number of sets of endmembers. Selecting
image endmembers, which is usually based on field observation, is thus an important
step in SMA. Ideally, the endmembers should be chosen to reflect both the
compositional and structural characteristics because they together have determined the
spectra in the actual scene.

It is well known that back scattering, muitiple scattering, volume scattering,
shading and shadowing are largely related to the scene structures at all scales (e.g., Li,
1997; Gong et al., 1997; Roberts et al., 1990; Hapke, 1981). These structural effects
have altered the spectrum and directionality of the illumination, and thus changed the
reflected radiance, for individual scene components. As a direct consequence, the
observed scene spectrum is not linearly mixed from the endmember spectra, and the
non-linearity is dependent on the structural complexity of the scene. If the
endmembers are defined at smaller scales, the scene will be highly structured in terms

of the endmembers and thus the spectral mixing is more non-linear. If we define



endmembers at larger scales, although the endmembers themselves are highly
structured, the scene will be less structured and thus the spectral mixing is more linear.
From another view point, since larger scale endmembers themselves are actually non-
linear mixtures of the smaller scale endmembers, the mixing of their spectra at the
scale of the observation must be less non-linear than the mixing of the smaller-scale
endmember spectra.

The scale at which the endmembers are defined has impacts on not only the
characteristics of the mixing model, but also the interpretation of the SMA resuits.
While small-scale endmembers tend to address the biochemical or geochemical
composition (e.g., green vegetation, woody material), the large-scale, structured
endmembers can be directly related to the physical features (e. g., trees) in the field.
Particularly, when *“shade” is added as an endmember to account for the structural
effects (e.g., Smith et al., 1990), its interpretation apparently depends on the scale the
other endmembers are defined. With scale-independent endmembers, there are likely
significant uncertainties in interpreting shade fraction in images of highly structured
scenes (e.g., Smith et al.. 1990).

To illustrate the structural effect, Figure 2.1 shows the simulated spectra of
scenes containing two spectrally distinct components, the average spectra of which are
represented by the large open squares. If both scene components are assumed of
structureless, the resulted spectra (solid circles) distribute along a line connecting the
spectra of the scene components. In this situation, the spectra are exactly the mixtures
of the spectra of two scene components, and the endmember fractions correspond to
the fractional abundance of scene components. Such correlations no longer exist when
the scene is structured, with one component ball-shaped and lying on top of the other
(Fig. 2.2a). The distribution of the simulated spectra (open circles in Fig. 2.1) of the
structured scenes largely deviates from the spectra mixed with the spectra of the scene
components. The structure is the key factor here causing the deviation since the spectra

of scene components are same in both simulations. Due to the structure, the flat layer
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is partly shadowed and the amount of shadows depend on the number and size of the
balls (Fig. 2.2b). the proportion of the flat layer being shadowed increases with the
coverage of the “ball” components. As a result of the shadows, the observed spectra
are darker than the linearly mixed spectra of the two scene components at
corresponding proportions. Therefore, structure is an important factor in relating the

spectral mixing to scene compositional mixing.
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Figure 2.1 Surface structure affects the linearity of spectral mixing. The scene
consists of two endmembers, “soil” and “tree.” If the surface is assumed to be
unstructured, its spectra (solid circles) can be presented as linear mixtures of the
endmember spectra (squares). When surface structure is assumed, the actual spectra
(open circles) significantly deviate from the linear spectral mixing line (gray line).



Although the shadow itself is not a compositional component in the scene, it is
an image endmember in the spectral mixing due to the structural effects. As shown in
Figure 2.2a, there are only two compositional components, the ball and the flat layer,
in the scene. In the image (Fig. 2.2b), however, there are three distinct spectra, of ball,
shadowed flat layer, and sunlit flat layer, respectively. When shade is added as an
image endmember, the simulated spectra can be fairly well treated as linear mixtures
of the spectra of these three endmembers. This is the usual approach in SMA (e.g.,
Smith et al., 1990). However, the problem arises as how to interpret the shade: is it
cast by the “ball,” the flat layer, or both of them? Obviously, to answer this question

requires us to examine the surface structure at the scale of the chosen endmembers.
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Figure 2.2 Sketch illustrating the difference between spectral mixing in image and
compositional mixing in the scene. (a) Two components are present in the scene,
“ball” and “flat layer.” (b) Three image endmembers are shown in the spectral image:
“ball,” sunlit “flat layer” and shadowed “flat layer.”



2.3 LINEAR SPECTRAL MIXTURE MODEL

Typically, spectral mixture analysis is done with linear models. For the linear
mixing model, it is assumed that the spectra in images are linear combinations of the
endmember spectra, with coefficients linked to their fractional abundance in the scene.
Therefore, if the spectra for the endmembers are known, either through laboratory or
field measurements, then it is possible to extract the fractional abundance of each
endmember by unmixing the spectra, pixel by pixel, to get the distribution map of each

scene component.

2.3.1 SMA Model
Suppose the reflectance spectra of N endmembers are {p,.,i =1L2,--,N }
where each p; is a vector representing the reflectance spectrum of the ith endmember,

then the linear model gives the mixed spectrum, p, of the endmembers according to

fractions {f,.,i =1, 2,---,N} as

N
pP= flpl +fzp:+'"+f‘vp‘v = quoi ’ (2.1)
=1
or in a matrix form
p=RF, (2.2)
where 9T=(p‘,p2,-~-,p~) and F=( l.fz.--qu)', and R and F are the endmember

spectrum matrix and fraction vector, respectively. The goodness of the linear model is

measured by the RMS error of the fit, which is

RMS = \[(p-RF)(p—RF)/ (N, 1) . (2.3)

where N, is the number of bands. Since the fraction of each endmember needs to be
positive and less than one, and their summation needs to be unity, to find the fractional
abundance of each endmember is equivalent to solving the linear inverse problem (2.2)

with constraints,



N
2 /=1 (2.4)
0<f <I, Vi=12,-- N
In practice, it is usually solved as an unconstrained linear inverse problem to get
F=(RR)"Rp. (2.5)
This solution is then back-checked to see if it satisfies the constraints (2.4),
considering the variation in endmember spectra and measurement errors. If both
constraints in (2.4) are met, the solution (2.5) is accepted. Otherwise, we need either to

search again for the solution to the problem or to treat it as an anomaly (e.g., Gillespie

et al., 1990).

2.3.2 Endmember selection

The endmembers are the basic components in the scene. Green vegetation,
non-photosynthetic vegetation, soil, and shade are chosen as endmembers in a variety
of SMA applications (e.g., Roberts et al., 1993; Smith et al., 1990: Adams et al.,
1995). They themselves may be mixtures of smaller-scale components. For example,
soil is usually a mixture of many different kinds of materials, including minerals, dry

grass, and litter.

2.3.3 Shade as an endmember

Since the structure of the scene has not been considered in the linear spectral
mixture analysis, the spectra obtained by mixing the endmember spectra are usually
not comparable to observed image spectra. Due to shading (local incidence angle
variation) and shadowing (blocking of illumination), the actual scene is always darker
than predicted. The “shade” endmember is then introduced in addition to the materials

existing in the scene to account for the structural effects.

2.3.4 Interpretation of endmember fractions
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Although it is implied in linear spectral mixture analysis that the fractions in
equation (2.1) are directly corresponding to the actual abundance of endmembers, it is
not always correct in a strict sense. Based on the radiation theory, the actual radiance,

L, of a surface composed of N components can be expressed as

1 o | & -
L= ;ﬁ E(%)p(¥)dS =;§ p,.ffE(x)dS

i Ap.E,

where A, and E, are respectively the areal abundance and average irradiance onto the

(2.6)

1
r

ith component. Therefore the reflectance of the surface is

2Lm z”' AE,

v D; - (2.7
Z AE " X AE
J=1
Comparing it with equation (2.1), we find that
N
/i =AiE1 ZA,'E/'- (2.8)
=l

Therefore, the endmember fractions in linear spectral mixture analysis are usually
different from their areal abundance. Only when all endmembers are, on average,
under the same illumination conditions are the SMA-estimated endmember fractions
directly related to their areal abundance. In this situation, the areal abundance of

endmembers estimated by the simple spectral analysis is

_ N _ N A
fi =A,.E/ZA].E,.=A,. DA = (2.9)
j=I j=1

However, as the shading and shadows are usually non-uniformly distributed in the
scene and different components receive different irradiance, the linear spectral mixture
model will not give accurate information on the abundance of endmembers. This is

one of the major drawbacks of the linear mixing model.



24 LAYERED SPECTRAL MIXTURE ANALYSIS (LSMA) MODEL

As discussed in Chapter 1, many natural surfaces are highly structured at
certain spatial scales. These structures, even if unresolved, play important roles in
controlling the bidirectional reflection of natural surfaces. Here is presented a layered
spectral mixture analysis (LSMA) model for the purpose of investigating structural
effects on spectral mixing. For simplicity, the scene is assumed to consist of two

layers.

2.4.1 Layered spectral mixture model

Suppose that the scene is stratified as two layers of different reflectance, say,

the higher layer as layer T with reflectance p” and the lower layer B with reflectance
p?, respectively. Also suppose that the scene is mixed by the two layers at proportions
of f7 and f° respectively. Based on radiance equation (2.6), the observed radiance

will be
L= %ﬁ E(X)p(x)dS = %[prﬁ E(x)dS + p"ﬁ E(x)dS1
A A" A (2.10)

L
where E” and E® respectively represent the average irradiance on the top and bottom
layers, A" and A” respectively represent the fractional area of the top and bottom
layers.

The top layer, however, casts shadows on the bottom layer, the amount of
which depends on the coverage of the top layer. Because the average irradiance on the
bottom layer depends on the fractional abundance of the top layer, the spectral mixing
is intrinsically non-linear. However, the illuminated and the shadowed portions on the
bottom layer each have irradiance independent of the coverage of the top layer.

Therefore, if the bottom layer is divided into sunlit and shadowed portions, then the
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original non-linear two-layer mixing problem becomes a three-endmember linear

mixing problem
in(frprfr+prBEL+fSpBES), @2.11)

where E* and E®, f* and f°represent the average irradiance and the fraction of the

sunlit and shadowed bottom layer, respectively. When written in terms of radiance, the
two-layer, three-endmember spectral mixing model is

L=fTLT+ frIt + £51°, (2.12)
where L", L', and L’ are respectively the radiance of the top layer, sunlit bottom
layer and shadowed bottom layer.

Now the areal proposition of the top layer and bottom layer can be estimated by
inverting equation (2.12) under constraints

T L s _
{g s;i: fdjfs sll ’ 19

in a similar way as in the linear spectral mixing model.

2.4.2 Endmember Spectra

Unlike in linear spectral mixture analysis, in which the endmember spectra are
defined as their reflectance spectra, endmember spectra in the layered model are
defined as radiance spectra (2.12). Such a choice is not only for the convenience of
linking the endmember fractions directly to their areal abundance in the scene, but
quite natural if the complexity of lighting is considered at the sub-pixel scales. Due to
shading, shadowing, and multiple scattering within a structured surface, the variation
in the illumination onto the scene components is likely larger than the variation in the
reflectivities of these components. Therefore, the observed spectrum is not only related
to the compositional variation of the surface, but even more so to its structural
variation. Unlike the limited number of components in the scene, however, the

variation in illumination is continuous from complete shadows to bright highlights,
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causing the non-uniqueness in both selection and interpretation of the endmembers. If
the endmembers are not defined at specific scales so that they all have certain
structures and thus corresponding illumination distributions, the variation in
illumination condition in different components will cause ambiguity in interpreting the
spectral mixtures. It will be difficult to identify structural or compositional variations.
To treat the observed spectra as mixtures of the radiance of structured endmembers
reduces such ambiguities.

In particular, it is the irradiance, not the reflectance, that differentiates the
shadowed from the illuminated bottom layer. Their reflectances are exactly the same,
but not so the irradiance and the radiance. Therefore, to choose radiance over the
reflectance as endmember spectra is more reasonable, considering the structures of
natural surfaces.

Endmember spectra can be measured in the field, under the same illumination
conditions as the image was taken. Although it may seem to be a rather difficult
requirement, actually it takes no extra work than acquiring reflectance spectra for
simple SMA. In interpreting the results of simple SMA such information is also
required as shading changes with sun position. Obviously, the endmember spectra can
be significantly different even when they are defined at the same scale in layered and
simple SMA models because intrinsic and inter-layer shades are differentiated in the
former (see discussion below).

A library storing the spectra of structured endmembers can be established in
the same way as that for simple materials. In addition, computer-simulated structures

can also be used to obtain approximations for the endmember spectra in the scene.

2.4.3 Intrinsic Shade and Inter-Layer Shade
Intrinsic shading and shadowing are caused by the variation of local incidence
angle and mutual shadowing within each layer. This class of “shade” has been

included in the spectra of each layer and has no contribution to the shade fraction
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estimated from equation (2.12). The inter-layer shade exists as the results of shadows
cast by the top layer on the bottom one. The shade fraction estimated from the layered
model is the amount of the inter-layer shade. This is in contrast to the simple SMA,

which includes all shading and shadowing in the shade endmember.

2.4.4 Advantages of the layered model

The consideration of scene structure has given the LSMA model two
advantages over the simple SMA. Because of the scale to define the endmembers, the
non-linearity of spectral mixing is reduced in LSMA. It has particular importance in
interpreting residual spectra which contain the information about the appropriateness
of the mixture model. If the non-linearity is not the major source of the residual, then it
is very likely that large residuals are corresponding to compositional anomalies in the
scene. With simple SMA, however, it is usually difficult to differentiate whether the
misfit is caused by non-linear mixing or compositional variation.

The other advantage with the layered model is that the results are ready to
relate to the scene compositional components. Distinguishing the inter-layer shade
from intrinsic shade makes it possible to convert the shade fraction more accurately
into other endmembers associated to scene composition than in simple SMA.
Associating endmembers to scene compositional elements at certain spatial scales also
contributes to the easy interpretation of LSMA results. There is no late-stage work
necessary for correlating the unmixing results to scene characteristic features. For
example, applying simple SMA to a scene may yield the result like: 40% vegetation,
25% woody materials, 10% soil and 25% shade. These numbers, however, do not tell
us much about the actual characteristics of the scene. In comparison, the LSMA may
yield the results such as: 70% trees, 10% sunlit soil, and 20% shadowed soil.
Immediately, we know some important compositional and structural features of the

scene.
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2.4.5 Mixed Layers

For natural surfaces, each layer is composed of different components and we
may be interested in particular components in each layer. For example, a canopy layer
may consists of many tree crowns of different reflectance due to variations in shape,
species, age, and other factors. Similarly, the substrate may also be mixtures of several
soil types, green vegetation, litters and so on. Such compositional variations in each
layer will cause variations in their spectra. If the variation is not large, using the mean
spectrum for each layer may still be adequate to obtain good estimates of each layer’s
coverage. In case the spectra vary largely, or we need information on the components
in each layer, however, the second level unmixing needs to be conducted. This mixture
analysis can be done similarly to the simple spectral mixture model since it is assumed
there are no significant structure within each layer. The second-level spectral mixing

equations are

NE

> FPoPES . (214
=1
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T
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Or combining it with the first-level mixture model, we have the hierarchical spectral

mixing model

N N N
L=—(3 [T ET +3 fLoPEE+ Y 2P E?), 2.15)
/2 =l i=l
with the constraints
N NE N8
L= T+ fr+ > f5 (2.16)
=l 1=

=i
In a similar way as in SMA, the above constrained equation can be soived as a
linear system, except that extra attention should be given to the stability of its
solutions. If the radiance spectra of two or more endmembers (either in same layer or
in different layers) are similar to each other, the solution will become unstable. In this
situation, the spectrum and composition of the scene are not one-to-one correlated, and

any inversion algorithm will fail.
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2.5 INVERSION OF CANOPY PARAMETERS

Applying spectral mixture models to extract information directly related to the
features of forest canopies, such as coverage, composition, and roughness, is necessary
in order to map forest communities accurately. Due to the transmissivity of trees and
gaps between tree crowns, the exposed substrate causes variability in the spectra of
forest canopies, resulting difficulties in identifying and differentiating forest
communities, particularly in case the substrate varies significantly from one location to
another. With this regard, the spectral mixture analysis can be a powerful tool to
separate the canopy layer from the substrate layer, and to differentiate among the
compositional varieties within the canopy layer.

In the past, the endmembers in studying forest have been taken as green
vegetation, woody material, soil, and shade (e.g., Adams et al., 1995). The endmember
spectra measured away from the actual canopy structure, however, are not
representative of their spectra in the scene because the structure by which these
materials are organized has changed the lighting environment (e.g., Roberts et al..
1990). The non-linearity is expected to be large. On the other hand, tree, substrate and
shaded substrate together make good endmembers because they are the largest-scale
structures within the [FOV of the sensors. As mixtures of the above more fundamental
materials in certain structures, these endmembers are more closely related to the
spectral mixing of the observed forest spectra. In this section, the simple and layered
SMA models, based on the above two scenarios of defining endmembers, are applied
to a series of canopies to investigate the significance of canopy structure in spectral

mixing analysis.

