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NOTATION

CONVENTIONS

(1)

(2)

(3)

(4)

(5)

(8)

)

(8)

Uppercase, boldface letters are used to symbolize matrices.
Lowercase, boldface roman letters are used to symbolize vectors.

Elements of a matrix or vector are symbolized by italic letters

with subscripts.

Partitions of a matrix or vector are written as boldface letters with

subscripts.

Uppercase, boldface letters with the  symbol above them (e.g. ﬁ)

are used to symbolize collections of functions as in equation (4.10).

Elements of entities like & are functions. A single member of the

set is referenced using backet symbols surrounding the same root

symbol with subscripts (e.g. <G;|).

Subsets of collections of functions like & are denoted by the same

symbol set in boldface but with a subscript (e.g. &.).

The & symbol before anything symbolizes an infinitesimal pertur-

bation to that entity.
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(9) The A symbol before anything symbolizes a finite perturbation to
. that entity.

(10) The ~ symbol over anything (e.g. £ ) denotes an estimate of that

quantity derived from the data.

(11) An underlined symbol (e.g. <N;| or N) always denotes a quantity

derived from *“quelled” (see text) kernel functions.
SYMBOLS

The following symbols are used unambiguously. Symbols used only
in passing in the text are not included here. Most symbol definitions

have an appended number which refers to the equation number where

that symbol is defined in the text.

General
R™ Vector space of n-vectors with real coefficients
Rmxn The set of all real m xn matrices

R(A) Range (column space) of matrix A (Definition 2.1)

N(A) Null space of matrix A (Definition 2.2)
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ll= 1l

<A |B>

Norm of z where z is an unspecified mathematical object
(vector, function, etc.). Subscripts on the final || symbol
denote different types of norms. I{x”z or ||z]| denotes the L2

norm (2.11). ||z|l, denotes the weighted Euclidean norm

(Appendix A).

Inner product of function <A | with function |B>. In this

dissertation this symbol generally implies the definition

<A |B >=_ZA (r)B(r)dr
Integers
Total number of arrivals in data set (3.23)
Number of data blocks (section 4, Chapter 4)
Number of "‘annulled data’ (M,=M-N) (4.16)

Number of earthquakes in data set  (3.23)

Number of explosion sources with known spatial location but
for which the origin time is unknown or for which a shot point

correction is to be calculated.(section 2, Chapter 5)

Number of discrete parameters in data set (generally

N=4m,+n.+m,) (3.28)

Number of seismic stations in the network (3.21)
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Scalars

Bound on L2 norm of derivative of the slowness perturbation
(5.48)

Deepest depth that velocity is to bek estimated at  (4.3)
Resolution length  (5.27)

Nondimensional vertical position variable (4.5)
Slowness

Velocity

Roughness length  (5.51)

Variance of a random variable

Vectors and Matrices
Moore-Penrose inverse of A (2.33)
Levenberg-Marquardt (stochastic) inverse of A (2.38)
Pseudoinverse of A (2.37)
Covariance of discrete parameter estimates (3.70)
Covariance of data (3.69)
Generalized inverse (type not specified) (3.16)

Coordinates of earthquake hypocenter ( a four vector) (3.1)
Identity matrix

Annulled data vector (4.17)
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Q Orthogonal matrix of QR decomposition (theorem 2.1)

r Residual vecter (2.12)

r Residual vector including station corrections (3.20)

S Station correction partial derivative matrix (3.21)

8 Vector of station corrections (3.21)

U Orthogonal matrix of left singular vectors from a singular

value decomposition of a matrix (theorem 2.2)

Ugr Columns of U spanning range of matrix (2.21)
Uy Columns of U spanning null space of dual matrix (2.21)
A Orthogonal matrix of right singular vectors from a singular

value decomposition of a matrix (theorem 2.2)
0 A zero matrix (i.e. a matrix whose coefficients are all zero)

A Diagonal matrix of singular values from a singular value

decomposition of a matrix (theorem 2.2)

Functions

<A (r,r9)| Backus-Gilbert averaging function for estimate of slowness

perturbation at depth 7y (5.23)
] Collection of Frechet kernels for original data (4.10)

<H(r~-1y)| Heaviside step function with step at r¢



N Collection of data kernels for annulled data (4.18)

N Inner product matrix of annulled data kernels (4.26)

b4 Collection of prediction kernels for discrete parameter esti-
mates (5.42)

| 82 > Slowness perturbation function (5.13)

<6(r-rp)| Delta function centered at 7

<e] Prediction error function (5.13)
<Y, Orthonormal functions from spectrai decomposition (winnow-
ing) (4.29)
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CHAPTER 1
INTRODUCTION

One of the most fundamental measurements in seismology is
the arrival time of body waves recorded by an array of seismic sta-
tions. These data have been used to solve two classic problems in
seismology. The first is investigate the internal structure of the
earth by using these data to infer how seismic velocity varies within
the earth’s interior (a remote sensing problem) [Jordan, 1979]. The
second is to determine the location (hypocenter) of the focus of an
earthquake [Lee and Lahr, 1972]. The literature on methods of han-
dling these two separate problems is vast (see e.g. Lee and Stewart
[1981] or Bullen [1965,pp. 345-346]). Surprisingly little attention
has been focused, however, on analyzing both problems at the same
time. That is, arrival times from earthquakes generally contain
information about both the hypocenter of the earthquake and the
seismic velocity structure of the region. Peters and Crosson
[Peters and Crosson ,1972; Peters, 1973; and Crosson, 1976a] were
the first to investigate this problem quantitatively. The equations
one must solve in this problem are nonlinear. They chose to linear-
ize these equations with the velocity model specified as a finite
number of parameters. Peters [1973] investigated models
parameterized as constant velocity layers and a linear velocity gra-
dient model. Crosson [1976a] extended Peters’ work with layered
models into a practical algorithm. This allowed them to solve these
equations by a ‘simultaneous’ nonlinear least sguares method.
Their work was important as a pioneering effort to solve this prob-
lem but it suffers from two major flaws:
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(1) Least squares procedures normally require that the system of
equations to be solve must be overconstrained [Jackson,1972].
The net result in this case is that application of Peters and
Crosson’s method usually requires that the number of parame-
ters used to specify the velocity model (number of layers) be
small. This can be criticized on the grounds that it is difficult
to ascertain the effect of this rather arbitrary a priori form
that is imposed on the velocity model. This problem can make

interpreting the results of this technique difficult [Knapp, 1976,
1982].

(2) The linear equations that have to be solved grow in size propor-
tional to the number of earthquakes in the data set. This leads
to large computer memory requirements with the large data
sets typical of local earthquake networks.

The work described in this dissertation eliminates problem (1)
and substantially reduces problem (2). The key to these improve-
ments is a special matrix operator I have termed the annulling
transformation! because of its connection to the null space of the
matrix from which it is derived (see appendix B). Application of this
transformation to a set of earthquake arrival time data yields two

significant results that are closely connected to problems (1) and
(2) above.

(1) As I noted above the arrival time recorded at a given seismic
station from an earthquake depends on both the hypocenter of
the earthquake and the velocity structure. The most significant
feature of the annulling transformation is that it yields a set of

1 The idea of applying this transformation to aid in solving this

problem appears to have been conceived almost simultaneously by
three separate groups [Pavlis and Booker, 1981; Spencer and Gub-
bins, 1981; and Rodi et. al., 1980]. The form of the equations used
by Spencer and Gubbins [1981] is different from that of Pavlis and
Booker [1981] but they are essentially identical [Roecker, 1982].



independent averages of the original data, which I call the
annulled data, that are locally independent of the hypocenter of
the earthquake (When station correctiqns are used their contri-
bution can also be annihilated by the same process.). The
result is a set of equations that depend only upon the velocity
model which can be inverted directly for the velocity structure.
This is significant because it allows me to break free of the need
to parameterize the velocity model. Instead, the velocity can
be allowed to be an arbitrary function (In this work velocity is
allowed to vary omnly in the vertical direction.) that can be
estimated by the methods described by Backus and Gilbert
[1967, 1969] and Johnson and Gilbert [1972]. Although it is
more difficult to calculate travel times with models that vary
continuously with depth, their use has been found (in the case
of Hawaii at least) to frequently yield superior earthquake loca-
tions and focal mechanism solutions [Klein, 1981].

(2) The calculations required to implement the annulling transfor-
mation can be arranged to exploit the special structures in the
matrix equations that one must ultimately solve. This leads to
a considerable reduction in computer memory requirements in
the practical implementation of this procedure. This, com-
bined with a winnowing procedure [Gilbert, 1971] in the velocity
model construction, results in a considerable degree of data
compression (a 90% reduction was typical with data studied
here). The result is that the procedure described here is capa-

~ ble of handling quite large data sets; a claim formerly made

only for parameterized least squares methods.

Following the lead of Roecker [1982] I have dubbed the procedure I
describe here with the title PRIMEL (Progressive Inversion and Mul-
tiple Event Location). I have adopted the term *‘progressive” in
describing this procedure to contrast it with Peters and Crosson's

“simultaneous’” procedure. The algorithm described here Iis
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“*progressive’’ because the use of the annulling transformation per-
mits one to adjust the three fundamentally different parts of the

model (hypocenters, station corrections, and the velocity model) in

three separate steps;

(1) Hypocenters are estimated by conventional (least squares) sin-

gle event location methods.

(2) Station corrections are estimated from a set of annulled data
calculated from the residuals of step (1) using a new procedure
called progressive multiple event location (PMEL).

(3) The velocity model is constructed from a second set of annulled

data derived from the residuals of step (2).

Thurber [1981] has shown that if the velocity model is parameter-
ized, step (3) is solved by least squares, and no iterative improve-
ment is used in steps (1) and (8); then this procedure reduces to
the same result as Peters and Crosson's method. The actual algo-
rithm used here is different, however, because steps (1) and () are
generally performed iteratively. This is the fundamental reason for
adopting the term progressive, since the hypocenters and station

correclions are estimated in separate, iterative steps.

Finally, considering the length of this document it seems
appropriate to provide a road map for the reader. First, this disser-
tation contains a considerable number of equations. Consequently,
I have included a summary of notation to help the reader keep the
many symbols straight. Within the main text, chapter 2 is a brief
review of a number of relevant terms and concepts from linear alge-
bra and the theory of generalized inverses. This material was pro-
vided primarily for those readers unfamiliar with the ideas of the
range and null space of a matrix that are fundamental to under-
standing the annulling transformation and the nature of generalized
inverses. A major companion to chapter 2 is appendix B, which
develops a general theory for ''mixed discrete-continuous inverse

problems” based on the use of the annulling transformation.



Chapter 3 then reviews current methods of single and multiple
event location. This review is provided primarily to place in its
proper persective a new multiple event location scheme that is also
described in chapter 3. This new procedure, which I term Progres-
sive Multiple Event Location (PMEL), is based fundamentally on the
annulling transformation. It is significant in its own right, however,
because it has two major advantages over its only real competition;
the method of joint hypocenter determination (JHD) introduced by
Douglas [1968] and Dewey [1972].

(1) PMEL operates within a small, fixed storage area that is small
enough to be implementable even on a micro computer. This is
in contrast to JHD which suffers the same explosive storage

growth problem as Peters and Crosson’s simultaneous inversion
procedure.

(2) PMEL does not require the auxiliary constraints needed for
numerical stability by JHD.

For these reason I believe PMEL makes other multiple event loca-
tion schemes obsolete.

The principle usage of PMEL in this study is as a building block
in a larger scale solution construction scheme I have dubbed
PRIMEL. PRIMEL (described in chapter 4) finds a single solution
(hypocenters, station corrections, and a velocity model) that fits
the data. That solution is, however, fundamentally nonunique
[Backus and Gilbert, 1968, 1970]. Consequently, chapter 5 takes up
the more fundamental question of appraising the uniqueness of this
solution. I show how the uniqueness of the velocity model can be
assessed by an application of the trade-off analysis of Backus and
Gilbert [1970] and Johnson and Gilbert [1972]. In addition, a new
technique is described for assessing the errors in the discrete
parameters (hypocenters and station corrections) that takes into
account the effect of the fundamental ambiguity introduced by the
the nonuniqueness of the velocity model. Finally, chapters 6 and 7



demonstrate the validity of the methods developed in the preceding
chapters by demonstrating their use in the analysis of synthetic
data (chapter 8) and real data from two different seismic networks
(chapter 7).



CHAPTER 2
LEAST SQUARES
AND
ORTHOGONAL TRANSFORMATIONS

1. INTRODUCTION

One of the most widely used methods of analysis in all branches
of science and engineering is the method of least squares. In par-
ticular least squares plays a central role in the work presented here
because of its intimate connection with all currently used algo-
rithms for locating earthquake hypocenters (see chapter 3).
Because of that, it is useful to review some properties of least
squares analysis that will be of use in subsequent chapters. The
approach I have taken appeals primarily to the geometry of least
squares because it is hoped that this will provide the reader with a
better intuitive feeling for the important projective properties of
least squares that will be exploited extensively in subsequent
chapters. The approach taken here is relatively standard. Entire
books are written on the subject of least squares analysis and the
material of this chapter is only a summary of material relevant to
this dissertation. For a more extensive treatment of the material
presented here the reader is referred to the books of Stewart
[1973], Ben-Israel and Greville [1974], and Lawson and Hanson
[1974] that the author has found particularly useful.

2. THE GEOMETRY OF OVERDETERMINED SYSTEMS OF LINEAR
EQUATIONS

2.1. Range and Null Space

We are interested in the general problem of solving a set of
linear equations of the form

Ax=b (2.1)



where AcR™ime"  3eR™ and beR™ !, For the purpose of this work
we are always concerned with the case when m>n. In that case (2.1)
is said to be overdetermined. To understand the nature of over-

determined problems it is illustrative to consider a simple concrete
example.

Suppose we are given the following set of equations
x1—3x2=-3
4z (+Rzp=— (2.2)
3z 1+2z2=6

which we can write in matrix form as

1 -3 -3
4 2 [ﬂ: ~4 (2.3)
3 2/l |6

However, it is illuminating to write (2.3) in yet another way

1 -3 -3
4:3:1'*‘ 2222: -4 (24)
3 2 6

Equation (2.4) is educational because it shows the fundamental
nature of any solution to the set of equation of (2.2). That is, every
solution defines some linear combination of the two vectors

1 -3
a;=|4] and ag=| 2 (2.5)
3 2

A particular solution is defined by how we chose the weights, z; and

! I will use a common notation convention in which R® denotes the
vector space of all possible n vectors with real components. Simi-

larly 1 will use R™*" to denote the vector space of all mxn ma-
trices with real coefficients.
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x5, of the linear combination. It is useful to consider the set of all

possible solutions given formally by2
R (A)={y: y=a;z +agzy for all'z,€R and zo€R] (2.8)

This has an important geometric interpretation that is sketched in
figure 2.1. Each of the vectors, a; and ap defined by (2.5) have three
components. If we erect a coordinate system with three orthogonal
axes, then a, and a; can be drawn as vectors in the usual way. This
has been done in figure 2.1. The set of all solutions, R (4), defined
by (2.6) is the unique plane defined by the two vectors a; and ap.
That plane is a fundamental property of the matrix operator of our
example called its range or column space [Lawson and Hanson,
1974, p. 235]. In the language of linear algebra R(A) is termed a
subspace of R3 of dimension 2. The two vectors a; and a; define a
basis for R (A) and are said to span R (A), which means R (A) is com-
pletely defined by linear combinations of a; and ap [Stewart, 1973,
pp. 12-18]. Every matrix A€R™*" has associated with it four related
sutspaces. Two are properties of the problem defined by equation
(2.1). They are defined as follows [ Ben-Israel and Greville, 1974, p.
14]

Definition 2.1

R (A)={ycR™:y=Ax for some x€R"}, is called the range of A.

Definition 2.2

N (A)={xeR":Ax=0] is called the null space of A.

Two others subspaces are properties of the dual problem, ATy=x.
These are define as

? Equation (2.6) is written using some standard shorthand from

linear algebra. The symbol ‘*:"" stands for ‘‘such that” and the
brackets ‘‘{}"" are a shorthand for ‘‘the set of all”
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Definition 2.3

R (AT)={xeR":x=ATy for some yeR™}, is called the range of AT,

Definition 2.4 .

N (AT)={yeR™:ATy=0} is called the null space of A”.

The range and null space of a matrix and its transpose are
inseparablely linked. To see how, it is illustrative to consider our
example again. It turns out that, for that example, N (AT) is com-
pletely defined by a vector that is perpendicular to R (A). In other
words, N(AT) is the part of three space that is perpendicular to the
plane R(A). This concept is easily generalized for any arbitrary
matrix A€R™*" and yields two fundamental relations in the theory
of generalized inverses [Ben-Israel and Greville, 1874, p. 64]

N (AT)=R (A)+ (2.7)
and for the dual problem
N(A)=R (AT)*+ (28)

the | symbol in (2.7) implies three properties

(1) R(A)NN (A7)={0} |

(2) R(A)UN (A")=R™ |

(3) For all y,,y, €R™ with y, €R (A) and y, €N (AT), y)y, =0

The corresponding relationships for the dual problem are similar
and can be had simply by interchanging A and AT and replacing R™
by R" everywhere. Properties (1) and (2) define R (A) and N (A7) as
complimentary subspaces of R™ [Stewart, 1973, p. 17]. They are
termed complimentary because they share only a single common
member (the zero vector), and yet together they generate all of R™.
Property (3) is a stronger requirement. It says that any vector in
R(A) is perpendicular to any other vector in N (AT). Because of (3),
R(A) and N (AT) are called orthogonal compliments [Stewart, 1973,
p. 215]. The significance of this is that any vector yeR™ can always
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be decomposed into two perpendicular vectors

Y=Yr+¥n (2.9)

where y,€R (A) and y,€N(AT). The importance of (2.9) cannot be
overstressed as it is the foundation of the theory presented in this

dissertation. We will return to it again on several occasions.

2.2. Least Squares

In the previous section the concept of the range and null space
of a matrix and its transpose was introduced. The range and null
space of a matrix are unique properties of the matrix itself and are
independent of any particular solution of some set of linear equa-
tions the matrix might be associated with. In this section, however,
the discussion will be limited to the study of the special solution
method that is commonly called least squares.

To begin this discussion, consider again the simple example
introduced in the last section. Because the narrative there was
focused on the general properties of all possible solutions, I con-

veniently ignored the other key part of equation (2.4). That is, the
right hand side vector

If b is plotted with a; and ap, the resulting geometry is that shown in
figure 2.2. The main point to observe from figure 2.2 is that the
right hand side vector, b, does not lie in the plane R (A). Yet, it was
shown in the previous section that all solutions must lie in the plane
R (A). Thus, no solution can possible reproduce the right hand side
vector, b, exactly. The equations of the example are said to be
inconsistent. What is the least squares solution then? A least

squares solution of the general mxn system of equations (2.1) is
defined as



Figure 2.1. Geometry of matrix operator for overdetermined ex-
ample problem. The plane R (A) is formed by the two vectors a; and
ap. This plane lies behind the positive dy and dj axes and in front of
the positive dp axis in this isometric projection.
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Figure 2.2. Geometry of set of overdetermined linear equations of
example problem. The data vector, b, lies above the plane R (A) in
this view.
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Xis. = opn [e-axi2] (2.10)

where the symbol || ||z denotes the L2 norm defined as

172
llylle=

m

Sve| e Iyl=|ile =5y (2.11)
In our example, we already saw that Ax was restricted to lie in the
plane R(A) of figure 2.2. Since b does not lie in R (A), criterion
(2.10) says that the least squares solution is the unique one for
which the solution vector, Ax , is “closest” to the right hand side
vector, b. For least squares, ‘‘closest’” means close in the sense of
the L2 norm. For our example, this has the simple geometric
interpretation sketched in figure 2.3. The least squares solution is
the orthogonal projection of the right hand side vector onto the
plane R (A). That is, if you were to reorient your viewing position of
figure 2.3 so that you were looking perpendicular to the plane R (4),
then the vector Ax;; would be the image of b projected onto the
plane R (A). This is a significant observation because it means that a
least squares solution accomplishes the decomposition of equation
(2.9). That is, the residual vector

b-Ax;  =reN (AT) (2.12)

and

(Ax ¢ )T r=0 (2.13)

In other words, the residual vector, r, lies totally in N (AT) and has
no projections in R (A). ris the same as the vector y, of (2.9). One
way of viewing a set of equations like (2.2) is that we have three data
values ( right hand sides ) that we are trying to fit with only two
parameters.- Since we know that normally two data points are
sufficient to determine two parameters, the data are redundant.
The preceding analysis of our sample problem shows that the least
squares solution of (2.2) extracts only two independent pieces of



Least squares solution:
z,~-0.5
xzwl.O

Figure 2.3. Geometry of least squares solution of example problem.
The least squares solution, Ax, , is the orthogonal projection of the

data vector,b, onto R (A). The residual vector,r, lies orthogonal to
R (A).
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information from the data vector. The information that is left over,
the residual, contains the one remaining independent piece of infor-
mation. This idea generalizes readily to.higher order systems. A
least squares solution of an arbitrary m xn system of equations with
m >n, extracts at most n pieces of information from the data vec-
tor. There always remain in the dregs of the data vector ( the resi-

duals) at least m ~n pieces of information that can be extracted.

3. ORTHOGONAL TRANSFORMATIONS

If we look at the geometry of our sample problem again in
figure 2.3, one might observe that a great deal of the complications
that occur there are due to a bad orientation of the coordinate sys-
tem. That is, if we could reorient the coordinate system so two of
the coordinate axes lay in the plane R (A) and one axis was perpen-
dicular to R(A) ( i.e. in N(AT)), then we would find the problem
easier to solve. In this section I will review the principles of a
method that does precisely that. This method is called the QR fac-
torization. For a more detailed treatise the reader is referred to
chapter 5 of Stewart [1973].

The QR factorization is based on the use of orthogonal transfor-
mations. Orthogonal transformations are synonymous with orthogo-
nal matrices [ Stewart, 1973, p.212] that are defined as follows

Definition 2.5

A matrix UeR™*™ is orthogonal if and only if UT U=UUT =xm
where I™™™ denotes an m by m identity matrix. Orthogonal

transformations are fundamental to L2 norm problems because of
the following two properties:

(Ux)"Uy=x"y and ||Ux||5=(x||3 (2.14)

for all x,yeR™. The proof of both these relations follows immedi-
ately from definition 2.5. What this says is that an orthogonal
transformation does not alter the size ( when measured by the L2
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norm ) of a vector or the angular relation ( the dot product ) of two
vectors. That basically implies that an orthogonal transformation
does not distort Euclidean space.

.

Any orthogonal matrix can be written as the product of a finite

number of two elementary operations; plane rotations (Givens rota-
tion matrix)

1 0 0 0
O cc;so--- siile 0

P;;=|. Z I I (2.15)
b —svzm,G--' co.sg O

and the elementary reflectors ( Householder transformations )

T
H=1-2 |1|nT|2 (2.16)
uj|2

Plane rotations perform a rigid rotation of the coordinate system.
and elementary reflectors reflect the coordinate system through a

plane of symmetry whose normal is

lhallo”

The elementary orthogonal matrices (2.15) and (2.16) are
important as building blocks to accomplish the QR decomposition.
The QR decomposition is defined by the following theorem that also
guarantees its existence [ Lawson and Hanson, 1974, p. 11]

Theorem 2.1 QR factorization

For every AcR™*™ there is an mxm orthogonal matrix Q such

that QTA=R is zero below the main diagonal.

The matrix Q can be calculated using either plane rotations or ele-

mentary reflectors. (For the application presented here
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elementary reflectors are preferreci because they automatically
produce an orthogonal basis for N (AT) whose usefulness will became
apparent in the two succeeding chapters.) The details of algorithms
to accomplish the QR decomposition are well known and will not be
inflicted upon the reader". The essence of the method is that given
an mxXn matrix A a set of r=min(m,n) elementary reflectors can
be calculated such that the matrix Q of the QR factorization can be

written as the product
Q=H.H,_, - - - HzH, (R.17)

To make this more concrete let us return again to the example
problem (2.2). After doing the arithmetic of (2.17) we get for this
example

-.186 .974 .112
Q=|-.785 —-.087 -.613 (2.18)
-.588 -.208 .781

Q reduces the (2.3) to the upper triangular system

-5.099 -2.156}|T1| {—.196
0 —3.514}|T2]|=|—-3.82
0 0 6.81

which yields the solution quoted earlier in figure 2.3.
z1=-0.499
z2=1.09

by simple back substitution.

The major purpose for this discussion is to show what Q does
geometrically. I have stated that Q simply reorients the coordinate
® Businger and Golub [1985] were the first to publish a computer al-

gorithm using elementary reflectors in least squares problems. For
a more transparent treatise see Stewart, 1973, pp. 230-245.
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system. That reorientation is sketched in figure 2.4 where I show the
original coordinate axes labeled as d;,dp, and dg and their images
after the transformation by Q that are labeled as d';,d's, and d's.
The directions of the axes d’y,d's, and d'g are defined by the unit
vectors that are the columns of the matrix Q in (2.18). Note that
the d'y and d'p axes now lie in the plane R (A) and d'g is perpendicu-
lar to R(A). This is a convenient reorientation because now the
solution vector will lie in the plane of d'y and d's and the least
squares residual vector will lie parallel to d's. This says that in the
transformed coordinate system the decomposition (2.9) is

automatic. For instance, the two projections for our sample prob-
lem are

0.196] 0
y-=|-3.82| and y,=| O
0 6.81

The major point is that when viewed in this transformed coordinate
system the residual vector is seen to have only one nonzeroc com-
ponent. This concept generalizes to higher order systems. For an
mXn system of equations with m >n the residual vector will always
have a total of m~n nonzero components after transformation by
the matrix Q of the QR decomposition.

4. NON FULL RANK PROBLEMS

4.1. Singular value decomposition

The example problem I have been discussing has an important
simplification; the matrix A is full rank. The geometric interpreta-
tion of the rank of a matrix is that

rank(A)=dimension(R (A))

In the case of the example discussed above R(A) was a plane so

rank(A) was two. That problem was full rank because that is the
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Figure 2.4. Coordinate reorientation produced by the orthogonal
matrix Q resulting from a QR decomposition of the matrix A of ex-
ample problem. d‘ylies in R (A) and is parallel to a;. d'; lies in R (A)
but is perpendicular to a;. d'is orthogonal to the plane R (A).
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maximum possible dimension of R (A) for any matrix with only two

columns. A simple version of a non full rank problem is a modified

version of (2.2)
1 —2][x
4 -8 1
kn
3 -6l ?

1 -2
a;=|4 —g

The geometry of this problem is shown in figure 2.5. The crux of the
situation here is that ap and a; are now simple multiples of one
another ( —2a;=ay). a and a, are linearly dependent and the sub-
space R (A) has degenerated to a single line, a subspace of dimen-
sion one. Consequently its orthogonal complement, N (AT), is a sub-
space of dimension two defined by any plane normal to the line
R (A). In addition, the dual subspaces, N(A) and R (AT), given by
definitions 2.2 and 2.3 now occupy an important role (I intentionally
ignored them for the initial example because N (A) for that example
had only one member (the zero vector) and had little relevance to
the problem.). Definition 2.3 states the R (AT) is defined as all possi-
ble linear combinations of the rows of A. For the present example,
the rows of A define vectors with two components that can be plot-
ted on a plane. Doing this yields the geometry shown in figure 2.6.
The three row vectors are all collinear so R (A”) is a subspace of

dimension one and its orthogonal compliment is also a subspace of
dimension one.

-3
=|-4 (2.19)
6
For this example,

and ap=
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Figure 2.5. Geometry of non full rank example problem. Here
AcR¥® has a rank of one and R (A) degenerates to a line.
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R (AT)

Figure 2.6. Geometry of dual problem for non full rank example.
(1,-2), (3,-6), and (4,-B) are the row vectors of the matrix A in this
example. They are all colinear in this case because
rank (AT )=rank (A)=1. Hence R (AT) is a line.



24

The geometry of the data space (figure 2.5) and the geometry of
the parameter space (figure 2.8) of this example will help provide a
geometric interpretation to a second important orthogonal decom-
position called the singular value decomposition. The singular value
decomposition"‘ is defined by the following theorem that also
guarantees its existence [Lawson and Hanson, 1974, p.18-20].

Theorem 2.2 (Singular Value Decomposition): Given A€R™*"
with rank (A)=7, then there is an m xm orthogonal matrix U, an

nxn orthogonal matrix V, and an m xn diagonal matrix A such
that

UTAV=A and A=UAVT (2.20)

Here the diagonal entries of A can be arranged to be nonin-
creasing; all these entries are nonnegative; and exactly r of

them are strictly positive.

The diagonal entries of A are called the singular values of A (For a
proof and a more complete discussion of this theorem see Lawson
and Hanson [1974, pp. 18-20].).

To clarify theorem 2.2 it is instructive to write (2.20) in an

expanded, partitioned form

A=|Uz Uy, U : ( )
R Ny YNy le
where U}QER xr. UNIER x( 1‘)' UNZER x( ), VR eR XT'

4 The singular value decomposition is closely connected with an
eigenvalue-eigenvector decomposition of the two nonnegative
definite matrices ATA and AAT. This interpretation is also very in-
structive and can be found in a well written form in chapter 3 of
Lanczos [1961]. The rise in popularity of the direct decomposition
of equation (2.20) was a direct consequence of the publication of a
fast, stable algorithm by Businger and Golub [1969] that utilized
elementary reflectors and the QR algorithm of Francis [1961, 1962].
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VNleR"'"('"'"'), and Ag €R™" is of the form

Ay O ... O
0 Ap. .. ©

Ar=|" ' (2.22)
0 0...A4

The partitioning of equation (2.21) is not arbitrary It is related as
follows to the range and null space of A and its dual:

(1) The columns of Uy form an orthonormal basis for R (4).

() The columns of Uy, and Uy, together form an orthonormal basis
for N (AT) S,

(3) The columns of Vg (rows of Vi ) form an orthonormal basis for
R (AT).

(4) The columns of Vy, (rows of VX;I) form an orthonormal basis for

N (A).

One view of the singular value decomposition is that it is a QR
decomposition taken one step farther. That is, it was noted in the
previous section that the QR decomposition can be thought of as a
convenient reorientation of the coordinates of the data space. The
singular value decomposition goes one step farther by also reorient-

ing the coordinates of the parameter space to yield the simple form
(2.21).

To clarify this I again appeal to the example problem (2.19).
After some simple arithmetic, one can find the singular value
decomposition of the matrix A in (2.19) is

SAsa practical matter Uy, Uy, are indistinguishable. The reason I
have chosen to write them as two separate entities is because Uy,
always exists but Uy, does not. Uy, only exists when A is not full
rank (r<n). This notation emphasizes this fact.
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1 _2 —.196 _.785 _.588 11.4 0 __.44‘? .894_'
4 -8|=|-785 486 -.386|| 0 O|| ‘oo, 4|  (228)
3 -6 |-.588 -.386 .711}{ O

.

As with the QR factorization each of the orthogonal matrices of of
the singular value decomposition represent a coordinate reorienta-
tion. U represents a reorientation of the data space similar to the
matrix Q of the QR decomposition, and the matrix V represents a
similar reorientation of the parameter space. The reorientation
defined by U, for this exarnple, is sketched in figure 2.7. The original
coordinate axes are shown labeled as dy,dz, and dg and their images
after the transformation YU are labeled d';,d';, and d's where the
directions of d'y,d'p, and d'g are defined by the unit vectors that are
the columns of U. Similarly, figure 2.8 shows the corresponding
reorientation of the parameter space by V7. The original coordinate
axes labeled z; and zp are transformed by V? to z‘; and z'5. How-
ever, here the directions of 'y and x'; are defined by the rows of V7
(columns of V). The affect of these reorientations shown in figure
2.7 and 2.8 is the same in both cases. d; and z, are reoriented such
that images, d'; and z'y, lie in R (A) and R (A”) respectively. d'; and
d's, on the other hand, are reoriented to lie perpendicular to R (A)
and their images are a natural set of coordinates (an orthonormal
basis) for N (AT). similarly, z; is reoriented perpendicular to R (AT)
and is a natural coordinate for N(A). Thus, U and V represent a
reorientation of the data and parameter spaces into principle coor-
dinate systems. This leads directly to a simple set of relationships

linking the data and parameter spaces that I will now discuss.
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a;

Figure 2.7. Reorientation of axes produced by the matrix U result-
ing from a singular value decomposition of the matrix A of example
non full rank problem. d'y lies along the line R (A). d'p and d'g are
orthogonal to R (A).
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R (AT)

Figure 2.8. Coordinate reorientation produced by the orthogonal
matrix V resulting from a singular value decomposition of the ma-
trix A of example non full rank problem. z'y lies parallel to the line
R(AT) and z'; lies orthogonal to R (AT)
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4.2. Least squares generalized inverses

4.2.1. The Moore-Penrose inverse

The singular value decomposition was introduced in the previ-
ous section because of its intimate connection with the theory of
generalized inverses and especially the unique generalized inverse
called the Moore-Penrose inverse®. Following Lanczos [1961] and
Jackson [1972], I will now demonstrate that the Moore-Penrose
inverse follows in a natural way from the singular value decomposi-
tion.

From equation (2.20) we see (2.1) can be rewritten as
UAVT x=b (2.24)
Since U is orthogonal, this can also be written as
AV x=UTp (2.25)
It is convenient to define the following change of variables:
b'=UTb (2.26)
and
x'=V'x (2.27)

In the previous section we saw from a simple example that U and V
can be thought of as transformations that perform a rigid reorien-
tation of the coordinate system of the data space ( R™) and the
parameter space (R") respectively. The change of variable defined
by (2.26) and (2.27) are nothing but an application of these

® The Moore-Penrose inverse has an almost absurd number of
aliases. It is also referred to as the general reciprocal [Moore,
1920], generalized inverse [Penrose, 1955], intrinsic inverse [Lanc-

zos, 1961], pseudoinverse [Lawson and Hanson, 1974], and probably
others.
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transformations to obtain the coordinates of b and x in the
reoriented coordinate systems. The remarkable property of the
reorientations defined by U and V is the form the equations (2.25)
take after the change of variables (2.28) and (2.27).

A1$'1=b'1

Ao '2=b'3

Avz'p=b'y (2.28)

0z'r41=b'r 41

0z'n=b"s

Thus, in the reoriented coordinate systems the parameters and the
data are simple multiples of one another. This is why I referred to
them as ‘'principle coordinates' earlier. Because of this simple
form, inverting these equations is relatively easy. There is, how-
ever, a complication we have to consider. The last n—r relation-
ships in (2.28) cannot be made into equalities for any choice of z';
(i=T+1,7+2,...,n). Thus, in a sense, the choice of the numbers
z'; in these relations is arbitrary. The Moore-Penrose inverse sim-
Ply sets them to zero. With this definition we can write the recipro-
cal relations to (2.28) as



a1

T',= (2.29)

T'y=
It is convenient to rewrite (2.28) in matrix form as
x'=A"1p' (2.30)

where A"1€R™*™ s of the form

1
A; 0 0 0 0
1
0 —
A 0 0 0
A 1= 0 0 lé) . 0 (231)
AT .
0 0 0 0 --- 0
0 0 0 0 0

After substituting back into (2.30) for x' and b' from equations
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(2.28) and (2.27), one obtains
Vx=A"1UTb
which is equivalent to
x=VA~1UTD (2.32)

since V is orthogonal. The matrix VA™'U? is the Moore-Penrose
inverse. For shorthand we write it as

Af=vA~1uT (2.33)
so equation (2.32) is equivalent to
x=A"b (2.34)

The Moore-Penrose inverse is fundamental in the theory of gen-
eralized inverses. It is fundamental because of its uniqueness, since
every matrix A€R™*" has one and only one Al [Penrose, 1955]. Its
uniqueness arises out of a dual minimization criterion that is an
alternate way of defining Af. That is,

(1) The solution (2.34) is a least squares solution (defined by equa-

tion (2.10) ) of equation (2.1) [Ben-israel and Greville, 1974, p.
104].

(2) When rank (A)<n, there are infinitely many least squares solu-
tion of (2.1). Of all possible least squares solution of (2.1), the

solution (2.34) is the unique one that also minimizes ||x||f [Pen-
rose, 1955].

The second is achieved automatically when A is full rank since the
least squares solution is then itself unique. Both minimizations have
a geometric interpretation. To see this, I appeal again to the
specific problem of equation (2.19), whose singular value decomposi-
tion was given as equation (2.23). Applying equation (2.33), the
Moore-Penrose inverse of the matrix (2.19) is
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1

: o o|[-.196 -.785 -.588

1_[ 447 .894] 114 _ W8S 486 —.386 (2.35)
=| .894 .447|| 0 o0 of[™ ' ' '
-.588 -1386 .711

[.0077 .0308 .0231]

~.01563 -.0616 -.0462

which yields a solution by (2.34) of
%,=—0.0077 (2.36)
[ ]
£,=0.015

A geometric interpretation of this solution is shown in figures 2.9

and 2.10. The important observations to make are the following:

(1) The solution (2.38) is the orthogonal projection of the data vec-
tor b onto R (A).

(2) The solution vector lies totally in R (AT).

Observation (1) is a statement that the solution is a least squares
solution. There are infinitely many least squares solutions to this
particular problem. This is true because there are infinitely many
combinations of the columns of this matrix that can produce the
same vector in the data space since the columns vectors are col-
linear. (2) makes the solution unique because the solution (2.38) is
the only one with no component in N (A).

4.2.2. Practical least squares generalized inverses

The Moore-Penrose inverse introduced in the previous section
occupies a key position in the theory of generalized inverses. It
occupies this position because of its many remarkable theoretical
properties (see Ben-Israel and Greville, 1974). However, as a practi-
cal method of solving systems of overdetermined equations, it is

often both difficult to determine and frequently highly undesirable.
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Figure 2.9. Geometry of Moore-Penrose inverse solution for non full
rank example problem. Solution is again the orthogonal projection
of the data vector,b, onto R (A).
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(-.0077,0.015)

R (AT)

Figure 2.10. Geometry of Moore-Penrose inverse solution for nomn
full rank example problem in parameter space. This solution is the
unique least squares solution that minimizes |x|R=\/zE+z5 .
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The reason for this is the practical problem of how to handle small
singular values. That is, because matrices are always manipulated
on a computing machine that has a finite precision, the singular
values one is actually able to calculate are subject to rounding
errors. Because of that, truly zero singular values almost never
emerge from a singular value calculation. It is possible to deter-
mine when singular values are hegligible to machine precision (see
Lawson and Hanson, 1974, p. 95) permitting a best approximation to
At. Unfortunately, however, that solution is not always desirable
because of the error magnification produced by small, but
significant, singular values. This problem is apparent from equation
(2.29). That is, given some fixed precision of the data values, b';, on
the right hand side, the errors in the estimates, z';, increases

inversely with A;. Hence small A; can produce unacceptably large
errors in the estimates z ;.

.The problem of how to handle small, but significant, singular
values is a difficult one that has not truly been solved [Dongarra et.
al., 1979]. In the work presented here I have utilized what are prob-
ably the two most commonly used methods for analyzing practical
least squares problems. These are the pseudoinverse and the
Levenberg-Marquardt (also called stochastic ) inverse. The pseu-
doinverse is almost identical to the Moore-Penrose inverse. The only
significant difference is the manner by which the rank, r, of the sys-
tem is established. In the previous section I defined At under the
tacit assumption that r was a well defined number. As I noted
above, however, this is not always the case in practice. The pseu-
doinverse is defined in exactly the same way as At in equation (2.33)
but with the rank set as a number k£ that I will call the pseudorank.
The pseudorank is defined by Lawson and Hanson as follows:
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‘‘We define the pseudorank k of a matrix A to be the rank of
the matrix A that replaces A as a result of a specific computa-
tional algorithm. Note that pseudo;'ank is not a unique pro-
perty of the matrix A but also depends on other factors such
as the details of the computational algorithm, the value of
tolerance parameters used in the computation, and the

effects of machine round-off errors.’” [Lawson and Hanson,
1974, pp. 77-78]

When k=r the pseudoinverse is identical to the Moore-Penrose
inverse. Otherwise they are not the same, with the difference
dependent upon how different k¥ and r are. Thus, a good working

definition of the pseudoinverse, A*, is
At=(A)f=vA+U” (2.37)

where X is the matrix defined in Lawson and Hanson's definition

g'iven above and A* is the same as A™! defined by (2.31) with 7=k .
The Levenberg-Marquardt inverse is usually defined as [Crosson,
1976a]
A™=(AT A+ 67I)AT (2.38)

where 8 is an adjustable constant usually called a damping parame-
ter. A™ has a simple relation to the singular value decomposition of
A. This leads to the alternate form of A™

A™=VA™UT (2.39)

[Lawson and Hanson, 1974, pp. 188-194] where V and U are the
orthogonal matrices of (2.20) that result from a singular value
decomposition of the matrix A and
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]

Ay 0 0 :.-- 0
A+ 62

Ap
W ‘O 0' 0
A™=| 0 0o = .- ——ZA’—zo---o (2.40)
AF+ 6
0 0 0 0 0
| o 0 -+ 0 0 -+ 0

A™ handles zero (or very small) singular values the same way A*

\ . . . A .
does implicitly, since as A»0, ————-0 for any finite 6.
P y A%+ 92 y

Although their forms are completely different A* and A™ have a
fundamental property in common. They both find a solution that
lies in the subspace R (A) of R™ as any proper solution should. This
fact is clear from the definitions of A* and A™ given by equations
(2.37) and (2.39). These equations show that both A* and A™ pro-
duce a soluticen derived from linear combinations of the columns of
the matrix Uz (defined in (2.21) ) that form an orthonormal basis
for R(A). This is an important observation because that is a neces-
sary condition for any generalized inverse to be used as part of the
separation technique that is the basis of most of the work presented
in this dissertation (see Appendix B).

