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University of Washington
Abstract

Upper-mantle Structure of the Cascadia Subduction Zone
from Non-linear Teleseismic Travel-time Inversion

by John Callaway VanDecar

Chairperson of Supervisory Committee: Professor Robert S. Crosson
Graduate Program in Geophysics

The tectonic evolution of the Juan de Fuca plate system has undergone
dramatic changes over the past several million years as evidenced by seafloor
geomagnetic data. If there are large geodynamic forces active in the subduction of
oceanic lithosphere, corresponding changes in the structure of the Cascadia subduc-
tion zone should also be dramatic. In light of the seismic hazard normally
presented by active subduction zones and the Pacific Northwest population centers
potentially affected by such a hazard, it is important that we understand this sub-
duction zone structure in order to properly evaluate the seismic potential of the
region. We have approximated a non-linear inversion for variations in seismic
wave speed over the upper-mantle portion of the Cascadia subduction zone by alter-
nately performing linear travel-time inversions, via an efficient conjugate gradient
method, and three-dimensional ray tracing. We employ regularization through
minimizing the Laplacian of the final solution. We parameterize the three-
dimensional model at over 10,000 knots with velocities between knots represented
by spline interpolation. The culled data set consists of approximately 10,000 rela-
tive arrival times of teleseismic P and PKP waves recorded from 1980 to 1990 at



146 station locations of a short-period vertical-component seismic network in Wash-
ington and Northern Oregon. We obtain accurate relative arrival-time data (stan-
dard errors = 0.01 sec) and associated data covariance estimates via the use of a
new multi-channel cross-correlation technique. The most prominent and robust
characteristic of our models is a 3-4% fast, planar feature that dips steeply to the
east (at =60° with a width of approximately 100 km. We infer this to be the
seismic manifestation of a thermal and compositional anomaly associated with the
subducting Juan de Fuca oceanic plate. At shallow depths (= 80 km) this feature is
consistent with the projections of models of shallow slab structure. The high velo-
city zone is located at a depth of 100-120 km beneath the Cascade volcanos, con-
sistent with other subduction zones. Under central Washington the slab extends to
depths of 400 km or more, while there is an apparent lack of deep slab material
beneath southern Washington and northern Oregon. The latter, when taken together
with the tectonic history of the region and other geophysical observations, is con-
sistent with a deep slab that has torn away from the shallow portion of the slab.
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Chapter 1

Introduction

1.1 Objectives

An objective of this dissertation is to investigate methods of optimizing resolu-
tion and accuracy in travel-time inversion for velocity structure and in particular
analyze the reliability of the inversion of teleseismic arrival-time data recorded on
large-aperture regional seismic arrays. The specific impetus for this research was to
better define the upper-mantle structure of the Cascadia subduction zone (Figure
L.1). In most subduction zones the upper-mantle structure, or at least the position
of the subducting lithosphere, is constrained by a Wadati-Benioff zone - a region
where deep earthquakes regularly occur - extending to several hundred km depth.
In the case of Cascadia, however, the lack of a well-defined Wadati-Benioff zone
outside of the shallow Puget Scund region (where it extends to only 100 km) leaves
a distinct void in our knowledge of the regional structure and tectonics. This void
may be especially critical in light of recent debate over potential earthquake hazards
in the region.

A recent study of strain accumulation in the region [Savage and Lisowski
1991] provides a direct piece of evidence suggesting stress buildup in the region,
while geologic studies along the present-day coast have uncovered circumstantial
evidence of past large to great earthquakes. Given the known average rate of con-
vergence of the subducting Juan de Fuca and overriding North American plates
along with the age of the subducting lithosphere, comparison with other subduction
zones [e.g. Heaton and Kanamori, 1984] indicates that the Cascadia subduction
zone should be prone to subduction-type earthquakes in the magnitude range 8 to
8.5. Is this comparison valid? Knowledge of other factors such as the subduction
of sediments, heat flow, phase-changes and the overall controlling geometry of the
subducting lithosphere will be critical to the successful prediction of the degree of
elastic coupling between these plates and how this coupling might vary along the
strike of the zone.

Our knowledge of shallow subduction structure (depths < 80-100 km) is

improving through the use of several geophysical and geologic data sets (§1.3.1) but
the only data set that has been found to resolve upper-mantle Cascadia subduction
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Figure 1.1 Lambert conformal projection of the tectonic structure of the Juan de Fuca
plate system and Cascadia subduction zone. Arrows indicate direction of current rel-
ative motion along plate boundaries. Small triangles indicate stations of the Washington
Regional Seismic Network used in this study. Large triangles are locations of Quaternary
strato-volcanos. (JDF = Juan de Fuca, F.Z. = fracture zone, and S.Z. = subduction zone.)



structure with appreciable resolution is that of teleseismic arrivals recorded on the
Washington Regional Seismograph Network (WRSN). The WRSN, operated by the
University of Washington and composed primarily of short-period vertical-
component seismometers, was put in place in the 1960s and has been recording
approximately 120 channels of data digitally (on a triggered basis) since 1980. Not
all stations were in place over the entire time period, so the configuration of the
network was time dependent. This resuited in 146 station positions being occupied
for a long enough time period to be used in this study (Figure 1.1). Although its
primary purpose has been to monitor regional seismicity, the system also triggers on
and archives teleseismic arrivals. It is this data set that we exploit in the current
study.

In order to obtain a high resolution, well constrained upper mantle structure in
the Cascadia region we delineated three distinct areas of research where improve-
ments were deemed necessary and attainable. The large digital data set that has
been accumulating at the WRSN over the past 10+ years is of high quality and
spans ranges of azimuth and distance heretofore unexploited by teleseismic studies.
The culling of this vast data set (over 3200 events) to obtain an optimal distribution
of the highest quality events was the first area of improvement sought (Chapter 2).
Next, we developed a novel technique for extracting both accurate relative arrival
times and quantitative uncertainty estimates (for use in weighting data in inversion).
The method combines a multi-channel cross-correlation procedure with adjustment
by least squares which exploits the random character of errors present in cross-
correlation derived relative arrival time estimates (Chapter 3). While with these
improvements alone (expanded data set, higher quality data and quantitative esti-
mates of data covariance) we expect a marked improvement in model resolution, we
also felt that the currently used methodology of obtaining velocity estimates from
large arrival-time data sets needed improvement. In this regard we have developed
a pseudo-nonlinear (iterative linear) inversion technique employing full three-
dimensional ray tracing and the inversion for optimally smooth final models
(Chapter 4).

After discussing each of these developments, we examine the result of their
application to the Cascadia subduction zone in Chapter 5. We also investigate the



resolution capabilities of the data set and provide a method of clarifying the effects
of the non-linearity of our problem on linear inversions. In Chapter 6 we investi-
gate the use of first-arrival P-wave amplitudes and a robust means by which to
empirically calibrate a regional array for site and instrument response. The sensi-
tivity of these amplitudes to velocity gradients may provide us with a means of dis-
tinguishing between ambiguous features of the travel-time derived velocity struc-
ture.

1.2 Tectonic Framework

The tectonic structure of the Juan de Fuca plate system has received a great
deal of attention dating back to the initial development of sea-floor spreading theory
[Vine and Wilson 1965, Vine 1966] and continues to be one of the most well docu-
mented tectonic regions. The present-day structure of the system is shown schemat-
ically in Figure 1.1 with arrows to represent relative plate motions. The evolution
of the ridge system is reviewed in detail by Wilson et al. [1984]. They propose two
distinct shifts in the Juan de Fuca Ridge rotation pole occurring at 8.5 and 5.0 Ma
(million years before present) causing clockwise shifts of 10° and 15° respectively
in the direction of relative motion. The disagreement between magnetic anomalies
on the Juan de Fuca and Explorer plates after 5.0 Ma led to the conclusion that 1t
was at this time that the Explorer plate broke from the Juan de Fuca. It had been
suggested by Rogers [1983] and others that the Explorer plate is now distinct from
the Juan de Fuca and Riddihough [1984] came to the conclusion that the Explorer
plate is no longer subducting but instead rotating in a clockwise fashion.

Through the use of sea-floor magnetic anomalies both relative and absolute
motions of the Juan de Fuca, Pacific, and North American plates dating back 7 Ma
are calculated by Riddihough [1984]. Reproduced in Figure 1.2 are those motions
relative to the ‘hot-spot’ reference frame. It can be seen that the magnetic data
indicate drastic changes in the Juan de Fuca/North American pole of rotation over
the past 7 Ma. The implications of this complicated tectonic history must be taken
into account in order to predici what sort of structure one should expect for the sub-
ducted portion of the Juan de Fuca plate. A reduction in subduction rate of 45% or
more over these time periods should have effects at depth. Does the deep slab also



Figure 1.2 Absolute motions of the Juan de Fuca, North American, and Pacific plates
over the past 6.5 Ma derived by Riddihough [1984] from the analysis of geomagnetic
anomalies. The pole of rotation between the North American and Juan de Fuca plates
has moved from being northwest of the system to now lying to the southeast. The
evolution is such that subduction of the Juan de Fuca plate has slowed along the
entire subduction zone, most dramatically in the southern portion.



slow by 45%? If ‘slab pull’ is the dominant driving force of subduction, then we
might expect this deeper portion of the slab to exert a sizable tensional stress on the
upper part, possibly enough to even pull it apart. We might even expect a positive
feedback process in that once the deep part of the slab is no longer providing a
downward force, the upper portions will have that much more of a tendency to slow
down. In this thesis we attempt to shed light on these questions by obtaining a
high-resolution image of the current state of Cascatia subduction structure - an
instantaneous ‘snap-shot’ of what appears to be an evolving system.

1.3 Previous Structural Studies

As noted in the preceding section the interest in the Juan de Fuca plate system
dates back to the initial research on plate tectonic and sea-floor spreading theory.
Since McKenzie and Parker [1967] and Atwater [1970] first identified Cascadia as a
convergent margin, it also has received much attention. In the following two sec-
tions we review findings from such studies as they pertain to the shallow and deep
structure, respectively, of the Cascadia subduction zone.

1.3.1 Shallow Structure

The shaliow structure of the Cascadia subduction zone has been extensively
investigated both with many geophysical techniques and on many scales. A special
issue of the Journal of Geophysical Research (November 1990) chronicles research
performed in connection with the crustal structure of the Cascade mountain range
while Hyndman et al. [1990] give a review of crustal structure in southwestern
Canada. Crustal seismic tomography has been performed in several regions both
with the use of local travel-time data alone [Lees and Crosson, 1989; 1990] and
travel-time data along with constraints imposed by the regional gravity field [Lees
and VanDecar, 1991]. It was recognized by Dickinson [1970] that crustal structure
could provide a clue to recent shallow subduction structure. By examining the
petrology of the Cascade volcanics he was able to infer approximate depth contours
to the subducting Juan de Fuca plate. Those contours indicated an arch structure
around the Olympic Peninsula consistent with the bend observed in the off-shore
deformation front.



Seismicity defines well a subducting Juan de Fuca plate only beneath Puget
sound and only to depths of approximately 100 km [Crosson 1983, Taber and
Smith 1985, Weaver and Baker 1988]. Outside of this region the number of events
inferred to lie within the subducted plate is relatively small. In Figure 1.3 a cross
section of contemporary earthquake activity clearly shows the division of hypo-
centers into crustal and sub-crustal regimes. These sub-crustal events are inferred
to lie within the subducting Juan de Fuca plate and are consistent with the position
of the plate estimated from other geophysical measurements. Other measurements
of regional velocity structure include seismic reflection and refraction studies
[Green et al. 1986, Keach et al. 1986, Zervas and Crosson 1986, Taber and Lewis
1986, Clowes 1987], and receiver function experiments employing three component
broadband seismometer stations [Langston 1981, Hendrickson 1986, Owens and
Crosson 1988, Owens et al. 1988, Lapp et al. 1990]. A synthesis of some of these
results is illustrated in Figure 1.4 [after Crosson and Owens 1987] where depth con-
tours mark the inferred position of the subducting Juan de Fuca plate. Mundal e:
al. [1991] have modeled the arrival of anomalous slab phases from selected sub-
crustal events and found them to also be consistent with this model.

Work has recently been done on computer simulations of the structure of the
shallow subducting plate which minimizes the overall amount of in-plane strain
resulting from plate deformation [Chiao and Creager 1990]. A dramatic feature of
the sub-crustal seismicity within the subducted plate is its localization near the
inferred arch structure. The use of such modeling seems to indicate that this is a
natural consequence of the unusual concave oceanward trend of the trench and vol-
canic arc. What then is the effect of ‘slab pull’ on the shallow Juan de Fuca plate
and why is it failing to induce earthquakes all along the Cascadia subduction zone?
This is a question that we attempt to answer through the imaging of deep slab struc-
ture.

1.3.2 Deep Structure

Previous attempts to image deep Cascadia subduction structure have centered
around the use of the relative travel-times of teleseismic phase recored on the
WRSN. In 1973 it was found, through forward modeling, that a subducting slab
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seismicity as well as other data sets including P-coda studies [after Crosson and Owens,
1987]. Depth to contours, in km, is shown at the bottom of the figure.
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with a dip of approximately 50° was consistent with observed azimuthally depen-
dent teleseismic arrival time anomalies [Lin 1973, Lin and Crosson 1974]). The
data used for this analysis consisted of visually-chosen arrival times from analog
records of the 13 seismometers of the WRSN present in the early 1970s. Figure
1.5a is an example of a velocity structure used by Lin [1973] along with two-
dimensional ray tracing to model the observed teleseismic travel-time patterns.

Michaelson and Weaver [1986] further quantified these results by performing a
three-dimensional linear least-squares inversion for blocks of constant velocity.
They used 104 stations and 67 events resulting in 4160 visual picks from data
recorded digitally from 1980-1982. Figure 1.5b illustrates their results in the form
of cross sections through the model of velocity perturbations. Rasmussen and Hum-
phreys [1988] applied the method of back-projection tomography to the same data
set supplemented by several core phases and data recorded on temporary stations in
southern Oregon (altogether = 4900 visual arrival time picks). Their results were
essentially the same as that of Michaelson and Weaver [1986] and are reproduced
in Figure 1.5¢ for comparison.

1.4 Procedure Outline

The procedure followed to construct models of Cascadia subduction zone
structure as well as the structure of the following chapters of this thesis, is illus-
trated in the flow chart in Figure 1.6. We begin with the selection and archiving of
events recorded on the WRSN. The next step in the data-analysis stream is the
extraction of parameters from the teleseismic data that we need in order to accom-
plish a weighted least-squares travel-time inversion. Once these parameters have
converged to an acceptable database of travel times and travel-time covariances, we
move on to the numerically intensive portions of our procedure.

If our reference model is laterally varying we will need to perform three-
dimensional ray tracing to obtain ray paths through this structure. At the first itera-
tion of our method, however, our reference model is radially symmetric therefore
the appropriate take-off angles and azimuths of each ray are known and this step is
trivial. In order to formulate our inverse problem we must calculate the effect on
travel times of perturbations to our current model of velocity. After compiling
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Figure 1.5a-c Results from previous studies employing teleseismic data recorded on
the WRSN. (a) cross-section through velocity structure used in forward modeling data
by Lin [1973], (b) velocity anomalies from linear block inversion performed by Micheal-
son and Weaver [1986] (with open symbols representing low velocity), and (c) velocity
anomalies derived by Rasmussen and Humpheries [1988] with approximately the same
data set as in (b) but employing back-projection tomography.
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Figure 1.5 (continued)
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Figure 1.6 Flow chart of data reduction and non-linear travel-time inversion

procedures. Numbers on right indicate chapter in which full descriptions of each
topic may be found.
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these partial derivatives along with the theoretical travel times through the reference
velocity structure, we are ready to perform a linear inversion of the resulting sys-
tem. The method we have chosen for inverting this system is that of conjugate gra-
dients. Due to the nonlinearity of our problem we then iterate our inversion method
as shown in the lower half of Figure 1.6.



Chapter 2

Teleseismic Data Set

2.1 Introduction

The Washington Regional Seismograph Network (WRSN, shown in Figure 2.1
and tabulated in Appendix A) has been in operation since the late 1960’s. It has
been recording approximately 120 channels digitally since January 1980 on a trig-
gered basis at a 100 samples/sec digitization rate. The triggering algorithm is based
on a standard STA/LTAT criterion combined with a set of rules based on subsets of
the network used to suppress false triggers. The primary mission of the WRSN is
to monitor local and regional seismicity in order to evaluate local seismotectonic
structure and to aid in seismic hazard analysis. It also, however, triggers on many
teleseismic arrivals which are flagged as such by an analyst and subsequently
archived. In order to minimize the necessary storage space, the data are often
decimated by two after the application of a low pass filter to avoid aliasing. Since
short-period teleseismic data is usually dominated by frequencies of 1-4 Hz, a sam-
pling frequency of 50 Hz (corresponding to a Nyquist frequency of 25 Hz) is more
than sufficient to define the signal.

Although several different seismometer types are used within the network, all
their response functions near 1 Hz are reasonably similar even though their gains
differ. Due to the band-limited nature of short-period teleseismic data just men-
tioned, we therefore do not expect significant waveform distortion of the teleseismic
signal due to differing instrument response. To analyze the amplitudes of the sig-
nals we will, however, need to quantify these differences (as well as site effects)
which is discussed in §6.2. A comprehensive review of network operations and
triggering is given in Qamar et al. [1986]. In the next section we discuss the cata-
log of teleseismic events recorded by the WRSN from January 1980 through
December 1989, the subset of events selected for this study, and the selection pro-
cedure.

1 (short-term average energy) / (long-term average energy)
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Washington Regional Seismograph Network
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Figure 2.1 Stations of the Washington Regional Seismograph Network (WRSN). Inset
is of stations in the Mt. Saint Helens region. The network has been recording approxi-
mately 120 channels digitally since 1980. The projection is Lambert conformal.
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2.2 Selection of Data

The data considered for this study consisted of approximately 3200 teleseismic
events recorded digitally on the WRSN from January 1980 through December 1989.
In order to sort the data by origin region and phase we first developed an automated
scheme to determine event hypocenters from the trigger times of a large number of
events. We match each trigger time to a hypocenter cataloged by the National
Earthquake Information Center (NEIC) by comparing the trigger time to the com-
bined origin time plus Herrin radial earth travel time [Herrin, 1968] from the
reported hypocenter. From this procedure the event triggers were found to arise
from the arrival of P phases for 3100, core phases for 82, and later phases (e.g. PP,
pP and S) for 32 of the triggers.