2.5.1 Canopy Simulation
Two canopies were constructed, one with trees of sphere-shaped crowns and

the other ellipsoid-shaped crowns, to study the impacts of canopy roughness. The sun
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(illumination source) elevation angle was set at 30° and 60° to account for the
g

variation in illumination geometry in different seasons. Therefore, there are a total of

four simulations for different combination of canopy roughness and sun position (Fig.

2.3). For each simulation, 250 canopies were constructed with randomly distributed

canopy closures between zero and one. To allow some natural variability in the scene,

20% random noise is added to the reflectance of both trees and the substrate. The

reflectance values of the canopy element and the substrate are taken from spectral

library as representatives of green vegetation and soil.
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Figure 2.3 Structure and illumination geometry of simulated forest canopy data.
Simulation [: ball-shaped tree crown, sun elevation 30°; Simulation 2: bail-shaped
tree crown, sun elevation 60°; Simulation 3: ellipsoid-shaped tree crown, sun
elevation 30°; Simulation 4: ellipsoid-shaped tree crown, sun elevation 60°.
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2.5.2 Results of simple spectral mixture analysis

The SMA was then applied to the simulated data with three endmembers: the
tree element, the substrate element. and the shade. Without assuming any knowledge
on the source of the shade endmember, the shade fraction was proportionally
partitioned among the other two endmembers. In this way the fraction of endmember

tree was converted to the canopy coverage:

S 7
L= . 2.17
£, A (2.17)

The results of SMA, shown in Figure 2.4, indicate that the canopy closures
estimated with the SMA are always higher than their actual values, particularly for low
sun illumination. The maximum deviation usually occurs at intermediate canopy
closure, 45% for low-sun and 60-70% for high-sun images. Such results are easy to
explain, considering the canopy closures are estimated by uniformly partitioning the
shade fraction. This assumption is not justified for forests because the shadows are
dominantly distributed on the substrate although both tree crowns and the substrates
are shaded. Consequently, the shade endmember compositionally corresponds to more
substrate than the tree crowns. Therefore, partitioning the shade fraction proportionally
among tree crown and substrate will over estimate the abundance of tree crowns but
under estimates the proportion of substrate.

Results produced by SMA are largely dependent of illumination geometry
(Table 2.1). The overestimate is much larger in the low-sun images (simulations 1 and
3) than in the corresponding high-sun images (simulation 2 and 4). When the sun
elevation is 30°, average errors of the model’s prediction are 28% and 34%,
respectively, for the sphere (simulation 1) and ellipsoid-shaped (simulation 3) tree
canopies. In comparison, the corresponding errors are 13% and 17% when the sun is
at 60°. Such behavior is predictable because in lower-angle illumination, more
substrate is shadowed and thus more shadowed substrate is interpreted as canopy,

causing larger overestimate of the canopy coverage.
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Figure 2.4 Correlation between actual and estimated forest canopy coverage. Linear
SMA model generally overestimates canopy closure for the simulated canopy data.
The prediction errors are larger when the sun is lower (simulations 1 and 3) than
when it is higher (simulations 2 and 4).

Canopy roughness affects, but less than the illumination, the accuracy of the
estimated canopy coverage. In average, the canopy coverage is overestimated by 13%
(high-sun) and 28% (low-sun) for the ball-shaped tree canopy (simulations 1 and 2),
in comparison to the corresponding overestimates of 17% (high-sun) and 34% (low-
sun) for the ellipsoid-shade canopy (simulations 3 and 4). For the simulated data, the
simple SMA appears more accurate when applied to smoother canopies than rougher
canopies. However, there is not enough evidence to make such an observation
conclusive because it is not clear how canopy roughness will quantitatively affect the
amount and distribution of inner-layer and inter-layer shades. When canopy structure
changes, both the shading and shadowing within the canopy layer will change. Also

changed is the proportion of shadowed substrate. Therefore, it is hard to predict
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whether the variation of canopy roughness will strongly cause more shade for one

particular endmember.

Table 2.1. Accuracy of canopy closure estimated with SMA and LSMA

Sun Crown SMA LSMA
Elevation Shape Error r Error r
simulation | 30° ball 27.8% 0.723 5.2% 0.974
simulation 2 60° ball 13.1% 0.950 4.0% 0.984

simulation 3 30° ellipsoid | 34.3% 0.497 7.0% 0.941

simulation 4 60° ellipsoid | 17.3% 0914 4.3% 0.977

The prediction errors are also reflected in the correlation between the predicted
and the true canopy closure. As shown in Table 2.1, the relatively low correlation
coefficients () indicate that the SMA model is not particularly accurate in predicting

forest canopy closure, particularly in low-sun images.

2.5.3 Results of the Layered Spectral Mixture Model

The same canopy data were analyzed with the layered spectral mixing model
(LSMA). The radiance spectra of the two endmembers, the canopy layer and the
substrate layer, are calculated from the simulation data. Different from SMA, which
takes the element of tree crown as an endmember, in LSMA the canopy itself is an
endmember and thus its fractional abundance is directly corresponding to the canopy
coverage. Figure 2.5 shows the results of the LSMA. Clearly, the canopy closures
predicted with the LSMA are highly correlated to the actual canopy closure in general.
Most of the variation (>94%) of the estimated canopy is due to the actual variations in

canopy coverage (Table 2.1). As expected, the LSMA yields more accurate results and
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smaller prediction errors ( 4-7%), than the simple SMA which causes errors between

13-34% in four simulations (Table 2.1).
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Figure 2.5 Correlation between actual and estimated forest canopy coverage. The
LSMA model yields much better predictions than the linear SMA model in all
simulations. Slight underestimates in the high canopy-closure end are evident for
simulation 3, which is related to the significant structures within the canopy layer.

Tree shape and sun position have little impact on the performance of LSMA.
As in the SMA, it is generally true that the rougher the canopy and the lower the sun,
the poorer the model’s performance. However, these factors have only very smail

impacts in comparison to the simple SMA.

2.5.4 Non-Linear LSMA
Nevertheless, careful examination at the closed canopy end in Figure 2.5

reveals that the model-predicted canopy coverage is lower than the actual coverage for



39

the ellipsoid-shade tree canopies when the sun is low. To understand why the model
breaks down, the spectral variations of the average radiance of tree crowns (spectra of
endmember “canopy’) are displayed (Fig. 2.6). As canopy closure increases, the tree
crowns’ radiance decreases, as a result of more shadows being cast within the canopy.
Therefore, the spectrum of the canopy layer is not invariant but changes with the
degree of canopy closure. This result is due to the violation of the assumption in the
layered model that each layer is structureless. At high sun or for smooth canopies, the
structure within the canopy layer is not significant. As canopy gets rougher and the sun
is lower, however, this structure becomes significant and causes a large difference in
pattern and amount of shadows within the open and closed canopies. In this situation,
the structure within the canopy layer causes non-linear mixing in exactly the same way

as the inter-layer structure does.
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Figure 2.6 Average reflectance of the canopy layer varies with canopy closure in
simulation 3. As canopy closure increases, the amount of shadows within the canopy
layer increases and the canopy layer appears darker.
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If the correlation between endmember fraction and its spectrum, L(f), is known,
then it is possible to solve the nonlinear mixing problem with a simple iterative
method. As shown in Figure 2.6, for example, the canopy radiance spectra are
approximately correlated to canopy closure:

LM=025f7L]. (2.18)
where L] is the canopy radiance at 100% coverage. Therefore, we can first estimate

canopy fraction under the assumption of constant canopy radiance. The canopy closure
estimated this way is then plugged into equation (2.18) to find the canopy radiance at
various canopy closures. Such obtained results are shown in Figure 2.7. Unlike the
results (open circles) given by the linear model. which are lower than the actual
numbers in the high canopy-closure end, the non-linear model yields a slightly more
accurate prediction (solid circles) of the canopy coverage, with an average error of

5.8%, compared to 7.0% with the linear model.

2.6 SUMMARY

Two important factors have determined the observed spectra of a natural
surface: composition and structure. A number of studies have shown that the structural
characteristics of natural surfaces are probably the most important factor in controlling
their bidirectional reflection and back-scattering at large scales.

Because of the structural variations, there is no one-to-one correlation between
the spectral mixing and the compositional mixing for natural surfaces. With the
knowledge of the structural characteristics of a specific scene, however, we can
effectively relate the compositional and spectral mixing to each other so that
compositional information of the scene can be extracted through unmixing the

observed spectra.
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Figure 2.7 The non-linear spectral mixing model slightly improves the accuracy of
LSMA. The average prediction error is reduced from 7% in linear LSMA to 5.8%
with the non-linear LSMA model.

There are several reasons for the consideration of surface structure in spectral
mixture analysis. First, surface structure controls the amount and pattern of shading
and shadowing and thus changes the reflection spectra at sub-pixel-scale scene
elements. Second, surface structure causes non-linearity in spectral mixing, which can
be minimized by selecting structured endmembers. Finally, surface structure contains
the information necessary for appropriate interpretation of SMA results.

A layered spectral mixture analysis (LSMA) model is then proposed to account
for the structural effects on spectral mixing. Differing from the simple SMA, each
endmember in LSMA is structured so that the scene itself is constructed with the

endmembers in a simple structure. In this way, the spectral mixing in the image is
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better correlated to the compositional mixing in the scene than in SMA. In addition,
the differentiation between inner-layer and inter-layer shades help to interpret shade
endmember more accurately.

The spectra of forest canopies composed of ball-shaped and ellipsoid-shaped
trees under different illumination conditions are simulated and unmixed to invert
canopy closures. The simple SMA overestimates the canopy closure largely due to its
misinterpretation of the shadowed substrate as canopies. The applicability of simple
SMA is also affected by canopy roughness, and especially sun position. The simple
SMA yields poorer results on rougher canopies under illumination of a lower sun than
on smoother, higher-sun-illuminated canopies.

The LSMA model gives more accurate estimates of canopy closure than the
simple SMA. The estimated canopy closure is highly correlated to the actual canopy
closure, with average errors of 4-7%, considerably smaller than the errors of 13-34%
with the simple SMA. The canopy roughness and sun position in a similar way, but
with lesser amount, affect the accuracy of the layered model.

The layered model works poorly for rough, closed canopies under low-sun
illumination. The reason is that the smaller-scale structures within the canopy layer,
which can be ignored under optimal conditions, are significant enough to cause the
canopy layer’s radiance to vary with the degree of canopy closure. As a result, the
spectral mixing is non-linear. An iterative method may be used to solve the non-linear
mixing problem, and the results appear to be improved comparing to the linear layered
model.

It should be pointed out that the proposed layered spectral mixing model is still
in its infancy, and more efforts are needed to make it applicable to natural surfaces that
usually show very complicated structures. The purpose that it is presented here is to
demonstrate the significant importance of surface structure and spatial scale in
developing, understanding, and applying spectral mixture models to analyze the

abundance and distribution of subpixel-scale components in the natural surfaces.
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Further work will include extensive tests and refinements of the LSMA model for
various circumstances. Besides vegetated surfaces, this model is anticipated to be
useful in processing cloud-contaminated images. which are particularly common in

tropical regions.



CHAPTER 3: TOPOGRAPHIC NORMALIZATION OF LANDSAT T™M
IMAGES OF FOREST BASED ON SUBPIXEL SUN-
CANOPY-SENSOR GEOMETRY

3.1 INTRODUCTION

Forest mapping is an important application of remote sensing. Whereas images
of low-resolution (1 km or more) are often used in large-scale tropical rain-forest
studies for continental or global climate and environmental monitoring, high-
resolution images such as obtained by the Landsat Thematic Mapper (TM) (~30 m) are
useful for regional and local mapping and inventorying of forests and forest changes
due to fire, disease and logging (e.g., Collins and Woodcock 1996; Olsson, 1995;
Meyer et al., 1993).

The dominant source of variance in visible/near-infrared (NIR) TM forest
images is topographic shading and shadowing because many topographic siope
elements are resolved, particularly in mountainous areas. Topographic shading creates
an ambiguity among scene components having similar hues and saturation but
different intensities, leading to a reduction in classification accuracy (e.g., Itten and
Meyer, 1993; Franklin et al., 1986). Topographic shading also makes it difficult to
characterize unresolved sub-pixel-scale shadowing that could reveal information on
forest canopy structure or surface roughness. Uncorrected topographic shading has
hindered the attempt to use forest canopy roughness as a parameter to differentiate
forest stands of different species and ages. In time-series analysis, terrain effects limit
the recognition of the usually weak trends associated with seasonal variations,
occasional drought or insect damage, and growth, especially because the individual
images are typically obtained at various illumination conditions (Hill and Sturm,

1991). Therefore, recovery of true surface reflectance by removing topographic effects
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(“topographic correction™) is an important task in successful forest studies (e.g.,
Conese et al., 1993; Proy et al., 1989).

Several topographic correction methods, using high-resolution digital terrain
models (DTM) and photometric models, have been developed to remove the effects
caused by terrain variations. The fundamental assumption in all these methods is same:
the sun-terrain-sensor geometry changes with topography and contributes to variations
in the scene radiance. Accordingly, these models normalize the sun-terrain-sensor
geomeltry to remove or reduce variance due to pixel-scale topographic shading. Among
the most often used models are the Lambert cosine correction (e.g., Meyer et al.,
1993), Minnaert correction (Smith et al., 1980) and the c-correction (Teillet et al.,
1982) models, all of which have been applied to forest images with some degree of
success (e.g., Meyer et al., 1993). However, some topographic effects commonly
remain in corrected images, either as residual topography (under-correction) or
“negative” topography (over-correction) (Civco, 1989). These residual effects have
been attributed to over-simplification by the photometric model, neglect of diffusive
illumination (frem sky and/or environment), and inaccuracy of digital terrain models
(Civco, 1989). It is particularly expected that a more realistic forest canopy
photometric or bidirectional reflectance function will remove the terrain effects
significantly better than the simple models.

However, there are practical limitations on such efforts. First, complete bi-
directional reflection distribution functions (BRDFs) for forest canopies are not
available, although many in-situ measurements have been made (e.g., Deering et al.,
1994; Ranson et al., 1994). Second, the in-situ measurements may not be
representative of satellite measurements, which usually have lower spatial resolution,
because the reflection property of many natural surfaces is scale-dependent (Gu et al.,
1992). Third, forest-canopy BRDFs vary with stand age (Syren, 1994), species
(Abuelgasim and Strahler, 1994), tree density, and season of the year (Kleman, 1987).

Therefore, for different scene components, different BRDFs should be applied
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correspondingly. Of course, this requires that the goal of the image analysis - scene
characterization - has already been attained. Fourth, the BRDF, a measure of the forest
canopy directional reflection, is likely affected by topography as well as canopy
characteristics. Simulation studies by Schaaf et al. (1994) have shown that similarly

vegetated sloping and flat surfaces have different BRDF shapes as well as different

apparent albedos.
f sensor : ;
ro(a : i
? ( )sun A 0 sun  sensor |
i ~ . § ;
™ I / N l
SA -.
A% \ \Y
terrain ‘
haorizon ; terrain
(c) sensor ) sensor
sun A ; sun
S 5 \/m
; 14
terrain f terrain

Figure 3.1 Geometrical presentation of sun-terrain-sensor geometry correction
models: (a) forest canopy on the sloped terrain; (b) terrain rotated to horizontal; (c)
after light compensation based on photometric functions; and (d) forest canopy on the
flat terrain. Notice the sun-canopy-sensor geometry being changed from (a) through
(c), and canopy structure in (c) no longer the same as in (d).

For simple photometric models, the sun-terrain-sensor geometry can be
changed equivalently by choosing a different slope or by moving the sun. Because of
the organized structure of the forest, however, this assumed relationship is simplistic:

the interaction of light and the forest canopy is with individual leaves, branches and
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trunks, all oriented with respect to the gravitational field, not the hill-slope. Therefore,
at the scale of the remote-sensing measurement, it is reasonable to expect different
changes in radiance for equivalent changes in sun-terrain-sensor geometry by
variations of slope or sun elevation. As shown in Figure 3.1, the radiance for forest
canopies on slopes (Fig. 3.1c) corrected using sun-terrain-sensor models is not the
same as for that on flat terrain (Fig. 3.1d), because their structures are different with
regard to the sun position. Therefore, the sun-terrain-sensor geometry normalization is
not a proper approach to remove topographic effects on images of highly structured
forest canopies.

It is necessary to develop a new topographic correction model for forests if
remote sensing is to be of wide use in forest management and change studies. Because
any single model is unlikely to be equally effective for all forest communities which
show considerable amount of variabilities, a good model should be mathematically as
simple as possible while accounting for the most important, general effects. The more
parameters to be estimated and/or measured there are in a model, the less generally
applicable it will be, although it may be more accurate for specific instances. As
inferred from the results of Schaaf et al. (1994), five variables (sun zenith angle,
sensor zenith angle, their relative azimuth angle, and terrain slope and aspect angles)
are needed to characterize forest-canopy BRDFs, together with at least three additional
parameters describing canopy structure (tree density, tree height, and crown shape).
The estimation of these scene-dependent canopy parameters and the quantitative
formulation of five-dimensional BRDFs is a challenge to those analysts needing
terrain correction.