5. SUMMARY

Given the amount of material reviewed in this chapter, it seems
appropriate to emphasize the most important points the reader
should glean from it. That is, a least squares solution of a set of m
linear equations with n unknowns (m>n) is the solution that is the
orthogonal projection of the data vector, b, onto the range of the

maltrix A. This solution effectively splits the data vector into two
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orthogonal components; the solution vector, AA'™D, and the residual
vector, r defined by equation (2.12). Both vectors, in general, have
m nonzero components. However, the coordinate reorientation
defined by the matrix Q of a QR decomposition (theorem 2.1) or the
matrix U of the singular value decomposition (theorem 2.2) show
that AATb actually has at most n nonzero components and r has at
least m—n nonzero components. This result is not surprising since
overdetermined equations clearly contain redundant information.
Only n pieces of information are extracted in a least squares solu-

tion. The m—n pieces of information that are left over are the resi-
duals.



CHAPTER 3
HYPOCENTER LOCATION

1. INTRODUCTION

Location of earthquake hypocenters "is one of the most basic
data analysis problems in earthquake seismology. Current location
algorithms can be grouped into two major categories that I refer to
here as single and multiple event location procedures. As the name
suggests, single event location methods operate on data from omne
earthquake at a time oblivious to the data from other earthquakes.
Multiple event locations, on the other hand, consider data from
many events simultaneously. The first major section of this chapter
is a review of the basic principles of single event location. I have
presented this material primarily to place multiple event location
procedures in their proper perspective. That is, all multiple event
locations methods that are currently in use are only a simple exten-
sion of single event location procedures. I consider in some detail
two particular multiple event location These are the master event
method [Everden, 1969] and the method of joint hypocenter deter-
mination (JHD) [Douglas, 1967]. This helps set the stage for the
introduction of a new multiple event location that I have utilized in
this study. This new location scheme, which I call progressive multi-
ple event location, is a descendent of a similar procedure recently
proposed by Jordan and Sverdrup [1981] and the recent work of
Pavlis and Booker [1980]. The most important feature of this new
procedure is its remarkably efficient usage of computer storage.
Unlike JHD the storage requirements of this procedure do not grow
with the number of events in the data set but instead the algorithm
operates within a small, fixed storage area. In the actual work that
I am presenting here I have only used this algorithm as an integral
part of the larger scale algorithm that I will discuss in the two
succeeding chapters. Nonetheless, I believe it may well find a much

wider application because of its efficient usage of computer storage.
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2. SINGLE EVENT LOCATION

2.1. Geiger’s Method

[S

The basic algorithm of all conventional single event earthquake
location procedures is the iterative least squares method originally
proposed by Geiger [1910]. The algorithm he proposed was not
widely applied at the time because the calculations involved were
too tedious to perform by hand. Consequently, the idea was almost
forgotten but was quickly rediscovered and extended by a number
of workers (Bolt[1960],Flinn[1960], Nordquist [1962], and Herrin et.
al. [1962] ) in the early 1960's after the introduction of high speed
digital computers that could be programmed to do the necessary
calculations. I will briefly review the fundamentals of Geiger’s pro-
cedure here because it is essential that the reader understand the
principles of the algorithm. This is so because this nonlinear least
squares algorithm, with various modern extensions (for example,
Buland [1976] and Klein [1978]), is the most widely used method of
earthquake location. Furthermore, Geiger's algorithm occupies a
key position in the bigger scale algorithm I have used here. Those
readers intimately familiar with the principles of Geiger's pro-
cedure may safely skip this section. Those wishing a more extensive
treatise are referred to Lee and Stewart [1981].

The input data for earthquake location are the arrival times of
different phases recorded by each seismograph in the earthquake
network. In principle, any arbitrary phase could be used. However,
with regional or local networks, to which this study is restricted, the
data is always restricted to the arrival times of the direct compres-

sional wave and the arrival time of the direct shear wave.

Geiger’s procedure is based on two primary assumptions:
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(1) A complete set of travel time curves are available.

() The travel time curves are known exactly and the only source of

error is statistical error from measuring arrival times.

Assumption (1) can be restated in mathematical symbolism as fol-
lows: we assume that given a point source at a position h', we can
calculate the arrival time of the disturbance at any position
(hyhaha) in the medium as®

t=h4'+T(h1,h2,h3,h1',hg',h3’) (31)

h4' is the “origin time’ , which is the time the source began radiat-
ing elastic wave energy. The function T is the ‘“‘travel time table"
referred to in assumption (1) above.

The goal of hypocenter location is to estimate the four numbers
hi{ho,hy', and h, from a set of m observed arrival times
t;,1=1,2, - ,m . The crux of the problem is that although the ori-

gin time, h,', is linearly related to the observed arrival times, the

! With small scale earthquake networks the coordinate system gen-
erally used is cartesian with

h y=positive northward
ha=positive eastward
ha=depth

hs=time

In teleseismic locations spherical coordinates are more convention-
- al so that in that case we would have

hi=latitude or colatitude
hz=longitude

hga=depth

hs=time

I will use the h; symbolism here for greater generality. The choice

of the letter A was made to emphasize that the vector h' (the “hy-
pocenter’’ ) is a four vector.
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function T is, in general, quite complicated and the observations,i;,
are nonlinear functions of the spatial coordinates of the source.
Earthquake location is thus a problem in nonlinear optimization
[Lee and Stewart,1981]. Geiger's method solves the optimization
problem by a first order expansion of equation (3.1). That is, we
expand (8.1) in a Taylor series about some initial estimate of the

hypocenter for each of the observed arrivals. This yields m equa-
tions of the form

ti=h4'T(hl‘,hg‘,,ha‘,hll,hg',hs') (32)
|
aT aT aT oT
+ ; (5’11' + YRS 6’12’ + e 6’1,3' + ; (5h4_'
ahl h".h' 6h:2 hi.h‘ ah:a h",h' ah,4 hi,h‘
+Q(2) i=1,2,- - ,m

where ()(2) is the collection of all higher order terms. All the par-
tial derivatives are evaluated at some current estimate of the true,
unknown hypocenter vector, h' and T'(hy hg ha by hg' h3) is the
calculated travel time based on a hypocenter at (h'y,h'sh'g) to the
recording station at position (h;,h;, h;;). I define the residual in the

usual way as
Tizti—T(hli.hgi,ha‘,h1',h2',h.3')""h4' (33)

That is, 7; is the observed arrival time, £; , minus the calculated
arrival time based on the current estimate of the hypocenter.

Then, by rearranging and dropping higher order terms, equation
(3.2) becomes

or ' ar
T = m 6h1 +

aT
6hy' +
by b ahg' 2

b; b’ oh 3'

Shg' + 6hy' (3.4)
h; b

i=12,-+,m

since ;;LT, =1. These m equations can be written in matrix form as
4
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r=Adh (3.5)
where I have dropped the prime on 6h for convenience and the
coefficients of the matrix A are defined by 4;;= _or_ Geiger’s

Oh'; |, 1
procedure assumes m 24 and solves (3.5) by least squares. That is,
it finds the estimate of 6h , which I write as 6h , that minimizes the

L2 norm (see equation (2.11)). of the residual vector, r; . That is

#_ min _ 2
sh= 6h€R4[||r PUNH (3.6)
where R* denotes the vector space of all possible 4 vectors. The

solution of the minimization problem (8.6) yields the classic normal
equations

oh=(ATA)"!ATr (8.7)

A proof that (3.7) does indeed solve the minimization problem (3.6)
can be had in almost any text on linear algebra or basic data
analysis (see for example, Stewart [1973],p. 220). Note that the
residuals defined by (3.3) are nonlinear functions of the hypocenter
coordinates. The perturbation, 6h , estimated by (3.7) is, however,
based on a linearization (3.3) that neglects the higher order terms.
Consequently, the estimate obtained by (3.7) of the hypocenter,
h'+6h, will usually be inadequate and the hypocenter estimate will

need to be updated iteratively until it is "‘good enough'’. Geiger’s
procedure uses the following iterative algorithmzz

® This outline of Geiger's algorithm is written in an informal
language similar to that described by Stewart [1973,pp. 82-93].
This algorithm and a number of others are described here using
this informal language. The intent is to show the skeleton of the al-
gorithm unobscured by minor details required in a formal language

such as FORTRAN, but without being so terse as to be incomprehen-
sible,
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ALGORITHM GEIGER

1) h';=h'pniia

2) Loop from 3) to 8) until convergence
3) Fori=12,--:,m

11) Ti =ti "T(hl 1i'h2‘.,h3‘.'h’ 1',h‘2'vh‘3')_h‘ '4

. d R
21) A.,'J='5";T"—— (] =1,2,3,4)
J

4) o6h=(ATA) AT
5) h'=h'+6h

6) End loop

Note that the matrix of partial derivatives, A, and the residual vec-
tor, r, defined by equation (3.5) are updated in this algorithm with
each iteration. dh is always estimated by linear steps based on the
current best estimate of the hypocenter. This is the classic Gauss-

Newton method of nonlinear optimization [Lee and Stewart, 1981].

2.2. Modern Improvements

ALGORITHM GEIGER described in the previous section has three
major flaws:

(1) It does not recognize that all the data used to estimate the
hypocenter may not be of equal quality.

(2) 6h calculated by equation (3.7) will frequently fail because the
matrix ATA is singular and cannot be inverted by elementary
methods. [ Lee and Stewart, 1981]
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(8) The assumption of Geiger’s procedure that the travel time
curves are perfect is never totally justified.

The first problem is solved readily by giving each of the m equa-
tions of (3.4) a different weight. That is, each of the m equations is

multiplied by some constant, w; , to yield m new equations
(rw di=w;m; ' (3.8)

aT
dhy

(5’11' + —-QI—

h; b’ ahg'

6’L2’ + i

=wy b 3 h:a'

Shgy' + 6h4']

h; h'

This process is conveniently illustrated by defining a diagonal
matrix W as

Wij=w; 0y (3.9)

where d;; is the Kronecker delta. With definition (3.9) the m equa-

tions of (3.8) are easily seen to be equivalent to the following matrix
equation

Wr=WASh (3.10)

or

Ty =A,, 6h (3.11)

where r,,=Wr and A,,=WA . It is shown in appendix A that weighting
of this form does not change the nature of this problem fundamen-
tally. The matrix W can be considered as a change of variables. This
change of variables changes the norm used to measure the size of
the residual vector from the simple L2 norm to the ellipsoidal or

weighted Euclidean norm defined as [Ben-Israel and Greville, 1974,p.
128]

b = (W) ()| (3.12)

= [xT (w? W)x] 2
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1/2

& .22
=1 z"w{
t=1

since for this case W is always diagonal. "It is shown in appendix A
that when equation (3.11) is solved as a least squares problem it is
equivalent to the following solution

8= o r-Asm 3] (3.13)

Hence, a least squares solution of (3.12) solves the different minimi-
zation problem defined by (8.13). For the remainder of this work I
will drop the w subscripts on r and A for convenience. Weighting
will henceforth be assumed to be inherently present. The simple

least squares solution (no weighting) is just the special case of W=I.

A major variation between competing earthquake location algo-
rithms is how that algorithm calculates the weights, w;. A great
variety of method exist for calculating these weights in some
prescribed optimum sense ( See Anderson [1978] for a good review
of different weighting schemes.). However, all weighting currently

used can be summarized as the product of three terms that I write
as

w;=QP (r;)D (d;) (3.14)
These three terms carry the following conventional names:

Q quality weighting [ Lee and Lahr, 1972] [Klein, 1978]

P(r;) penalty function [Anderson, 1978] or residual weighting
[Klein, 1978].

D(d;)  distance weighting [Klein, 1978]

€ is a weight assigned, as the name suggest, according to how
clear the arrival of the particular phase being observed is. @ is
often assigned purely subjectively. A superior method of setting § is
to base it on an estimate of the errors in measuring the arrival

time. (This scheme is used, for example, in the hypocenter location
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program LQUAKE used for routine earthquake locations in western
Washington [ Rogers and Crosson, 1978].) In this case Q is defined as

1 .
=— 3.15
0= (3.15)
where o; is the estimate of the expected standard error in picking
the it" arrival®.

P(r;) is a weighting function commonly used for suppressing
the effect of outliers in the data. A variety of P(r;) functions are
possible [ Anderson, 1978). They are all functions of the size of the

residuals designed to strongly downweight arrivals that show large
residuals.

D(d;) is a function of the estimated distance, d;, from the
source to the i*® seismometer. D(d;) is always a decreasing func-
tion of distance so that the effect of D(d;) is to downweight the
observations of more distant stations. This is used to suppress

errors caused by two practical problems:

(1) Errors in picking arrival times increase with distance from the
source because the amplitudes of the arrivals decrease with

distance because of geometric spreading and attenuation.

() In practice the travel time curves are not perfect as Geiger's

procedure assumes. This error tends to increase with distance.

The second major problem with Geiger’s procedure is that esti-
mation of 6x by equation (2.8) can often fail because the matrix A”A

is numerically singular. Table 3.1 lists four numerical methods that

3 Errors in picking P arrivals are statistically independent and ap-
proximately normally distributed [Buland, 1976]. If estimates of
the expected standard error, o; , are the same as the true stan-
dard error, and if the travel time tables are perfect, then applying
Geiger's method using weights based on equation (3.15) alone will

yield a maximum likelihood estimate of the true hypocenter [Jor-
dan and Sverdrup, 1981].
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have been applied extensively to stabilize location algorithms when
the system of equations to be solved is ill conditioned.

.

Table 3.1.

Hypocenter Inversion Algorithms

Author(s) Numericel Algorithm

Lee and Lahr [1972] Step-wise multiple re-
gression (variation of
Gaussian elimination
with pivoting) on nor-
mal equations

Bolt [1970] and Klein [1978] | pseudoinverse calcu-

lated by singular value
decomposition

Rogers and Crosson [1976] | Levenberg-Marquardt
and Crosson [1976a] damped least squares

Buland [1976] QR decomposition
with Curry-Altman
step length damping

The details of these various algorithms can be found by consulting
the references listed in Table (3.1). For the present, it is more
important to realize what they all have in common. They are all
practical least squares solution algorithms, where by ‘‘practical’’ I
mean they will not fail dramatically when A is ill conditioned. All
hypocenter location algorithms currently in use form an estimate of
the hypocenter perturbation as

sh=HASh=Hr (3.18)

where H is a 4xm matrix that is a generalized inverse [Lee and
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Stewart, 1981} of A . All of the procedures listed in Table 3.1, how-
ever, are a particular type of generalized inverse. A compact way of
showing this relationship is through the singular value decomposi-
tion introduced in section 4.1 of chapter 2. Theorem 2.2 guarantees

that we can write A as
A=UAV” (3.17)

The generalized inverse for all the procedures listed in Table 3.1 can
be written as

H=VAH UT (3.18)

where A¥ is a matrix of the form
AT =[A{{0] (3.19)

where A eR¥*“ is different for each algorithm. Of special interest
for the purpose of this work is the Levenberg-Marquardt inverse.
(The Levenberg-Marquardt inverse is important to this work
because I have used the hypocenter location program LQUAKE writ-
ten by Crosson. LQUAKE uses the Levenberg-Marquardt inverse.)
The Levenberg-Marquardt inverse can be written in the form of
equation (3.18) with A#=A™ where A™ is as defined in equation
(2.40). Solutions of the form (3.16) are not always, strictly speak-
ing, least squares solutions but are practical approximations to the
least squares solution that do not fail when A is ill conditioned. The
crucial observation for the purpose of this work is that all general-
ized inverses currently used for hypocenter location can be written
in the form (3.18). In chapter 2, I pointed out that the matrix U in
(3.18) is just a rigid reorientation of the coordinates of the space
the residual vector lies in. However, it reorients the space such
that the first four components of the transformed residual vector,
UTr, lie in the range of A, R(A), and the other m —4 components lie
perpendicular to it in N (AT). Fromn the form of (3.18) it is clear that



61

only the first four components of the vector U”r are used to esti-
mate 6h. The other mm —4 components lie in directions orthogonal to
R (A), and are not used in estimating 6h. .

The third major problem with Geiger’s original procedure is the
assumption that travel times can be calculated with negligible
error. Travel times can only be calculated precisely if a good P and
S wave velocity model is known. There is strong evidence that the
seismic velocity structure of the earth varies significantly in all
three spatial dimensions [Jordan, 1979]. For routine earthquake
locations, however, the assumption is nearly always made (Engdahl
and Lee [1976], Thurber and Ellsworth [1980], and Thurber [1981]
are some exceptions.) that the seismic velocity varies only in the
vertical direction. This is a practical simplification that is required
because of the computational problems involved in calculating
travel times in a laterally inhomogeneous medium. Seismologists
have long recognized this problem, and have traditionally
attempted to remedy the problem by the simple, yet practical
approach of station corrections. Stations corrections are a set of
fixed constants associated with the location of each seismometer in
the network that are added to the calculated travel time for all

arrivals recorded at that station. This leads to a redefinition of the
residual as4

* The matrix S in equation (3.20) is used primarily to provide a con-
nection between this section and the discussion on multiple event
location that follows. In any real single event location algorithm it
is never explicitly formed since its only purpose is indexing. That
is, the only role of S in (3.20) is to associate the k®* station correc-
tion with the i** arrival. In single event location this process is al-
ways accomplished by a linear search method. In multiple event

location, however, we shall see that S must be formed and manipu-
lated explicitly.



52

nﬂ
Tf=ti—h4'—T‘(h1‘.hz(»ha‘.h1',hz'.ha')""kEISkiSk (3.20)

7y
=t; ="~ )} SkiSk
k=1

where

ng =total number of stations in the network

s;, =station correction assigned the k* seismometer

1 when the i arrival is observed at the k** seismometer
~|0 otherwise 3.2

t'i =T(h 1‘_,’121.,ha‘,,hl',h,a',hla')"l'h,',i
=calculated arrival time table with hypocenter at k'

With this change the m equations of (3.5) can be rewritten as

r’=t—-t'-Ss=Adh (3.22)

Station corrections are a practical approximation to the effects
of lateral inhomogeneity. If T(h,i,hg‘,hai,hl',ha',ha') is calculated
using a one dimensional velocity model, then station corrections are
the simplest possible way to account for the effects of a laterally
varying velocity structure. They will give a good estimate of the
actual travel time only if the velocity anomaly they reflect is local-
ized near the station they are associated with [Crosson, 1976b]. In
that case, they are similar to static corrections used in reflection
seismology (see Dobrin [1976, pp. 211-222]).

The modern improvements to ALGORITHM GEIGER can be sum-

marized in the following modified algorithm sketch I call ALGO-
RITHM MODHYLOC.
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ALGORITHM MODHYLOC

1) h'=h'jiua

2) Loop from 3) to 7) until convergence
3) Fori=12,:-:--,m

15) 7=t,~T (hy ko ha by b hg)—hy'

2i) Scan station table for station correction, s;
3i) ry=Ti-s;

4i) w;=QP (r;)D (d;)

5i) 7 =Tyw;

6i) Aij=wi%~ (7=1,2,3,4)

4) Calculate generalized inverse, H

5) 6h=Hr
6) h'=h'+sh
7) End Loop

This algorithm differs significantly from ALGORITHM GEIGER in
its details. I reemphasize, however, that the two algorithms are
fundamentally related. The generalized inverse, H, in ALGORITHM

MODHYLOC is always calculated based on some least squares cri-
terion.
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3. MULTIPLE EVENT LOCATION
3.1. Previous Work

3.1.1. Introduction o

In the previous section I reviewed the concept of station correc-
tions and described how they are used in routine earthquake loca-
tions. A question naturally arises, however. How does one estimate
what they are? Several methods have been used to accomplish this
task. In this section, however, I will review the two principle
methods that are currently employed for this purpose; the master
event location method [Everden, 1969] and the method of joint
hypocenter determination (JHD) developed by Douglas [1967] and
Dewey [1972]. Other methods have been successfully employed for
estimating station corrections, but I restrict the discussion here to

the master event and JHD techniques for two reasons:
(1) They are probably the two most commonly used methods.

(2) Both are intimately connected to the progressive multiple

event location method that I introduce in the section that follow
this one.

3.1.2. Master Event Location

The master event location technique [Everden, 1969] is, without
doubt, the simplest method for estimating station corrections. In
this approach, the residuals from some ‘‘master event’ (usually and
explosion or a well recorded earthquake) are equivalenced to the
station corrections. These station corrections are then used to
relocate earthquakes by conventional single event methods. The
master event method has proved successful in teleseismic locations
(e.g. Everden [1969]) and in local network studies of clusters of
events in mainshock-aftershock sequences (e.g. Yelin and Crosson

[1982]). The methods major advantage is its simplicity. It suffers,
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however, from two major problems.

(1) Normally, one requires that the "‘master event’’ be recorded at

every station that will be used. This is not always possible.

(2) The station corrections derived from the ‘“‘master event’’ have a
relatively large uncertainty since they are based on only a sin-
gle data point for each station.

Finally, it should be pointed out that the master event tech-
nique has the distinction of being being both a single event location
method and a multiple event location method at the same time.
That is, it is a multiple event location method because its major goal
is to provide precise relative locations of a set of earthquakes. It is
also basically a single event location procedure, however, since the
basic algorithm it uses is the same as conventional single event
location schemes. The point is that all modern single event location
procedures are, in a sense, ‘‘master event’’ methods since the use
of station corrections is nearly universal. The difference is that the

station corrections are not always based on data from only a single
event.

3.1.3. Joint Hypocenter Determination

Probably, the best method currently available for estimating
station corrections is the method of joint hypocenter determination
(JHD) developed by Douglas [1967] and Dewey [1972] and applied by
many authors, primarily to teleseismic locations. JHD is a simple
extension of the single event location methods described in the pre-
vious two sections. However, we will see it shares all the problems

involved in single event location described in section 1.2 above plus
some others.

If we wish to estimate the n, station corrections from arrival
time data, it is immediately obvious from equation (3.19) that first
arrivals from a single event are insufficient. ng is the total number

of stations in the seismic network, which is the maximum number
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of equations possible in (3.19) from first arrival data alone. Comnse-
quently, we are immediately led to combine the data from more
than one event. Suppose, we have available a set of m, events. If we
define m; as the number of arrivals recorded for the ith earth-

quake, then the total number of arrivals for the entire data set is

. m'
M=% m; (3.23)

i=1
The multiple event location problem is to use this data to estimate
the hypocenters of the m, events ( 4m, parameters) and the ng
parameters, s;, that are the station corrections. An argument

identical to that in section 1.1 that led to equation (3.3) leads here
to

Ng
(r);=(:); =T (hy, haha hy'; -hz'j-ha'ﬂ-kzlsik Sk (3.24)

R

6T [} aT [} aT ] ' ns
R’ 6’1, 1j+ ETX oh 2j+ ah" oh 3j+6h 4‘j+_z=: S 0sg
i; 2 3y k=1

where I define the following
(h'll'h’lg'h‘laih’l4) = spatial coordinates of " station
(havhiyhag, by )=h';= hypocenter of j** earthquake
0s; = perturbation to kth station correction.

Sy is defined by equation (3.18). The large number of indices in
equation (3.24) obscure the special form of these equations. It is
convenient to group the data from individual events. Doing this
yields a set of m, matrix equations
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l'js=tj —t'j“SJ'8=Aj 6hJ+S] 0s (325)

where t'; is as defined in (3.18) and A; is the matrix of partial
derivatives as in equation (3.5). Equation (3.25) is, in fact, the same
as (3.19) but with an additional term involving the perturbation to
the station corrections, S;6s, and an added indexing label, j. When
the m, equations of (3.25) are combined the result is

il Ao o0... o s]Pm
rs 0 A; 0... 0 §S;]|[6he
l'g 0 0 A3 0 83
= . (3.26)
0s
rm S| |0 0 0 . Am, Sp,

For a convenient shorthand notation, I write the full set of equations
of (3.26) as

S

*=Bx (3.27)
where r eR¥, BeRY*N  and xeR". with N defined as

N =4m, +n (3.28)

The method of joint hypocenter determination solves (3.26)
iteratively, exactly as in Geiger's method. That is, perturbations to
the hypocenters of the m, events and the perturbations to the sta-
tion corrections are calculated by a least squares solution of (3.28).

As in single event location, since (3.24) is based on a linearization
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that neglects higher order terms, a sequence of least squares solu-
tions of equations of the form of (3.26) are used in an iterative
scheme to converge to a final solution. The basic scheme of JHD is
identical to Geiger’s method; the Gauss-Newton method. However,
with JHD this means that the 4m, hypocenter parameters and the

ns station corrections are all adjusted simultaneously.

In section 1.2 above 1 discussed three problems with Geiger’s
method for single event earthquake location and how modern loca-
tion algorithms avoid them. Of these, weighting is usually used in
JHD [Dewey, 1972] in the same way, and for the same purpose as in
single event location. Inadequate knowledge of the travel time
curves is ubiquitous and the very reason for doing JHD is to help
reduce that problem. It is the singularity of the matrix equation
(3.27), however, that is the most significant problem in implement-
ing JHD. As it stands equation (3.27) is, in fact, always singular.
Physically, this indicates a fundamental ambiguity in this problem.
The average value of all the station corrections can be set to any
arbitrary value, but the resulting effect can be completely compen-
sated for by a corresponding changle in the origin time of all the
events in the data set. Douglas [1967] recognized this problem in
his original paper proposing the use of the JHD method. He pro-
posed a solution using one of the following constraints

(1) Fix the station correction for one reference station.

n’
(2) Solve (3.27) subject to the constraint ¥} s;=0.
i=1

This helps, but it is not always sufficient. In particular, when all the
events are localized in a small region, the system of equations may
be numerically singular [Douglas, 1967]. Physically, this happens
because in this case the information contained in the data is highly
redundant. Consider the limiting case where every event in the
data set occurred at the same spatial position. These data are then

equivalent to a single event recorded at every station but of varying
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quality. Thus we have the equivalent of only n observations, but we
want to estimate ng+4m, parameters. The JHD method avoids this
problem by specifying one of the events in the data set (say event 1
for convenience) as the master event whose location is held fixed.

Thus, in JHD, (3.28) is solved by least squares but subject to a
second constraint that A

6X1=0

which is normally sufficient to permit a solution.

The principle advantage of JHD, as we have seen, is its simpli-
city since it is simply an extension of the conventional single event

location techniques. However, it suffers from two major drawbacks.

(1) The system of equations (3.26) that has to be solved grows
rapidly in size as more data is added.

(2) The requirement of a fixed master event is rather arbitrary
[Jordan and Sverdrup, 1981).

I will now describe a new method of multiple event location that
eliminates both of these problems.

3.2. Progressive Multiple Event Location

3.2.1. Introduction

The multiple event location scheme I will describe in this sec-
tion is closely related to the simplest imaginable method of estimat-

ing station corrections. That is, we could estimate the station
corrections as follows:

(1) Estimate the hypocenters of the m, events by a conventional

single event location algorithm using some initial estimate of
the station corrections, s;.
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() Estimate a perturbation, ds;, to each station correction as the

average of all weighted residuals recorded at that station.

Optionally, one could then use the new station corrections, s;+ds;,
and repeat (1) and (2) until the correction becomes small. This
method is pleasing because of its simplicity, but it has a severe flaw.
The hypocenters of all m, events are not all equally well con-
strained. Because of that, a large weighted residual for one event
may not be as significant as that from another event because the
residuals can be biased by a bad location estimate. The simple
scheme outlined above ignores this and gives each weighted resi-
dual equal weight. The new method of multiple event location
described here is like the simple method outlined above in the
sense that it is what Jordan [1980] has termed hierarchic, and
Roecker [1982] calls progressive. Both terms are descriptive
because unlike JHD, the unknown parameters are not all adjusted
simultaneously by Gauss-Newton steps, but instead the hypocenters
are adjusted independently from the station corrections. A hierar-
chy is implied in which greater emphasis is placed on estimating
the hypocenters and only the dregs of the residuals are used to esti-
mate the station corrections. The major difference between the
procedure advocated here and the simpler algorithm discussed
above is that instead of using the raw residuals, this procedure uses
only those components of the residual vector that lie in the sub-
space N(AT), since they are unbiased by possible mislocation
errors. The procedure I describe here is a direct descendent of a
method of multiple event location recently proposed by Jordan and
Sverdrup [1981] and a new method of time term analysis for refrac-
tion data developed by Rohay [1982]. The procedure I propose here
is very similar to that described by Jordan and Sverdrup [1981] with
one major exception. Their study was focused on the analysis of the
relative locations of small clusters of events recorded at teleseismic

distances. This permitted them to solve the problem in a single
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linear step as the nonlinearity of the partial derivatives does not
affect the solution significantly in their case [Jordan and Sverdrup,
1981]. I have adopted this procedure with a primary interest in the
analysis of data from local seismic networks. My experience with
analysis of local network data indicates that nonlinear effects are
significant and an iterative solution is generally required. I would
argue that a ‘‘progressive’’ approach is a sensible way to proceed
with this problem because the observed arrival times are linear
functions of the station corrections but are nonlinear functions of
the hypocenter coordinates. Hence it seems sensible to place
greater emphasis on constraining the hypocenters, since only the

spatial coordinates of the hypocenters are nonlinear functions of
the data.

The approach I have followed here is to lead the reader through
the manipulations involved in implementing this algorithm. At the
same time ] will demonstrate the key properties of this algorithm
that make it work. After that I will sketch an overview of the whole

algorithm and summarize its properties and relevance.

3.2.2. Single event residuals and the multiple event location prob-
lem

The method I am advocating here is a process of alternately
locating individual earthquakes by conventional single event
methods, followed by estimation of perturbations to station correc-
tions using the resulting residuals. Consequently, it is necessary to
see what happens to the overall system of equations of the multiple
event location problem, (3.26), when each earthquake is located

individually. To see this, it is useful to rewrite the set of equations
(3.28) as

r’ =ASh+S6s (3.29)
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where 1 is as defined in (3.26)°

A, O --- O
0 A, -+ O
A=|" ' (3.30)
o0 .- A;n,
6hy
Shy
6h=| ° (3.31)
Shyp,
and
S,
Sz
S=| - (8.32)
Srm,

The matrix A defined in equation (3.30) has a very special struc-
ture called block diagonal [Golub and Plemmons, 1981]. (This term
is potentially a bit confusing since A is not even close to any diago-
nal form. The name arises from the form the matrix ATA of the nor-
mal equations of A.) The block diagonal form is significant because
it shows that in the multiple event location problem, individual

events are coupled only through the station corrections. One view

°1 am using a notation convention here in which partitions of a
larger matrix are denoted by a boldface letter that is the same as
the larger matrix of which it is a part but labeled with a subscript.
The special structure of the matrices considered here allow me to
use only one subscript instead of the two that are usually required
to identify individual pieces of a partitioned matrix. This subscript
can thus be considered as a simple label that identifies the particu-
lar event that entity is associated with.
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of single event location procedures is that they solve (3.29) ignoring
the last term involving the station corrections, Sés. When that is
done, the locations of individual earthquakes become completely
uncoupled and locating each event in isolation is justified. That
approach, however, is obviously somewhat blind as it is tantamount
to the assumptiori that the station corrections are known exactly.
Nonetheless, it is instructive to study what happens to the set of
equations (3.30) when each earthquake is located separately and
the station correction term, Sds, is included. We saw above that sin-

gle event location of each of the m, events involves solving the set
of equations

rj=A, 6h, i=123 ..., m, (3.33)

using a least squares solution of the general form (3.16)6. This pro-
cess is repeated until the solution converges. In practice, ‘‘conver-
gence'' usually implies that [|6h;|| is small. Hence, when all m,

events are located individually, we would find that for each event
dhj =er5?N0 (3.34)

where the matrix Hj€R4xm" is a generalized inverse of the form
(3.18). Because of the block diagonal form of A, the final solution

(the hypocenters of all m, events) could be considered as a matrix

multiplication of (3.29) by a matrix HeR™ ¥  which I define as

H, 0 - O]
0o H --- 0

H=" = : (3.35)
o ¢ --- Hm

5 In the actual implementation of this algorithm, I have utilized the
Levenberg-Marquardt inverse, A™, defined by equation (2.39). As a
practical matter the pseudoinverse (defined by equation (2.37) )
may actually be preferable for the purpose of this algorithm be-
cause its range and null space are better defined.
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where the individual nonzero partitions in (3.35) are the matrices
H; of equation (3.34). This matrix multiplication yields

Hr=HASh (3.36)
or after rearranging
Sh=Hr (3.37)
where I define
sh=HAsh=Réh (3.38)

R is a matrix usually called the resolution matrix ( e.g. Wig-
gins[1972] or Crosson [1978a] ). For least squares problems such as
this one, R is some approximate identity matrix. R reduces to an
identity matrix only when A is full rank and H=A!, the Moore-
Penrose inverse defined in equation (2.33)". No matter what R s, it
can be seen from (3.34) that when each of the m, events is located

initially by standard single event methods, we will find
sh=Hr°~0 (3.39)

H is a matrix with 4m, rows and M columns. Consequently, (3.39)
declares that the net result of locating the m, events individually is
to cause those 4m, linear combinations of the residuals defined by
(3.39) to vanish. What this says as a practical matter is that only
these 4m, parcels of information contained in the original data are

utilized to locate the eventsa. I will now show how the information

" In practice H is always calculated from a matrix A using finite
precision arithmetic. Thus even when A is full rank and H=Af,
R=A'A is not strictly an identity matrix because of roundoff error |
Lawson and Hanson, 1974, pp. 90-99]. The amount R differs from an
identity in this case is dependent upon how ill conditioned Ais.

4m, is actually the maximum number of independent data that
are utilized in locating the m, earthquakes. The number will be
less when the rows of H are linearly dependent.
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that remains in the residuals can be extracted in an unbiased way
to estimate the station corrections.

To understand the interplay of the process of single event loca-
tion and the resulting residuals for all m, events, it is useful to
rewrite (3.35) in terms of an orthogonal decomposition similar to
(3.18). To do this we first note that from the definition (3.18) that

each nonzero block of HH; €R4xm‘, can be written as
H; =V, AUl i=12...,m, (3.40)

where V,eR¥¢ AHeR™™ and UFeR™™ are as defined in (3.18).
The only difference is that I have added the subscript i as a label.

Because of the form of the Af matrices it is useful to rewrite (3.40)
in the partitioned form

T
H, <[V} [AF 0|y (3.41)

i

where AFe€R*** is as in equation (3.19). The row partitioning of UY is
defined congruently so U} eR¥™™ and U,{;'eR(""—4)x7n". This partition-
ing is consistent with that introduced in chapter 2 in equation
(2.21). This form, however, combines the partitions labeled with the
subscripts R and N, to account for the form of Af that I have used
here. Because of that I have dropped the subscript on N and so I
write Uﬁ=U§z for convenience. With these definitions it is easy to

see that H can be written in the alternate form

T
H=VAZUT=V[AH0O] g’} (3.42)
: N
where VeR*™ 4™ i5 of the form
v, 0 --- 0
0 V2 e 0
v=[- : (3.43)
0 0 Vo,
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with the nonzero blocks along the diagonal of V being the matrices,
V;€R%* in equation (3.41). Similarly, A¥ eR*"™ ¥ and UTeR¥*M are
defined as

.

1
gy, o x 0
0 (Af) -+ 0
AT =[AF|0]=]| - . : (] (3.44)
0 0 - (A,
and
Uy, o --- o0
0 (Uf) --- 0
g7 0 o .- (Uf
U= U’; =7 (U )m, (3.45)
Uyl |(Uy) 0 - 0
0 (Uf)e --- 0
0 0 o (U,

The reader may well think the only thing that has been accom-
plished at this point is converting the simpler matrix in equation
(3.35) into one that is at least three times more complicated. How-
ever, do not despair for it should become apparent directly that
quite the opposite is true. (3.42) actually leads to a simpler set of
relationships between the hypocenter parameters and the station
correction parameters. To see this, it is instructive to multiply the
equations in (3.29) by the decomposed form of H defined in (3.42).

The first step of that process is to multiply (3.29) by the orthogonal
matrix U”. This leads to
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SR
- N P
S 0 0 o (A)m||%P2| ,|BR)m,
o e e R 2
(r ) L L |osm]
L(sz\‘l.)m, | o 0 . 0 [ (Sw)m,
(3.48)
where
(r}):=(Uf);rieR? (3.47)
(Ar):;=(Uf);A;eR™4 (3.48)
(Sr):=(Uf);S;eR™™ (3.49)
i=1,2 ..., m,
and
(r%);=(UF);rseR™™* (3.50)
(S )i =(UF); S, R~ (3.51)
i=1,2, ... ,m,

Equation (3.48) contains two distinctly different types of equations
marked by the horizontal dividing line in (3.46). The solution pro-
cess used to estimate the hypocenter parameters handles these two
types of equations totally differently. To see how, consider the pro-
duct VAT of (3.42). We observe that it has the partitioned form
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VAR =[VA7 | 0] (3.52)
(VvaAf, o ... 0
0 (VAf), --- 0o |

0 0 o (VA)m,

where each (VAf);eR***. Thus, we see the product VA¥ is a
4m, x4m, matrix. When we multiply (3.46) by VA¥ we will produce
the same result as when we multiplied (3.29) by H.

4

Be| [R 0 --- ol[sh] [HS,

H,r* 0 R, --- 0 ||6ny| | HS,

: =" - o | N (D) (3.53)
A I R

where the partitions R;€R*** are defined as
R,=HA;

Thus, the matrix R that is the first term on the right hand side of
(3.53) is the same as R in equation (3.38). The significant point to
observe from (3.53) is that the hypocenters are estimated only from
the first 4m, residuals of (3.46). The other M —4m, residuals are
not used to estimate the hypocenters because they are forced to be

zero in (3.53) and hence are ignored in estimating the hypocenters®.

® This result should come as no surprise to those who have read
chapter 2 of this dissertation. It was noted there that orthogonal
matrices represent a rigid reorientation of the vector space in
which the data vector, r*€R¥, lies. From the way I defined it, the
matrix U in (3.45) is the matrix one would obtain from a singular
value decomposition of the matrix A in equation (3.30). In the dis-
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This suggests we can estimate the station corrections by solving

ry=Syds (3.54)
RM ~4m, R(M -4m, )xn, )

where Iy € and Sye€ are defined as

()1 |
1 (x%)z2
In= ' (355)

{(rlsv )'m.,
and

(Sw)1
(Sn)2

(Sw )rm,

The actual method used to solve (8.54) is somewhat a matter of
choice. In the implementation I have made of this procedure I have

used the pseudoinverse solution (see Chapter 2) of (3.54) that I
write as

08=SySys=Syrf (3.57)
which as we have seen is closely related to the Moore-Penrose

cussion in chapter 2 it was demonstrated in a heuristic fashion that
U produces a special reorientation of R¥ . The first 4m, rows of UT
(those denoted as U} in equation (3.45)) form an orthonormal basis
for the range of A. The remaining M —4m, rows of U’ (denoted UJZ
in (3.45) ) are an orthonormal basis for the rest of R¥, N(AT). Thus
the process of multiplying (3.29) by U7 produces a special reorien-
tation of R¥. The first 4m, components of the vector UTrS that I
have denoted by the symbol r3 are the projections of r° onto R (A).
Similarly, the remaining M —4m, components of U'r® that I have
denoted by the symbol rj are the projections of r* onto the N(AT).
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inverse!®, It should be noted that a simple solution of (3.54) by the
normal equations is not feasible because Sy is always singular. This
singularity is the manifestation here of a problem I noted earlier
with JHD. The average value of the station corrections is indeter-
minate because it trades off arbitrarily with the origin times of the
Mg events!!. I would argue that the pseudoinverse is a sensible
choice because it finds the uniqile solution of (3.54) that minimizes
||8s]l>. Thus, it makes the station corrections as small as possible in
the mean square sense. This is desirable because normally we want
the station corrections to be the smallest size possible that is con-
sistent with the data. If one prefers the constraint

3 5;=0 (3.58)

it can always be imposed a posieriori since the solution is indepen-
dent of the mean station correction. As a practical matter I have
found that (3.58) is nearly always satisfied approximately anyway
provided the initial guess for the station corrections satisfied (3.58).