The event locations resulting in P-phase data are shown in Figure 2.2a as a
function of azimuth and angular distance with respect to the WRSN. Figure 2.2b is
the same type of plot showing the distribution of events that were finally chosen for
use with the procedure described below. The corresponding events which resulted
in core-phase data are plotted in Figures 2.3a,b. These distributions are represented
in histogram form in Figure 2.4. Most of the range of possible teleseismic loca-
tions has been filled over this time period, but it can be seen in Figure 2.2a that
several regions are still sparsely populated (most notably SSW azimuths) so that the
minimum ‘acceptable quality’ of data needs to be varied as a function of location.
It is obvious that if one were to simply take a random subset of these data (e.g. all
the events from a given time window) the distribution of events would be heavily
skewed toward certain source areas. This would result in highly heterogeneous ray
coverage within our model region, therefore we attempted to mitigate this factor in
our selection procedure. The result of using heterogeneous ray coverage in travel-
time inversion can lead to the overweighting of rays traveling in particular direc-
tions over differents parts of the model, resulting in spurious structure [e.g. Hum-
phreys and Clayton 1985, Lees 1989].

When much of the data set described above was archived it was mixed with
local and regional data and placed on 9-track tape, therefore one of the first tasks
necessary to providing adequate access to the data set was to extract the teleseismic
data and place it on several high capacity exabyte tape cartridges. This was



19

LSVH

Figure 2.2a,b Event locations with respect to the WRSN for events which resulted in

P-phase data for (a) the complete set of data recorded between January 1980 and January
1990 and (b) for data used in travel-time inversion procedure.
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Figure 2.3a,b Event locations with respect to the WRSN for events which resulted in

core-phase data for (a) the complete set of data recorded between January 1980 and Jan-
uary 1990 and (b) for data used in travel-time inversion procedure.
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Seismic Network for (a) all events which were recorded from January 1980 to January
1990 and (b) events used in travel-time inversion procedure
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necessary since we wished to extract the highest quality data available from each
range of azimuth and distance covered by the data set. The procedure we enacted
to do so was the following:
e divide all events into small subseis within natural groups or clusters (we
chose to use 32 subsets),
e extract to disk all events from a given subset,
e choose candidate events from subset by quick visual inspection of data
quality performed by plotting events on a computer workstation,
e perform multi-channel cross correlation procedure (§3.1) on candidate
events collecting relevant statistics,
e make final selection based on signal quality, locations spanning the subset,
and statistics,
In this manner all 3100 P phase and 82 core phase arrivals were examined in at
least a cursory fashion in order to cull out the highest quality events from each
region. At the erd of this process 129 events had survived with 121 resulting in
P-phase data and 8 in core phase data (Figures 2.2b and 2.3b, respectively). These
are events tabulated in Appendix B. There were at least 9 events recorded at each
station with most recording more than 40 and many over 100.

Core phases which could not be distinguished by angular distance and arrival
time alone were found by plotting travel-time residual contour maps’ assuming a
different candidate phase for the theoretical times of each plot. Since the apparent
velocities of the different core phases differ substantially, the proper phase was
easily distinguished in this manner. Of the core phases shown in Figure 2.3b, the
three events at approximately 150° angular distance resulted in PKPp triggers
while the rest resulted in PKIKP phases. This was consistent with the theoretical
amplitudes of these phases.

T Travel-time residual contour maps are described in §3.5 along with several examples.



Chapter 3

Multi-channel Cross Correlation

3.1 Introduction

Our goal in this chapter is to improve on methods of relative arrival time esti-
mation in order to provide a high quality set of data for imaging the deep structure
of the Cascadia subduction zone. In addition to insufficient data coverage and
approximations due to model parameterizations, three problems that degrade resolu-
tion and accuracy in travel-time inversion are (1) errors in arrival time measure-
ment, (2) the lack of quantitative uncertainty estimates for use in weighting obser-
vations during inversion, and (3) the rejection of possibly useful data perceived to
have too low a signal to noise ratio. The last problem is especially critical in stu-
dies which have poor data coverage from certain azimuths since often the sparse
number of events from these regions have low magnitudes and shallow hypocenters
resulting in recorded waveforms of relatively low quality. When large velocity per-
turbations are present in the region to be modeled and nonlinear methods are
required, problems (1) and (2) may even act to preclude solution convergence
[Nakanishi and Yamaguchi 1986). The need to improve in these three areas
together with the constraints imposed by the large volume of data regulasly acquired
by networks of up to a hundred or more stations makes it apparent that there is
need for an efficient, effective and automated method of relative arrival-time esti-
mation. While single-trace phase-picking algorithms [e.g. Allen 1978, Allen 1982,
Crosson and Crosson 1988] are objective and have proven to be useful for the
analysis of local and regional data, they are not normally suitable for use with
teleseismic phases due primarily to the relatively emergent character of teleseismic
waveforms.

The similarity of teleseismic waveforms leads naturally to the use of correla-
tion methods [e.g. Bungum and Husebye 1971] and even manual methods using first
breaks, peaks, troughs, or zero crossings make qualitative use of signal correlation
[e.g. Iyer et al. 1981, Achauer et al. 1986]. In this chapter we present a novel
T This chapter was published in part as: VanDecar, J.C. and R.S. Crosson (1990). Determina-

tion of teleseismic relative phase arrival times using multi-channel cross correlation and least
squares, Bull. Seis. Soc. Amer., 80, pp. 150-169.
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method for determining relative arrival times which provides both high quality rela-
tive arrivals and dependable uncertainty estimates. We use a multi-channel cross-
correlation procedure with adjustment by least squares which allows us to make
quantitative estimates of the uncertainty in relative arrival times as well as to make
use of data that may be unusable with visual methods. Previous studies using large
aperture arrays such as the Swedish Seismograph Network [Husebye and Jansson
1966], the Norwegian Seismic Amay (NORSAR) [Jansson and Husebye 1968,
Bungum et al. 1971] and the Large Aperture Seismic Array of Montana (LASA)
[Archambeau et al. 1965, Mack 1969] have shown that teleseismic waveforms
remain suitably coherent for cross-correlation analysis. These studies found that the
waveform coherency between stations as a function of station separation decreases
somewhat to distances of 10 to 20 km, beyond which there is virtually no change.
When stations are separated by over 10 to 20 km (as is the case with many regional
networks) the waveform distortion induced by multi-pathing appears as uncorrelated
noise. We have confirmed this result for the Washington Regional Seismograph
Network (WRSN, Figure 2.1), and later in this chapter demonstrate the lack of
dependence on station separation of both waveform coherency and rms timing
uncertainty.

Clearly when considering only a single station and therefore each waveform as
a sample from a multiple number of events, waveform distortion cannot be thought
of as a purely random process. This is due to the fact that at least some waveform
distortion will undoubtedly arise from multipathing - multiple reverberations in the
upper crust - and therefore a contribution to waveform distortion will vary predict-
ably with respect to the azimuth and distance of each source. Likewise, given two
stations, the cross-correlation function between their traces will not be distorted in a
purely random manner when considering multiple events from similar azimuth and
distance. However, when considering a single event recorded on a multiple number
of stations (separated by sufficient distances) the distortions in the cross-correlation
functions, and therefore shifts induced in the positions of cross-correlation maxima,
manifest themselves as nearly random uncorrelated noise. This is due to structural
complexity and resulting incoherence of multi-pathing between stations (as opposed
to between events) and is the statistical property that we seek to exploit.

A simple and effective method of obtaining the time lag between two traces
with similar waveforms is to locate the offset of the maximum of their cross-
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correlation function. One way to apply this approach to more than two traces
would be to choose a single channel with a characteristic waveform and then cross
correlate it with remaining channels to find their relative time shifts. A possible
problem with this method is that waveform distortions from both multipathing and
even random noise (since the time series used are necessarily of finite length) may
introduce first-order distortions into each cross-correlation function and therefore
first order errors into the relative arrival time estimates. Even the relative magni-
tudes of these errors are difficult, if not impossible, to reliably estimate and are a
function of which trace was chosen as the standard to cross correlate against. As
an alternative to selecting a single representative trace, Bungum and Husebye [1971]
developed a procedure which cross correlates each trace against a summed beam
trace. They then generate a new beam with the resultant relative delay times and
iterate on this process. Although superior to simply choosing a single trace to
correlate against, their method may still be influenced in a first-order manner by the
non-random distortions present in individual cross-correlation functions and does
not converge in all cases. Neither of these procedures are capable of detecting
cycle skipping - the selection of an incorrect maximum of a cross-correlation func-
tion - nor of producing quantitative uncertainty estimates.

To achieve our stated goal of improving relative arrival time estimates we
have developed a straight-forward, semi-automated procedure which uses the cross
correlations between all possible .pairs of traces and estimates both accurate delays
and quantitative timing uncertainties. We assume that errors in cross-correlation
derived delay times, when taken between many different stations, are primarily ran-
dom in nature; and therefore an improved estimate of waveform relative arrival
times can be made through an over-determined system of equations and least
squares. Our procedure can be broken into three major parts: (1) estimation of the
relative delay time between each pair of traces via a search of their cross-correlation
function, (2) minimizing the inconsistencies between all delay time estimates in a
least squares sense in order to eliminate cycle skipping and invert for a single
waveform arrival time on each trace, and (3) final interactive optimization of the
solution to eliminate signals of unacceptably low quality. In this chapter we
describe each of these steps in detail. Using examples from the WRSN, we explore
the optimization of correlation and least squares weighting parameters and analyze
the validity of our uncertainty estimation procedure. Finally, some examples of the
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application of the method are presented.

3.2 Cross Correlation Analysis

Prior to any multi-channel processing we remove both the high and very low
frequency energy present in the data by applying a zero-phase, band-pass Che-
byshev filter with corner frequencies of 0.5 and 5.0 Hz. Although the precise filter
specifications are not important, we find that band-pass filtering increases the relia-
bility of our signal quality and timing uncertainty estimates while also making
waveforms more recognizable during visual inspection. We have found by experi-
ment that filtering has little effect on our optimized solution indicating that, for our
purposes, high frequency energy may be considered incoherent noise. Figure 3.1
shows an example of P-wave arrivals for data so filtered, recorded on 85 WRSN
stations. This event, originating near the east coast of Kamchatka, will be used as
an example throughout the analysis portions of this chapter and referred to as Event
I (see Table 3.1 for event parameters). It is of relatively low quality compared to
many teleseisms recorded at the WRSN, and of lower quality than any events
chosen for the travel-time inversion procedure (see Chapter 2).

For each trace we normally calculate a preliminary arrival time using a single-
trace phase-picking algorithm developed at the University of Washington [Crosson
and Crosson 1988]. This method, which was designed primarily for regional and
local earthquake phase picking, estimates approximate arrival times. With Event I,
for purposes of comparison, we have used visual picks of the first minimum which
are indicated on Figure 3.1 by single vertical lines. Any picking procedure that
locates the approximate onset of the major energy packet of the phase may be used.
In discrete form, the truncated estimate of the cross-correlation function between the
i% and j % traces is

&t T/&
%:j () == X % (4P +1,+k8t +1T) x; (42 +1,+kdt ) (B.2.1)
k=1
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Figure 3.1 Bandpass-filtered seismic traces recorded on 85 WRSN stations illustrating
the direct P-phase waveform of event I (see Table 3.1 for event parameters). Traces are
ordered by arrival time with vertical line markers denoting preliminary arrival-time esti-
mates made with visual picks of the first minimum. Each trace is individually scaled to
the signal energy around the initial pick.
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Table 3.1: Event parameters from the NOAA data base for the earthquakes used as
examples in Chapter 3. The back azimuth and epicentral distance (A) to each event
are calculated with respect to WRSN (latitude 46 N and longitude 121 W).

Example Events Used in Chapter 3

Event | Date  Time Location Depth| Magnitude (Back azimuth A
Number|yy/mm/dd (UTC)|Latitude Longitude (km) m, M, (from WRSN)

I 89/07/18 10:41| 534N 1604E 24 [54 50 311° 51°
II  |89/06/25 11:15| 329N 396W 10 |52 46 70° 63°
Ol [89/05/29 22:22) 2385 703W 43 (55 49 134° 81°
IV | 89/05/28 09:46| 164S 1734W 51 |57 232° 76°




30

where
x; = digital data from i * trace,
;P =i" trace’s preliminary arrival time estimate,
T = lag time relative to preliminary arrival time estimates,
T =length of correlation window (sec),
t, = time between #; ¥ and when correlation window begins,
ot = sample interval (= 0.01 sec for WRSN, or 0.02 for decimated data).

Two traces to be cross correlated, with the parameters T and t, depicted, are shown
at the top of Figure 3.2. Since on a routine basis we are only interested in the posi-
tion of the maximum and its magnitude, the entire cross-correlation function need
not be calculated. We speed up the search for the maximum’s position, T i
through the use of coarse estimates of the function. These estimates are performed
by ranging lag times in steps of m sample intervals and multiplying only every m'™
datum. We proceed through two levels of coarseness (m = 10 and 5) before per-
forming the full resolution cross correlation (m = 1). In each case the next finer
portion of the function is calculated within only + m sample intervals of the current
estimate. For instance with T = 3 sec and lag time, T, ranging * 1 sec this method
results in a reduction in computation time to 1/15 of that for computing the same
range at full resolution thereby making multi-channel cross correlation feasible for
use in routine analysis. The bottom of Figure 3.2 illustrates the cross-correlation
function of the two traces above showing both the coarse estimates of the function
and a detail of the higher resolution portions. Negative extrema of the cross-
correlation functions can be ignored by correcting the polarity of each trace before
processing. This eliminates the possibility of large negative side-lobes being
erroneously identified as the desired cross-correlation maximum.

Combining these lag times with the preliminary arrival time estimates defines
the cross-correlation derived relative delay time between the i * and j * traces:

At" ; =tip —tjp —1" jmax (32.2)

From the maximum magnitude of the cross-correlation function, o ; (% j"‘a"), an
estimate of the cross-correlation coefficient between the i * and j * traces is given
by
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Figure 3.2  Estimate of the (normalized) cross-correlation function between trace data
from stations BLN and RVC for Event I. At the top of the figure are the portions of the
trace data used for the cross correlation. Below are the coarse estimzte and 2 detail of
the higher resolution portion.
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: - (T; [P

ri; = —_q)' e (3.2.3)
C; O;

where ¢; ; is defined in equation (3.2.1) and 0',-2 represents the sample variance of

the i # trace data computed over the appropriate correlation window (when

T=17;7"). Since r is bounded by unity and therefore not normally distributed we

introduce Fisher’s transform [e.g. Snedecor 1956):

_1 (d+n
2= ln[—(l _r)}. (3.2.4)

This new random variable, z, is almost normal, thereby allowing for the calculation
of appropriate means, variances and confidence intervals which are then inverse
transformed for use in analysis. All cross-correlation coefficient statistics which we
refer to below have been calculated in this manner.

We initially quantify the relative signal quality of a given trace by using the
sample mean and standard deviation of all cross-correlation coefficients associated
with that trace. These statistics are plotted at the bottom of Figure 3.3 for the
filtered traces of Event I. For data of moderate quality the sample means range
from 0.80 to 0.95, corroborating our assertion from visual inspection that the major-
ity of waveforms are highly coherent across the WRSN. The cross-correlation
statistics provide useful keys in assessing a trace’s relative quality and for spotting
any large errors that may have been made during the preliminary picking process.
For example, if a poor initial pick causes some of the cross-correlation functions
associated with a trace to not include the true maximum while others do, the sample
variance will be abnormally high. If a waveiorm is badly distorted or completely
missed by the initial picking, that trace will produce consistently low cross-
correlation coefficients usually with a small variance.

3.3 Least Squares and Uncertainty Estimation

Since waveforms are never completely coherent from station to station and
there is always noise present, the cross-correlation derived relative delay times are
not perfectly consistent (i.e. Az; , + Aty 5 # At;3). For n stations this inconsistency
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allows us to generate a system of @ over-determined equations given by
-t =44 ; i=12,.,n-1; j=i+l,i4+2,...,n (3.3.1a)
to which we add the constraint equation

Y =0 (3.3.1b)

to force the arbitrary mean of the optimized relative arrival times, t;, to zero. This
system may be expressed symbolically as At = At where the n length solution vec-
tor t represents the optimized relative arrival time of the waveform on each trace

(with zero mean), At is the -n(';——l)ﬂ length data vector of cross-correlation
derived relative delay times, and A is a sparse %1 X n coefficient matrix.
For the simple case of only 5 traces this system would take the form
(1 -1 o o o] [ Ay, |

1 o -1 o o Aty

1 o o -1 o L Aty

1 o o o -l I Atys

o 1 -1 o o ) Aty

o 1 o -1 o 3 | = Atoy (3.3.2)

o 1 o o -1 t, Atys

0o 0o 1 -1 o 5 | Aty

0o o 1 o -1 i Atss

0 0o o 1 -1 At ys

1 1 1 1 1 0

For the more typical case of 90 or more stations the number of equations grows to
over 4000.

Adding the zero-mean constraint makes the system non-singular and allows us
to analytically calculate the least squares solution t** = (ATA)'ATAt [e.g. Menke,
1984]. Since ATA = nI (where I is the identity matrix), and therefore
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(ATA) 1= %I, it follows that t&* = %ATAt, or explicitly the simple sum

1 i-1 n ]
ti et = — — Z Atj i + Z Ati J . (333)
n & . <
j=1 J=i+1 J
If we wish to weight the equations to reflect varying quality of observations, then
we must instead perform a numerical inversion of the system

&' = (ATWA)TATWA (where W represents an 2070 4p 5 22D 4 o
b 2 2

nal weighting matrix). Due to the sparseness of A and its regular form it is possi-
ble to calculate ATWA without constructing its component matrices, thereby limit-
ing the maximum storage requirement to a size n X n matrix

We have tested two different weighting schemes. The first involves weighting
each equation by its associated cross-correlation coefficient and the second via a
weighted function of equation residuals from the previously determined un-weighted
estimate,

resjj =At; j - (4 - t;) (3.3.4)

J

These weighting schemes have little effect on the solution itself except when large
outliers are present in which case they make the inversion more robust by down-
weighting those equations. The weighting does, however, make the uncertainty esti-
mates more realistic since outliers have a strong effect on variance estimation.
Since, for the un-weighted case, the least-squares solution to (3.3.1) is simply a nor-
malized sum of cross-correlation derived relative delay times given by (3.3.3), the
standard deviation of the residuals associated with the i # trace,

1 i-1 n
Gi"s='\/n_2{-z res,-jz+ . Z res,-j2 , (3.3.5)
j=1 j=i+1

represents an estimate of its rms timing uncertainty. We have found that these resi-
duals are nearly normally distributed with a tendency to have slightly heavy tails.
Their standard deviation therefore provides a reliable, if somewhat pessimistic, esti-
mate of rms timing uncertainty (not accounting for possible biases). At the top of
Figure 3.3 we plot rms timing uncertainty for the filtered traces of Event I associ-
ated with the un-weighted least-squares inversion.

el



36

Timing uncertainty, o;™, normally has a strong inverse correlation with mean
cross-correlation coefficient, as one would expect, but under certain circumstances
this correlation breaks down. The breakdown occurs when relatively high fre-
quency noise (4-10 Hz) is present in an otherwise undistorted waveform. The result
is low cross-correlation coefficients but highly consistent and accurate delay times
producing low timing uncertainties. Therefore the least squares derived timing
uncertainty, rather than correlation coefficient, gives the most reliable estimate of
arrival time accuracy.