Presented here is a new terrain-correction model suitable for TM and other
images of forests. The model is based on the interaction between solar radiation and
canopy elements as affected by the variation of terrain slopes and aspects. It is first
validated in a simulated Douglas fir canopy and then examined for its applicability to

different canopy coverage conditions. The application of this model to the TM images
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of a mature Douglas fir community confirms that it describes terrain effects for forests

better than other models having the same number of model parameters, or more.

3.2 SUN-TERRAIN-SENSOR GEOMETRY CORRECTION MODELS
Given the hemispheric reflectance p of a forested surface that is characterized

by surface-reflection model f(G), where G represents the sun-terrain-sensor
geometry, the reflected radiance is

L=pE;f(G)cos8/r, 3.1
where E; is the solar irradiance at earth surface (nomenclature is summarized in Table
3.1), and the second-order illumination such as sky light and secondary reflection from
neighboring hill slopes has been neglected. Variable 8 is the solar radiance incidence
angle relative to the local terrain surface and can be calculated from

cos@ = cosf cosx +sinfg sincos(g), (3.2)
where 6 is the sun zenith angle, « is the slope of the surface, and ¢ is the relative
azimuth between the sun and the slope. Equation (3.1) describes the sun-terrain-sensor
(STS) geometry correction model, the basis of current topographic normalization

methods.

3.2.1 Cosine correction model

If the surface is Lambertian ( f(G)=1), then we get the familiar cosine

correction model:

L

= 33
E; cos@ (3:3)

p

The cosine correction model usually under-estimates the reflectance of sun-facing
slopes and over-estimates the reflectance of slopes facing away from the sun, resulting
in the appearance of “negative” or “inverted” topography in corrected images. This

effect may be reduced by subtraction of the down-welling atmospheric irradiance,
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which may contribute up to 10% of total irradiance in NIR and up to about 20% in
visible bands from field measurements (e.g., Deering et al., 1994; Shoshany, 1993).
Down-welling atmospheric irradiance is especially important on slopes facing away

from the sun where topographic shading is stronger.

Table 3.1. Symbols used in terrain correction models

Symbol* | Explanation

(32
n

sun zenith angle (degrees)

incidence angle (degrees)

terrain slope angle (degrees)

terrain azimuth relative to the sun (degrees)

exitance angle (degrees)

surface reflectance (dimensionless)

me |~ le|r|®

ta

solar terrestrial irradiance at earth surface (Wm™)

average irradiance on sunlit canopy (Wm™)

energy falling on a scene element (pixel) per unit time (W)

sunlit canopy area within a pixel (m*)

radiance from a pixel on sloped terrain ( Wm™2sr™)

[\u(\';‘m’\nl

model-predicted radiance from a pixel on sloped terrain (Wm™sr™")

surface area of a pixel (m”)

empirical constant in c-correction model (dimensionless)

empirical constant in Minnaert model (dimensionless)

linear correlation coefficient (dimensionless)

[ B BN IRl T %)

~

relative error of model-predicted radiance (dimensionless)

* subscript , specifies corresponding quantities on horizontal terrain.

3.2.2 C-correction model

Examination of image data for rugged terrain shows that there is a linear
correlation between L and cos@ and the regression line commonly intercepts the L
axis (where cos@d=0) at a positive value (e.g., Teillet et al., 1982). To avoid over-

correction, particularly for slopes facing away from the sun, Teillet et al. (1982)
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proposed a c-correction model based on the observed empirical linear correlation

between L and cosé, described by regression slope m and offset a,

L a
= . == 4
p Es(cos@+c) “Tw 3.4

where ¢ is assumed constant for a given band and scene. Although ¢ must include
skylight effects, its value is so large in some images that the c-correction method

clearly lacks an exact physical explanation.

3.2.3 Minnaert correction model
Another well known approach employs the Minnaert Law (Minnaert, 1941) for

k-1

terrain correction: f(G) =cosk—l¢9cos e, where e is the exitance angle, which

approximately equals to the slope of the surface for TM images, and parameter &, the
Minnaert constant, is a measure of how close a surface is to the ideal diffuse reflector,
for which k=1. For example, Smith et al. (1980) related surface reflectance to observed
radiance for TM images through:

_ T Lcose
" E (cosfcose)*

P (3.5)

Because the parameter k <1 for most natural surfaces, equation (3.5) reduces the
terrain over-correction from the cosine correction.

When applied to TM forest images, the c-correction and Minnaert models
produce comparable results. Both produce fewer topographic residuals than the

Lambert cosine correction ( e.g., Meyer et al., 1993).

3.2.4 Other models

More complicated photometric functions and BRDFs, such as those proposed
by Walthall et al. (1985) and Liang and Strahler (1994), could be employed in the STS
topographic correction model. However, any such efforts do not appear to have been

published, probably because of the difficulties in verifying these empirical functions
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for specific scenes or in estimating the parameters involved. On the other hand, the
cosine correction, c-correction and Minnaert correction models have been widely used

because they are relatively simple, with no or few scene-dependent parameters.

3.3 DERIVATION OF THE SCS TERRAIN CORRECTION MODEL

3.3.1 Scale of light interaction within a canopy

Hidden in the STS models is the assumption that the interaction of light with a
natural surface is determined by the geometry of light source and underlying rock or
soil slope. For forests, however, there are at least three distinct scales at which the
interaction occurs. At the first scale (tree elements), light is scattered, transmitted and
absorbed by leaves and branches, controlled by their biochemical constituents and
structure. At the second scale (tree crown), the transmitted and scattered light after
interacting with leaves and branches, is redistributed throughout the tree crown
structure, as controlled by the biophysical parameters of the tree, such as density,
orientation and distribution of leaves. At the third scale (canopy), mutual interaction of
light among tree crowns further modifies the directional distribution as well as the
intensity of the radiance observed by the sensor.

Since trees (like most plants) are geotropic, growing generally straight up,
interactions at the first two scales are largely independent of topography. As a result,
both the irradiance and exitance related to direct illumination are not affected by
topography on sunlit portions of individual tree crowns. The indirect illumination from
adjacent trees and slopes are affected by topography, but such effects are expected to
be insignificant because indirect lights generally account for only a small proportion of
the total illumination.

Topographic effects are introduced at the third scale because the relative
positioning of trees is controlled by topography. As a result, more of each tree crown is

exposed to the sun on sun-facing slopes and less on the slopes facing away from the
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sun. In other words, the total area of the sunlit portions of the canopy largely depends
on topography. Because the sensor is usually unable to resolve individual trees, it
actually measures the collective radiance from all elements within its instantaneous
field of view (IFOV). On sun-facing slopes, a larger proportion of sunlit tree crowns
within the IFOV reflect significant amount of light back to the sensor, causing the
canopy to appear brighter than on the slopes facing away from the sun. Therefore,
topographic effects on forest images are largely related to the topography-controlled
variation of canopy’s sunlit area, which should be normalized in order to remove the
topography.

With above understanding of the topographic effects on forest canopies, a new
approach for correcting such effects was proposed. For convenience, it is named as the
SCS model because it was derived from the sub-pixel sun-canopy-sensor geometry,

the deterministic factor controlling forest canopy reflections.

3.3.2 Derivation of SCS model

To formulate the SCS model, we need to characterize quantitatively the
canopy’s sunlit area as a function of the geometry between the sun, sensor and terrain
slopes. However, the complication caused by forest canopy parameters such as stand
type, seral stage. as well as tree density makes the exact characterization intractable.
Some approximate formulations have been achieved for several simplified models of
tree crown shape, tree height and tree density (e.g., Abuelgasim and Strahler, 1994).
Herein, a statistical approach is adopted to derive the function for different terrain
slopes and aspects.

The total solar radiation energy, €, intercepted by a surface element (i.e., an

image pixel) on a terrain slope, is just the product of the solar irradiance E ¢ and the

pixel’s area projected in the direction of the sun radiation:

£=E;Scosb, (3.6)
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where S is the area of the pixel on the slope (Fig. 3.2). If we let I be the average
irradiance on the sunlit part of the canopy, then the total area, A, of the sunlit part of
the canopy within a pixel is

A=£_ ESSEOSH
I I

by the definition of irradiance, i.e., energy per unit area. As defined in equation (3.7),

) 3.7

A and I are respectively the area and the average irradiance of the sunlit canopy

within a pixel, different from S and E cos @, the area and the average irradiance of the

pixel, respectively. Apparently, A is always smaller than S, but I larger than Escos@

because there exist shadows as well in that pixel. Equation (3.7) holds for any terrain,
therefore the sunlit canopy areas in pixels on the sloped terrain and the horizontal
terrain are related to each other through

A _ EgScos@ I,

=z = =2 3.8
Ay ESycos§, I 8

where subscript ; specifies the pixel on the horizontal terrain. However, as we have
discussed above, the average irradiance on the sunlit portion of the canopy is largely
independent of the terrain (i.e., [ =1I,) and, in addition, we know from Fig. 3.2 that
6, =6; and S, =S cos «. Therefore

A cosé

(3.9)

A, cosacosb;

The next step is to estimate the collective radiance from the sunlit part of the canopy,
which is by definition the product of its average radiance and the total solid angle as
viewed by the sensor. Since the TM sensors have approximately a nadir view, the
solid angle extended to the sensor by the sunlit canopy is proportional to its area.
Considering that the radiance from the sunlit part of the canopy is largely topography-
independent, the total radiance from the sunlit part of the canopy must be

approximately proportional to its area, too.
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Figure 3.2 Geometry of light interaction with canopy on sloped terrain. The incidence
angle of solar illumination on the terrain slope differs from the incidence angle on the
sunlit part of tree canopy. which determines the irradiance on the sunlit parts of

canopies.

Therefore, if we neglect the relatively small amount of radiance from the
shadowed portion of the canopy, the total radiance arriving at the sensor from pixels

on the sloped terrain, L, and the horizontal terrain, L,, are related to each other

through
L_4
L~ A
or
L=1L,

cosé

" cosacosb,’

cosd

cosacosb,

(3.10)

(3.11)



3.3.3. Comparison with STS model

It is interesting to compare SCS and STS terrain correction models from the
geometric point of view. In STS model, the sloped surface (Fig. 3.1a) is effectively
rotated by a coordinate system transformation so that all slopes are treated as
horizontal (Fig. 3.1b). The photometric function is then applied to normalize the
illumination, effectively returning the sun to its original position (Fig. 3.1c). With this
procedure, however, the sun-crown geometry, which is actually independent of terrain
slopes, has been changed. Therefore, the STS model normalizes the sun-terrain
geometry at the cost of changing the sun-crown geometry, and hence the normalized
pixels do not have equivalent canopy structure from the viewpoint of the sun (Fig.
3.1c, d). For this reason, the simple normalization of sun-terrain-sensor geometry is
not adequate, at least for forests, for correcting terrain effects.

In contrast to the STS model, the SCS model changes neither the sun and
sensor positions nor the canopy structure. What has been normalized is the sunlit area,
while the irradiance on the sunlit canopies is kept invariant. This normalization is
equivalent to projecting the sloped surface, in the sun direction, to horizontal. A larger
effective solid viewing angle from the sensor is produced when the slope is facing
toward the sun, and vice versa. The effective solid angle of projected “pixel” is
determined by not only the incidence angle but also the slope angle through equation
(3.9). Because the light-crown interaction geometry is preserved, the SCS model is
more physically based than the STS model, and we anticipate that it should be superior

for topographic normalization for forests.

3.4 MODEL VERIFICATION WITH SIMULATED FOREST CANOPIES

A computer-simulated canopy has been generated to verify the topographic
correction models. Although the theoretical framework for the SCS model was
developed for 100% closed canopy, in this simulation a more representative value of

70% canopy coverage was used. Tree parameters and distribution (Table 3.2) are



chosen based on field measurements at Bluff Creek, Six Rivers National Forest,
California, described in the next section. With this model canopy, both the slope and
azimuth of the substrate are simultaneously changed while the sun is fixed in east with
the zenith angle of 30°. yielding a set of illumination conditions similar to that
resulting from topographic variation in the actual scene. The radiance from the canopy
under each illumination condition is calculated using a simplified version of the

radiosity model of Borel et al. (1991).

Table 3.2. Tree parameters of the simulated forest canopies

Cone-shaped crown diameter 5 meters
Cone-shaped crown height 15 meters
Height of crown base to ground 6 meters
Reflectivity of tree crown 40%
Reflectivity of ground 40%
Distribution of trees random

The radiance, normalized by flat-surface radiance, L, is plotted against the

cosine of the incidence angle in Figure 3.3. Each curve in Figure 3.3 represents a set of
simulations with varying azimuth angles but fixed slope angle. The canopy radiance
generally increases as cosé increases, but it also depends on the slope, with higher
values on steeper slopes if 8 is unchanged. Therefore, both slope and incidence angle
are needed to quantify the radiance from forests in mountainous terrain.

The normalized radiance, multiplied by the cosine of slope angle, should be
proportional to the cosine of incidence angle according to SCS model equation (3.10),

L 1
—cosa =

L, cosé.

Such linear correlation (with r=0.9967) is confirmed in Figure 3.4 for the

cosd. (3.12)

simulated forest canopy (Table 3.2). The scattering of radiance related to slope angle
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Figure 3.3 Radiance from the simulated canopy on various slopes. Radiance is
affected not only by the solar incidence angle, but also by the slopes. which are given

under each curve.
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Figure 3.4 The SCS model fit to the simulated data. Most of the scattering in Figure
3.3 now disappears, indicating that the SCS model predicts terrain effects better than

the Lambert model.
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variation seen in Figure 3.3 has been significantly reduced in Figure 3.4. Not only is
the fit improved, the slope of the fitted line, 1.159, is very close to the model-predicted
slope, which is 1.154 for the sun zenith angle 30°. These resuits suggest that SCS

model is accurate in predicting the topographic effects on the simulated canopy.
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Figure 3.5 Applicability of the SCS model to surfaces with various degrees of canopy
closure. The SCS model is more appropriate than the Lambert model for canopies of
50% or higher canopy-closure, and the Lambert model is good only when the canopy-
closure is low (lower than 50%).

Terrain effects for sparsely vegetated slopes will be poorly characterized by the
SCS model because its assumptions are violated. Therefore, it is important to examine
the applicability of SCS model to forests with various degrees of canopy closure.
Model surfaces that simulate canopies with 15%, 29%, 43%, 55%, 68%, 78%, 87%

and 93% closure were constructed following the same procedures described above.
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The exitance from each simulated canopy under various terrain conditions was
calculated and normalized. The root-mean-squared (RMS) residual error of the SCS
model’s fit to the normalized radiance was estimated to assess the performance of SCS
model (solid circles in Fig. 3.5). As expected, the RMS error is small for high canopy
coverage of more than 50%, but generally increases with decreasing canopy closure,
indicating that the SCS model is less applicable to low-closure, open-canopy forests
(less than 50%). The second-order variations of RMS error for high-closure canopies
are mostly related to the variability of tree distributions among different simulated
canopies.

Conversely, the STS model works best for bare slopes for which the structured canopy
is not a dominant scene component. Its accuracy decreases, however, as more trees are
present on the scene. As the canopy closure exceeds 50%, the performance of the SCS
model becomes markedly better than the STS model by a factor of about four as

measured by RMS error (Fig. 3.5).

3.5 MODEL EVALUATION IN THE TEST SITE

3.5.1 Test site description

A forested, mountainous scene, imaged by Landsat TM was selected to test the
SCS model. The test site is located in the northern part of Six Rivers National Forest,
California, and comprises an area of 1.8 2.1 km, about 60x70 pixels in the TM
image. Relatively uniform conifer stands and moderate to high terrain relief provide
the necessary conditions for examining topographic effects and testing different
correction methods. A ground survey conducted in late June, 1995, confirmed that the
conifer stands are dominated by mature Douglas firs, with lesser numbers of pine
trees, tan oaks, and hardwood trees. The canopy closure is around 80% in most of the

test site. Slopes are commonly 20° and are locally as high as 40°.
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3.5.2 TM image preprocessing

Landsat TM images of the test site, taken on 8 October 1990 and 9 July 1992
respectively, were selected to represent typical summer and fall imaging conditions at
the temperate latitudes. The TM images were registered to a DTM having similar
spatial resolution. Registration accuracy is typically better than 1 pixel; nevertheless
local misregistration as great as 2 pixels may cause visible errors in topographic
normalization, especially on ridges or streams. Approximate atmosphere path-radiance
and instrument offsets were removed by using a nearby lake as a reference surface,
assumed to have zero reflectance. The ratio of TM band 4 (0.85 wm) to band 5 (1.65
Wm) was used as an index to remove hardwood-dominated pixels from the image
subset. TM band 5, which is less affected by atmospheric scattering than the visible
and near-infrared bands, was selected to examine the terrain effects.