10 practical experience with this procedure to date has shown that
generally the pseudoinverse and the Moore-Penrose inverse are
identical for Sy. This occurs because the tendency is to get ng~1
singular values of the matrix Sy that are roughly the same order of
magnitude and a single very small singular value of the size of the
floating point precision of the computer being used. Any reason-
able tolerance parameters would, in this case, set the pseudorank
to ng—1 which I noted above is the maximum rank of Sy. There is
some reason to suspect that this may not be universally true, how-
ever, since rank (Sy)=ns—1 is probably indicative of well balanced
data in which each station records about the same total number of
arrivals.

This problem could also be solved by including refraction data
from an explosion source with known origin time or fixing the loca-
tion of one “master event’’ as in JHD. I feel the use of the pseu-
doinverse is preferable to this because it does not require a master
event but will, nonetheless, use events with known hypocenters as a
type of ‘‘master event’’ implicitly when they are available.



71

This completes the basic description of the progressive multiple
event location procedure. The description has, to this point,
involved a considerable amount of manipulation involving parti-
tioned matrices with complicated structures. Consequently, it
seems appropriate to emphasize the key points the reader should
glean from these manipulations. This is most readily accomplished

by summarizing the four key stéps in implementing this procedure.

(1) Locate each earthquake individually be conventional single
event location methods.

() Calculate the matrix U defined in (3.45).

(3) Use U to calculate the matrix Sy in equation (3.56) and the vec-
tor ry in equation (3.55).

(4) Calculate perturbations to the station corrections by (3.57).

These steps are repeated until the procedure converges. Overall,
this procedure is similar to the simple method of estimating station
corrections using raw residuals described in section 2.2.1 above.
That is, both estimate the hypocenters and station corrections in
separate calculations. The fundamental difference is that this pro-
cedure does not use the raw residuals to estimate the station
corrections, but instead uses only the M —4m, numbers r§ in equa-

tion (3.55) that are ignored in estimating the hypocenters.

3.2.3. A practical algorithm

The algorithm I described in the previous section is not very
practical as it stands, because the matrix equation (3.46) can attain
an overwhelming size when the amount of data is large. This is the
same storage problem that I noted earlier with a practical imple-
mentation of the JHD method. That is, the equations grow in size by
m; rows and 4 columns for each earthquake added to the data sel.
This explosive growth in the storage requirements of multiple event

location schemes has limited their usefulness to small data sets.
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One of the major advantages of the progressive multiple event loca-
tion method is that the special structure of the equations can be
exploited to produce an algorithm that operates in a small, fixed
storage area of size of the order 6n5+2n52 where ng is the number of
stations in the network. This has great practical importance
because it means this algorithm could be used for routine earth-
quake locations even with a micro-computer. This section is pri-

marily devoted to showing how this storage reduction can be
accomplished.

The first observation to make is that the matrix A in (3.30) is
mostly zeros. The block diagonal form of A leads to an equally sim-
ple form for the matrix U in (3.45) used to form the decomposition
in (3.46) which is the fundamental basis for the progressive method.
The key observation to make is that there is no reason to explicitly
form the matrix A or the matrix U. Instead, it is natural to work
with each event in the data set individually. The process has two
parts. The first is the process of single event location. This involves
the now familiar process of solving (3.33) repeatedly, using (3.16),
until convergence is achieved. This operation requires storage of
only of 5ny numbers (A; is of size 4ng and r® is of size ng.). The
second major step is to calculate the matrix U of (3.45) and to mul-
tiply (8.29) by it. Fortunately, this step is also amenable to efficient
usage of computer storage. The block diagonal form of A leads to
the simple form (3.45) of U. The form of U is such that it, like A,
need ever be formed explicitly. The reason is that we are not par-
ticularly interested in what each of the submatrices U; actually are,
but all we really need are the products defined in equation (3.47) to
(38.51). These products are all various pieces of the product of u’
with the quantities r{,A;, and S;. All of these quantities are associ-
ated only with the i*® event. Thus the products in (3.47) to (3.51)
can be calculated individually, event by event, with no need to expli-

citly form any of the large matrices in (3.48). Furthermore, an even
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greater storage reduction is possible because U7 need never be
explicitly calculated either. Because the only use we make of Ul is
to form the products (3.47) to (3.51), it is possible to arrange the
calculations such that U,;T itself is never actually formed, but only
the products (3.47) to (3.51) are calculated. An example of this is
an algorithm for calculating the singular value decomposition of a
matrix written by Lawson and Hanson [1974,pp.260-262,295-300]
that they call SVDRS!Z. SVDRS applied to a matrix A; can be used to
return the following13

o || _gyr s
i v
(Sr)i|_er
Sie (Sw )s =U:S;
and
A;<[V]

Details of how this can be accomplished can be found in the Lawson
and Hanson reference. This algorithm makes efficient usage of
storage because no space needs to be allocated to hold the matrix
U,;T . Thus, this step of the algorithm can be accomplished with only

5ns+n2 storage locations (Actually additional space is required by

12 1 should point out that this same storage saving could be accom-
plished using a simpler QR decomposition (Lawson and Hanson
[1974,pp.254-256,290-291] also give arn algorithm for doing this.)
rather than a singular value decomposition. The difference in com-
putation effort for this problem is, however, negligible because A;
has only four singular values. Timing data to verify this can be
found in Dongarra et. al. [1979].

13 The « symbol denotes what Stewart [1974, pp. 88-89] calls a
dynamic equivalence operator. Its meaning is that the quantity on
the right of the « symbol is associated with the location of the
quantity on the left. It can be loosely interpreted as an overwriting
operation.
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SVDRS to hold the singular values and as a work space. These are,
however, negligible for this problem.).

The only remaining step is calculation of the perturbations to
the station corrections by equation (3.57). Directly forming the
equation (3.54) is not a very attractive prospect, since Sy is a
(M —-4m, )xng matrix and can attain a very large size if M is very
large. Fortunately, this problerh too can be avoided. I know of two
ways to accomplish this;

(1) Si can be calculated from normal equations which can be accu-

mulated in blocks. This approach calculates the matrix S{Sy
m,

as SfSy= z‘f (ST):(Sy); and the vector Sfr§ as
i=1

mc
Sira="3 (SF):(r#); and calculates ds as 68=(SHSy)*Sirf. (See
i=1
Ben-Israel and Greville [1974,pp.110-111] for a theoretical
justification.)

(2) QR decomposition of Sy by sequential accumulation [Lawson
and Hanson, 1974, chapter 27] with Sy derived from a singular
value analysis of the matrix R; from QR decomposition of Sy.

Either algorithm is acceptable but I would argue that (2) is prefer-
able primarily because of the superior numerical stability of
modern algorithms for accomplishing a QR decomposition. This is
particularly important in light of the fact that Sy is always singular
and hence SfSy cannot be inverted by elementary methods any-
way. A sketch of an algorithm to accomplish a QR decomposition of
a matrix by sequential accumulation (SEQHT) can be found in Law-
son and Hanson [1974, pp. 210]. I will not burden the reader with a
detailed description of this algorithm here, but I refer the reader to
their text which contains a fairly intelligible description of this pro-
cedure. The main point here is what SEQHT is good for. It permits
us to avoid forming the matrix Sy explicitly, but instead we only

need to provide an extra space to hold the ngxn, upper triangular
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matrix R, of the QR decomposition of Sy. By utilizing this algo-
rithm R; can be accumulated event by event using a sequence of
elementary reflectors calculated from the submatrices (Sy);. The
storage required to accomplish this step is 2n2. n? locations are
required to hold S and n® locations are required to hold R 14 The
final result, after all m, events are processed, is the equivalent of

calculating a QR decomposition from Sy as
SN=QsRs (3'59)

with QSERMxn‘ and R,eR™*™, Q,, like the matrix UJ discussed

above, is not explicitly calculated but instead is used to reduce
(3.54) to the form

des=QsTrf,=rQ (3.60)
Once the reduction to (3.80) is accomplished, ds can be calculated
by
6§=RS+I'Q
where the pseudoinverse of R,,R}, is readily obtained from a singu-
lar value decomposition of R;.

The preceding discussion is summarized in the following brief
sketch of a procedure I call ALGORITHM PMEL:

4 More complicated coczling could be used to reduce the storage re-

quirements for R, to "LTs since only the upper triangle is used.
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ALGORITHM PMEL

1) Initialize sand h;, i=1,2,...,m,

2) Loop from 3) to 8) until convergence
3) Fori=1,2,...,m, -

1i) Execute ALGORITHM MODHYLOC (section 1.2 above) us-
ing s. Return: h;,A;, and rj

2i) Execute ALGORITHM SVDRS [Lawson and Hanson, 1974,
PPp.260-267,295-300] SVDRS returns:

ri<Ulrf
A<V
S, <U/fs;
3i) Execute ALGORITHM SEQHT on (Sy); [Lawson and Han-

son, 1974, p.210]. Accumulate matrix R; and vector ry
of QR decomposition of Sy.

4) Calculate RS by singular value decomposition of R;.
5) 68=Rirg
68) End loop

the major storage areas required by this algorithm are illustrated in
figure 3.1. Figure 3.1 is useful primarily as an introduction to figure
3.2. Figure 3.2 is intended to clarify this rather complex algorithm
by showing what areas of storage are active at each major step of
the algorithm. We see there that in the earthquake location phase,
step 1i), only A; and rf are used. Blockwise multiplication by the UJ
matrices, step Ri), uses only the spaces labeled A;,rf, and S;.
Sequential accumulation of R, step 3i), uses the upper triangle of
R, and the bottom m;~4 rows of S; 15 Finally, the singular value
decomposition of R, and calculation of 68§, steps 4) and 5), use the
array R, the vector rp, and small work spaces (These are omitted
15 Step 3i) is somewhat oversimplified in figure 3.2. Actually, the

first few events have to be handled speciaily (see Lawson and Han-
son [ 1974, pp. 208-212]).
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Figure 3.1. Major storage areas required by progressive multiple
event location algorithm. This figure is a schematic in which each
element of an a given array can be viewed as a small square at the
proper position for a normal matrix tableau. For example, S; is an
ngXng array. The element (Sy,); can be visualized as occupying the
upper left hand corner of S;.
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Step 1i) Step 2i)

Step 3i) Step 4) and 5)

Figure 3.2. Storage areas referenced at each major step of PMEL.
Major storage areas are as pictured in figure 3.1. Stippled areas in-
dicate areas that are used during each indicated step of ALGORITHM
PMEL. m;, the number of arrival times recorded for the i event,
is generally less than ng,. Because of this, only m; rows of the ar-
rays A;,S;, and ry are used for the i** event. m, varies with each
event so the level to which these arrays are filled is variable. This is

emphasized here by showing the bottom section of these arrays un-
stippled.
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in figure 3.2. Either A; or S; could be used for this purpose.).

The key observation to make from figure 3.2 is that this algo-

rithm operates in a fixed storage area. .It does not require added
storage for each new earthquake added to the data set like JHD.
Consequently, it is capable of digesting virtually unlimited quanti-

ties of data while operating within memory requirements that are

readily obtainable even on a mini-computer. I have actually utilized
this procedure only as a part of a larger scale procedure that also
inverts for P-wave velocity structure (see chapter 4). However,
because of its remarkably small computer memory requirements, I
believe it may find use in three other ways.

(1)

(2)

Station corrections calculated by PMEL represent an average
time correction for ray paths joining all sources to a given
receiver. They thus represent some average path anomaly. If
data from a seismograph network were sorted by the epi-~
centers of the sources, then significant changes of station
corrections calculated for data from different regions could be
used to infer the existence of lateral velocity variations. This
has been attempted previously by other workers (see for exam-
ple Knapp and Smith [1979] or Spieth [1981]) using other multi-
ple event location methods. The advantage of PMEL is that it is

capable of digesting large data sets and does not require any ad
hoc constraints.

The procedure has promise as a method of data compression in
inversion for three dimensional velocity structure. When this
procedure is applied to small clusters of earthquakes it
becomes meaningful to calculate what Jordan and Sverdrup
[1981] call the ‘‘hypocentroid” of the cluster. The station
corrections one calculates can then be thought of as the aver-
age path anomaly from the ‘‘hypocentroid” to each station.
One view of ALGORITHM PMEL, in this case, is that it is a gen-

eral, optimum method of stacking data from a set of closely
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spaced events of variable quality to estimate the average path
anomaly for the entire cluster. Event clusters are common
features of micro-earthquake data. This algorithm provides a
means of combining the data from hundreds of earthquakes to

look like a single, high quality event.

(8) SEQHT could be modified to operate in an updating fashion.
Each earthquake recorded by the network could be used to
update R; in real time. Ry would then represent the accumu-
lated knowledge of the station corrections from all past events.
Similarly, data later found to be erroneous could be selectively
deleted by the reverse process. For a description of how this

can be accomplished see Lawson and Hanson [1974, pp. 225-
231].

I have now completed a description of a practical algorithm for
doing progressive multiple event locations and described some of
this algorithms possible uses. Its principle advantage is that it
operates in a small, fixed working area in computer memory. Since
a universal principle is that *“‘there is no free lunch” the skeptic
may well ask what price we have paid to accomplish this. The skep-
tic is right. This was not a gift. I will now demonstrate through the
use of the resolution matrix [Wiggins, 1972] that the price we have
paid is the hypocenter estimates are coupled to the estimates of
the station corrections. However, I will show that this is a small

price to pay because it is only an admission of a fact that is usually
ignored.

3.2.4. Error analysis

Although ALGORITHM PMEL is actually a complex procedure
involving iterations on two separate levels (Single event location is
an iterative procedure and the entire algorithm is a larger scale
loop.), the final estimate can still be viewed as a linear perturbation

from a reference solution using a generalized inverse solution of
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equation (3.28). Generalized inverses for problems characterized
by a finite number of parameters have associated with them three
important matrix operators. These are the matrices usually
referred to as the resolution matrix, covariance matrix, and the
information density matrix (see for example, Wiggins [1972] or Cros-
son [19768a]). These matrices are important as tools for assessing
the reliability of parameter estimates produced by generalized
inverse solutions. I will derive here the form for the resolution
matrix and covariance matrix for ALGORITHM PMEL and show that
both have a special structure. I will not derive the form for the
information density matrix because it has no special structure. It
could be calculated, if desired, directly from its definition (see e.g.
Crosson [1976a]). However, doing so would normally be of dubicus
value since it is a matrix of size M xM and would thus defeat the

major purpose of this algorithm which is storage reduction.

The resolution and covariance matrices are both calculated
from the generalized inverse matrix used to estimate the parame-
ters. Thus, the first order of business is to determine the form of

the generalized inverse that is used by ALGORITHM PMEL. This
means we seek the form of the matrix Hg €RV*¥ that we use to esti-

mate the parameter vector via a relation of the form
i=HB Bx=HBrs (361)

where x€RY and BeR¥¥ are as defined in (3.27). % is the actual
estimate of the true, unknown parameter vector x. From equations
(3.46), (3.53), and (3.57) we see that Hy for the progressive multiple
event location solution is of the form

HB=

H
S$UT (3.62)

where HeR*™¥ i5 defined in (3.35), Sy is defined in (3.57), and Uf
is defined in (3.45).
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Having now specified the form of the generalized inverse, Hg,
we turn now to calculation of the resolution matrix. The resolution
matrix for x is defined as [Crosson, 1976a]

RB =HBB (363)
Hence (3.61) could be also written as
i-"—’RB X=HBI"S (364)

(3.64) demonstrates the usefulness of the resolution matrix. Rg
measures how well determined the solution is, because whatever
the true solution x is, the estimate X is always related to it by
(3.64). The usual measure used to ascertain how well determined %
is, is to compare Rg to an identity matrix. This is sensible since if
Ry were an identity matrix it would indicate x is known unambigu-
ously. However, Rg is an identity matrix only in the special case
when B is full rank and Hg is the least squares (Moore-Penrose)
inverse, Hg =B'=(B"B)~!B”. I have already noted several times that
B is never full rank so the least squares solution is not unique and
Ry can never be reduced to an identity matrix for this problem.
This is indicative of a fundamental ambiguity that cannot be
removed without auxiliary information'®. An advantage, in my opin-
ion, of the progressive procedure is that it expresses this ambiguity
directly in a manner that makes sense intuitively. To see this, note
that if we substitute for B from equation (3.26) and Hy from equa-
tion (3.62) into the definition of Ry in (3.63) we obtain

16 A JHD solution will generally result in a solution for which Rg is a
close approximation to an identity matrix. This is accomplished in
JHD through the use of a set of auxiliary constraints that can be
criticized as being somewhat ad hoc [Jordan and Sverdrup, 1981].
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|

Rl 0 e 0 H181

0 RZ S 0 N HZSZ

Rg=| ' - : : (3.65)
0 0 -+ Ry, |HySh,
+
{ 0 SNSN

where the matrices R;€R*** are as in equation (3.53). The fact that
the lower left partition is a zero matrix follows directly from the
definition of UJ. The form of the lower right partition follows
directly from the definition of Sy since

Sy=UZS

Obviously, (3.65) is usually not even remotely close to an iden-
tity matrix. Nonetheless, (3.65) does indeed express the correct
ambiguity that is inherent in progressive multiple event location.
To see this, recall that the hypocenters are estimated in this pro-
cedure by single event location using station corrections derived

from the previous iteration. This involves calculating 6h; for each
event as

6h;=H;A;h;
=R, 6h; (3.68)
=H,r}

(3.68) is solved repeatedly until convergence when 6h;~0. However,
if we substitute for the definition of r{ in (3.25) this implies that

R;6h;+H;S;6s~0 (3.87)
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This is precisely the ambiguity declared by (3.65). It declares that
changes in the hypocenter of the ith event.dﬁi, can be completely
compensated for by a change in the station corrections, 6s. (3.65)
simply states this ambiguity of the single event location process
that is an integral part of this procedure.

The lower partition of (3.65) has a quite different interpretation.
To clarify this substitute (3.65) into (3.64) to obtain

-

where I have simplified (3.65) by combining all the upper partitions
into those I have written as R and HS. (3.68) demonstrates the
remarkable fact that the estimate of the station corrections is
independent of the hypocenters”. This is in marked contrast to
the hypocenter estimates that we have seen are intimately con-
nected to the station corrections. This is a significant observation.
The difficult parameters to estimate in this problem are the hypo-
centers because they are nonlinear functions of the data. The sta-
tion corrections, by contrast, are simple linear functions of the

data. Thus it is intuitively clear that it is useful to obtain an esti-

R HS
0 SNSN

6h

(3.68)

mate of s that does not depend on the hypocenters since they are
more prone to error.

Having disposed of the resolution matrix, I turn now to a brief
description of the covariance matrix for this procedure. The covari-
ance matrix is important because it can be used to assess how
second moment statistics of errors in the data propagate into the
second moment statistics of errors in the estimates of the parame-
ters. Obviously, the first requirement then is that we have to know

something about the second moment statistics of the data errors.

17 Realistically, 68 is only locally independent of the hypocenters
since A; is based on a local linear approximation.
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That is we assume we know the covariance of the data defined as

.D,;j=E[TfT:,§] i=12, ... .M

.

i=12.... M

where E[] denotes the expectation operator (see for example, Hoel
[1971]). The M? numbers D;; define a covariance matrix DeR¥*¥
that can be written as

D=E[r* (r5)7] (3.69)

We seek the covariance of the estimates,CERV*¥ | of the N parame-
ters, X, that can be defined similarly as

C=E[z%" ] (3.70)

However, since the data are related to the estimate by (3.64) we can

express C as
C=E[Hpr* (Hzr*)”]
=Hg E[r*r*’ JHJ (3.71)

=Hy DHJ

An important special case!® is that in which the data are statisti-

cally independent and of unit variance, for then (8.71) reduces to
[Crosson, 1976za]

C=HgzHJ (3.72)

If we substitute for the partitioned form of Hg given in (3.62), we
see C is in the form

18 This ‘‘special case’’ is not really so special, because if D is known
a priori as we are assuming anyway, an appropriate weighting ma-
trix can always be calculated (appendix A ) that will rescale the

data to be in this form (see also Lawson and Hanson [1974, pp. 193-
195]).
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C= S;{w][HTUN (s (3.73)

_ |’ 0 )
| 0 S¥(SH)T

since
HUy (S§)T =VATUL(S5)T

=0

because UZUy=0. (3.73) has an even simpler structure that we can
see by recognizing that HH? is of the form

cl 0 [N 0

0 C2 ter 0
HHT= . . .

0 0 e Cmv

where the individual partitions C,€R*** are defined as
C;=H;H]

Thus C has the block diagonal form

[cl 0 (1} 0
0 C, - 0 0
c=|. I I (3.74)
0 0 -+ Cp 0
0 0 --- 0 SHSHT

This is a significant result. It demonstrates that in the special case
when D=I random errors in the estimates of the hypocenters of
individual events are not coupled. Furthermore, random errors in

the estimates of the hypocenters are not coupled to errors in the
estimates of the station corrzctions.
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4. SUMMARY

In this chapter I reviewed' the major methods currently used for
locating earthquakes. I grouped these methods into two major
groups; single and multiple event location methods. Although other
methods exist, I described details of only two multiple event loca-
tion schemes; the master event method and the method of joint
hypocenter determination. My principle motivation for describing
these two methods is that both are closely related to the progres-
sive multiple event location procedure I have introduced here.
PMEL is, in a sense, a hybrid of these two methods. PMEL is a
pseudo-master event method in which the ‘‘master event' is not a
single event, but an average over the entire data set which Jordan
and Sverdrup [1981] call the “hypocentroid”. PMEL is also essen-
tially a JHD method since it solves essentially the same equations.
Its major difference, however, is that PMEL does not suffer from the
explosive growth in computer storage required by JHD. PMEL is a
significant advance in earthquake location because it combines the
superior averaging qualities of multiple event location with the
speed and small memory requirements of single event location.
Consequently, I believe PMEL makes all competitive multiple event
location methods obsolete. Furthermore, with application of some
of the extensions proposed in section 3.2.3 it may render the same
fate to conventional single event location methods.



CHAPTER 4
CONSTRUCTING A VELOCITY MODEL

.

1. INTRODUCTION

The arrival time of waves generated by a point source in an
elastic medium depends on the wave propagation velocity by
definition. Velocity is a number we use to convert times into dis-
tances. Thus, it is immediately obvious that we ought to be able to
use arrival time measurements to tell us something about the
seismic velocity structure of the earth. The fundamental problem
we face in doing this is that there is not *'a” seismic velocity of the
earth. Instead, the earth is made up of a complex assemblage of
many different kinds of materials with different seismic velocities.
Hence, the earth does not have a single number that quantifies its
seismic velocity but a whole range of velocities that vary from point
to point within it. Consequently, a complete description of the velo-
city structure of the earth would require us to specify velocities at
an infinite number of points. This is a task that cannot be done per-
fectly. The reason is that the amount of arrival time data we can
collect will always be finite but the velocity structure requires (in
principle at least) an almost infinite number of parameters to be
described exactly. The effect of this is that we can never hope to
obtain a perfect image of the velocily structure, but we must be
content with some blurred version of it. This obscurity of geophysi-
cal inverse problems has been widely recognized since the work of
Backus and Gilbert [1967,1968,1970].

Previous workers who have used arrival time data from earth-
quakes (e.g. Peters[1973], Crosson [1976a], or Aki and Lee [1976]) to
estimate velocity structure have evaded the issue of nonuniqueness
by imposition of a special, a priori form to the velocity structure to
allow them to solve the problem by least squares. This approach
suffers from the problem that it is difficult to know the effect this

initial, fixed parameterization has on one's solution. A major goal of
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my work is to break free of the need for any such a priori parame-
terization of the velocity model. Here the velocity model is allowed
to be an arbitrary function whose uniqueness can be assessed by

the techniques of Backus and Gilbert [1968, 1970] and Johnson and
Gilbert [1972].

This chapter is devoted to the issue of how to construct a model
that fits the observed data. Arrival times are nonlinear functionals
of the location of the source and the velocity model. The method I
describe here for constructing a solution is an iterative procedure
based on a linearization of these nonlirear equations. It shares this
property with Crosson's [1976a] nonlinear least squares procedure.
The scheme I use here, however, takes the view that the hypo-
centers and station corrections are fundamentally different entities
from the velocity model. That is, a given parameter (hypocenter
coordinate or station correction) requires only a single number to
be specified exactly while the velocity model is an unknown function
that is fundamentally ambiguous. The approach I adopt here
exploits this distinction between the parameters and the velocity
model through the use of the annulling transformation (Pavlis and
Booker [1980], Spencer and Gubbins [1980], and Rodi et. al. [1980]).
One of the most significant properties of the annulling transforma-
tion is that it permits one to estimate the velocity model and the
discrete parameters in separate calculations. The end result is a
procedure I have dubbed PRIMEL (progressive inversion and multi-
pie event location). The procedure is ‘‘progressive’” because
different parts of the model are adjust by separate, iterative pro-
cedures. This is in contrast to the ‘‘simultaneous” procedure of

Crosson [1976a] in which all parts of the model are adjusted in a sin-
gle linear step.

The procedure described in this chapter has two major limita-
tions. The first is that the procedure described uses only first

arrival (P wave) data and hence estimates only the compressional



80

wave velocity structure. This limitation was imposed only for sim-
plicity and extension to shear waves as well should not be a formid-
able problem. The second limitation is that the algorithm assumes
that velocity varies only as a function of depth and that any lateral
velocity variations can be accounted for by station corrections.
This assumption was made primarily to make the procedure compu-
tationally tractable in spite of the fact that it is probably not very
good for many regions of the earth’s crust. It is important to recog-
nize, however, that the procedure can, in principle, be directly
extended to three-dimensional velocity models. These possible

extensions are a significant topic for future research.

2. LINEARIZATION

The data we wish to exploit are the arrival times of body waves
from a point source at a position h' observed by a receiver at posi-
tion h; (Notation here is as defined in the preceding chapter.). The

travel time from h' to h; is related to the velocity model by the
relation

T(h,l‘_,h,gi.h,s‘,,hlt’hzl,hat)=h.fh1u (h1,hahg)ds (4.1)

. . . 1 .
where u is the slowness as a function of position (== where v is
v

velocity). The integral is evaluated on a unique path (ray path)
chosen so as to make T stationary (Fermat’'s principle) and ds is an
element of length along that path. Equation (4.1) is really only a
statement that the total travel time can be calculated by summing
incremental travel times along a ray path. A major complication is
that although for a given velocity model the rays are fixed curves in
space, the ray paths depend upon the velocity model in a compli-
cated way (see e.g. Aki and Richards [1980, pp. 84-100]). Because of
this, travel times are nonlinear functionals of the velocity (slow-

ness) structure. We now seek a local linearization of these
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nonlinear equations.

A small change du in slowness will produce a change in 6T in
the travel time in two ways: the path of the path of integration will
change by an amount proportional to du, and the travel time along

the given path will change by an amount f 6u ds. Fermat's prin-
: h'-h;
ciple states that the contribution of the first is of order (éu)? and
thus is negligible [Backus and Gilbert, 1969]. This implies that
small changes in the slowness, du, do not significantly alter the ray
path. We need to extend this result, however, because the primary
interest here is in earthquake sources, whose actual location is not
known exactly. This requires that we also permit the source loca-
tion (the endpoint of the ray path at h') to vary. Recall, however
that ray paths are always normal to wavefronts (surfaces of con-
stant travel time) [Aki and Richards, 1980, p. 91]. Consequently,
small changes in the source coordinates will induce significant
changes in the travel time only when they are made in directions
parallel to the ray path. Thus, those source variations that most
significantly vary the travel time do not alter the ray path substan-
tially. (An important exception to this is those points near discon-
tinuities in the travel time curves.) Thus small changes in the travel

time are related to small changes in the model by the relation

_ AT,
" 8hy'

8T, Sh o'+

::LF;', h'+ :5:, Shg'+ :::, Shi+ ’[mdu ds (4.2)
where the ray path in the integral is the same as in (4.1) and the
partial derivatives are all calculated based on the unperturbed velo-
city (slowness) model. 8T; is the variation in the travel time
induced by changes in the model. It is synonymous with the resi-
dual defined in equation (3.3). Furthermore, the partial derivatives
in (4.2) are identical to those in equation (8.2) that are used in

hypocenter location. In fact, the only difference between equations
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(3.2) and (4.2) is that in (4.2) we have added a term involving varia-
tions in the velocity model. Note that the linearized equations of
(4.2) are perfectly valid for a velocity model that can vary in all
three spatial dimensions. We could proceed directly from here
using a velocity model that varies three dimensionally. Tracing rays
in a laterally inhomogeneous velocity model is a formidable numeri-
cal problem (see e.g. Pereyra et. al. [1980] or Lee and Stewart
[1981]) as is the three-dimensional velocity inversion problem [Chou
and Booker, 1972)]. Consequently,for this initial investigation I made
the conventional assumption in seismology that the velocity varies
only in the vertical direction.

With this assumption the integral in (4.2) can be written in a
simpler form. At depth hgj, the ray will make an angle 6 with the
positive hg axis. Snell's law makes

P =usiné

a constant along the ray [Aki and Richards, 1980, p.92] and as a

result the integral in (4.2) can be written as [Slotnick, 1959, pp.
201-204]

L
S 6u ds=[6,(ha)du(hg)dhg (4.3)
h'-h; 0

where G; depend on the source depth hg'
S - S
(uB-p?)1/? 0<hgshg'

u '
C;(hg)= W hg3'<hga<depth of ray bottom(u=p) (4.4)
ha>depth of ray bottom

L in the integral in (4.3) is chosen as some depth below the bottom
of all rays. We identify the function G;(hg) as a Frechet derivative
(Frechet derivatives are the functional equivalent of partial deriva-

tives. For a further description see Parker [1977a].) which I will
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also call a data kernel.

It is convenient to introduce the nondimensional variable 7

defined as .
L-hg
= 4.5
r="2 (4.5)
because then (4.3) can be written as
1
S 6w ds=[6,(r)ou(r)dr (4.6)
h'-h; (]

where
1
Gi(r )=‘—GL i(ha)

If we now substitute (4.6) back into (4.2) and identify 67; as the
residual, 7;, we obtain

oT; aT; aT; aT;
;= Oh '+ —0ho'+—Gbhg'+—20h,+<G; | 6u> 4.7

where I have introduced the inner product symbolism1

1
<G; Idu>EfG,;('r You (r)dr (4.8)
0

as a convenient shorthandz.

11 have chosen to use this notation due to Dirac to denote inner
products instead of the symbolism (G;,6w ) that is more convention-
al in the geophysics literature. The Dirac notation is superior for
this work because it makes a clear distinction between operators
and functions as individual entities.

? The inner product notation itself is useful because it makes the
results described here automatically more general. Equation (4.7)
is equally valid for a three dimensional velocity model except in
that case the inner product takes the form of a volume integral (Wu
[1977] or Chou and Booker [1973]).
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Suppose we have available a set of m, earthquakes for which we
record a total of M (equation (3.24) ) arrival times. For each arrival
time we can write an equation of the form (4.7). We can then
assemble these M equations into the form

r=Aéh+&|6u> (4.9)

where r is the vector of travel time residuals, A and dh are as
defined in equation (3.30) and (3.31), and

<G|
<Ggl
<Ggl

&=| . (4.10)

<dM|]

G is a mathematical object which is a collection of the Frechet ker-
nels that can be visualized as shown in equation (4.10). I will use a
convention in which bold, capital letters with the ¢ symbol above
them will denote this type of entity. Entities like & can be loosely

considered as matrices with a finite number of rows but an infinite
number of columns.

There are two practical concessions that have to be made in the
face of any real data. The first is that the assumption that the velo-
city model varies only vertically is never totally justified. I have
attempted to reduce this potential problem through the use of sta-
tion corrections. This adds a term to (4.2) involving a perturbation
to the station corrections. A combination of the arguments given
above and those in section 3.1 of chapter 3 yield the following
equivalent to (4.9) when station corrections are used

r=Bx+G|su> (4.11)

where r°, B, and x are as defined in equations (3.268), (3.27), and
(3.28).
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The second pragmatic concession that we have to make is that
the Frechet derivatives, <G; |, in equation (4.4) generally have to be
calculated numerically. I have chosen to do this by discretizing
|6u> on a regular grid of N, points (Ny for the calculations in
chapters 6 and 7 was always between 150 and 200.). These points
are assumed connected by linear velocity (note that is not a linear
slowness gradient) segments for which the incremental distances,
ds =G;(hg)dhg, can be calculated analytically [Slotnick, 1959, p.
207]. Thus although it is useful for theoretical purposes to view the
operator & as a collection of functions, as a practical matter & is
always approximated by a M xNy matrix.

3. CONSTRUCTING THE ANNULLED DATA SET

3.1. Introduction

The set of equations in (4.9) and (4.11) both define what Pavlis
and Booker [1980] (see also Appendix B) have termed ‘‘the mixed
discrete-continuous inverse problem’. We used this term because
the complete model consists of two quite different entities. That is,
the model consists of a finite set of numbers (parameters) plus a
continuous function that requires an essentially infinite set of
numbers to be described exactly. We showed that whenever the
number of data is greater than the total number of discrete param-
eters, it is possible to construct a transformation we called the
“annulling transformation'” We adopted this term because of its
connection to the null space of the matrix associated with the
discrete parameters (see chapter 2 and appendix B). This transfor-
mation is useful for mixed inverse problems because it yields a set
of data that are independent (in the present case only locally
independent) of the discrete parameters. In this section I will
describe the application of this method to the hypocenter-velocity

inversion problem. This is done for two different cases; the
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problem without station corrections (equation (4.9) ) and the prob-
lem with station corrections included as free parameters (equation
(4.11) ). The first case has essentially already been solved in
chapter 3 and requires only a minor modification of the methods
used in ALGORITHM PMEL. The second case requires some addi-
tional manipulations.

3.2. Case I: without station corrections

The separation procedure we want to apply here is defined in
terms of two operators. These are the two operators denoted in
Appendix B by the symbols H and Uy. H is a generalized inverse
used to estimate the discrete parameters by the relation (B.8) and
is required to satisfy (B.7). Uy is an orthogonal matrix that is
related to H by (B.14). Because of this connection, the issue of how
one estimates the discrete parameters cannot be totally ignored. If
station corrections are not used, Pavlis and Booker [1980] pointed
out that the special form of the matrix A in equation (4.9) can be
exploited to great advantage. This is the same property that was
exploited in chapter 3 in the development of the progressive multi-
ple event location (PMEL) procedure. That is, individual earthquake
hypocenters are coupled only through the velocity model (in
chapter 3 the coupling was with station corrections), because of the
block diagonal form of the matrix A. Consequently, if the form (4.9)
is assumed, a sensible method for estimating the hypocenters of the
m, earthquakes is to locate them by standard least squares single
event methods. In section 3.2.2 of chapter 3, I demonstrated that
although single event locations adjust the hypocenters of all m,
earthquakes independently (also iteratively), the final adjustment
can still be viewed as a multiplication by the 4m,xM generalized
inverse matrix H defined in equation (3.62). Furthermore, we iden-
tify the M xM matrix U defined in (3.42) and (3.45) as identical to
that in (B.14), because the product VA in (3.42) is comparable to
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the matrix Fr in (B.14). Thus, the annulled data set for this case

can be constructed from the matrix UJ{,‘ER(M_“"L")XM defined in
(3.45). -

A practical difficulty, however, is that the matrix U]{,' can attain
a large size when the number of data is large. Fortunately, the spe-
cial structure of UJ can be exploited by the same method used in
ALGORITHM PMEL. To see how this can be accomplished, note that

the only usage (see appendix B ) made of the matrix Uf is to form

the following two products:

i =Ufr (4.12)

and
&y =ul6 (4.13)

We further observe that ry is the same as the vector defined previ-
ously in (3.55). We saw in the previous chapter that it was natural
to calculate ry in blocks defined by the special structure of Uﬁ (see
equation (3.45) ). Furthermore, by utilizing Lawson and Hanson’s
[1974, pp. 260-269,295-300] singular value decomposition routine
(SVDRS) it is possible to arrange the calculations such that Uf is
never formed explicitly, but a set of products are produced by an
overwritting operation (see step 2i of PMEL). The identical pro-
cedure can be used here, except in this case we form the products

in (4.12) and (4.13). A sketch of an algorithm to accomplish this is
given below.
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ALGORITHM NULLHYP

1) Fori=1,23, ...,m,
1i) Read data and location estimate for this event.
2i) Form rfA;, and G, .

3i) Execute ALGORITHM SVDRS [Lawson and Hanson, 1974, pp.
260-267,295-300]. SVDRS returns:

rieUfxf

ﬁi *‘UiT&i

4i) Write (rf); and (&y); to mass storage
2) End

The symbol (&y); in step 4i) is used to symbolize the product
(& )i=(UF): 6, (4.14)

where é,- is the collection of Frechet kernels for the i** earthquake
and (UJ); is as defined in equation (3.41).

The most significant feature of NULLHYP is that it makes very
efficient usage of computer memory. (It shares this property with
PMEL since it uses almost the same algorithm.) The minimum
storage required by NULLHYP is 5ng +nsN, where we recall Ny is the
number of grid points the model is discretized at. mng cells are
required to hold the residual vector,r’; 4ng cells are required to
hold the matrix of partial derivatives,A;; and ngN, cells are
required to hold the discretized Frechet kernels,&;.

Finally, it is necessary to point out why this case (no station
corrections) has any relevance. With a one-dimensional velocity
model the use of station corrections is, from my experience, always
required. Thus the case considered here has, in this sense, no
relevance to one-dimensional velocity inversion. I have included
this discussion here, however, primarily because it has great impor-

tance to future work that is anticipated with three-dimensional
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velocity inversion. The equations one has to solve in the three-
dimensional case are identical to (4.9) except the <G;|éu> term
must be specified on a three dimensional ,grids. In that case N; can

attain an enormous size so the storage reduction achieved by
NULLHYP is not a moot point.

3.3. Case HO: with station correétions

When station corrections are needed, I have chosen to estimate
them by ALGORITHM PMEL described in the previous chapter. Other
methods (e.g. JHD ) could be used, but I consider PMEL a superior
algorithm because of its minimal storage requirements and lack of
required constraints. 1 noted above that in spite of the fact that
PMEL uses iterative improvement techniques on several levels, the
final estimate of the parameters (m, hypocenters and mng station
corrections) returned by PMEL can still be viewed as a linear per-
turbation from a reference solution using the generalized inverse in

equation (3.61). The matrix Hy used there defines half of what is
" needed for the application of the separation procedure (appendix B)
to the system of equations in (4.11). To complete the procedure we
have to find the operator Uy (equation (B.14) ) that has the funda-
mental property stated in equation (B.21). The starting point for
this case is equation (3.54). The annulling transformation can be
had directly from the matrix Sy eRW ~4me ™ This can be accom-

plished by calculating a QR decomposition (theorem 2.1) of Sy.
SN = QR (4- 12)

3 Chou and Booker [1979] describe a technique that actually avoids
the need to specify these functions on a three-dimensional grid by
reducing all terms involving these functions to a set of line in-
tegrals. This is promising because it could be utilized to further

reduce computer memory requirements in a practical implementa-
tion of their procedure.
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where QER(M_4m‘)x(M_4m°) and ReRY ™™™ are of the form

Q=[Q.9Q,] (4.13)
and
R,
R={, (4.14)

Note that the upper triangular matrix R eR™™™ and the orthogonal
matrix QSERM_M"X"’ are the same as in equation (3.59). The more
important matrix for the present is the matrix
QNER(M—4m‘)x(M_4m“—""). because it leads directly to the matrix we
are seeking here. To see this, observe that because of the form of R
in (4.14), Q% will annihilate Sy. Comnsequently, the product

(UH)s eRW4me ¥ yofred as

(UF)s=QFUf (4.15)
is easily seen to satisfy
(UF)g B=0eRYn*(#metns) (4.15)
where
Mp=M-4m,—ng (4.18)

Equation (4.15) states that (U})g satisfies the equivalent of equation
(B.21) so it is the annihilation operator we were seeking.