We have found that very large equation residuals (res; ; > .5 sec) are usually
the result of cycle skipping occurring during the cross-correlation analysis. To
alleviate this problem our procedure automatically computes a new delay time,
Az; ;, for each cross-correlation function associated with one of these large equation
residual. In order to choose the correct maximum we now search only the region
of the cross-correlation function near the time lag predicted by the least-squares
solution (t =" — t;*?). This method has proven to be effective when the
number of cases of cycle-skipping is less than 10-20% of the total number of cross
correlations with a given trace. In the rare case when cycle skipping is more pre-
valent the initial least-squares solution is likely to be thrown off too far to be use-
ful, and manual correction by an analyst is required.

The first manual intervention with our algorithm normally occurs on a com-
puter workstation after the first round of least-squares optimized picks have been
made. Adjustments may be made in several ways. The analyst may delete dead or
highly distorted traces and re-run only the least squares portion of the procedure.
This is accomplished in several seconds. If excessive cycle skipping has occurred
or an improper phase has been chosen, the analyst may move one Or more traces
into alignment within visual accuracy and then re-run the full cross-correlation and
least-squares procedures with a short range of lag times (e.g. —0.25 < 1 < 0.25 sec).
Figures 3.4 and 3.5 show details of unfiltered and filtered traces, respectively, of
Event 1 aligned on the left by preliminary arrival time estimates, #; 7, and on the
right by their respective least-squares optimized arrival times, 1o,

When examining the various maximas in the waveforms of Event I it can be
seen that any one of these features vary substantially from the optimized alignment
in Figures 3.4 and 3.5. For the highest quality data all the methods that we tested
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e T e

Figure 3.4 Portions of unfiltered waveforms of Event I used for cross-correlation anal-
ysis aligned by preliminary arrival-time estimates (visual) on the left and least-squares
optimized relative arrival times on the right. The alignment was obtained with un-
filtered data. Each trace is individually scaled by the signal energy within the window
of data shown.
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Figure 3.5 Portions of filtered waveforms of Event I used for cross-correlation anal-
ysis aligned by preliminary arrival-time estimates (visual) on the left and least-squares
optimized relative arrival times on the right. The alignment was obtained with filtered
data. Each trace is individually scaled by the signal energy within the window of data
of data shown.
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yielded similar results. For slightly lower quality events, if the visually obtained
arrival times from several features are averaged, the result once again approximates
that of the least-squares optimized relative times. For yet lower quality data, how-
ever, such as in Event I, the major features are distorted to such an extent that even
averaged times may be severely biased for many of the traces.

3.4 Selection of Parameters and Waveform Coherency

The adjustable parameters in our cross-correlation analysis are the cross-
correlation window length (T'), the maximum lag time (A7), and the position of the
correlation window starting time (¢,,, see Figure 3.2). As long as the true maximum
is included in the estimated cross-correlation function, lag time range has no effect
on our results, thus this parameter need only be chosen large enough to guarantee
inclusion of that maximum. The global statistic that we use to evaluate the quality
of the relative arrival times determined with a given set of parameters is the mean
cross-correlation coefficient. We find that the most consistent and computaionally
efficient results are obtained with window lengths of 2-4 sec beginning at the onset
of the first major energy packet of the phase. Figure 3.6 illustrates the three-
dimensional representation of mean cross-correlation coefficient as a function of
window length, T, and window starting position, t,. Plotted beneath for reference
is the stacked trace for this event, computed by

n
Xsumkdt) =Y x; (0f -4 5+ 2; % + kdt) 34.1)
=

where the subscript ref indicates times associated with an arbitrary reference sta-
tion. The stacked trace illustrates how the coefficient means are influenced by the
signal energy at a given position in the waveform. Bands of high coefficient means
that trend diagonally across the plot represent major packets of coherent waveform
energy being reached with shorter window lengths as the window position moves
down the trace. These correlation coefficient means are all calculated with respect
to the optimized alignment at 7, = -1.0 sec and T = 3.0 sec (indicated by an * on
the plot) so that each point represents the amount of waveform energy coherent
with that alignment. It can readily be seen from both the short window length
means (T = 0.5 sec) and the stacked trace that there is a considerable amount of
coherent energy out 2 to 2.5 sec beyond the initial correlation window starting
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Figure 3.6 Three-dimensional perspective of mean cross-correlation coefficient as a
function of window position, and window length for sample Event I Plotted below for
reference is the stacked trace for Event I (equation 3.4.1). T* represents the window
length used to obtain the least-squares optimized trace alignment. The corresponding
point on the diagram is also indicated by an *. The rest of the diagram represents the
amount of energy coherent with this alignment (obtained with T=3.0 sec).
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position (z, = -1.0 sec). For larger magnitude events this length of coherency
extends later into the traces as one would expect, since larger events tend to have
longer source time functions. It is therefore the source time function, or
equivalently magnitude of the earthquake, which controls the optimum window
length for any particular event. Extending the correlation windows beyond this
region has little effect on our solution but does increase the computer time neces-
sary to process each event. Using small windows (T < 2 sec) generates solutions
which tend to be unstable and highly sensitive to parameter changes. This is due in
part to the edge effect arising from the truncation inherent in the windowing pro-
cess. The effect can be partially alleviated with the use of tapering, but only at the
expense of discarding a sizable portion of the information contained in the (already
small) window. We do not taper our windows which are normally of lengths of 3
to 4 sec. By examining plots such as in Figure 3.6, we are able to judge what
minimum length of correlation window is appropriate for a given event. By follow-
ing a line of equal 7, we can see that once we reach a certain critical windcw
length the amount of coherent energy drops dramatically. This is presumedly due
to the effect of the initial source function response ending at this point and multi-
pathing energy dominating the rest of the signal.

We have found that there is little if any correlation between station separation
and waveform coherence for the WRSN. To quantify this result we have examined
the coherence, as measured by the maximum cross-correlation coefficient, as a func-
tion of station separation. The correlation coefficients, r; j as defined in equation
(3.2.3) are plotted in Figure 3.7 as a function of station separation for both the
unfiltered and filtered traces of Event I. Also shown in Figure 3.7 is a running
mean and one standard deviation from that mean (+ o), once again calculated frcm
Fisher-transformed coefficients (equation (3.2.4)) and then inverse transformed.
Likewise, Figure 3.8 illustrates the dependence of solution residuals on station
separation. If there were coherence in multi-pathing on scale lengths spanned by
the network, then one would expect to see both a definite decline in waveform
coherence and increase in residual magnitude with station separation. We have
found that these dependencies are small (if at all existent) and change from event to
event showing no general trend. This outcome is consistent with the findings of
Archambeau et al. [1965] and also those of Mack [1969] who concluded that there
was coherent multi-pathing within LASA sub-arrays (.5-7 km scale lengths) but that
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Figure 3.7 Maximum correlation coefficients as a function of station separation for (a)
the unfiltered and (b) the filtered traces of Event I. The heavy line represents a running
mean (sample window = 50 km) calculated from the Fisher-distributed coefficients
(equation 3.2.4) with lighter lines representing one standard deviation from the mean.
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Figure 3.8 Residuals to least-squares solution (equation 3.3.4) as a function of station
separation for (a) the unfiltered and (b) the filtered traces of Event I. The heavy line
represents a running standard deviation of this data (sample window = 50 km). Means
are in general indistinguishable from zero.
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between the sub-arrays (10-200 km span) multiples were in-coherent so that
“‘phased summation tends to cancel them.”

3.5 Examples

As with studies relying on visually chosen arrival times [e.g. Michaelson and
Weaver, 1986; Rasmussen and Humphreys, 1988] we have found that the delay resi-
dual patterns over the WRSN vary greatly with azimuth and angular distance. Fig-
ure 3.9 shows relative arrival times across WRSN for Event I (see Table 3.1 for
example event parameters). The overall pattern is one of a plane wave crossing the
array but distortions can be seen even in these raw arrival times. To obtain the
relative arrival residual patterns we subtract expected times calculated from PDE
locations and the Herrin radial earth model [Herrin, 1968]. We calculate the
expected arrival time at each station, remove the mean of those times, and then sub- .
tract them from our zero-mean optimized relative arrival times. Figure 3.10a is a
map of these residuals contoured for Event I. The relatively small magnitude of
many features of this pattern (.2 to .6 sec) points out the need for accurate relative
arrival times in order to resolve this signal. The signal dramatically changes with
azimuth as is illustrated in Figures 3.10a-d. The degree of reproducibility of these
residual patterns is very high, even for low amplitude features, with statistical corre-
lations between events from similar regions commonly ranging from 0.96 to 0.99.

The large variation of residual pattern with azimuth indicates that deep struc-
ture plays an important role in their generation. Some features such as the late
arrivals over the north Puget Sound lowlands and the early arrivals over the North
Cascades are relatively constant and depend only moderately on azimuth possibly
reflecting fairly shallow structure. On the other hand features such as the band of
large magnitude early arrivals from eastern azimuths (Events II and IIl) are cer-
tainly not present in data from the west, most likely reflecting deep slab structure.

We point out here that the arrival times that we measure with our procedure
are those of the major phase arriving in each time window. If a low amplitude ear-
lier phase is present it will not mecessarily represent the measured arrival time.
This is a problem with any method of arrival time estimation for teleseismic data
and should caution users of travel-time data to make sure that both the amplitude of
the earliest phase is indeed sufficiently large and its arrival sufficiently separated
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Figure 3.10a-d Contour maps of P-phase relative arrival-time residuals for (a) sample
Event I, (b) Event 11, (c) Event III and (d) Event IV. Residuals are the difference between
the least-squares optimized relative arrival times and those predicted from PDE loca-
tions and the Herrin radial earth model [Herrin, 1967]. Contour interval is 0.2 sec with
dashed lines representing negative contours. See Table 3.1 for additional event param-
eters.



47

Figure 3.10 (continued)
46N T
,*‘I:"l«o 3 o
o (al
(-4 &‘
TN N
NI
48N — ,.; —
i
,'I.l:'L f =
""l" 2
,'.ll °
1;4 Hds
I ,I'l Ry
a7 |- A/ [ 1 131G _
"‘P 'l ,Q‘,nl,'.\ -
] lhl';,'
A
fgult
1 \‘\
\\
46N |- \ Washington
Oregon \
45N — -
i /
44N |- -
|
EVENT II N. Atlantic l
) 100 200 Km center of network §
/’V S W . } stations recording event a
43N |= l | | | ! | I =
125W 124W 123W 1224 1214 120¥ 119y 118W 117W

®)



48

Figure 3.10 (continued)
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Chapter 4

Non-linear Inversion Procedure

4.1 Introduction

In this chapter we will discuss the basis for least-squares inversion (§4.2), the
linearization and discretization of the two point seismic-wave travel-time equation
(§4.3, §4.4), the formulation of the appropriate linear inverse problem and its conju-
gate gradient solution (§4.5), and finally the procedure that we employ to iterate on
these procedures (§4.6). The sections on least-squares inversion is a brief review to
put into context further discussion in this and following chapters. References to
appropriate texts and review papers are given in each section for more detailed dis-
cussions of these topics.

4.2 Least-squares Inversion

The prediction of a measurement given a theoretical basis for its generation
(i.e. the appropriate physics) and a model of the parameters on which the theory is
sensitive is known as a forward problem. Conversely, the mapping of measured
quantities back into the space of model parameters is known as an inverse problem.
Both forward and inverse mappings (theory) may be either linear or non-linear.
When this mapping is linear with respective to the model we may represent such
systems as sets of integral equations

[e@m@dr=d; i =12..n, 42.1)

where the d; represent n discrete measurements, m (r) functions of model parame-
ters, g; functionals that map the model into data space, and r' a vector of indepen-
dent variables (for instance spatial coordinates). In general d itself will be a con-
tinuous function but in practice measurements are made at discrete points. For
linear problems there is well developed and efficient theory for performing inver-
sions and analyzing the resulting models. However for non-linear problems con-
cepts such as uniqueness and resolution/covariance tradeoff take on new

7 Throughout this thesis, vectors will be represented by emboldened lower~case letters (e.g.
d, t and m) and second-order matrices by emboldcned upper-case letters (e.e. G and C).
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complexity. In the following sections we will briefly review the basic concepts of
linear and linearized inversion as they will be treated in the following sections. For
a more comprehensive treatment of these subjects the reader is directed to standard
texts such as Menke [1984] and Tarantola [1987a], or review articles such as
Parker [1977b] or Sabatier [1977a].

The most studied and well-understood inverse problems are those that are
linear (i.e. can be expressed as a set of linear equations). In such a case, if we
discretize the model into m parameters, we may then represent the system in 4.2.1
in the form of a sum,

ZG,JmJ =d; i=12.n, 4.22)

j=1
or symbolicly as Gm = d, where m is a vector of model parameters, d a vector of
measurements (i.e. data), and G is the mapping that relates the two. The forward
problem consists of calculating d given G and m. This operation is trivial and
exact (within computational precision). Conversely, the calculation of m given G
and a realization of d is generally more challenging.

We refer to d as a realization since real measurements are never exact and
therefore we only work with a limited number of data sampled from a (usually unk-
nown) probability distribution. In general we are forced to make strict assumptions
about the shapes of these distributions (e.g. assume Gaussian distributions) due to
our lack of knowledge concerning the true probability structure. Even with the
simplification of assuming a given shape for this distribution, its characteristic
width is rarely known with any degree of certainty. This is the most basic and
perhaps most important level at which to seek an improvement if one wishes to
increase the reliability and accuracy of a modeling procedure.

Given a set of measurements d and an estimate of the probability functions
from which they were derived, we now wish to infer which types of models m are
likely to have generated these measurements. If we assume that the probability dis-
tributions from which our measurements were drawn are Gaussian in shape with the
matrix C describing the covariance of these distributions then the maximum likeli-
hood estimator of m will be the one that minimizes the function
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6 = 2(C¥Gm - CH¥a)T(C¥6m - C¥a)
= -;-(Gm —dTCY(Gm - d), (423)

where superscript 7 indicates transpose and superscript ~! indicates matrix inverse
(assuming the inverse exists, which will be discussed in §4.5). This minimization
leads to the well-known weighted least-squares estimator [see Menke, 1984],

m=(GTClG)6GTCc 4. 4.2.4)

The simplicity of this solution has great power, in that the maximum likelihood
estimate may now be efficiently compnted. For large problems, however, the con-
struction of the "Gramm matrix", GT C™!G, of the so-called "normal equations”, in
main computer memory remains prohibitive, therefore it is often necessary to resort
to making estimates of the least-squares solution through the use of storage efficient
procedures (e.g. conjugate gradients, §4.5).

4.3 Linearization of the Travel-time Equation

The travel time, ¢, of a seismic wave through an inhomogeneous but isotropic
elastic solid may be calculated (in the high frequency approximation) with the line
integral,

r=f - l(r)dz, 43.1)
i, Vo

where v, (r) represents intrinsic seismic wave velocity, L, defines a ray path, dl is
an element of path length, and r is a vector of spatial coordinates. Ray paths in an
isotropic medium remain perpendicular to wavefronts and are, through Fermat’s
Principle, paths of stationary time. As a forward problem it is a simple matter to
calculate the travel-time, ¢, knowing the velocity field and ray path but, unfor-
tunately, we usually do not a priori know this path. In general the ray path must
be computed numerically. There are many ways to formulate the ray path search,
the most popular of which break into the two categories of shooting and bending.
The former of these groups formulates the resulting set of differential equations as
an initial value problem, while the latter solves the associated boundary value
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problem [Julian and Gubbins 1977, Appendix C].

Since (4.3.1) is nonlinear (due to the fact that the path of integration depends
on the integrand itself) we must resort to perturbation theory in order to form a set
of linear differential equations suitable for inversion. First we define slowness, s,
as

1
v, (r)

5, (@) = 4.3.2)

in order to simplify the algebra of our problem. We then consider a second model,
§ +As, close to s, and the resulting travel time, ¢ + Ar. Since a ray path
represents a position of stationary time, by definition small perturbations in the ray
path will produce only second order changes in the travel time, . We may there-
fore, to first order, substitute the perturbed values into (4.3.1) without changing the
path of integration, L,. Using relation (4.3.2) and substituting in the perturbed
values gives us,

t+ A= [ (s,(0) + As(r)) dl . (4.3.3)
L,

Finally, subtracting (4.3.1) from (4.3.3) we arrive at a first-order linear relation
between travel-time perturbations and slowness perturbations,

At = [ As(r) dl . (434)
Ln

In order to formulate this as a matrix equation we must first choose a suitable form
to represent the slowness field, As, as a set of discrete parameters.

4.4 Parameterization

The parameterization we have chosen to represent the slowness is that of
splines under tension constrained at a series of regular knots [Cline, 1981]. This
interpolation scheme is achieved by first calculating a one-dimensional b-spline
basis in each direction (r, 0, ¢) and then the tensor product of this basis. Hermite
interpolation coefficients are then calculated and stored for each knot so that inter-
polated values along with continuous first and second derivatives may be quickly
obtained for any point within the grid (we require only first derivatives for our
application). The tension of the splines is controlled through the parameter 6. A ¢
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equal to zero represents purely cubic spline interpolation and a large o (e.g. 50)
results in approximately tri-linear interpolation. A series of one-dimensional inter-
polation examples with various ¢’s is shown in Figure 4.1 for a spike of unit mag-
nitude at the central knot. In order to minimize the effect of negative side lobes
and create the most localized possible interpolation (while at the same time produc-
ing a relatively smooth structure) a 6 of 10.0 was chosen (heavy line in Figure 4.1).

The knots at which these splines are pinned are shown in perspective view in
Figure 4.2 with each line crossings representing a knot position. There are 18 knots
in depth, 25 in longitude, and 24 in latitude, resulting in a total of 10,800. The grid
extends from sea level to 900 km depth with knots every 25 km in the first 150 km,
every 50 km on down to 500 km, and every 100 km from 500 to 900 k. In lati-
tude, knots are spaced every 1/3 of a degree from 44°N to 50°N, and every degree
on down to 42°N and up to 53°N. In longitude, knots are spaced every 1/2 degree
from 116°W to 125°W, and every 1 1/2 degrees on out to 128°W and back to
110°W.