Some flat pixels (a =0) were picked as control points and the radiance at
these pixels were used to estimate the average radiance of the flat pixels, L,. The

radiance at each pixel on the images were then divided by L, to get the normalized

radiance for testing the topographic correction models.

3.5.3 Statistical evaluation of the SCS model

Figure 3.6 displays the strong topographic control of brightness for the test site.
Although the data exhibit great variability, the normalized radiance clearly increases
from shaded slopes to sunlit slopes.

The SCS model and three STS models (cosine correction, c-correction, and
Minnaert correction) were applied to the test site. Three parameters were calculated to
assess the performance of the correction models quantitatively:

1. The squared correlation coefficient (r*) indicates the percentage of data
variance explained by the terrain correction model. The higher the correlation, the

better the model’s fit to the data.
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Figure 3.6 Scatter plots of TM band 5 normalized radiance vs. cosine of the solar
incidence angle. (a) 8 October 1990 image; (b) 9 July 1992 image.
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2. The RMS error measures the residual of the fit. The smaller the RMS, the
better the fit. Moreover, comparing RMS error with the data noise level will help us
understand whether the residual is caused by data noise or model’s inaccuracy.

3. The relative error of model-predicted radiance on horizontal terrain,
8, =(Ly—-Ly)/ L,, directly measures accuracy of the models, where L, is the
observed radiance on horizontal terrain as estimated from the radiance of the selected
flat pixels, and where I, is calculated for each correction model with the model
parameters estimated from the test data. If the difference is large, the correction model
is not accurate even though it may fit the data well. On the other hand, smaller

differences are likely related to more accurate models.

Table 3.3. Performance of terrain correction models on the test site

TM images 1990 1992

Statistics P J, RMS | .2 o, RMS
Cosine correction 0.77 8% 0.22 0.36 12% 0.18
C-correction 0.80 8% 0.20 0.53 7% 0.14
Minnaert correction 0.66 -9% 0.25 0.69 2% 0.13
SCS 0.80 -2% 0.20 0.66 1% 0.13
DATA 0% 0.20 0% 0.13

The test results listed in Table 3.3 suggest:

1. The SCS model consistently appears to characterize the topographic effects
better than all three STS models for both 1990 and 1992 images, as shown by
generally higher correlation coefficients, smaller §, and lower RMS errors.

2. The Minnaert correction is as good as the SCS model for the 1992 image,

but fails for the 1990 image (lowest r*, highest RMS, and large 9, ).
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3. On the other hand, the c-correction yields a relatively good fit to the 1990
image but poor fit to the 1992 image. In addition, it generally overestimates l;, (about

8%) for both images.

4. The cosine correction overestimates fo (8% and 12% for the 1990 and

1992 images, respectively), in addition to fitting the data with lower r?> and higher
residual errors, particularly for the 1992 image.

5. The inconsistency of the c-correction and Minnaert correction models are
also reflected in the model parameters, which are estimated from the test data in order
to get the best fit. The empirical constant found for the c-correction model changed
from 0.10 for the 1990 image to 0.42 for the 1992 image, and for the Minnaert model,
it changed from 0.46 to 0.64.

It is important to compare the RMS error of these models to the data noise
level. (“Noise” here restrictively refers to the satellite-observed within-class
variability, which is includes, but not limited to, the errors associated with image
acquisition and processing. With such specification, the noise level is an important
parameter for measuring the ability to distinguish different forest and/or non-forest
communities in the scene). If RMS is higher than the data noise, the residuals still
contain some useful information and the improvement of the models is probably
necessary. However, if RMS is close to the data noise, the residuals may not contain
much information useful for improvement of scene differentiation. In this situation,
trying to fit the test data better does not necessarily lead to better results for many
applications, such as forest mapping. Since there are no terrain effects on the flat
pixels, the variation of the observed flat-terrain radiance is basically caused by noise as
specified above and therefore the standard deviation of the normalized radiance for
these flat pixels characterizes the level of data noise, independent of topographic
effects. The noise levels estimated this way are 0.20 and 0.13 for 1990 and 1992
images, respectively. As shown in Table 3.3, the RMS errors for the cosine-corrected

data are higher than the corresponding noise levels for both 1990 and 1992 images,



indicating that the cosine correction model will leave some significant amount of
residual topographic effects. The Minnaert correction and the c-correction reduced
RMS to the noise level only for the 1992 image and the 1990 image, respectively.
Only the SCS model resulted the fit with RMS error matching the base noise levels on
both images. Thus, for these examples, the performance of the SCS model was the

best of all those tested.

3.6 DISCUSSION

Canopy structure has proven to be the most important factor causing the
directional reflection of forest canopies (e.g., Koch et al., 1990). It is also important in
the understanding of topographic effects on the satellite images of forested scenes. As
pointed out earlier, the topography modifies canopy structure and causes terrain effects
in the satellite observations. Such modification may occur at the sub-pixel scale as in
the Landsat TM images. or at the pixel scale in images of higher spatial resolution in
which individual trees are resolved. In the latter situation, topographic effects will not
correlate to the sun-terrain-sensor geometry at all and the conventional STS model will
not work. Instead, both the sun-canopy-sensor geometry at individual pixels and the
mutual shadowing between neighboring pixels are the critical factors in normalizing
the indirect topographic effects. Whether such a procedure is practically possible or
not is beyond the scope of this paper, the point is that the topographic correction of
forest images needs to be rooted in the consideration of canopy structures.

Some simplifications have been made in developing the SCS model in order to
make it easy to use in practical remote-sensing studies. For example, only the radiance
from the sunlit canopy is used in calculating the canopy brightness. Although darker
than the sunlit part, the shadowed canopy may still have substantial contributions to
the total reflectance because of the atmospheric down-welling radiation as well as the
multiple scattering due to the canopy structure. In addition, the SCS model has not

considered the viewing geometry effects when the sunlit canopy may be blocked from
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the sensor, which can happen in the off-nadir-viewing systems. For this reason, the
model at its present form is applicable only to the nadir-viewing systems, such as the
Landsat TM. Future efforts will be focused on the development of analytical forms of
the SCS model with improved accuracy and applicability.

We need to keep in mind that terrain effects are scene-dependent and that any
single model will not describe such effects equally well for different scene
components. The SCS model works better for forests, but the STS model, in any form,
will be more appropriate for less-structured surfaces. How to correct terrain effects in a
complicated scene is an important and interesting research topic. A possible strategy
could be to apply different models to forested and non-forested areas, which usually
have distinct spectra and are well separable. First, however, we need to assess whether
such efforts are useful considering data errors and natural scene variability.

Other factors, such as the variation in terrain elevation, sky illumination, and
secondary reflection from local environments, may all have significant impacts on the
topographic corrections as well (e.g., Shoshany, 1989: Proy et al., 1989). In addition,
data errors, particularly in DTM, and resolution mis-matches between image and DTM
data, may sometimes dominate topographic normalization (e.g., Gu et al, 1998;
Conese et al., 1993). Therefore, effort in considering these factors and reducing the
data errors will help to maximize the potential of advanced topographic correction

models.

3.7 SUMMARY

A terrain correction model, which preserves the sun-canopy-sensor (SCS)
geometry, is proposed for removing the topographic effects on the TM images of
forests. It normalizes the changes of sub-pixel-scale sunlit canopy area rather than the
pixel-scale irradiance on various terrain slopes. The SCS model is as simple as the
cosine correction model, but it has improved accuracy in removing topographic effects

in forest images. It is comparable to or better than the c-correction and the Minnaert
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correction models, which are also found to perform inconsistently from image to

image.



CHAPTER 4: A STATISTICAL APPROACH FOR TOPOGRAPHIC
CORRECTION OF SATELLITE IMAGES BY USING
SPATIAL CONTEXT INFORMATION

4.1 INTRODUCTION

The brightness variation of visible, near-infrared (NIR), and short-wave-
infrared (SWIR) satellite images in mountainous areas is dominated by topographic
shading and shadowing. In many remote-sensing applications, these topographic
effects are not desirable and need to be corrected before image interpretation. For
high-resolution images, such as Systeme Pour I’Observation de la Terre (SPOT),
Landsat Thematic Mapper (TM) and Muitispectral Scanner System (MSS), removal of
topographic effects requires a photometric function to characterize scene reflection and
a co-registered digital terrain model (DTM) to calculate illumination geometry.
General topographic correction models include the Lambert model (Smith et al., 1980)
and the Minnaert model (Minnaert, 1941), which have found wide application (Meyer
et al., 1993). Some specific models are also available for particular type of scenes,
such as the SCS model (Gu and Gillespie, 1998), which was developed for
topographic correction of forest images based on the sun-canopy-sensor (SCS)
geometry. Other models are empirical or semi-empirical (e.g., Civco, 1989; Teillet et
al., 1982). Although these models have different accuracy, they usually fit data well
and remove most topographic effects, particularly for high-sun images of areas of low
relief (Meyer et al., 1993). However, it is also observed that the brightness variation is
not significantly reduced in many topographically corrected images (Meyer et al.,
1993), particularly for low-sun images of rugged terrain. Since little residual
topography is visible in the corrected images, the high contrast of brightness cannot be

attributed to inaccuracy of the photometric function, and will probably not be reduced
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by using more complicated scene reflection models, such as the BRDF’s derived from
either simulation or field data (e.g., Schaaf et al., 1994; Shoshany, 1993; Ranson et
al., 1994).

It appears to have been overlooked that the failure of topographic correction
may result from various simplifications and data errors involved in topographic
correction (e.g., Conese et al., 1993; Civco, 1989; Proy et al., 1989). For example, the
resolution and accuracy of DTM may have great impacts on topographic correction
(Conese et al., 1993). It is reasonable to suspect that these errors will propagate into
the corrected images, and may even be locally amplified, causing large brightness
variations. Developing an approach to minimize the effects of these errors is thus a
logical step to take in improving topographic correction.

Since topographic correction involves estimating reflectance from illumination
geometry and radiance, both subject to errors, we must consider how these errors
propagate into the estimate of reflectance. Conventionally, reflectance is estimated by
using information at individual pixels only and thus prone to large errors due to the
imperfect data. Such errors can be reduced if information in nearby pixels is also used,
provided the scale of measurement is less than the scale of natural variability in the
scene. Although we are not certain about the statistical properties of all the errors
involved in topographic correction, we may assume that these errors are not strongly
correlated spatially. If this is the case, the spatially averaged brightness and
illumination geometry contain smaller errors, and the estimated average reflectance is
more accurate than the estimate at a single pixel. Therefore, using spatial contextual
information might reduce errors in topographically corrected images. Such an
approach is called contextual topographic correction to distinguish it from the
conventional, single-pixel method.

There are no published studies to justify a contextual approach to topographic
correction, but successful applications of contextual information are common in other

areas of image processing, for example, in cloud identification (Kittler and Pairman,
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1985), agricultural classification (e.g., Zenzo et al., 1987) and forest mapping (e.g.,
Nel et al., 1994). These successes motivate the adoption of a contextual approach to
topographic correction also.

In this chapter, a contextual topographic correction method is proposed and
tested on a subset of the October 8, 1990, Landsat TM image of the Six Rivers
National Forest in northern California. The errors associated with the satellite image,
the DTM, and the registration of the data are evaluated and differentiated in 4.2. The
method itself is formulated in section 4.3, which also contains a discussion of error
propagation. Section 4.4 gives the results on the test image, including the magnitude
and distribution of estimated reflectance variability, improvement of separability
between different cover types, and the visual comparison of the corrected images. In
section 4.5, discussions are focused on advantages and disadvantages of the contextual

topographic correction. Finally, conclusions are made in section 4.6.

4.2 ERRORS RELATED TO TOPOGRAPHIC CORRECTION

Although local illumination geometry influences the basic pattern of radiance
variation in satellite images, other factors also influence the apparent correlation
between radiance and illumination geometry. As an example, the band-4 radiance of
mature conifer forest on the TM test image is plotted with the cosine of incidence
angle (cos@) in Figure 4.1. The variation in the incidence angle is caused by
topographic variation, and the cosine of incidence angle is used in this paper to
describe the illumination geometry on a slope quantitatively. Larger values of cos8
correspond to brighter slopes, the so-called sun-facing slopes, and smaller values
correspond to darker slopes, slopes facing away from the sun.

Linear regression between the radiance and the cosine of incidence angle
suggests that about 78% of the total variance correlates with topographic shading, but

the scatter in this figure accounts for the other 22% percent of the variance. It is
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important to understand where the scatter comes from because it will be the major
source of variance in the topographically corrected image. Part of the scatter in Figure
4.1 is related to the natural variability within the vegetation community, i.e., the
mature conifer forest, in the scene, but the rest must be attributed to a number of
factors, including radiance measurement errors, DTM errors, registration errors, and
local variations of elevation, environment and atmosphere. These factors introduce
errors into the estimated irradiance, radiance and geometry and thus the applied

photometric function in the general equation of radiation.

~
o
o

n
o

m
o

H
o

W
o

n
o

TM band 4 radiance (DN)

-
o

Cose

Figure 4.1 Scatter plot of radiance-geometry for a conifer stand (consisting of 3488
TM pixels). Notice the amount of scatter in this diagram is about the same for all
slopes.

As a result, the observed radiance deviates from the model-predicted value

which is calculated based on the photometric function with input of the estimated
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geometry and irradiance. Let £, £, £.E , and €, represent the errors in illumination
geometry (g), observed radiance (L), solar irradiance (Eg), and the photometric
function (f), respectively, the observed radiance can be related to the true reflectance
P, through

L-& =p(E; —€:E5)[f(g~€,)~€,]cos@/ r. 4.1)
where 8 is the local solar incidence angle. Applying f(g -€,)=f(g)-f'(g)e, and

keeping only the zero- and first-order terms, we get

L=poESf(g)coselz—poES[f’(g)eg +€,+ f(g)e]cos B/ w+¢g,. (4.2)

If the error terms are omitted, (4.2) becomes the general equation for topographic

correction by using photometric function f(g). For clarity, the reflectance is re-scaled
by letting p, = p,Es / 7 so that

L=p,f(g)cos@+¢, 4.3)
where € is the residual of the fit or the difference between the observed and the model-
predicted radiance,

E=€ —plf(g)e, + f(g)eg + € ]cosb. 4.4)
The residual depends not only on the accuracy of the photometric function, but also on
the quality of data. The errors in illumination geometry, radiance, irradiance and
photometric function are related to different sources, and specifically:

1) & generally comes from the simplification that the solar irradiance on a

pixel depends only on the solar incidence angle. This error results from the
local variations of elevation and atmosphere condition, both of which will
modulate the local intensity of solar irradiance at ground level (Meyer et
al., 1993). llumination from nearby hill slopes also adds local variability of
total irradiance (Proy et al., 1989).

2) &, is the error in the estimated illumination geometry, resulted from errors

in the DTM data (Conese et al.,1993). In addition, some misregistration of



the image to the DTM is inevitable and causes additional errors in the
estimated geometry, particularly at pixels located near valley bottoms and
mountain ridges.

3) &, includes the radiance measurement error and the variability in

atmosphere path radiance.

4) &, represents the error in the photometric function, depending on the

accuracy of photometric function.
Although the magnitudes and distributions of these errors are usually unknown for
specific scenes, there is no reason to believe that the error in photometric function is
always the major source of the residual of the fit. Consequently, the residual can not
always be significantly reduced by using more accurate photometric models.

The value of the residual is apparently not measurable at individual pixels in
most situations because the true reflectance is unknown. In fact, topographic
correction models are usually evaluated from the RMS (root-mean squared) error of
their fit to the data for a number of pixels selected from the same community in the
scene. The RMS error, however, contains not only the deviations caused by the data
errors but also the deviations caused by the real variability of reflectance from one
pixel to another within the community in the scene. Therefore the RMS error itself is
not sufficient to derive information on the magnitude of residuals at individual pixels.

On the other hand, it is important to differentiate the sources of scatter on a
radiance-geometry diagram such as Figure 4.1 because only the scatter related to data
errors will cause errors in the topographically corrected images. Although it is not
possible to estimate the exact amount of scatter caused by the data errors, there are
some qualitative features that permit an assessment of their relative significance
comparing to the true reflectance variability. For example, if the scatter is caused only
by natural variability of reflectance, the amount of scatter should be strongly correlated

to topography because
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L-p,f(g)cos8=f(g)e,cosb , (4.5)
when dealing with perfect data, where €, denotes the natural variability of reflectance

and is likely spatially-invariant within the community. Therefore, the scatter should be
much stronger on the sun-facing slopes than on the slopes facing away from the sun
because flg) is larger on the sun-facing slopes than on the slopes facing away from the
sun. In contrast, if the scatter on a radiance-geometry diagram is mostly caused by data
errors, it should not be strongly correlated with topography according to equation

(4.4). (Precisely speaking, scatter related to £,. € I1s not correlated with topography
but are caused by &, and £ ) Instead, scatter should be correlated from one band to

another and is proportional to the reflectance (except scatter caused by £ )

For this purpose, the residuals of the fit in TM bands 3, 4 and 5 DNs (digital
number) for the same conifer stand are estimated for various topographic slopes (Fig.
4.2). From Figure 4.2 it can be observed that: 1) the standard deviations are not
strongly correlated to topography, and their values on very dark slopes are not much
smaller than that on sun-facing slopes; 2) the standard deviations in these bands vary
with topography in a similar way, and are highly correlated. For example, the
correlation coefficient is 0.95 between bands 4 band 5 (Fig. 4.3); and 3) the standard
deviations increase from band 3 to band 5 to band 4, and their magnitudes are
approximately proportional to the reflectance in these bands.