We now face the issue of how to efficiently perform the annul-
ling transformation defined by (Uf)g. A useful way to do this is by a
two step procedure virtually identical to that used in ALGORITHM
PMEL. To see how this can be done, note as before that the only use
we make of (Uf)z is to form the products

n=(Uf)gr (4.17)

and
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N=(uf)z & (4.18)

which are analogous to equations (4.12) and (4.13). We note, how-
ever, that because (UJ)y can be factored'into the matrix product in

equation (4.15), equation (4.17) and (4.18) can be rewritten as

n=QfUfr (4.19)
=Qiry
and
N=Qfuf& (4.20)
=Qf Gy

where r§ and &y are as defined in equations (4.12) and (4.13).
Equations (4.19) and (4.20) illustrate what I meant above when I
stated that the annulling transformation for this case can be done
in two steps. The first step is the maultiplication by the matrix Uﬁ
and the second step is the multiplication by Qf. In the previous
section I described an algorithm (NULLHYP) for accomplishing the
first step. Only a minor modification of that algorithm is needed to
accomplish what we need here. A sketch of this modified version of
NULLHYP is given below under the title ALGORITHM NULLWSC.
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ALGORITHM NULLWSC

1) Fori=1,23,...,m,
1i) Read data and location estimate for this event.
2i) Form ri A;.S;, and G; :

3i) Execute ALGORITHM SVDRS [Lawson and Hanson, 1974, pp.
260-267,295-300]. SVDRS returns:

rf<Ulr§
S; < U/s;
&'i « U.,;T&i

4i) Write (rf); , (Sy);, and (&y); to mass storage
2) End

NULLHYP and NULLWSC differ only in that NULLWSC manipulates
the matrix S; in steps 2i), 3i), and 4i). This modification is neces-
sary because the matrix Qf is calculated from the matrix Sy which

can be constructed by assembling the partitions (Sy); as shown in
equation (3.56).

Calculating the matrix QF and forming the products in equa-
tions (4.19) and (4.20) could be done by brute force. That is, one
could assemble SN,rJf,,andﬁN; calculate the QR decomposition of Sy;
and then calculate the products (4.19) and (4.20). When the number
of data, M, is not extremely large this would be a reasonable way to
proceed. When M is large, however, we quickly face a formidable
storage problem, since the brute force approach requires storage of
at least (ns+1)(M —4m, )+(M —4m, )N, numbers.

A useful alternative is an approach based on sequential accu-
mulation, similar to the approach used in PMEL. Details of how this
algorithm works can be found in Lawson and Hanson's [1974,
chapter 27] text, but I will highlight the key points here.
Remember first that QF is derived from a QR decomposition of the

matrix Sy. In addition, recall that Sy can be assembled from the
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individual partitions (Sy); calculated by NULLWSC (see equation
(3.58)). The basic idea of sequential accumulation is that QF is
assembled from a sequence of matrices calculated from the indivi-

dual (Sy);. The net result is that Q7 is calculated as the product of
m, orthogonal matrices

Qr=Q,rQ% -1 - Q] (4.21)

Each Qf is, however, calculated completely from the partition (Sy);
of Sy and is of the special form

Q;; 0Q30
10 I 0 O
Q% =1Qq; 0 Qg 0 (4.22)

0 0 0 I

where Q€R™*™ is diagonal. Qg eR™ ™ QcR™* ™4 4nq
Q33€R(m"—4)x(m’°_4) are calculated from a sequence of Householder
transformations as described by Lawson and Hanson [1974, p. 210].
Q; is ‘‘special’” because it differs little from an identity matrix. It
has only four partitions that differ from an identity matrix and they
occupy a special position. The important point is that the structure
of the Q) matrices allows one to process the data from each event
separately in a manner that permits a substantial storage reduc-
tion. A fixed storage of 2(nl+ns+nsNy) cells is required. This

storage scheme consists of the following elements:

(1) 2ne cells are required to hold the matrix R; and the partitions
(Sv)x of Sy. The n®2 cells of R, are used to accumulate the
upper triangular matrix of the final QR factorization of Sy
(equation (3.59) and (4.14)). The remaining n.2 cells are used as

a scratch storage area to hold the individual partitions, (Sy).
in the accumulation process.
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() 2ng cells are required to hold the vector 7q (equation (3.60))
and the partitions (r§), of the data vector r§. 7y is accumu-
lated in ng cells as the algorithm proceeds. ng additional cells
are required as a work space to hold each (ry), vector. These
numbers are ultimately overwritten by the annulled data values

(3) 2ngNgy cells are required to hold the discretized kernel func-
tions. nmgN, cells are used to accumulate the kernels, ¥, that
are used later to appraise the uniqueness of the station correc-
tions (see chapter 5 and appendix B). The remaining n N, cells
are used as a scratch area to hold the the discretized kernels
(6y)x. This array is overwritten by the data kernels for the
annulled data derived from the k** event which I write as N,.

A sketch of how this algorithm proceeds is given below with the title
ALGORITHM NULLSTA. I have omitted two details for the sake of
simplicity. These are

(1) How to actually calculate the Q, matrices of (4.22).

() Bookkeeping details involving pivot elements and some special
treatment that is required for the first ng data points.

These details can be had by consulting Lawson and Hanson's text.
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ALGORITHM NULLSTA
1) Fork=12 ...,Mm,
1k) Réad output of NULLWSC into work areas: (rj);.(Sy)r, and
(G ) )

2k) Execute sequential accumulation routine (modification of

SEQHT from Lawson and Hanson [1974, p. 210]) which re-
turns:

R | [(QD)eR.+(QF)x(Sk) |
(Sn (Sw )k ]

_ (Qf )T +(Qd)e (xi )
(Q5)krg+(Qda)e (ri )i

]
fsa . [ Tg
| (i y

X ](_[ X ]= CHS SO (S
LGk | N | 1QT)X+(Qd) (B )i

3k) Write n; and N;, to mass storage.
2) End

It is quite obvious that NULLSTA is considerably more complex
than the ‘‘brute force' approach of a direct QR decomposition of

Sy. It has two significant advantages, however, over the brute force
approach

(1) The storage required is fixed and of a modest size.

(2) Its input (blocks of data defined by individual earthquakes)
interfaces nicely with NULLSTA and its output interfaces nicely

with the data compression method that is described in the fol-
lowing section.
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4. CONSTRUCTING A PERTURBATION TO THE VELOCITY MODEL

No matter how we choose to construct it, the fundamental
result of the previous section is that we can obtain a set of M,

(equation (4.18) ) equations of the form
'I'L.,;=<Ni |6u> (4—23)

These M, equations constitute what Pavlis and Booker [1980] term
the ““annulled data set’ They have the useful property that they are
independent (here only locally independent since this is a lineariza-
tion of a nonlinear problem) of the estimated hypocenters and sta-
tion corrections. As a result they can be used directly to construct

an estimate of a perturbation to the velocity (slowness) model,
| Su>.

There are a number of methods one could use to construct a
perturbation to the velocity model. Following Backus and Gilbert
[1969] and Kennett [1976] I have chosen to use what Kennett calls
the *‘flattest model”’ This name is appropriate because this solution
is the unique one that minimizes

1 2
||§;—(6u>l|2={ %(w)]] dr (4.24)

subject to the M, side conditions (4.23). (i.e. the estimate is
required to fit the data.) In principle, this solution is straightfor-
ward. The perturbation at a given position 7¢ can be calculated as

M,
0t (ro)=3Y w;n, (4.25)

i=1

where the constants w; are calculated from the normal equations
Nw=h (4.26)

The components of the matrix N and the vector h are given by

Nyy=<N; | Ny>
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and

h;=<H (r —-15) | N;>

-

where <H(r-rgy)| is the Heaviside step function. The functions
<N; | are related those in (4.23) by

. T
<Wi(r)|=[Ni(e)dp (4.27)
and these in turn are related to the annulled data by4
1=0uw (1)N; (1)—-<N; | (6u)> -(4.28)

(see Backus and Gilbert [1969], Johnson and Gilbert [1972], and
Kennett [1976])

Although in principle the solution defined in (4.25) and (4.28)
seems reasonable, it almost never works in practice because the
matrix N is generally singular or at least very ill conditioned. A use-
ful method for dealing with this problem is the procedure termed
“ranking and winnowing” by Gilbert [1971] and ‘‘spectral expan-
sion”” by Parker [1977a] and Oldenburg [1977]. This technique
makes use of the fact that the matrix N in (4.26) is positive definite
and symmetric. As a result, it can be factored as [Parker, 19776]5

* The solution of (4.26) inherently assumes the surface velocity is
known. In that case 6w (1) in (4.28) is 0 causing the 6w (1)N;(1) to
vanish. If the surface velocity is unknovﬂyn the problem can be

avoided by adding the constraint that Z)'w1 N;(1)=1. This con-

straint causes any estimate to be 1ndependent of the surface velo-
city. (For further details see chapter 5 or Johnson and Gilbert
[1972].) Similar constraints can also be imposed to remove the
effect of unknown discontinuities in the model at a known depth
(see Johnson and Gilbert's treatment of the velocity jump at the
core-mantle boundary.)

The actual method I have invoked to numerically perform this
transformation follows a suggestion made by Parker [1977b]. This
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0"NO=A

where 0eR¥¥n is an orthogonal matrix and A is a diagonal matrix
with all positive elements. The elements of A are the eigenvalues,A;,
of the matrix N which are assumed to be arranged such that
AiZNe2 - - 2Ay, [Parker, 1977a]. The usefulness of the matrix O is
that it can be used to construct a set of functions <¥; | defined by
the relation

<=

M,
- L z_j N, | (4.29)

which satisfy

(i.e. the <¥; | are an orthonormal set of functions [Parker, 1977a].)
The analysis given here departs slightly from that in Parker's paper
at this point because I am using the "‘flattest perturbation’. It is
imperative to recognize that the functions <]j_,| are not the same
as those in (4.23) but have been integrated (equation (4.27)). Con-
sequently, the functions <¥;| are not related directly to |du>, but
its first derivative (equation (4.28)). Thus, the functions <¥;| are
related to the annulled data by the relation

=<¥ | (6u)> (4.31)

procedure works by calculating a singular value decomposition of
the discrete representation of the operator (This operator is
made up of the kernels in (4.27).) in which the columns of N are
weighted by an appropriate set of quadrature coefficients. This ap-
proach is equivalent theoretically to the approach described above
but it is preferable numerically because it is less sensitive to com-
putational roundoff errors [Parker, 1977b]. I have adopted

Parker's [1977a] description above because it is more comprehen-
sible.
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where the numbers a; are given by

n

M
2 053my (4.32)

M,

1 n
a;= 1/2 2011‘61&(1)&(1)— C
Az =1 _7_.1

(see comments in footnote 4 concerning the du (1)N;(1) term.) The

numbers a; are useful because we can consider an expansion of the

function | :—T(éu)> in terms of these orthogonal functions as

d M .
| —E;(du)>= o[>+ >
i=1

where |¥'> is an annihilator [Parker, 1977a]. If the residuals are
weighted by their expected standard error (equation (3.15), the
annulled data are statistically independent with unit variance (see

appendix B). As a result the variance of each coefficient a; in the

expansion (4.33) is —Al— It follows that since the A; are assumed to
i

be arranged in a decreasing sequence that the expansion of

|—$’_—(6u)> in (4.33) is in terms of a set of functions whose

coefficients increase in uncertainty; after we reach lngn> we reach

| ¥*> whose uncertainty is total [Parker, 1977a]. In every case I
have dealt with it is always the case that the <¥;| become more
oscillatory as i increases. This means that the smoothest functions

are most accurately determined since their coefficients have
smaller errors.

I have utilized the spectral expansion technique in a way that is
different from that advocated by previous workers. Parker [1977a],
Gilbert [1971], Oldenburg [1979], and others have used this tech-
nique primarily as a method for dealing with the inevitable ill condi-
tioned nature of inner product matrices like N in (4.28). I have
used it, on the other hand, primarily as a tool for data compression.

This is motivated primarily by the fact the N can attain a large size
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when the number of data is large (the usual case with arrival time
data). On the other hand, the fact that N is ill conditioned is really
a statement that the data are redundant. If the data are redun-
dant, it makes little sense to carry them all along directly and form
the giant M, xM,, matrix N. It would be desirable to have a method
of extracting meaningful averages from blocks of data of a manage-
able size. These averages could then be assembled into a smaller
set of normal equations. The spectral expansion technique provides

a tool for doing just that. Implementing this requires a sequence of
four major steps;

(1) Divide the annulled data setl into groups of M; blocks that are
each of a manageable size.

(%) Apply the spectral expansion procedure to each of the M,

blocks of data. In this step, each block is treated indepen-
dently.

(3) “Winnow" the data from each block. That is, keep only those
a;'s and associated kernel functions that have a reasonably
small uncertainty.

(4) Assemble the winnowed data from all blocks of data and esti-
mate |6u > from them.

The key step above is (3). It is justified on the basis of the following
observation. One view of the spectral expansion technique is that it
is a way of extracting a set of independent averages, a;, of the origi-
nal data and ranking them according to their relative uncertainty.
Since the data are redundant, some of these averages are not very
useful and we would be better off excluding them. By throwing out
those a; associated with small A; (eigenvalues) we are doing just
that. The only question that then remains is, what is a ‘‘reasonably
small uncertainty’’ ? That question is inseparably linked to the pre-
cision of the raw data since throwing away a;'s introduces a certain
level of misfit into the observation. Parker [1977a] shows, however,

that the misfit introduced by deleting a given a; is proportional to
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the size of its associated eigenvalue, A;. Thus an a; associated with
a small A; contributes little to the misfit compared its contribution
to the solution or its uncertainty [Parker, 1977a]. In implementing
this idea I have found that even if one takes the ultra conservative
approach of only keeping a;’'s whose uncertainty is within machine
precision (13 significant figures on the CDC machine used here) less
than 50% of the data survive the winnowing operation. I have
adopted a less extreme but still conservative winnowing criteria.
Only those a; with eigenvalues larger than 107 were kept. This is
still conservative because the largest eigenvalues were always of the
order of 10* so this is only slightly different from a criteria based on
machine precision. Based on this criteria, only 10%-20% of the a;’'s
were typically kept. This indicates that travel time data from
earthquake sources are highly redundant.

The winnowing operation of step (3) above is significant because
it makes step (4) tractable for large data sets. That is, winnowing,
when combined with the data compression achieved by the annul-
ling transformation, typically produces a 90% reduction in the
number of ‘“data’ we need to handle in this final step. Conse-
quently, inversion of data set of several thousand arrival times is
quite conceivable. (The largest number of arrivals I have handled to
date is slightly greater than B00 (chapter 7).) Once this reduction
has been accomplished, a perturbation can be estimated by the
same set of normal equations described above (equations (4.25) and
(4.26)) except the functions <N;| are replaced by the funclions
<¥;| and the numbers n; are replaced by the numbers ;. This still
requires us to invert an inner product matrix like that in (4.28).
(The <¥;| constructed as described above are orthogonal only to
those <\_I_'__,| constructed from the same block of data. There is no
assurance they are orthogonal to functions from different blocks of
data.) Unfortunately, this matrix is generally also ill conditioned
and cannot be inverted by elementary methods. There are two
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established ways of circumventing this problem,;

(1) Apply the spectral expansion procedure again. In this case it is
used in the manner advocated by Parker [1977a] or Gilbert
[1971].

() Damped (Levenberg-Marquardt) inverse (see chapter 2)

The former has the advantage of consistency with the previous step,
but suffers from the disadvantage of being somewhat slower to com-
pute [Gilbert, 1971]. Because of this, for the purpose of construct-
ing a single perturbation for a given iteration of this procedure, the
damped solution is preferable. Selecting the degree of damping
required for stability is facilitated by studying the trade-off curves

for the velocity model (chapter 5) to which a damped solution
closely related.

5. ITERATIVE METHODS

The discussion in chapter 3 and the preceding sections of this
chapter described a whole host of building blocks. In this section
these building blocks are combined to yield a larger scale algorithm
that I have given the title PRIMEL (Progressive Inversion and Multi-
ple Event Location). When fed a set of arrival time data this pro-
cedure will ultimately return a set of estimates for the hypocenters
of all the earthquakes in the data set, estimates of station correc-
tions, and a compressional wave velocity model specified as a con-

tinuous function of depth. The gross structure of PRIMEL is shown
below.
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ALGORITHM PRIMEL
1) Gather data and select an initial velocity model
2) Loop from 3) to 11) till convergence
3) Calculate travel time table from’current velocity model
4) Execute ALGORITHM PMEL (chapter 3)
5) Execute ALGORITHM NULLWSC (chapter 4)
8) Execute ALGORITHM NULLSTA (chapter 4)
7) Fragment output of NULLSTA into M, blocks of data
8) Fori=1,2 ...,M,
1i) Calculate spectral expansion of this block of data
2i) Winnow data

9) Assemble winnowed data and calculate slowness perturba-

tion, |6u>, as the flattest perturbation (minimizes equa-
tion (4.24)).

10) |u>«|u>+|6u>
11) End Loop

12) Error appraisal (chapter 5)

Several aspects of this algorithm require some additional com-
ments. The first is that selecting the ‘‘initial velocity model” in
step 1) is not totally arbitrary. Since this is an iterative procedure
based on a linear approximation to a set of nonlinear equations, one
normally wants the ‘‘initial model” to be as close as possible to the
truth. There are few areas of the world were there is not at least
some gross estimate of the seismic velocity for the region. These
estimates are, however, almost always parameterized as a set of
constant velocity layers. Such layered models are not directly suit-
able as initial models form PRIMEL. The reason is that perturba-
tions calculated by PRIMEL (step 9) are always smooth (flattest per-
turbation) functions. Because of this, layer boundaries tend to per-
sist indefinitely. A solution to this problem is based on the idea of
resolution functions. These functions are fundamental to the
analysis of errors in the velocity model because the perturbation

one calculates can always be viewed as the true, unknown
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perturbation smoothed by these functions [Backus and Gilbert,
1968]. How these functions are calculated and details of their
interpretation are the subject of section 3 of chapter 5. For the
present, it is sufficient to recognize that they indicate the degree
the true velocity model is smoothed by PRIMEL to yield an estimate
at a given depth. Because of this it is useful with any starting model
to execute only steps 1 to B of PRIMEL using that initial model. The
resolution functions can then be calculated from the winnowed data
produced by step 8 and the starting model can then be smoothed by
these functions. The resulting smoothed velocity model can then be
used as a starting model. This is a useful approach because it
guarantees that the final result will not contain any components

that are an artifact of unresolvable structure contained in the
starting model.

A second aspect of PRIMEL that requires additional comment is
step 2. The statement itself is straightforward enough until one
asks the question of how ‘‘convergence’ is defined. Convergence of
an iterative procedure usually implies two things;

(1) The model is not changed significantly by the final iteration (i.e.
the perturbations are relatively small everywhere).

(2) The model yields travel times that fit the data.
The problem is that both of these criteria are rather ill defined

because of the inherent nonuniqueness in inverse problems. To be
more specific, criteria (1) is hazy because it depend on what pertur-
bation you are talking about. That is, there are infinitely many per-
turbations we could calculate. Thus, the fact that the one I happen
to choose is small could be totally irrelevant as it may indicate that
the current estimate lies near a local minimum. Furthermore, cri-
teria (2) is also difficult to specify unambiguously. The reason for
this is that we cannot easily apply the usual statistical measures of
misfit such as x2 [Wolberg, 1967, pp. 59-60] from more conventional
regression analysis. The reason is that one of the entities we are
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trying to estimate here (the velocity model) requires essentially an
infinite number of parameters to be specified precisely. In the jar-
gon of regression analysis this means that the number of degrees of
freedom of the system is infinite [Parker, 1977a] rendering statisti-
cal tests such as x2 of questionable value.

In chapter 7 I describe a rather involved method for detecting
convergence that essentially requires both criteria (1) and (2) to be
satisfied in a prescribed way. The problem is that the method I
describe there suffers from two significant problems. First, it is
usually too conservative and secondly it requires too much of a sub-
jective judgement by an analyst. In short, the method I describe
there is one way of detecting convergence but that method is not

entirely satisfactory. Alternatives are an important subject for
future research.

Finally, it seems appropriate to stress what PRIMEL is and is
not. First, I reiterate that it is not a *“‘simultaneous’ procedure in
the sense of Crosson's [1976a] procedure. Following Roecker [1982]
I have adopted the term ‘‘progressive” to describe it. In a ‘‘simul-
taneous' procedure all parts of the model are adjusted at once. In
this “progressive’”’ scheme different parts of the model that are
physically distinct are adjusted in independent, iterative steps.

A second feature of PRIMEL is that it contains features that
make it, in some respects, a least squares procedure while at the
same time retaining a respect for the fundamental ambiguity of the
velocity model. That is, hypocenters and station corrections are
both estimated by least squares procedures while the velocity
model is estimated as a smooth function through a solution tech-
nique similar to that of Backus and Gilbert [1969] and Johnson and
Gilbert [1972]. Moreover, because of the data compression achieved
by the application of the spectral expansion method PRIMEL is
capable of digesting extremely large data sets; a property formerly
claimed only for parameterized least squares procedures.
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In summary PRIMEL is a significant advance as a method of con-
structing a solution to the inverse problem of using earthquake
arrival time data to determine earthquake hypocenters and seismic
velocity structure. One of its most significant advantages, however,
remains to be discussed. That is, the estimates yielded by PRIMEL
are amenable to application of the powerful error appraisal tools of

Backus and Gilbert [1968, 1970] and Backus [1970a,b]. This is the
topic of the next chapter.

(4]



CHAPTER 5
ERROR ASSESSMENT

.~

1. INTRODUCTION

The material of this chapter is important because it represents
one of the most significant advances of the work presented in this
dissertation. Following the lead of Peters [1973], Crosson [1976],
and Aki and Lee [1976] most previous workers have chosen to
characterize the velocity model as a finite number of parameters.
This approach can be criticized on the grounds that one cannot
ascertain the affect of this arbitrary, a priori parameterization. In
the previous chapter I described a procedure for constructing a
velocity model that was not encumbered by any a priori
specification of the form of the velocity model. Instead the velocity
model was allowed to be any arbitrary piecewise continuous func-
tion of depth. The reason for doing this is that it allows me to bring
the powerful error assessment techniques of Backus and Gilbert

{1968, 1970] and of Backus [1970,a,b,1971] to bear upon this prob-
lem.

The material of this chapter is divided into three distinct parts.
Section 2 is a review of the generalized prediction formulation of
Backus [1970a,b,1971]. Sections 3 and 4 then describe details of
the assessment techniques that I have applied to estimate the
errors in the two different parts of the model (the velocity model
and the discrete parameters). It is convenient to start with Backus'
general formulation because it illustrates that the two different
error assessment techniques described in sections 3 and 4 are com-

putationally identical. Their difference lies only in the way we inter-
pret the results.

Applying this analysis has a severe limitation that must be
recognized at the outset. The equations I will work with here are

produced by a local linearization of a set of nonlinear equations.
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The analysis is predicated on the assumption that the reference
model (the one constructed by the procedure described in the pre-

vious chapter) is sufficiently close to the truth that the linear
approximation is valid.

2. GENERALIZED PREDICTION
In a series of three paperé Backus [1970a,b,1971] described a

very general formulation of the linear inverse problem. In this sec-
tion I will review several features of this formulation that are
relevant to the work presented here. My discussion will, however,
be considerably less general than that of Backus, since this is a

specific application of his general theory to the hypocenter-velocity
inverse problem.

We start with what we have available. That is, the M residuals
from a set of m, earthquakes and my,,ss €xplosion sources that are
the observed data. After applying the annulling iransformations
described in the previous chapter and in Appendix B we can obtain

a set of M,, =M —4m, —n, that are related to the velocity model by1
n;=<N; |6u> i=1,2,3, ..., M, (5.1)

The general problem I wish to consider here is that of predicting a
member p that is related to |6u> by a linear relation of the form

p=<P |éu> (5.2)

I will henceforth refer to the functions <N;| as the data kernels,
and I will refer to the function <P | as the prediction kernel.

1 1f some of the explosion sources have known spatial location but
an unknown origin time (a common situation) then the origin times
of these sources can also be treated as free parameters. If m, of

the my o €Xplosion have unknown origin times then we would have
M,=M—~-4m,—ns-my,;.
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The basic idea of Backus' formulation is to estimate p with a
linear combination of the M,, data. I will denote this estimate by
the symbol 5. P is defined symbolically ag

Mﬂ
p= lemf, (5.3)
iz

where the numbers w; are constants that are to be determined. By

substituting for n; from (5.1) we see that (5.3) can be written as

M,
P=Y w;<N; |6u> (5.4)
i=1

i=

If I now define
<P |=2'w,;<Ni | (55)
i=1

then (5.4) can be rewritten as
p=<P|ou> (5.6)

Thus, it is clear that § will be a best estimate of p when the
weights, w;, are specified so that <P | is a best approximation to the
prediction kernel, <P |. A quantitative measure of this approxima-
tion is provided by the function <g,|=<P |-<P|. Normally, one
could calculate a set of weights, w;, that would minimize the size of

the function <e, | as measured by the norm

lleplP=<e, | &5 > (6.7

However, for the problem I am considering here this is not feasible
because [lg,|| is always infinite. This occurs because all the predic-
tion kernels I will consider here are singular and not square integr-
able. TFurthermore, the data kernels are also generally singular
because they are composed of linear combinations of the Frechet
kernels, <G;|, defined in equation (4.4). The <G;| functions are

singular at the bottoming points of refracted arrivals and are, as a
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result, not square integrable either [Backus and Gilbert, 1969]. A
general solution to this is a process that Backus [1970b] calls *‘quel-
ling"”. To be consistent with the minimization criterion (4.24) used
to construct the velocity model, I have used the particular quelling
operation that Backus [1970b] calls ‘‘quelling by integration”. The

process involved in this is to integrate (5.1) and (5.2) by parts. This
-z

L

yields2 (I use the nondimensional variable 'r=L as introduced in

chapter 4 here for convenience.)

g = 6w (DN (1) -ny =<N; | (6u)> (5.8)
p=6u(DE(1)-p=<L|-L(6u)> (5.9)

where
<.A_[£(T)|={Ni(P)dP (5.10)
<£(T)I={P(p)dp (5.11)

If one has a reasonable estimate of the surface velocity, the
first term on the left of (5.8) and (5.9) will vanish, since in that case
6w (1)=0. If such an estimate is not available, one can avoid the
problem by adding a constraint that

Mn
> wilN; (1)=1 (5.12)
i=1

and any estimate of p calculated by equation (5.4) will not depend

© Equations (5.8) to (5.11) are the appropriate form for this quelling
when |6u> is a function only of depth. It is worth noting that a
similar form can be derived when |§w> is an arbitrary function of
all three spatial coordinates [Chou and Booker, 1979].
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on 6u(1) 3. In either case, (5.8) and (5.9) are in the same form as
(6.1) and (5.2) except that <N;| and <P| are replaced by their
antiderivatives and |6u > is replaced by, its derivative. The major

difference is that the norm of the error function

<gp|=<P|-<E]| (5.13)

=<P| —%‘ w; <N |
i=1

is now finite. The norm ||gp||=\/w is the root mean square
misfit between the actual prediction kernel, <P |, ard the approxi-
mation to the prediction kernel,<E_| . This misfit is a measure of the
error in the estimate of o due to the fact that our knowledge of the
velocity (slowness) model, |6u >, will always by imperfect. This is so
because the velocity model is a function that requires ( in principle
at least) an infinite number of parameters to be specified exactly.
Yet the amount of data we can collect is always finite. Thus, we can
never know the velocity model perfectly because the data we have
available will always be insufficient. Recognition of this type of
error is what Parker [1977a] calls ‘‘the cardinal factor distinguish-
ing inverse theory from conventional parameter estimation’. I will
henceforth refer to this type of error as model error because of its
relation to the ambiguousness of the velocity model.

Given that |[g,|| is a measure of model error I would like to point
out that I will interpret ||g,|| in two quite different ways in the fol-

lowing two sections. Because of that I will not be specific at this

8 Johnson and Gilbert [1972] show that if a discontinuity in the
model is suspected at some position in the model (in their case the
core-mantle boundary) its effect can be removed by imposing a
constraint similar to (5.12). An untest alternative for treating this
sort of problem is to consider the depth and size of the jump as

another set of free parameters that can also be removed by the an-
nulling transformation.
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point as to how ||g,|| should be interpreted. Instead it is sufficient
for the remainder of this section to simply consider |lg,|| as some

measure of the error in o due to the fact that the velocity model

can never be known exactly.

If the measured data were perfect, it is clear that we would nor-
mally want to choose the weights,w;, in (5.13) so that ||g, || is minim-
ized for then the model error would be as small as possible. How-
ever, in real life the data one collects will always contain random
measurement errors that will propagate into errors in the estimate
©. The objective of the remainder of this section is to derive a rela-
tionship that will permit us to rmnake a quantitative statement con-
cerning the size of this error. I will henceforth refer to this type of

error as the statistical error because it can be described only in
statistical terms.

The data I am utilizing here are the measured arrival times of
different phases on a seismogram (I have used only first arrival P
waves in this study but other phases could also be used.). These

data will always contain some error that I will write as
t; =1, +AL; i=1,2,3,..., M (5.14)
where
t,=measured arrival time for i®datum.
'f:; =actual arrival time.
Al;=measurement error.

We cannot know what A#; is (it wouldn't be an error if we did) but I
assume that we know something about its statistics. Errors in pick-
ing the arrival times of impulsive P waves are statistically indepen-
dent and approximately normally distributed with zero mean

[Buland, 1976]. This implies that the covariance of the data is given
by
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of 0 0 1
0 of 0
D=E[at(at)"]=|" - . : (5.15)
00 o
where?

of=E[At]=variance of i**datum.

The annulled data,n, are related to the observed data by the rela-
tion

n=Ujr (5.18)
=Uf(t-t'-Ss)
=UJ (-t -Ss)+UJAt

since r° is defined by equation (3.25). The matrix UJ R ¥ s the
matrix with orthogonal rows used to construct mn as described in
appendix B. Uf has the form (3.46) for the case when station
corrections are neglected and the form (4.15) when station correc-
tions are included as free parameters. I show in appendix B that

the covariance of the errors in the annulled data are given by
C,.=E[An(An)T] (5.17)
=U1€DUN

Our present goal is to quantify the expected statistical error in the
estimate p given in equation (5.3). In particular, we seek an

1 With impulsive arrivals o; is a constant [Buland, 1976] that can be
estimated. With weaker arrivals o; must be guessed somewhat sub-
jectively and the errors are no longer normally distributed but

tend to be biased toward measuring the arrival time late [Ander-
son, 1978].
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estimate of the variance of the error in ,Ap, defined as

o2=E[Ap?] (5.18)
To obtain 6Z we note that (5.3) can be written as

7 win=w'f+w’ An

where w is the vector of the M, weights in (5.3)

wH
Wa
w=| o (5.19)
wy,
wl

1l is the value one would get for the estimate P if the data were

error free and w’ An is the error in P. Consequently, we see (5.18)
can be written as

o5=E[wT An(w” An)T]
=w! E[AT(An)T Jw (5.20)
=wiC,w
=w/ Ui DUyw

This is the relatidnship we were seeking. (5.20) quantifies the effect
of measurement errors in the observed data through a prediction of

the expected size of the variance of statistical errors that are likely
to be present in p.

It is quite apparent that we cannot hope to minimize both llea ]
and 05 with the same.set of weights, w;. Backus [1970a], however,

advocates minimizing the following linear combination of the two
ea=or§-i-B2H§;!,||2 (5.21)

where B is an arbitrary number and hence B® can be any number
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from zero to infinity. The usefulness of (5.21) is that it can be used
to study how the statistical error,cf, and the model error,||g, ||,
interact with each other. This analysis, .which I will refer to as a
trade-off analysis, consists of varying B? over a large range and
studying how oF and ||g,|| vary. I will apply this analysis to assess
the errors in both the velocity model and the discrete parameters.
However, the way the results can be interpreted are quite different
for these two cases and so I will defer any further discussion of the
principles of a trade-off analysis to the two subsequent sections.
There the results can be interpreted in a better context. The major
point to derive from this section is that the two methods are closely

related, although they may appear quite different in detail.

3. ASSESSMENT OF ERRORS IN THE VELOCITY MODEL

In the previous chapter I described a procedure that utilized
the annulled data to construct an estimate of the velocity model
that fits the observed data. Having constructed such a model, it is
imperative to address the question of how reliable that model is.
The approach I will follow here is identical to what Johnson and Gil-
bert [1972] call the ‘‘objective approach’’. This approach is ‘‘objec-
tive" because the data are used directly to derive a quantitative

statement concerning the uniqueness of the model with no a priori
judgements about it.

If we want to assess the uniqueness of the velocity model, we
must face the fact that any estimate of it is fundamentally ambigu-
ous. This is so because the velocity model is characterized by a
function that requires (in principle at least) an infinite number of
parameters to be specified exactly. However, the quantity of data
we have available is always finite. Thus, we cannot hope to resolve
the velocity structure at an arbitrarily fine scale but we must
always be content with some smoothed version of it [Johnson and
Gilbert, 1972]. Backus and Gilbert [1987,1968, and 1970] developed
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a procedure which, recognizing this ambiguity, concentrates not on
constructing models (They prove there are always infinitely many
that fit the data.); but instead concentrates on the question of how
a given model is related to the truth. They do this by considering
the estimate of the model at a given position, 7y, as some smoothed
or locally averaged version of the actual model at that depth. This
changes the emphasis from constructing models, which are funda-
mentally ambiguous, to studying the averaging functions which are
unique. Backus and Gilbert consider the properties of averaging
functions constructed by a particular application of Backus’ gen-
eralized prediction procedureﬁ. That is, Backus and Gilbert con-
sider a particular type of prediction in which we choose the predic-
tion kernel <P |=<6(r—7y)|, where <6(r —7()| is the delta function.

This of interest because then (5.2) can be written as
6w (rg)=<6(r-1p)|6u>"

In other words, the number p in (5.2) can, in this case, be inter-
preted as the actual value of |{6u> at 7y. Suppose we estimate the
model at 75 as a linear combination of the data as in (5.3). We can

then interpret the number § as an estimate of |6u> at 7y I write
this as

M,
(7 (T0)=¢§1wi (ro)ny (6.21)

If <6u(ro)| is estimated by (5.21), then the approximate prediction
kernel,<P |, that I defined in (5.5) can be interpreted as the averag-

ing function I mentioned above. This interpretation is clear from

5 Historically, Backus and Gilbert's **particular application’ came
first. Backus' general theory was an extension of his earlier work
with Gilbert. I find Backus’ view a useful starting point here, how-

ever, because it helps emphasize the interconnection of the ma-
terial of this chapter.
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(5.6) which I now write as

1
64U (ro)=<A(r,Tp)|0u >=_[A (r,70)0u(r)dr (5.22)

where I denote <P |, in this case, by the special symbol <A (7,7¢)| to
emphasize that it can be interpreted as an averaging function for
the estimate at 7. <4 (7r,ro)| is defined exactly like <P | in (5.5);

M,
<A(r,ro)|= lei(70)<Ni (r)1 (5.23)

1=

We cannot hope to make <A(r,ry)| into a true delta function
[Backus and Gilbert, 1968]. Thus we must be content with averaging
functions that are approximate delta functions in some sense.
Ideally, we would like to choose the weights, w;(rq), such that

<A (r,rp)| is a strongly peaked function centered at rq

The question now centers on how we should choose the w;(rp) so
that <A (r,rg)| is the peaked function we seek. Backus and Gilbert
refer to this choice as a *‘d-ness criteria’” Conceptually the simplest
of these is to make <4 (r,7y)| a best approximation to a delta func-
tion as measured by the norm (5.7). As noted before, however, this
is not possible here because neither the prediction kernel nor the
data kernels are square integrables. This problem is eliminated, as
noted in the previous section, by involking what Backus [1970Db]
calls ‘‘quelling by integration’ This operation is defined by

6 It is worth noting that if the data kernels were not singular it
would be possible to produce a set of averaging functions that are a
best approximation to a delta function. The results are difficult to
interpret, however, because ||[<é(r—rp)|—<4(r,rp)}||| is always
infinite since the delta function is not square integrable. This prob-
lem can only be circumvented by selecting some quelling opera-
tion. Quelling by integration is a reasonable choice since it leads to
an error assessment consistent with the minimization eriteria
(4.24) used to construct the velocity model.
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equations (5.8) to (5.11) above. Of these, the relationship (5.9) can
be made more specific by noting that

[S

<P(r)|=<H(r-rg)] ={ 8(p-7o)dp (5.24)

where <H (r-73)| is the unit step function. The error function in

equation (5.13) then takes the special form

<&su(ro) | =<H (r-70) | —<4(r.70)] (5.25)
where
M,
<A(r.ro) =X wi<N;| (5.28)
i=1
=_£A (P'TO)dp

The norm of the error function in (5.25),||£5, (70)||, is always finite.
As | noted in the previous section llesw (T0)]] is @ measure of the error
in the estimate of <du | at 7¢ due to the fact that the velocity model
cannot be known unambiguously. One of the fundamental contribu-
tions of Backus and Gilberts’ work was to provide an interpretation
of what this number means. ||gs,(70)l| is a natural measure of the
width of the peak of the averaging function <A(r,ry)|. This is so

because if <4 (r,7o)| were the boxcar function

% if|r 1ol <L
<B(r,ro)|= . ]
1f|'r—'ro|>—z—

we would find ||es, (r‘(,)||2=1l—2 [Johnson and Gilbert, 1972]. Thus, the

resolution length (also called the spread )

L=12)|g5,, (ro)|F (5.27)



129

is useful as a measure of the smoothing produced by <4 (r,rq)|. If
the velocity model has fine scale structural detail on a length scale
less than I, <4 (7,7o)| will be incapable of resolving it. This is an
inevitable consequence of the finite amount of data we have avail-
able and the resolution length,l, is a quantitative measure of the
uniqueness of our inversion [Johnson and Gilbert, 1972]. [ has the
additional distinction of being' easily calculated via the following
simple relationship [Johnson and Gilbert, 1972]

1=12[(1-7¢)—2h? w+w’ Nw] (5.28)

where w is the vector of weights as in (5.19) and I define the com-
ponents of the matrix N and the vector h by

N;j=<N;|N;> (5.29)

and
hy=<H (r-7o}|N;> (5.30)

As I noted in the previous section, there is another source of
error in our estimates that cannot be ignored. This is the uncer-
tainty in the estimates, which I have called the statistical error,
caused by fact that the observed data are not perfectly accurate. It
is measured by the expected variance of this error, which can be
calculated by (5.20). The statistical error in the estimated pertur-
bation, which I denote by the symbol oj,, cannot be ignored
because a highly localized averaging function (small resolution
length) is not very useful if it produces a large statistical error in
the estimate. It seems sensible then that we should try to minimize
both the resolution length, I , and the statistical error. It turns out
that we cannot minimize both with the same set of weights. How-
ever, Backus and Gilbert [1970] show that we can minimize the fol-
lowing linear combination of the two

egu('ro)=”£6u (TO)I‘acoso"'o’cizu('ro)Sing (5-31)
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where I use the symbol o€, (o) to symbolize the statistical error,ag,

calculated by (5.20). 6 in equation (5.31) is a parameter which

varies from O to % When 6=0, the resolution length is minimized,

and when 6=127—, 08,(7¢) is minimized [Johnson and Gilbert, 1972].

(Note that (5.21) and (5.31) are identical except in (5.21) we see

2=%§§-=cot6 [Backus, 1970a].) Backus and Gilbert [1970] prove

L
2
tonically decreasing function of . This says that we can always
decrease the statistical error at the expense of a broadening of the
averaging function <A (r,7¢)| (as measured by L). For this reason

they call the resulting curve the irade-off curve of error versus

that as 6 goes from 0 to - the statistical error,cf,(r(), is a mono-

resolution length (spread). This process is analogous to the similar
trade-off between resolution and variance commonly encountered in
time series analysis (see for example Claerbout [1978, chapter 4]).

Constructing the family of solutions that yield these trade-off
curves is relatively straightforward. The weights that minimize

(5.81) are calculated by solving the following set of equations [John-
son and Gilbert, 1972]

[Ncos6+C, sin6]w=hcosé (5.32)

or equivalently
1

where B2=cot# is as in (5.21) and C, is as defined in (5.17). w found
by (5.32) will be different for each value of 8. The trade-off curves
are constructed by calculating w at selected values of 7y for a range
of 0 values. Each set of w are determined by solving (5.32) for each
value of . Once w is known, ! can be calculated easily from (5.28)

and of,(r,) can be calculated from (5.20). As a practical matter, a
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direct solution of (5.32) for each value of 6 is unnecessarily
inefficient. It is preferable instead to simultaneously diagonalize C,,
and N using the procedure Gilbert [1971] calls ‘‘ranking and win-
nowing''.