The central region outlined by darker lines on the surface (with projections out
to the sides of the model region) is the portion of the model in which we expect to
obtain appreciable resolution from the teleseismic data set. We will concentrate our
analysis in Chapter 5 on this region. Our rationale for inverting for knots beyond
this grid is twofold; for practical purposes it is necessary to smoothly damp both the
three-dimensional slowness perturbations and their derivatives to zero at the edges
of our model for three-dimensional ray tracing stability; also we wish to allow
structure to fall outside of our region of resolution if the data are best fit by such
models. While this may remove some structure from our model region that right-
fully belongs there, we consider it preferable :~ forcing all possible outside structure
into our model. In this regard we are already pushing ourselves toward models
containing the minimum amount of structure necessitated by the data. We will fol-
low this philosophy throughout the construction of our inverse problem. The out-
side knots (with the exception of the top layer) are therefore always forced to
represent zero perturbation in order for the three-dimensionally varying model to
smoothly merge into the outside radial Earth model. This is accomplished by
heavily damping these parameters in the inversion process through the inclusion of
an extra constraint equation, KAs; = 0.0, for each i that represents an outside model
element (where X is a relatively large number compared to the scale of the other
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Response

(a)

Figure 4.1a.b One-dimensional example of (a) spline under tension interpolation and
(b) its spatial derivative. The open circles represent knots constraining the splines.
The tension that we use for our models is 10.0 (thick line).
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Figure 4.1 (continued)
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Figure 4.2  Three-dimensional perspective view of positions of knots which constrain
the perturbation slowness model. Knots range in depth from 0 to 900 km, in latitude

from 41 to 51 degrees and in longitude from 127 to 112 degrees East. See text for a more
detailed description.
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equations).

The functional values and Hermite interpolation coefficients corresponding to
the slowness perturbation model (relative to the Herrin radial Earth model), are
saved at knots in a spherical polar coordinate system (r, 6, ¢). Since the splines
we use are relatively local and our grid spacing dense, the portion of the grid used
for the interpolation of any given point spans a small angular distance and is there-
fore locally very close to a Cartesian system. We take advantage of this to use the
efficient spline under tension package developed by Cline [1981] and capable of
handling regular three-dimensional grids with variable spacing. The effect of this
distortion varies over our grid depending on position and the relative distance
between knots. For the central, high resolution, portion of our model the distortion
in line lengths between a position directly in the center of a cell and the knots at
opposite corners is 0.38 percent while at the lower corners of our model region it
rises to 0.84 percent. Since this distortion is less than a percent over our grid its
effect will be negligible compared to other errors, but to use the same interpolation
scheme for a larger region (with correspondingly larger knot spacing) one would
need to take the curvature into account. To do so could, however, may negate one
of the primary advantages of the method, its efficiency.

4.5 Inverse Problem Formulation

By inverting for structure beyond the region where we expect to obtain appre-
ciable resolution, we are attempting to allow into our interior model only the
minimum amount of structure required by the data. Since we have no reason to
believe that there is not structure in this exterior region and since such structure
could have an appreciable effect on the measured relative arrival times, inverting
for only the interior portion could lead to the introduction of spurious structure. In
a similar vein, we simultaneously invert for station parameters to compensate for
local shallow structure and avoid projecting such short wavelength features into the
long wavelength upper mantle model. We also invert for a relative arrival time
correction for each event to account for first order uncertainties in event origin time
and location, and large-scale velocity heterogeneities in the source region and lower
mantle. Note that setting the mean of each event’s relative arrival times to zero, as
is often done [e.g. Robinson and Iyer 1981, Achauer et al. 1986, Michaelson and
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Weaver 1986, Rasmussen and Humphreys 1988], is not justified since there is no
reason to believe that arrivals from every angle will have zero mean residual. Set-
ting the mean relative arrival times to zero is imposing an unnecessary and unwar-
ranted a priori assumption (this assumption would presumedly have less of an
effect when modeling only shallow crustal structure).

The formulation of the un-weighted travel-time equation for the i ray is, '
Py DAs®) 1 p, ®) 4 g ®) = A G-D (4.5.1)

where,

pe-n | % ,
v aS] s=s(k_l)

As;®) = slowness perturbation to s ¢~ at knot j,
k,®) = time correction for station r at iteration &,
¢,*) = time correction for event ¢ at iteration &, and

A1; %D = travel-time residual for i* ray relative to the (k~1)* model,

with r and ¢ completely determined by i. The travel-time residuals are calculated
as the difference between the measured relative arrival times obtained in the manner
described in Chapter 3 and those predicted by ray tracing through the reference
model, s®~1 (which will be discussed in §4.6). Since we allow for an un-damped
mean time for each event through the inclusion of the g in (4.5.1) the starting
mean of the residual times for each event is unimportant and is arbitrarily set to
Zero.

To this set of travel-time equations we then add constraints to regularize the
inversion (this would be the identity matrix for the choice of simple damping, see
Levenberg 1944, Marquardt 1963, Lawson and Hanson 1981). The quantity we
have chosen to minimize is a 7-point finite element approximation to the Laplacian
operator in order to penalize the roughness (second derivative) of our final slowness
perturbation model [e.g. Menke 1984, Lees 1989, Lees and Crosson 1989]. To
mnvenﬁon is always assumed for subscripted variables unless otherwise stated.

Superscripted variable in parentheses represents iteration number and is never subject to impli-
cit summation.
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describe this operator we consider the vector f to be the row of the regularization
matrix F associaied with knot (&, i, j) in the polar coordinate system (r, 0, ).
Subscripts to f indicate the column associated with the subscripted model element.
We then have, for the nearest neighbors to element (&, i, j), (with no implicit sum-
mation)

Fo1.0.p= G rh—l)thﬂ . (4.5.22)
o i = (rh41 = rh)thﬂ —Tpo1) (4:5.20)
G O T N
foiv, jy= - 9?)2( T (4.5.2d)
fa.ij-n= 2, S0, (@, ——q?j-l)(q’jﬂ Torn (4.5.2e)
foijsn== = 4.5.2f)

r2,sin?(0;) (9741 — 0;)(@j41 — 0j-1)
and for the element (&, i, j) itself,

fwip=- [f(h—l, wptleviptfai-j»

*f oyt o jn+t o j+l)] (4.5.2g)

with all other f equal to zero. This operator calculates distances in terms of spheri-
cal coordinates but calculates the Laplacian assuming that, locally, the system is
close to being Cartesian. For the sizes of our knot spacing this is a small distortion.
On the edges of our model this becomes the corresponding two-dimensional 5-point
finite element operator (simply zero out the coefficients in the appropriate direc-
tion). For the case of equally spaced knots (with spacing A), f ; j) would be

equal to % with the values of its nearest neighbors equal to ;—i Note that this
constraint is completely satisfied by any linear gradient and therefore only penalizes

model roughness as defined by higher derivatives. Constable et al. [1987] appropri-
ately term inversions with regularization such as this Occam’s inversion in reference
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to obtaining the least amount of model structure necessary to explain the data.
Our weighted system of linear equations at iteration k may now be written as

WP WH WE | [ 50 WALED
b | = -1 ) (4.5.3)
W oo o [Le® —AF{ 3 As®)
i=0
where,
L iz
“V‘j = Gires n Xn matrix,
0 ifiej
H, = 1 if ray i was recorded at station r n X (# station) marrix,
0 otherwise
E, 1 if ray i originated from earthquake g n X (# event) matrix,

0 otherwise

F. = { 5ij for simple damping mXm matrix,

Y filter;; otherwise
A = weight of damping or smoothing, n = number of rays, and m = number of
model knots. A 0 in (4.5.3) represents a null matrix of appropriate size. The o; in

the weighting matrix are determined via the multi-channel cross correlation pro-
cedure of arrival time estimation described in Chapter 3.

The Laplacian operator, F, minimizes the roughness of the Jinal model by set-
ting the right hand side of (4.5.3) equal to the negative roughness of the previous
model’s perturbations (or to the previous model if we wish to smooth the entire
model rather than the perturbations). The constraint imposed for smoothing the
final fotal model at iteration k is obtained by setting the roughness of the model
(weighted by A) equal to zero. We therefore have

AFs®) = o (4.5.4a)

or, since s%) = As®) 4 gk-D)
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AFAs®) + s¢-1Dy=0 .

Using the distributive property of the linear operator and rearranging gives

AF As®) + AF stV =0,
and
AF As®) = — AF s&-D
To smooth the final perturbation from s© we similarly have
k R
AF YAsO =0,
i=0
k . k-1
or, since Y As®) = As®) + 3 AsO),
i=0 i=0
k-1
AF (As®) + T As@) =0.
i=0
Once again applying distributivity and rearranging (4.5.5b) becomes
k-1 .
AF As®) +AF Y As® =0,
i=0
and

AF As®) = — AF kilAs(i) ,
i=0

(4.5.4b)

(4.5.4¢c)

(4.5.44)

(4.5.5a)

(4.5.5b)

(4.5.5¢)

(4.5.5d)

which we have used in (4.5.3). An iterative inversion that smooths the total model
through the addition of constraints such as in (4.5.4) has been termed a "jumping”
procedure by Shaw [1986] [c.f. Shaw and Orcutt 1985, Chapman and Orcutt 1985,
Constable et al. 1987, and Sambridge 1990] as opposed to a "creeping" procedure

that simply constrains perturbations relative to the previous iteration’s result. By
constraining the final model (or the final perturbation model) to be smooth we are
allowing roughness that may be introduced at early iterations of the inversion pro-
cedure to be eliminated if our improved knowledge of the partial derivative matrix

P is consistent with such a model. Conversely, if we had only constrained the per-

turbations to the previous iteration to be smooth, we may retain unnecessary rough-

ness in our fina! model.
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In a trivial sense (4.5.3) is still singular since we may add an arbitrary constant
to all earthquake time corrections if we simply subtract the same constant from all
station time corrections. We alleviate this by arbitrarily adding a constraint to set
the mean of the station time corrections to zero. Although portions of the model
space may be over-constrained by the unregularized system (4.5.1), large sections
may also be under-constrained. There is no reason, however, to reduce our parame-
terization when we can increase the rank of our system through regularization such
as we have described above. Such regularization can provide a much more intuitive
and flexible constraint than under-parameterization. The addition of F in 4.5.3)
creates a system of rank n and allows us to potentially obtain its least squares solu-
tion (to within the numerical stability of our inversion procedure). For subsequent
discussion we will represent the system of (4.5.3) symbolically as

Ax=b, 4.5.6)
where,

WP WH WE A® WAt

A= ,x=| ¢® |, andb= -1 ) |.@57
E 0 o e AR 30
i=0

and the covariance of the new ‘data’ vector b is assumed to be the identity operator
times a scaler. We will also reference a form of (4.5.6) that is not regularized (i.e.
where A = 0) as A and b where then

WP WH WE WAL&-D
A= and b= . (458)
0 0 o0 0

Obtaining the least-squares solution to equation (4.5.6) in a straight-forward
fashion would require a prohibitive amount of computer memory. This is due to the
fact that, although the matrix A is sparse (few of its elements are non-zero), the
matrix ATA is relatively dense. Therefore, in order to take advantage of the sparse-
ness of (4.5.3), we will turn to a method of solution that can act directly on A and
that does not require the storage of the entire matrix (such as the method of singular
value decomposition does). The conjugate gradient method we use was originally
developed for the solution of large sparse systems by Hestenes and Stiefel [1952].
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Golub and Van Loan [1983], and Scales [1987] provide reviews of its derivation
and use. In one form or another the method of conjugate gradients is widely used
at present to solve large geophysical inverse problems (the LSQR algorithm of
Paige and Saunders [1982] being a popular derivative of the method [see Nolet
1987]). The convergence of the method of conjugate gradients to the least-squares
solution is discussed in Golub and Van Loan [1983].

In all of the inversions that we discuss in this thesis, we have performed 500
iterations of the conjugate gradient procedure. We have found that, for our prob-
lem, the solution has converged (i.e. the model is no longer significantly changing)
after 200-300 iterations. We have occasionally performed up to 2000 iterations and
found that there is negligible change beyond approximately 300. The 500 iterations
we regularly perform consume only 5 minutes of CPU time (on an IBM 3090 3E),
$0 it is economical to invert for many different models (e.g. with various levels of
regularization) for a given partial derivative matrix, P.

There are several features that make the conjugate gradient procedure particu-
larly attractive. We are able to calculate iterations recursively and therefore do not
need to store information from all previous iterations, only the preceding. Also, the
only operations required are matrix-vector and vector-vector products. First of all,
this limits memory requirements for we do not have to save the previous direction
vectors nor even store the entire matrix A (since for the matrix-vector products we
may take advantage of sparse matrix techniques and only store its non-zero ele-
ments). Also, due to the lack of matrix-matrix products and the sparseness of A the
number of necessary multiplications is limited.

To take advantage of the sparseness of A we simply need to supply an algo-
rithm for multiplying only non-zero elements when performing matrix-vector pro-
ducts in the above algorithm. This may be accomplished with the use of only a
small amount of memory by storing the non-zero elements of A in a vector along
with one integer vector representing the number of non-zero elements in each row
and one to keep track of the column position of each non-zero element. It is then a
simple matter to avoid multiplication by zero.
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4.6 Iterative Procedure

As described in §4.5, while the system (4.5.3) is linear, it depends on our
knowledge of the matrix of partial derivatives P, and therefore an iterative improve-
ment of this aspect of our problem may be necessary. Our initial estimate of P
comes from our knowledge of the ‘average’ radial velocity structure of the Earth.
There are several models commonly used in seismological studies of travel times
(e.g. Jeffreys and Bullen [1940], Herrin [1968], Dziewonski and Anderson [1981)])
but for our purposes of investigating only rays at teleseismic distances (A > 25°) the
differences are not severe. To be consistent with both previous studies in the
region [Michaelson and Weaver 1986, Rasmussen and Humphreys 1988] and our
choice of searching Jor a smooth model to fit our data we have chosen the smooth
Herrin model (which contains no mantle velocity discontinuities, but does contain a
Mohorovicic discontinuity at 40 km depth) to represent our reference model. The
shallow discontinuities have little effect on our models since all the rays traverse
this region nearly vertically and we allow for each event to have an arbitrary mean
arrival time. We therefore construct our initial P matrix from this model by calcu-
lating the effect of the model perturbation parameters on the rays traveling through
the radial structure. We already know the correct take off angle and azimuth for
these rays for the radial Earth model, so the determination of the partial derivative
matrix is the only numerically intensive procedure necessary for the first iteration of
our procedure.

The first step in calculating the matrix of partial derivatives is to determine
which knots appreciably affect each ray. Since our spline under tension interpola-
tion scheme acts on a relatively local scale (see Figure 4.1) any knots more than
two grid intervals away from a given interpolation point have little effect on the
interpolated value. We tabulate the knots that affect a given ray by shooting the
ray through the three-dimensional structure, at each integration step switching ‘on’
all knots within two grid intervals of that position (of course, at any given step,
many of these 64 nearest knots will have already been switched on at previous
steps). We also keep track of the linearly interpolated position (r, 6, ¢) between
each integration step and the distance between the steps. This then allows us to
approximate the travel time along a ray path as a simple dot product between the
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lengths of these straight line segments and the velocities at the center points. We
use an integration step of approximately 2.0 sec so that these straight line segments
match closely the true ray path. In any case, to obtain partial derivatives it is
differential times that we are interested in (as discussed below) and we have found
that the errors produced with this level of time step are on the order of 0.01 sec.
The calculation of partial derivatives is a computationally intensive procedure so we
do not wish to integrate with time steps any smaller than necessary.

After accumulating both the ray-path parameters and the knots affecting each
ray (on the order of 300-500 knots are identified as possibly contributing to each
ray’s travel time), we then begin our calculation of partial derivatives by working
through all 10,800 knots (column-wise):

e we perturb the slowness at a single knot (with an arbitrary perturbation),

e calculate the spline coefficients for the resulting new slowness structure,

e perform the dot-product between the previously calculated ray lengths and the
interpolated values at the tabulated ray positions for all rays affected by this
knot,

o subtract the perturbed time from the unperturbed (calculated from the same ray
lengths and positions, through the un-perturbed model),

e divide the time-difference by the slowness perturbation to obtain the estimated
partial derivative, and

o save the partial derivative if its magnitude is greater than 0.05 (i.e. % > 0.05

km. This value would correspond to ‘ray length’ in a block inversion).

Approximately 50% of the potentially significant partial derivatives have magni-
tudes exceeding this limit which corresponds to a knot in the center of our model
being ‘hit’ along approximately 0.1% of its region of influence. This method is
substantially more efficient than acting on single rays at a time (a row-action pro-
cedure) since the time to calculate the spline coefficients for each new model is
approximately the same as performing 40 of the above partial derivative calcula-
tions.

Given the partial derivative matrix and travel times for each ray from the Her-
rin radially symmetric Earth model [Herrin 1968] we can now proceed to imple-
ment the inversion procedure as described in §4.5. The slowness perturbation
model obtained from this inversion, As") can then be added to the radial slowness
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model s in order to perform a further iteration of this process. Now that the new
‘reference model’, s, is no longer radiaily symmetric, we must perform three-
dimensional ray-tracing in order to locate the correct ray paths through this slow-
ness field. Our solution to the two-point ray tracing problem is adapted from a
method developed by K. C. Creager [Creager 1984, Creager and Jordan 1984]
using a ray shooting algorithm developed and coded by B. R. Julian [Julian and
Gubbins 1977]. We have altered these procedures for our fully three-dimensional
problem, incorporating spline under tension interpolation and several minor adjust-
ments but, in essence, the methods are identical. A review of this process is given
briefly in Appendix C and in detail by Creager [1984]. We do not perform three--
dimensional ray tracing for the 517 rays (5.6% of the total) that are associated with
core phases (PKIKP and PKPpg) due to the difficulty of obtaining correct ray paths
for these phases. We do include these rays at each iteration, but do not improve
our estimates of ray paths. We have found that our inversions are not highly sensi-
tive to the inclusion or exclusion of these rays, due in part to the general lower
quality of the arrival-time estimates associated with them (and therefore the down-
weighting of these equations in the inversion process) and also to fact that events at
distances of 80-90 degrees (of which there are many, see Figure 2.2) also result in
ray paths traveling at high angles through our model region.

The iterative nature of this process was illustrated in the lower half of the
chart in Figure 1.6. To summerize this iterative process we:
(1) obtain ray paths and travel times with three-dimensional ray tracing,
(2) calculate partial derivatives empirically, and
(3) invert the resulting system of equations, with smoothing constraints, to produce
the next solution approximation.
These steps are repeated until the new ray paths are no longer substantially chang-
ing. Since Fermat’s principle tells us that travel times are relatively insensitive to
first order deviations in ray paths, we expect that only a few iterations will be
necessary to obtain ray paths close to being self-consistent with the travel-time data.
The ray paths may still be far from being the ‘true’ ray paths, but since travel times
are not sensitive to relatively large deviations of these paths, the best that we can
hope to find are rays that are internally consistent with our resulting models. This,
therefore, is what we mean when we speak of the convergence of our non-linear
procedure.