With above observations, it is concluded that data errors, rather than scene
variability, are possibly the dominant source of scatter on the radiance-geometry
diagram for the conifer stand in the test site. These errors will propagate into the
estimated reflectance. Of all the errors, £, and &, are present in the satellite images
when they are acquired, but they may be enhanced in topographically corrected

images. €, and &, are additional errors introduced in topographic correction, and

appear only on the corrected images. It could be very difficult to reduce these errors by
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improving data quality or photometric function accuracy, therefore it is practically very

desirable to find a way to minimize their effects in the corrected images.
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Figure 4.2 Standard deviations of TM bands 3, 4 and 5 radiance for the conifer stand
on various slopes. Larger standard deviation corresponds to greater scatter on
radiance-geometry diagram. Scatter is greater in band 4 than in band 5 and 3, but is
not strongly correlated to topography.
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Figure 4.3 Correlation of the standard deviations in bands 3, 4 and 5 radiance. The
strong correlation of standard deviations in different bands confirms that the scatter in
these bands are more correlated to each other than to topography.



75

4.3 CONTEXTUAL TOPOGRAPHIC CORRECTION APPROACH

4.3.1 Formulation of the Contextual Approach
Conventionally, topographic correction has been made by normalizing the
geometric term in equation (4.3) to estimate the reflectance

. L
A= F(grcosd’

where p, represents the reflectance estimated through *“‘normalizing” the illumination

(4.6)

geometry. If the residual in equation (4.3) is relatively small, the observed radiance
will have a good correlation with the topography and the estimate by (4.6) will be
close to the true reflectance. In practice, however, because the residual is usually
significant, such estimated reflectance may greatly deviate from its true value. In the
following, the approach based on equation (4.6) is referred as the conventional
topographic correction approach because of its common use in the past.

Instead of the conventional “normalization™ approach, it is also possible to
compensate for the radiance difference caused by topographic shading to remove
topographic effects. To illustrate this point, the radiance equation (4.3) is rewritten as

L=p,+p,[f(g)cos@~-1]+¢, 4.7
or equivalently

Po =L+ py[l— f(g)cosb]-k¢. 4.7)
Therefore, neglecting the error term, the reflectance is simply

P, =L+p,[1- f(g)cosd], 4.8)
where p, represents the reflectance estimated through “compensating” the radiance by

amount of p,[1 - f(g)cos@]. The true reflectance in the right side of equation (4.8),

however, is unknown, so practically this approach is incomplete. To solve this

problem, p, in (4.8) is approximated with a measurable variable, p,, such that
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p=L+p.[1- f(g)cosb], (4.9)
where P, represents the reflectance used for measuring the amount of radiance
required for compensation. There are variety of choices for defining p_, depending on
specific requirements on corrected images. In two extremes, for example, p. can be
defined as either the average reflectance over the entire scene, or the reflectance at
individual pixels estimated from the conventional approach. In the former case, the
corrected image will show little contrast, only acceptable if the scene is relatively
uniform. In the latter case, the “compensation” and “normalization” approaches lead to

identical results and equation (4.9) degrades to the same form as in equation (4.6).

\

Figure 4.4 Spatial context of a pixel. Shown is a 5x35 square neighborhood of the
center pixel (shaded). All the pixels in the square together consist of the spatial
context of the center pixel. The size and shape of the spatial context of a pixel can be
chosen according to image resolution. scene complexity, and data quality in practice.

In between, p. may be defined as the local reflectance estimated from the
information within the spatial contexts of individual pixels. To be specific, the spatial
context of a pixel consists of all of its neighboring pixels which are within a specified

distance from the pixel. For example, Figure 4.4 shows a 5x5 pixel, square-shaped
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spatial context of the center pixel. The local reflectance for each pixel is then
estimated from the radiance and geometry information on all pixels within its spatial
context. The larger the spatial context is set, the more the “smoothing” effect will be.
However, as long as the size of communities in the scene is larger than the spatial
context, the local reflectance is expected to be a good approximate to the reflectance at

individual pixels, with obvious exceptions at community perimeters.

4.3.2 Estimation of p,
With the spatial context predefined according to image resolution and scene

complexity, the local reflectance can be simply estimated from
N N
,5L.=ZL,. Zcosﬁif(gi), (4.10)
=l i=1

where N is the total number of pixels in the spatial context and L, and g, are radiance
and geometry at pixel i, respectively. If the errors in L and g are not highly correlated
from pixel to pixel, p, will be less affected by data errors than the reflectance
estimated from equation (4.6) at individual pixels. Equation (4.10) can be refined if the
spectral data on uncorrected images is used to identify community boundaries. Among
all the pixels in the spatial context of a pixel, if p, is estimated from information only
on those with spectra similar to the spectrum of that pixel, it will better represent the

true reflectance at that pixel. Using spectral information, the refined estimate of P, is

in general given by

Iv ;V
,5‘.=2w,.L,./Zw,cos&f(g,), (4.11)
=} i=l
where the weight w, for the ith pixel can be generally defined as
w, =cos(L;,L). “4.12)

Since the spectral shape is roughly independent of topography, in spectral space the

directional difference (direction cosine) of two spectra in equation (4.12) is more
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reliable than their distance in measuring their similarity. Here the weights in equation
(4.11) are defined as
{1 if cos(L,,L)2 S,
W, = ,

4.13
0 otherwise ( )

for simplicity, where S, (0< §, < 1) is preset to define similar spectra quantitatively.
To interpret the local reflectance, p., equation (4.3) is substituted into equation

(4.11) to obtain

N il
p. =Y wilp f(g,)cosb. +£1/ D w,cos8.f(g,)
i=l . , =l , (4.14)
=p+Y we& [ Y wcosf(g,)
=l

=l

N N
where p= z w,f(g;)cosB,p, / 2 w; cos 6, f(g,) is the weighted (by w,cosé,f(g,))
i=|

=i
average reflectance in the spatial context. The second term on the right side of this
equation represents the average residual error of the fit. Without considering the error
term in equation (4.14), p, is just the reflectance averaged over all pixels within the
spatial context, weighted according to their geometry and spectral shapes. Specifically,
the pixels with similar spectra, located on bright slopes, mostly determine the value of

P.. This is desirable, because the information from the less-shaded bright slopes is

more reliable than from dark slopes and spectral similarity indicates possibly similar
reflectances.

Of course, the weights used in estimating /. can be defined based on other
information. For example, the normalized difference vegetation index (NDVI) is
widely used in differentiating land cover types. Spectral mixture analysis (e.g., Sabol
et al., 1992) also provides a powerful tool for understanding surface composition.

Occasionally, in-situ spectral measurements might be available. Such additional
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information can all be used to obtain an estimate of J_ close to the true reflectance at

individual pixels.

4.3.3 Error Propagation in the Contextual Approach

The objective of the contextual approach is to reduce errors in comparison to
the conventional approach on the topographically corrected images. Such errors in the
conventionally corrected images can be estimated by substituting equation (4.2) into
(4.5) to get

&
f(g)cos8’

where A, represents the error in the reflectance estimated with the conventional

A =p—p,= (4.15)

approach. Although cosé increases from 0 on compietely shadowed slopes to / on
brightest slopes, the residual of the fit (€), however, does not strongly depend on
topographic slopes as we have seen in Figure 4.2. Consequently the error in such

corrected images, 4A,, is expected to be: 1) larger than the residual of fit (g); 2) not

uniform, i.e., larger on dark slopes than on bright slopes and 3) extremely large on
severely shaded slopes where cos8=0.
Simularly, the error in the reflectance estimated with the contextual approach,
A,, is found by substituting equation (4.6) into (4.9)
Ay =py=po=€+(P, ~p)ll- f(g)cosb]. (4.16)
Or applying equation (4.14) to get

_ N
A, =g+ S (8)cosd Y wie +(p-p)il— f(g)cosb].  (4.17)

Z w;cosé.f(g,) =

i=i

Therefore, errors in images corrected with the contextual approach come from three

sources:
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1) &, the residual of the fit. This error is related to original images, DTM data
and models used in topographic correction. Its reduction requires higher quality of data
and more accurate photometric function models, neither of which is practical.

However, the error related to € is not exaggerated as in the conventionally corrected

images.

N
2) ZW,e,. , the weighted average residual of fit in the spatial context. It is
i=l

related to the error in the estimated local reflectance (equation (4.14)). Since it is

N
assumed that € is spatially not strongly correlated, Z w;E; over the spatial context of

=l
individual pixels will generally be reduced in proportion to the size of the spatial
window. The magnitude of the related error in the cormected images is further

controlled by a geometric term, 1 f(g)cos@, so that the error due to £ is mostly
limited to dark slopes where f(g)cosé = 0. On bright slopes, f(g)cos@ =1, and this

error is negligible.

3) p—p,. the reflectance variation in the scene. It causes additional error in
the estimated reflectance because the radiance is compensated according to the
weighted average reflectance in the spatial contexts, instead of the reflectance at
individual pixels. For pixels near community boundaries, the spatial contexts are

mixed with pixels from different communities and cause the estimated P, to deviate

from the average reflectance of either community. As a consequence, the corrected
images will show some blurring along community edges. This effect, certainly
undesirable, is the major disadvantage of the contextual approach. For this reason the
spectral information is used here to locate community boundaries and weight
individual pixels as in equation (4.12). There is also a smoothing effect among pixels
within pure communities, but it is not as obvious because the reflectance variation is

not as strong within uniform communities. In addition, such smoothing effect may be
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helpful in some applications because it reduces within-community reflectance

variation and improves the separability among various communities. Similar to

N
Z w;€; , the resulting error in corrected images is also limited to dark slopes, and is
i=}

negligible on bright slopes.
Although the contextual approach has additional error sources because of the

substitution of p, for p, in equation (4.9), the total error in the corrected images is

expected to be reduced in comparison to the conventional approach. The ratio of the

errors from these two approaches is

N

2 W.E,;

A, - -
—== f(g)cos@+[—= +(P—Po)lf(g)cosbll- f(g)cosb]/e. (4.18)
Al

Zw,.cose,f(gi)

First, the errors are about the same with two approaches on bright slopes, where

f(g)cos@ = 1. Second, the ratio goes to zero on dark slopes, where f(g)cos8=0,

implying that errors on dark slopes have been greatly reduced by the contextual
approach. Finally, on intermediate slopes, the error ratio depends on the magnitude of
the residual of the fit. The error is reduced if the residual of the fit is larger than the
natural scene variability but increased otherwise. Since there are so many factors
involved, including image and data quality, scene complexity, and imaging conditions,

both approaches may have advantages over the other under particular circumstances.

4.4 APPLICATION RESULTS

The contextual topographic correction approach has been tested on a
240x 170 pixel subset of TM image that covers a coniferous forest. The widely used
Lambert and Minnaert models, together with the SCS model which was developed
especially for forested scenes (Gu and Gillespie, 1998), were used in different attempts

with conventional topographic correction.
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The SCS model was used in the contextual approach because it was found to fit
the test data better than other two models (Gu and Gillespie, 1998). The spatial context
of a pixel was defined as the 9x9 pixel square centered at that pixel. Within the

spatial context, only the pixels with similar spectra, yielding cos(L,, L) > 095, were
used to estimate .. Only bands 3, 4 and 5 were chosen as representatives to examine

the topographic effects and corrections for the visible, NIR and SWIR bands of TM

images.

4.4.1 Variance Analysis

Similar results are obtained for each of the examined TM bands but, for clarity, only
results in band 4 are displayed. Figure 4.5 compares the reflectance for the conifer
stand estimated by using the conventional and the contextual approaches, both
employing the SCS model. Clearly, the reflectance estimated with the conventional
approach shows more scatter, which increases from sun-facing slopes to shaded
slopes. In contrast, the reflectance variation on the shaded slopes has been significantly
reduced to about the same level as on the bright slopes with the contextual approach
(Fig. 4.5).

Because different topographic correction models likely lead to different
estimates of mean reflectance (Gu and Gillespie, 1998), the mean-normalized standard
deviations have been used to measure the variability of reflectance estimated by using
different models and approaches. As shown in Figure 4.6, each curve depicts the
variation of reflectance variability with topography. It is observed: 1) the variability of
the reflectance estimated by the conventional approach, using different photometric
functions, shows only slight differences; 2) In general., the variability rises from 0.13
to above 0.60 as the incidence angle increases from O to 90°, several times larger on

the shaded slopes than on the bright slopes; and 3) the reflectance estimated by the
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Figure 4.5 The estimated band 4 reflectance distributions for the same conifer stand
as in Figure 4.1. The reflectance estimated with the conventional approach (gray solid
circles) shows much more scatter than with the contextual approach (black solid
circles).
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Figure 4.6 Comparison of the variability of reflectance estimated with different
methods. The contextual approach produces more uniform reflectance estimates over
various slopes, but the conventional approach causes much larger variability on
shaded slopes than on sun-facing slopes, for all three tested photometric functions.
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contextual approach is more homogeneous and topography-independent, with lower
normalized standard deviations (0.13-0.18) than by the conventional approach.

The overall variability of estimated reflectance for all three bands was also
calculated and summarized in Table 4.1. The last row in Table 4.1 gives the mean-
normalized standard deviations of radiance on the brightest slopes(cosé = 0.95),
which approximately characterize the “true” levels of the natural scene variability
(they are in fact equivalent to the total variability of reflectance caused by the natural
scene variability and the errors in the image and the DTM). The overall variability of
the estimated reflectance before topographic correction is very large (about 0.45) in all
three bands. After the conventional topographic corrections, it has been significantly
reduced but is still higher than the “true” variability. For example, for the SCS model,
the variability is still higher by about 27%, 67% and 76% of the “true” variability in
bands 3, 4 and 5, respectively. In contrast, the variability has been reduced by the
contextual approach to about the same level as the “true” variability inferred from the
data. Smoothing has obviously occurred in the contextual approach because the
variability in bands 4 and 5 is slightly lower than the corresponding “true” values.
However, because smoothing can only occur on dark slopes, the fact that variability
remains about the same for all topographic slopes (Fig. 4.5 and 4.6) suggests the

smoothing effect insignificant.

Table 4.1. Normalized standard deviation of the estimated
reflectance for a conifer stand in the test site.

Band 3 Band 4 Band 5
without correction 0.45 0.44 0.46
Lambert model 0.35 0.28 0.33
Minnaert model 0.33 0.27 0.31
SCS model 0.33 0.25 0.30
contextual approach 0.28 0.15 0.17
‘“true’ variability 0.26 0.16 0.18




4.4.2 Visual Examination of Corrected Images

Figure 4.7 displays the test and terrain-corrected TM band 5 images. The
topography is apparent on the uncorrected image (Fig. 4.7a), which shows dark
shadows on steep northwestern slopes because of the low sun position (37.5°
elevation). Variation in brightness is largely related to topography throughout the
image, and provides little information regarding to the land cover types. For example,
brighter features (e.g., clearcuts) in northwestern slopes are confused with darker
features (e.g., forest) on the southeastern slopes because they have similar apparent
brightness in the uncorrected image. Therefore, it is necessary to correct the

topographic effects in the image in order to extract from it reliable information.

Figure 4.7 Band 5 TM images of the test site. (a) uncorrected; (b) conventionally
corrected; (c) contextually corrected and (d) spatially filtered version of image (b).
The image is 240 x 170 pixels.
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There is no apparent topography in average on the conventionally corrected
image (Fig. 4.7b), but the northwestern slopes appear to be “noisier” and show
different textures from the southeastern slopes. The unrealistic high variability on the
northwestern slopes will limit the accuracy of land cover type differentiation in
spectral classifications, and possibly result in unreal classes in textural classifications.
The contextual correction approach has produced an image which subdues abrupt tone
variations from slopes facing the sun to slopes facing away from the sun (Fig. 4.7c).
The fine textures are generally continuous and not abruptly interrupted across ridges
and valleys, which is one of the characteristics on the conventionally corrected image
(Fig. 4.7b). It is also encouraging that all boundaries between forest and non-forest
communities are well preserved because of the high spectral contrast. The boundaries
between different forest communities, however, are well preserved only on the sun-
facing slopes. Some blurring occurs on northwestern slopes, and the amount of
blurring i1s dependent of the spectral contrast between neighboring communities. In
general, the smoothing effect is not apparent. This is a great advantage over the simple
spatial filtering which is widely used to remove speckle or random noise in images.
For example, when the weighted average filter of the same size (9 x9) is applied to
the conventionally corrected image, the resulting image (Fig. 4.7d) appears out of
focus and most of the fine textures disappear, although edges between forest and non-
forest still stand out because the weighted filtering was actually not applied along
these boundaries of high spectral contrast. Therefore, the errors amplified in the
conventionally corrected images can not be easily “removed” by simple spatial

filtering.