Some actual timing data helps emphasize how important
Gilbert's algorithm is. It requires approximately 10 cpu seconds of
computer time to invert a 100 by 100 matrix on a CDC Cyber 170-
750 computer. This means that a direct solution would require at
least 10 cpu seconds for each point on the trade-off curves. An
actual calculation I made using the diagonalizing transformations
required “20cpu seconds to perform the transformations to diago-
nalize C, and N (The algorithm to do this is slower than a direct
solution of a set of linear equations like (5.32).). Calculating 13
points on the trade-off curves at 150 values of 7y then required only
5 cpu seconds. The same calculation by a direct solution would
have required at least 130 cpu seconds. This represents an
improvement, for this example, of over 500%.

4. ASSESSMENT OF PARAMETER ERRORS

4.1. Introduction

Assessing the reliabiliiy of the discrete parameters (hypo-
centers and station corrections) presents a slightly different prob-
lem from that of assessing the reliability of the velocity model. In
estimating the velocity model, its value at a given point is of less
interest than its structure. Consequently, most people would be
quite willing to accept some smoothed version of the true velocity
model as long as the degree of smoothing was not so great as to
render the result useless. A similar interpretation does not appear
to be feasible for the assessment of the errors in the discrete
parameters. I say this because it is difficult to decide what a ‘‘local

average'’ is for these parameters in a manner analogous to that



132

discussed above for assessing the reliability of the velocity model.
The concept of a local average makes perfectly good sense for a
function like the velocity model because it is composed (conceptu-
ally at least) of an infinite set of points that can be ordered accord-
ing to their depth. The same is not true of the discrete parameters
as we can arrange them in virtually any order we feel like. Thus, it
becomes difficult to say what a “local average' for any of the
discrete parameters is because it is difficult to say what points are
“local’’ to that parameter. Because of this, errors in the discrete
parameters appear to be more appropriately assessed by the linear
inference techniques of Backus [1970a] or the alternatives given by
Parker [1977a). The technique 1 describe here is based heavily on

the work of Backus [1970a]. The major difference is in the way the
results are interpreted.

4.2. Relation of the parameters to the velocity model

Because the data (arrival times) are nonlinear functionals of
the discrete parameters and the velocity model, it is imperative
that we first review how the discrete parameters are estimated.
This review will lead us to a set of equations that relate the discrete
parameters directly to the velocity model. These equations are the
foundation of the error assessment I am presenting in this section.

I will show that they follow naturally from the estimation procedure
outlined in the previous chapter.

The estimation procedure described in chapter 4 is based on

the linearized equations (4.11), which I repeat here for the reader’s
benefit.

r=Bx+8&|6u> (5.34)

At the core of that procedure are two matrix operators. The first is

the matrix UX,‘GRM"KM that is used to construct the annulled data
set. The second is the generalized inverse Hg €RY*¥ that is used to
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estimate the parameter correction vector’

£=Hg1° (5.35)

.

The essence of the algorithm I have described in chapter 4 is that
the parameters are perturbed in isolation by in iterative solution of
(5.35). When that solution has converged the matrix Uf is calcu-
lated and the annulled data are used to perturb the velocity model.
This sequence is repeated until the entire algorithm converges.
This segregation of the adjustments of the two different parts of the
model is warranted because

N xM,,

HB UN =0eR (5.36)

That is, the rows of Hy and U} (columns of Uy) are orthogonal. This
relationship is fundamental because it indicates that ¥ and the per-
turbation to the velocity model are constructed from two different,
orthogonal components of the data and hence are uncoupled.
Furthermore, in the language of chapter 2, since the columns of Uy
are a basis for N (B7), then (5.36) is a statement that

R(HI)CR (B) (5.37)

since R(B) and N (B”) are orthogonal complements. (5.37) is
significant because it is identical to equation (B.7). This is a notable
fact because I show in appendix B that because Hy satisfies (5.37) it

is possible to derive the following set of N equations (see equation

(B.30))

7 Recall that % is not actually calculated directly by a matrix multi-
plication like (5.35). Instead the algorithm described in chapter 3
and 4 is considerably more complex as it involves iterative solu-
tions on several levels. Nonetheless, as I pointed out earlier (sec-
tion 3.2.4 of chapter 3) the final step can still be viewed as a linear
perturbation from a reference solution using (5.35) even if Hy is
never even formed explicitly.
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xp =%+X|6u> (5.38)

where

.

Xp =HB Bx=RB X (539)

X is the estimate (5.35) and the kernels of the operator X are as
given in in (B.27)

X=-n;6 (5.40)

(5.38) is the relationship we need. It provides a direct relation-
ship between the true correction vector,x; the estimate,X; and the
velocity (slowness) model perturbation, |§u> 8. This relationship is
not quite as direct as we might wish because of the presence of the
resolution matrix Ry that relates x and xz by (5.39). When station
corrections are not used, Ry reduces to the form shown in (3.53),
which in most cases is a reasonably close approximation to an iden-
tity matrix. In that case the relationship (5.38) is relatively unam-
biguous. However, when station corrections are used and estimated
by the procedure described in chapter 3, Rz acquires the more
complicated form in (3.65). This relationship is then considerably
more ambiguous as this matrix is normally not even remotely close
to an identity matrix. It acquires this form because the matrix B
has a fundamental ambiguity caused by the fact that the average
value of the station corrections cannot be determined uniquely (see
chapter 3). (5.38) is a statement that we can never know x itself
but only the set of number xz. Rpg is a useful tool for assessing this

additional nonuniqueness in x. Rg is best interpreted somewhat

81t is imperative to recognize -that both x and |6u> are perturba-
tions from a reference model. They are perturbations because
(5.34) is based on a local linearization of a set of nonlinear equa-
tions. Consequently, (5.38) is generally correct only if the parame-
ters and the velocity model are sufficiently close to the truth that
the linearized equations are correct.
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like the averaging functions I discussed in the previous section.
That is, it provides a means of objectively assessing the nonunique-
ness of x because we can interpret Ry as an additional resolution
operator through which we must view our estimate of x. In fact, the
ambiguity of x expressed by Rp in (3.85) has a quite simple and sen-
sible interpretation for this case (see chapter 3).

4.3. Model error

Having cautioned the reader about the added uncertainty that
the resolution matrix Ry introduces, we are now in a position to
study how the more fundamental ambiguity of the velocity model
can affect our estimates of the parameters. To do this I now define

O6x=xp —% (5.41)
so (5.38) can be rewritten as
6x=X|6u > (5.42)
Observe, however, that (5.42) represents N equations of the form
bz, =<X; | 6u> i=12,...,N (5.43)

which is identical to equation (5.2) with p=6z; and <P |=<X;]|.
Thus, we can assess the uncertainty in each discrete parameter
using Backus’ generalized prediction procedure that I outlined
above. This means we again estimate each of the N numbers,dz;, as

a linear combination of the annulled data exactly as in (5.3). In this
case | write this as

Mn
=1

We again cannot proceed directly but are required to invoke quel-

ling by integration (equations (5.8) to (5.11)). In this case
- <P|=<X;| soldefine
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1
<X;| =,0in (p)dp (5.45)

[

This permits me to write (5.9) as
6z;=06u ()X, (1) -6z, =<X; | dd—r(d'u,)> (5.46)

Integration quelling is required because both the prediction ker-
nels, <X;|, and the annulled data kernels,<N;|, are composed of
linear combinations of the data kernels, <G; |, which are singular at
the bottoming points of refracted arrivals. The fundamental pro-

perty of integration quelling is that is assures that the norm of the
error function

<g;|=<X;|-<X| (5.47)
My,
=<X; I—Z}Iw, <N |
J:

is finite (Note (5.47) is identical to (5.13) but with the symbols
redefined.) I noted in section 2 that ||g;|| is @ measure of what I have
called the model error. In section 3 we saw that a quantity virtually
identical to ||g;|| could be interpreted as a natural measure of the
width of the peak of the averaging function associated with the esti-
mate of the velocity model at a selected depth (equation (5.27)).
Here, however, I will interpret ||g;|| differently. Following Backus, I
do this by assuming that we can find a number B such that

d ey
1S | wgre >= | 25| = 1| -2(| Sty >||SB (5.48)
dr dr
where

| Ugrye >=true but unknown slowness function

| 2 >=final estimate of | 4y, >

- That is, B is an upper bound on the norm of the function that is the
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derivative of the deviation of the true slowness model from the final
estimate. Specifying B @ priori in a non-arbitrary way is not trivial.
Nonetheless, if we assume there is such a bound®, then by
Schwartz’'s inequality, the error, Az;, in z; due to our insufficient
knowledge of the velocity model is bounded by

Az, <les 1B (5.49)

4.4. Physical interpretation of the model bound
The bound B introduced in (5.48) plays a central role in the

error analysis technique I am describing here. Consequently, it is
essential to obtain a physical feeling for what this number means. I
do that here by relating B to a set of two characteristic length
scales that have a much simpler interpretation.

Equation (5.48) says that the function |6uyme> is the unknown
difference between the actual slowness model and the final estimate
of it. B is a bound on the norm of the derivative of this function.
To interpret what this means consider the ideas presented in figure
5.1. Suppose |uUm,e> is as shown in figure 5.1a. That is, |uyy. > is a
stack of three constant velocity layers of thickness X. Let us
assume the layer boundaries are not perfectly sharp. Assume
instead that the transition region from one layer to the next occurs
over a characteristic length scale d. An idealization of this is illus-
trated in figure 5.1a where the layers are shown joined by a con-
stant slowness gradient transition region of thickness d. Suppose

®In chapter 7 I demonstrate that a given value of B can be inter-
preted physically in terms of the length scales of slowness discon-
tinuities that could be anticipated in the real earth. I postpone
that discussion to chapter 7 because the relationship I obtain for B
is dependent upon the scale of the network. Since this is a data
dependent property, description of this interpretation is better left

to chapter 7 where it can be applied immediately to a specific ex-
ample.
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further that |Z> is the constant slowness function shown as the
dashed line in figure 5.1a. Hence, the overall picture in figure 5.1a
is an idealization of an unresolved velgcity variation. The error
function, | 6u4ye >, in equation (5.48) is, in this case, as shown in
figure 5.1b and the derivative of this error function is the two box-

car functions shown in figure 5.1c. The height of these boxcar func-

tions is %‘1”— where Au is the difference in slowness between the

layers. The width of the boxcar is d, the thickness of the transition
1/2
d

10
2 .

region. Thus, the norm of this function is 2hu

The model in figure 5.1 is exemplary of an unresolved layer.
Suppose we idealize the earth as a set of such layers with a charac-
teristic spacing ¥ as shown in figure 5.2. That is, we idealize the
earth as a set of constant velocity layers with an average thickness
2. The boundaries between the layers are presumed to not be per-
fectly sharp, but occur instead over a finite length scale d. One can
see that this idealization is reasonable if figure 5.2 is compared with
the actual sonic velocity well logs shown in figure 5.3.

10 The appearance of the length L, the maximum depth of the
model being studied, comes from the fact that the norm of a func-
tion f(7) is

1 2
IF P)l=<f ()1 f (r)>*3= {fz(r)dT

Because the nondimensional variable 7 is related to physical depth
by the relation

we have
1,/2

L
If @)= 5 7%= )z
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SLOWNESS

.

)

DEPTH
™M

Figure 5.2. Idealized model used to interpret the bound on the
norm of the derivative of the error function in equation (5.48).
Truth is idealized as a set of layers idealized as in figure 5.1 and
with a characteristic spacing of ¥.
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Figure 5.3. Sonic velocity well logs from two different environ-
ments. (a) Typical log from a sedimentary basin [after Lindseth,
1979]. (b) Columbia river basalt. Note the similarity to the ideal-
ized model in figure 5.2.
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The estimate we can produce of the slowness function will
always be some smoothed version of the truth similar to that shown
by the dashed line in figure 5.2. For this idealized case |6uyq, > can
be considered as the sum of a finite number of segments like that
shown in figure 5.1b. The number of such segments over the depth

range L of the model is N%. Hence, for this idealization

1/2
Ildutmllm[% %‘ % (5.50)
_sur)?
Y ld

The product $vVd will prove useful in chapter 7 when we use the

analysis presented here to interpret some real data. Consequently,
I define

K2=5Va

x=[ZVd J?73 (5.51)

I will call ¥ the roughness length because of its relation to the
length scales of the variations in the velocity model. The bound B
in (5.48) can be expressed in terms of « as

B =—AZST‘/21_‘ (5.52)

The relation in (5.50) is easier to interpret than the definition
(5.49) because it involves three quantities (Au,Z,and d) that can be
fairly easily related to reality and a fourth number L that is a con-
stant for any given data set. One of these numbers, Au, is fairly
easy to define universally. The vast majority of crustal rocks have P
wave velocities between 3 km/sec and 8 km/sec. As a result, it is

unlikely that Aw for any given boundary is ever greater than 0.2
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sec/km. A conservative guess for the average Au is then 0.1
sec/km. The other two variables in (5.50) have a simple interpreta-
tion, but specifying them in a non-arbitrary way is not trivial. Con-
sequently, I will defer any further discussion of them until chapter 7
where they can be belter evaluated in the context of the data they
are used to interpret.

« will prove useful in chapter 7 but for the remainder of this
chapter I will work with the number B instead. Since B is propor-
tional to k™33, they could be used somewhat interchangeably in the
analysis that follows. «, however, appeared from an idealized model
of the real earth introduced to interpret the more fundamental

number B. Consequently, it is more natural to use B.

4.5, Statistical error

When the data contain no measurement errors, we would want
to choose the weights, w;, so that the norm of the error function in
(5.11), ||g;]|, is minimized. This is sensible because then the error
bound given by (5.49) will be as small as possible. However, as [
noted above when I considered the problem of determining the
error in the velocity model estimates, minimization of ||g;|| is not
very desirable if it produces an unacceptably large statistical error.
Thus, we need to find a procedure to evaluate how the model error
and statistical error interplay. To do this, however, we first have to
derive a relationship that quantifies the statistical errors in the

parameters analogous to equation (5.20).

We cannot procede directly from (5.20), because the complete

estimate of the vector,xi, of the N parameters that I am using here
is the sum of two terms

Xost =X+0% (553)

X is the initial estimate of x obtained by a hypocenter location pro-

cedure (single or multiple event) calculated from equation (5.35).
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0%, the second term in (5.53), can be considered as a correction to X
to account for inadequate knowledge of the velocity model. 06X is
calculated here by equation (5.44). It is useful to write the N equa-
tions of (5.44) in matrix form as

6%=Wn (5.54)

where each equation of (5.44) is represented by one row of (5.54).
The matrix WeR" ¥» is thus a collection of all the weights in (5.44)
used in calculating 6%. The annulled data, n, are related to the vec-

tor of residuals, ¥, by equation (5.16). Combining (5.54) and (5.16)
yields

sx=WU7rs (5.55)

The equations (5.35) and (5.55) provide a general relationship
between the two estimates, X and 6%, and the initial data. The
importance of these relationships is that they will provide the
means for calculating the statistical error in the total estimate,
X,st =X+0X. Specifically, we need to calculate the covariance of the
estimate x,; whose components are defined as

Ci;=E[(AZest )i (AT st )5 ] (5.56)

where E[ ] again denotes the expectation operator. It is preferable
to write (5.56) in matrix form as

C=E[Ax,; (Ax,q; )T 1 (6.57)

Since %, =X+0%X, we see that
C=E[A%(AZ)T |+E[(A(6%))(A(6%))T 1+ 2E[AR(A(6R))T] (5.58)

(5.58) and the relationship (5.17) and (5.55) can now be used to cal-
~culate how random errors in the data propagate into x.;. To do
that, however, we have to again assume that the covariance of the

data is known. We saw previously that this can indeed be estimated



145

and has the form of the matrix D in (5.15). From D we can calculate

each term in (5.58). I show in appendix B (equation (B.39)) that the
first term reduces to

E[A%(AR)T |=H5 DHJ (5.59)

By using the same algebraic manipulations it is easy to show that
the other terms reduce to

E[A(6R)(A(6%))T ]=WUS DUy W (5.60)
and
E[AZ(A(6%))T |=Hg DU, WT (5.61)
Combining (5.59), (5.60) and (5.61) gives
C=Hg DHZ +WU7 DU, W' +2H; DU, W (5.62)

An important special case is that in which the data are statisti-

cally independent and of unit variance for then we would find

D=1 (5.63)
and (5.58) reduces to

C=HgHI+WWT (5.84)

since UFUy=IeR¥" ¥ ang H; Uy =0 by (5.36). The *‘special case’
(5.83) is important because if D is known @ priori, an approximate
weighting matrix can always be calculated (see Appendix A) that will
rescale the data to be in this form [Lawson and Hanson, 1974, pp.
193-185]. In other words, the ‘‘general case’ of (5.57) can always be
converted to this ‘special case' by appropriate weighting. (5.63)
remains, nonetheless, a useful relationship in case one chooses to
use a different weighting scheme. In my application of these equa-
tions I have used weighting to yield the form (5.64) because it con-
siderably simplifies the calculations that are involved.
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Consequently, in the remainder of this chapter I will assume the
form (5.64) is appropriate.

4.6. Damped solution trade-off analysis

I have now assembled all the mathematical machinery that is
required for assessing the errors in the parameters. For any choice
of the matrices Hg in (5.16) and W in (5.54) the predicted second
moment statistics of the estimate can be calculated by (5.64) and
we can bound the error due to inadequate knowledge of the velocity
model by (5.48). Unfortunately, a major complication arises
because (5.49) involves specification of a bound, B, on the deriva-
tive of the slowness perturbation. As I noted above, specification of
this bound in a non-arbitrary fashion is difficult. Furthermore,
Parker[1977b], has found that bounds of the type (5.49) tend to be
overly pessimistic. He gives a number of alternative bounding cri-
terion that could potentially be applied to this problem. However, I
have elected to not pursue this approach because his alternatives
appear to be computationally intractable when the effect of meas-
urement errors is considered. I have chosen instead to adopt a gen-
eral procedure discussed by Backus [1970a]. This procedure is
closely related to the trade-off analysis of Backus and Gilbert [1970]
that I have used for assessing the reliability of the velocity model,
but the interpretation of the results is different. In this analysis the
weights, w;, in (5.44) are found such that they minimize the total
prediction error for each parameter that is given by11

My,
ef=leil?B %+ 3, W3 =123 N (5.69)
i=1

where ||g;|| is the norm of the error function defined in (5.11) and

11 The form shown here assumes a data covariance given by (5.64).
A more general form could be derived by (5.63).
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Wy defines the matrix of weights in (5.54). The first term is (5.65) is
a measure of the misfit error due to inadequate knowledge of the
velocity structure, and the second term. is the random error from
second moment statistics of the data. For a given value of B , the

matrix W calculated by this criterion is
1 -
WT"—'(N_'i' B—al) lx (566)

where IlERM"XM“ is as in (5.24) and I define XeR*¥ as
Xij=<]\_[i I&> (567)

Because of the similarity of the form of (5.68) and the damped least
squares solution (Levenberg-Marquardt inverse) defined in equation

(2.38) I will refer to any solution calculated from (5.66) as a damped
solution.

Since specifying B in a non-arbitrary way is difficult, the
approach I take here is to study how the model and statistical
errors compare in size as B is varied over the range one considers
reasonable (Note this is equivalent to varying the measure of rough-
ness of the true velocity model, «, defined in (5.51).). I do this by
calculating the matrix of weights, W, by equation (5.66) for each
desired value of B. Once W is calculated, the model errors can be
bounded by (5.49) and the predicted statistical errors can be calcu-
lated by (5.64). This calculation can be repeated for any value of B

. 12 . s g
one considers reasonable ™. In this way model aud statistical errors

12 The actual calculation of W by (5.66) is much facilitated if the
kernels, <N, |, are orthogonalized by the method described in Ap-
pendix C or the equivalent method given by Gilbert [1971]. This is
useful for two reasons. The first is that the number of calculations
required is reduced substantially when W is calculated for many
values of B because the matrix inversion in (5.66) is trivial when

(N+ Bl_al) is diagonal. The second reason is that there is a substan-

tial gain in numerical stability. The matrix N is always ill condi-
tioned. Thus, direct application of (5.68) could fail for large value
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can be calculated as a function of a single variable, B. The result is
a set of curves that are similar to trade-off curves. However, the
way one interprets these curves is different, so I shall now discuss
some of their general features. Specific examples of this analysis as

applied to some real data are discussed in chapter 7.

To understand the nature of the damped solutions it is useful to
view them in light of two extreme solutions that they approach in
the limit as B -0 and B »w=. Consider first the B =0 limit. As B -0

the diagonal elements of (N+ El-gl)-wo so (1!+#I)'1->0 and hence

W-0 3. When W=0 we see that (5.49) reduces to

Az; =B ||X; || (5.68)

since in this case <X; |=0. Similarly, (5.64) reduces to

C=HpH} (5.69)

This represents an extreme solution that minimizes the statistical
error at the expense of maximizing the model error. Note that

Hg HY represents the smallest possible statistical error'®. Its size is

of B. This problem can be remedied when N is diagonal by deleting
equations associated with small diagonal entries. This yields a solu-
tion analogous to the pseudoinverse discussed in chapter 2.

If the constraint (5.12) is imposed W does not approach zero but

N;(1
instead each component approaches W,;J-=—M;——J . This fact
NA1)
1

i=
alters only the size of the intrinsic error.

The fact the C does not reduce to zero in this limit is a bit unusu-
al and is a major difference between this analysis and that pro-
posed by Backus [1970a]. The difference arises because Backus
considered only parameters that were related to the model by
linear functions of the form (using my notation) x;=<X; |du>. In
the analysis presented here the parameters are related to the
model by linear functions of the form x;=%;+<X; |du>. As we saw
above the Hy HY term arises from %;.
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independently adjustable by the choice of the matrix Hy but it will
never be zero unless Hy is zero. Because of this, I will refer to
Hp Hg as the intrinsic statistical error. On the other hand, the
model error in (5.68) is the largest that is possible for any reason-
able solution and is thus the most pessimistic possible bound on the
model error. It is of some interest to plot both these error terms as
shown in figure 5.4. In that figure I have sketched a plot of the sta-
tistical error and model error for this extreme solution as a func-
tion of B. ||X;|| is a constant, so ||X;||B plots as a straight line with
slope ||X;|. The statistical error, ~/Cy. is also a constant and hence
plots as a horizontal line!®, A major point of interest from figure 5.4
is that this solution allows us to divide this graph into two regions.
These regions are labeled [1] and ] in figure 5.4. The boundary
between these two regions is marked by the vertical line that passes
through the intersection of the model and statistical error lines.
Region [1] is that area of the graph to the left of this line. It
represents a region where the model error is always small com-
pared to the statistical error. This is the case, because ||X;||B is the
most pessimistic bound on the model error that is possible. Conse-
quently, the actually model error can be expected to be consider-
ably less. Region 2], on the other hand, is a region where the model
errors dominate the errors for this estimate. The errors predicted
for this region are again presumably somewhat pessimistic because
the misfit error is as large as is reasonable. One suspects that this
error can be reduced considerably as we shall see shortly is the

case. It is interesting to note, however, that figure 5.4 is actually

151 have chosen to use the standard error defined as Ciy as a
measure of the statistical error in the i®* parameter rather than a
more complete description using error ellipsoids as is frequently
used in modern hypocenter location error analysis (see e.g. Klein

[1978]). This was done primarily to reduce the required computa-
tional burden.
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the proper representation of the error bounds for the way that vir-
tually all hypocenters are currently estimated. That is, hypocenter
location procedures inherently assume the velocity model is known
exactly and estimate the hypocenter coordinates by setting W=0
and declaring that the error is given by Hg HZ. The analysis here
shows that this error estimate is overly optimistic as it ignores the
contribution from the model error.

The second extreme solution that we need to consider is that

for the case as B »». As H aw,—é-ao and (5.68) reduces to

W =N"IX (5.70)

where N and X are as defined previously in (5.29) and (5.67). This
solution is the same as the unique solution that minimizes the root
mean square misfit of the error function <g;| defined in (5.47)
[Johnson and Gilbert, 1972]'6. Because of this, I will denote quanti-
ties associated with this estimate by the label b.f., which is an
abbreviation for ‘‘best fit"' This particular solution is the opposite of
the B =0 case discussed above. This solution makes the model error
as small as possible from the available data, but ignores statistical
errors. This estimate would be optimum if the observed arrival
times were measured with no error. However, because the observed
arrival times always contain random errors, the statistical errors
calculated for this estimate are generally very large. Thus, (5.70)

produces a solution where the model error is made as small as

16 As a practical matter N is nearly always sufficiently ill condi-
tioned to be numerically singular. Because of this, in my implemen-
tation of this procedure I have actually used a pseudoinverse solu-
tion using a tolerance parameter set to discard eigenvalues of N
that were not significant to machine precision. This provides a
stable means of calculating W in the case when B is large but has
the disadvantage of causing the results to sometimes depend on
the size of the tolerance parameter (see chapter 7).
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possible at the expense of increasing the statistical error substan-
tially. In figure 5.5 I have drawn a sketch of how the errors for this
estimate might plot in the graph introduced in figure 5.4. The point
to observe is that the model error again plots as a straight line
passing through the origin. However, this line has a smaller slope
than the corresponding line in figure 5.4 because the slope of the
line is given by ||g;|ls.y. and ||g;|le.r. <||X;||. Similarly, the statistical
error again plots as a horizontal line that now lies considerably
higher on the error axis since the error for this estimate is always
larger than the intrinsic statistical error. As before, it is useful to
divide the error plane into two regions defined by the point where
the model and statistical error lines intersect. I call the region to
the left of a vertical line through this point region [3]and the region
to the right of this line region [4]. Region [3]is similar to region Min
figure 5.4. In region [1]statistical errors dominate. Similarly, region
l4]is similar to region [2]in figure 5.4. However, region [4|has a more
fundamental importance. The model error sketched in figure 5.5 is
the smallest that is possible with the available datal”. As a practi-
cal matter, this means that if we believe B is sufficiently large that
the errors lie in region [£], then any estimate of z; by (5.53) will be
dominated by model errors. This fact occurs because the model
- error for this best fit solution is as small as possible, but it is still
larger than the statistical error. This problem can be alleviated

only by using more data or modifying the bounding criterion on the
model error.

I introduced the two extreme solutions illustrated in the graphs
in figures 5.4 and 5.5 because they are fundamental as endpoints in

the family of damped solutions given by (5.68). To show the

17 This statement should really be qualified by the added clause
“using the bounding criterion (5.49)" The model error could also
potentially be reduced further be using a less pessimistic bounding
criterion such as those given by Parker [1877b] or Jackson [1979].
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relationship of these extreme solutions to the damped solutions, it
is useful to combine them all on a single graph like those in figure
5.4 and figure 5.5. Combining them on a linear-linear graph as I
have sketched there presents a display problem, however. The rea-
son for this is that I have invoked a considerable amount of artistic
license in figures 5.4 and 5.5. In every real case I have considered,
the extreme misfit errors, ||X;|| and ||g;|lp.z., and the extreme sta-
tistical errors, Hg HY and Cy.z.. differ by by many orders of magni-
tude. As a result, it is preferable to combine the two solutions on a
log-log plot as sketched in figure 5.6. This changes only the appear-
" ance of the resulting display. The statistical errors still plot as hor-
izontal lines. The model errors, however, both plot in this display as
lines with a slope of wunity but separated vertically by
log||X;||-log|lg;|ls.r. . Regions [l and [&]from figures 5.4 and 5.5 map
unchanged into figure 5.6. This combined display, however, leads to
the definition of a new region of this graph that is labeled [5]in
figure 5.6. Regions [1|and [£|are characterized by the fact that if B
lies in these regions one of the extreme solutions, B=0 or B =,
provide the optimum estimate for the i!* parameter since in these
regions either the statistical errors or model errors always dom-
inate. The region label EI is, on the other hand, characterized by
the fact that it is a grey region between these two extremes. In this
area both model and statistical errors are potentially important. It
is in this region that the damped solution plays a useful role
because it recognizes the existence of both types of error and finds

the optimum solution that minimizes the total error.

To help clarify the nature of the damped solutions, I turn finally
to a real example. Figure 5.7 is a log-log plot, similar to figure 5.6,
of the errors calculated for the x-component of the hypocenter of
one event from a data set collected by a local network near Cape
Mendocino in northern California (The reader is referred chapter 7

for a more complete discussion of the data that was used here.).
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Figure 5.6. Log-log plot of both extremal solutions.
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Figure 5.7. Example parameter tradeoff curves. Plot is for the x
(north) component of the hypocenter of event 1482 from Humboldt
Bay network data (origin time: 75 225 17 34 36.10 ). Both axes are
in nondimensional units. Three representative lengths in physical
units are noted on the error axes.
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The errors from the extreme solutions produce the characteristic
set of four intersecting lines as in figure 5.6. Of major interest here,
however, are the other three labeled curves. These curves define
the errors in the family of all optimum solutions calculated by.
(5.88) for this parameter. The curves are calculated simply by cal-
culating the weights for each given value of B by (5.66). The statist-
ical errors can then be calculated by (5.64), and the model error

can be bounded by (5.49). The ‘‘total error” is then calculated from
erotar =1]|2:1°B?+Cy 2 (5.71)

The three curves in curves in figure 5.7 are produced by plotting
each of these error terms (||lg;||B ,Ci;, and eyqq;.) as a function of B,
the bound on the norm of the derivative of the deviation of the true
model from the estimate. The advantage of this analysis is that it
allows us to assess the relative importance of the model and statist-
ical errors over a large range of bound values. For this particular
example the errors are characterized by two regions. For bounds
less than 10® the errors are dominated by statistical errors but for
bounds greater than 10° model errors become increasingly dom-
inant. As a practical matter this says that if we believe B <10? then
the standard error as calculated by a typical earthquake location

routine is a reasonably accurate measure of the true error.

Two features of figure 5.7 are universal. The first is that the
total error curve is always asymptotic to the ||g]lp.y, line as B oo,
The second is that the total error curve is also asymptotic to the
horizontal line defining the intrinsic statistical error as B -0. This
is the major reason I spent the time to introduce to these extremal
solutions since the damped solution reduces to them in these limits.
Everything else (including the scale) is highly dependent upon the
actual data. As a result, I will defer any further discussion of

interpretation of this kind of analysis to chapter 7 where it can be
evaluated in a better context.



CHAPTER 6
TESTS WITH SYNTHETIC DATA

1. INTRODUCTION

The first step to verify the validity of a procedure like this one
is to test it on artificial data generated from known models. This
type of experiment serves two purposes. The first is the very prag-
matic need to test our computer programs. The second purpose of

these tests was to attempt to answer four key questions;

(1) What are the limitations of linearization?

(2) What are the limits imposed by random error in the measure-
ments of arrival times.

(3) What type and distribution of sources provides the most infor-
mation from the fewest data?

(4) Is the method capable of resolving low velocity zones and what

distribution of sources is required to resolve them.

This study has focused on question (1) because I believe it is the
single most important question to ask about this problem. The rea-
son I state that with such dogmatism is that the relationship of the
data (arrival times of direct P and S waves) to the model (elastic
wave velocity structure and the hypocenters of earthquakes) is non-
linear. This inversion method rests on a local linearization to the
nonlinear equations relating the observed data to the model (see
chapter 4). It shares this limitation with all other existing schemes
for solving this problem (e.g. Crosson [1976a] or Aki and Lee [1976])
The question of how good the linear approximation is, is fundamen-
tally important, since the only general method of assessing errors
in inverse problems is valid only for linear problems (see chapter
5). The linear assessment theory can be extended to nonlinear

problems provided the problem is sufficiently well behaved that we
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can somehow find an estimate of the true earth model that is
“linearly close’’ to the truth [Backus and Gilbert, 1968]. We shall
discuss what is meant by ‘‘linearly close’’ at some length in the fol-
lowing paragraphs, but for the moment the point the reader must
realize is that unless we can be confident that we can obtain a good
estimate in this sense, we cannot say anything quantitative about
our estimates. I have found that estimates that are good enough to
permit a linear assessment are possible but not easy. Several pit-
falls that must be avoided have been disclosed. In addition, these

experiments have gone a good distance toward answering the other
three questions outlined above.

2. LIMITS OF LINEARIZATION: THEORY

Synthetic data permits one to analyze the results of inversion
of that data in some ways that are not possible with real data. The
reason is simply that with artificial data one always knowns the true
model from which the data were derived. In this section I define
explicitly what is meant by the statement that two models are
linearly close and then describe a method of analysis that can be
used to determine if two models are linearly close. This analysis is
inherently useless for real data, since it requires a priori knowledge
of the true model. However, it is an important method of analysis
for artificially generated data since it will help us determine how far
we can push the linearization approximation.

I have described the theory for the method of inversion I have
used here in the previous chapters. The theory developed there is
based on the linearization given by equation (4.2). A fundamental
feature of this method is a transformation of the arrival time data
that produces a new ‘‘annulled’ set of data that are locally indepen-
dent of the earthquake hypocenters and depend only on the velocity
model. The result we need for the present is that if we record a
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total of M arrivals from m, earthquakes we can obtain a set of
M, =M-4m,-n, (see discussion preceding equation (5.1) ) linear

equations of the form .
n; =<N; |du> (8.1)

(see section 3 of chapter 4). These M, equations constitute what
Pavlis and Booker [1980] have called the ‘‘annulled data set” The
functions <N;| are as defined in equation (4.20) or (B.23), and the
inner product symbolism is defined here by equation (4.8).

To review, the basic approach here is to estimate the model
perturbation at some depth z; as

M,
0t (zo) = ‘leini (8.2)
=
In particular the weights w; are calculated to minimize
My,
lI<H (z0-2)] ‘_El'widiil I (6.3)
1=

where <H (zp-z)| is the Heaviside function. <N;| is defined by
equation (5.10). In this way we can construct an estimate of the
slowness perturbation function |6u >, which I denote by the symbol

| 6% >. The slowness perturbation function we are trying to estimate
is

| 6w >=|uppye > |2 > (6.4)

where |4 > is some current estimate of the true slowness function,
| Ugrpe > With real data the function |6w> is not known since
| 4grye > is what we are trying to determine. When |wuyq,. > is known,

as it is here, we can compare the estimate (6.2) to the following

M,
dusmoothed (z 0>=i21wi <Ni | ou> (6'5>
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M,

The reader will note that Zn'w,; <N, | is the resolution function for
i=1

the estimate at depth z, by equation (5.23). Hence, dugmootheq is the
true perturbation smoothed by this resolution function. If this
problem were linear and the data had no errors, we see (6.5) and
(6.2) would always give the same result in view of equation (8.1).
However, because this problem is nonlinear, (6.5) and (6.2) will gen-

erally not be the same, even with error free data. As a result, the
difference

€nonlinear (ZO)=6'u'sm.oathed(30)_612(30) (6-6)

is a measure of the affect of nonlinearity on our solution at 2. The
importance of the affect of nonlinearity on our solution depends
upon how epgniineer(Z0) compares to the potential error due to
measurement error. That is, epgniineer(20) being nonzero is
irrelevant if e,gniinear (20) is negligible compared to the expected
error due to noise. Consequently, we need to analyze how eponiinear
trades off with the other two major variables of inversion, resolution
and variance. This analysis is greatly facilitated if we perform the
transformation termed ‘“‘ranking and winnowing' by Gilbert [1971]
and ‘‘spectral expansion” by Parker [1977a] (see also section 4 of

chapter 4). In this way we can convert the M,, equations of (6.1)
into M,, equations we can write as

1a
a;=<¥; | ar (6u)> (6.7)
which have the properties

<¥; |¥;>=0y (6.8)

and

1 a,-]=§6i,- (6.9)
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That is the functions <¥;| form an orthonormal set and the

transformed data, a; are statistically independent.

With this simplification we can examine the sequence of partial
sums

K
lx(z0)=12(z¢ ~ Y &) (6.10)
t=1
2 L bf
oi(z0)=3 = (6.11)
izt M
and
K d K
Crontineary(Z0)= 2, b;<Y; | a——(du)> - X biay (6.12)
i=1 T i=1
where
by=<H (zo=2)| ;> (6.13)

lx(zp) is the resolution length at depth zy , a measure of the
smoothing performed by the resolution function. c£(zg) is the
predicted variance from statistical error. emnl,;nearx(zo) is as in
(6.8).

The actual analysis used is this: We compare the error of our
estimate caused by nonlinearity, (6.12), with the expected statisti-

cal error, (6.11), as we increase the expansion order, K. If nonlineary

is small compared to ox for the range of K giving reasonably small
statistical error, then we can say model |7 > is linearly close to the
truth. “Linearly close’ in this context means that the true slowness
perturbation when smoothed by all acceptable resolution functions,
is the same as our estimate of this perturbation to within the preci-
sion imposed by measurement errors. If a reference model, |7 >, is

“close to'' the true model, |wgq,>, in this sense, then this is an
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indication that | > is sufficiently close to the truth that a linear
assessment will yield results that are correct. This analysis is used
below in two different contexts. In section 2.8 |4 > is chosen arbi-
trarily to study the range over which linearity is valid. In section
2.4, |> is determined by ALGORITHM PRIMEL introduced in
chapter 4. The analysis I just described can be used to determine if

the model the' procedure has found is the global or a local
minimum.

3. NUMERICAL TESTS

3.1. The Data

A wise experimentalist designs his experiments to address a
single problem and tries as hard as possible to isolate his study
from contamination by random uncontrolled variables. The same
wisdom applies to numerical experiments such as the one reported
here. The emphasis in the present study was to determine the limi-
tations of a linear approximation to this, a nonlinear problem. Con-
sequently, all the results shown in this section were produced from
basically the same data. By that I mean that the geometry of the
sources and receivers is the same throughout. The only variable is
the velocity model used to produce the synthetic data. Figure 6.1
shows a map view of the source and receiver geometry used in this
study. Figure 6.2 is a cross sectional view from the left of figure 6.1.
The configuration of the 18 stations of this network is that of the
local earthquake network in the area of Humboldt Bay in northern
California (see chapter 7). These stations are shown by the trian-
gles in figures 6.1 and 6.2. A total of ten hypothetical sources were
used in this study. The locations of these sources are shown in
figures 6.1 and 6.2 by asterisks. Finally, 10% of the arrivals were

randomly eliminated. This was done to loosely simulate a normal
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Figure 6.1. Map view of source and receiver geometry of artificial
data used in this study. Stations are labeled as triangles. Epi-
centers of sources are labeled as asterisks.
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feature of real data, since only a certain percentage of stations nor-

mally record a single event. A summary of which stations record a
given events is shown in figure 6.3.

Event Number

Station || 1 2 3 4 5 3] 7 8 9 | 10
BRY * &k * % * % %k % L X ] * &
DIA & %k & % L3 * % * % * % * ¥ * % * %k & ¥
EKR &k * & &%k % * % % %% E T ]
FKH *% %% L 1] * % &% % %k &% * %
FOX &k &% L 24 ks % % k& %% %
GWS * % *% .k *k & k% LT ] *k & %
HAH ok % % * % * % * %k * & %% * &k &k **
HRS % L 24 % *% %k L 1 &% &%
JBY L 24 ok ok L % ] » % L 3] & * & * k& ok
LOL * % &k L .3 *k L 3] k% *k * & %k
MMR LE ] &k L 2 ] % L 24 L 3] L 3 ] % & ok
MVR »k &k * % L 1 ok % k& & &k
PTK %k k& &k %ok L 1] & L1 ] L X ] %k %k
RYN &k L 3 ] L 2] ok &k %% L 2 ] ¥ % * %
TIT &% ok % [ 1] L1 L X ] % &k
WKR * % L 1 ] L 2] &% L 14 % %k &% *% Wk
BZD "k %ok *k £ 3] o % % & ok * ¥

Figure 6.3. Histogram showing what stations recorded arrivals for

each event in synthetic data set. Gaps indicate no arrival at that
station from that event.
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3.2. Limits of linearization: numerical results

The first set of tests I conducted were designed to use the
theory sketched above to ascertain how good one's initial guess
needed to be to the truth to permit a linear assessment. This was
done with the faint hope that perhaps the problem was sufficiently
well behaved that we could avoid the inevitable problems involved in
an iteration scheme if we could somehow make a good enough initial
guess. Unfortunately, it was found that the initial guess, in general,

would have to be extremely good and iteration is usually unavoid-
able.