Chapter 5

Inversion Results for the Cascadia Subduction Zone

5.1 Introduction

In this chapter we examine the results of applying the theory of Chapters 3
and 4 to the teleseismic data set compiled on the Washington Regional Seismic
Network (described in Chapter 2). First, in §5.2, we estimate the inherent resolu-
tion capabilities of the data set both for the standard purely linear problem (i.c.
assuming the radial earth ray paths are correct) and including possible biases due to
our incomplete knowledge of an appropriate starting model (i.e. performing full
three-dimensional ray tracing in the forward problem). We examine not only the
standard resolution estimates of single model parameters, but also the resolution
capabilities of the data set for a more complicated model (a phantom model of a
subducting slab) where non-linearities are likely to become important.

In §5.2.1 we examine examples of the ray distribution and the spatial density
of rays. These will be used to help us interpret the origin of resolution variation
across the model. Then, in §5.3, we traverse a series of inversions beginning with
the first iteration ‘linear’ model UW91F1, and preceding on through the third itera-
tion model UW91F3. At each level we will sample a series of models obtained
with varying degrees of regularization (smoothness) in order to decide which
features of the model are most robust and therefore required by the data. Since our
resolution varies significantly across the region modeled, the optimum trade-off
parameter or level of regularization will vary also. In lieu of presenting models
which have such a variation as a function of position, we will examine several
models with constant levels of regularization realizing that no one level is optimum
for the entire model.

Throughout this chapter we will be viewing series of cross sections taken at
positions of equal latitude. They contain no vertical exaggeration but are slightly
distorted due to being square images of slightly trapezoidal regions. This effect
also changes slightly with latitude across the different model images. These view-
ing distortions are slight and do not effect our interpretations. We will, at times,
plot sections through the entire model but usually concentrate on the interior region
where our resolution is highest. These regions were delineated in Figure 4.2 and
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the rationale for inverting for model elements beyond this interior is discussed in
§4.3. The second type of image we examine will be cross-sections through the
model at equal depth. For reference, we superimpose on these plots a map of
features present at the Earth’s surface at the same latitude and longitude (coastlines
and major rivers) and also contours of shallow slab structure described in §1.3.1
(first shown in Figure 1.4).

5.2 Resolution Analysis
When solving problems of the type

Ax=b "1 (52.1)

through least-squares, the means of relating our model estimate, £, to the ‘truth’, x,
is through the relation

£ =G lAx = Rx. (5:2.2)

where G™! is known as the generalized inverse [e.g. Menke 1984]. R, the resolving
kernel, may be viewed as the window or filter through which we, in the best case,
view the ‘truth.” The generalized inverse replaces (AT A)~'A” since this inverse in
general does not exist (i.e. ATA is usually singular). We could obtain the general-
ized inverse by performing a singular value decomposition of A but this would
require the storing of a prohibitively large matrix in main computer memory and
therefore a prohibitively large amount of computer time. Another way of obtaining
a pseudo-inverse is to regularize A through the addition of auxiliary constraints as
in (4.5.3) (the regularized system we have simply termed A). For this new system
we then have,

%= (ATA)1ATAx = Rx, (52.3)
where R represents the resolution kernel for our regularized system. Unfortunately,
since we never form the inverse in (5.2.3), we cannot directly compute R. It is
clear, however, that if we were to replace x in (5.2.3) with a spike (i.e. set x =1,
where I; is the i % column of an n x n identity matrix), we would then retrieve in
T The terminology of this section as it relates to our inverse problem formulation is given in

§4.5. Basically the travel-time equations without regularization are represented as A, and with
regularization as A.
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% the i* column of the resolution matrix, R;. I we now write (5.2.3) as
R; = ATA)1ATAL, (5.2.4)

or equivalently,

ATAR; = A7AL, (5.2.5)

we then have a form amenable to our conjugate gradient procedure (see §4.5). We
would need to perform this operation n times (once for each model element) in
order to construct the entire resolution matrix, but since we do not expect the reso-
lution to vary dramatically over nearby elements, we can obtain what information
we desire by skipping over several knots at a time. Also, if the spiked knots are
sufficiently separated, we may assume that to first order they are non-interfering,
and therefore solve for multiple spikes simultaneously. This will be illustrated in
§5.2.2.

The preceding was based on the assumption that the system is, for practical
purposes, linear. To test the resolvability of structures which do significantly
deflect ray paths, however, we must perform the forward problem properly in order
to achieve meaningful results. In deriving (5.2.2) we simply started with our for-
mula for the least-squares estimator, & = (A7A)~!A”b, and substituted for b with
our original set of linear equations, b = Ax. But now consider if our a priori
assumption of the partial derivative matrix P (and therefore A) was incorrect, and a
different operator was more representative of the true forward problem (i.e. the
correct ray paths). In order to obtain this new operator to test this effect, we must
ray trace through each model of interest in order to locate the correct ray paths.
For models such as I;, with sufficiently small-scale perturbations, the ray bending
should be minimal and therefore the standard linear resolution estimate is valid and
useful. If, however, the models which we seek are not isolated spikes of energy,
we then should test the linearity of our problem to make sure that estimates of
linear resolution are in fact useful.

Models in which we do need to worry about non-linearity becoming important
(i.e. the true ray paths being very different from those initially assumed) are ones
which contain structure which has strong coherent velocity gradients perpendicular
or sub-perpendicular to the ray paths. This has been found to be the case, for
instance, in borehole tomography experiments [Stork, 1988] and also in the
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dependence of regional ray paths on reference velocity model [e.g. van der Hilst
and Spakman 1989, Zielhuis et al. 1989]. In our case, we have ray paths traversing
a subducting slab (presumedly cold, fast material). Rays traveling in a direction
sub-parallel and near to the slab sense strong lateral gradients in velocity and there-
fore may diverge far from their associated radial Earth model trajectories. In order
to test the effect that such a structure would have on a linear inversion we simply
need to substitute a suitable velocity model of a subducting slab into (5.2.5) for I;.
This is done by performing full three-dimensional ray tracing through the synthetic
model to obtain realistic estimates of travel times that such a model would produce.
The results of this exercise for a simple slab model are explored in §5.2.3 along
with the results that would have been obtained with a purely linear resolution exper-
iment.

Since, for a given data variance (and therefore optimal smoothing weight), the
resolution is completely determined by the distribution of ray paths, it is instructive
to study both the ray number density and distribution of rays within a given region
(i.e. the degree to which there are crossing paths). We will turn to this topic in the
following section.

5.2.1 Ray Distribution

Since the resolution of a travel-time inversion is heavily dependent on ray dis-
tribution, investigators have often turned to ray number density [e.g. Spakman 1988,
Spakman and Nolet 1988, Sambridge 1990), and higher order moments characteriz-
ing local ray directions [e.g. Kissling 1988, Lees 1989] to quantify which parts of
the model are to be believed and where smearing of structure is likely to occur.
For the data set described in Chapter 2 we will examine the ray number density
(number of rays per volume) in the following figures. We plot this parameter in
Figures 5.1a for the Herrin radial Earth model (used as a reference throughout this
work), and for the three-dimensionally varying model, UW91F2 (with a regulariza-
tion of 3200), in Figure 5.1 (model UW91F2 wili be discussed in detail in §5.3).F

The difference between the ray distributions resulting from the two models is
not dramatic and therefore the interpretation of the spatial variation of resolution is

T latitudinal cross-section plots are described in §5.1.
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Figure S.1a,b  Constant latitude slices of ray density for (a) radially symmetric Herrin
model and (b) model UW91F2 obtained from nonlinear travel-time inversion. See text
for interpretation.
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not critically dependent on the use of the correct ray paths. This is not to say, how-
ever, that the model itself is not dependent on obtaining correct rays paths. The rays
are unusually well distributed compared to those in most tomography experiments
and, in particular, experiments in subduction zone environments [e.g. Spakman and
Nolet 1988, Zhou 1990, Zhou and Clayton 1990]. This arises from the fact that the
events used all lie outside the model region and therefore are not clustered along
fault zones (Wadati-Benioff zones in the case of subduction zones). Model
UWOIIF2 has a 2% loss rays due to the ray-tracing procedure (Appendix C).

In Figures 5.2a-c we plot in perspective view all rays which effect a given
knot at several key positions. The rays are only plotted within the region of rela-
tively high resolution to give a more detailed view of their distribution and only
rays which have a 2 km or greater effective ray length in the region of the knot are
shown. The effective ray length is determined by the partial derivative (P;;) associ-
ated with each ray and knot (in inversions employing block parametrization these
partial derivatives are simply the ray length within each block). Although it is
sometimes difficult to observe individual ray positions in detail, we can quite easily
discern whether or not a region is well covered by crossing rays. We will refer
back to these plots when analyzing our ability to resolve key features of our
models, but from examining this figure alone we can expect to able to reasonably
well resolve features at each of these knots.

5.2.2 Spike Resolution Test

As discussed above, linear resolution estimation may be made through the fol-
lowing process:
e create an artificial or phantom slowness perturbation model (Asg,y,) with
‘spikes’ sufficiently separated to avoid overlap,

e simulate travel-time anomaly data through the operation Aty = spike
with A the matrix of partial derivatives associated with the reference slow-
ness model,

e invert the constrained system of (4.5.3) with Aty substituted for the real
data vector At.

Whereas this process will produce an estimate of the resolution kernel defined in

equation (5.2.4) it is a ‘best-case scenario’ in that, not only are we assuming that
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Model UWI91F2 A =3200

(@)

Figure 5.2a-c A plot of all rays which significantly effected the node at (a) 46N,
120E and 200 km depth (197 rays), (b) 48N, 121E, and 250 km depth (269 rays) and
(c) 45N, 118E, and 500 km depth (155 rays). The open diamond represents the
position of each node. Rays which had the effect of a 2 km or greater ‘ray length’

in the region of the knot are plotted.
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Figure 5.2 (continued)
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Figure 5.2 (continued)
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there are no errors in our ‘theory’ (e.g. that ray theory and our parameterization are
adequate), but also no errors in our data. We can take a step toward making this
exercise more realistic by adding noise to the simulated data [e.g. Spakman 1988].
This can be accomplished at no extra cost, and gives us a better idea of what the
sensitivity of the model is to a more realistic data structure. Although the true
noise structure is, no doubt, not purely Gaussian (and perhaps more importantly not
independently distributed), we will limit ourselves to adding only normally distri-
buted error to our simulated data. This is an area where more research is certainly
warranted.

Shown in Figure 5.3a is the entire phantom model of Asg,
use for purposes of discussion. Spikes which are 5% fast are located every degree
in latitude, every one and a half degrees in longitude, and every third knot in depth
(see Figure 4.2 for knot distribution). Being single knot spikes, these are then the
smallest feature which can be imaged by this parameterization. We have inverted
for many such structures (both with single and multiple spikes) and found our
interpretation of all to be similar. By performing the analysis on multiple spikes we
tend to achieve a somewhat pessimistic resolution estimate for any given knot due
to tradeoffs with the static station and event parameters. It is, however, not a
strong effect for spike spacings such as shown and is much more efficient than per-
forming the analysis separately for each spike. The regularization that we employ
(penalizing model roughness) is weighted against a spike slowness model, therefore
the inversion procedure will tend to distribute as much structure as possible into the
un-regularized station and event statics producing a smoother slowness model. By

ite Which we will

removing the static parameters we can retrieve an inversion model much closer to
the phantom, but we then do not obtain a valid analog to the real data inversion
procedure.

An inversion of this synthetic data is shown in Figure 5.3b at intervals of one
degree in latitude with plots of the higher resolution interior region plotted at inter-
vals of one half degree in latitude in Figures 5.3¢ and 5.3d for the phantom and
inversion models, respectively. Compared with the ray density diagrams discussed
in §5.2.1, we can see that, at least for the lower portions of the model, the best
resolution is obtained in regions of high ray coverage. For the shallow structure,
however, despite a high ray density we do not retrieve the phantom spikes but
rather single vertically blurred spikes in their place. This is due to the fact that all
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interior of inverted model. Random error with a standard deviation of 0.10 sec was added
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Figure 5.3 (continued)
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the rays are traveling nearly vertically in these shallow regions and much of the sig-
nal can be explained by station statics. We therefore should not expect to be able
to resolve vertical structure with any confidence in these shallow regions. What is
somewhat surprising is the ability of the data set to resolve to a high degree knots
at 600 km depth. From Figure 5.2c we can see that there are indeed a good
number of crossing rays even at the edges of our interior model region to provide
this resolution.

We have shown that, despite relatively high noise and unfavorable regulariza-
tion constraints, the spikes, for the most part, have not shifted position. No spikes
were placed on the outside edge of the exterior region due to fact that the inversion
process heavily damps these areas (as discussed in §3.5). The importance of adding
noise arises from the observation that not all knot resolution estimates are effected
equally. Compared with the same experiment done without noise (not shown) some
knots seem to be highly susceptible to this level of noise while others appear fairly
robust (at least to purely random, independently distributed noise). Next, we exam-
ine the same process applied to a phantom model of a subducting slab. Although
the slab model is fairly smooth, we can simulate the non-linear case with this
model.

5.2.3 Resolution of a Synthetic Slab Model

In Figure 5.4a we have plotted constant latitude cross-sections through the
phantom model of a slab dipping at an angle of 55 degrees to the east with a Gaus-
sian shaped variation of slowness from a peak amplitude that is 4.0% lower than
background (with a standard deviation of 35 km). We have chosen this model to
mimic in a simple fashion the type of anomaly observed in this region (with several
key differences which will be discussed in §5.3). We will first form synthetic
travel-time data by assuming the radial Earth ray paths are correct and then invert-
ing those data also keeping the rays fixed.! The result of this process is shown in
Figure 5.4b (where random noise with a standard deviation of 0.10 sec was added
TTheTaltwoletters of each model name indicate the type of forward and inverse problem
solved. The next to last letter is either an N if the forward problem was not ray traced, or an

R if it was ray traced. The final letter is either an L if the inversion was linear, or an N if it
was non-linear.
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Figure S4a-d Latitudinal cross-sections for subducting slab resolution tests for (a) the
phantom model, (b) non-raytraced data with linear inversion, (c) raytraced data with linear
inversion, (d) raytraced data with non-linear inversion (with ray paths obtained from (c)).
Random error with a standard deviation of 0.10 sec added to all artificial data.
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Figure 5.4 (continued)
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Figure 5.4 (continued)
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to all synthetic data). Even with a relatively large amount of random noise added
(compared to that estimated for our data set, see Chapter 3), we see that the struc-
ture is still well resolved, with only a small amount of smearing and few artifacts
produced. This success results from the completeness of the data set and the our
assumption of no modeling errors.

The non-linear nature of the travel-time inversion problem is widely recog-
nized but often not treated (particularly in large scale inversions). If the ray paths
which we first assumed are not close enough to the true ray paths, then the lineari-
zation may remain adequate in that theoretical travel-time errors are small, but not
adequate in that the partial derivatives are wrong, so structure is put in the wrong
place. This has been recognized to arise in the case of regional phases where ray
paths are critically dependent on radial Earth structure [van der Hilst and Spakman
1989, Zielhuis et al. 1989] but may also provide a strong effect for teleseismic
phases in regions of large-scale lateral velocity anomalies with steep gradients. It
has long been known that subduction zone structure, in particular, can severely
effect ray paths [e.g. Jacob 1970, Sleep 1973].

To test the effect of ray bending and therefore attain a more realistic estimate
of the resolution capabilities of our travel-time data we must perform three-
dimensional ray-tracing through the phantom model. We have done this for the
phantom model shown in Figure 5.4a and then used these times to perform a linear
inversion with the (incorrect) radial Earth ray paths (since for real data we would
not have known the true ray paths). The result of this exercise is shown in Figure
5.4c. It is readily apparent that our resolution test using non-raytraced data over-
estimated our ability to accurately image a subducting slab. No longer do we
obtain either an anomaly level near that of the truth nor an accurate estimate of the
width of the anomaly. This is explained by the effect of the slab structure on rays
traveling up the dip of the slab which are focused toward its core. When this
focusing is not taken into account (i.e. when we assume radial Earth ray paths) we
then need a much wider slab anomaly to explain the observed travel-time pattern.
Rays traveling perpendicularly through the slab constrain the wider anomaly to have
a lower amplitude.

Next we test how well ray-tracing through the result of our linear inversion
can improve our estimates of the ray paths and therefore improve the accuracy of



90

our model. Performing this ray tracing and then using the resulting ray paths and
travel time patterns for a second inversion iteration results in the model shown in
Figure 5.4d. In all cases random noise with a standard deviation of 0.10 sec was
added to synthetic data. We can see that this process does reduce the width of the
slab anomaly and also slightly increase its amplitude. These results are summerized
in Figure 5.5 where the average anomaly values versus longitude for the models at
250 km depth are plotted for both the case of no noise added to the data (Figure
5.5a) and noise added as in Figure 5.4 (Figure 5.5b). For the case of no noise
added to the synthetic data, for the non-linear model from ray traced data (Figure
5.4d), the ray paths used to produce this model were ray traced through the linear
model constructed from noisy data (Figure 5.4c), so this model is still somewhat
effected by noise.

5.3 Slowness Perturbation Models

In this section we present the results of inverting real data. First we examine
model UW9I1F1, the ‘linear’ first iteration of the inversion process described in
Chapter 4. We then move on to two iterations of the non-linear perturbations
arrived at by the algorithm described in §4.6. We will be comparing these images
to the results of the linear and non-linear resolution tests and also referring back to
the ray distribution plots in order to judge the validity of the results.

Each model below is shown at different levels of regularization (smoothing)
represented by the trade-off parameter A (see §4.4).7 Large A represents more
smoothing at the expense of fitting the data. In classical resolution-covariance
analysis we would plot a ‘trade-off” curve for each model parameter representing
estimated model covariance versus resolution for various levels of regularization.
In this case, resolution is usually measured in terms of the half-width of the resolu-
tion kernel or the magnitude of the diagonal elements of the resolution matrix (see
§5.2). We will, however, use the global statistics of residual variance reduction and
model ‘roughness’ as measures for our trade-off between resolution and accuracy or
reliability. The model roughness, 6f*)(1) is simply the rms misfit to the constraint
equations (without weighting by A), for a given iteration k and smoothing

7 The display of both the higher-resolution interior and complete model is described in §5.1.
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Figure 5.5a,b Slowness Anomalies at 250 km depth as a function of longitude averaged
over latitude from 43N to 49N, for synthetic slab models with (a) no noise added to data
and (b) noise with a standard deviation of 0.10 sec added to all data.



92

Figure 5.5 (continued)
l--
Longitude West
I I3\ 12 121 120
0= f\ : : :

Percent Slowness Anomaly

ray traced data / linear inversion
ray traced data / non-linear inversion

radial Earth rays / linear inversion

Phantom

(b)



93

parameter A,

sfIA) = —\/ -~ f;[F,-jAsjU‘)(x)]z . (53.1)
i=1

The rms travel-time residual reduction is the percent difference between the initial
(weighted) rms misfit to the travel-time equations (with each event initially having a
zero mean arrival time),

1z 2
6O = _;zi[%mj(m] , (532)
i=

and the (weighted) rms misfit to the travel-time equations for a given iteration k
and smoothing parameter A,

2
o) = '\/ % > [W,,,- [P,.j *DAs O + b, OQ) + e, OR) - A, (H)]] , (53.3)
h=1

where r and g are completely determined by i. This then gives, for the percent
difference,

Gy o _ G, &)
¢, ?