4.4.3 Impacts on Classification Accuracy
Improved classification accuracy is one of the most important reasons for
topographic correction, and it would be convincing evidence supporting one particular

topographic correction over the others (Itten and Meyer, 1993). In the test scene are
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four main cover types: mature and old-growth Douglas fir-hardwood communities,
pole-stage conifers replanted after logging, hardwood-dominated communities in areas
burned in the last century, and recent clear cuts. With forest survey data provided by
the Six Rivers National Forest, four classes in the test site were defined: 1) mature/old-
growth Douglas fir-hardwood stands (MO); 2) older pole-stage conifers (OP),
replanted between 1965-1971; 3) younger pole-stage conifers (YP), replanted between
1976-1981; and 4) recent clearcuts (CC), replanted after 1985. At least 1000 pixels
were identified for each of the four classes, which are distributed over a wide range of
slopes. These pixels were classified using a maximum likelihood algorithm (Foody et
al., 1992) to assess the separability among the four classes on the uncorrected,
conventionally and contextually corrected images, respectively. Because the spectral
means and variances used in the algorithm were estimated from the same pixels, the
classification results only indicate how well the four classes are spectrally separable.
The results (Table 4.2) show that the overall classification accuracy was
improved from 66.7% in the uncorrected image to 79.3% in the conventionally
corrected image and 88.1% in the contextually corrected image, respectively. The SCS
model was used in both approaches. Without any topographic correction, the
brightness is mostly controlled by topography and separation of different communities
largely relies on their color difference (Fig. 4.8a). By normalizing illumination
geometry, the conventionally corrected image is directly related to ground reflectance,
which is independent of topography, and the overall classification accuracy is
improved (by 12.6%). The large errors in the corrected image, however, have limited
the improvement since all classes show strong variability and form large clusters in the
spectral space, resulting large overlaps among the classes (Fig. 4.8b). In the
contextually corrected images, however, the errors are reduced so that each class
corresponds to a denser cluster and the overlap among clusters is smaller (Fig. 4.8c).

Therefore, although the means of different classes are separated at about the same
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distances, the smaller variances lead to better and thus higher classification accuracy in

the contextually corrected image than traditionally corrected image.

Table 4.2a. Classification accuracy in uncorrected image

class \classified MO OP YP CC total accuracy
MO 999 142 1 0 1142 87.5%
OP 546 424 117 3 1090 38.9%
YP 183 206 709 99 1197 59.2%
CC 9 5 183 865 1062 81.5%
total 1737 777 1010 967 4491
user’s accuracy | 57.5% | 54.6% | 70.2% | 89.5% 66.7 %

Table 4.2b. Classification accuracy in conventionally corrected image

class \ classified MO OP YP CC total accuracy
MO 1015 108 19 0 1142 88.9%
OP 130 789 165 6 1090 72.4%
YP 42 219 806 130 1197 67.3%
CC 2 107 950 1062 89.5%
total 1189 1119 | 1097 | 1086 4491
user’s accuracy 85.4% | 70.5% | 73.5% | 87.5% 79.3 %

Table 4.2¢. Classification accuracy in contextually corrected image

class \ classified MO OP YP CC total accuracy
MO 1117 25 0 0 1142 97.8%
OP 6 976 105 3 1090 89.5%
YP 11 193 893 100 1197 74.6 %
CC 0 0 92 970 1062 91.3%
total 1134 | 1194 | 1090 | 1073 | 4491

user’s accuracy 98.5% | 81.7% | 81.9% | 90.4% 88.1%
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Figure 4.8 Spectral clusters of the four classes identified in the test site on
uncorrected (a), conventionally corrected (b), and contextually corrected (c) images,
respectively. Overlaps between different clusters are decreasing from (a) to (b) to (c).



For individual classes, the classification accuracy was improved by different
amounts after terrain corrections (Fig. 4.9). For example, most of the older pole-stage
conifer(OP) pixels were mis-classified as MO and YP in the uncorrected image,
yielding an accuracy of only 38.9% (Table 4.2a). It is improved to 72.4% in the
conventionally corrected image (Table 4.2b) and further improved to 89.5% in the
contextually corrected image (Table 4.2c). But in comparison, the accuracy for
identifying the recent clearcuts (CC) was not improved as much, about 8% and 9.8%
respectively in the conventionally and contextually corrected images. Before terrain
correction, these classes were mostly differentiated based on their spectra. More soil is
exposed In recent clearcuts than forests of different ages, resulting relative higher
reflectance in band 5 and making this class differentiable (with accuracy 81.5%) from
others even without terrain correction (Table 2a). Spectra of older pole-stage conifers,
however, mimic closely to those of mature/old growth, making OP much less
identifiable based on spectral information only (Figure 4.8a). On the other hand, the
OP class has higher albedo than the MO community so that they are well separable
based on reflectance information on the terrain-corrected images (Figure 4.8 b and c¢).

When different photometric function models were applied for the conventional
terrain correction, similar accuracy was achieved (Fig. 4.9). For example, the overall
classification accuracy was 77.6% when using the Lambert model and 78.5% the
Minnaert model, respectively. The accuracy differences (1-2%) with different
photometric functions are insignificant in light of the ~9% improvement achieved with
the contextual approach. Although these numbers are likely case-sensitive, they
suggest the potential improvements achievable with the contextual topographic

corrections.

4.5 DISCUSSION

The contextual topographic correction approach differs from the conventional.,

single-pixel-based approach largely in that it incorporates spatial contextual
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information to compensate the illumination differences on various terrain slopes. It has
the potential to reduce the errors in the corrected images resulted from the
imperfection of data. The contextually corrected images, however, may appear to be
smoothened with blurred community edges, and this is a drawback to the method.
Therefore, whether the contextual or conventional approach has more advantages over
the other is generally dependent of specific applications. For example, the contextual
approach may be more appropriate for removing terrain effects in low-sun images of
rough terrain with a DTM of poor accuracy and low resolution. On the other hand, the

conventional approach may be more suitable for high quality data.
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Figure 4.9 Classification accuracy improvements on the contextually corrected
images. Classification accuracy was improved in conventionally corrected images in
comparison to the uncorrected image, with similar magnitudes when using three
different photometric functions. But the best classification was achieved in the
contextually corrected image, yielding highest accuracy for ail classes.



The contextual topographic correction approach is very flexible and capable of
balancing error reduction and smoothing simply by varying the size of spatial context
(neighborhood). In case errors are large and of major concern in the corrected images,
a larger context can be defined to include more pixels. On the other hand, if data
quality meets the accuracy requirements for specific purposes, smaller spatial contexts
can be used to reduce the smoothing effects. As stated in Section 4.3, the conventional
approach is just a contextual approach that uses the smallest size (1x 1) of spatial
context, which includes only the pixel to be corrected. Therefore, to take the advantage
of the contextual approach, one key is to choose the size of the spatial context
properly. Although it is not intended here to put any specific rules, the size of spatial
context should in general be constrained to resolve the smallest mapping communities
in the scene. Therefore, image resolution, scene complexity, and data quality all should
be considered in choosing the size of the spatial context.

The contextual approach recovers more information loss due to topographic
shading and shadowing, an inevitable result of measurement errors and data
quantification. Since the errors are likely at the same level throughout the image, the
lower radiance implies lower signal-noise ratios and more information loss on shaded
slopes (Conese et al., 1993). The conventional approach fails to improve the signal-
noise ratio on the shaded slopes since both radiance and noise are simuitaneously
“normalized.” As a consequence, the signal-noise ratio is not uniform, lower on slopes
facing away from the sun than on sun-facing slopes, in the corrected images although
they may appear to be free from topographic shading in average. The contextual
information, however, is much less affected by such errors and thus “adds” signal to
the shaded slopes during contextual compensation. In addition, the contextual
information is added exactly according to the amount of information loss and, the
more information lost to shading, the more decisive the contextual information will be.
Therefore, the lost information is recovered more, and the signal-noise ratio is about

the same throughout the corrected image.
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Sub-pixel-scale mixing between adjacent communities along community
boundaries occurs in all images. In addition, real optical systems collect energy not
only from the specific scene element but also, in smaller amounts, from adjacent
elements (Justice et al., 1989). Finally, not all natural community boundaries are sharp
at the image scale. Therefore the transition from one community to another is usually
not precisely defined on satellite images and may even extend through a few pixels.
Although blurring is inevitable near community boundaries in contextually corrected

images, it can be reduced by calculating p, from spectrally weighted information in

the spatial context, particularly along boundaries between communities of high
spectral contrast. We need to be aware of the blurring effects, but they may not add
noticeable ambiguities in discerning community edges in some situations. Otherwise
we need to reduce the size of spatial context to control such blurring.

DTM records ground elevation rather than elevation of vegetation canopy,
which actually determines the terrain effects in forest. Therefore the illumination
geometry estimated from DTM is only approximately related to terrain effects,
considering the variability of canopy heights. Particularly if canopy heights of adjacent
communities differ greatly, such as clearcuts and old-growth, shadowing/high-lighting
unrelated to topography will occur near these community boundaries. In such cases,
even if a good correlation between DTM and satellite images is achieved over a large
area, locally image brightness may be poorly correlated to DTM.

Considering the improvements in classification accuracy achieved in the test
image with the contextual approach over the conventional., single-pixel-based
topographic correction method, it is worthwhile to pay more attention to data errors
and their effects in the corrected images. Developing more precise scene reflection
models, for instance as done by Schaaf et al. (1994), is very important to improve
understanding of terrain effects on satellite images. From the remote-sensing

application point of view, however, it may be even more important to characterize and
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minimize the most significant sources of errors in the corrected images. The contextual
topographic correction approach is just one step in this direction. Although this
approach reduces the effects of various errors in topographic correction, it does not
remove them. More effort is needed to improve data quality of the DTM and satellite
images, as well as the registration so that corrected images contain less errors and

allow better scene characterization.

4.6 CONCLUSION

A contextual approach for correcting topographic effects on the radiometry of
satellite images has been proposed and tested. To compensate for illumination
variation on various topographic slopes, the approach uses information extracted from
the spatial context of individual pixels. The advantage over the conventional pixel-
based approach, which normalizes the lighting geometry based simply on the
information at individual pixels, arises because such information has been deteriorated
by various errors associated with the acquisition and co-registration of the image and
DTM, particularly on the severely shaded slopes. As a result, more information on the
shaded slopes, otherwise lost, has been recovered as the signal-noise ratio is improved.

The contextual approach is inherently subject to blurring, but this can be
minimized by detecting community boundaries with spectral information. In this way,
sharp community boundaries may be preserved except those between communities of
low spectral contrast on severely shaded slopes. As the within-class variability is
reduced, different cover types are more accurately differentiated on the contextually
corrected images.

Although the proposed topographic correction approach has been examined
only on a single Landsat TM image of one forest site, the correction should be
similarly applicable for other satellite images. Its improvement over the traditional
approach depends in part on the specific sensor system and imaging conditions, the

available DTM accuracy, and terrain roughness and illumination conditions. The
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contextual terrain correction method has the potential to improve the performance of

remote-sensing analysis, especially over mountainous areas.




CHAPTER 5: A MULTI-SCALE TEXTURAL CLASSIFICATION
ALGORITHM FOR INTERPRETATION OF SATELLITE
IMAGES

5.1 INTRODUCTION

Classification is a major step in image interpretation, which links individual
pixels in the satellite image to meaningful identities. By this procedure, the satellite
measurements, usually radiance, are converted to information maps about land-cover
types and surface composition on the ground. Such information can either be directly
used by users or become the basic input for a database for reference. The fundamental
basis for image classification relies on the spectral contrast between different classes
that exhibit variations in brightness and/or color in satellite images. Spectral
information alone may not be sufficient for the reliable separation of different land-
cover types, however, because they may have similar spectra. In forest mapping, for
example, the spectral differences between different forest communities are very subtle
and spectrum-based forest mapping usually does not achieve the expected accuracy
(e.g., Foody and Hill, 1996; Nel et al., 1994).

Recently, contextural and textural classification schemes have been highly
favored for processing satellite images (e.g., St-Onge and Cavayas, 1997; Nel et al.,
1994; Zenzo et al., 1987; Franklin et al., 1986; Kittler and Parman, 1985). The simple
reason behind such efforts is that the spatial correlation in satellite images may reveal
important information about the characteristic structures of different classes on the
surface (e.g., Wudler et al., 1998; St-Onge and Cavayas, 1995). Incorporating such
information is thus expected to improve the classification accuracy because spectrally

similar classes may be very different in structure. This scenario is more likely to work



97

in high-resolution images because they will resolve surface structures better than low-
resolution ones.

The spatial information can be used in image classification in two different
ways, resulting two major categories of classifiers: contextural classifiers and textural
classifiers. Contextural classifiers generally assume some kind of statistical models
(e.g., a Markov Random Field, or MRF) to describe the spatial correlation of the
ground “truth,” and to localize the prior probability distribution required in statistical
classification (e.g., Bouman and Shapiro, 1994; Besag, 1986; Kittler and Pairman,
1985; German and German. 1984). The contextural approach is mostly successful in
classifying noisy imiages, or in image restoration (e.g., Besag, 1986). The major
problem associated with the contextural approach is model justification: how to
validate a parameterized statistical model to describe the distribution of ground truth.
Estimation of model parameters can also be problematic because they usually have
significant impacts on the accuracy and appearance of the final classification map
(Besag, 1986). In addition, the ground *“truth” has to be simultaneously estimated from
the data, which may lead only to local, instead of supposed global, optimization. It is
also disadvantageous for the statistical approach to handle scenes composed of units
with various spatial scales.

The textural classifiers, on the other hand, estimate local statistical properties,
the so-called textures, such as mean, variance and skewness, to characterize different
classes (e.g., Nel et al., 1994; Lee and Philpot, 1991; Stormberg and Farr, 1986; Irons
and Peterson, 1981; Haralick and Shanmugam, 1974). These statistical properties are
treated as additional image “bands,” and are used together with the original spectral
data for image classification. One advantage of the textural approach is that the
textural features, and thus the original data, are used directly and explicitly. With the
textural classifiers, however, problems arise both with estimating the high-order
statistics and with using them in an appropriate way. Practically, it is difficult to

validate the extracted textural features as being truly related to individual classes. As a
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matter of fact, false or unrealistic textures will always appear along unit boundaries
(Tomia and Tsuji, 1990). Therefore, it is critical in the textural approach to identify
unit boundaries, in order to avoid the artifactual textures which are not related to
surface structures. Another problem related to the textural approach is how to use the
extracted textural information in a statistical classification frame effectively, because
textures are difficult to characterize well with a statistical distribution. In general,
textural approaches, such as “region-growing” and “region-splitting” methods (Tomia
and Tsuji, 1990), require a lot of experience and knowledge to implement for
computer automation.

Because the contextural approach is best at handling multi-band (including
textural bands) information and the textural approach at characterizing structural
features, it is desirable to develop a hybrid algorithm that exploits their advantages
while avoiding their drawbacks. With such an algorithm, the textural information can
be extracted and used in a solid statistical framework together with the spectral
information for separating spectrally similar classes. For this purpose, a multi-scale
textural classification (MSTC) algorithm is developed here for classifying satellite

images. In the following sections, the algorithm is derived and tested.

5.2 CHARACTERISTICS OF SATELLITE IMAGE CLASSIFICATION
Satellite image classification identifies land-cover classes with intrinsic
variability, i.e., the natural scene variability. For example, a land-cover class may
exhibit significant spectral variations from one location to another across the image.
In comparison to the natural variability, the spectral scatter related to noise may be
small, for example, 1-2 DNs (John Adams, pers. comm., 1998). Land-cover classes are
generally defined in the scene according to average scene compositions over a
relatively large spatial domain at characteristic scales (e.g., Lambin and Strahler, 1994;

Hall et al., 1991). Such defined classes are usually characterized by following features:
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1. they are directly related to field observations or common experiences;

2. they are explicitly or implicitly defined at certain spatial scales; and

3. they are meaningful to users.

To identify land-cover classes in satellite images, therefore, one needs to examine not

only the spectral values of individual pixels, but also the spatial patterns or textures of

spectral variation from pixel to pixel (e.g., Fung and Chan, 1994). Only with both the
textural and spectral information can land-cover classes be completely described and
thus accurately differentiated in satellite images.

The spatial scales for defining the field classes likely vary for different classes
because of the complexity of natural and human-impacted surfaces (e.g., Lambin and
Strahler. 1994; Woodcock and Strahler, 1987). For example, rivers are elongate in
spatial extension, while timber harvesting often results in patches on landscapes.
Knowledge of spatial scales is very valuable in manual interpretation of satellite
images, and could also be utilized in computerized classification to improve mapping
accuracy. The MSTC algorithm will include such knowledge as an input.