Travel times were calculated for the data set described above
for two different models. These two models are shown as the solid
lines in figures 6.4 and 6.5. No random errors were added, so the
only errors in the data are from computational rounding error.
Tests using a linear model indicate rounding errors are never
greater than ~0.005 seconds and are usually less than 70.001
seconds. This is at least an order of magnitude smaller than typical
picking errors for impulsive P wave arrivals so these data are essen-
tially perfect. This is not a moot point because when we calculate
enonlinear DY €quation (6.12) we can then be assured eponiinear iS Dot
contaminated by noise. This does not affect our analysis for calcu-
lating the variance estimates in equation (6.11) since of is deter-
mined completely by the data kernels to within a scale fauctor. With
real data the scale factor is determined by estimates of the vari-
ance for each datum. Here we have set the scaling so the variance
estimates we calculate are those that could be expected if all data
points had some constant standard error. We have calculated
results for both models assuming a constant picking error with an
expected variance of 0.10 seconds. 0.10 seconds was used because
we considered that as nominal for poorer quality data like hel-

icorder records. Impulsive arrivals can often be picked with a
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precision ~0.05 seconds on film records [Lee and Stewart, 1981)] and
perhaps half that again on digital records. However, since the scal-
ing of the predicted variance is linear, aur results are easily con-

verted to any picking error desired.

Hypocenters were initially located by a standard, nonlinear,
least squares procedure (LQUAKE2 written by Robert S. Crosson)
using travel times calculated from the linear model shown as the
dashed line in figures 6.4 and 6.5. Figures 6.6 to 6.8 all show results
of the calculations described above for expansion order,.l, of 15.
Fifteenth order was chosen because higher order expansions pro-
duce large increases in variance with little gain in resolving power.
This is roughly equivalent to choosing an optimum smoothing from a
set of trade-off curves [Parker, 197’?a].

The model in figure 6.4 is identical to the model used by Pavlis
and Booker [1980]. The gradient in this model is absurdly large but
I used it primarily for continuity with this earlier work. The results
of the nonlinearity tests for this model are shown in figure 6.6. We
see that although the initial model appears to be quite close to the
true model, there is a significant error due to nonlinearity. How-
ever, in this case, the nonlinear error is not really significant com-
pared to the noise. Unfortunately, that is not as nice as it may
sound since the variance here is sufficiently large that the initial
and true model are virtually indistinguishable statistically with the
assumed picking error. This is basically a proof of something we

already knew. The initial model used was a very good estimate of
the true model.

The model in figure 6.5 was chosen for continuity with the
results for the model from figure 6.4. The idea was to see what
would happen with a very smooth model like the one in figure 6.4,
but with a sufficiently large sinusoidal component to produce a tri-

plication in the travel time curves. Furthermore, by using the same
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VELOGCITY(KM/SEC)
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Figure 6.4. True and reference velocity models for first test of lim-
its of linearity study. Solid line is the velocity model used to calcu-
late travel times for artificial data. Hypocenters were located using
travel times calculated from linear model shown by dotted line.
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Figure 6.5. True and reference model for second test of limits of
linearity study. Travel times for artificial data were calculated from
the model drawn with a solid line. Linear velocity model shown as a
dotted line is the reference model.
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initial model, the procedure was required to produce a perturbation
of identical form, but much larger amplitude from the earlier study
of the model in figure 6.4. The results for this case are shown in
figure 6.7. Note that in this case the affect of nonlinearity cannot
be ignored. The error due to nonlinearity is at least three times the
noise level. Moreover, a linear assessment would clearly give wrong
results here. Not only is the nonlinear error large but the resolu-
tion length and variances calculated here are very different from
those in figure 6.6.

A question which arose was whether the bad results discussed
above where caused by nonlinearity in the velocity inversion or by
nonlinearity due to source mislocation. To test this, the sources
were fixed at their true location and the same analysis described
above was repeated. These results are plotted in figure 6.8. Observe
that this has helped considerably but has not totally solved the
problem. Hence, it appears that both source and velocity errors
have contributed to the large nonlinear error here but the source
mislocation appears to cause the most severe problems. This

clearly demonstrates that an iterative method is required in this
case.

3.3. Convergence Study

Chronologically the work described in the previous section was
the earliest test I made. The conclusions derived from it led
directly to the development of PRIMEL introduced in chapter 4.
This algorithm was tested for a number of examples. Figure 6.9
shows the results obtained from five iterations of this procedure on
the same data that was analyzed in figure 6.7. The final model
almost exactly reproduces the true model and is indeed linearly
close to the truth. The failure at the bottom of the model is of no
consequence as the resolution blows up there because the deepest
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Figure 6.9. Convergence history of iterative procedure using data
from the model in figure 6.5.
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source in this data set is at 39.2 kilometers. Good results like this
are typical for data derived from very smooth models. Additional
tests not shown suggest that generally the estimate one obtains is

reasonably independent of the starting model when the true model
is very smooth.

If all my results were as good as that in figure 6.9 it would be
very pleasing. However, there is always fear in an iterative pro-
cedure like this that the procedure may converge to a solution that
apparently fits the data but is not linearly close to the truth. Two
such potential pitfalls have, in fact, been found. The first is illus-
trated by the results plotted in figure 6.10. This model was chosen
to study the effect and resolvability of low velocity zones. The
results were not encouraging. The solution has clearly converged
since the third and fourth iteration velocity models are virtually
indistinguishable. This final velocity model, however, is not linearly
close to the true model. This apparently happened because of the
combination of two deficiencies of this data set. The shallowest
source was at a depth of 8.5 kilometers. The resolution of the inver-
sion above that depth is very poor. As a result the procedure was
incapable of producing a reasonable estimate of the model near the
surface. The second problem with this data is that almost all the
rays joining sources and receivers are direct rays that travel
upward from the source position. Hence, most ray paths were close
to straight lines joining source and receiver. This caused the errors
to tend to average to small numbers because the estimated model
is too low near the surface and too high at depth. The procedure

found a local minimum solution that is not linearly close to the
truth.
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Figure 6.10. Convergence history for low velocity zone model.
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A second convergence problem is revealed by the results illus-
trated in figures 6.11 and 6.12. The model used to generate the data
in this case is the wiggly curve with no labels. This model was
designed to determine if the algorithm could recover the low fre-
quency information contained in the true model without being
affected by the unresolvable high frequency information. The
results in figure 6.11 were obtained with the surface velocity fixed
at 3.5 km/sec, the true value. Here the inversion has indeed
recovered the low frequency information in the true model but the
velocity estimates tend to be too large. This is compensated by
errors in the origin times of all events ~+0.2 seconds. The net affect
is a model that fits the data but has velocities that are too high. It
is also interesting to note that the final model tends to follow the
peaks of the sinusoidal oscillations in the model that form alternat-
ing high and low velocity zones. Many of the arrivals in the artificial
data from this model were refractions off the high velocity zones.
This could be an alternate explanation for offset of the estimated
model as the refractions produce arrivals with apparent velocities

at the peaks of the sinusoidal oscillations in the model.

The offset problem is intensified in a similar study summarized
in figure 6.12. The difference here is that the surface velocity was
free to vary. The model labeled with the small triangles was found
to fit the data. This model is similar to the final model in figure
6.11, except it is shifted to the right ~ 1 km/sec on the velocity
scale. Moreover, in this case the errors in the origin times are even
larger, ~ +0.5 seconds. These results reveal a second convergence
problem with this procedure. Earthquake data consisting of only P
wave arrival times, measure only relative, not absoclute travel times.
As a result, there appears to be a considerable trade-off between
the origin times of the earthquakes in the data set and the dc level

of the velocity model. The procedure can converge to a local
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Figure 6.11. Convergence history plot. Surface velocity was fixed at
3.5 km/sec here.
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minimum in which the velocities estimated are everywhere too
large or too small. Residuals for the local minimum are small
because origin times of the earthquakes in the data set are sys-
tematically estimated late or early.

4. CONCLUSIONS

The experiments described here have produced several impor-
tant conclusions regarding inversion of local earthquake data for
seismic velocity structure. The first major result is that the prob-
lem appears to be sufficiently nonlinear that an iterative solution
method is unavoidable to obtain results that are quantitatively
correct. The convergence properties of the iterative procedure
developed in chapter 4 (PRIMEL) were studied using synthetic data.
These studies indicate the algorithm converges to an estimate that
is linearly close to the truth whenever the resolution of the data is
sufficient to resolve the structure of the true model. Additional
convergence studies, however, have uncovered two pathologic cases
that must be avoided when dealing with real data. Both can lead to
convergence to a local minimum solution that is not linearly close
to the truth. The first is caused by the inability of earthquake data
to resolve velocity structure above the shallowest source of the data
set. If no shallow sources are present in the data set, errors in
estimating the near surface velocity can cause errors of opposite
sign to be introduced at depth to produce an apparent fit to the
data. This problem appears to be exceptionally bad when the data
set is dominated by direct, rather than refracted, ray paths. The
second problem uncovered is that there exists a major trade-off
between the dc level of the velocity model and the origin times of
the earthquakes in the data set. Both problems can be avoided.
The best solution is to add refraction data whenever it is available.

Refraction data is capable of resolving near surface structure which
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should avoid the downward error propagation problem. In addition
refraction measurements provide absolute, rather than relative,
travel times. This should eliminate the origin time problem. An
alternate solution to the origin time problem may be to include S
wave data and invert simultaneously for the shear wave structure.
This could solve the problem since S wave data in conjunction with P
wave data are well known to provide good constraints on the origin

times of earthquakes.



CHAPTER 7
TESTS WITH REAL DATA

S

1. INTRODUCTION

Tests with synthetic data, like those described in the previous
chapter, are essential for developmental purposes. Such studies
serve much the same purpose as testing of a piece of field equip-
ment in the controlled environment of a laboratory. Once the piece
of equipment is found to function in the manner it was designed for
on the bench, the next step is to test it in a real world situation. By
analogy, the work described in the previous chapter served a pur-
pose similar to laboratory testing and this chapter represents the
next logical step; application of the procedure to the real world.
Real data contain two features that were not correctly represented

or ignored by the tests with synthetic data described above. These
are:

(1) Measurement errors in the observed arrival times?

() Lateral velocity variations.

The effects of (1) can be appraised unambiguously by the methods
described in chapter 5. (2) is a more subtle matter and concern for
this problem is one of the dominant themes of this chapter. A basic
assumption of the procedure I have applied here is that any lateral
velocity variations in the true earth structure can be absorbed
(within the precision of measurement) by station corrections. As a
practical matter, this is generally true only if lateral velocity varia-

tions are restricted to the near surface [Crosson, 1978a], because

! The synthetic data used above actually contained uncertainties
because of computational roundoff errors. These errors were, how-
ever, at least an order of magnitude smaller than those that are
typical of real arrival time measurements.
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then station corrections are analogous to static corrections used in
reflection seismology (see Dobrin [1978, pp. 211-222]).

Two sets of data are studied here. The first of these is from a
local network operating in the region near Humboldt Bay in north-
ern California. This data set was selected primarily because Knapp
[1976] had used these data in an earlier study using the least
squares procedure of Crosson [1976a]. The major goal of the work
with this data set was to compare the procedure I have described
here with Crosson's. The results I obtained were reasonably con-
sistent with Knapp's. Unfortunately, however, I was led to conclude
that no one-dimensional velocity model could be foun: that fit these
data to within the precision of measurement. | interpret this as an
implication that lateral velocity variations are significant within this
region and that a one-dimensional velocity model is inadequate to
describe the velocity structure of the Humboldt Bay region.

Because of the complications introduced by lateral velocity
variations with the Humboldt Bay data, a second set of data was stu-
died from a local network operated by the United States Geological
Survey in the Coso Range in east-central California. This area was
chosen because previous studies by Walter and Weaver [1980a,b]
indicate the velocity structure of the upper crust there was rela-
tively simple. Results from analysis of these data are in sharp con-
trast to the data from Humboldt Bay. The approximation of a one-
dimensional velocity model appears to be adequate and the applica-

tion of the error appraisal techniques described in chapter 5 is
justified.
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2. HUMBOLDT BAY SEISMIC NETWORK STUDY

2.1. The Data

.

The Humboldt Bay seismic network was installed in August,
1974, to monitor local seismicity [Knapp, 1976]. This network of six-
teen station extends north from Cape Mendocino to Trinidad Head
and east from the Pacific coast to the Coast Range Mountains as
shown in figure 7.1. The aperture of this array is approximately 70
km. in the north-south direction (560 km. if TIT is excluded) and
approximately 50 km. in the east-west direction.

The earthquake arrival time data I have used in this study is the
same as the ‘‘combined data’ used by Knapp [1976] with the excep-
tion of one event (event number 1164), which was missing from the
data file I used. The epicenters of these earthquakes are shown in
figure 7.2a and the depth distribution of these sources is shown in
figure 7.2b. Although the areal distribution of these sources is rea-
sonably good, the depth distribution is far from ideal. Most of the
earthquakes in this data set occur in the depth range of 15 to 25
kilometers. The worst deficiency of these data is that there are no
sources shallower than 8 kilometers. Previous experience with syn-
thetic data had taught that this sort of deficiency can have a detri-
mental effect on any solution (see chapter 8), so I elected to supple-
ment Knapp's data with data from a large explosive source set off
on the south spit of Humboldt Bay (The details of the experiment
are given by Smith and Knapp [1978].). The location of this explo-
sion is shown in figure 7.2a where it is labeled SS.
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HUMBOLDT BAY
A SEISMIC NETWORK
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Figure 7.1. Humboldt Bay seismic network station geometry. Tri-
angles are seismic stations. [after Knapp, 1976].
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2.2. Model Construction

The procedure I have described here for constructing a velocity
model is iterative and hence requires an initial guess for the velo-
city model. The initial model for this study was constructed from
the velocity model used by Smith and Knapp [1978] and Knapp and
Smith [1979] as illustrated in figure 7.3. Smith and Knapp's model
was not used directly because layer boundaries in a starting model
will persist indefinitely with this procedure. The reason for this is
that the perturbations that one calculates are always smooth but

the layer boundaries are always sharp and hence tend to persist.

I first attempted to relocate the earthquakes in this data set
using travel times calculated from this initial model but with all sta-
tion corrections set to zero. The location procedure, however,
diverged with several of these events. Consequently, I adopted the
station corrections given by Smith and Knapp[1978] with a minor
modification. I chose to subtract the large positive mean value in
these station corrections (0.79 seconds) to yield a set of initial sta-
tion corrections that had a mean of zero. With these station correc-

tions I was then able to successfully locate all the earthquakes in
this data set.

From this initial model the procedure converged to the model
shown in figure 7.4 in six iterations®. In all six iterations no itera-
tive improvement of the station corrections was required and as a
result the final station corrections estimated (table 7.1) differ only

2 It is worth noting in retrospect that the solution appears to actu-
ally have converged in only two iterations with the most significant
change occurring in the first step. Chronologically, this work oc-
curred during a period in which I was investigating alternative con-
vergence criteria. The criteria used at this time was overly conser-

vative, which lead me to perform more iterations than were really
necessary.
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VELOCITY (km sec)
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0 - 1 ! | 1
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20+

DEPTH (km)

30~

40-
Figure 7.3. Construction of initial velocity model for Humboldt
data. Smith and Knapp [1978] layered model was used as a guide to
construct the model made up of the 9 linear segments (dotted
lines) that is essentially equivalent to Smith and Knapp's layered
model. This model was used to calculate the Frechet derivatives for
this data set which were then used to calculate the resclution func-
tions associated with these data (damped solution with B =0.10 was
used). The linear segment model was then smoothed by these func-
tions to produce the model labeled by the dashed line.
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slightly from those quoted by Smith and Knapp [1978]. Each adjust-
ment of the velocity model was made under the following condi-
tions:

(1) The surface velocity was allowed to vary as a free parameter.

() The south spit explosion origin time was considered a free

parameter (shot point correction).

(3) Velocity model perturbations were calculated by a damped
solution with B =0.10.

(4) After each perturbation the velocity model was smoothed by
the resolution functions appropriate for that solution to elim-

inate spurious high frequency variations introduced into the
perturbation by noise.

Convergence of this solution is based on the analysis summar-

ized graphically in figure 7.5. That figure is a contour plot of the
quantity

6’174 (Z O,B )

P/E(Zo.B)=m (7.1)

where 01 is the slowness perturbation estimate at the depth zy and
05, is the expected error in that estimate. (6@ is calculated by
equation (5.21) and oy, is calculated by equation (5.20).) P/E meas-
ures the size of a given perturbation relative to its expected error.
It is a function of both the depth z4 and the size of the number B
because both §% and o, are complicated functions of zgand B. B
is a quantity that can be interpreted in terms of the degree of
“roughness” that is permitted in the final solution (chapter 5).
That is, when B is small, % will be a very smooth function of depth;
but when B is large 64 may have very rapid variations. Solutions
with a constant value of B are fundamentally related because they

are constructed from the same matrix inverse (equation (5.33)) and
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Table 7.1
Station Corrections for Humboldt Bay

Station Corrections (seconds)
Station || Knapp Smith and Initial values | Final values
Name | [1976]7 | Knapp [1978]} | for for
this study’ | this study

TIT 0.23 0.46 -0.33 -0.36
PTK 1.15 1.14 0.35 0.35
HRS 0.76 0.71 -0.08 0.01
BZD 1.25 1.25 0.46 0.39
RYN 0.45 0.53 -0.26 -0.40
HUM s 0.52 -0.27 -0.29
BRY 0.82 0.58 -0.21 -0.30
EKR 0.55 0.50 -0.29 -0.36
LOL 1.00 0.98 0.19 0.15
GWS 1.05 1.02 0.23 0.13
HAH 0.88 0.75 -0.04 -0.03
WKR 0.85 1.07 0.28 0.12
FOX 1.04 0.97 0.18 0.11
DIA 0.77 0.70 -0.09 0.01
MVR 0.41 0.45 -0.34 -0.51
MMR 0.93 0.97 0.18, 0.10
JBY 0.36 s -0.44 -0.49
FKH oxas erxs -0.447 -0.27

obtained from earthquake data used in this study with the non-
linear least squares procedure of Crosson [1976a]

obtained by modifying Knapp's station corrections using data
from the south spit explosion

Obtained by subtracting 0.79 seconds from Smith and Knapp’s

corrections. Consequently, these corrections have a mean of
Zero.

Not given by Smith and Knapp. Knapp’s ‘‘geologic correction’
used.

Correction not quoted by any source. Value guessed from prox-
imity to station JBY.
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hence are relatively easy to construct. Figure 7.5 shows that when
B is small (a smooth solution) P/E is relatively small (less than 2.0)
at all depths. This is a demonstration that the more slowly varying
part of the velocity model is adequately fit by the model shown in
figure 7.4. On the other hand, as B increases the solution is permit-
ted to become more jagged (higher resolution) at the cost of a
steady increase in uncertainty due the effect of measurement
errors in the data. Thus, although P/E shows some fairly large
peaks for higher values of B, that fact is beside the point because
the statistical errors of the estimated perturbations rapidly become
very large. Furthermore, the rapid variations of P/E for larger
values of B (right hand side of figure 7.5) occur on length scales
shorter than the resolution of the data, indicating a loss of precision
due to data errors. B was set to 0.10 for all six iterations of PRIMEL
that yielded the model in figure 7.4. Figure 7.4 shows that this solu-
tion lies right at the boundary of the region where data precision is
lost, which verifies that it is a solution that optimizes resolution®,
We see from figure 7.5 that P/E is relatively small for all values of B
smaller than 0.1 indicating the more slowly varying portion of the
model that we have hope of recovering is adequately fit by the
model from iteration 6. This is a sign that the solution has con-

verged because larger values of B yield estimates with an unaccept-
ably large statistical uncertainty.

As | noted above, the major purpose of this study was to com-
pare the results of this approach with those Knapp[1976] obtained

using Crosson's nonlinear least squares procedure. The velocity

3 B=0.10 was selected from an inspection of a set of trade-off
curves that are not presented here. This value was chosen to give
the best combination of resolution and statistical errors for these

data. Hence, it should have this optimization quality since it was
designed that way.
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model determined by Smith and Knapp [1978] is compared to the
final model found here in figure 7.4c. The station corrections I
obtained are also compared to their station corrections in table 7.1.
The station corrections found here are similar? as a whole, although
a few of them differ fairly substantially. The most significant
difference, however, is in the velocity models. The model found
here has significantly higher velocities at all but the shallowest
depths. The reason for these differences cannot be stated une-

quivocally, but it appears to be one of three possibilities:

(1) Smith and Knapp's velocity model was constructed in two some-
what discordant steps. The bottom three layers are based on
Knapp's [1978] work. The top two layers were derived from an
analysis of the data from the south spit explosion and the two
models were directly pieced together. In that analysis they
applied Knapp's station corrections to the observed travel
times and then used the standard technique of fitting two lines
to these corrected travel times to obtain the two surface layer
velocities. They then obtained the station corrections listed in
table 7.1 by forcing all the observations for this shot to lie on
these two lines. My results were obtained in a much more
direct fashion and the differences may be a result of this fact.

* These stations corrections are similar in a relative but not abso-
lute sense. The large difference in the absolute size of these
parameters is due to the fact that the station corrections found
here have a mean that is fairly small whereas those quoted by
Knapp [1976] and Smith and Knapp [1978] have a substantial posi-
tive mean value. For the purpose of earthquake location, the issue
of which is strictly correct is irrelevant because the difference only
efflects the origin times of the earthquakes. In this case, however,
it appears that Smith and Knapp's station corrections are more
correct in an absolute sense because the station corrections I
found here require an enormous shot point correction of 1.45
seconds to fit the data from the south spit explosion.
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Knapp [1982] has investigated the convergence properties of
Crosson’'s procedure using synthetic data generated from a
continuous velocity model. He found that if the near surface
velocities were fixed at a velocity that was too high, Crosson's
procedure would often converge to velocities that were too low
at depth. At the time of Knapp’s [1976] study the data from the
south spit was not available. Because of this he correctly con-
cluded that the near surface resolution of the velocity model
was poor and elected to fix the velocity of the near surface (top
ten kilometers) layer at 5.0 km/sec. His later work with the
south spit data [Smith and Knapp, 1978] showed that this velo-
city was too high. This suggests that the differences between
the models in figure 7.4c could be due to this convergence

problem with Crosson's procedure.

The model I have calculated here may suffer from the dc offset
convergence problem noted above in chapter 8. That is, the
velocity model I have calculated may be too large at all depths

because the procedure converged to a local minimum.

Which of these is true could be answered by an additional test. One
could either repeat Knapp's study using Crosson’s procedure on this
data with the south spit explosion data added, or the procedure I
have developed could be used with the south spit explosion data
excluded. I felt this exercise would, however, be somewhat point-
less. | will now show that neither model fits the data adequately

suggesting a one dimensional model may simply not be appropriate
for this region.
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2.3. Data Misfit

The analysis presented in figure 7.5 demonstrates that PRIMEL
has converged. Any further attempt to perturb the velocity model
is pointless because the size of any reasonable perturbation one can
construct is not significant compared to the noise introduced by
measurement errors. Unfortunately, however, the velocity model
shown in figure 7.4 and the station corrections given in table 7.1 are
not capable of fitting the data to within the precision of measure-
ment. The first indication of this is that the root mean squared
value of the final residuals is 0.052 seconds. This is essentially ident-
ical to the value of 0.05 seconds quoted for this statistic by Knapp
[1976] for his final model. Since the nominal measurement error of
these data is of the order of 0.05 seconds, one might be led to
believe that this number is better than it really is. A more rigorous
method to appraise the misfit of the data is provided by standard
techniques from regression analysis. One can view the estimation of
the discrete parameters in this formulation as a regression pro-
cedure (albeit nonlinear) that occurs in two stages. The first stage
is the process of single event hypocenter location; the second stage
is the process of estimating the station corrections (steps 5 and 8 of
ALGORITHM PMEL). I have found it useful to examine the results
from each of these stages separately.

Earthquake location is often viewed as a regression analysis

(e.g. Buland [1976] or Peters [1973]). A commonly used location
statistic is the quantity

3 (ru)?
T, .
SSWRES _j=1

NDGF  my;—4 (7.2)

where m; is the number of arrival times measured for the i!* earth-

quake and 7, is a ‘‘weighted residual” defined previously in
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equation (3.11). The quantity m,;—4 is usually called the *number of
degrees of freedom” (NDGF), because it can be shown [Wolberg,
1967, pp. 59-60] that the sum of the squares of the weighted residu-

als (SSWRES=_’§1(T,”)_.,?)) has a x? distribution with m;—4 degrees of
j=

5 A x° distribution has the property that its mean is equal
to the number of degrees of freedom. Because of this property, it is
conventional in earthquake location to divide SSWRES by NDGF.
This yields a number of order one that can be used to infer the rela-
tive quality of any given set of earthquake locations that is less
influenced by the differences in the number of arrival times
recorded for that event. A justification for this is demonstrated in

figure 7.6. There I show the probability density function for the ran-

SSWRES .
NDGF when the number of degrees of freedomn is 4,

freedom

dom variable

B, and 12. We see that the probability density of %}é—g—s— is not

highly dependent upon the number of degrees of freedom in

SSWRES. The reason for this digression into the statistical proper-

SSWRES

ties of “NDGF is that it justifies presenting the results of the loca-

tions of the 39 earthquakes used in this study in the form shown in

figure 7.7. The idea is that —S%‘l% from separate earthquake loca-

tions can be viewed as a random variable that should have the pro-
bability density shown in figure 7.6. Figure 7.7 is a histogram show-

ing iiie number of earthquakes in this data set that had —————S;‘g}égs

within a specified range. NDGF varies in these data from 3 to 12 but

Y This statement is generally true only if the measurement errors

are normally distributed and the weights are set by the variance of
this distribution as in equation (3.15).
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PROBABILITY DENSITY

1
0 1.0 20

SSWRES

NDGF
SSWRES has a x? distribution. If z is a random variable from a x?

Figure 7.6. Probability density functions for when

distribution with v degrees of freedom, then the random variable —'z—

will have the distrubition shown above (Distributions shown are
SSWRES

NDGF
when the residuals have a normal distribution and weighting by the

standard errors is used.

those for v=4,8,and12.). The quantity % is equivalent to
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figure 7.6 shows that S—E—Wﬁ—g—-gs should in all cases have a distribution

that is peaked near unity. The actual data have a wide range in

%EEFS— with the center of the distribution centered closer to two

than one. This is an indication of a poor fit to the observed data.

A second testimony that condemns the one dimension model
assumption is given by the same statistical test for the second
regression stage of this procedure; the estimation of station
corrections by ALGORITHM PMEL. PMEL uses the M =M —4m,-m,,
(M is the total number of arrival times, m, is the number of earth-
quake sources, and m, is the number of explosions with origin
times as a free parameter.) components of the residuals that have
not been exploited in the m, earthquake locations and the m,, ori-
gin time estimates. Estimation of the station corrections can then
be viewed as a regression procedure that uses these M, numbers.
Thus, SSWRES after the station corrections are estimated, should
have a x? distribution with M;-ng degrees of freedom (ng= number

of station corrections), and SSWRES should again be of order one.

NDGF
ﬁi—wl)g——%-s— for these data was found to be 1.8, which is essentially the

same as the mean of the distribution in figure 7.7 and is much
larger than unity.

Both of the tests described above indicate that this model pro-
vides a poor fit to the data. The scatter in the final residuals is
about 35% larger than is anticipated from the expected errors in

measuring the arrival times. This could be due to one of four possi-
bilities:
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(1) The errors (and thus the weights) assigned to these data are
wrong.

() The velocity structure is indeed ovne-dimensional but has
significant unresolved features that cause a poor fit to the
observations.

(3) The procedure has converged to a local and not a global
minimum.

(4) The true velocity structure in this region has significant lateral
velocity variations and no one-dimensional velocity model can

possibly fit the observations because they are too inconsistent.

(1) is conceivable but not likely. This data was recorded on analog
16mm film records [Knapp, 1976]. The errors assigned to these
data (0.05 seconds) is nominal for such records [Lee and Stewart,
1981]. The records were, however, processed using a computer
assisted picking procedure on the Varian computer operated by the
Geophysics Program at the University of Washington. The precision
of measuring arrival time of impulsive arrivals with this system is
from 0.02 to 0.03 seconds [Malone, personal communication]. This
suggests that the errors which were assigned to these data were, if
anything, too large. Thus, I consider (1) unlikely. (2) is unlikely as
the resolution of the velocity structure here is reasonably good (see
figure 7.5b). Furthermore, a more complete analysis using trade-off
curves (not shown for the sake of brevity) indicates that unresolved
velocity structure should not significantly effect this result. (3) is
always a fear with a nonlinear problem like this one and cannot be
totally excluded. I conclude, however, that (4) is the major cause
for the poor fit obtained to this data. I reached this verdict based
on two additional observations. The first is the enormous range in
the station corrections found here (0.9 seconds), which is a
significant fraction of the average travel time for this data set (~8
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seconds). The second is the tectonic setting of the region. Cape
Mendocino is the site of the triple junction that marks the northern
termination of the San Andreas fault system [Smith and Knapp,
1981] The geology of the Humboldt Bay area is complicated because
of the complex history of deformation of rocks of this region [Ogle,
1953]. There are huge variations in sediment thickness in the
region [Ogle, 1953] and the entire region is underlain by the com-
plex rock assemblage known as the Franciscan formation [Bailey et.
al., 1962]. Furthermore, the crust offshore thins seaward from con-
tinental to relatively normal oceanic crust [Knapp and Smith, 1979]
which is by definition a lateral velocity variation. Thus, there is lit-
tle doubt that significant lateral velocity variations exist and it is
perhaps surprising that we were able to obtain as good a fit to these
data as we have. Because of this fact, any further error analysis
applied to this data set is of somewhat dubious value as one of its
basic assumptions breaks down here (a one-dimensional velocity
model). Consequently, I have elected not to discuss the application
of the error analysis techniques described in chapter 5 to these
data for the sake of brevity. I will concentrate instead on the appli-
cation of these techniques to the second set of data I have studied
from the Coso Range. There lateral velocity variations appear to be
relatively unimportant, so believing the results of such an error

analysis does not require an act of faith.
3. COSO DATA

3.1. Introduction

The procedure I have utilized in this study inherently assumes
that the velocity structure varies only as a function of depth and
that any lateral velocity variations can be adequately approximated
by station corrections. As I noted above, this assumption is
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probably a poor one for the data from Humboldt Bay. Conse-
quently, it was apparent that a further test of the procedure was
desirable with a set of data for which these assumptions were valid.
I chose to analyze a rather extensive data set collected by a local
network operated in the Coso Range of east-central California
(figure 7.8) by the United States Geological Survey (USGS). This
decision was based on an earlier study by Walter and Weaver
[1980b]. They studied travel time residuals from both earthquake
and explosion sources and concluded that there was no evidence for
significant lateral velocity variations for this regions which could

not be accounted for by near surface effects [Weaver, personal com-
munication).

3.2. The data

The Coso Range lies in the southeastern portion of Inyo County,
California (figure 7.8). The region has been investigated extensively
in recent years because within it is an area of hydrothermally
altered rock and fumarolic activity known as the Coso geothermal
area [Bacon and Duffield, 1980]. As part of that investigation the
USGS installed a network of sixteen seismograph stations in Sep-
tember, 1975 (figure 7.8) to monitor local seismicity [Walter and
Weaver, 1980]. The area is very active seismically. Over 4000 earth-
quakes were located by the USGS from data collected by this net-
work in the two year period from the installation of the network
until September, 1977 [Walter and Weaver, 1980]. This represents
an impractically large data set to use directly for an inversion.
Consequently, a considerably smaller subset of the total data was
adopted. The selection criteria used were the following:
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Figure 7.8. Regional map showing location of Coso seismic network.
(from Walter and Weaver [1980a])
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(1) Duration (coda) magnitude > 1.5

(8) Number of stations recording the earthquake > 10
(3) 36° 55' < Latitude of epicenter < 36° 7.5’

(4) 117° 40’ < Longitude of epicenter < 117° 55'

5) 0°<p<120° where ¢ is the largest azimuthal gap in station cov-
P
erage

107 earthquakes from the full data set satisfied these five criteria.
The depth distribution of these events, however, was not ideal as the
distribution was peaked between a depth of 6 to 7 km in depth.
Consequently, I hand selected 59 of these to yield a more uniform
depth distribution. The epicenters of these 59 events are shown in
figure 7.9 and the depth distribution is shown in figure 7.10. In
addition, the hypocenters of all of these events are summarized in
tabular form in appendix C. We see from figure 7.9 that the epi-
centers of these events are reasonably well distributed areally
through the central part of the network. Note, however, that over
half of these sources lie within three clusters near station DKN.
Furthermore, all but one of the sources deeper than 5 kilometers
lie within one of these clusters. This is significant to this work
because it tended to make this data set excessively redundant (Two
earthquakes with the same spatial location but difference origin
times will produce completely redundant data.). This is, in one
respect desirable. The data compression techniques described in
chapter 4 can be used to great advantage to reduce the size of the
matrices one has to manipulate in the inversion procedure. It may
be undesirable, however, in another respect. If hidden lateral velo-
city structure exists, it could bias the estimated station corrections
toward those corrections that are appropriate only for the clusters
and produce a misleadingly good fit to the data.
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Figure 7.9. Epicenters of 59 local earthquakes used in this study.
The triangles are seismic stations and the octagonal symbols indi-
cate the epicenters of these earthquakes calculated from final
model. Symbol sizes are scaled linearly with depth with the largest
symbols corresponding to the shallowest earthquakes.
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Figure 7.10. Depth distribution of 59 local earthquakes used in this
study. Solid line is the depth distribution for the final locations
from this study and the dotted lines denote the depth distribution
from locations previously calculated by Walter and Weaver [1980a].
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In October, 1976, the USGS conducted a fairly extensive refrac-
tion experiment in the Coso range [Walter and Weaver, 1980b]. Most
of the data from their experiment was also utilized in this study.
For this experiment twenty temporary stations were installed
across the Coso range along a line trending in a northeast-southwest
direction. Explosive charges were detonated at both ends of this
line and at a third point near the center of the line close to station
C09. These three shot locations are shown in figure 7.11 along with
the locations of the temporary stations. For the remainder of this
chapter I will refer to these shots by the abbreviations given in
figure 7.11, SW will refer to the shot on the southwest end of the
profile, NE will refer to the shot on the northeast end of the profile,
and C will refer to the shot at the center of the profile. Additional
data was also included from a large explosion set off by a quarry
operated by Kerr-McGee in the Argus Range just off the eastern
edge of the map in figure 7.11. Walter and Weaver [1980b] con-
structed record sections for all four of these shots. These are
reproduced here for the readers convenience in figures 7.12 to 7.15.
Data from two of the temporary stations (CO1 and C15) along the
NE-SW profile and all the temporary stations installed for the quarry
shot were not used. They were not used because they only recorded
arrivals from a single source. When stations record data record
data from only a single source they contain no usable information
about the velocity model since estimating a correction for such a
station uses all the available information. Consequently, there was
no point in including this type of data in this analysis.

The total number of arrival times in this data set was 828. 728
were from earthquake sources and 102 were from explosion sources
from the refraction experiment. Figure 7.16 shows the pattern of
arrivals recorded for each station. The major point to glean from

figure 7.16 is that although the permanent stations recorded arrival
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Figure 7.11. Station and shot point locations in relation to local
geography for the Coso seismic network. Shot points are indicated
by solid squares, permanent stations are indicated by solid inverted
triangles, and the temporary stations used for the NE-SW profile are
indicated by the open triangles. The Kerr-McGee quarry is located

just offl the eastern edge of this map. (from Walter and Weaver
[1980b])
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Figure 7.12. Record section showing data recorded by profile sta-
tions from SW shot point. (from Walter and Weaver [1980b])
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Figure 7.13. Record section showing data recorded by profile sta-
tions from the C shot point. Note the marked difference in arrival
times for stations northeast (to the right) and southwest (to the
left) of the shot point. (from Walter and Weaver [1980b])
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Figure 7.14. Record section showing data recorded by profile sta-
tions from the NE shot point (from Walter and Weaver [1980b]).
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QUARRY BLAST REFRACTION PROFILE
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Figure 7.15. Record section showing data recorded for Kerr-McGee
quarry blast. Stations SME, CHS, FLB, COF, DAW, and MAT were tem-
porary stations installed to observe this shot. Data from these sta-
tions was not used in the velocity inversion because they recorded
no other events (from Walter and Weaver [1980b]).
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times from both earthquakes and explosion, the temporary stations
(Co2, €03, etc. ) recorded arrival times only from the explosions.
This is significant because we will see later that the errors in the
station correction estimates for the temporary stations are much
larger than those for the permanent stations.

Table 7.2

Coso data weighting scheme
HYPO71 | HYPO71 Assigned
weight weight | Standard error
number (sec)

0 1.00 0.05

1 0.75 0.10

2 0.50 0.15

3 0.25 0.25

4 0.00 o0

Because the original film records had been archived by the
USGS, the original seismogram were not available. Consequently, I
was unable to make estimates of the actual picking errors for these
data directly. Instead, I was forced to rely on the weights listed
with the phase data from the USGS. The associations I made are
given in table 7.2.

Similarly, the arrival times listed by Walter and Weaver [1980b] for
the refraction data were used directly. Because Walter and
Weaver's record sections were available, however, | assigned uncer-
tainties to these arrival times based on a subjective judgement of
their quality. Unfortunately, the scheme I used did not permit a
standard error any smaller than 0.05 seconds. In retrospect, this is

almost certainly an overestimate of the true measurement errors
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Figure 7.16. Diagram showing what stations recorded arrival times

for each event used in this study. Asterisks denote an arrival
recorded at a given station-source pair. The event numbers that

identify each event are tabulated with the final hypocenters of all
these events in Appendix D. Event 9991 is 9991 is the NE shotpoint,

8992 is the C shotpoint, 9993 is the SW shotpoint, and 9994 is the
quarry blast.
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for some of these data. 0.05 seconds is a reasonable estimate for
the error in reading arrival times for an impulsive arrival from a
film record [Lee and Stewart, 1981]. Walter and Weaver's picks,
however, were made from digital records, which probably have a
precision somewhat better than ~ 0.02 seconds [Weaver, personal

communication]. This has two possible consequences that should be
noted.

(1) Statistical errors may be overestimated.

() Arrival times from shots have been given less weight than they
deserve. This eflectively down-weights the contribution of the
refraction data.

3.3. Model Construction

Walter and Weaver [1982] had previously analyzed the refrac-
tion data utilized in this study. They interpreted these data by con-
ventional refraction analysis techniques in terms of the four layer
model shown in figure 7.17. | adopted a simplified version of Walter
and Weavers' model as a starting model for subsequent inversion.
This model consisted of the three linear segments shown in figure
7.17. The most notable difference between my model and that
found by Walter and Weaver is that I have chosen to ignore the thin,
low velocity, surface layer. Walter and Weaver opted to include this
near surface layer based on an analysis of data from a string of geo-
phones that were deployed near each of the three shots on the NE-
SW profile. The shot points, however, were chosen primarily by the
pragmatic consideration of were holes could be drilled to plant the
explosives [Weaver, personal communication]. This meant that the
shot points were intentiona'lly chosen where near surface sediments
were pfesent. Thus, I would argue that a surface velocity of 3.5
km/sec, although known to a high precision locally, is not neces-

sarily a representative average for the entire region. Because the
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sediment cover that does exist is known to be quite thin in this
region [Duffield et. al., 1980], I believe it is preferable to ignore the
existence of any sediments at the surface.and absorb their effect in

station and shot point corrections.

A second, minor difference I have introduced is a change in the
reference elevation. Walter and Weaver’'s velocity model was based
on a reference elevation of 1000 meters [Weaver, personal commun-
ication]. I chose, instead, to use 1250 meters as a reference eleva-
tion because the mean elevation of the permanent stations in the
Coso network is 1264 meters.

The sequence of steps that led to a final result was not direct.
That is, the final results were not derived by n steps of the inversion
program from the ‘‘initial model” in figure 7.17. The major reason
for this was that during the course of working with this data set, I
uncovered an inadequacy in my original method of calculating
travel times. The original procedure followed a practice that is
common in earthquake location of ignoring elevation effects com-
pletely. That is, travel times were calculated as if all stations were
at the reference elevation. Elevation corrections are then assumed
to be absorbed in the station corrections. This is an adequate
approximation when the topography is not too great and the
sources are all relatively deep as is illustrated in figure 7.18a. That
approximation can be very poor, however, when sources are shallow
as shown in figure 7.18b. At Coso there is a substantial amount of
topographic relief (The stations range in elevation from 884 meters
to 1975 meters.) and the seismicity is shallow. As a result, the
errors introduced in this way were substantial, particularly for sta-
tion close to the explosion sources. To correct this problem, the
procedure was modified to use a more accurate slant elevation
correction with the reduction to the reference elevation based on a
the velocity at z=0.
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After the procedure had been modified to correct for the eleva-

tion correction problem I described above, the ‘‘final model’’ shown

in figure 7.20 was then obtained by the following set of steps:

(1)

(2)

(3)

(4)

(5)

Prior to the discovery of the elevation correction problem, the
procedure had converged to the model labeled *‘initial model 2"
in figure 7.19. That model was used as a starting model with all
station corrections set to an initial value of zero.