(5.3.4)

The initial (un-weighted) rms travel-time residual for our data set was 0.458 sec.
While the measure of rms residual reduction is sensitive to original data selection
and in itself does not directly provide an estimate of model covariance, its relative
value for various levels of regularization can give us a valuable sense of at what
level the addition of more high frequency model features is providing diminishing
returns with respect to the fitting of the data.

5.3.1 First Iteration ‘Linear’ Model UW91F1

Figure 5.6 is a plot of the trade-off between data fitting and model roughness,
as described above, for model UW9IF1. As mentioned previously the absolute
scale of the residual variance reduction is sensitive to the initial data selection Gf
we had chosen to use more events from azimuths with rays traveling up the dip of
the slab the percent reduction would be inflated). It is therefore the shape of the
trade-off curves (the relative values) that is important rather than the isolated value
at any given point. We can see from Figure 5.6 that it is within the range of A
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Figure 5.6  Trade-off between data fitting and model roughness. The open symbols
delineate models shown in text. The roughness represents the rms misfit of the con-
straint equations (5.3.1). Equation (5.3.3) describes rms travel-time residuals.
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from 300 to 6400 that the major tradeoff between these parameters occurs. At
lower values the model rapidly increases in roughness while minimally improving
the fit to the data while at higher values the fit to the data becomes dramatically
worse for small changes in smoothness. We will therefore confine our analysis in
this thesis to these values (indicated by open symbols in Figure 5.6).

Displayed in Figure 5.7a-d is the ‘linear” model UW91F1 at different levels of
regularization (smoothing) represented by the trade-off parameter A (see §4.4). As
described above, relatively large A represents more emphasis being placed on our
obtaining a smooth model at the expense of fitting the data. By examining the
effect of differing levels of regularization on the inversion we can get a sense of
which model features are most robust. As can be readily seen at all levels of regu-
larization, the dominant feature within this interior region is a high velocity ano-
maly dipping steeply eastward. From our slab resolution analysis in §5.2.3 we
expect certain distortions to arise from the linear inversion of such a feature. We
therefore expect the slab to be artificially widened and for the peak-to-peak ampli-
tude of the anomaly to be under estimated. The other robust feature of these inver-
sions is a high velocity anomaly in the shallow southeast corner of the region. This
anomaly lies below the Blue Mountains of eastern Oregon and has been recognized
previously as a region of anomalously high velocity [Rasmussen and Humphreys
1988].

In Figure 5.8 we have taken a cross-section through model UW91F1 at a con-
stant depth of 200 km to better analyze the lateral variation of the model (with a
regularization of 3200). Plotted for reference are both surface features (coastlines
and major rivers) and the contours of shallow slab structure (at 30, 40, 50 and 60
km) described in §1.3.1. These intermediate depths (from approximately 150 to
450 km) are, in general, the best resolved. We see from this figure that the slab
appears to lie in a reasonable position relative to our knowledge of shallow struc-
ture and that, except for the Blue Mountains anomaly on the right-hand side of the
plot, the slab is clearly the dominant feature at this depth.

Outside of the region of relatively high resolution (shown for a regularization
of 3200 iz Figure 5.9) the only stable feature is a high velocity blob in the down-
dip direction of the Northern portion of the inferred slab anomaly. Some resolution
exists in this region as is indicated in the spike resolution tests of §5.2.2, and while
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Figure 5.7(a-d) Latitudinal slices through the interior of slowness model UW91F1 for
regularizations of (a) 800, (b) 1600, (c) 3200, and (d) 6400. This model represents a
linear inversion (i.e. radial Earth ray paths were assumed). See text for interpretation.
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Figure 5.8  Slice through non-linear slowness perturbation model UW91F1 at 200 km
depth with map of region and contours of shallow slab structure superimposed
(see section 1.3.1 for description and origin of contours).
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Figure 5.9  Latitudinal slices through the entirety of slowness model UW91F1 for a
regularization of 3200. This model represents a linear inversion. The region outside of
the interior boxes is not well resolved. See text for interpretation.
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this feature appears rather large it is limited in size by our parameterization in this
region (see Figure 4.2). Whether or not this is an artifact of performing only a
linear inversion, we will try to test in the following sections, but for the case of a
phantom slab model with realistic data, we saw in §5.2.3 that artifacts of such
amplitude and shape were not produced merely due to ray geometry and the non
linearity of the problem.

5.3.2 Second Iteration Model UW91F2

In this section we examine the effect of performing a second iteration of inver-
sion with an improved knowledge of appropriate starting model gained from ray
tracing through the first iteration model UW91F1 (with A = 1600). Since our start-
ing model now varies three-dimensionally we will require the solution of the gen-
eral two-point ray tracing problem for each of our station-event pairs (except for
core phase data as described in Appendix C). Our method of accomplishing this is
described in detail in Chapter 4 and Appendix C.

The tradeoff curve for Model UW91F2 has nearly the same shape as that for
the previous iteration but the data can now be fit slightly better for each level of
regularization. In Figure 5.10a,b we will once again examine models with various
levels of regularization, but now that we know what to expect in terms of this vari-
ation we will restrict ourselves to the central values of A equal to 1600 and 3200.
By comparing the model at these levels of regularization to their equivalent models
in Figure 5.7 we can see that, as expected, the ray tracing through model UW91F1
(with A = 1600) has produced a thinner, higher amplitude anomaly with, in general,
less structure outside of the slab anomaly and the anomaly beneath the Blue Moun-
tains of NE Oregon. Comparing Figure 5.11 to Figure 5.8 of model UW91F]1 illus-
trates, perhaps, the most dramatic change between these models, the thinning of the
slab in the northern portion of the interior model.

The effect of this second iteration on the exterior region is shown in Figure
5.12. The high velocity blob seen in the previous iteration is still present but has
thinned slightly. The size of this anomaly is on the order the smallest possible with
our parameterization (compare with the phantom spike model in Figure 5.34) and
therefore we know not expect any further significant decrease in its size. It does,
however, appear that a high velocity feature of some sort is required by the data in
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Figure 5.10a,b Latitudinal slices through the interior of slowness model UW91E2 for
regularizations of (a) 1600 and (b) 3200. This model represents a non-linear inversion
(ray paths were obtained from model UW91F1). See text for interpretation.
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Figure 5.10 (continued)
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Figure 5.11  Slice through non-linear slowness perturbation model UW91F2 at 200
km depth with map of region and contours of shallow slab structure superimposed
(see section 1.3.1 for description and origin of contours).
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Figure 5.12 Latitudinal slices through the entirety of slowness model UW91F2 for a
regularization of 3200. This model represents a non-linear inversion. The region out-
side of the interior boxes is not well resolved. See text for interpretation.
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this region. Although the overall shapes and placement of anomalies do not change
dramatically between these iterations, we now hopefully have a more reliable basis
on which to make inferences about geodynamical forces and processes which may
control the tectonic development of the region.

5.3.3 Third Iteration Model UW91F3

We have ray traced through model UW91F2 with A equal to 3200 and calcu-
lated the associated partial derivatives and predicted travel times to invert for the
series of models represented as latitudinal cross-sections in Figures 5.134,b (for A
once again equal to 1600 and 3200). The ‘trade-off’ curve between smoothness and
data fit is not substantially different than that for model UW91F2 and, in fact, the
effect of using a smoother model (A = 3200) in ray tracing through UW91F2 than
we did through UW9I1F1 (where we used A = 1600) seems to have a larger overall
effect than the additional iteration. In detail, however, where the model gradients
were large such as around the inferred position of the subducting Juan de Fuca
plate, we do see a further reduction in the slab anomaly width.

This can be seen best by comparing the depth sections of the previous
iteration’s models (Figures 5.8 and 5.11) to the depth section at 200 km for model
UWO1F3 (Figure 5.14). We see that there indeed is a further focusing of structure,
but the effect is not as great as in the previous iteration and we therefore do not
expect further iterations of this process to substantially alter this structure. By com-
paring the outside model structure shown in Figures 5.9 and 5.12 to that for Figure
5.15 we see that there is not a large enough change in this down dip high velocity
to alter our interpretation of it or its origin (which will be discussed further in
Chapter 7). We have found through ray tracing tests through model UW91F3 for
selected rays that, as expected, the ray paths did not change significantly from their
previous positions. We therefore conclude that two iterations of the non-linear pro-
cedure are sufficient to bring the ray paths as close to being in agreement with the
inverted model as our travel-time data can constrain.

To aid in our comparison of these three models we have plotted in Figure 5.16
the slowness anomalies at 200 km depth as a function of longitude averaged from
latitudes 47 N to 48 N. Although the mean value along this strip has changed over
these inversion iterations, we can easily compare the peak-to-peak anomaly
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Figure 5.13a,b Latitudinal slices through the interior of slowness model UW91F3 for
reguiarizations of (a) 1600 and (b) 3200. This model represents a non-linear inversion
(ray paths were obtained from model UW91F2). See text for interpretation.
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Figure 5.14  Slice through non-linear slowness perturbation model UW91F3 at 200
km depth with map of region and contours of shallow slab structure superimposed
(see section 1.3.1 for description and origin of contours).
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Figure 5.15 Latitudinal slices through the entirety of slowness model UW91F3 for a
regularization of 3200. This model represents a non-linear inversion. The region out-
side of the interior boxes is not well resolved. See text for interpretation.
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Figure 5.16 Slowness Anomalies at 200 km depth as a function of longitude averaged
over latitude from 47N to 48N, for models UW91F1, UW91F2, and UW91F3, with
A =3200.
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variations and associated half widths to see that the anomaly has narrowed and
increased in magnitude. These changes are more prominent between iterations 1
and 2 (represented by models UW91F1 and UW91F2) than between iterations 2 and
3 (represented by model UW91F3). Once again it should be noted that this is a cut
through the model at equal depth (not perpendicular to the slab) and therefore the
true width of the anomaly is less than it appears here.



Chapter 6

P-wave Amplitude Analysis

6.1 Introduction

The use of teleseismic phase travel times alone to invert for subduction zone
velocity structure may lead to an ambiguous characterization of slab thickness [e.g.
Fischer et al. 1988]. We have shown how this ambiguity arises from the effect of
ray-bending on waves traveling up-dip along the subducting slab. For thin slabs
(with appropriately large velocity gradients) the rays remain within the slab longer
and defocus more on emergence producing low amplitude arrivals at the surface
relative to thick slabs. However, only small changes in travel time are calculated.
This makes the use of the amplitudes of first arrivals a promising data set to distin-
guish slab thickness. A significant challenge to using amplitude data, however, is
to properly calibrate the stations for both instrument and local site response.

At the Washington Regional Seismic Network (WRSN) we have found that a
large portion of the variation in local site response can be attributed to geologic fac-
tors as well as instrumental effects. We have generated a set of calibration values
for the WRSN by averaging the P-wave amplitudes of many events from western
azimuths whose ray paths travel approximately perpendicular to the slab and are
therefore minimally affected by this deep structure. We discuss this calibration in
§6.2. In §6.3 we then use these values to normalize amplitudes observed from
wavefronts propagating up the dip of the slab in order to compare this observation
with what we would expect from the structure of a subducting slab. Finally in §6.4
we will compare these observations with the amplitude response calculated from our
models with Chapter 5.

6.2 Inversion for Site Amplitude Responses

Since we are dealing with a band-limited data set, we consider the origin of
the amplitude of a P-wave first arrival to be simply decomposable into the follow-
ing product,

o = P Sj O;, (621)
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where
oy = the measured amplitude of the k™ arrival,
Py = regional propagation effect for k* ray (within 3D model ),
&; = the earthquake source term for j* event ,and
O; = site response term for i station,

with i and j completely determined by k. Since many of our instruments are un-
calibrated and instrumental and local geologic effects are, for practical purposes,
unresolvable from one another with the use of data alone, we have simply com-
bined these two effects into the site response term, ;. We also have assumed that
the earthquake source term € will absorb any path effects originating near the
source or outside of our three-dimensional model, as these too are unresolvable
from one another. Taking the log (base 10) of both sides of (6.2.1) we obtain

log oy = log p; + logg; + log'; 6.2.2)

which is now amenable to matrix manipulation.? For the simple case of two events
and four stations (with all events recorded at all stations), we can express (6.2.2) as
the matrix product

- -

r . . .1 . rlog oy rlog P1

1 . . . .1 “og o, 1 log o, log p,

I . .1 . log G, log o3 log ps3

| S | log log oy log p,

1 .1 . log o, | = log a5 | — | log ps

1 1 log & log o log pg

11 . log €, log o, log p4

.. .1 1 - - log o log pg
. . . .. 0 ] 0

<

 Log notation here represents log base 10. Thomson and Gubbins [1982] and others have
found amplitude data to have a lognormal distribution.
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where a ‘.’ represents a zero matrix element, or symbolically as

log ¢ log a lo
S e B g R
In order to make inferences about the regional structure’s effect on the ampli-
tude measurements, o, we must correct for event and site responses, € and 6. One
way which we might attempt this is to collect event’s from many different back
azimuths and distances, assume that the regional effect on the amplitudes from this
range of directions will vary randomly, and then invert for 6 and & with P simply
considered noise. Given no a priori knowledge of the regional structure this would
seem a logical course to take. Since we have good reason, however, to believe that
the amplitude response from certain back azimuths will have a large regional ano-
maly while that from others will not, it makes more sense to discard high anomaly
directions to avoid biasing our inversion results. In a subduction zone we expect a
relatively large anomaly from waves traveling ‘up’ or parallel to the plate as
opposed to perpendicularly through it. We will therefore use only events with rays
arriving sub-perpendicular to the subducting slab (from western back azimuths) to
solve for the site calibration factors, 6. Our inversion for the event calibration
terms, €, is necessary, but incidental to our current purpose since we will be using
different events (from eastern back azimuths) to actually investigate regional (slab)
structure.

In order to solve (6.2.3) for 6 and € we will implement a robust inversion
technique of iterative residual down-weighting [Huber 1981, Egbert and Booker
1986]. We do this to stabilize our inversion process, for the amplitude data tend to
contain a larger number of outliers than, for instance, travel-time data. This is due
to the fact that there is no stationarity principle for amplitude data which is depen-
dent on gradients of velocity. Therefore first order perturbations in the slowness
field and hence ray paths will cause first order perturbations in measured amplitude.
While this is ‘good’ in the sense that our data are very sensitive to our model, it
does create a less stable data base from which to extract information. However, the
effects of diffraction in producing ‘wavefront healing’ should smooth out some of
this effect.



117

The iterative technique works by scaling each equation by a function of its
residual obtained from the previous iteration. Such a function is shown in Figure
6.1 which has the effect, in the limit, of minimizing the residuals within 1.5 stan-
dard errors by the L, or least-squares norm while minimizing residuals which lie
beyond 1.5 standard errors with the more robust L, norm [see Huber 1981]. Our
method of calculating the standard errors with which to implement this method fol-
lows that of Egbert and Booker [1986]. The effect is to minimize the influence of
‘outliers’ - data which are effected by biases or noise beyond the Gaussian errors
assumed in standard least-squares analysis. The results of such an inversion for the
calibration factors, G, after 5 iterations is shown contoured in map view in Figure
6.2 (we have found that this inversion procedure converges with 4-5 iterations for
our data set). The scale in Figure 6.2 represents one order of magnitude.

6.3 Observed Amplitude Signature over the WRSN

With the station corrections obtained from the process described in §6.2 we
may now scale amplitude data to eliminate, to some degree, the effect of local
structure and instrument gain variations. If we consider equation (6.2.2) for the
case of a series of events from approximately the same location we now expect the
portion of the amplitude response arising from regional structure, P, to be the nearly
the same at each station. We therefore have

log o, = logp; + log g 6.3.1)

where & has now been calibrated by dividing it by the previously calculated ©.
Explicitly, for the case of 4 events and 2 stations, this becomes
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Figure 6.1 Weighting function used in robust interative inversion technique. Residuals
within 1.5 standard deviations are not weighted and therefore minimized with a
least-squares norm while residuals outside are minimized, in the limit, as I r .
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Figure 6.2 Amplitudes of P-wave data from western azimuths inverted for with a robust
iterative inversion technique to obtain site calibrations. See text for details.
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Our task is to now solve (6.3.2) for the effect of regional structure p and, of course,
a scaler for each event, &, given the calibrated amplitude data, . Once again we
will apply a robust iterative inversion technique to our problem due now both to the
stability of the amplitude measurements and the calibration factors, 6. The results
of such an inversion, with the use of 9 high quality events located near the Peru-
Chile border (back azimuth = 120°, A = 80°), is shown in Figures 6.3 and 6.4 for
un-calibrated and calibrated data, respectively.

It is readily apparent that a large portion of the signal from these southeast
back azimuths is consistent with that from western back azimuths as obtained from
the calibration procedure. What is left after calibrating this data, however, is quali-
tatively consistent with what we expect from our knowledge of regional structure
obtained from travel-time inversion. The low amplitude region to the east of Puget
Sound continuing to the south, and that above northeastern Oregon are consistent
with projections of the high velocity regions of our regional model, where we
expect ray divergence to occur. In the next section we will examine quantitatively
the amplitude anomalies produced by these velocity models. There remains in our
amplitude data, however, more high frequency information than we expect to be
able to obtain with a long wavelength regional velocity structure. This high spatial
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frequency anomaly most likely arises both from intermediate and shallow depth
anomalies not properly treated by our calibration procedure and from our use of too
few events in both the calibration and southeast back azimuth analyses. There are
many events available to be used in both analyses and the inclusion of further data
no doubt will help stabilize these results.

6.4 Amplitude Response of the Cascadia Subduction Zone

We estimate the amplitude anomalies expected from the models which we
derived in Chapter 5 from travel-time inversion by calculating the degree of ray
convergence and divergence through these models. We calculate the ray divergence
by simply shooting two additional rays (in slightly different directions) after solving
the two point ray tracing problem and then comparing the angles which they sub-
tend near the receiver and at the source. Since we ray trace from receiver to
source, we are here taking advantage of the reciprocity which exists between source
and receiver responses [see Aki and Richards 1980). In order to obtain reliable
estimates of amplitude and also simulate the averaging nature of our observations,
we perform this analysis on a grid of 16 event locations spanning approximately the
same range as the events used in the previous section (approximately 4 degrees).
We then perform the same inversion procedure as described above treating these
calculations as our new ‘data.’