It is usually necessary to make certain assumptions to simplify classification
algorithms. Here the key assumptions in deriving MSTC are listed and evaluated based
on the specific characters of satellite images and their interpretation:

Assumption [: if a pixel is from a particular class, it must fall into a pixel block,
within which all pixels are from the same class. Thereafter we will call such a
pixel block as a “uniform pixel block;”

Assumption 2: the probability of a uniform pixel block being from a particular class
depends only on the measurements over the block;

Assumption 3: the measurements are conditionally independent, i.e., the spectrum at a
specific pixel is determined only by its class membership.

The first assumption is inferred from the spatial continuity of land-cover classes in

high-resolution images. It is consistent with the decision-making process in the field:

when we say that a pixel belongs to a particular class, it implies that we have seen a



uniform pixel block of this class in the vicinity. This assumption is justified because
classes are usually defined at certain spatial scales instead of at the scale of image
resolution (Fung and Chan, 1994). In forest mapping, for example, classes are defined
as forest stands which may be implicitly associated with minimum areal coverage: a
group of trees does not necessarily comprise a stand. Depending on the scale of its
definition, one pixel of coniferous trees may not be treated as a conifer stand by the
field investigator. However, it may belong to a conifer stand if it is in the
neighborhood of several other pixels of coniferous trees.

The second assumption corresponds to the loose correlation in “ground truth”
at low spatial scales. Although the spatial continuity may be a necessity at the pixel
scale, depending on the spatial scales of image and information map, it is not
necessarily so at the scales of mapping units. In other words, uniform pixel blocks
surrounding a uniform pixel block of a particular class can be from any class. Using
the forest mapping example, a conifer stand may be next to other conifer stands, or
hardwood stands, or clear cuts.

The third assumption is introduced largely because it greatly simplifies the
derivation of the statistical classification algorithms (e.g., Besag, 1986). When the
spatial correlation in measurements cannot be neglected, some modifications are
necessary in order to apply the classification algorithms developed based on this
assumption (Besag, 1986). Unfortunately, assumption 3 is generally not true for
satellite images because the radiance measured at an individual pixel is always
“contaminated” by the radiance leaving neighboring pixels (Justice et al., 1989).
However, since neglecting the spatial correlation in measurements enhances the spatial
continuity in the classification maps, violating the third assumption may only
introduce ambiguities along boundaries between different land-cover classes. This is
tolerable since some ambiguities arise simply because of intrapixel mixing.
Nevertheless, this assumption should be examined and evaluated before using the

proposed algorithm.
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5.3 MULTI-SCALE TEXTURAL CLASSIFICATION (MSTC) ALGORITHM

5.3.1 Statistical Presentation

Assume that the spatially independent observation, X = {x,,i e R}, where
each x; is a p-dimensional vector, is related to a ground-truth map Y consisting of K

units over a two-dimensional surface R. Now the goal is to find, under a certain
decision rule, the realization of Y that is most likely to have generated the observation.

The whole image R can be partitioned into uniform regions {R,} which are
complete and exclusive, i.e., | JR, =R and R, |R, =0 for any m#n. In MSTC, the
classification decision is made to maximize the posterior probability, that is

Y = arg max{p(Y(R)/ X)} = arg max{p(Y(( R,)/ X)}

(5.1)
=arg max{ p({_JY(R,)/ X)}.

where p(.) represents probability. Applying assumption 2 that the scene is uncorrelated

at unit-scale, i.e.,

plJrR) =TT p(r(R,)

, (5.2)
P(Y(R,)/ X)=p(Y(R,)! X(R,))
it follows
pUY (R X)=]] p(¥(R,)/ X(R,)). (5.3)
and now the task of classification is to solve the optimization problem
Y(R,)= arg max{ p(Y(R,)/ X(R,)) ). (5.4)

This is the fundamental equation in the MSTC algorithm. It is interesting to compare
(5.4) to the more familiar single-pixel-based maximum likelihood classification

(MLC) rule (e.g., Deusen, 1995; Foody et al., 1992), i.e.,
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y; =argmax{p(y,/ x,)}. (5.5)
Apparently, MSTC and MLC both are within the Bayesian frame. They are different,
however, in that MSTC evaluates consisting of a sample of a larger number of pixels
than the MLC, which considers one pixel each time. Since the power of hypothesis
test, which determines the accuracy of classification, increases with sample size, it is
obvious that MSTC should be more accurate than the MLC. It is understandable,
because the textures are contained in the measurements in the neighboring pixels and
are involved in decision making.

Because observations at individual pixels are independent (assumption 3), the
posterior probability in equation (5.4) is

p(Y(R))/ X(R))=p(y,/ X(RNp(Y_, ! v,,X), (5.6)

where v, and Y, represent the class memberships of the ith pixel and all other pixels
within the unit R, respectively. Because R, is assumed a uniform region and all

pixels in it are from the same class, therefore,

0, fyv,=y
p(.v,/.V,-)=5(.\',—_\’,-)={L Fy =y LjER,. (5.7)
and
p(Y /Iy, X)=1. (5.8)
Therefore,
p(Y(R,)/ X(R,))=p(y,/ X(R,)), (5.9)

or in a more symmetric form,

L
p(y.! X(R).ieR)=p(Y(R)/ X(R)=[[1p(y,/ X(R NV, (5.10)

jeR,
where N represents the number of pixels in R, .

Now apply the Bayesian theorem to the right side of equation (5.10) to get
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‘ ‘ P(.V,-)HP(-‘; 1'y:)
p(y, 7 X(R )= PQIPC 5 Xy 1 y) 7 7 e, , (5.11)
Pxy, Xy, 0, Xy) [Ir(x)

jeR,

Assumption 3 has been applied again in order to get equation (5.11). Applying
equation (5.7), the conditional probability in (5.11) can be converted to a more
appealing form, i.e.,

p(x; 1y =2 p(x, 1 y)p(y, [ y)=p(x; 1)) (5.12)
By substituting (5.11) and (5.12) into (5.10), the formula to estimate the posterior
probability is achieved,

plx;/v;)

1
p(y, 1 X(R)ieR)=[[]p(v I [] (5.13)

JER, JER, p(x,' )

5.3.2 Defining uniform pixel blocks and estimating prior probabilities

Since the exact image partition and prior probability distribution are unknown,
they must be estimated simultaneously during the classification procedure. This is
accomplished in MSTC via an iterative algorithm.

At first, a uniform pixel block is defined for each class at each pixel, and it
approximates the “true” unit partition. According to assumption I, the existence of
such uniform pixel blocks is guaranteed. The textures extracted from the uniform pixel
block will indeed be less characteristic than those extracted from the actual unit, but
they are still likely to be good approximations to the true textures. At least, such
extracted textural information will help to characterize and differentiate different
classes in the image better than the spectral information alone.

Because spatial scales of different classes may vary significantly (e.g.,
Woodcock and Strahler, 1987), there is no reason to assume that the uniform pixel
blocks will be of the same size for all classes. This is also not required in the

derivation of MSTC. Therefore, as an advantage, the scale information can be
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incorporated into texture extraction in MSTC, simply by varying the size and shape of
pixel blocks for different classes.

In most contextural and textural classification algorithms, the pixel block, or
so-called spatial neighborhood, is centered at the pixel being considered. If a pixel is
within a unit, such defined blocks may completely fall inside of the unit and thus are
“uniform.” Along unit boundaries, however, such defined pixel blocks will certainly
consist of pixels from different classes, and therefore will not be uniform. In the latter
case, the textural or contextural information extracted from it will not relate to the true
textures of the class to which the pixel belongs. Consequently, the pixel is likely to be
misclassified.

To avoid false textures near unit boundaries, the concept of adaptive windows
is adopted here to define uniform pixel blocks (Tomia and Tsuji, 1990). Because a
pixel can belong to a number of pixel blocks, one needs to define a uniform pixel
block of each class for each pixel. Specifically, the uniform pixel block of a specified
class here is defined as the one which is mostly uniform and whose texture is most
similar to the characteristic textures of that class. Or in terms of probability, the
uniform pixel block of class k for pixel i is defined as

S =argmax{p(Y(S,)/ X(§}))}
e 1y, =00 (5.1

jes!

- = M
=argmax{[[ ] p(y, = k)] T

jes!

jes;
where N, is the number of pixels in the uniform pixel block S} . Apparently, there are

a total of K uniform pixel blocks, one for each class, for every pixel in the image. The
posterior probability for the ith pixel being from class k is therefore,

p(y, 1 XS =[] p(y,N¥ Hp_/__

(5.15)
jeSt jest p(xj )
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Without any prior knowledge other than the satellite measurements, the
classification is initiated by assuming homogenuous a priori for all classes across the
image, i.e.,

p(y, =k)=1/K. (5.16)

The prior probabilities are then re-estimated, pixel by pixel, with the after-
classification knowledge on the scene, simply by normalizing the posterior
probabilities in (5.15), i.e.,

1 X(S!
p(y, = k)= Kp(y, (S; ) . (5.17)

> p(y, 1 X(S))
k=1

The iterative estimation of the prior probability, as in (5.17), is equivalent to
repeating the measurements at infinitesimal time intervals. As we have discussed in
5.2, the spectral variability within each class as expressed in p(X/?) is largely related to
the spectral variation from one location to another. For a specific pixel, however, its
spectrum is more like a deterministic event and the repeatedly observed spectra will
show much smaller variation than the within-class variability. Consequently, any one
observation provides nearly the same amount of information as infinite observations,
given that they are accomplished in a very short period of time so that no change may
occur. Therefore, the iterative estimation of prior probability is reasonable for
processing satellite images, and it will converge to one of the two possibilities, zero

(false) and one (true).

5.3.3 Implementation of MSTC

To summarize, MSTC classifies individual pixels based on their spectra and
their spectral contexts as well. Specifically, when a pixel is considered for
classification, a number of pixel blocks are first identified, each of which represents a
possibly uniform unit (Fig. 5.1) of a certain class in the scene. Then the probabilities

are evaluated for these pixel blocks to determine which of them is the most likely true
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uniform pixel block of the corresponding class membership. It is then assigned as the

class membership for the considered pixel.

Figure 5.1 Sketch to show how spectral context information is defined in MSTC. The
pixel (shaded) to be considered is put into pixel blocks that represent possible unit
partitions at its location. The pixel blocks are then evaluated based on their spectra to
find which of them is most likely a true unit.

Practically, the MSTC algorithm can be implemented as an iterative
classification algorithm:
Step one: calculate p(x;/y, = k) for V ieR and V keQ;

Step two: assume uniform priori, i.e. p(y, =k)=1/K forV ieR and V ke Q;

Step three: estimate p(Y(Sf)/ X(S,*)) and to find S} according to (5.14) for V
i€eR and V ke Q;

Step four: calculate p(y, / x(S,")) based on (5.15) for V ie R and V ke Q;
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Step five: estimate p(y, = k) with equation (5.17) for V ie R and V ke Q;;
Repeat step three through five until convergence;

Step six: assign each pixel a class which maximizes p( v,/ x(S5)).

5.3.4 Interpretation of MSTC

The term H p(x; / y,) in the posterior probability in equation (5.15) contains
jes!

the texture features involved in the MSTC algorithm. It is interesting to see what the
textural features are and how they affect the classification decision. For a
representative case, each class k is assumed to follow a normal distribution

characterized by its mean vector «, and covariance matrix V, , i.e

!
plx; [y, =k)= — )V =)l (5.18)

1
— > ¢X [
( F27Z')P|Vkl”- p

Therefore, the textural information used in (5.13) can be expressed as

[Iptx,/y,=k)= (J— — == exp{=05[ ) (x, —u, )V (x, =)+ N |V I}, (5.19)

jes}t jest

The exponential term, after dropping the constants, is
r =Nik;(xl -u, )’V['(xj -u, )+ logIVkI. (5.20)
However,
Z(r — )V (X =) = DL, =)+ (F—u )TV (x, = D)+ (F—u,)]
7
=2 (x5, =BV (x, D)+ 20 (x, DV (F ) + D (R =)V (F - uy)
J I J

=N (Tr(VV' )+ (- u )V (T - u,)]
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| ~ 1
where X = N_z V= N—z X, —.?)(xl. —X)’ are the estimated mean vector
/ ]

and covariance matrix of the pixels in S’ respectively, and Tr(V)denotes the trace of
matrix V. Therefore,

F=(X-u) V. (F-u)+Tr(VV") +logV,|. (5.21)
The first term in (5.21), T, =(¥-u, )V, (¥ —u,), measures the distance of the
texture feature “mean” vector in S/ from the mean vector of class k, normalized by
the covariance. It is straightforward to demonstrate that it reaches the minimum at

X=u,. (5.22)
The second and third terms together I, = Tr(VV,™")+log|V,| describes the

impact from another important texture feature ‘“covariance” matrix. To find its
minimum, the positive definite covariance matrix is written as
V., =LDL’, (5.23)

where D =diag{4,,4,,...,A,} is a diagonal square matrix with diagonal elements

{4,.4,,...,4,} being the eigenvalues of V, and L is an orthogonal square matrix.

Thus
Tr(VV )—Z(r -u)V (x, uk)=2(xl. —u, )'L'D"'L(xl -u,)
J
i ; (5.24)
=23/D 'z; ‘_‘sz 14
] ]
where z; = L(xl. —u,),and
loglv,|=log(JJ2,) = Y logd, . (5.25)
j i
Therefore
=) (g /A, +logl)). (5.26)
i

Now set the partial derivatives
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X,/ __3; (@G =A)/
= /Azj-i-Aj— e =0, (5.27)

A, =z;, forj=12..p, (5.28)

J

to get

which leads to

Tr(V) =Y (x; - ®(x, - D) =Y (x, - ¥)'L'Lx, - %)=, 2. = 3 4,
i j i i (5.29)
=TrV,)

The minimum of I', is reached when the estimated covariance of the pixels in S}

equals the covariance matrix of the class k. Because the trace of a matrix has been
widely used to measure the differences between matrices, it simply means that the
more similar the estimated covariance matrix to class &, the more likely these pixels

are from class k.

5.3.5 Comparison with pure contextural/textural approaches

The MSTC algorithm is a hybrid textural classification algorithm. This is
shown in equation (5.15) via which the posterior probabilities are estimated and the
classification decisions are made. The prior probabilities in (5.15) reflect the constraint
on spatial continuity in the ground truth, similar to the contextural approach. The
conditional probabilities, as discussed in last section, contain information about the
textures in the image which are used in the textural approaches. This unique feature
results certain advantages for MSTC over both the contextural and textural
approaches.

The contextural approach assigns a pixel class membership based on its
spectrum, with constraint imposed by the memberships at nearby pixels. It thus heavily
relies on the statistical model (including its parameters) used to describe the ground
truth. Lack of justification of such models leads to difficuities in evaluating the

reliability of its product. In addition, initialization of ground truth can be erratic when
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it is based on MLC in case classes are spectrally similar. In contrast, MSTC assumes
no statistical models, nor parameters. The ground truth in MSTC is recursively
estimated based on the textural information and plays a less important role than in the

contextural approaches. Thus it is expected that MSTC should not be so sensitive to

the initialization as the statistical approach.

(@)
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Classes
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Figure 5.2 Probability distribution in a uniform pixel block (a) and a mixed pixel
block (b). Notice in (b) that the probability distributions of individual pixels have
different peaks corresponding to their true memberships.

Contrasting to the pure textural classifiers which blindly estimate textural

features in spectral images, MSTC searches for uniform pixel blocks to extract textural
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features. Because the pure textural approach can not evaluate whether a pixel block is
uniform or not, it usually extracts false textures along unit boundaries. This may lead
to misclassification of unit boundaries to a third class (Tomia and Tsuji, 1990).
Although not reliably detectable from estimated textures, however, pixel blocks lying
over unit boundaries consist of pixels with significantly varying probabilities. If a
pixel block is uniform, the probability distributions of its pixels will also be similar,
peaked at the class corresponding to the ground truth (Fig. 5.2a). When a pixel block is
not uniform, consisting of pixels from different classes, the probability distributions
will peak at different classes accordingly (Fig. 5.2b). As a result, the product of the
probabilities for these pixels will be smaller than in uniform blocks. Therefore, MSTC
can detect and avoid non-uniform pixel blocks. By identifying the mostly uniform
pixel blocks, MSTC is expected to extract true textures and perform well even near

unit boundaries.

5.4 TEST ON SYNTHETIC IMAGES

5.4.1 Image description

MSTC is first tested in a two-channel synthetic image (Fig. 5.3a) of the known
truth (Fig. 5.3b). The image consists of five classes, which all follow normal
distributions with the same variance but with different means. As shown in Table 5.1,
the spectra are quite similar among these classes. As a result, they are not very
separable based upon their spectra alone. The spatial scales of these classes are also
significantly different from each other for the purpose of testing the scale effects. For
example, classes | (squares) and 2 (discs) are large in comparison to classes 4

(rectangles) and 5 (lines).
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Table 5.1. Features of Classes in the synthetic image

Class | Spectral Mean Spectral Variance Structure Block Size
Channel | | Channel 2 | Channel I | Channel 2

| 42.5 50 25 25 squares 5x5

2 50 42.5 25 25 discs 5x5

3 50 S0 25 25 background | 5x5

4 50 57.5 25 25 rectangles | 3x9

5 57.5 50 25 25 lines 1x21

(a)

(b)

Figure 5.3 The synthetic testing image (a) and the truth map that generates it (b).