The progressive multiple event location algorithm (ALGORITHM
PMEL described in chapter 3) was applied using travel times
calculated from ‘‘initial model 2'' This procedure converged
after three adjustments of the station corrections.

The velocity model was then perturbed by the methods

described in chapter 4. This yielded the model labeled *‘pertur-
bation" in figure 7.19.

The velocity model labeled ‘‘perturbation’ in figure 7.19 was
smoothed by the resolution functions calculated for this data
from ‘‘initial model 2 This yielded the model labeled
“smoothed perturbation’ in figure 7.19.

Previous experience had taught that a low velocity zone like the
one in figure 7.19 would have an undesirable effect if it were
used as the starting model for a subsequent iteration. Low velo-
city zones introduce shadow zones into the travel time curves
that make calculating the ray paths joining some sources and
receivers difficult or impossible. The effect of this in my imple-
mentation was that an excessive amount of data was discarded,
because the ray paths could not be found or were considered
questionable. Consequently, I generated a new starting medel
by piecing together the two models shown in figure 7.19 that
are labeled ‘‘initial model 2" and ‘‘smoothed perturbation’.

The ‘smoothed perturbation’ model was used from the surface
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Figure 7.19. Model perturbations. The model labeled ‘‘initial model
2" was used as a second starting model after initial run failed be-
cause of problems caused by elevation corrections (see text). The
velocity model labeled ‘*‘perturbation’ was constructed directly
from the residuals calculated from initial model 2. The velocity
model labeled ‘“smoothed perturbation'’ was obtained by smoothing

the ‘‘perturbation’ model by the resolution functions derived from
initial model 2.
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Figure 7.20. Final model compared to smoothed perturbation
model that was shown previously in figure 7.19.
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down to the top of the low velocity zone. Below 6 kilometers
velocities from ‘‘initial model 2'' were used®. These two sec-
tions were then joined by a linear velocity gradient segment
and the resulting model was again smoothed by the resolution
functions calculated from this model. The resulting model is
shown in figure 7.20 (labeled *‘final model” ) where it is com-
pared with the “‘smoothed perturbation’” model shown previ-

ously in figure 7.19. (This model is the same as that shown in
figure 7.17.)

(6) PMEL was again applied. Only one adjustment of the station
corrections was required in lhis case.

(7) The velocity model was again perturbed but the calculated per-
turbation was found to be insignificant compared to the noise
(see figure 7.21) indicating convergence.

Two lines of evidence indicate that the model labeled ‘‘final model’’
in figure 7.17 and 7.19 is a good approximation to the truth;

(1) Any reasonable perturbation that can be calculated from the
residuals for this model is not significant compared to the sta-

tistical noise introduced by measurement error.

(2) This model produces travel times that fit the observed data
very well.

© 1 used velocities from initial model 2 in this rather ad hoc method
of constructing a velocity model, because previous studies by Eaton
[1966] and Walter and Weaver [1982] found a velocity of 6.0 km/sec
for the Mesozoic basement rocks that underlie this area. The
smoothed perturbation meodel in figure 7.19 has velocities 76.1
km/sec for the deeper structure. Since there is very little control
on the velocity below 5 km depth (see section 3.5 which follows) I
judged the 6.0 km/sec velocity in initial model 2 more appropriate.
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Figure 7.21. P/E ratio contour plot for possible perturbations from
the ““final model’ shown in figure 7.20.
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I will conclude this section with a brief discussion justifying (1). I
will discuss (2) extensively in the section that follows.

Figure 7.21 is a contour plot similar to figure 7.5 of the ratio
P/E defined above in equation (7.1). The interpretation here is
similar to that of figure 7.5. The small values of P/E when B is
smaller than 0.1 indicates that the more slowly varying portion of
the velocity model is adequately fit by this ‘‘final model'" Although
P/E.becomes locally quite large as B increases from 0.1, that fact is
irrelevant because statistical errors increase extremely fast as B
increases. In fact, when B>1.0 the statistical errors begin to
become of the order of the total size of the model (i.e. the error
bars of the perturbation become ~ 6.0 km/sec.). The implication of
this is that the “‘final model” in figure 7.20 is as good an approxima-
tion to the truth as we can hope for, since any reasonable perturba-

tion we can construct from it is not significant compared to the sta-
tistical noise.

3.4. Data Misfit

Study of the statistical significance of the family of solutions
presented in figure 7.21 is a useful analysis that gives some indica-
tion of the stability of our final solution. Application of that analysis
to this example shows that the solution is stable in the sense that
any reasonable (By ‘‘reasonable’’ I mean a solution that has an
acceptably small statistical error.) perturbation we can calculate
will be small compared to measurement errors. This analysis is,
however, incomplete. It is conceivable that one could find a model
that was stable in the sense of the above analysis that did not fit the
observed arrival times to within measurement error (Recall this is
precisely what happened in the work described previously with the
data from Humboldt Bay. ). In this section I will demonstrate that
the model shown in figure 7.20 yields travel times that fit the
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observed data very well. This is important because it demonstrates
that the approximation I have used for the velocity model (velocity
varying only in the vertical direction supplemented with station
corrections) is adequate to fit this data.

The fit of the arrival time data for the 59 local earthquakes used
in this study is extremely good. This is demonstrated dramatically
in figure 7.22, which is a histogram comparable to figure 7.7. As I
noted above, the quantity SSWRES/NDFR, (defined in equation (7.2)
when presented this way, should have a x? distribution. The mean of
this distribution is a measure of the fit of the model to the observed
data. We see in figure 7.22 that the mean SSWRES/NDFR for these
08 earthquakes is considerably less than unity, indicating a good fit
of this model to the observations. This is in marked contrast to the
comparable results shown in figure 7.7 from the work with the data
from Humboldt Bay. Figure 7.7 was the primary basis for my con-
clusion that the Humboldt Bay data could not be adequately fit with
a one dimensional velocity model. Here I make the opposite conclu-
sion. The approximation of a one dimensional velocity model
appears to be more than adequate.

With earthquake arrival time data, a presentation like that in
figure 7.22 is about the best we can do. Arrival times from explo-
sion data, however, are less ambiguous, because the hypocenter of
the source is known. As a result, it is useful to study this data more
carefully to search for any systematic patterns in the observation
that might be indicative of hidden lateral velocity variations that
cannot be corrected for with station corrections. My conclusion
from this study is that there is no evidence for any significant
lateral velocity variations at Coso except for the region near the
earth's surface where the effects of these variations are absorbed in
station and shot point corrections. The evidence for this is shown in
three different forms in figures 7.23 to 7.35. The first group of these
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Figure 7.22. Misfit of local earthquake data. This plot is a histo-
gram showing the number of events for which the location statistic
SSWRES/NDGF (sum of squared weighted residuals divided by the
number of degrees of freedom) falls within a specified interval.
Comparison with figure 7.7 demonstrates dramatically the excep-
tionally good fit of the results of this study.
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Figure 7.23. Reduced travel times for stations on the NE-SW profile
from the SW shot point. Travel times have been reduced by 6.0
km/sec. Triangles are the measured travel times. The circles are
the measured travel times with elevation, station, and shot point
corrections applied. The error bars drawn on these circles are the
standard errors that were assigned to that datum in the inversion.
The curve in this figure is the travel time curve calculated from the
model in figure 7.19. A noteable feature of the raw data for this
shot is the prominent delay in stations in the distance range from
20km to 25km. These stations lie at the point were the profile
crosses the northern end of the sediment filled Coso Basin and the
fan deposits of the Coso Formation (see Figure 7.41).
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Figure 7.24. Reduced travel times for permanent stations from the
SW shot. Here the squares are the measured travel times and the
hexagons are the travel times with elevation, station, and shot point
corrections applied. Other features are as described in figure 7.23.
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Figure 7.25. Reduced travel times for profile stations from the C
shot point. The triangles and stars are the measured travel times
and the circles and crosses are travel times corrected for elevation,
station, and shot point delays. Seperate symbols have been used to
denote those stations that are southwest of the shot to emphasize
how different they are when compared to arrival at station
northeast of the shot. This difference is due to the fact that the
shot was located near the western edge of the Coso Basin. The Coso
Basin is bounded on the west by a normal fault with the Coso Basin
on the downthrown side [Duffield et. al.,, 1980]. This delayed arrivals
northeast of the shot relative to those southwest of the shot.



T-X/60

0.5 0.75 1.0

0.25

C SHOT
Temporary Stations

STATIONS NE OF SHOT

A MEASURED
© CORRECTED

STATIONS SW OF SHOT

X MEASURED
3 CORRECTED

i

|
5 30 45 80
DISTANCE (km)



232

C SHOT

Permanent Stations

1.0
T

8 MEASURED
® CORRECTED
N
N~ L
O oo)
@
O
<o)
\ 0 .
x O
I
'._
o]
L
o
@) l ' 1 j

0 15 30 45 60
DISTANCE (km)

Figure 7.26. Reduced travel times for permanent stations from C
shot. Symbols are as defined in figure 7.24.
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Figure 7.27. Reduced travel times for NE shot (all data). Symbols
are as described in figure 7.23 and 7.24. Large error bars for these

data are due to a misfire of the explosives for this shot [Weaver,
personal communication].



0.75 1.0 1.25

0.5

0.25

[

i 1
15 30 45 60
DISTANCE (km)



234

Kerr-McGee quarry blast
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Figure 7.28. Reduced travel times for permanent stations from
quarry blast. Symbols are as described in figure 7.24. Note that
there is a considerably larger scatter in the corrected data than
from the other shots. This is probably due to the fact that these
data sample a different region of the crust than the remainder of
this data set since most of these rays bottom near the eastern
boundary of the Coso Range.
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NE shot point residuals
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Figure 7.31. Residuals for profile stations from NE shot point.
Symbols are as described in figure 7.29. The distance axis is again
oriented consistently with that in figure 7.29 and 7.30.
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— POSITIVE RESIDUAL

EGRSSEAREENEACEERRNY NEGAT'VE RES'DUAL

Figure 7.32. Weighted residuals for permanent stations from SW
shot. This figure is a map view of the Coso network overlaid on a
simplified version of Duffield and Bacon's [1980] regional geologic
map (simplification from Duffield et. al. [1980]). Lines shown here
connect shot and station location. This path is equivalent to the
surface projection of the ray that joins the source and receiver po-
sitions. This is useful to clarify the relation of these ray paths to
surface geology. Paths with positive residuals are shown as solid
lines. Paths with negative residuals are shown as dotted lines.
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Figure 7.33. Weighted residuals for permanent stalions from C
shot. See figure 7.32 caption for further description.
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Figure 7.34. Weighted residuals for permanent stations from NE
shot. See figure 7.32 caption for further description.
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Figure 7.35. Weighted residuals for permanent stations from quar-
ry shot. See figure 7.32 caption for further description.
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is figures 7.23 to 7.28. There I show the actual, measured travel
times and the ‘‘corrected’ travel times (The corrected travel time
is the measured travel time minus an elevation, station (geologic),
and a shot point correction.) for all four shots on a reduced travel
time plot (reducing velocity = 6.0 km/sec). The theoretical travel
time curve for the model shown in figure 7.20 is also shown in each
of these figures for a reference. The success of the fit of the
corrected data to the theoretical travel time curve here is striking.
The scatter in the raw travel time data is fairly substantial. Furth-
ermore, the overall trend of the raw data looks quite different for
the four separate shot points (Note especially the substantial delay
in the arrival times from the NE shot.). The scatter in the
corrected data, by comparison, is enormously less and represents a
major success for the application of this procedure. Closer exami-
nation of the results for the profile stations, however, reveals some
noticeable trends that deserve further comment.

. The final residuals observed at all the profile stations for the
three shots fired on this line are presented in figure 7.29 to 7.31.
The data from the NE shot (figure 7.31) is not very good, but there
are not any obvious trend in these data. The same is not true of the
SW and C shots (figure 7.29 and figure 7.30). These shots show fairly
substantial residuals at the stations closest to the shot. The
anomalous arrivals at stations close to the shot are associated with
ray paths that do not penetrate very deeply into the earth (All of
these arrivals bottom within the top kilometer.). Consequently, the
waves that arrive at these stations have passed at low angles

.through the complex structures that surface geology shows are
present within the upper few hundred meters of the Coso Range
(see geologic map in figure 7.41). Station corrections cannot com-
pletely compensate for these complexities at stations close to the
shots, which suggests that the near surface seismic velocity
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structure has significant lateral velocity variations.

Two trends are also apparent in the residuals from the explo-
sions recorded at the permanent stations. This is demonstrated in
figure 7.32 to 7.35 in the form of a map view in which lines have
been drawn connecting each source-receiver pair. These lines
represent the surface projection of the ray path that a given resi-
dual (note the numbers shown are weighted residuals) is associated
with. The first trend to note is the strong pattern that can be seen
in the residuals from the C shot (figure 7.33). All stations in the
quadrant southwest of the shot have substantial negative residuals
while all other stations show positive residuals. Furthermore, the
same pattern is apparent in the residuals from the profile stations
for this shown shown in figure 7.30. This residual pattern has a
fairly simple explanation. The C shot was fired near the western
edge of the Coso Basin north of Coso Hot Springs. The Coso Basin is
bounded on the west by a major normal fault with the downthrown
block to the east as shown in figure 7.36 from Duffield et. al. [1980].
Because the C shot was positioned near this boundary, the waves
that traveled to the southwest of the shot had to travel only a short
distance through the fan deposits within this basin. This led to
arrival times that were early compared to other stations where the

waves had to travel larger distances through this low velocity
material.

A second pattern can be seen most clearly in the residuals from
the SW shot (figures 7.29 and 7.32) and more weakly in the residuals
from the C (figure 7.30 and 7.33) and the NE shot (figure 7.31 and
7.34). These data suggest a pattern in which stations to the west
tend to have arrivals that are relatively late (positive residuals)
compared to stations further east. This pattern is consistent with
the regional dip in the structure from the east to the west that has
been produced within the eastern sections of the Coso Range by a
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series of north-south normal faults as illustrated in figure 7.36. This
trend apparently does not continue to the east as a similar trend is

not apparent in the data from the quarry blast shown in figure 7.35.

To conclude this section, I would like to point out that although
this detailed study of the residuals from the four shot points reveals
some significant patterns that are indicative of lateral velocity vari-
ations, I would argue that this fact is of little consequence to the
analysis of earthquake data. I make this claim primarily because
earthquake and explosion sources have a fundamental diflerence.
The explosions always occur very close to the earth’s surface. As a
result, the waves they produce spend a much higher percentage of
the total travel time passing through the complex near surface
structure than the waves produced by earthquake sources. Geolo-
gic mapping of this area indicates that the overall structure of the
Coso Range is quite simple. The range is underlain primarily by
Mesozoic plutons and subordinate metamorphic rocks that are part
of the Sierra Nevada batholith. Pliocene and Pleistocene volcanic
rocks bury this basement complex over most of the range, but this
cover is generally less than a few hundred meters thick [Duffield et.
al., 1880]. Because the data from explosion sources is more sensi-
tive to this near surface structure, it is not surprising that there is
more scatter in these data than is apparent in the earthquake
data’. This fact is of little consequence, however, to the problem of
obtaining precise earthquake locations, because the seismicity is
concentrated below the complex, near surface structure. That the
7 The scatter in the refraction data is significantly different from

SSWRES

the earthquake data. “NDGF of all the refraction data is 1.14. An

F-test [Hoel, 1971, pp. 269-273] shows that this is significantly

different from the value of SIS\I%FE for all of the earthquake data.
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Figure '7.36. Block diagram showing structure of eastern Coso
Range. The major northwest trending fault zone through the Air-
port Lake area (figure 7.41) forms the south edge of the diagram.
The western edge passes through the major horst on which the
Pleisocene rhyolite domes of the Coso volcanic field have been em-
placed. The C shot was fired in a position near the northern edge of
this figure in the fan sediments on the immediately east of this ma-
jor horst (from Duffield et. al. [1980]).
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near surface complexities of the velocity structure at Coso can be
adequately approximated by station corrections is undeniable in
light of the excellent fit of this model to the earthquake data used
in this study (figure 7.14). Thus, I conclude that the approximation

of a one-dimensional velocity model is a very good one for this
region.

3.5. Error Appraisal

3.5.1. Introduction

The purpose of the previous section was to demonstrate that
the model found here fits the observations to within the expected
measurement errors. This step was necessary to justify that these
data are adequately fit by a one dimensional velocity model. Having
demonstrated that, 1 address in this section the more basic ques-
tion of how this model (the total model consists of a velocity model,
a set of station corrections, 4 shot point corrections, and the hypo-
centers of the 59 earthquakes.) relates to reality. This section is an
application to these data of the error assessment techniques
described in chapter 5. It is broken into three subsections
corresponding to the three distinct parts of the model; the velocity

model, station (shot) corrections, and the hypocenters of the earth-
quakes.

3.5.2. Velocity model

An important result of the application of the annulling transfor-
mation is that it allows one to directly apply the powerful error
assessment techniques of Backus and Gilbert [1968,1970] to
appraise the uniqueness of the estimated velocity model. This is
the technique I referred to earlier (see section 3 of chapter 5 which
serves as a companion to this section) as the ‘‘trade-off curves of
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error versus resolution length' This technique recognizes that the
solution of any inverse problem is fundamentally ambiguous
because of two sources of uncertainty. The first of these is the ubi-
quitous problem of the propagation of random measurement errors
into anything estimated from data (statistical errors). The second
is unique to inverse problems. The velocity model is fundamentally
ambiguous because it requires (in principle at least) an infinite
number of parameters to be specified exactly. The quantity of data
we have available is, however, always finite so we cannot hope to
resolve the velocity model on an arbitrarily fine scale but we must
always be content with some smoothed version of it. One measure
of this smoothing is the resolution length defined in equation (5.27).
Backus and Gilbert [1970] show that these two sources of uncer-
tainty are mutually exclusive. That is, statistical error can only be
reduced at the expense of a degradation in resolution (increase in
resolution length) and vice versa. There is a trade-off between the
resolution length and the statistical errors. This trade-off can be
studied by plotting the size of the resolution length as a function of
the statistical error (or vice versa) for the family of solutions
obtained as the number B in equation (5.33) varies. The resulting
curves, which are referred to as trade-off curves, are strictly
decreasing functions that are unique properties of the data [Backus
and Gilbert, 1970]. These curves are generally different for esti-
mates of the velocity at different depths. Johnson and Gilbert
[1972] show how variations in the form of these trade-off curves with

depth can be used to objectively assess the nonuniqueness of the
velocity model.

The trade-off curves associated with the velocity model esti-
mates from these data are presented in figures 7.37 and 7.38. The
trade-off curves for all depths are shown in the form of a contour
plot similar to those given by Johnson and Gilbert [1972]. The
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Figure 7.37. Trade-off curves for Coso velocity model (surface velo-
city free). Horizontal axis is the predicted standard error for the
slowness perturbation. Solid lines are contours of constant resolu-
tion length. Dashed lines show standard errors (and resolution
lengths) associated with a slowness perturbation constructed using
a constant value of the bound B (equivalent to a constant damping:
see text).
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Figure 7.38. Trade-off curves for Coso velocity model (surface velo-
city fixed). Plot is as explained in caption of figure 7.37.
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vertical axis is the depth and the horizontal axis gives the statistical
error in the estimated slowness perturbation. The trade-off curve
at each depth is the plot of resolution length as a function of statist-
ical error. Consequently, the resolution length can be considered as
a function of both the depth and the statistical error that can be
contoured as shown in figures 7.37 and 7.38. The two differ in that
figure 7.37 shows the results for the case when the surface velocity
is free to vary (assumed unknown) and figure 7.38 shows the same
results for the case when the surface velocity is fixed (assumed
known exactly). From this we see that the only significant effect
that occurs if the surface velocity is fixed, is a substantial improve-
ment in the resolution of the near surface velocities. This is to be
expected since fixing the surface velocity is appropriate only when
it is already known. This represents an addition piece of informa-
tion that manifests itself here in a dramatic improvement in the
resolution of near surface velocities.

The dashed lines in figure 7.37 and 7.38 are also significant.
They identify the uncertainties that are present in a set of esti-
mates related by the number B in equation (5.33). These sibling
estimates are important because they represent an estimate for
the entire slowness perturbation function, |87 >, that is relatively
easy to calculate®. Figure 7.39 shows an example of the usefulness
of these curves. There a velocity model perturbation estimated
from the final residuals using B =0.10 is shown in the context of its

associated uncertainties. The statistical errors used to construct

8 The only quantities that differ in equation (5.33) when B is fixed
are the numbers A; on the right hand side. The h; depend only on
the depth the model is to be estimated at (equation (5.30}). Thus,
an estimate of a perturbation to the entire velocity model can be

had from a single inversion of the matrix on the left hand side of
(5.33).
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the 957 confidence limits in figure 7.38a can be obtained directly
from figure 7.37 by following the leftmost dashed line. Similarly,
the resolution length shown in figure 7.38b can be had by noting how
that dashed line crosses the resolution length contours. The solu-
tion shown in figure 7.39 is of special interest because it is optimum
in the sense that larger values of B lead to a rapid increase in sta-
tistical errors and smaller values of B lead to a rapid degradation in
resolution. Figure 7.39 also demonstrates one of the most useful
applications of trade-off curves. The low velocity zone that is intro-
duced by the perturbation here is seen to be fairly well resolved but
of questionable significance. That is, the width of the feature is of
the order of the resolution that we can expect in this depth range,
but its significance is questionable because its size is of the order of

the noise. Thus, this feature is intriguing but we cannot be certain
that it is real.

Overall, the trade-off curves in figure 7.37 and 7.38 show a pat-
tern in which the resolution of the velocity model is quite good
(resolution of 1 km or less is achievable with an acceptable statisti-
cal uncertainty) down to a depth of slightly greater than 4 kilome-
ters. Below that depth, one sees that resolution degrades rapidly to
the point that no reasonable estimate of the velocity model is possi-
ble for depths greater than about 6 kilometers. This result was
quite surprising considering that over half of the earthquakes in
this data set are deeper than 4 kilometers (see figure 7.10). Since
the deepest refraction arrival bottomed at a depth of 4.1 kilome-
ters, I was concerned that the results were being overly dominated
by the refraction data. Consequently, I repeated the trade-off curve
calculation with all the refraction data excluded. The results of this
calculation are shown in figure 7.40 where they are compared
directly with a duplicate of figure 7.37. Here we see that removing
the refraction data does not change the overall picture
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substantially. The only major differences are an overall increase in
statistical errors at all depths and a decrease in resolution of the
near surface velocities. The loss of resolution at depth still occurs
at about the same depth, indicating that this must be a geometric

effect due to the small aperture (50 kilometers maximum) of the
Coso network.

3.5.3. Station and Shot Point Corrections

The station correction estimates for this network are listed in
Table 7.3 and the four shot point correction estimates are listed in
Table 7.4. In addition, these station corrections are displayed in
figure 7.41 overlaid on Duffield and Bacon’s [1980] geologic map for
the region. We see that these station corrections correlate very
well with surface geology. Station that lie on or near the major
basins in the area (Rose Valley and Coso Basin) and those stations
located on the fan sediments of the Coso formation [Duffield et. al.
1980] tend to show positive station corrections. This is consistent
with what we expect as the lower velocity sediments at the surface

in these areas should cause arrivals to be observed relatively late (a
positive correction).

When presented with a set of numbers like this, a normal ques-
tion to ask is how believable they are. In this case I can show quite
convincingly that they are known very well. The way I can do this is
through the trade-off analysis described in section 4 of chapter 5.
There 1 showed that estimation of discrete parameters like these
from arrival time data is fundamentally ambiguous for the same
reason that estimation of the velocity model is ambiguous. That is,
these estimates have uncertainties due to both measurement
errors in the data, and the fact that the velocity model cannot be
determined uniquely. In chapter 5 I introduced a new method of

analysis that can be used to appraise the relative importance of



255

EXPLANATION

=] Pliocene volcanic rocks and
~J intercaioted Coso Formation

~

Quoternory oltuviol, fluvial,
playo,ond wind-blown deposits

e ete’.] Pre-Cenozoic granitic and

Pleistocene bosol Lol metamorphic rocks

- Pleistocene rhyolite-domes and terte mReRE————
flows, concentric dots-pyroclastic Foull,dotied where conceoled ond doghed
deposits, scottered dots where uncertoin.

Pleistocene sedimentary rocks Bar and ball on downthrown side

of the White Hills

L .
Generolized attitude of sedimentary
rocks ond Pliocene bosolt flows

Figure 7.41. Station corrections for Coso network. Corrections for
all stations used in this study are shown color coded by the size of
the estimated correction. These have been overlaid on a a
simplified version of Duffield and Bacons's geologic map
(simplification from Duffield et. al. [1980]) to show how strongly
these station corrections correlate with surface geology. Station
names can be had by comparison with figure 7.11. The exact nu-

merical values of these station correction estimates are listed in
Table 7.3.
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these two sources of error. This technique utilizes a set of trade-off
curves that show how these two sources of error interplay. Figure
7.42 is an example of the application. of this analysis for the
estimated station correction at station JRW. Figure 7.42 is similar
to figure 5.6 and 5.7 described above. It shows the size of the
model, statistical, and total errors (see chapter 5) plotted as a func-
tion of the number B (equation (5.49)). Figure 7.42 differs from
figure 5.6 and 5.7, however, in that the number B in figure 7.42 is
interpreted in terms of the roughness length,x, defined in equation
(5.51). k is useful because it can be interpreted in terms of the
scale lengths of the hypothetical, unresolved velocity structure. (I
also show the results in terms of B to facilitate comparison with the
velocity model trade-off curves.) Figure 7.42 is significant because it
shows that statistical errors are essentially constant and several
orders of magnitude larger then the model errors for most of the
range of x shown. This fact implies two things:

(1) Model errors can be essentially neglected for the estimate of
this station correction. This is so because one has to assume «
is unreasonably small before model errors become significant in
comparison to statistical errors. To see this, note that k=107
kilometers implies that there are large velocity variations
occurring over distances d® 1 millimeter and ® 1 meter (see
definition of « in (5.51)). Thus 107* is a lower limit on a reason-
able value for «, because smaller values of « are rejected as
physically unrealistic. Whenever, £>10"* model errors are
small compared to statistical errors so model errors can be

ignored for all intents and purposes.

() Because the statistical error curve is essentially flat out to very
small «, a statistical error estimate based only on the covari-
ances calculated by PMEL (I called this the “intrinsic statistical

error” in chapter 5) gives a reasonable error estimate for this
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“EXPLANATION.

' TOTAL ERROR
-======= STATISTICAL ERROR
; MODEL ERROR

Figure 7.42. Trade-off curves for station correction estimate for
station JRW. Both axes are logarithmic. The horizontal axis is tabu-
lated in terms of both the nondimensional number B and the rough-
ness length «. B is useful for comparison of this figure to the
trade-off curves for the velocity model in figures 7.36 and 7.37. « is
an easier number to interpret physically (see text). B and « are re-
lated by equation (5.52) and for this figure the number Au was set
to a conservative value of 0.1 sec/km. A smaller, less conservative
estimate of Au would shift the &« scale to the left as can be seen
from equation (5.52).
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station correction.

The above conclusions were stated only for station JRW. These
conclusions, however, extend directly to the other station correc-
tions estimated from these data because the trade-off curves for all
of these estimates are nearly indistinguishable. The only major
difference is in the size of the intrinsic statistical error in the sta-
tion corrections for the temporary and permanent stations. Stan-
dard errors for the permanent stations were all of the order of 0.01
seconds while those for the temporary stations were all of the order
of 0.04 seconds (table 7.3). The reason for this is that station
corrections for the temporary stations were based only on arrivals
from the three profile shots while the station corrections for the
permanent stations were based on arrivals from both shots and
earthquakes. The station corrections for the temporary stations
were thus obtained as averages of fewer numbers, so they should be

expected to have a greater uncertainty. The final station correc-
tions for all the Coso stations are

3.5.4. Hypocenters

I have assessed the reliability of the hypocenters of the 59
earthquakes used in this study by the same techniques I used above
for the station corrections. It is impractical to present all these
results since it would require 236 figures like 7.42 to do so. For-
tunately, it is not at all necessary to do this anyway because all 59
events can be placed in two categories based on the form of their
trade-off curves. A typical example of each category is shown in
figures 7.43 and 7.44. The trade-off curves for the hypocenter of the
earthquake {event number 1 (see appendix C)) shown in figure 7.43
are typical of the first category. The curves for the epicentral coor-
dinates for this event look similar to figure 7.42. There is a

difference, however, in the form of these curves for the depth and
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Table 7.3
Coso Network Station Corrections

Station Station Standard
Correction Error
(sec) (sec)
NMC 0.01 0.008
MFS -0.09 0.008
JRW -0.03 0.009
SMW -0.04 0.008
DKN -0.03 0.009
RVC 0.00 0.008
CPT -0.02 0.010
DTE 0.09 0.025
HPH 0.16 0.011
CGS -0.03 0.010
RCW 0.10 0.010
CsSS -0.04 0.010
VPE -0.03 0.009
CBH 0.19 0.011
HWS -0.04 0.011
BCH 0.14 0.011
CFW -0.14 0.10
co2 -0.04 0.051
co3 -0.08 0.037
Co4 -0.14 0.037
Co5 -0.02 0.037
Ccos -0.07 0.037
cov -0.09 0.037
cos -0.10 0.047
Cog -0.09 0.035
C10A 0.61 0.035
C10B 0.16 0.035
Cit 0.05 0.032
ciz2 0.00 0.032
Ci13 -0.086 0.033
Ci4 -0.08 0.034
Cis -0.06 0.038
ci1v -0.03 0.044
ci8 -0.07 0.048
C19 -0.04 0.048
C20 0.05 0.048




260

| EXPLANATION

TOTAL ERROR

-====-=- STATISTICAL ERROR
sems. MODEL  ERROR

Figure 7.43. Trade-off curves of hypocenter coordinates for event
number 1 (see Appendix C). Trade-off curves shown are all similar
to that described in figure 7.42 except here the parameters of in-
terest are the hypocenter coordinates of an earthquake. Coordi-
nates given are local cartestian coordinates.
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_ EXPLANATION

TOTAL ERROR

«em===-= STATISTICAL ERROR
semns. MODEL ERROR

Figure 7.44. Trade-off curves of hypocenter coordinates for event
number 223 (see Appendix C). Trade-off curves shown are all simi-
lar to that described in figure 7.42 except here the parameters of
interest are the hypocenter coordinates of an earthquake. Coordi-
nates given are local cartestian coordinates.
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origin time of this event. Both show a general rise in the size of the
statistical error at «~ 1 km. Note that for the depth coordinate,
however, the model error always remains below the intrinsic statist-
ical error. The same is not true for the origin time of this earth-
quake, and it is clear that the origin time is the most poorly con-
strained coordinate of this hypocenter. The fact that the origin
time is poorly known is of little consequence, however, since one
rarely cares whether the origin time is specified to a high accuracy.
As a result, the overall conclusion for events like this one is similar
to that made from the same analysis applied to the station correc-
tions estimates. That is, the velocity model estimated here is
sufficiently good that model errors can be essentially neglected for
the spatial coordinates of the hypocenter. Furthermore, for this
event conventional hypocenter error calculations (standard errors
or error ellipses) will give an adequate representation of the errors
in these locations. These error estimates are most reliable for the
epicenter coordinates and are less reliable for the depth and origin
time.

The situation for the second category of earthquake locations is
not as clear-cut. These hypocenter, which are typified here by
event 63 (appendix C) whose trade-off curves are displayed in figure
7.44, have a larger propensity for errors due to the nonuniqueness
of the velocity model. This can be seen by comparing figure 7.44
and 7.43. Overall, figure 7.45 looks similar to figure 7.43. The most
significant difference, however, is that for the hypocenter whose
errors are displayed in figure 7.44, the crossover point where model
errors start to dominate over statistical errors occurs at a much
larger value of the roughness length, «. In this case, model errors
become significant in the epicenter coordinates for «~=1 to 10
meters. These length scales are still relatively small, but are only
slightly smaller than those that are conceivable for the real earth.
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This suggests that the epicenter of this event, at least, is probably
not unduely influenced by model errors. This epicenter is, however,
more prone to such errors than its sibling shown in figure 7.43.
Unfortunately, things are not so nice for the depth and origin time
estimated for this earthquake. The trade-off curves for both coordi-
nates are virtually identical, and model errors cannot be totally
neglected throughout the entire range of roughness lengths plotted
in figure 7.44. Consequently, the primary conclusion for this hypo-
center location is the the epicenter for this event is reasonably well
determined, but the same cannot be said for the depth and origin
time of this event. Both of the latter may be strongly influenced my

model errors, and a correct appraisal of the errors in these coordi-
nates cannot neglect model errors.

The type of earthquakes that fall into the two categories
typified by the two sample sets of trade-off curves in figure 7.43 and
7.44 show a definite pattern. All earthquakes whose locations have
trade-off curves like figure 7.43 are relatively shallow, while those
whose locations have trade-off curves like figure 7.44 are relatively
deep. This is consistent with the error assessment results for the
velocity model, because we saw that the velocity structure was well
resolved only down to a depth slightly below 4 kilometers. Thus, it
is only to be expected that sources located below this depth would

have a greater tendency to contain measurement errors from
unresolved velocity structure.
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Table 7.4
Coso Shot Point Corrections

Shot Shot Point

Name Correction
Sw 0.24
C 0.20
NE 0.86
Quarry 0.14

4. CONCLUSIONS

The inversion techmnique (PRIMEL) described in the previous
chapters was successfully applied here to data from two different
seismic networks. The first of these was from the local network
near Humboldt Bay in northern California. Results I obtained were
comparable to those obtained previously by Knapp [1976] and Smith
and Knapp [1978] who analyzed the same data set by the least
squares procedure of Crosson [1978a]. There was a fairly substan-
tial difference, however, in the velocity model's estimated by the
two procedures whose cause remains somewhat of an enigma. In
any case, the key result is that neither Knapp's results or those
that I found fit the data to within the precision of measurement. I
concluded from this that no one-dimensional velocity model is capa-
ble of fitting these data because of lateral velocity variations that
must exist in this region. In defense of Knapp and Smith's work,
however, it should be pointed out that the principle objective of
their work was to obtain good earthquake locations to study local
seismicity, not to obtain a velocity model closest to the real earth.
Within the constraints of present day hypocenter determination

procedures with one dimensional models, their station corrections
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and velocity model do appear to fulfill this objective.

Application of PRIMEL to a second set of data from a local net-
work operated by the USGS in the Coso Range was more successful.
This success was due primarily to the simple velocity structure that
typifies this region. The Coso Range is dominated by the plutenic
basement rocks of the Sierra Nevada batholith that have been
covered to depths of from ten to a few hundred meters by volcanic
and sedimentary rocks associated with the Plio-Pleistocene volcan-
ism that produced the Coso volcanic field [Duffield et. al.,, 1980].

The results 1 have obtained here agree well with that interpretation
for three reasons;

(1) The station corrections that I found correlate well with surface
geology. This indicates they are associated with near surface
velocity variations due to difference in the type of material that
covers the basement rocks.

() The velocity model I obtained is simple. Velociy increases
steadily from a surface velocity of 4.8 km/sec to a velocity of
6.0 km/sec at a depth of 4 kilometers (figure 7.20). This model
is consistent with velocities characteristic of the plutonic base-
ment rocks if one interprets the decrease in velocity near the

surface as a result of opening of cracks in these rocks.
(3) The fit of this model to the observations is extremely good.

Application of the error assessment techniques described in
chapter 5 yielded three significant conclusions;

(1) The velocity model found is well resolved only to a depth of
slightly greater than 4.0 kilometers. This result was surprising
since nearly half the earthquakes in this data set occurred
below this depth. The phenomenon appears to be a geometric
effect due to the small aperture of the Coso network.
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Station correction estimates are not substantially influenced by
possible unresolved structure in the velocity model. Statistical

error estimates for these parameters provide a realistic assess-
ment of their uncertainties.

Hypocenters for earthquakes that were shallow (depth less than

about 6 kilometers) are not substantially influenced by possible

unresolved velocity structure. Deeper events, by contrast,
showed a greater propensity for errors due to inadequacies in
the velocity model. This result is not surprising in light of the
poor resolution of the deeper velocity structure. Because of
this, the usual statistical measures of the errors in the loca-
tions of the shallower events provide a reasonable estimate of
the total error in these hypocenters. The same methods may

not, on the other hand, give correct results for the deeper
events.

In summary the results from Coso represent a major success of this

procedure and clearly demonstrate its usefulness in a real world
situation.



CHAPTER 8
SUMMARY AND CONCLUSIONS

In this dissertation I have described theoretically and success-
fully implemented, a new method of exploiting arrival time data
from earthquake and explosion sources. This procedure estimates
earthquake hypocenters and a velocity model which fit the observed
data. The theoretical foundation is laid to permit velocity models
that vary arbitrarily in three spatial dimensions. In the actual
implementation, however, the velocity model is assumed to vary
only in the vertical direction. As a result, to be of use with real
data, it is necessary to include station corrections to account for
near surface lateral velocity variations. This leads to a new multiple

event location procedure (PMEL) that is a significant development
in its own right.

PMEL is a significant advance over the method of joint hypo-
center determination (JHD), which is its only major competition.
The primary reason for this is that JHD requires iterative solution of
a set of equations where the number of rows and columns of a
matrix that must be inverted grows with each earthquake added to
the data set. This can lead to extreme storage problems with large
data sets and has been a severe limitation on the applicability of the
JHD method. PMEL, on the other hand, operates within a small,
fixed storage area that is attainable even on a micro-computer.
Consequently, PMEL has the ability to digest essentially unlimited
data sets. This fact makes conventional multiple event locations
obsolete. Furthermore, with further development it may render the

same fate to customary single event location methods.
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PMEL's is one component of a larger scale solution construction

algorithm I have dubbed PRIMEL (Progressive Inversion and Multiple
Event Location). This procedure is ‘‘progressive’’ because different

parts of the total model we want to estimate (hypocenters, station

corrections, and the velocity model) are determined in separate
stages. This is in contrast to the '*simultaneous’ method of Peters
and Crosson [Peters and Crosson, 1972; Peters, 1973; and Crosson,
1976a) where all the components of the model are adjusted at the

same time. The progressive approach advocated here is superior to
a simultaneous procedure for four reasons.

(1)

(2)

Hypocenters, station corrections, and the velocity model are
three quite different entities. The progressive approach has the
advantage that it allows one greater freedom in how the
different parts of the model are treated.

The progressive approach has significant advantages from the
practical standpoint of its implementation into a computational
procedure. The simultaneous method, as formulated by Peters
and Crosson, has the unfortunate property of requiring the
solution of a matrix equation that grows in the same way as the
matrix used in JHD. As a result, in that formulation one is vir-
tually forced to specify the velocity model in terms of a small
number of discrete parameters because of limitations in the
amount of storage available on typical computing machinery.
The annulling transformation releases us from the prison of
parameterized velocity models by removing the walls raised by
finite computer storage. PRIMEL, in a sense, also parameter-
izes the velocity model, since it specifies the velocity model on
a discrete grid of points. The point, however, is that the
storage reduction produced by the annulling transformation
allow one to grid the model on a scale that is considerably
smaller than the data are capable of resolving. This means the
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velocity model can be considered as an arbitrary function for
all intents and purposes.

(3) Because PRIMEL specifies the velocity model as an arbitrary
function, the uniqueness of the velocity model can be appraised
(within the limits of linearization anyway) by the methods of
Backus and Gilbert [1968, 1970] and Johnson and Gilbert [1972].

(4)' If we recognize that the velocity model is fundamentally ambi-
guous, then we must also admit that the hypocenters and sta-
tion corrections we estimate are influenced by errors we may
have committed in estimating the velocity model. Because
PRIMEL allows the velocity model to be an arbitrary function,
the importance of this source of error can be appraised
through an application of Backus’ [1970a,b] method of general-
ized prediction. That analysis is significant because this study

is the first to ever quantify such errors in hypocenter and sta-
tion correction estimates.

Finally, the work presented here is not just some grandiose
theory. The methods describe above are a practical procedure that
works. This was clearly demonstrated by its successful application
to inversion of both synthetic and real data.



LIST OF REFERENCES

AX1, K. AND W. H. K. LEE , ""Determination of three-dimensional velo-
city anomalies under a seismic array using first P arrival times

from local earthquakes, 1, A homogeneous initial model,” J. Geo-
phys. Res. 81, pp.4381-4399 (1976).

AKI, K. AND P. RICHARDS, Quantitative Seismology: Theory and
Methods, Freeman, San Francisco, California (1980).