The results of such an inversion can be seen in Figures 6.5 and 6.6 represent-
ing the amplitude response of slowness models UW91F1 and UW91F2, respec-
tively. The non-linear model produces a narrower and more pronounced amplitude
anomaly over the projected inferred position of the subducting slab as well as over
the Blue Mountain anomaly in northeastern Oregon. Qualitatively these results indi-
cate that the improvement made in performing the non-linear inversion produce a
more believable structure, or at least one more consistent with other data sets.
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Figure 6.5 Predicted amplitudes of P-waves calculated from three-dimensional ray tracing
through slowness model UW91F1 derived from travel-time inversion. See text for a detailed
model interpretation.
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through slowness model UW91F2 derived from travel-time inversion. See text for a detailed
model interpretation.



Chapter 7

Summary and Conclusions

Our goal in this research was to obtain better resolution of the upper-mantle
structure of the Cascadia subduction zone. To accomplish this we attacked on
several fronts where we felt that substantial progress was feasible. The first of
these was to obtain an ‘optimal’ data set, both in terms of coverage and quality. In
this respect we were lucky enough to have over 10 years of high quality digital data
available to us (over 3200 events) and the facilities and support to access, analyze,
and archive this data in an efficient manner. Over this time span the range of data
in terms of azimuth and distance with respect to the WRSN has been spanned to an
extent well beyond that available to previous studies. We have described the distri-
bution of this data set and the culling of the events used for further study in
Chapter 2.

Our second challenge was to improve on the method of extraction of parame-
ters from teleseismic data. Up to this point many researchers were using visually
chosen arrival times and qualitative estimates of errors. We felt that this could be
substantially improved and to do so developed a multi-channel cross correlation
procedure to semi-automatically provide robust estimates of both relative arrival
times and associated quantitative data variance. This analysis is detailed in Chapter
3 and in VanDecar and Crosson [1990]. The improvements in data analysis and
quality probably have played a major role in achieving improved resolution.

It has been common in structure inversion to assume linearity in the travel-
time equations. While this may be justified in regions of low amplitude and rela-
tively uncorrelated velocity anomalies, we have shown both with synthetic examples
and actual data that for environments such as subduction zones that ignoring the
non-linearity due to ray bending has an appreciable effect on the structure obtained.
If we wish to use our inverted models to make quantitative inferences about tec-
tonic processes then obtaining the best possible estimate of shape, location and
magnitude of the velocity anomalies is essential. We therefore have taken into
account the effects of ray bending by performing iterations of linear inversion
employing three-dimensional ray tracing between iterations. This procedure appears
to converge quickly for the case of the Cascadia subduction zone indicating that



127

after only 2 iterations the rays paths are linearly close to being consistent with the
models obtained.

In order to judge our resolution over various parts of the model we have
employed several methods of examining ray distribution and density. We have also
performed both linear and ‘non-linear’ synthetic tests for various spike and slab-like
structures. The results have indicated that our resolution is high over much of the
upper mantle beneath the Cascadia subduction zone and sufficient, when combined
with auxiliary data, to make inferences concerning the tectonic development of the
region.

As discussed in the introduction on regional tectonics (§1.2), the Juan de Fuca
plate system and presumedly the Cascadia subduction zone have undergone
dramatic changes over the past 7-10 Ma. The implications of this complicated tec-
tonic history must be taken into account in order to predict what sort of structure
one should expect for the subducted portion of the Juan de Fuca plate. A reduction
in subduction rate of 45% or more over these time periods is sure to have effects at
depth. Does the deep slab also slow by 45%? This would not seem logical if the
forces of ‘sleb pull’ play a majoi role in subduction zone dynamics. We therefore
might expect this deeper portion of the slab to exert a sizable tensional stress on the
upper part, possibly enough to pull it apart. This may even be a positive feedback
process in that once the deep part of the slab is no longer providing a downward
force, the upper portions may have that much more of a tendency to slow down.

These factors along with the ‘direct’ evidence from our images of current
upper mantle structure, lead us to the conclusion that the older slab material that
would now be beneath Oregon possibly ripped free from the shallow slab and con-
tinued to sink into the mantle at the rate it had prior to = 10 Ma. In Figure 7.1a-c
we have plotted in three-dimensional perspective (from various viewing points) the
regions of our third iteration non-linear model UW91F3 (with A = 3200) that have
anomalies greater than 1% fast (the anomaly beneath the Blue Mountains of
northeast Oregon has been removed for clarity). These figures illustrates the lack of
deep slab material in the southemn portions of our model and also hint that the deep
fast material at approximately 600 km depth might be associated with this missing
older portion of the slab. As we pointed out in Chapter S, our resolution in this
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Model UW91F3 A =3200

(@)

Figure 7.1a-cThree-dimensional perspective of slowness model with regions of greater
than 1% negative slowness (high velocity) within boxed regions. Viewing points are from
above (a) Texas, (b) southern Idaho and (c) Kansas. The boxed region extends from 100
to 600 km in depth, 44N to 50N and 124W to 114W. Boxes are for plotting purposes only.
An anomaly beneath the Blue Mtns. of NE Oregon has been removed for clarity. The
pyramids at the surface represent Quaternary strato-volcanos.
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Figure 7.1 (continued)
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Figure 7.1 (continued)
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deep region is poor so that we can not say whether this is really an isolated blob of
material (possibly piling up at the 670 discontinuity) or whether it would continue
deeper if our model parameterization allowed deeper structure.

This ‘tear’ that we are postulating presumedly would propagate to the north,
where the changes in subduction rate were less dramatic, possibly leaving only shal-
low slab material beneath Oregon. If the slab were rising buoyantly in the area
where it has no deep root, we might expect the zone of magmatic activity at the
surface to migrate eastward. This is consistent with the behavior reported by Priest
[1990]. The well-recognized change in character of volcanism from Oregon and
southern Washington to further north is such that to the south the number of vol-
canic vents is much greater and their distribution more widespread, while to the
north volcanism is tightly centered around isolated strato-volcanos [e.g. Guffanti
and Weaver 1988). There also appear to be changes in volcanic composition from
south to north. There are trace elements rarely found in arc volcanics yet common
to ocean island and mid-ocean ridge basalts found in southern Washington and Ore-
gon [e.g. Leeman et al. 1990]. Heat flow, too, is observed to be higher to the
south.

It is tempting to postulate how such mantle material and high heat flow might
arise from a ‘window’ to the mantle caused by a slab tear, but a more detailed syn-
thesis of these varied observations must be done to make any positive statements.
In Figure 7.1b we see that the upper portion of this upper mantle material is con-
sistent with a steeply dipping slab to the north, but if the contours of shallow slab
structure are correct, the transition from shallow to steep dip changes character from
south to north. To the south, beneath Oregon, there is no need for a bend or knee
in the subducting slab according to our images. This may help to explain the lack
of seismicity within the subducted slab beneath Oregon. These images are in gen-
eral consistent with the arc of recent Cascade volcanism that is thought to derive
from the loss of volatiles from the subducting slab at approximately 100 to 120 km
depth (as in other subduction zone regions). Finally, our model may also help to
explain the locations and focal mechanisms of large earthquakes within the subduct-
ing slab that are concentrated below the Puget Sound and have down-dip tension
axes [Baker and Langston 1987], since this structure would predict that the slab
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might only be connected to a deep root beneath the northern portion of the subduc-
tion zone.
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Appendix A
Station Locations

Table A.1: Location of those stations of the Washington Regional Seismograph
Network used in this study. (MSH = Mt. St. Helens)

Station Locations - Washington Regional Seismograph Network

Name Latitude Longitude Elevation Approximate
(North) (West) (km) Location

APW 46° 39’ 06.00” | 122° 38’ 51.00” 0.4570 Alpha Peak
ASR 46° 09’ 02.40” | 121° 35 33.60” 1.2800 Stagman Ridge
AUG 45° 44’ 10.00” | 121° 40’ 50.00” 0.8650 Augspurger Mtn.
BDG 46° 13’ 59.10” | 119° 19’ 03.00” 0.6500 Badger Mtn.
BHW | 47°50° 12.60” | 122° 01’ 55.80” 0.1980 Bald Hill
BLN 48° 00" 26.50” | 122° 58’ 18.64” 0.5850 Blyn Mtn.
BOW | 46° 28’ 30.00” | 123° 13’ 41.00” 0.8700 Boisfort Mtn.
BPO 44° 39’ 06.86" | 121° 41’ 19.20” 1.9570 Bald Peter
BRV 46° 29° 07.20” | 119° 59’ 29.40” 0.9250 Black Rock Valley
BVW | 46°48’37.75” | 115 52’ 54.10” 0.7070 Beverly
CBS 47° 48’ 16.70” | 120° 02’ 27.60” 1.0730 Chelan Butte
CBW 47° 48’ 25.50” | 120° 01’ 57.60” 1.1600 Chelan Butte
CDF 46° 06’ 58.20” | 122° 02’ 51.00” 0.7800 Cedar Flat
CHO 45° 35" 27.00” | 118° 34’ 45.00” 1.0760 Cabbage Hill
CMM | 46° 26’ 07.00” | 122° 30’ 21.00” 0.6200 Crazyman Mtn.
CMW | 48°25°2530” | 122° 07’ 08.40” 1.1900 Cultus Mtn.
COW | 46°2927.60” | 122° 00’ 43.60” 0.3050 Cowlitz River
CPW 46° 58’ 25.80” | 123° 08’ 10.80” 0.7920 Capitol Peak
CRF 46° 49’ 30.60” | 119° 23’ 18.00” 0.2600 Corfu
DAV 47° 38" 18.00” | 118° 13/ 33.6¢” 0.7580 Davenport
DPW 47° 52’ 14.30” | 118° 12’ 10.20” 0.8920 Davenport
DY2 47° 59" 06.91” | 119° 46" 13.03” 0.8840 Dyer Hill
DYH 47° 57" 37.80” | 119° 46’ 09.60” 0.8200 Dyer Hill
EDM 46° 11" 50.40” | 122° 09’ 00.00” 1.6090 MSH East Dome
ELK 46° 18" 20.00” | 122° 20’ 27.00” 1.2700 MSH Elk Rock
ELL 46° 54’ 35.00” | 120° 34’ 06.00” 0.8050 Ellensburg
EPH 47° 21 12.80” | 119° 35’ 46.20” 0.6280 Ephrata
EST 47° 14° 16.80” | 121° 12’ 21.80” 0.7560 Easton
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Table A.1: (continued)
Name Latitude Longitude Elevation Approximate
(North) (West) (km) Location
ETP 46° 27 53.40” | 119° 03’ 32.40” 0.2500 Eltopia
ETT 47° 39" 18.00” | 120° 17’ 36.00” 0.4390 Entiat
ETW 47° 36’ 16.20” | 120° 19’ 51.60” 1.4750 Entiat
FL2 46° 11’ 47.00” | 122° 21’ 01.00” 1.3780 MSH Flattop
FLT 46° 117 21.30” | 122° 21’ 22.50” 1.3870 MSH Flattop
FMW 46° 56’ 29.60” | 121° 40’ 11.30” 1.8590 Mt. Fremont
FOR 45° 58’ 14.00” | 121° 45" 30.00” 1.1520 Forlorn Lakes
FOX 48° 19’ 50.00” | 119° 42’ 29.00” 0.8960 Fox Mtn.
FPW 47° 58’ 09.00” | 120° 12 46.50” 0.3520 Fields Point
GBL 46° 35" 51.60” | 119° 27’ 35.40” 0.3300 Gable Mtn.
GHW 47° 02 30.00” | 122° 16" 21.00” 0.2680 Garrison Hill
GL2 45° 57’ 50.00” | 120° 49’ 15.00” 1.0000 Goldendale
GLD 45° 50’ 13.00” | 120° 48’ 46.00” 0.6100 Goldendale
GLK 46° 33" 50.20” | 121° 36’ 30.70” 1.3200 Glacier Lake
GMO 44° 26" 20.80” | 120° 57’ 22.30” 1.6890 Grizzly Mtn.
GMW | 47° 32" 52.50” | 122° 47’ 10.80” 0.5060 Gold Mtn.
GRO 45° 21’ 04.50” | 123° 39’ 43.00” 0.9450 Grindstone Mtn.
GSM 47° 12" 11.40” | 121° 47’ 40.20” 1.3050 Grass Mtn.
GUL 45° 55" 27.00” | 121° 35’ 44.00” 1.1890 Guler Mtn.
HDW 47° 38" 54.60” | 123° 03’ 15.20” 1.0060 Hoodsport
HH2 46° 10" 18.00” | 119° 23’ 01.00” 0.4900 Horse Heaven Hills
HHW 46° 10° 59.00” | 119° 22’ 59.00” 0.4150 Horse Heaven Hills
HSR 46° 10" 07.50” | 122° 11’ 43.13” 1.7740 MSH South Ridge
HTW 47° 48" 12.50” | 121° 46’ 08.65” 0.8290 Haystack Mtn.
JBO 45° 27 41.68” | 119° 50’ 13.28” 0.6450 Jordan Butte
ICW 48° 11’ 36.60” | 121° 55 46.20” 0.6160 Jim Creek
JUN 46° 08’ 48.00” | 122° 09" 10.80” 1.0490 June Lake
KMO 45° 38" 07.80” | 123° 29’ 22.20” 0.9750 Kings Mtn.
KOS 46° 27° 40.80” | 122° 11’ 25.80” 0.8280 Kosmos
LMW 46° 40’ 04.80” | 122° 17 28.80” 1.1950 Ladd Mtn.
LNO 45° 52’ 15.80” | 118° 17’ 06.00” 0.7680 Lincton Mtn.
LO2 46° 45’ 00.00” | 121° 48’ 36.00” 0.8530 Longmire
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Name Latitude Longitude Elevation Approximate
(North) (West) (km) Location

LOC 46° 43" 04.80” | 119° 25’ 54.60” 0.2010 Locke Island

LvVP 46° 04’ 06.00” | 122° 24’ 30.00” 1.1700 Lakeview Peak

MBW 48° 47° 02.40” | 121° 53’ 58.80” 1.6760 Mt. Baker

MCW 48° 40 46.80” | 122° 49’ 56.40” 0.6930 Mt. Constitution

MDW 46° 36" 48.00” | 119° 45’ 39.00” 0.3300 Midway

MFW 45° 54’ 10.80” | 118°24’21.00” 0.3950 Milton-Freewater

MI2 46° 33’ 28.00” | 119° 21’ 50.00” 0.1500 May Junction

MOW 47° 50" 46.90” | 122° 02’ 52.90” 0.1800 Monroe

MOX 46° 34’ 38.00” | 120° 17’ 35.00” 0.5400 Moxie City

MTM 46° 01’ 31.80” | 122° 12’ 42.00” 1.1210 Mt. Mitchell

NAC 46° 44’ 03.80” | 120° 49’ 33.20” 0.7380 Naches

NCO 43° 42" 18.20” | 121° 08’ 06.20” 1.9080 Newberry Crater

NEL 48° 04’ 41.80” | 120° 20’ 17.70” 1.4900 Nelson Butie

NEW 48° 15’ 50.00” | 117° 07’ 13.00” 0.7600 Newport

NLO 46° 05’ 18.00” | 123° 27’ 00.00” 0.9000 Nicolai Mtn.

OBC 48° 02’ 07.10” | 124° 04’ 39.00” 0.9380 Bonidu Creek

OBH 47° 19" 34.50” | 123° 51’ 57.00” 0.3830 Burnt Hill

OCT 47° 44’ 57.00” | 124° 10" 25.80” 0.7430 Mt. Octopus

OD2 47° 23" 27.60” | 118° 42’ 38.40” 0.5900 Odessa

OoDS 47° 18" 24.00” | 118° 44’ 42.00” 0.5230 Odessa

OEM 48° 07’ 46.50” | 124° 18’ 13.50” 0.7120 Ellis Mtn.

OFK 47° 57° 00.00” | 124° 21’ 28.10” 0.1340 Forks

OHW 48° 19’ 24.00” | 122° 31’ 54.60” 0.0540 Oak Harbor

OLQ 47° 30" 58.10” | 123° 48’ 31.50” 0.1210 Lake Quinault

OMK 48° 28 49.20” | 119° 33’ 39.00” 0.4210 Omak

ONR 46° 52° 37.50” | 123° 46’ 16.50” 0.2570 North River

00)"Y% 47° 44° 12.00” | 124° 11’ 22.00” 0.7430 Mt. Octupus

OSD 47° 49’ 15.00” | 123° 42’ 06.00” 2.0100 Mt. Olympus

OSP 48° 17 05.46” | 124° 35’ 23.30” 0.5850 Sooes Peak

0oT2 46° 43’ 17.00” | 119° 14’ 05.00” 0.3550 Othello

OTH 46° 44" 20.40” | 119° 12’ 59.40” 0.2600 Othello

OTR 48° 05 00.08” | 124° 20’ 39.00” 0.7120 Tyee Ridge

PAT 45° 52’ 50.10” | 119° 45’ 40.10” 0.3000 Paterson
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Name Latitude Longitude Elevation Approximate
(North) (West) (km) Location

PEN 45° 36" 43.20” | 118°45° 46.50” | 0.4300 Pendleton

PGO | 45°28 00.00” ; 122°27 10.00” | 02370 | Gresham

PGW [ 47° 49 2450 | 122°37°25.20” | 0.1220 | Port Gamble

PHO | 45° 37 07.80” | 122°49° 50.20” | 02990 | Portland Hills

PLN 47° 47° 04.80” | 120° 37’ 58.82” | 0.7000 | Plain

PRO 46° 12" 45.60” | 119° 41 09.00” | 0.5520 | Prosser

RCIZ | 46° 57" 00.00” | 119° 26" 00.00” | 0.5000 | Royal City

RMW | 47° 27" 3495 | 121° 48" 19.20” | 1.0240 | Rattlesnake Mtn.

RPK 45° 45° 42.00” | 120° 13" 50.00” | 0.3300 | Roosevelt Peak

RPW [ 48°26’ 54.00” | 121° 30" 49.00” | 0.8500 | Rockport

RSW | 46° 23’ 28.20” | 119° 35" 19.20” | 1.0370 | Rattlesnake Mtn.

RVC | 46° 56’ 34.50” | 121° 58’ 17.30” | 1.0000 | Voight Creek

RVW | 46° 08" 58.20” | 122° 44’ 37.20” | 0.4600 | Rose Valley

SAW [ 47° 42’ 06.00” | 119° 24" 03.60” | 0.6900 | St. Andrews

SBL 46° 20" 25.20” | 122° 02" 19.80” | 1.6650 Strawberry Lake

SBO 45° 01’ 42.00” | 120° 03’ 33.48” | 1.3900 Squaw Butte

SH2 46° 11° 33.00” | 122° 14’ 12.00” | 1.4230 | MSH West

SHW | 46° 11’ 33.00” | 122° 14" 12.00” | 1.4230 | MSH West

SMW | 47°19° 10.20” | 123° 20’ 30.00” | 0.8400 South Mtn.