For comparison, MLC, a spectral classifier, and ICM (Besag, 1986), a

contextural classifier, are also used to classify the test image. According to ICM, every

pixel is classified based on its spectrum and the class memberships at its nearby pixels.

Based on the Bayesian theorem, if the spatial correlation of the truth map can be

described by MRF model, the posterior probability (for the ith pixel being from class

k) is
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p(x; 1 k)p(k/Y(s;))
p(x;)

p(k/ x,,Y(s,)) = o< p(x; | k)eP* (5.30)

where g, is the total number of pixels from class & in the spatial neighborhood s;, and
B is model parameter. ICM labels individual pixels to maximize the posterior
probability in (5.30). Parameter B characterizes the intensity of spatial correlation, and
plays an important role in ICM’s performance. If #=0, i.e., there is no spatial
correlation at all, ICM is identical to MLC. As [ increases, which implies increasing
spatial correlation, the classified map will be spatially more uniform. It has been
suggested that gradually increasing B during the iteration may lead to slightly better
performance than choosing a fixed B (Besag, 1986). This appears to be true to the
simulated image, and B is gradually increased from 0.5 to 1.5 during the iteration,
which is found to give the best performance in the test image.

Only supervised classifications were conducted, with the spectral means and

variances from Table 5.1 as input for all three classifiers.

5.4.2 Evaluation of classification results

Figure 5.4 shows the classification results produced by the three classifiers.
The MLC gives a very noisy classification map (Fig. 5.4a), which shows virtually no
spatial continuity. Due to large overlaps in brightness among some of the classes,
many pixels are misclassified, yielding an average classification accuracy of only
60.3% (Table 5.2, Fig. 5.5). Visually, the classified image exhibits no similarity at all
to the *“truth” map. Instead, it mimics the data image (Fig. 5.3a). Therefore, the
classified image provides little additional information than the unclassified image
itself.

The ICM algorithm results a cleaner and more accurate map (Fig. 5.4b) than
the MLC. The average classification accuracy is improved to 88.5% (Table 5.2, Fig.

5.5). In particular, larger units (classes 1 and 2) are quite well defined and labeled.
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However, the smaller units (classes 3, 4 and 5) are not as well classified, yielding
relatively low accuracy. Especially, great confusion occurs nearby the line features
(class 5), where ICM performs poorest and the misclassification rate is very high.
From Figure 5.6a, which shows the distribution of misclassified pixels (bright) in the
ICM-classified map (Fig. 5.4b), it is estimated almost 50% of the pixels are
misclassified in the vicinity of the line features. This illustrates an important point:
spatial scale is an important factor to be considered in designing textural classifiers.
Failure to reflect the variation in spatial scales may possibly limit classifier’s

performance.

Figure 5.4 Classification maps produced by the MLC (a), the ICM (b), and the MSTC
(c) algorithms, respectively.

Table 5.2. Classification accuracy of different classifiers in the synthetic image

Class MLC ICM MSTC
1 (squares) 71.1% 98.4% 97.4%
2 (discs) 67.6% 98.1% 97.1%
3 (background) 27.6% 86.6% 99.6%
4 (rectangles) 69.6% 94.3% 94%
5 (lines) 65.8% 65% 92.7%
Average 60.3% 88.5% 96.2%
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Figure 5.5 Classification accuracy of the MLC (squares), the ICM (triangles) and the
MSTC (circles).

The MSTC algorithm produced the most accurate classification map (Fig.
3.4¢), almost identical to the truth map. The average classification accuracy improved
to about 96.2% (Table 5.2), about 7.7% and 35.9% improvements over the ICM and
MLC, respectively. Comparing to ICM, the MSTC algorithm is particularly
advantageous in identifying the smaller units. Although they are still not detected as
accurately as the larger units, the smaller units are much better classified by MSTC.
For example, the classification of the line features has been significantly improved
from 65% with ICM to 92.7% with MSTC, an impressive improvement of nearly 38%.
From accuracy point of view, MSTC clearly outperforms ICM and MLC for the testing

image.
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Figure 5.6 Distribution of misclassified pixels on classification maps produced by
ICM (a) and MSTC (b). The misclassified pixels are highlighted (bright) against the
correctly classified pixels (dark).
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Figure 5.7 Probability distribution of the MSTC classification map. Low probability
values (darker) characterize unit boundaries and indicate the uncertainties in the
classification map.

The pixels misclassified by MSTC are largely distributed around unit
boundaries (Fig. 5.6b), in contrast to their concentration near smaller units in the ICM-
classified map (Fig. 5.6a). This is tolerable, because ambiguity is inevitable near unit
boundaries, particularly so in natural scenes (Fisher, 1997). In addition, the

misclassified pixels in MSTC classification map are characterized with lower posterior
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probabilities, and thus the classification results at these pixels are of less certainty,
than the correctly classified pixels (Fig. 5.7). Therefore, the MSTC also provides

information on the reliability of its classification maps.

5.4.3 Sensitivity on initialization

Since both ICM and MSTC are iterative classifiers, it is important to examine
if they are sensitive to the initialization. A good algorithm should not be sensitive to
the variaitions in initialization, and should converge to similar results for different
initializations. For this purpose, several classifications have been conducted with
different initializations by varying the prior probabilities, which include:

1. assigning uniform prior probabilities, i.e., p(1 <k <5) =02;

2. assigning random prior probabilities, i.e., p(1 <k <5) = random(0,1);

3. assigning single-color prior probabilities, i.e., assuming all pixels in the

image being from class 3: p(3)=09, p(k #3)=0.025.

Figure 5.8 shows the classification results produced by ICM, which differ from each
other significantly. Because all other inputs for the classifier are identical, the
difference in initialization is the only cause for the striking differences in the
classification maps. Although there are only three tests, it is sufficient to say that [CM
is heavily dependent of initialization. Therefore, it is critical to start with a good guess
on the truth map in order to implement ICM successfully. This can be a major
disadvantage in practical applications.

In contrast, MSTC has converged to exactly the same classification maps for
these three initializations. Several other tests are performed and the results have
confirmed that MSTC converges to the same map as Figure 5.4c, independent of
initialization. Therefore, MSTC appears to be independent of initialization, at ieast for
the tested cases and the test image. Unfortunately, it remains unknown if there is

always a unique stable solution to which MSTC will converge in other images with
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different properties. As a non-linear system, MSTC has too many degrees of freedom
to examine its full solution space by analytical approaches. Exhaustive search of
numerical solutions seems unrealistic, too.

It is clear, however, that MSTC should be less sensitive to initialization than
ICM because it depends more on the conditional probabilities (data) than on the prior

probabilities (initialization).

Figure 5.8 Classification maps produced by the ICM with different initializations. (a)
uniform prior probability, (b) random prior probability and ( c) single-color prior
probability. The great differences between these maps indicate ICM’s dependence on
the initialization.

5.5 TESTS ON TM IMAGES OF FORESTS

The MSTC is also applied to a subset of TM image (Fig. 5.9) over the Bluff
Creek watershed, Six Rivers National Forest, California. The scene is differentiated
into five major classes, water (WATER), open-canopy forest on serpentine substrate
(OPEN), old-growth and mature regrowth (OLD), 10-50 year old pole-stage regrowth
(POLE), and new replantation (replanted within 10 years) and clear cuts (CC).

The classifiers were first trained ground-truth information, which was
compiled based on the data provided by the U.S. Forest Service and by field

inspection. About 30% of the data were chosen randomly to estimate the spectral
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means and variances for each of the five land-cover types, which show some degree of
spectral similarities and overlaps (Fig. 5.10). The rest of the data were then classified
with ML.C and MSTC, respectively.

A oW

o POLE

+ QLD

TM band 5 DN

150

TM band 4 DN

Figure 5.10 TM band 4 and 5 spectral contrasts between different land cover types
defined in the testing image. Water has very distinct spectra, but there are overlaps
between the other four classes.
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Figure 5.11 shows the classification results produced by the MLC, which yields
an overall accuracy of 70% (Table 5.3). Between classes of large spectral contrast,
such as water vs others, the misclassification rate is low. Spectrally similar classes,
however, such as POLE and CC (Fig. 5.10), are characterized by low classification
accuracy (Table 5.3). In general, the classified image appears a little noisy and shows

limited spatial continuity.

Table 5.3. Classification accuracy in the TM image by MLC and MSTC

Class WATER | OPEN OLD POLE CC overall
MLC 95.5% 89.7% 90.5% 64.4% 63.3% 70.0%
MSTC 98.5% 96.8 94.1% 71.6% 76.8% 78.8%

The MSTC produces a more accurate map (Fig. 5.12) than the MLC, with an
overall classification accuracy of 78.8%, nearly 9% improvement over the MLC. In
particular, a large improvement is achieved in separating spectrally similar classes. For
example, the accuracy of identifying CC, which has large spectral overlaps with all
other classes except water, has improved from 63.3% to 76.8%, a 13.5% improvement.
Moreover, the classified image appears less “noisy” than the MLC-classified image,
and defines unit boundaries well.

Although the MSTC has improved the classification accuracy over MLC by
about 9%, it has not come close to the improvement achieved in the synthetic image.
Similar results also happen to other classifiers which show great advantages in
synthetic images but result in less improvements in classifying satellite images (e.g.,
Bouman and Shapiro, 1994). As one of the many possible reasons for this general
phenomenon, errors in describing the statistical distributions of individual classes may
account for much of the loss of the performance. Even if samples of large populations
may be well characterized, significant deviations from the assumed distributions may
occur locally in satellite images (Skidmore, 1989). As a result, the classifiers can not

accomplish the achievements of which they are theoretically capable. How to deal with
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Figure 5.11 Classification map of the testing TM Image produced by MLC.
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Figure 5.12 Classification map of the testing TM image produced by MSTC.
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the localized spectral variation within individual classes remains an important topic for
study, for the practical applications of the MSTC as well as other sophisticated

classifiers.

5.6 SUMMARY

Spatial structures in natural scenes contain textural information that can
improve the classification accuracy of satellite images. The new Multi-Scale Textural
Classification (MSTC) algorithm has been developed that uses both the image texture
and spectral data to classify satellite images within a Bayesian framework. It assumes
that the scene is highly correlated at the pixel-scale but uncorrelated at the unit-scale.

One key feature in the MSTC is that the textural features are estimated at
different scales for different units so that small-scale units can now be preserved
instead of being *“smoothed” out. In addition, since for any pixel in any unit, there
exists at least one pixel block which completely falls into the unit, the textural features
estimated from such a uniform pixel block define the “‘true” textures at the location of
that pixel. Whether a pixel block is uniform in composition is judged based on the
likelihood functions of all the pixels within it. In this way, the false textures near unit
boundaries are identified and disregarded. When only the “true” textures are
considered in classifying the image, the ambiguity near unit boundaries is resolved.

The MSTC algorithm does not explicitly calculate the textures when
classifying individual pixels. Instead, it directly uses the spectral data at the nearby
pixels from which the “true” textural features are extractable. When units are normally
distributed, for example, the implicitly considered textural features in the MSTC
algorithm are mean and variance. Obviously, the textural features will be different in
case the distributions are different.

The MSTC algorithm yields accuracy of 95% or higher on a computer-
simulated forest image which is otherwise classified at accuracy of 65% with a

Maximum Likelihood Classifier (MLC), and 88% with a contextural classifier (ICM).
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The MSTC was found to be insensitive to the initial conditions under which the
iterative algorithm is implemented. In contrast, the ICM shows great dependence on
initialization, and yields significantly different results when initial condition changes.
In addition, the MSTC also provides information on the reliability of classification
results at individual pixels. The misclassified pixels, which are mostly distributed near
unit boundaries, have generally lower posterior probabilities than the correctly
classified pixels.

When applied to a set of Landsat Thematic Mapper images over the Bluff
Creek Watershed, Six Rivers National Forest, California, the accuracy of the MSTC
algorithm reaches 78.8%, nearly 9% higher than the accuracy achieved with the MLC.



CHAPTER 6: SUMMARY

This research has been focused on incorporating structural information into
interpretation of satellite images. With such a goal, the structural effects on surface
reflection were first studied with computer-simulated forest canopies. It was found that
structure is indeed a key factor that controls the spectrum, albedo and radiance
distribution of the simulated canopies. Such results justified the effort toward
developing new tools for making use of surface structural information in image
interpretation.

There are four types of spatial scales involved in satellite image interpretation,
related to 1) surface structure, 2) interaction of light with surface, 3) interesting ground
features, and 4) image resolution. The characteristics of satellite images largely depend
on these four scales. The last two scales are particularly important regarding image
interpretation. If the interesting features are not resolved, satellite measurements
correspond to the “mixtures” of various features, and image interpretation is a
subpixel-scale inversion problem. If the interesting features are resolved, their
structures provide important information for their identification and the image
interpretation is generally a pattern recognition problem, although it still requires
background knowledge on their fine-scale structures in order to relate spectral classes
to ground features. This understanding should be the general principle of image
interpretation and the basis for developing subsequent image processing techniques to
use structural information.

The layered spectral mixture analysis (LSMA) model is a good example to
illustrate the significance of considering structural characteristics in subpixel-scale
spectral mixture analysis. Because of structure, spectral mixing at pixel-scale is not

unambiguously correlated to the compositional mixing in the ground. Thus simple



spectral mixture models which do not consider surface structure have difficulties to
link endmember fractions to the areal abundance of interested features. In the LSMA
model, image endmembers are defined at specific spatial scales and have characteristic
structures, and endmember spectra are chosen to reflect the illumination variations
within structured endmembers. As a result, the LSMA model is more suitable for
analyzing images of highly structured scenes. As tests suggested, the new model
predicts canopy closure with better accuracy than the simple spectral mixture model,
and the accuracy improvement ranges from about 9% on smooth canopies to 27% for
rough canopies.

A topographic correction model (SCS) was proposed to remove topographic
effects on Landsat TM images of forests. Because trees are generally geotropic,
topography does not change the illumination geometry at individual tree elements,
although the amount and pattern of shadows within tree canopy do change on various
slopes. On sun-facing slopes, a larger area of tree canopy is illuminated and thus
appears to be brighter than on the slopes facing away from the sun. Therefore, it is the
total area of sunlit tree crowns, rather than the irradiance, in individual pixels that
should be normalized to remove the topographic effects. The SCS model was proved
to be better than the cosine correction model, and to perform at least equally as well as
some more complicated modsls, such as the Minnaert correction model and the c-
correction model, on two TM test images.

The commonly observed high variance in topographically corrected images are
usually attributed to imperfection of models that describe surface reflectance
distributions. But careful examination suggests that various errors related to
instrument noise, DEM accuracy, registration mismatch, and model simplifications
may be the dominant source of variance. The contextual topographic correction
approach was proposed to reduce the error effects. This approach compensates for
variations in satellite-measured radiance due to topographic variations according to the

“local” reflectance in a spatial neighborhood. Since the local reflectance can be more



reliably estimated than the reflectance at individual pixels, this new approach
effectively reduced the errors in the corrected images. Comparing to the conventional,
single-pixel-based topographic correction approach, the image corrected with the new
approach appears less noisy and has a higher signal-noise ratio. Consequently,
different land-cover classes are more separable in the contextually corrected image
than in the conventionally corrected images.

The multi-scale textural classification (MSTC) algorithm was another model
developed to use spatial information in processing satellite images. The MSTC model
directly uses the textural information contained in the satellite measurements to
enhance the characterization and identification of different land-cover classes. One
unique feature of the MSTC algorithm is the simultaneous estimation of the class
membership and the texture via an iterative approach. As a result, the MSTC is not
sensitive to various initializations. This model is also able to treat complicated scenes
which consist of features of various characteristic scales. The test on a synthetic image
suggests that the MSTC is a much better classifier than the commonly used spectral
classifiers, such as MLC, with classification accuracy improved from 60.3% to 96.2%.
When applied to a TM image of forest, the MSTC algorithm yielded the overall
accuracy of 78.8%, about 9% higher than the accuracy of 70% achieved with the MLC.

As demonstrated by the above four models, there is a great potential to improve
the reliability of information extracted from satellite images simply by considering
structural information. A great effort should thus be made in this direction because the
accuracy of satellite image interpretation has hindered the application of remote-
sensing data in many areas. Whereas developing new models and algorithms is
necessary in order to incorporate the structural information, it is equally important to
accumulate more filed data to characterize the structural effects on various aspects of
surface reflection. In-situ measurements at scales close to satellite image resolutions
are particularly lacking, and data suitable to study the scale-dependence of satellite

images are virtually non-existent. This lack hinders the understanding and the use of
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structural information. Therefore, the remote-sensing community should work together
to find an efficient way to collect such data. I believe that the currently available
satellite data have not been exploited well and such an effort will be more effective

than designing new instruments for some, if not many, remote-sensing applications.
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