ANDERSON, K. A., Automatic Processing of Local Earthquake Data,
Ph.D. Dissertation, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts (1978).

BACKUS, G. E. AND F. GILBERT, '‘Numerical application of a formalism

for geophysical inverse problems,” Geophys. J. R. Asir. Soc. 13,
pPp.247-276 (1967).

BACKUS, G. E. AND F. GILBERT, ‘‘The resolving power of gross earth
data,” Geophys. J. R. Astr. Soc. 16, pp.169-205 (1968).

BACKUS, G. E. AND F'. GILBERT, *‘Constructing P-velocity models to fit
restricted sets of travel-time data,’”” Bull. Seism. Soc. Amer. 59,
pp.-1407-1414 (1969).

BACKUS, G. E. AND F. GILBERT, ‘‘Uniqueness in the inversion of inac-
curate gross earth data,’”’ Phil. Trans. Roy. Soc. London, Ser. A
266, pp.123-192 (1970). '

Backus, G. E., “Inference from inadequate and inaccurate data, I,”
Proc. Nat. Acad. of Sciences 65, pp.1-7 (1970a).

BACKUS, G. E., “Inference from inadequate and inaccurate data, II,”
Proc. Nat. Acad. of Sciences 65, pp.281-287 (1970b).



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

_71

BAackus, G. E., “Inference from inadequate and inaccurate data,
I, Proc. Nat. Acad. of Sciences 67, pp.282-289 (1971).

BacoN, C. R. AND W. A. DUFFIELD, ‘‘Coso geothermal area,” J. Geo-
phys. Res. 85, p.2379 (1980).

BAILEY, E. H., W. P. IRWIN, AND D. L. JONES, ‘'Franciscan and related
rocks, and their significance in the geology of western California,"”
Bulletin 183, Calif. Div. of Mines and Geology (1964).

BEN-ISRAEL, A. AND T. N. E. GREVILLE, Generalized Inverses: Theory
and Applications, Wiley, New York (1974).

BoLt, B. A., “The revision of earthquake epicenter, focal depths,
and origin times using a high-speed computer,” Geophys. J. R.
Astr. Soc. 3, pp.433-440 (19860).

BoLrt, B. A., “Earthquake location for small networks using the gen-

eralized inverse matrix,” Bull. Seism. Soc. Am. 60, pp.1823-1828
(1970).

BULAND, R., ““The mechanics of locating earthquakes,’” Bull. Seism.
Soc. Am. 66, pp.173-187 (19786).

BULLEN, K. E., An Introduction to the Theory of Seismology, Cam-
bridge Univ. Press, Cambridge, Great Britain (1965).

BUSINGER, P. A. AND G. H. GOLUB, ‘‘Linear least squares solutions by
Householder transformations,’ Numer. Math. 7, pp.269-276 (1965).

ChHou, C. W. AND J. R. BOOKER, ‘A Backus-Gilbert approach to inver-
sion of travel-time data for three-dimensional velocity structure,”
Geophys. J. R. Astr. Soc. 59, pp.325-344 (1979).

CLAERBOUT, J. F., Fundamentals of Data Processing with Applica-
tion to Petroleum Prospecting, McGraw-Hill, New York (1976).

CrossoN, R. S., “Crustal structure modeling of earthquake data, 1,
Simultaneous least squares estimation of hypocenter and velocity
parameters,” J. Geophys. Res. 81, pp.3036-3046 (1976a).



2.

23.

24.

25.

26.

2.

28.

29.

30.

31.

32.

_72

CRrOSsSON, R. S., '*Crustal structure modeling of earthquake data, 2,
velocity structure of the Puget Sound region, Washington,” J. Geo-
phys. Res. B1, pp.3047-3054 (1976b).

DEWEY, J. W., ‘‘Seismicity and tectonics of western Venezuela,”
Bull. Seism. Soc. Am. 62, pp.1711-1751 (1972).

DOBRIN, M. B., Introduction to Geophysical Prospecting, McGraw-
Hill, New York (1978). 3rd Edition,

DONGARRA, J. J., C. B. MOLER, J. R. BUNCH, AND G. W. STEWART, LINPACK
User's Guide, Society of Industrial and Applied Mathematics, Phi-
ladelphia, Pennsylvania (1979).

DouUGLAS, A., *‘Joint epicentre determination,’ Nature 215, pp.47-48
(1967).

DUFFIELD, W. A. AND C. R. BACON, "“‘Geoclogic map of the Coso volcanic
field and adjacent areas, Inyo County, California,” Misc. Geol

Invest. Map 1-1200, U.S. Geol. Surv., Menlo Park, California (1980).
Scale 1:50,000

DuUFrFIELD, W. A.,, C. R. BACON, AND G. B. DALRYMPLE, ‘Late Cenozoic
volcanism, geochronology, and structure of the Coso Range, Inyo
County, California,” J. Geophys. Res. 85, pp.2381-2404 (1980).

EATON, J. P., “Crustal structure in northern and central California
from seismic evidence, geology of Northern California,’”” Bull. 7190,
Calif. Div. Mines and Geol. , pp.419-426 (1966).

ENGDAHL, E. R. AND W. H. K. LEE, ‘‘Relocation of local earthquakes by
seismic ray tracing,” J. Geophys. Res. 81, pp.4400-4406 (1976).

EVERDEN, J. F., “Identification of earthquakes and explosion by use

of teleseismic data,”” Bull. Seism. Soc. Am. 59, pp.1365-1398
(19869).

FLINN, E. A., “Local earthquake location with an electronic com-
puter,'’ Bull. Seism. Soc. Am. 50, pp.467-470 (1960).



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

_73

FRANCIS, J. G., “The QR transformation I, II," Compuier J. 4,
pp-R65-271, 332-345 (1961, 1962).

GEIGER, L., ‘‘Herdbestimmung bei Erdbeden aus den
Ankunfzeitzen,” K. Gessell. Wiss. Goeit. 4, pp.331-349 (1910).

GILBERT, F., ‘Ranking and winnowing gross earth data for inversion
and resolution,” Geophys. J. R. Astr. Soc. 23, pp.125-128 (1971).

GoLuB, G. H. AND R. J. PLEMMONS, ‘“Large-scale geodetic least-
squares adjustment by dissection and orthogoan decomposition,”

in Large Scale Matriz Problems, ed. H. Schneider, Elsevier, New
York (1981).

HERRIN, E., J. TAGGART, AND C. F. BROWN JR., “"Machine computation of

earthquake hypocenters,” J. Grad. Res. Cir, Sourthern Methodist
Univ. 30, pp.79-106 (1962).

HoEL, P. G., Introduction to Mathemaltical Statistics, Wiley, New
York (1971).

JACKSON, D. D., “Interpretation of inaccurate, insufficient, and
inconsistent data,”’ Geohys. J. R. Astr. Soc. 28, pp.97-109 (1972).

JACKSON, D. D., “The use of a priori data to resolve non-uniqueness
in linear inversion,” Geophys. J. R. Astr. Soc. 57, pp.137-157 (1979).

JOHNSON, L. E. AND F. GILBERT, ‘“‘Inversion and inference for telese-

ismic ray data,’” Methods in Computational Physics 12, pp.231-2686,
Academic Press, New York (1972).

JORDAN, T. H., *‘Structural geology of the Earth's interior,” Proc.
Nat. Acad. Sci. 76, pp.4192-4200 (1979).

JORDAN, T. H., “Earth structure from seismological observations,”
pp. 1-40 in Physics of the Earth's Interior: Proceedings of the
International School of Physics "Enrico Fermi', Course LXXVIII,
ed. E. Boschi, North Holland, Amsterdam, Netherlands (1980).



44,

45.

46.

47,

48.

49,

51.

52.

83.

54.

274

JORDAN, T. H. AND K. A. SVERDRUP, ‘‘Teleseismic location techniques
and their application to earthquake clusters in the south-central
Pacific,"” Bull. Seism. Soc. Amer. 71, pp.1105-1130 (1881).

KLEIN, F. W., *"Hypocenter location program -- HYPOINVERSE: Users

guide to versions 1, 2, 3, and 4.,” U.S. Geol. Surv. Open-file Rept.
78-694 (1978).

KNAPP, J. S., Velocily changes associated with the Ferndale earth-

quake, M.S. Thesis, University of Washington, Seattle, Washington
(1978).

KNAPP, J. S. AND S. W. SMITH, Seismic velocity structure of the Hum-
boldt Bay Region, California, Unpublished final report to: Pacific
Gas & Electric Co., San Francisco, California (1979).

KNaPP, J. 8., Seismicity. crustal structure and tectonics at the
north,e'rn termination of the San Andreas Fauwlt, Ph.D. Disserta-

tion, University of Washington, Seattle, Washington (1982).

LaNczos, C., Linear Differential Operators, Van Nostrand, New York
(1961). Chapter 3,

. LAwsON, C. H. AND R. J. HANSON,  Solving Least Squares Problems ,

Prentice-Hall, Englewood Cliffs, New Jersey (1974).
LEE, W.H.K. aAND J. C. LAHR, “HYPO71, A computer program for

determining hypocenter, magnitude, and first motion pattern of

local earthquakes,” U.S. Geol. Survey Open-File Report (1972).
LEE, WH.K. AND S. W. STEWART, ‘‘Principles and applications of

microearthquake networks,’ in Advances in Geophysics, Vol. 23,
Academic Press, New York (1981).

LINDSETH, R. O., *‘Synthetic sonic logs -- a process for stratigraphic
interpretation,” Geophysics 44, pp.3-26 (1979).

MOORE, E. H., *'On the reciprocal of the general algebraic matrix,"”
Bulletin, AMS 26, pp.394-395 (1920).



55.

56.

o7.

o8.

59.

60.

61.

62.

63.

64.

_75

NORDQUIST, J. M., “*A special-purpose program for earthquake loca-
tion with an electronic computer,’” Bull. Seism. Soc. Am. 52,
pp.431-437 (1962).

OGLE, B. A., “Geology of the Eel River Valley Area, Humboldt

County, California,”’ Bulletin 164, Calif. Div. of Mines and Geology
(1953).

OLDENBURG, D. W., ‘‘One-dimensional inversion of natural source

magnetotelluric observations,” Geophysics 44, pp.1218-1244
(1979).

PARKER, R. L., “‘Understanding inverse theory,” Ann. Kev. Earth
Planet. Sci. 5, pp.35-64 (1977a).

PARKER, R. L., ‘‘Linear inference and underparameterized models,"’
Rev. of Geophys. and Space Physics 15, pp.446-456 (1977b).

PavLis, G. L. AND J. R. BOOKER, ‘‘The mixed discrete continuous
inverse problem: application to the simultaneous determination

of earthquake hypocenters and velocity structure,” J. of Geophys.
Res. 85, pp.4801-4810 (1980).

PENROSE, R., ““A generalized inverse for matrices,” Proc. Cambridge
Phil. Soc. 51, pp.403-413 (1955).

PEREYRA, V., W.H.K. LEE, AND H. B. KELLER, "‘Solving two-point
seismic-ray tracing problems in a heterogeneous medium. Part L
A general adaptive finite difference method,” Bull. Seis. Soc. Am.
70, pp.78-101 (1980).

PETERS, D. C. AND R. S. CROSSON, “‘Application of prediction analysis
to hypocenter determination using a local array,” Bull. Seis. Soc.
Amer, Abst. 62, p.775 (1972).

PETERS, D. C., Hypocenter location and crustal structure inversion
of seismic array travel-times, Ph.D. Dissertation, University of
Washington, Seattle, Washington (1973).



65.

66.

67.

68.

69.

70.

71,

72.

276

Ropi, W. L., T. H. JORDAN, J. F. MASSO, AND J. M.SAVINO, ‘‘Determination
of the three-dimensional structure of eastern Washington from the
joint inversion of gravity and earthquake travel-time data,” Report
SSS-R-80-4516, Systems, Science and Software, La Jolla (1980).

ROECKER, S. W., ‘‘Velocity structure of the Pamir-Hindu Kush
region: possible evidence of subducted crust,” J. Geophys. Res.
87, pp.945-959 (1982).

ROGERS, D. B. AND R. S. CROSSON, Hypocenter locations for seismic
arrays via GENSURF and LQUAKEZ, University of Washington,

Seattle, Washington (1976). (unpublished computer software
manual)

RoOHAY, A. C., Crust and upper mantle structure in the North Cas-
cades Region, Washington, Ph.D. Dissertation, University of Wash-
ington, Seattle, Washington (1982).

SLOTNICK, M. M., “Lesson in Seismic Computing,” in Soc. of Ezplora-

- tion Geophysics, ed. Richard A. Geyer, Tulsa, Oklahoma (1959).

SMITH, S. W. AND J. S. KNAPP, Seismic velocity structure, Humboldt
Bay, California, Unpublished report to: Pacific Gas & Electric Co.,
San Francisco, California (1978).

SPENCER, C. AND D. GUBBINS, “‘Travel-time inversion for simultaneous
earthquake location and velocity structure determination in
laterally varying media,” Geophys. J. K. Astr. Soc. 63, pp.95-116
(1980).

SPIETH, M. A., Two detailed seismic studies in central California;
Part I: Farthquake cluslering and crustal structure studies of
the San Andreas fault near San Juan Bautista, Part II: Seismic
velocity structure along the Sierra foothills near Oroville, Califor-

nia, Ph.D. Dissertation, Stanford University, Stanford, California
(1981).



73.

4.

75.

76.

7.

78.

80.

B1.

217

STEWART, G. W., Iniroduction to mairiz compuiations, Academic
Press, New York (1973).

THURBER, C. H. AND W. L. ELLSWORTH, ‘‘Rapid solution of ray tracing

problems in heterogeneous media," Bull. Seism. Soc. Amer. 70,
PP-79-90 (1980).

THURBER, C. H., Farth structure and earthquake locations in the
Coyote Lake area, central California, Ph.D. Dissertation, Mas-
sachusetts Institute of Technology (1981).

WALTER, A. W. AND C. S. WEAVER, “‘Seismicity of the Coso Range, Cali-
fornia,” J. Geophys. Res. 85, pp.2441-2458 (1980a).

WALTER, A. W. AND C. S. WEAVER, “Seismic refraction data for shots
recorded in the Coso Range, California, October 1976,” U.S. Geol.
Surv. Open-File Rept. 80-186 (1980b).

WIGGINS, R. A., ""'The general linear inverse problem: implication of

surface waves and free oscillations for earth structure,” Rev. of

" Geophys. and Space Physics 10, pp.251-285 (1972).
79.

WOLBERG, J. R., Prediction Analysis, Van Nostrand, Princeton, New
Jersey (1987).

Wu, J. C., Inversion of travel-lime datfa for seismic velocity struc-
ture in three dimensions, Ph.D. Dissertation, University of Wash-
ington, Seattle, Washington (1977).

YELIN, T. S. AND R. S. CROSSON, ‘A note on the south Puget Sound
basin magnitude 4.6 earthquake of March 11, 1978 and its aft-
ershocks,” Bull. Seism. Soc. Am., (in press) (1982).



APPENDIX A
WEIGHTED LEAST SQUARES

It was noted in chapter 3 that all modern hypocenter location
algorithms are actually weighted least squares procedures. I will
show here that weighted least squares is the same as normal least

squares after a simple change of variables.

We wish to consider the problem of finding a weighted least
squares solution to the general problem

Ax=b (A.1)
where xeR™ ,beR™, and A€CR™*™, A weighted least squares solution

of (A.1) is defined as follows

x,= 218 b-Ax], | (A.2)

where the norm here is the ellipsoidal or weighted Euclidean norm
defined as

llyll=y" Dy (A.3)

and D is some positive definite matrix!. We require the following
lemma [ Ben-Israel and Greville, 1974, p. 124 ]

Lemma A.1

Every positive definite matrix, DER™*™, has a unique, positive
definite square root defined as D'/?=W where D=W'W.

W is useful because if we multiple (A.1) by W we obtain
A, x=b,, (A.4)
where I define
A,=WA and b,=Wb (A.5)

! For the hypocenter location problem D is always a diagonal ma-
trix with D,;=W32 where W is defined by equation (3.10).
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This shows that the transformation (A.5) defines a simple change of
variables that produces a set of equations, (A.4), whose form is
identical to equation (A.1). A least squares solution of (A.4) solves
the minimization problem (A.2) [Ben-Israel and Greville, 1974, pp.
121-123]. The practical consequence of this is that the more gen-
eral minimization problem involving ellipsoidal norms can always be
made equivalent to a simple least squares problem by the change of
variables defined by (A.5). Hence, after this change of variables,

weighted least squares problems can be treated exactly like simple
least squares, since

|[b=Ax]ly, =|[by, ~ Ay, x||5 (A.6)

An important application of weighted least squares is the case
when D is calculated as

D=C! (A7)

C~! is the inverse of the covariance matrix of the data where the
covariance matrix, C, is defined as

C=E[bb”] | (A.8)

and E[] denotes the expectation value operator. This is a useful
choice for the weighting matrix because then the covariance of the
weighted data,b,,, is given simply by

cw.=E[bwb$] (A.9)
=E[C™1%pbT (C713)T]
=C~12¢(C-173)T
=1

where €172 denotes the square root of C~! as in Lemma A.1.



APPENDKX B
THE MIXED LINEAR INVERSE PROBLEM

-

1. PROBLEM STATEMENT

In a previous paper Pavlis and Booker [1980] discussed a
method of solution of a general type of linear inverse problem that
they called mixed. These are problems for which the earth model
from which an observed set of data are derived have a natural
specification in terms of some piecewise continuous function and a
finite set of parameters. This appendix is essentially part 1 of that
paper. I have repeated it here for completeness and to avoid any
potential confusion that might arise from differences in notation
necessitated by differences in the set of possible symbols available
on the typesetter used to prepare this dissertation. In addition, the
results given here are also more general than those given by Pavlis
and Booker [1981]. Their work centered around the Moore-Penrose
inverse. That restriction is relaxed here to include a larger class of
generalized inverse solutions.

The problem I wish to consider here is this. Suppose one has a
set of d measured data, b;. Assume the data are related by known
linear functionals to an unknown earth model that consists of some
piecewise continuous function and p independent variables that I
will call parameters. 1 denote the continuous part of the model by
|M> and the parametric part of the model as the p dimensional
vector, x. The inverse problem is to estimate both |M > and x, and
to assess the relative reliability of these estimates.

Given the above definitions the functional relation of each
datum to the model can be written as

b,; = ﬁAinJ +<Gi|M> 'i=1,2,.. .,d (Bl)
j=1
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0b;
where Aij = E
product that is normally expressible in the form

and <G;| is a Frechet kernel. <G;|M > is an inner

<Gi|M>= [ G;(x)M(r)dV (B.2)
14

where V is the domain on which |M > is defined. It is desirable to
write the d equations (B.1) in matrix form as

b=Ax+ &|M> (B.3)

where b is the data vector, A is the dxp matrix of partial deriva-
tives with elements defined in equation (B.1), and

<G,|]
<Gz|
<Gg| (5.4

. 4

<éd|.

¢ is a mathematical object like equation (4.10).

2. THE OVERDETERMINED PROBLEM

The unknown earth model has infinitely many unknowns. The
number of data, d, is, on the other hand, always finite. As a result,
the system of equations (B.3) is grossly undetermined and will
always have infinitely many solutions. However, whenever d >p, the
equations of (B.3) contains the paradox that although the system as
a whole is grossly underdetermined, the matrix A, when considered
in isolation, is an overdetermined matrix. Before considering the
solution of the problem as a whole, it is useful to consider some pro-
perties of overdetermined systems of equations. In particular, it is

of interest to see what happens if we solve (B.3) ignoring the terms
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involving |M >. In other words, we seek solutions of the equation

b=Ax (B.5)

[N

When d>p, it is generally impossible to satisfy all d equations
of (B.5) exactly. Indeed, we should not expect to be able to satisfy
all d equations because (B.5) ignores the <G; |M > term and statisti-
cal errors in the data. For any estimate % of x we expect to have a
nonzero residual vector, r, given by

r=b-Ax (B.8)

Normally, we can never make the residual vector vanish and we
must be content with some approximnate sclution. All procedures I
am aware of for solving overdetermined systems of linear equations

calculate X using a generalized inverse. Any solution of this type
can be expressed as

2=Hb (B.6)

where HERP*? js a generalized inverse. The set of all possible gen-
eralized inverses is obviously infinite since in a sense H can by any
P xd matrix. The only restriction on H that is required here is a
restriction on its range and null space. The restriction required is

this. If R(A) denotes the range of the matrix A in equation (B.3)
(see chapter 2) then I require

R (HT)CR (A) (B.7)

This means that the subspace of the data space, R?, spanned by the
rows of the generalized inverse matrix, H, is a subset of the sub-
space R(A) of R?. Since R(A) is defined by the set of all possible
linear combinations of the columns of the matrix A, this is
equivalent to saying that the rows of H can all be expressed as
linear combinations of the columns of the matrix A, Hence when
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(B.7) is satisfied H can be written as

H=KA” (B.B)

~

where KERP*P is arbitrary’.

The representation (B.8B) is inconvenient for the purpose of this
work because the columns of A are not always the most convenient
set of basis vectors for R (A). A more convenient representation can
be had through the singular value decomposition introduced in

chapter 2. The singular value decomposition theorem guarantees
that we can write A as

A=UAVT (B.9)

where UecR?*¢ AcR%"P, and VERP*P are as in theorem 2.2. From
(B.9) we can also write AT as

AT=VATUT (B.10)
so (B.8) can be expressed as
H=FU (B.11)
where I define FERP*? as
F=KVAT (B.12)

Observe that A is a diagonal matrix with rank (A)=7 $p, nonzero ele-

ments (see equation (2.21) and (2.22)). As a result only the first r
columns of the matrix F (defined in (B.12) ) are nonzero and it is
natural to partition F as

F=[Fz0] (B.13)

1 As an example, if K=(ATA)"!, (B.8) yields the inverse used to find a
least squares solution to (B.5).
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where Fr €eRP*". This leads to a conformal partitioning of the matrix
U7 that allows us to write (B.11) in the partitioned form®

.

(B.14)

where UZeR™® and UJeR(E@-"*¢ Ap important observation to

make from (B.14) is that H can be written simply as

H=Fp UL (B.15)

because the rightmost d —7 columns of F are zero. Thus, H is con-
structed as the p linear combinations, Fg, of the 7 vectors that are
the rows of the matrix U%. This is important because it demon-
strates a fundamental property of all generalized inverses that
satisfy the requirement (B.7). This property can be seen by substi-
tuting (B.14) into (B.8) to produce

uf
Uy

[b]=FrUZb (B.16)

We saw in chapter 2 that orthogonal matrices reorient Euclidean
space without distortion. I pointed out there that the matrix U7
produces a special reorientation of the vector space, R%, in which
the data vector, b, lies. U7 reorients the coordinate axes of R? such
that the first 7 components of the vector UTb (These are denoted
UZb above.) lie in the subspace R (A) of R®. The remaining d-7
components of U'b (These are denoted UJb above.) lie in the null
space of A7, N(AT). The point is that any generalized inverse that

2 For the sake of continuity of notation, it should be noted that the
partitioning of U in (B.14) is identical to that used in equation
(2.21). However, I have dropped the subscripts on N here for sim-
plicity since there is no need to distinguish them here.
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satisfies property (B.7) uses only those components of the data vec-
tor, b, that lie in the range of the matrix A, R (A). Thus, an estimate
of x, %, calculated by (B.8) only utilizes 7 ‘independent components
of the data. The remaining d—-r components (those that lie in
N (AT)) are not utilized in calculating % This is the foundation of
the separation procedure that I now describe.

3. SEPARATION OF DISCRETE AND CONTINUOUS COXMPONENTS OF
THE DATA

The estimate X in equation (B.6) is a perfectly valid estimate of

the parameter vector x. We could simply substitute % into (B.3) and
we would obtain

r=6|M> (B.17)

The residuals in (B.17) could then be used to estimate |M>. This is,
however, a highly suspicious procedure since such a solution is
equivalent to the prejudice that X is a perfect estimate of x. Since
was obtained by ignoring the term involving |M >, there is no reason
to believe X is any better than the infinity of other possible esti-
mates one could make of x. Let us instead admit that ¥ has some
unknown error 6x. I denote this by writing

x=X+0x (B.18)

where 6x is an unknown error in the estimate . By a simple substi-
tution of (B.18) into (B.3) one gets

b=AZ+ASx+G M > (B.19)

The fundamental step in the separation procedure I am advocating
here is to apply the reorienting matrix U7 introduced in the previ-
ous section in equation (B.10). This reorientation can be instituted
by multiplying (B.19) by U to yield®

3 There is a well disguised limitation that is intrinsic to the use of
orthogonal matrices. Orthogonal matrices are important because
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UZb
Uy

UZA
0

UZA
0

uZé
ulé

[x]+ [6x]+ |M > (B.20)
where the partitioning of U7 is as defined in equation (B.14). Equa-
tion (B.20) is the fundamental result of this appendix. The parti-
tioning I have used here shows that (B.20) consists of two quite
different types of equations. Of these, the most essential for the
puri:ose of this work are the d —7 equations of the lower partition of
(B.20). The form of these equations follows directly from the
manner in which I defined the partitioning of the matrix U7. The

partition U} was defined by the relation
UjA=0€eRE-T)xp (B.21)

Because Uf annihilates A, the lower partition of (B.20) represents a
set of equations that depend only on the continuous part of the
model, |M >. Because of their connection with the null space of AT,
I will refer to these d ~r equations as the annulled data set. Simi-

larly, T will refer to the d == numbers Uf\L as the annulled data.

The annulled data are fundamental to the work presented in
this dissertation. The desire to exploit the special form of the
annulled data set was the reason for the restriction (B.7) on the
generalized inverse matrix, H, used to calculate X. When X is calcu-

lated using a generalized inverse satisfying (B.7) the annulled data

they reorient Euclidean space without distortion. As a practical
matter this means that the use of orthogonal matrices here limits
the application of this method to the class of weighted Euclidean
norm problems (see Appendix A). A more general treatment for ar-
bitrary normed vector spaces would require the use of metric pro-
jectors [Ben-Israel and Greville, 1974, pp. 128-137]. I have elected
to not inflict this upon the reader as it would introduce unneces-
sary complications that would probably be of no practical value
anyway.
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are unbiased by X because we see from (B.16) that they are ignored
in calculating X. Thus, the annulled data are properties of the origi-
nal data® and are not coupled to the estimate X.

For convenience, I now define
n=UJb (B.22)
and’
N=UJ& (B.23)

The convenience is that the equations of the annulled data set can
then be written simply as

n=N|¥> (B.24)

The fundamental property of the annulled data is that they can be
used in isolation te estimate |M>. There are a number of ways of
estimating a function |M > from a finite number of data of the form
(B.24) (see Parker[1977a] for a clear review). In chapter 4 I
describe the method I have applied to the hypocenter-velocity
structure inverse problem that is the major topic of this disserta-
tion. I emphasize here that other methods for constructing an esti-
mate of |M> from (B.24) are possible but this is a separate issue

* A note of caution is in order here. Although theoretically
r=rank (A) is well defined, in practice it is not necessarily so clear
cut. As a practical matter the determination of the true rank is
not trivial because of computational round-off errors. Consequent-
ly, r should normally be considered the pseudorank [Lawson and
Hanson, 1974, pp. 77-78] that I discussed in chapter 2. The key to a
proper application of the procedure outlined here is consistency.
The generalized inverse B that I define here always has a well
defined rank. As long as the annulled data set are defined con-

sistently with H ( i.e. 7 is determined by H not A) then no problems
should ensue.
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from the separation procedure itself.

Given that |M > can be estimated from the annulled data, the
question that remains is how to refine our estimates of the discrete
parameters, x. The key to this is the r equations defined by the
upper partition of (B.20). These can be manipulated to yield a
direct relationship between x and |M>. That is the subject of the
remainder of this section.

The agent to accomplish this task is the matrix Fz defined in

equation (B.12) and (B.13). If the upper partition of (B.20) is multi-
plied by Fg, the result is

Hb=HAZ+HASx+HE | M > (B.25)

since H is defined by (B.15). X is related to the data vector by equa-
tion (B.8) so (B.25) can be written (after some rearrangement) as

HA6x=Hb-HAHb+X | M > (B.26)
where X is defined as
X=-nt (B.27)

or equivalently
d
<X; | =‘j¥1HiJ' <Gy |

(The minus sign is introduced in definition (B.27) for convenience to
simplify the final result.) (B.26) is close to the form we seek. To see
how close we are, consider the special case when A is full rank and H
is the least squares inverse, (A7 A)"'A7. In this special case we see
HA=I and (B.26) reduces to the simple form '

ox=X|M> (B.28)

For this special case, we can now obtain the relationship we seek by
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a simple substitution into the definition (B.18)

=g+X|M> (B.29)

.~

A similar relationship can be derived for the more general case
when H is any arbitrary generalized inverse that fits the require-
ment (B.7). This can be had by rewritting the definition (B.18) as

HAx=HAX+HAdx
and substituting for HASx using (B.26). This yields
HAx=HA%+Hb-HAHb+X | M >
Because X=Hb, this reduces to
Rx=x+X|M > (B.30)
where the matrix R is defined as
R=HA (B.31)

and is usually called the resolution matrix [Wiggins, 1972].

Equation (B.29) and (B.30) are of the same general form. ¥ is
an initial estimate of x obtained by ignoring |M >. X|M > is the
correction that must be made to X because X ignored |M >. Equa-
tion (B.29) and (B.31) are identical when A is full rank and H is the
least squares inverse, for then R reduces to an identity matrix.
Otherwise, R is only an approximate identity matrix. When this is
the case, it is a symptom of an additional deficiency of the data. The
data are inadequate to define a distinct relation between x and [M >
as is the case in (B.29), but instead are only able to define the set of
7 independent averages of the true x defined by the vector Rx.
When this deficiency arises, one should always calculate R. It allows
a means of objectively assessing this added deficiency because we
can interpret R as an additional resolution operator through which
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we must view our final estimate of x. Thus, the best we can ever

hope to estimate from the data is the set of averages Rx. I define
the vector x5 as

Xz =Rx (BSZ)

with the understanding that xg=x in the special case when A is full
rank and H=(ATA)~1AT.

The separation procedure that is the topic of this appendix is
now completed. The original set of equations, (B.3), have been split
into two different types of equations. The d-p equations of the
annulled data set, (B.24), depend only on [M>. The p equations of
(B.24), on the other hand, relate xz directly to |M>. We see that
the basic result of this splitting procedure is a change in the unk-
nown part of the model. That is, in the original system of equations
the unknown quantities are the p numbers, x, and the unknown
function [M>. However, in the separated problem |M > is the only
unknown because if we knew |M > exactly, we would know xg exactly
by equation (B.31). This reduction in the number of unknowns was
not a gift. The price we paid was the removal of the r components
of the data UZb in equation (B.18) from the original data. However,
by constructing the annulled data set we can recover the remaining
d -7 pieces of independent information that remain in the data. A
fundamental fact is that the annulled data are also independent of £
because they are orthogonel to the components of the data used by
the estimate X. Consequently, the annulled data can be used in iso-
lation to estimate |[M>. Unfortunately, the opposite is not true.
That is, the estimates of the parameters remain forever coupled to
|M> as is clear from (B.30). A proper scheme for estimating x must
account for this, as errors in the estimate of |M> can clearly pro-
pagate into estimates of x. How one chooses to do this is again
somewhat a matter of choice. To emphasize this I will not consider
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this question here, but refer the reader to chapter 5 where I apply a
particular method similar to that given by Backus [1970a]. I stress
the point, however, that other schemes are feasible and are a
separate issue from the results given here.

4. COVARIANCE OF THE SEPARATED DATA

The two fundamental results from the previous section were
equations (B.24) and (B.30). They are the culmination of the mani-
pulations given there. 1 have stressed that how one actually uses
these equations to subsequently estimate the function |M > and the
parameters x is largely a matter of choice. However, there remains
one topic that must be addressed by any reasonable procedure for
making such estimates. This is the question of how random errors
in the measurements of the data values,b;, propagate into these
estimates. To answer that question we have to know how such ran-
domn errors propagate into the separated equations (B.24) and
(B.30). That is topic of this section. The major result is that data
errors introduce uncertainties into both sets of equations since
both (B.24) and (B.30) have a term that is constructed as a linear
combination of the data (equations (B.22) and (B.6)).

The problem we face here is that the data values,b;, in real life
will always be contaminated by random measurement errors. That

is, each measured datum has an unknown error, 6b;, which is
related to it by the relation

by =b; +Ab; (B.33)

where 8; is the unknown, correct value for the i*® datum. We don't
know what Ab; is, but I assume we know something about its statis-
tics. Specifically, I assume Ab; comes from a population with zero
mean and that we know the covariance of the data defined as
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where E[] denotes the expectation value operator. It is preferable
to write (B.34) in matrix form as )

D=E[Ab(Ab)T ] (B.35)
where D is called the covariance matrix.

Given that we know the covariance of the data we can utilize
this knowledge to calculate the uncertainty that the statistical
errors introduce into (B.24) and (B.30). I begin with the annulled
data defined in (B.24). If we substitute equation (B.33) into the
defining relation for n (equation (B.22)), then we see

n=U7b+UJAb (B.38)
=0+An

where I define ﬁ=U§'l‘)‘ and An=UfAb. R, like b, is the true but unk-
nown annulled data vector and An denotes the unknown error in n.
Clearly, if Ab has zero mean then An will also. Hence, n is unbiased.

Furthermore, the covariance of the errors, An, in n is given by
C,=E[An(An)"]
=E[UFAb(UFAb)T] (B.37)
=UJE[ab(Ab)T Uy
=UJDUy
which is the relationship we seek.

Data errors also introduce an uncertainty into the equations
(B.30). This happens because % is calculated by equation (B.6). We
now want to find the expected mean and covariance of this uncer-
tainty. We begin by again substituting (B.33) into the defining
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relation for (B.6) of X.
g=Hb+HAb (B.38)
=X+A%

As before I define AX=HAb. Again if Ab has zero mean then A%X will
also. Hence, X ( and hence xg) is not biased. Finally, the covari-

ance of the uncertainty in x; introduced by X is given simply as
C,=E[A%(A%)"]
=E[HAb(HAD)T ] (B.39)
=HE[Ab(Ab)T JHT

=HDHT



APPENDIX C
COS50 DATA HYPOCENTERS

Coso Local Earthquakes

event latitude longitude depth origin time
number (km)

1 36 0| 64.37 | 117 | 52 4.16 1.9 76 | 294 2 4 | 15.92
2 36 0 4.32 | 117 | 45 | 40.15 2.3 ™ | 387 | 13 | 47 | 13.62
3 36 21 42.64 | 117 | 49 | 32.86 1.8 6| 116 | 16 | 14 | 33.31
4 36 2| 41.33 | 117 | 48 | 28.50 1.8 6 | 122 | 20 2 .97
6 36 0]46.58 | 117 | 47 | 24.08 2.5 78 | 349 | 21 | 67 | 24.73
7 36 2 (2269 | 117 | 45 | 65.84 3.0 7 15 7| 38| 14.98
8 36 1| 2385 117 | 48 | 46.00 7 77 26 | 17 | 43 3.24
8 36 11]69.26 | 117 | 45 | §5.48 1.4 77 30 2 8 [ 1472
10 36 315483 | 117 | 50 .10 2.0 i 77 4| 29| 3171
11 36 3| 69.03 ] 117 | 48 | 58,79 2.2 ( 7 4| 68 | 51.57
12 35 | 59 | 66.21 | 117 | 47 | 15.90 2.0 7 89 1] 46 | 12.71
1311 36 0 2711117 | 47 | 10.79 1.9 77 89 7112 | 49.94
14 35 | 591 64.98 | 117 | 47 | 27.31 1.2 T 94 8 4 | 1576
15 36 0 4.36 | 117 | 47 | 21.73 1.1 K 23] 4 5| 10.09
16 36 5| 48.76 | 117 | 61 | 37.46 2.7 76 o8 8| 43 | 67.60
17 36 21 5087 | 117 | 49 | 32.63 2.0 76 85 3| 31} 39.63
32 36 4| 29.96 | 117 { 49 | 18.15 3.1 76 51 91 18 | 28.84
42 36 216326 | 117 | 47 | 46.48 3.8 76 3 5] 16 | 27.00
52 36 0] 20.85 | 117 | 61 | 24.25 3.8 76 221 14 | 30 7.73
62 35 0] 52,10 | 117 | 50 | 28.33 6.1 76 | 156 | 23 31 17.30
72 36 0] 5001} 117 | 50 | 16.95 5.1 76 | 157 { 12 | 36 | 45.20
82 35| 68 | 63.82 | 117 | 45 | 37.77 3.0 76 | 180 | 13 | 38 | 40.28
92 36 01 48.79 | 117 | 50 | 21.33 4.5 76 | 349 6| 21| 23.10
102 36 514730 | 117 | 52 | 18.76 4.8 77 30 651 13 | 41.90
112 36 3 5.80 | 117 | 48 | 51.42 4.5 i 42 2129 2.07
122 38 3| 33.76 | 117 | 48 | 57.03 3.1 7 64 1 17 | 16 | 22.01
132 36 3| 31.82 ] 117 | 4B | 53.68 3.4 77 87 1| 20 50.12
142 36 32720 | 117 | 48 | 48.34 3.3 7 67 21 53 9.64
162 36 3133.06] 117 | 48 | 51.99 3.2 ™ 67 6 | 51 | 23.22
162 36 3| 24.24 | 117 | 48 | 47.66 3.4 i 67 71| 43 1.12
172 36 3138081 117 | 48 | 6564.34 3.6 7 87| 12 | 26 | 56.06
182 36 3123701 117 | 4B | 48.68 4.1 7 69 51| 17 6.66
192 36 3 7.71 | 117 | 45 | 32.64 4.4 s 74 | 22 | 55 .80
202 36 5 5.14 | 117 | 49 | 11.80 4.4 7t | 243 ] 11 | 63 | 56.29
212 36 2 6.76 | 117 | 48 | 41.44 4.9 Tt | 271 2 S| 2137
222 36 2] 1032 | 117 | 48 | 43.46 4.7 771 261 | 11| 50| 17.01
1322 36 2| 50.22 | 117 | 47 9.83 4.8 75 | 314 | 13 g | 38.00
23 36 6 | 21.23 | 117 | 52 | 25.57 10.7 76 | 108 8| 10| 32.49
33 36 4] 10.03 | 117 | 47 | 47.585 6.6 76 | 337 | 13 | 53 6.38
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Coso Local Earthquakes

event latitude longitude depth origin time
number {(km)

43 36 4 8.73 | 117 | 47 | 43.39 69 |76 ] 2337 | 14 7 | 32.25

63 36 316977 | 117 | 47 | 54.55 7.5 76 | 337 | 14 | 23 6.95

73 38 4 8.29 | 117 | 47 | 49.98 6.4 | 76 | 337 | 17 | 13 | 50.87

83 36 4| 15.18 | 117 | 47 | 39.96 64 | 76 ) 337 | 17 | 27 | 36.67

93 36 4 7.49 | 117 | 47 | 48.45 64 | 76 | 337 19 | 44 6.75
103 36 4| 13.29 | 117 | 47 | 43.96 6.7 78 | 337 | 21 2 8.52
113 36 4 | 20.88 | 117 | 47 | 33.37 6.1 76 | 337 | 21 | 15 | 39.48
123 36 0] 58222 | 117 | 50 | 20.25 5.5 76 | 154 5| 32| 36.34
133 36 0| 4983 | 117 | 50 | 17.52 54 | 76 | 164 5| 39 2.59
143 36 0| 46.32 | 117 | 60 | 27.18 5.9 76 | 154 5| 44 | 30.41
153 36 0| 5588 | 117 | 50 | 26.33 5.3 76 | 154 6 | 18 | 34.85
163 36 0} 58.06 | 117 | 50 | 29.36 5.2 76 | 154 | 12 | 561 3.76
173 36 0| 58.16 | 117 | 50 | 24.92 5.2 78 | 154 | 13 | 14 | 47.53
183 36 0| 45.18 | 117 | 50 | 18.25 6.0 | 768 | 158 0 g | 56.64
1683 36 41 11,96 | 117 | 47 | 48.22 6.2 76 | 338 1|27 21.82
203 36 4| 10.41 | 117 | 47 | 44.51 7.2 76 | 337 | 14 | 10 | 15.62
213 38 41 16.00 | 117 | 47 | 26.25 6.2 77 8 1 0| 57.67
223 35 | 58 | 60.47 | 117 | 48 | 31.32 7.0 T 35| 20 | 10 | 28.43
233 36 41 40.70 | 117 | 46 | 25.38 6.0 il 656 | 12 | 560 | 39.11
243 36 11 36.63 | 117 | 49 1.39 74 | 77|27 91 61| 17.15
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