SOS 46° 14’ 38.50” | 122° 08’ 12.00” | 1.2700 | Smith River

SPW | 47° 33’ 13.30" | 122° 14’ 45.10” | 0.0080 Seward Park

STD 46° 14’ 16.00” | 122° 13’ 21.90” | 1.2680 Studebaker Ridge

STW | 48°09° 02.90” | 123° 40" 13.10” | 0.3080 Striped Peak

SYR 46° 51’ 46.80” | 119° 37" 04.20” | 0.2670 Smyrna

TBM | 47° 10° 10.00” | 120° 35" 58.00” | 1.0640 | Table M.

TCO 44° 06’ 27.00” | 121° 36" 00.00” | 1.9750 Three Creek Meadows

TDH | 45° 17" 23.40” | 121°47°25.20” | 1.5410 | Tom, Dick, Harry Mitn.

TDL 46° 21" 03.00” | 122° 12" 57.00” | 1.4000 Tradedollar Lske

TWW | 47°07° 17.20” | 120° 52’ 04.50” | 1.0460 Teanaway

VBE | 45°03’ 37.20” | 121°35° 12.60” | 1.5440 | Beaver Butte

VCR | 44° 58 58.18” | 120° 59’ 17.35” | 1.0150 | Criterion Ridge

VFP 45°19° 05.00” | 121°27° 54.30” | 1.7160 | Flag Point
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Name Latitude Longiiude Elevation Approximate
(North) (West) (km) Location

VG2 45° 09’ 20.00” | 122° 16’ 15.00” 0.8230 Goat Mtn.

VGB 45° 30’ 56.40” | 120° 46’ 39.00” 0.7290 Gordon Butte

VGT 45° 08’ 59.40” | 122° 15’ 55.20” 0.9930 Goat Mtn.

VIP 44° 307 29.40” | 120° 37’ 07.80” 1.7310 Ingram Point

VLL 45° 27° 48.00” | 121° 40’ 45.00” 1.1950 Laurance Lake

VLM 45° 32’ 18.60” | 122° 02’ 21.00” 1.1500 Larch Mtn.

VTG 46° 57° 28.80” | 119° 59’ 14.40” 0.2080 Vantage

VTH 45° 10’ 52.20” | 120° 33’ 40.80” 0.7730 The Trough

WA2 46° 45’ 24.20” | 119° 33’ 45.50” 0.2300 Wahluke Slope

WAT 47° 41’ 55.00” | 119° 57’ 15.00” 0.9000 Waterville

WBW | 48° 01’ 04.20” | 119° 08’ 13.80” 0.8250 Wilson Butte

WEN 47° 31’ 46.20” | 120° 11’ 39.00” 1.0610 Wenatchee

WG2 46° 01’ 50.25” | 118° 51’ 19.95” 0.5110 Wallula Gap

WGW [ 46° 02’ 40.80” | 118° 55’ 57.60” 0.1580 Wallula Gap

WIW 46° 25’ 48.80” | 119° 17 13.40” 0.1300 Wooded Island

WNS 46° 42 37.00” | 120° 34’ 30.00” 1.0000 Wenas

WPO 45° 34’ 24.00” | 122° 47’ 22.38” 0.3340 Portland

WPW 46° 41’ 53.40” | 121° 32’ 48.00” 1.2500 Whitepass

WRD 46° 58" 11.40” | 119° 08’ 36.00” 0.3780 Warden

YAK 46° 31" 15.80” | 120° 31’ 45.20” 0.6190 Yakima

YEL 46° 12’ 35.00” | 122° 11’ 16.00” 1.7500 MSH Yellow Rock




Appendix B
Event Locations

Table B.1: Event parameters from the NOAA data base for the earthquakes used in
this study. The great circle azimuth and angular distance (A) to each event are
caculcated with respect to WRSN (latitude 46 N and longitude 121 W). Angular
distances of less than 100° represent mantle phases (P) while those with A > 100°

result in core phases (PKP).
Events Used in Present Study
Date Time Location Depth | Magnitude | Azimuth A
yy/mm/dd (UTC) | Latitude Longitude (km) | my M, (w.r.t. WRSN)
80/07/20 21:20 | 17.865S 178.625W 591 |6.0 234° 82°
80/710/10  14:44 | 36.246N 1.493E 10 {53 43° 83°
81/04/28 21:14 | 23.721S 179981E 540 | 6.0 232° 88°
81/05/08 23:34 | 42.660N 139.129E 200 | 6.0 308° 66°
81/09/30 23:03 | 4.798S 112.008W 10 |59 52 169° 51°
81/10/01 12:14 [73.317N  54.812E 0 [59 338 1° 61°
81/10/22  13:59 | 63.789N  97.548E 0 |49 342° 66°
82/01/04 06:05 | 18.014N 145626E 590 |6.1 285° 79°
82/03/22 06:04 | 6.650N 175.064E 33 [56 54 255° 67°
82/10/16 06:14 | 46.743N  48213E 0 |54 31 7° 87°
82/12/31 19:46 | 42.796N  77.423E 24 |58 5.1 347° 90°
83/01/15 00:39 | 33.268N 136.040E 435 |5.5 302° 75°
83/01/16 22:10 | 5.458S 147.046E 235 | 6.0 268° 95°
83/02/14 00:23 | 10.504N 140.924E 39 |58 57 283° 88°
83/03/08 13:21 | 3.471S 177.628E 33 (58 50 246° 73°
83/03/19 21:41 |35.08IN 25.350E 65 (5.7 27° 93°
83/04/12 12:07 | 4.843S 78.103W 104 |65 131° 63°
83/04/15 10:08 | 59798 75.663W 118 |56 129° 66°
83/05/25 17:30 |21.895S 138.918W 0 |55 41 158° 70°
83/06/21 17:06 | 29.718N 129.395E 158 |59 304° 81°
83/07/31 10:26 {20.127S 126931W 10 {59 53 186° 66°
83/08/02 02:17 |20.435N 122.101E 158 |6.1 303° 92°
83/08/05 06:21 | 3.596S 62.153W 23 {56 53 116° 72°
83/09/04 20:52 |20.998S 169.801E 112 |55 241° 92°
83/09/15 10:39 | 16.103N 93.153W 115 |56 133° 38°
83/09/28 08:04 | 41.170N 132455E 513 |5.1 310° 71°
83/10/08 07:45 | 44.229N 130.741E 558 |5.7 314° 70°
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Date Time Location Depth | Magnitude |Azimuth A

yy/mm/dd (UTC) | Latitude Longitude (km) | m, M, (w.r.t. WRSN)

83/10/13  12:22 |24.457TN 46279W 10 (55 54 83° 62°
83/12/11 09:13 | 8.137N 137.239E 24 162 63 284° 92°
83/12/15 04:22 |33.099S 70.120W 100 |59 139° 91°
83/12/22 04:11 [11.866N 13.520W 11 |64 62 69° 93°
84/01/19 16:34 | 5.988N 146.533E 30 [57 5.8 276° 87°
84/03/06 02:17 | 29.384N 138.935E 457 |62 298° 76°
84/03/11 13:42 [26.653S 108.507W 10 (57 4.4 168° 74°
84/03/11 22:22 | 38.392N 135482E 351 |53 306° 71°
84/03/19 20:28 | 40.320N  63.350E 15 {65 7.0 357° 94°
84/03/30 07:59 [ 17.362N 59633W 26 |5.8 5.0 98° 58°
84/04/20 06:31 | 50.120N 148.745E 582 |6.0 310° 57°
84/04/23 21:40 | 47.450N 146.692E 414 |6.0 308° 59°
84/06/11 02:05 {30.707S 71.179W 46 |63 58 139° 89°
84/06/15 14:22 [ 15.816S 174.831W 247 |6.1 232° 79°
84/06/18 11:20 | 157058 72491W 117 |5.8 132° 76°
84/09/17 20:59 | 55.870N  87.446E 0 {49 344° 75°
84/10/23 22:28 | 13.714N 144917E 123 |54 282° 83°
84/10/26 20:22 | 39.155N  71.328E 33 [60 6.1 350° 94°
84/11/06 07:58 | 18.876S 67.352E 10 |62 58 343° 152°
84/11/22 13:52 | 68.532N 140.883E 33 154 49 3320 51°
85/01/02 23:08 | 53.490N 171.531W 235 [4.8 302° 33°
85/02/23  13:41 | 10.254S 161.126E 85 16.0 254° 89°
85/05/01 13:27 | 9.196S 71230W 600 |6.0 127° 71°
85/06/26 23:44 | 6.854N 72980W 154 |52 118° 57°
85/07/07 06:01 {22.577TN 141982E 260 |54 291° 79°
85/08/11 09:59 | 54.139N 168.731E 50 159 538 307° 44°
85/08/11 16:06 | 36.126N  95.632E 33 [54 44 331° 91°
85/09/10 06:39 (27.208N 139.848E 501 |5.8 296° 77°
85/09/26 07:27 {34.693S 178.656W 52 |63 7.0 224° 96°
85/10/06 12:00 | 18.961S 169.432E 273 |5.7 242° 90°
85/11/12  03:34 | 36.514S 97.918W 10 146 162° 85°
86/02/15 21:37 | 14.774N 91.414W 136 |53 132° 40°
86/04/14 10:52 | 4.865S 151268E 216 |54 265° 920
86/04/30 07:07 | 18.404N 102973W 27 |62 170 146° 31°
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Date Time Location Depth | Magnitude | Azimuth A

yy/mm/dd (UTC) | Latitude Longitude (km) m, M, (w.r.t. WRSN)
86/05/11 01:24 | 26.743N 125205E 194 |59 305° 86°
86/06/24 03:11 | 4.448S 143943E 102 |66 7.1 271° 97°
86/07/07 16:26 | 10.389N  56.832E 8 |64 6.2 30 124°
86/07/18 17:22 | 10.770N  69.428W 7 159 49 112° 56°
86/10/22 08:59 | 10.569S 166.040E 165 |59 250° 86°
86/10/28 15:04 | 26.978S 26.676E 5 152 53 65° 148°
86/10/30 01:28 |21.702S 176.616W 188 |6.4 230° 84°
87/01/07 18:19 | 34.259N 103.405E 33 |55 55 325° 90°
87/02/23 02:43 |57.922S 25350W 27 |59 57 136° 130°
87/04/03 01:17 {49.928N  78.829E 0 162 47 347° 83°
87/04/16 01:10 | 54.957N 157985E 310 |5.0 312° 49°
87/05/07 03:05 | 46.736N 139232E 430 | 6.0 311° 64°
87/06/05 04:59 | 41.584N  88.737E 0 162 44 338° 88°
87/07/06  23:59 | 61.50IN 112.803E 0 |51 335° 64°
87/07/11 06:15 {82229N 17.556W 10 |55 50 10° 46°
87/08/03 07:37 | 86.906N  63.095E 10 |50 45 360° 47°
87/08/04 22:15 129.292S 176202W 33 |55 52 226° 90°
87/08/06 15:15 | 5.417S 105015W 10 |56 52 160° 53¢
87/09/01 04:26 |23.052S 66.529W 199 |6.0 131° 85°
87/09/03  06:40 | 58.893S 158.513E 33 |59 1713 218° 124°
87/09/13  11:20 | 14.272N 89979W 123 |5.1 130° 41°
87/09/18 21:58 [47.017N  89.658E 3 |5 4.8 340° 83°
87/10/03  03:35 | 17.950S 69.247W 149 |5.8 130° 79°
87/10/12  13:57 | 7.288S 154.371E 25 |63 6.8 261° 920
87/11/06  18:47 |22.801S 63.583W 538 |5.8 129° 86°
88/02/05 18:49 [24.893S 70.554W 31 |60 6.1 135° 84°
88/02/24  02:54 | 51.723N 176.79TW 60 |5.5 300° 36°
88/02/24 15:43 | 0.507S 91.653W 10 {55 45 142° 53°
88/02/26  06:17 | 37.319S  47.989E 10 {61 6.7 47° 168°
88/03/21 23:31 | 77.60IN 125451E 10 [6.0 6.0 345° 50°
88/04/22  04:03 | 17.062N 61.543W 61 |5.0 100° 57°
88/04/25 10:10 | 7.791S 158.255E 4 161 6.0 258° 89°
88/05/20 14:58 | 8.116N 38413W 10 |58 59 90° 79°
88/06/05 18:22 | 15.397S 167.578E 110 [6.0 246° 89°
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Date Time Location Depth | Magnitude | Azimuth A

yy/mm/dd (UTC) | Latitude Longitude (km) |m, M, (w.r.t. WRSN)
88/08/08 19:59 [63.501IN  2611E 10 |56 25° 62°
88/08/10 11:46 |28.165S 112.695W 10 |59 172° 75°
88/08/14 10:56 | 54.60IN 152.657E 644 |55 313° 52°
88/08/14 17:53 |27.431S 70937W 38 |6.0 137° 86°
88/08/17 01:59 | 7.657S 107.263E 58 |6.0 297° 124°
88/08/22 16:19 | 66.307N  78.474E 0 (53 352° 67°
88/08/27 07:04 |31.07IN 64.838W 10 |5.1 89° 45°
88/09/09 23:07 | 6.943S 81.335W 33 |57 135° 64°
88/09/15 18:48 | 1.403S 77.895W 189 |58 128° 61°
88/09/22  22:28 | 23.980N 167.144W 10 |54 255° 43°
88/10/13  00:32 | 61.888N 169.548E 33 [53 318° 41°
88/11/25 23:46 |48.123N  71245W 20 |59 68° 33°
88/12/04 05:19 | 73.405N  54.902E 0 |58 1° 61°
88/12/24  10:39 |27.446S 63.008W 570 |57 131° 90°
89/02/04 19:24 | 5928N 82.807W 33 |58 129° 52°
89/04/02 10:35 | 10.644N  85.504W 113 |49 128° 46°
89/04/15 14:26 | 8.429N 61.069W 25 |5.8 107° 63°
89/04/29  06:25 | 57.193N 122.087E 33 |53 328° 64°
89/05/02 09:30 | 16.750N 99.364W 10 |54 141° 34°
89/05/13  03:35 | 50.14IN 105.411E 33 |55 331° 76°
89/05/19 02:21 | 54.323N 165.580W 104 |6.0 303° 29°
89/06/10  17:29 [22.201S 138.830W 0 {55 198° 70°
8O/06NE  14:06 117767M  £8837W 71 155 105° 5i°
89/06/20  05:41 | 52.260N 174.204E 50 }5.1 303° 41°
89/06/25 11:15 | 32.892N 39.572W 10 |52 71° 61°
89/06/26  03:27 | 19.388N 155.192W 10 (6.0 238° 39°
89/06/26 10:38 | 39.278N  28229W 10 {5.8 59° 65°
89/07/30  09:29 |52.532S  13.076E 10 |56 119° 150°
89/08/12  15:31 | 18.445N 100.735W 97 |54 142° 32°
89/08/14  17:51 | 18.923S 176403E 114 !57 2370 86°
89/08/21 18:25 | 4.066S 154.392E 500 |6.0 263° 89°
89/09/16  23:20 | 16.560N 93.659W 110 |5.9 133° 37°
89/09/17 00:53 | 40.188N  51.794E 33 [6.0 6° 94°
89/10/18  18:20 | 40.094N 114.019E 10 |55 321° 81°




Appendix C
Three-dimensional Ray Tracing

In order to obtain the correct path of integration for the integrals described
§4.2 we must solve the two-point ray-tracing problem through arbitrarily varying
three-dimensional media. Equations for accomplishing this, formulated in terms of
accumulated travel time along the ray path, were derived by Julian and Gubbins
[1977]. The appropriate equations for solving the resultant differential equations as
an initial value problem, as given in Appendix A of Julian and Gubbins [1977],
contained certain typographical which were corrected by Creager [1984] and are
therefore restated (corrected) here. They are

% =—1v cosi , (C.1a)

% =- % sini cosj , (C.1b)

%’- = rs:ne sini sinj , (C.1c)

% =={v, — %) sini + (V_re cosj — rsize sinj) cosi , (C.1d)
and

:dl{- =— s—ilrg(.vr_e sinj + r:iie cosj) + —vr- sini sinj cotf , (C.le)

where subscripts indicate partial derivatives with respect to the subscripted variable.
All variables are represented as functions of accumulated travel time, 7, with
(r, 6, ¢) representing the standard polar spherical coordinate system (with 6 = 0
representing the North pole), i (t) the angle between the ray tangent and the vertical
and j(z) the angle between the ray tangent projected onto the O0¢—plane and the
northward direction (positive clockwise). The variables i and J therefore simply
represent take-off angle and azimuth, respectively, as commonly used in seismologi-
cal problems.

Solving these equations as a initial value problem is known as the shooting
method of ray tracing. This is due to the fact that given the initial values of the
above variables (r, 6, ¢, i, and j) we can simply integrate along the path defined
by equations C.la-e until passing by the desired end point. We then have a frue
ray path through the velocity field (within the limits of our numerical accuracy) but
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probably not a path that connects to the desired end point and possibly a non-
unique path as well. We will attack these two problems following the formulation
of Creager [1984].

The latter of these problems (non-uniqueness) arises in our situation due to tri-
plications in travel-time surfaces. We seek a true ray path that connrects our station
locations to a certain earthquake hypocenter by finding a minimum travel-time path,
yet any given path which we find may only represent a local minima. To attack
this problem Creager [1984] devised a scheme of calculating the travel-time sur-
faces from a given event to the surface of the Earth in a sufficiently dense grid to
define these triplications and therefore be able to choose the ray path representing
the global travel-time minimum. We have altered these routines for our purposes to
use an arbitrarily varying three-dimensional velocity field and to integrate to a given
source depth rather than the Earth’s surface, but essentially the methods are identi-
cal (see Creager [1984] for a detailed description). A table is created from each of
the 146 station locations to cover the teleseismic distance range from approximately
30 to 100 degrees. Rays are traced to a depth of 100 km for the purposes of the
initial table.

Once we have decided on which branch of the travel-time surface the first
arrival lies, we must then iterate shocting rays until we find one close enough
(within 0.1 degrees) to the desired end point (hypocenter). The method of accom-
plishing this is also given in detail in Creager [1984] but in essence we simply
choose the closest rays from the previously calculated table which surround the
desired endpoint and then use Newton’s method of false position to zero in on the
hypocenter (each of the three initial rays are re-calculated for the depth of the event
in question before beginning the iterative procedure). For each of the models
through which we ray traced we were able to locate approximately 98% of the ray
paths to within the desired accuracy, usvally within 3-5 iterations. Many of the
remaining 2% could probably be located with the use of a denser table of initial
values.

The final ray paths are then saved for use in calculating the partial derivatives
necessary for performing the travel-time inversion. The travel-times are corrected
for the difference between the final ray’s end point and the hypocenter through the
use of the time difference between these two points calculate from the radially sym-
metric reference model [Herrin, 1968]. The travel-time residuals are not changing
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drizmatically over these distances (less than 11 km) and therefore we have found
empirically that this correction is accurate to within approximately .02 seconds.
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